WO2018173767A1 - Charge indicator - Google Patents

Charge indicator Download PDF

Info

Publication number
WO2018173767A1
WO2018173767A1 PCT/JP2018/008933 JP2018008933W WO2018173767A1 WO 2018173767 A1 WO2018173767 A1 WO 2018173767A1 JP 2018008933 W JP2018008933 W JP 2018008933W WO 2018173767 A1 WO2018173767 A1 WO 2018173767A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
static electricity
crystal composition
composition
group
Prior art date
Application number
PCT/JP2018/008933
Other languages
French (fr)
Japanese (ja)
Inventor
長谷部 浩史
士朗 谷口
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2018545515A priority Critical patent/JP6607420B2/en
Priority to CN201880012457.0A priority patent/CN110300898A/en
Publication of WO2018173767A1 publication Critical patent/WO2018173767A1/en

Links

Images

Definitions

  • the present invention relates to a charging indicator for visualizing a charged state.
  • JP 2004-225200 A JP-A-7-159467 JP-A-11-211771
  • the problem to be solved by the present invention is to provide a charged place that changes every moment on a wide plane and a static electricity indicator that visualizes the amount of charge.
  • the static electricity indicator using the liquid crystal composition of the present invention can visualize the charged state of the target substance on a wide flat surface and the charged amount and its charge amount which change every moment. Useful for.
  • the figure which shows an example of a structure of the static electricity indicator of this invention typically (when there is no charged object nearby)
  • the figure which shows an example of a structure of the static electricity indicator of this invention typically (when the electrode by the side of a charging body is divided into plurality)
  • the static electricity indicator shown in FIG. 3 is seen from above (charged body side) ITO patterning diagram Liquid crystal composition and adhesive dripping position Position of ITO patterning substrate and ITO solid substrate (Substrate short side) Appearance of the electrostatic indicator of the present invention
  • the electrostatic indicator of the present invention can visualize the charged state of a target substance on a wide plane and the charged place and its charged position.
  • the spread flat shape may be a shape of the static electricity indicator such as a triangle, a quadrangle, a disk shape, a rod shape, and the like. It means that it may be curved as well. It is one of the advantages of using a liquid crystal composition that the electrostatic indicator of the present invention can be curved.
  • the static electricity indicator may be a single device or a plurality of static electricity indicators may be combined into a single device.
  • the static electricity indicator may be plate-shaped, sheet-shaped, or belt-shaped, and when they are installed, they can be installed as they are, but they are cut to adapt to the required range. It can also be installed. These include rolling and transporting a sheet-like or belt-like static electricity indicator and cutting it to a length suitable for the installation location when installing.
  • the static electricity indicator uses a liquid crystal composition.
  • a change in refractive index anisotropy ( ⁇ n) may be used depending on the change in the alignment state, or a change in the polarization state may be used.
  • What controls scattering may be used, and what is called a guest host system which adds a pigment to a liquid crystal composition may be used. The higher the charged position, the larger the change in the alignment state of the liquid crystal composition, so that the height of the charged position can be visually recognized.
  • liquid crystal composition (Liquid crystal composition)
  • the liquid crystal composition used is a so-called n-type liquid crystal composition having a negative ⁇ value, even if it is a so-called p-type liquid crystal composition having a positive dielectric anisotropy ( ⁇ ). Also good.
  • These liquid crystal compositions are used by appropriately combining a compound represented by general formula (J), a compound represented by general formula (N-1), and a compound represented by general formula (L). I can do it.
  • the p-type liquid crystal composition preferably contains one or more compounds represented by the general formula (J). These compounds correspond to dielectrically positive compounds ( ⁇ is greater than 2).
  • R J1 represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently —CH ⁇ CH—, — Optionally substituted by C ⁇ C—, —O—, —CO—, —COO— or —OCO—, n J1 represents 0, 1, 2, 3 or 4;
  • a J1 , A J2 and A J3 are each independently (A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O-.)
  • the group (a), the group (b) and the group (c) are each independently selected from the group consisting of cyano group, fluorine atom, chlorine atom, methyl group, trifluoromethyl group or trifluoro May be substituted with a methoxy group
  • Z J1 and Z J2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, Represents —COO—, —OCO— or —C ⁇ C—
  • n J1 is 2, 3 or 4 and a plurality of A J2 are present, they may be the same or different, and n J1 is 2, 3 or 4 and a plurality of Z J1 is present.
  • X J1 represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a fluoromethoxy group, a difluoromethoxy group, a trifluoromethoxy group, or a 2,2,2-trifluoroethyl group.
  • the n-type liquid crystal composition preferably contains one or more compounds selected from the compounds represented by formula (N-1). These compounds correspond to dielectrically negative compounds (the sign of ⁇ is negative and the absolute value is greater than 2).
  • R N11 and R N12 each independently represents an alkyl group having 1 to 8 carbon atoms, and one or non-adjacent two or more —CH 2 — in the alkyl group are each independently Optionally substituted by —CH ⁇ CH—, —C ⁇ C—, —O—, —CO—, —COO— or —OCO—,
  • C Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl
  • R L1 and R L2 each independently represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently Optionally substituted by —CH ⁇ CH—, —C ⁇ C—, —O—, —CO—, —COO— or —OCO—, n L1 represents 0, 1, 2 or 3,
  • a L1 , A L2 and A L3 each independently represent (a) a 1,4-cyclohexylene group (one —CH 2 — present in the group or two or more —CH 2 — not adjacent to each other).
  • the group (a), the group (b) and the group (c) may be each independently substituted with a cyano group, a fluorine atom or a chlorine atom
  • n L1 is 2 or 3 and a plurality of A L2 are present, they may be the same or different, and when n L1 is 2 or 3, and a plurality of Z L2 are present, May be the same or different, but excludes the compounds represented by formulas (N-1) and (J).
  • the composition preferably exhibits a liquid crystal phase at room temperature (25 ° C.), and more
  • the types of compounds that can be combined are used in combination according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the general formula (N) It is preferable to increase the content of the compounds represented by -1) and (J). To reduce ⁇ , it is preferable to increase the content of the compound represented by the general formula (L).
  • the voltage holding ratio of the liquid crystal composition is not so high.
  • Specific values of the voltage holding ratio are 20 to 95 when injected into a liquid crystal cