WO2018174267A1 - Load drive circuit, system using same, and method for controlling drive circuit - Google Patents

Load drive circuit, system using same, and method for controlling drive circuit Download PDF

Info

Publication number
WO2018174267A1
WO2018174267A1 PCT/JP2018/011851 JP2018011851W WO2018174267A1 WO 2018174267 A1 WO2018174267 A1 WO 2018174267A1 JP 2018011851 W JP2018011851 W JP 2018011851W WO 2018174267 A1 WO2018174267 A1 WO 2018174267A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
control input
state
drive circuit
bridge circuit
Prior art date
Application number
PCT/JP2018/011851
Other languages
French (fr)
Japanese (ja)
Inventor
裕樹 菅本
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018054900A external-priority patent/JP7228335B2/en
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to CN201880020633.5A priority Critical patent/CN110476349B/en
Publication of WO2018174267A1 publication Critical patent/WO2018174267A1/en
Priority to US16/580,303 priority patent/US10992244B2/en

Links

Images

Definitions

  • the present invention relates to a drive circuit for driving a load such as a motor.
  • FIG. 1 is a block diagram of a DC motor drive circuit.
  • the drive circuit 100R includes a logic circuit 110, a pre-driver 120, and an H bridge circuit 130.
  • the drive target motor 202 is connected to the output terminals (pins) OUTA and OUTB of the drive circuit 100R.
  • Driving circuit 100R receives the control instruction S 1 from an external controller 204 drives the motor 202 in response to the control instruction S 1.
  • control instruction S 1 is the torque command and speed command, rather than such position command includes data indicating the state of the H-bridge circuit 130.
  • the H bridge circuit 130 can take four states ⁇ 1 to ⁇ 4 .
  • H represents a high voltage
  • L represents a low voltage
  • Z represents a high impedance state.
  • ⁇ 1 OUTA Z
  • OUTB L ⁇ 3
  • OUTA L
  • OUTB H
  • OUTB H
  • OUTA L
  • the drive circuit 100R includes, in addition to the two output pins OUTA and OUTB, a power supply pin VM and a ground pin PGND of the H bridge circuit 130, a power supply pin VCC for the previous circuit (110 and 120), and a ground pin GND. If you want to accommodate the drive circuit 100R in 8-pin package, the reception of the control command S CNT from the controller 204, two control pins INA, it is possible to assign the INB. When each control pin can be controlled in the high and low 2 states, the four states ⁇ 1 to ⁇ 4 can be switched using the two control pins INA and INB.
  • a general IC includes an enable pin, and is configured to shift to a standby mode by setting the enable pin to a predetermined state.
  • the present invention has been made in view of these problems, and one of the exemplary purposes of an aspect thereof is to provide a drive circuit that can be set to a standby mode without increasing the number of pins.
  • the drive circuit has an H bridge circuit, one or two control input pins for receiving one or two control input signals indicating the state of the H bridge circuit from the outside, and one or two control input signals. And a logic circuit that generates an internal signal that indicates the state of the transistors that constitute the H-bridge circuit, and a pre-driver that drives the H-bridge circuit based on the internal signal.
  • the drive circuit shifts to the standby mode when one or two control input signals maintain a predetermined state for a predetermined determination time.
  • the predetermined state may correspond to a high impedance state of the H bridge circuit.
  • the predetermined state may correspond to a short brake state of the H bridge circuit.
  • the determination time may be longer than 50 ⁇ s.
  • the state of the control input pin changes in the PWM cycle.
  • the state of the control input pin changes with the frequency (cycle) of the control pulse that defines the rotation speed.
  • the PWM frequency and the frequency of the control pulse are set outside the audio band, that is, 20 kHz or more. Therefore, by defining the determination time longer than 50 ⁇ s, it is possible to distinguish between an intentional transition instruction to the standby state and a specific state during PWM drive or stepping motor control.
  • the control method includes a step in which the processor changes one or two control input signals that specify the state of the H-bridge circuit in a time shorter than a predetermined period in order to rotate the motor, and one or two controls. Controlling the H-bridge circuit in response to the input signal; and fixing the one or two control input signals to a predetermined state for a predetermined time in order for the processor to shift the drive circuit to a standby mode; A step of transitioning the drive circuit to a standby mode when it is detected that one or two control input signals have maintained the predetermined state for a predetermined time in the drive circuit.
  • FIG. 1 is a circuit diagram of a system including a drive circuit according to a first embodiment.
  • FIG. 3 is a diagram illustrating an example of correspondence between states of control input pins INA and INB, and internal and output states of the drive circuit in the drive circuit of FIG. 2.
  • FIG. 3 is an operation waveform diagram of the drive circuit of FIG. 2.
  • It is a circuit diagram of a system provided with the drive circuit which concerns on 2nd Example.
  • FIGS. 7A to 7C are diagrams showing some examples of correspondence between the state of the control input pin IN in the drive circuit of FIG. 6 and the internal and output states of the drive circuit.
  • FIG. 9 is a circuit diagram of the system which concerns on 4th Example. It is a circuit diagram of a system provided with the drive circuit which concerns on 5th Example. 10 is a time chart showing an example of the operation of the system of FIG. 9.
  • 14 is a circuit diagram of a drive circuit according to Modification 4.
  • FIG. 14 is a circuit diagram of a drive circuit according to Modification 4.
  • FIG. 10 is a circuit diagram of a system including a drive circuit according to Modification Example 5.
  • FIGS. 14A to 14H are views showing the appearance of the package of the drive circuit.
  • the state in which the member A is connected to the member B means that the member A and the member B are electrically connected to each other in addition to the case where the member A and the member B are physically directly connected. It includes cases where the connection is indirectly made through other members that do not substantially affect the general connection state, or that do not impair the functions and effects achieved by their combination.
  • the state in which the member C is provided between the member A and the member B refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as their electric It includes cases where the connection is indirectly made through other members that do not substantially affect the general connection state, or that do not impair the functions and effects achieved by their combination.
  • FIG. 2 is a circuit diagram of a system 200 including the drive circuit 100 according to the first embodiment.
  • the drive circuit 100 includes two control input pins INA and INB, and two control input signals are supplied from the external controller 204 to the control input pins INA and INB.
  • the drive circuit 100 drives a load (for example, the motor 202) connected to the two output terminals OUTA and OUTB according to the two control input signals INA and INB.
  • the drive circuit 100 includes a logic circuit 110, a pre-driver 120, an H bridge circuit 130, a BGR (bandgap reference) circuit 140, a protection circuit 150, and a standby circuit 160, and is accommodated in one package.
  • the drive circuit 100 may be a functional IC integrated on one semiconductor substrate.
  • the H bridge circuit 130 may be integrated on a separate chip from the other blocks (110, 120, 140, 150, 160).
  • the H bridge circuit 130 can take four states ⁇ 1 to ⁇ 4 according to the control input pins INA and INB.
  • the logic circuit 110 monitors the states (control input signals) of the control input pins INA and INB, and determines which of the states ⁇ 1 to ⁇ 4 is in effect. Then, an internal signal S INT corresponding to the determined state is generated.
  • the internal signal S INT may be a signal instructing on / off of each of the four transistors M1 to M4 constituting the H-bridge circuit 130.
  • the pre-driver 120 controls the gate voltages of the transistors M1 to M4 of the H bridge circuit 130 based on the internal signal S INT .
  • the BGR circuit 140 generates a reference voltage.
  • the protection circuit 150 includes a thermal shutdown (TSD) circuit, an undervoltage lockout (UVLO) circuit, and the like.
  • TSD thermal shutdown
  • UVLO undervoltage lockout
  • the protection circuit 150 includes a voltage comparator.
  • the standby circuit 160 shifts the drive circuit 100 to the standby mode when the two control input signals INA and INB maintain the predetermined state ⁇ for the predetermined determination time ⁇ .
  • the standby mode supply of the bias current, bias voltage, and power supply voltage to other circuit blocks other than the logic circuit 110 is stopped, and the current consumption of the drive circuit 100 is reduced to a level of several ⁇ A.
  • the standby circuit 160 is shown outside the logic circuit 110, but the function of the standby circuit 160 can actually be implemented as a part of the logic circuit 110.
  • FIG. 3 is a diagram showing an example of the correspondence between the states of the control input pins INA and INB and the internal and output states of the drive circuit 100.
  • the predetermined state ⁇ is the high impedance state ⁇ 1 of the H bridge circuit 130.
  • Standby circuit 160 measures the time that the logic circuit 110 detects a high impedance state phi 1, reaches the determination time tau, to shift the driving circuit 100 to the standby mode.
  • the determination time ⁇ is preferably defined to be longer than 50 ⁇ s, for example, set between 50 and 500 ⁇ s.
  • FIG. 4 is an operation waveform diagram of the drive circuit 100 of FIG.
  • the power supply voltage VCC and VM stand up to time t 0.
  • the standby mode is set, and the operating current I CC is very small.
  • the control input signal INA the INB changes, the transition to the normal mode.
  • the state transitions sequentially to the states ⁇ 3 , ⁇ 4 , and ⁇ 2 corresponding to the levels of the control input signals INA and INB.
  • the output is high impedance.
  • the state ⁇ 4 continues for the determination time ⁇ at time t 3 , the standby mode is entered and the operating current I CC decreases.
  • the state transitions sequentially to states ⁇ 2 , ⁇ 3 , ⁇ 2 , and ⁇ 3 corresponding to the levels of the control input signals INA and INB.
  • Supply voltage V CC is below the threshold UVLO circuit at time t 5, becomes undervoltage lockout, the output of the H-bridge circuit 130 becomes a high impedance.
  • the four states of the H-bridge circuit 130 are controlled from the outside by using only the two control input pins INA and INB without adding an enable pin, and further shifted to the standby mode. Can do.
  • a torque command (speed command) of zero is understood as an explicit instruction to stop the motor. Therefore, after waiting for the time required for the motor to completely stop after the torque command (speed command) becomes zero, it is sufficient to shift to the standby mode.
  • the drive circuit 100 supports pulse driving with a cycle shorter than the determination time ⁇ .
  • the controller 204 by switching alternately shorter than the determination time ⁇ period, while the motor 202 is stopped, without migrating the driving circuit 100 in the standby mode It is also possible to continue to maintain the normal mode. Such control cannot be realized by a drive circuit that receives a torque command or a speed command.
  • the bias circuit stops, so it takes a few ⁇ s to return to normal mode.
  • PWM drive there is a case where the output voltage of the H bridge circuit is desired to be changed at a slew rate of several tens ns. If control that shifts to standby immediately when a high-impedance control input is detected, the rounding of the waveform of the output voltage of the H-bridge circuit during PWM driving becomes large, and the usable applications are limited. In the embodiment, since the waveform of the output voltage of the H-bridge circuit does not occur, it can be applied to a wide range of applications.
  • FIG. 5 is a circuit diagram of a system 200A including a drive circuit 100A according to the second embodiment.
  • the drive circuit 100A includes a PWM (Pulse Width Modulation) circuit 170 for switching the drive signal during the energization period to the motor.
  • a shunt resistor Rs is provided on the path of the drive current, specifically between the PGND pin and the external ground, and a voltage drop (current detection signal) Vs corresponding to the drive current flowing through the motor 202 is provided in the shunt resistor Rs. Will occur.
  • the shunt resistor Rs may be built in the drive circuit 100A.
  • the PWM circuit 170 is a pulse-by-pulse current limiting circuit, and generates the PWM signal S PWM based on the current detection signal Vs.
  • the PWM circuit 170 operates in synchronization with the clock generated by the oscillator 172.
  • the PWM circuit 170 changes the PWM signal S PWM to the first level (for example, high) in response to the positive edge of the clock CK generated by the oscillator 172.
  • the PWM circuit 170 compares the current detection signal Vs with a limit value V CL that defines the upper limit of the drive current, and detects V S > V CL , that is, when the drive current reaches the limit value, the PWM signal S PWM To the second level (eg, low).
  • the PWM signal S PWM is supplied to the pre-driver 120.
  • the pre-driver 120 logically synthesizes the PWM signal S PWM with the internal signal S INT and controls the H bridge circuit 130.
  • the logic synthesis function may be implemented in the logic circuit 110.
  • the standby circuit 160 may stop the PWM circuit 170 in the standby state. Specifically, current consumption can be reduced by cutting off the current of the comparator included in the PWM circuit 170. Further, the oscillator 172 that generates the clock CK may be stopped in the standby state. This can further reduce current consumption.
  • FIG. 6 is a circuit diagram of a system 200B including a drive circuit 100B according to the third embodiment.
  • the drive circuit 100B includes one control pin IN.
  • a high / low binary control input signal IN is input to the control pin IN.
  • the logic circuit 110 transitions the state of the bridge circuit 130 in response to the transition of the state of the control input pin IN. Further, when the control input pin IN remains in a predetermined state for a predetermined time, the standby circuit 160 shifts the drive circuit 100B to the standby state.
  • FIGS. 7A to 7C are diagrams showing some examples of the correspondence between the state of the control input pin IN in the drive circuit 100B of FIG. 6 and the internal and output states of the drive circuit.
  • the H bridge circuit 130 can take two states ⁇ 1 and ⁇ 2 according to the control input pin IN.
  • ⁇ 1 OUT1 L
  • OUT2 H
  • ⁇ 2 OUT1 H
  • OUT2 L
  • the logic circuit 110 monitors the state (control input signal) of the control input pin IN, and determines whether the state is ⁇ 1 or ⁇ 2 . Then, an internal signal S INT corresponding to the determined state is generated.
  • the standby circuit 160 shifts the drive circuit 100B to the standby mode when the first state ⁇ 1 (that is, the IN pin is low) lasts for a predetermined time.
  • the logic circuit 110 changes the internal signal S INT so that the H bridge circuit 130 is in a state ⁇ s (short brake state) different from the first state ⁇ 1 and the second state ⁇ 3 .
  • the motor 202 can be fixed in the standby mode.
  • ⁇ s may be in a high impedance state.
  • FIG. 8 is a circuit diagram of a system 200C according to the fourth embodiment.
  • the system 200C includes two drive circuits 100B shown in FIG.
  • the output of one drive circuit 100B_A is connected to one coil of the stepping motor 202C, and the output of the other drive circuit 100B_B is connected to the other coil of the stepping motor 202C.
  • the controller 204 controls the stepping motor 202C by supplying the control input signal INA to the drive circuit 100B_A and the control input signal INB to the drive circuit 100B_B.
  • the waveforms of the control input signals INA and INB are selected according to the driving method of the stepping motor (one-phase example, 1-2-phase excitation, 2-phase excitation, etc.).
  • FIG. 9 is a circuit diagram of a system 200D including a drive circuit 100D according to the fifth embodiment.
  • the drive circuit 100D can be understood as a circuit in which the drive circuits 100B_A and 100B_B in FIG. 8 are integrated.
  • the outputs OUTA and OUTB can take four states ⁇ 11 to ⁇ 14 depending on the combination of INA and INB.
  • INA L
  • OUTA2 H
  • OUTB1 L
  • OUTB2 H ⁇ ⁇ 12
  • OUTA2 L
  • OUTB1 L
  • OUTB2 H ⁇ ⁇ 13
  • OUTA2 H
  • OUTB1 H
  • OUTA2 L
  • FIG. 10 is a time chart showing an example of the operation of the system 200D of FIG.
  • 1-2 phase excitation is taken as an example.
  • the standby circuit 160 of the drive circuit 100D monitors all edges of the two control input signals INA and INB. When the edge interval exceeds a predetermined determination time ⁇ , the standby mode is entered. In other words, when any one of the four states ⁇ 11 to ⁇ 14 is maintained for a predetermined time, the standby mode is entered.
  • the bridge circuits 130A and 130B are fixed to a predetermined state ⁇ s (for example, a high impedance state or a short brake state). Alternatively, the predetermined state ⁇ s may be the immediately preceding state ( ⁇ 13 in the example of FIG. 10).
  • the standby mode is canceled, and then the state transitions to the states ⁇ 11 and ⁇ 12 corresponding to the two control inputs INA and INB.
  • Modification 2 In the embodiment, a single-phase DC motor is used as a load.
  • the present invention is also applicable to a three-phase inverter and a stepping motor drive circuit.
  • the load is not limited to the motor, and the drive circuit 100 may be a part of a flyback converter, a forward converter, a DC / DC converter, or the like.
  • FIG. 11 is a circuit diagram of a drive circuit 100E according to the fourth modification.
  • the drive circuit 100E has two power supply pins common to the drive circuit 100 of FIG. 2, and two ground pins.
  • FIG. 12 is a circuit diagram of the drive circuit 100F according to the fourth modification.
  • the drive circuit 100F is obtained by sharing the two power pins of the drive circuit 100B of FIG. 6 and sharing the two ground pins.
  • FIG. 13 is a circuit diagram of a system 200G including a drive circuit 100G according to Modification 5.
  • the drive circuit 100G includes a half-bridge circuit 130G at its output stage instead of the H-bridge circuit 130.
  • the output pin of the half bridge circuit 130G is connected to one end of a motor 130G (coil), and a predetermined voltage (power supply voltage or ground voltage) is applied to the other end of the motor 130G.
  • FIG. 14A to 14H are views showing the appearance of the package of the drive circuit 100.
  • FIG. FIG. 14A shows an 8-pin package.
  • the drive circuit 100 of FIG. 2 can be accommodated in this package.
  • Each pin of the drive circuit 100 in FIG. 2 may be arranged as follows. Name Pin number VM 2 PGND 8 VCC 4 GND 5 INA 3 INB 6 OUTA 1 OUTB 7
  • FIG. 14B shows a 6-pin package.
  • the drive circuit 100E of FIG. 11 can be accommodated in this package.
  • Each pin of the drive circuit 100E of FIG. 11 may be arranged as follows. Name Pin No. VCC 2 GND 5 INA 3 INB 4 OUTA 1 OUTB 6
  • FIG. 14C shows a 5-pin package.
  • the drive circuit 100F of FIG. 12 can be accommodated in this package.
  • Each pin of the drive circuit 100F may be arranged as follows. Name Pin number VM 5 PGND 2 IN 4 OUTA 1 OUTB 3
  • FIG. 14 (d) shows a 4-pin package.
  • the drive circuit 100G of FIG. 13 can be accommodated in this package.
  • Each pin of the drive circuit 100G may be arranged as follows. Name Pin No. VCC 1 GND 2 IN 3 OUT 4
  • FIGS. 14E to 14F show 8-pin, 6-pin, 5-pin, and 4-pin CSP (Chip Size Package).
  • the present invention can be used for motor driving technology.

Landscapes

  • Control Of Stepping Motors (AREA)

Abstract

Two control input pins INA, INB receive two control input signals from the outside. Corresponding to the two control input signals INA, INB, a logic circuit 110 generates an internal signal SINT that instructs the state of an H bridge circuit 130. A pre-driver 120 drives the H bridge circuit 130 on the basis of the internal signal SINT. When the two control input signals INA, INB are held in a predetermined state for a predetermined determining time, a standby circuit 160 shifts a drive circuit 100 to be in standby mode.

Description

負荷の駆動回路、それを用いたシステム、駆動回路の制御方法Load drive circuit, system using the same, and drive circuit control method
 本発明は、モータなどの負荷を駆動する駆動回路に関する。 The present invention relates to a drive circuit for driving a load such as a motor.
 図1は、DCモータの駆動回路のブロック図である。駆動回路100Rは、ロジック回路110、プリドライバ120、Hブリッジ回路130を備える。駆動回路100Rの出力端子(ピン)OUTA,OUTBには、駆動対象のモータ202が接続される。駆動回路100Rは外部のコントローラ204から制御指令Sを受け、制御指令Sに応じてモータ202を駆動する。 FIG. 1 is a block diagram of a DC motor drive circuit. The drive circuit 100R includes a logic circuit 110, a pre-driver 120, and an H bridge circuit 130. The drive target motor 202 is connected to the output terminals (pins) OUTA and OUTB of the drive circuit 100R. Driving circuit 100R receives the control instruction S 1 from an external controller 204 drives the motor 202 in response to the control instruction S 1.
 この駆動回路100Rにおいて、制御指令Sは、トルク指令や速度指令、位置指令などではなく、Hブリッジ回路130の状態を指示するデータを含む。 In this driving circuit 100R, the control instruction S 1 is the torque command and speed command, rather than such position command includes data indicating the state of the H-bridge circuit 130.
 Hブリッジ回路130は、4つの状態φ~φを取り得る。Hはハイ電圧、Lはロー電圧、Zはハイインピーダンス状態を表す。
 φ OUTA=Z,OUTB=Z
 φ OUTA=H,OUTB=L
 φ OUTA=L,OUTB=H
 φ OUTA=L,OUTB=L
 φはショートブレーキ状態であり、OUTA=OUTB=Hであってもよい。
The H bridge circuit 130 can take four states φ 1 to φ 4 . H represents a high voltage, L represents a low voltage, and Z represents a high impedance state.
φ 1 OUTA = Z, OUTB = Z
φ 2 OUTA = H, OUTB = L
φ 3 OUTA = L, OUTB = H
φ 4 OUTA = L, OUTB = L
phi 4 is a short-circuit braking state may be OUTA = OUTB = H.
 たとえば駆動回路100Rは、2つの出力ピンOUTA,OUTBに加えて、Hブリッジ回路130の電源ピンVM、グランドピンPGND、前段の回路(110,120)用の電源ピンVCC、グランドピンGNDを備える。駆動回路100Rを8ピンのパッケージに収容したい場合、コントローラ204からの制御指令SCNTの受信に、2個の制御ピンINA,INBを割り当てることができる。各制御ピンが、ハイ、ロー2状態で制御可能である場合、2本の制御ピンINA,INBを用いて4個の状態φ~φを切替えることが可能となる。 For example, the drive circuit 100R includes, in addition to the two output pins OUTA and OUTB, a power supply pin VM and a ground pin PGND of the H bridge circuit 130, a power supply pin VCC for the previous circuit (110 and 120), and a ground pin GND. If you want to accommodate the drive circuit 100R in 8-pin package, the reception of the control command S CNT from the controller 204, two control pins INA, it is possible to assign the INB. When each control pin can be controlled in the high and low 2 states, the four states φ 1 to φ 4 can be switched using the two control pins INA and INB.
特開2008-263733号公報JP 2008-263733 A
 多くのIC(Integrated Circuit)は、その低消費電力化のためにスタンバイモードが実装される。一般的なICは、イネーブルピンを備え、イネーブルピンを所定の状態とすることで、スタンバイモードに移行するよう構成される。 Many ICs (Integrated Circuit) are equipped with a standby mode to reduce power consumption. A general IC includes an enable pin, and is configured to shift to a standby mode by setting the enable pin to a predetermined state.
 ところがICの小型化が優先されるアプリケーションでは、パッケージのピン数を増やすことが難しく、スタンバイモードを実装することができない。 However, in applications where miniaturization of ICs is prioritized, it is difficult to increase the number of package pins, and standby mode cannot be implemented.
 本発明はこうした課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、ピン数を増やすこと無くスタンバイモードに設定可能な駆動回路の提供にある。 The present invention has been made in view of these problems, and one of the exemplary purposes of an aspect thereof is to provide a drive circuit that can be set to a standby mode without increasing the number of pins.
 本発明のある態様は、負荷の駆動回路に関する。駆動回路は、Hブリッジ回路と、Hブリッジ回路の状態を指示する1つまたは2つの制御入力信号を外部から受ける1個または2個の制御入力ピンと、1つまたは2つの制御入力信号に応じて、Hブリッジ回路を構成するトランジスタの状態を指示する内部信号を生成するロジック回路と、内部信号にもとづいてHブリッジ回路を駆動するプリドライバと、を備える。駆動回路は、1つまたは2つの制御入力信号が、所定の状態を所定の判定時間持続すると、スタンバイモードに移行する。 One embodiment of the present invention relates to a load drive circuit. The drive circuit has an H bridge circuit, one or two control input pins for receiving one or two control input signals indicating the state of the H bridge circuit from the outside, and one or two control input signals. And a logic circuit that generates an internal signal that indicates the state of the transistors that constitute the H-bridge circuit, and a pre-driver that drives the H-bridge circuit based on the internal signal. The drive circuit shifts to the standby mode when one or two control input signals maintain a predetermined state for a predetermined determination time.
 この態様によると、1個または2個の制御入力ピンを用いて、Hブリッジ回路の複数の状態と、スタンバイモードと、を切りかえることができる。 According to this aspect, it is possible to switch between a plurality of states of the H-bridge circuit and the standby mode by using one or two control input pins.
 所定の状態は、Hブリッジ回路のハイインピーダンス状態に対応してもよい。 The predetermined state may correspond to a high impedance state of the H bridge circuit.
 所定の状態は、Hブリッジ回路のショートブレーキ状態に対応してもよい。 The predetermined state may correspond to a short brake state of the H bridge circuit.
 判定時間は、50μsより長くてもよい。この駆動回路を利用してPWM駆動を行う場合、制御入力ピンの状態はPWM周期で変化する。あるいはステッピングモータを駆動する場合、制御入力ピンの状態は、回転速度を規定する制御パルスの頻度(周期)で変化する。可聴帯域のノイズを抑制するために、PWM周波数や制御パルスの周波数(すなわち制御入力ピンの状態変化の周波数)はオーディオ帯域外、すなわち20kHz以上に設定される。したがって、判定時間を50μsより長く規定することにより、意図的なスタンバイ状態への遷移指示と、PWM駆動あるいはステッピングモータの制御中の特定の状態とを区別することができる。 The determination time may be longer than 50 μs. When PWM drive is performed using this drive circuit, the state of the control input pin changes in the PWM cycle. Alternatively, when the stepping motor is driven, the state of the control input pin changes with the frequency (cycle) of the control pulse that defines the rotation speed. In order to suppress noise in the audible band, the PWM frequency and the frequency of the control pulse (that is, the frequency of state change of the control input pin) are set outside the audio band, that is, 20 kHz or more. Therefore, by defining the determination time longer than 50 μs, it is possible to distinguish between an intentional transition instruction to the standby state and a specific state during PWM drive or stepping motor control.
 本発明の別の態様は、モータと接続されるHブリッジ回路を含む駆動回路の制御方法に関する。制御方法は、プロセッサが、モータを回転させるために、Hブリッジ回路の状態を指定する1つまたは2つの制御入力信号を、所定の周期より短い時間で変化させるステップと、1つまたは2つの制御入力信号に応じてHブリッジ回路を制御するステップと、プロセッサが、駆動回路をスタンバイモードに移行させるために、1つまたは2つの制御入力信号を、所定時間にわたり所定の状態に固定するステップと、駆動回路において、1つまたは2つの制御入力信号が所定時間にわたり前記所定の状態を維持したことが検出されると、駆動回路をスタンバイモードに遷移させるステップと、を備える。 Another aspect of the present invention relates to a method for controlling a drive circuit including an H bridge circuit connected to a motor. The control method includes a step in which the processor changes one or two control input signals that specify the state of the H-bridge circuit in a time shorter than a predetermined period in order to rotate the motor, and one or two controls. Controlling the H-bridge circuit in response to the input signal; and fixing the one or two control input signals to a predetermined state for a predetermined time in order for the processor to shift the drive circuit to a standby mode; A step of transitioning the drive circuit to a standby mode when it is detected that one or two control input signals have maintained the predetermined state for a predetermined time in the drive circuit.
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above-described constituent elements and the constituent elements and expressions of the present invention that are mutually replaced between methods, apparatuses, systems, etc. are also effective as an aspect of the present invention.
 本発明のある態様によれば、ピン数を増やすこと無くスタンバイモードに設定可能な駆動回路を提供できる。 According to an aspect of the present invention, it is possible to provide a drive circuit that can be set to the standby mode without increasing the number of pins.
DCモータの駆動回路のブロック図である。It is a block diagram of the drive circuit of a DC motor. 第1実施例に係る駆動回路を備えるシステムの回路図である。1 is a circuit diagram of a system including a drive circuit according to a first embodiment. 図2の駆動回路における制御入力ピンINA,INBの状態と、駆動回路の内部および出力状態の対応の一例を示す図である。FIG. 3 is a diagram illustrating an example of correspondence between states of control input pins INA and INB, and internal and output states of the drive circuit in the drive circuit of FIG. 2. 図2の駆動回路の動作波形図である。FIG. 3 is an operation waveform diagram of the drive circuit of FIG. 2. 第2実施例に係る駆動回路を備えるシステムの回路図である。It is a circuit diagram of a system provided with the drive circuit which concerns on 2nd Example. 第3実施例に係る駆動回路を備えるシステムの回路図である。It is a circuit diagram of a system provided with the drive circuit which concerns on 3rd Example. 図7(a)~(c)は、図6の駆動回路における制御入力ピンINの状態と、駆動回路の内部および出力状態の対応のいくつかの例を示す図である。FIGS. 7A to 7C are diagrams showing some examples of correspondence between the state of the control input pin IN in the drive circuit of FIG. 6 and the internal and output states of the drive circuit. 第4実施例に係るシステムの回路図である。It is a circuit diagram of the system which concerns on 4th Example. 第5実施例に係る駆動回路を備えるシステムの回路図である。It is a circuit diagram of a system provided with the drive circuit which concerns on 5th Example. 図9のシステムの動作の一例を示すタイムチャートである。10 is a time chart showing an example of the operation of the system of FIG. 9. 変形例4に係る駆動回路の回路図である。14 is a circuit diagram of a drive circuit according to Modification 4. FIG. 変形例4に係る駆動回路の回路図である。14 is a circuit diagram of a drive circuit according to Modification 4. FIG. 変形例5に係る駆動回路を備えるシステムの回路図である。FIG. 10 is a circuit diagram of a system including a drive circuit according to Modification Example 5. 図14(a)~(h)は、駆動回路のパッケージの外観を示す図である。FIGS. 14A to 14H are views showing the appearance of the package of the drive circuit.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. The embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 In this specification, “the state in which the member A is connected to the member B” means that the member A and the member B are electrically connected to each other in addition to the case where the member A and the member B are physically directly connected. It includes cases where the connection is indirectly made through other members that do not substantially affect the general connection state, or that do not impair the functions and effects achieved by their combination.
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 Similarly, “the state in which the member C is provided between the member A and the member B” refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as their electric It includes cases where the connection is indirectly made through other members that do not substantially affect the general connection state, or that do not impair the functions and effects achieved by their combination.
 <第1実施例>
 図2は、第1実施例に係る駆動回路100を備えるシステム200の回路図である。駆動回路100は、2個の制御入力ピンINA,INBを備え、制御入力ピンINA,INBには、外部のコントローラ204から、2つの制御入力信号が供給される。駆動回路100は、2つの制御入力信号INA,INBに応じて、2個の出力端子OUTA,OUTBに接続される負荷(たとえばモータ202)を駆動する。
<First embodiment>
FIG. 2 is a circuit diagram of a system 200 including the drive circuit 100 according to the first embodiment. The drive circuit 100 includes two control input pins INA and INB, and two control input signals are supplied from the external controller 204 to the control input pins INA and INB. The drive circuit 100 drives a load (for example, the motor 202) connected to the two output terminals OUTA and OUTB according to the two control input signals INA and INB.
 駆動回路100は、ロジック回路110、プリドライバ120、Hブリッジ回路130、BGR(バンドギャップリファレンス)回路140、保護回路150、スタンバイ回路160を備え、ひとつのパッケージに収容されている。駆動回路100は、ひとつの半導体基板に集積化された機能ICであってもよい。あるいはHブリッジ回路130は、その他のブロック(110,120,140,150,160)とは別のチップに集積化されてもよい。 The drive circuit 100 includes a logic circuit 110, a pre-driver 120, an H bridge circuit 130, a BGR (bandgap reference) circuit 140, a protection circuit 150, and a standby circuit 160, and is accommodated in one package. The drive circuit 100 may be a functional IC integrated on one semiconductor substrate. Alternatively, the H bridge circuit 130 may be integrated on a separate chip from the other blocks (110, 120, 140, 150, 160).
 Hブリッジ回路130は、制御入力ピンINA,INBに応じて、4つの状態φ~φを取り得る。
 φ OUTA=Z,OUTB=Z
 φ OUTA=H,OUTB=L
 φ OUTA=L,OUTB=H
 φ OUTA=L,OUTB=L
The H bridge circuit 130 can take four states φ 1 to φ 4 according to the control input pins INA and INB.
φ 1 OUTA = Z, OUTB = Z
φ 2 OUTA = H, OUTB = L
φ 3 OUTA = L, OUTB = H
φ 4 OUTA = L, OUTB = L
 ロジック回路110は、制御入力ピンINA,INBの状態(制御入力信号)を監視し、状態φ~φのいずれであるかを判定する。そして判定した状態に応じた内部信号SINTを生成する。内部信号SINTは、Hブリッジ回路130を構成する4つのトランジスタM1~M4それぞれのオン、オフを指示する信号であってもよい。プリドライバ120は内部信号SINTにもとづいてHブリッジ回路130のトランジスタM1~M4のゲート電圧を制御する。 The logic circuit 110 monitors the states (control input signals) of the control input pins INA and INB, and determines which of the states φ 1 to φ 4 is in effect. Then, an internal signal S INT corresponding to the determined state is generated. The internal signal S INT may be a signal instructing on / off of each of the four transistors M1 to M4 constituting the H-bridge circuit 130. The pre-driver 120 controls the gate voltages of the transistors M1 to M4 of the H bridge circuit 130 based on the internal signal S INT .
 BGR回路140は、基準電圧を生成する。保護回路150は、サーマルシャットダウン(TSD)回路や、低電圧ロックアウト(UVLO)回路などを含む。保護回路150は、電圧コンパレータを含んで構成される。 The BGR circuit 140 generates a reference voltage. The protection circuit 150 includes a thermal shutdown (TSD) circuit, an undervoltage lockout (UVLO) circuit, and the like. The protection circuit 150 includes a voltage comparator.
 スタンバイ回路160は、2つの制御入力信号INA,INBが、所定の状態φを所定の判定時間τ持続すると、駆動回路100をスタンバイモードに移行させる。スタンバイモードでは、ロジック回路110を除く他の回路ブロックへのバイアス電流やバイアス電圧、電源電圧の供給が停止され、駆動回路100の消費電流は数μAのレベルまで低下する。なお図2において、スタンバイ回路160をロジック回路110の外部に示しているが、スタンバイ回路160の機能は、実際にはロジック回路110の一部として実装することができる。 The standby circuit 160 shifts the drive circuit 100 to the standby mode when the two control input signals INA and INB maintain the predetermined state φ for the predetermined determination time τ. In the standby mode, supply of the bias current, bias voltage, and power supply voltage to other circuit blocks other than the logic circuit 110 is stopped, and the current consumption of the drive circuit 100 is reduced to a level of several μA. In FIG. 2, the standby circuit 160 is shown outside the logic circuit 110, but the function of the standby circuit 160 can actually be implemented as a part of the logic circuit 110.
 図3は、制御入力ピンINA,INBの状態と、駆動回路100の内部および出力状態の対応の一例を示す図である。 FIG. 3 is a diagram showing an example of the correspondence between the states of the control input pins INA and INB and the internal and output states of the drive circuit 100.
 第1実施例において所定の状態φは、Hブリッジ回路130のハイインピーダンス状態φである。図2に戻る。スタンバイ回路160は、ロジック回路110がハイインピーダンス状態φを検出する時間を測定し、判定時間τに達すると、駆動回路100をスタンバイモードに移行させる。判定時間τは、50μsより長く規定することが好ましく、たとえば50~500μsの間に設定される。 In the first embodiment, the predetermined state φ is the high impedance state φ 1 of the H bridge circuit 130. Returning to FIG. Standby circuit 160 measures the time that the logic circuit 110 detects a high impedance state phi 1, reaches the determination time tau, to shift the driving circuit 100 to the standby mode. The determination time τ is preferably defined to be longer than 50 μs, for example, set between 50 and 500 μs.
 以上が駆動回路100の構成である。続いてその動作を説明する。図4は、図2の駆動回路100の動作波形図である。時刻tに電源電圧VCCおよびVMが立ち上がる。起動直後はスタンバイモードであり、動作電流ICCは非常に小さい。 The above is the configuration of the driving circuit 100. Next, the operation will be described. FIG. 4 is an operation waveform diagram of the drive circuit 100 of FIG. The power supply voltage VCC and VM stand up to time t 0. Immediately after startup, the standby mode is set, and the operating current I CC is very small.
 時刻tに、制御入力信号INA,INBが変化すると、通常モードに遷移する。通常モードでは、制御入力信号INA,INBのレベルに応じた状態φ,φ,φに順に遷移する。時刻tに状態φに遷移すると、出力がハイインピーダンスとなる。時刻tに、状態φが判定時間τ持続すると、スタンバイモードに移行し、動作電流ICCが低下する。 At time t 1, the control input signal INA, the INB changes, the transition to the normal mode. In the normal mode, the state transitions sequentially to the states φ 3 , φ 4 , and φ 2 corresponding to the levels of the control input signals INA and INB. When a transition to state phi 1 to time t 2, the output is high impedance. When the state φ 4 continues for the determination time τ at time t 3 , the standby mode is entered and the operating current I CC decreases.
 時刻tに制御入力信号INA,INBが変化すると、通常モードに遷移する。通常モードでは、制御入力信号INA,INBのレベルに応じた状態φ,φ,φ,φに順に遷移する。時刻tに電源電圧VCCがUVLO回路のしきい値を下回ると、低電圧ロックアウト状態となり、Hブリッジ回路130の出力がハイインピーダンスとなる。 Time t 4 the control input signal INA, the INB changes, the transition to the normal mode. In the normal mode, the state transitions sequentially to states φ 2 , φ 3 , φ 2 , and φ 3 corresponding to the levels of the control input signals INA and INB. Supply voltage V CC is below the threshold UVLO circuit at time t 5, becomes undervoltage lockout, the output of the H-bridge circuit 130 becomes a high impedance.
 時刻tに電源電圧VCCがUVLO回路のしきい値を超えると、低電圧ロックアウト状態が解除され、制御入力信号INA,INBに応じてHブリッジ回路130の状態が遷移していく。 When the power supply voltage V CC at time t 6 exceeds the threshold UVLO circuit, undervoltage lockout state is canceled, the control input signal INA, the state of the H-bridge circuit 130 depending on the INB continue to transition.
 以上が駆動回路100の動作である。この駆動回路100によれば、イネーブルピンを追加することなく、2つの制御入力ピンINA,INBのみを利用して、外部からHブリッジ回路130の4状態を制御し、さらにスタンバイモードに移行させることができる。 The above is the operation of the drive circuit 100. According to the drive circuit 100, the four states of the H-bridge circuit 130 are controlled from the outside by using only the two control input pins INA and INB without adding an enable pin, and further shifted to the standby mode. Can do.
 トルク指令や速度指令が制御入力である駆動回路では、制御入力が、モータの停止を明示的に指示する状態が存在する。たとえばトルク指令(速度指令)がゼロは、明示的なモータの停止の指示として理解される。したがって、トルク指令(速度指令)がゼロとなってからモータが完全に停止するのに要する時間、待機した後に、スタンバイモードに遷移すればよい。 In a drive circuit in which a torque command or a speed command is a control input, there is a state in which the control input explicitly instructs the motor stop. For example, a torque command (speed command) of zero is understood as an explicit instruction to stop the motor. Therefore, after waiting for the time required for the motor to completely stop after the torque command (speed command) becomes zero, it is sufficient to shift to the standby mode.
 一方、本実施例における駆動回路100のように、Hブリッジ回路130の状態を指示する制御入力信号INA,INBを受ける形式では、明示的な停止指示が存在しない。なぜなら、PWM駆動のアプリケーションでは、ハイインピーダンス状態は繰り返し発生するため、ハイインピーダンス状態の発生は、必ずしも停止指示とは限らないからである。ステッピングモータの制御においても同様である。 On the other hand, there is no explicit stop instruction in the form of receiving the control input signals INA and INB for instructing the state of the H bridge circuit 130 as in the drive circuit 100 in the present embodiment. This is because in a PWM drive application, a high impedance state repeatedly occurs, and thus the generation of a high impedance state is not necessarily a stop instruction. The same applies to the control of the stepping motor.
 一般的にDCモータのPWM駆動やステッピングモータの駆動では、可聴帯域外の周波数が使用される。そこで判定時間τを、パルス周期(最長で50μs)よりも長く設定することにより、DCモータのPWM駆動中やステッピングモータの駆動中に発生するハイインピーダンス状態と、スタンバイへの移行指示とを区別することができる。裏を返せば、駆動回路100は、判定時間τよりも短い周期のパルス駆動に対応していると言える。 Generally, a frequency outside the audible band is used for DC motor PWM drive or stepping motor drive. Therefore, by setting the determination time τ longer than the pulse period (50 μs at the longest), the high impedance state generated during the PWM driving of the DC motor or the driving of the stepping motor is distinguished from the instruction to shift to standby. be able to. In other words, it can be said that the drive circuit 100 supports pulse driving with a cycle shorter than the determination time τ.
 さらにこのシステム200によれば、コントローラ204によって、φとφを、判定時間τより短い周期で交互に切替えることにより、モータ202を停止させつつ、駆動回路100をスタンバイモードに移行させずに、通常モードを維持し続けることも可能である。このような制御は、トルク指令や速度指令を受ける駆動回路では実現しえない。 Further according to this system 200, the controller 204, a phi 1 and phi 4, by switching alternately shorter than the determination time τ period, while the motor 202 is stopped, without migrating the driving circuit 100 in the standby mode It is also possible to continue to maintain the normal mode. Such control cannot be realized by a drive circuit that receives a torque command or a speed command.
 スタンバイモードでは、バイアス回路などが停止するため、通常モードに復帰に復帰するまでに数μsの時間を要する。一方、PWM駆動では、Hブリッジ回路の出力電圧を数十nsのスルーレートで変化させたい場合がある。ハイインピーダンスの制御入力が検出されると直ちにスタンバイに移行する制御を採用すると、PWM駆動中のHブリッジ回路の出力電圧の波形なまりが大きくなり、使用できるアプリケーションが限定されてしまう。実施の形態では、Hブリッジ回路の出力電圧の波形なまりも生じないため、広範なアプリケーションに適用できる。 In standby mode, the bias circuit stops, so it takes a few μs to return to normal mode. On the other hand, in PWM drive, there is a case where the output voltage of the H bridge circuit is desired to be changed at a slew rate of several tens ns. If control that shifts to standby immediately when a high-impedance control input is detected, the rounding of the waveform of the output voltage of the H-bridge circuit during PWM driving becomes large, and the usable applications are limited. In the embodiment, since the waveform of the output voltage of the H-bridge circuit does not occur, it can be applied to a wide range of applications.
 <第2実施例>
 図5は、第2実施例に係る駆動回路100Aを備えるシステム200Aの回路図である。駆動回路100Aは、モータへの通電区間の間、駆動信号をスイッチングするためのPWM(Pulse Width Modulation)回路170を備える。駆動電流の経路上、具体的にはPGNDピンと外部の接地の間には、シャント抵抗Rsが設けられ、シャント抵抗Rsには、モータ202に流れる駆動電流に応じた電圧降下(電流検出信号)Vsが生ずる。シャント抵抗Rsは、駆動回路100Aに内蔵されてもよい。
<Second embodiment>
FIG. 5 is a circuit diagram of a system 200A including a drive circuit 100A according to the second embodiment. The drive circuit 100A includes a PWM (Pulse Width Modulation) circuit 170 for switching the drive signal during the energization period to the motor. A shunt resistor Rs is provided on the path of the drive current, specifically between the PGND pin and the external ground, and a voltage drop (current detection signal) Vs corresponding to the drive current flowing through the motor 202 is provided in the shunt resistor Rs. Will occur. The shunt resistor Rs may be built in the drive circuit 100A.
 PWM回路170は、パルスバイパルスの電流制限回路であり、電流検出信号Vsにもとづいて、PWM信号SPWMを生成する。PWM回路170は、オシレータ172が生成するクロックと同期して動作する。たとえばPWM回路170は、オシレータ172が生成するクロックCKのポジエッジに応答して、PWM信号SPWMを第1レベル(たとえばハイ)に遷移させる。またPWM回路170は、電流検出信号Vsを、駆動電流の上限を規定するリミット値VCLと比較し、V>VCLを検出すると、すなわち駆動電流がリミット値に達すると、PWM信号SPWMを第2レベル(たとえはロー)に遷移させる。 The PWM circuit 170 is a pulse-by-pulse current limiting circuit, and generates the PWM signal S PWM based on the current detection signal Vs. The PWM circuit 170 operates in synchronization with the clock generated by the oscillator 172. For example, the PWM circuit 170 changes the PWM signal S PWM to the first level (for example, high) in response to the positive edge of the clock CK generated by the oscillator 172. The PWM circuit 170 compares the current detection signal Vs with a limit value V CL that defines the upper limit of the drive current, and detects V S > V CL , that is, when the drive current reaches the limit value, the PWM signal S PWM To the second level (eg, low).
 PWM信号SPWMはプリドライバ120に供給される。プリドライバ120は、PWM信号SPWMを内部信号SINTと論理合成し、Hブリッジ回路130を制御する。論理合成の機能は、ロジック回路110に実装してもよい。 The PWM signal S PWM is supplied to the pre-driver 120. The pre-driver 120 logically synthesizes the PWM signal S PWM with the internal signal S INT and controls the H bridge circuit 130. The logic synthesis function may be implemented in the logic circuit 110.
 スタンバイ回路160は、スタンバイ状態においてPWM回路170を停止してもよい。具体的には、PWM回路170に含まれるコンパレータの電流を遮断することで、消費電流を削減できる。また、スタンバイ状態においてクロックCKを生成するオシレータ172を停止してもよい。これによりさらに消費電流を削減できる。 The standby circuit 160 may stop the PWM circuit 170 in the standby state. Specifically, current consumption can be reduced by cutting off the current of the comparator included in the PWM circuit 170. Further, the oscillator 172 that generates the clock CK may be stopped in the standby state. This can further reduce current consumption.
<第3実施例>
 図6は、第3実施例に係る駆動回路100Bを備えるシステム200Bの回路図である。駆動回路100Bは、1個の制御ピンINを備える。制御ピンINには、ハイロー2値の制御入力信号INが入力される。ロジック回路110は、制御入力ピンINの状態の遷移に応答して、ブリッジ回路130の状態を遷移させる。またスタンバイ回路160は、制御入力ピンINが所定時間にわたり所定の状態を持続すると、駆動回路100Bをスタンバイ状態に遷移させる。
<Third embodiment>
FIG. 6 is a circuit diagram of a system 200B including a drive circuit 100B according to the third embodiment. The drive circuit 100B includes one control pin IN. A high / low binary control input signal IN is input to the control pin IN. The logic circuit 110 transitions the state of the bridge circuit 130 in response to the transition of the state of the control input pin IN. Further, when the control input pin IN remains in a predetermined state for a predetermined time, the standby circuit 160 shifts the drive circuit 100B to the standby state.
 図7(a)~(c)は、図6の駆動回路100Bにおける制御入力ピンINの状態と、駆動回路の内部および出力状態の対応のいくつかの例を示す図である。Hブリッジ回路130は、制御入力ピンINに応じて、2つの状態φ,φを取り得る。
 φ OUT1=L,OUT2=H
 φ OUT1=H,OUT2=L
FIGS. 7A to 7C are diagrams showing some examples of the correspondence between the state of the control input pin IN in the drive circuit 100B of FIG. 6 and the internal and output states of the drive circuit. The H bridge circuit 130 can take two states φ 1 and φ 2 according to the control input pin IN.
φ 1 OUT1 = L, OUT2 = H
φ 2 OUT1 = H, OUT2 = L
 ロジック回路110は、制御入力ピンINの状態(制御入力信号)を監視し、状態φ,φのいずれであるかを判定する。そして判定した状態に応じた内部信号SINTを生成する。 The logic circuit 110 monitors the state (control input signal) of the control input pin IN, and determines whether the state is φ 1 or φ 2 . Then, an internal signal S INT corresponding to the determined state is generated.
 またスタンバイ回路160は、第1状態φ(すなわちINピンのロー)所定時間持続したときに、駆動回路100Bをスタンバイモードに移行させる。スタンバイモードにおいてロジック回路110は、Hブリッジ回路130が第1状態φや第2状態φとは別の状態φs(ショートブレーキ状態)となるように、内部信号SINTを変化させる。これにより、スタンバイモードにおいてモータ202を固定できる。 The standby circuit 160 shifts the drive circuit 100B to the standby mode when the first state φ 1 (that is, the IN pin is low) lasts for a predetermined time. In the standby mode, the logic circuit 110 changes the internal signal S INT so that the H bridge circuit 130 is in a state φs (short brake state) different from the first state φ 1 and the second state φ 3 . Thereby, the motor 202 can be fixed in the standby mode.
 図7(a)の例では、状態φsは、出力ロー固定(OUT1=L,OUT2=L)のショートブレーキ状態であり、トランジスタM2,M4がオン、M1,M3がオフである。 In the example of FIG. 7A, the state φs is a short brake state with the output low fixed (OUT1 = L, OUT2 = L), the transistors M2 and M4 are on, and M1 and M3 are off.
 図7(b)の例では、状態φsは、出力ハイ固定(OUT1=H,OUT2=H)のショートブレーキ状態であり、トランジスタM2,M4がオフ、M1,M3がオンである。 In the example of FIG. 7B, the state φs is a short brake state in which the output is fixed high (OUT1 = H, OUT2 = H), the transistors M2 and M4 are off, and M1 and M3 are on.
 図7(c)の例では、状態φsは、OUT1=Z,OUT2=Zのハイインピーダンス状態であり、トランジスタM1~M4がオフである。 In the example of FIG. 7C, the state φs is a high impedance state of OUT1 = Z and OUT2 = Z, and the transistors M1 to M4 are off.
 図7(a)~(c)において、第2状態φ(IN=H)の所定時間の継続を、スタンバイモードへの移行の条件としてもよい。 In FIGS. 7A to 7C, the continuation of the second state φ 2 (IN = H) for a predetermined time may be a condition for shifting to the standby mode.
 スタンバイモードにおける出力の状態φsを、選択可能とすることも可能である。すなわち、第1状態φと第2状態φの一方が所定時間持続したときに、φsをショートブレーキ状態とし、第1状態φと第2状態φの他方が所定時間持続したときに、φsをハイインピーダンス状態としてもよい。 It is also possible to select the output state φs in the standby mode. That is, when one of the first state φ 1 and the second state φ 2 lasts for a predetermined time, φs is set to the short brake state, and the other of the first state φ 1 and the second state φ 2 lasts for a predetermined time , Φs may be in a high impedance state.
<第4実施例>
 図6の駆動回路100Bは、ステッピングモータの駆動に用いることができる。図8は、第4実施例に係るシステム200Cの回路図である。システム200Cは、図6の駆動回路100Bを2個備える。一方の駆動回路100B_Aの出力はステッピングモータ202Cの一方のコイルに接続され、他方の駆動回路100B_Bの出力はステッピングモータ202Cの他方のコイルに接続される。コントローラ204は、駆動回路100B_Aに制御入力信号INAを、駆動回路100B_Bに制御入力信号INBを供給し、ステッピングモータ202Cを制御する。制御入力信号INA,INBの波形は、ステッピングモータの駆動方式(1相例示、1-2相励磁、2相励磁など)に応じて選択される。
<Fourth embodiment>
The drive circuit 100B in FIG. 6 can be used for driving a stepping motor. FIG. 8 is a circuit diagram of a system 200C according to the fourth embodiment. The system 200C includes two drive circuits 100B shown in FIG. The output of one drive circuit 100B_A is connected to one coil of the stepping motor 202C, and the output of the other drive circuit 100B_B is connected to the other coil of the stepping motor 202C. The controller 204 controls the stepping motor 202C by supplying the control input signal INA to the drive circuit 100B_A and the control input signal INB to the drive circuit 100B_B. The waveforms of the control input signals INA and INB are selected according to the driving method of the stepping motor (one-phase example, 1-2-phase excitation, 2-phase excitation, etc.).
<第5実施例>
 図9は、第5実施例に係る駆動回路100Dを備えるシステム200Dの回路図である。駆動回路100Dは、図8の駆動回路100B_A,100B_Bを統合した回路と把握できる。出力OUTA,OUTBは、INA,INBの組み合わせに応じて4つの状態φ11~φ14を取り得る。
 ・φ11 INA=L,INB=L
 OUTA1=L,OUTA2=H,OUTB1=L,OUTB2=H
 ・φ12 INA=H,INB=L
 OUTA1=H,OUTA2=L,OUTB1=L,OUTB2=H
 ・φ13 INA=L,INB=H
 OUTA1=L,OUTA2=H,OUTB1=H,OUTB2=L
 ・φ14 INA=H,INB=H
 OUTA1=H,OUTA2=L,OUTB1=H,OUTB2=L
<Fifth embodiment>
FIG. 9 is a circuit diagram of a system 200D including a drive circuit 100D according to the fifth embodiment. The drive circuit 100D can be understood as a circuit in which the drive circuits 100B_A and 100B_B in FIG. 8 are integrated. The outputs OUTA and OUTB can take four states φ 11 to φ 14 depending on the combination of INA and INB.
・ Φ 11 INA = L, INB = L
OUTA1 = L, OUTA2 = H, OUTB1 = L, OUTB2 = H
· Φ 12 INA = H, INB = L
OUTA1 = H, OUTA2 = L, OUTB1 = L, OUTB2 = H
· Φ 13 INA = L, INB = H
OUTA1 = L, OUTA2 = H, OUTB1 = H, OUTB2 = L
· Φ 14 INA = H, INB = H
OUTA1 = H, OUTA2 = L, OUTB1 = H, OUTB2 = L
 図10は、図9のシステム200Dの動作の一例を示すタイムチャートである。ここでは1-2相励磁を例とする。駆動回路100Dのスタンバイ回路160は、2つの制御入力信号INA,INBの全エッジを監視する。そしてエッジの間隔が所定の判定時間τを超えると、スタンバイモードに移行する。言い換えれば、4つの状態φ11~φ14のいずれかを、所定時間持続したときに、スタンバイモードに移行する。スタンバイモードの間、ブリッジ回路130A,130Bは、所定の状態φs(たとえばハイインピーダンス状態あるいはショートブレーキ状態)に固定される。あるいは所定状態φsは、直前の状態(この図10の例ではφ13)であってもよい。 FIG. 10 is a time chart showing an example of the operation of the system 200D of FIG. Here, 1-2 phase excitation is taken as an example. The standby circuit 160 of the drive circuit 100D monitors all edges of the two control input signals INA and INB. When the edge interval exceeds a predetermined determination time τ, the standby mode is entered. In other words, when any one of the four states φ 11 to φ 14 is maintained for a predetermined time, the standby mode is entered. During the standby mode, the bridge circuits 130A and 130B are fixed to a predetermined state φs (for example, a high impedance state or a short brake state). Alternatively, the predetermined state φs may be the immediately preceding state (φ 13 in the example of FIG. 10).
 スタンバイモードにおいて、次のエッジが検出されると、スタンバイモードが解除され、その後、2つの制御入力INA,INBに応じた状態φ1112と遷移していく。 When the next edge is detected in the standby mode, the standby mode is canceled, and then the state transitions to the states φ 11 and φ 12 corresponding to the two control inputs INA and INB.
 以上、本発明について、実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセス、それらの組み合わせには、さまざまな変形例が存在しうる。以下、こうした変形例について説明する。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and various modifications may exist in each of those constituent elements, each processing process, and a combination thereof. Hereinafter, such modifications will be described.
(変形例1)
 実施の形態ではスタンバイ回路160が、ハイインピーダンス状態φがスタンバイモードへの移行のトリガであったがその限りではなく、ショートブレーキ状態φを、スタンバイモードへの移行のトリガとしてもよい。すなわちショートブレーキ状態φを指示する制御入力信号(INA=INB=H)が判定時間τ持続したときに、スタンバイモードに移行してもよい。
(Modification 1)
Standby circuit 160 in the embodiment is a high impedance state phi 1 is not limited thereto but was triggered the transition to the standby mode, the short brake state phi 4, may be used as a trigger for transition to the standby mode. That is, when the control input signal which instructs the short brake state phi 4 that (INA = INB = H) has a duration determined tau, may be shifted to the standby mode.
(変形例2)
 実施の形態では、単相のDCモータを負荷としたがその限りではない。本発明は、三相インバータや、ステッピングモータの駆動回路にも適用可能である。
(Modification 2)
In the embodiment, a single-phase DC motor is used as a load. The present invention is also applicable to a three-phase inverter and a stepping motor drive circuit.
(変形例3)
 さらに言えば、負荷はモータには限定されず、駆動回路100は、フライバックコンバータやフォワードコンバータ、DC/DCコンバータなどの一部であってもよい。
(Modification 3)
Furthermore, the load is not limited to the motor, and the drive circuit 100 may be a part of a flyback converter, a forward converter, a DC / DC converter, or the like.
(変形例4)
 実施の形態では、Hブリッジ回路130の電源・グランドが、ロジック回路110やプリドライバ120の電源・グランドと分離している構成を説明したが、それらは共通であってもよい。図11は、変形例4に係る駆動回路100Eの回路図である。この駆動回路100Eは、図2の駆動回路100の2個の電源ピンを共通化し、2個のグランドピンを共通化したものである。
(Modification 4)
Although the power supply / ground of the H bridge circuit 130 is separated from the power supply / ground of the logic circuit 110 and the pre-driver 120 in the embodiment, they may be shared. FIG. 11 is a circuit diagram of a drive circuit 100E according to the fourth modification. The drive circuit 100E has two power supply pins common to the drive circuit 100 of FIG. 2, and two ground pins.
 図12は、変形例4に係る駆動回路100Fの回路図である。この駆動回路100Fは、図6の駆動回路100Bの2個の電源ピンを共通化し、2個のグランドピンを共通化したものである。 FIG. 12 is a circuit diagram of the drive circuit 100F according to the fourth modification. The drive circuit 100F is obtained by sharing the two power pins of the drive circuit 100B of FIG. 6 and sharing the two ground pins.
(変形例5)
 図13は、変形例5に係る駆動回路100Gを備えるシステム200Gの回路図である。駆動回路100Gはその出力段に、Hブリッジ回路130に代えて、ハーフブリッジ回路130Gを備える。また制御入力ピンINは1個である。ハーフブリッジ回路130Gの出力ピンは、モータ130G(コイル)の一端に接続され、モータ130Gの他端には所定電圧(電源電圧あるいは接地電圧)が印加される。
(Modification 5)
FIG. 13 is a circuit diagram of a system 200G including a drive circuit 100G according to Modification 5. The drive circuit 100G includes a half-bridge circuit 130G at its output stage instead of the H-bridge circuit 130. There is one control input pin IN. The output pin of the half bridge circuit 130G is connected to one end of a motor 130G (coil), and a predetermined voltage (power supply voltage or ground voltage) is applied to the other end of the motor 130G.
 最後に駆動回路100のパッケージの例を示す。図14(a)~(h)は、駆動回路100のパッケージの外観を示す図である。図14(a)は8ピンのパッケージを示す。たとえば図2の駆動回路100は、このパッケージに収容できる。図2の駆動回路100の各ピンは、以下のように配置してもよい。
 名称     ピン番号
 VM     2
 PGND   8
 VCC    4
 GND    5
 INA    3
 INB    6
 OUTA   1
 OUTB   7
Finally, an example of a package of the drive circuit 100 is shown. 14A to 14H are views showing the appearance of the package of the drive circuit 100. FIG. FIG. 14A shows an 8-pin package. For example, the drive circuit 100 of FIG. 2 can be accommodated in this package. Each pin of the drive circuit 100 in FIG. 2 may be arranged as follows.
Name Pin number VM 2
PGND 8
VCC 4
GND 5
INA 3
INB 6
OUTA 1
OUTB 7
 図14(b)は6ピンのパッケージを示す。たとえば図11の駆動回路100Eは、このパッケージに収容できる。図11の駆動回路100Eの各ピンは、以下のように配置してもよい。
 名称     ピン番号
 VCC    2
 GND    5
 INA    3
 INB    4
 OUTA   1
 OUTB   6
FIG. 14B shows a 6-pin package. For example, the drive circuit 100E of FIG. 11 can be accommodated in this package. Each pin of the drive circuit 100E of FIG. 11 may be arranged as follows.
Name Pin No. VCC 2
GND 5
INA 3
INB 4
OUTA 1
OUTB 6
 図14(c)は5ピンのパッケージを示す。たとえば図12の駆動回路100Fは、このパッケージに収容できる。駆動回路100Fの各ピンは、以下のように配置してもよい。
 名称     ピン番号
 VM     5
 PGND   2
 IN     4
 OUTA   1
 OUTB   3
FIG. 14C shows a 5-pin package. For example, the drive circuit 100F of FIG. 12 can be accommodated in this package. Each pin of the drive circuit 100F may be arranged as follows.
Name Pin number VM 5
PGND 2
IN 4
OUTA 1
OUTB 3
 図14(d)は4ピンのパッケージを示す。たとえば図13の駆動回路100Gは、このパッケージに収容できる。駆動回路100Gの各ピンは以下のように配置してもよい。
 名称     ピン番号
 VCC    1
 GND    2
 IN     3
 OUT    4
FIG. 14 (d) shows a 4-pin package. For example, the drive circuit 100G of FIG. 13 can be accommodated in this package. Each pin of the drive circuit 100G may be arranged as follows.
Name Pin No. VCC 1
GND 2
IN 3
OUT 4
 図14(e)~(f)は、8ピン、6ピン、5ピン、4ピンのCSP(Chip Size Package)を示す。 FIGS. 14E to 14F show 8-pin, 6-pin, 5-pin, and 4-pin CSP (Chip Size Package).
 実施の形態にもとづき、具体的な用語を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 Although the present invention has been described using specific terms based on the embodiments, the embodiments only illustrate the principles and applications of the present invention, and the embodiments are defined in the claims. Many variations and modifications of the arrangement are permitted without departing from the spirit of the present invention.
100…駆動回路、110…ロジック回路、120…プリドライバ、130…Hブリッジ回路、140…BGR回路、150…保護回路、160…スタンバイ回路。 DESCRIPTION OF SYMBOLS 100 ... Drive circuit, 110 ... Logic circuit, 120 ... Pre-driver, 130 ... H bridge circuit, 140 ... BGR circuit, 150 ... Protection circuit, 160 ... Standby circuit
 本発明は、モータの駆動技術に利用できる。 The present invention can be used for motor driving technology.

Claims (8)

  1.  負荷の駆動回路であって、
     ブリッジ回路と、
     外部から前記ブリッジ回路の状態を指示する1つの制御入力信号を受ける1個の制御入力ピンと、
     前記1つの制御入力信号に応じて、前記ブリッジ回路を構成するトランジスタの状態を指示する内部信号を生成するロジック回路と、
     前記内部信号にもとづいて前記ブリッジ回路を駆動するプリドライバと、
     を備え、
     前記1つの制御入力信号が、所定の状態を所定の判定時間持続すると、スタンバイモードに移行するよう構成されることを特徴とする駆動回路。
    A load drive circuit,
    A bridge circuit;
    One control input pin for receiving one control input signal for instructing the state of the bridge circuit from the outside;
    In response to the one control input signal, a logic circuit that generates an internal signal that indicates a state of a transistor constituting the bridge circuit;
    A pre-driver for driving the bridge circuit based on the internal signal;
    With
    The drive circuit, wherein the one control input signal is configured to shift to a standby mode when a predetermined state is maintained for a predetermined determination time.
  2.  負荷の駆動回路であって、
     ブリッジ回路と、
     外部から前記ブリッジ回路の状態を指示する2つの制御入力信号を受ける2個の制御入力ピンと、
     前記2つの制御入力信号に応じて、前記ブリッジ回路を構成するトランジスタの状態を指示する内部信号を生成するロジック回路と、
     前記内部信号にもとづいて前記ブリッジ回路を駆動するプリドライバと、
     を備え、
     前記2つの制御入力信号が、所定の状態を所定の判定時間持続すると、スタンバイモードに移行するよう構成されることを特徴とする駆動回路。
    A load drive circuit,
    A bridge circuit;
    Two control input pins for receiving two control input signals indicating the state of the bridge circuit from the outside;
    In response to the two control input signals, a logic circuit that generates an internal signal that indicates a state of a transistor constituting the bridge circuit;
    A pre-driver for driving the bridge circuit based on the internal signal;
    With
    The drive circuit, wherein the two control input signals are configured to shift to a standby mode when a predetermined state is maintained for a predetermined determination time.
  3.  前記所定の状態は、前記ブリッジ回路のハイインピーダンス状態に対応することを特徴とする請求項1または2に記載の駆動回路。 3. The drive circuit according to claim 1, wherein the predetermined state corresponds to a high impedance state of the bridge circuit.
  4.  前記所定の状態は、前記ブリッジ回路のショートブレーキ状態に対応することを特徴とする請求項1または2に記載の駆動回路。 3. The drive circuit according to claim 1, wherein the predetermined state corresponds to a short brake state of the bridge circuit.
  5.  前記判定時間は50μsより長いことを特徴とする請求項1から4のいずれかに記載の駆動回路。 5. The driving circuit according to claim 1, wherein the determination time is longer than 50 μs.
  6.  前記負荷はモータであることを特徴とする請求項1から5のいずれかに記載の駆動回路。 6. The driving circuit according to claim 1, wherein the load is a motor.
  7.  プロセッサと、
     モータと、
     前記プロセッサからの1つまたは2つの制御入力信号に応じて前記モータを駆動する請求項1から6のいずれかに記載の駆動回路と、
     を備え、
     前記プロセッサは、前記駆動回路をスタンバイモードに移行させる際に、前記1つまたは2つの制御入力信号を、所定の状態に、所定時間以上固定することを特徴とするシステム。
    A processor;
    A motor,
    The drive circuit according to any one of claims 1 to 6, wherein the motor is driven in response to one or two control input signals from the processor;
    With
    The processor fixes the one or two control input signals to a predetermined state for a predetermined time or more when the drive circuit is shifted to a standby mode.
  8.  モータと接続されるブリッジ回路を含む駆動回路の制御方法であって、
     プロセッサが、前記モータを回転させるために、前記ブリッジ回路の状態を指定する1つまたは2つの制御入力信号を、所定の周期より短い時間で変化させるステップと、
     前記1つまたは2つの制御入力信号に応じて前記ブリッジ回路を制御するステップと、
     前記プロセッサが、駆動回路をスタンバイモードに移行させるために、前記1つまたは2つの制御入力信号を、所定時間にわたり所定の状態に固定するステップと、
     前記駆動回路において、前記1つまたは2つの制御入力信号が前記所定時間にわたり前記所定の状態を維持したことが検出されると、前記駆動回路がスタンバイモードに遷移するステップと、
     を備えることを特徴とする制御方法。
    A method for controlling a drive circuit including a bridge circuit connected to a motor,
    A processor changing one or two control input signals specifying the state of the bridge circuit in a time shorter than a predetermined period in order to rotate the motor;
    Controlling the bridge circuit in response to the one or two control input signals;
    The processor fixing the one or two control input signals to a predetermined state for a predetermined time in order to shift the driving circuit to a standby mode;
    In the driving circuit, when it is detected that the one or two control input signals maintain the predetermined state for the predetermined time, the driving circuit transits to a standby mode;
    A control method comprising:
PCT/JP2018/011851 2017-03-24 2018-03-23 Load drive circuit, system using same, and method for controlling drive circuit WO2018174267A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880020633.5A CN110476349B (en) 2017-03-24 2018-03-23 Load driving circuit, system using the same, and method for controlling the driving circuit
US16/580,303 US10992244B2 (en) 2017-03-24 2019-09-24 Load driving circuit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017059452 2017-03-24
JP2017-059452 2017-03-24
JP2018-054900 2018-03-22
JP2018054900A JP7228335B2 (en) 2017-03-24 2018-03-22 LOAD DRIVE CIRCUIT, SYSTEM USING THE SAME, AND DRIVING CIRCUIT CONTROL METHOD

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/580,303 Continuation US10992244B2 (en) 2017-03-24 2019-09-24 Load driving circuit

Publications (1)

Publication Number Publication Date
WO2018174267A1 true WO2018174267A1 (en) 2018-09-27

Family

ID=63585490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011851 WO2018174267A1 (en) 2017-03-24 2018-03-23 Load drive circuit, system using same, and method for controlling drive circuit

Country Status (1)

Country Link
WO (1) WO2018174267A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614587A (en) * 1992-06-29 1994-01-21 Toshiba Corp Heavy load drive circuit
JP2008263733A (en) * 2007-04-12 2008-10-30 Rohm Co Ltd Motor driving device, lock protection method, and cooling device using motor driving device
JP2012065470A (en) * 2010-09-16 2012-03-29 On Semiconductor Trading Ltd Motor driving circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614587A (en) * 1992-06-29 1994-01-21 Toshiba Corp Heavy load drive circuit
JP2008263733A (en) * 2007-04-12 2008-10-30 Rohm Co Ltd Motor driving device, lock protection method, and cooling device using motor driving device
JP2012065470A (en) * 2010-09-16 2012-03-29 On Semiconductor Trading Ltd Motor driving circuit

Similar Documents

Publication Publication Date Title
JP2018164253A (en) Load drive circuit, system using same, method for controlling drive circuit
JP3890906B2 (en) Brushless motor drive device and motor using the same
US8669790B2 (en) Control circuit arrangement for pulse-width modulated DC/DC converters and method for controlling a pulse-width modulated converter
US7402975B2 (en) Motor drive device and drive method
JP4486888B2 (en) Motor drive device
JP2008043171A (en) Load drive device and electric device using the same
WO2005085879A1 (en) Current detecting circuit, load drive, and storage
JP5337533B2 (en) Motor drive circuit
TWI699961B (en) Motor driving circuit and method thereof
JP2008295128A (en) Microcomputer for motor control, and its control method
JPWO2005067136A1 (en) Current limiting circuit and motor drive circuit
JP4001562B2 (en) Motor and disk device
JP7144190B2 (en) Stepping motor drive circuit and system using it
WO2018174267A1 (en) Load drive circuit, system using same, and method for controlling drive circuit
US10594238B2 (en) Driving circuit for stepping motor
JP5650399B2 (en) Acceleration / deceleration detection circuit
JP3874290B2 (en) Motor drive device
JP7174672B2 (en) switching power supply
JP7129366B2 (en) switching power supply
TWI424677B (en) Start-up circuit and motor driving ic
TW202218313A (en) Three-phase motor driving circuit and method
JP4034278B2 (en) Current detection circuit, load drive circuit, and storage device
JP6117389B1 (en) Motor drive device
JP5399085B2 (en) Brushless motor drive circuit, motor unit, and electronic device using the same
JP4248619B2 (en) Motor drive circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770917

Country of ref document: EP

Kind code of ref document: A1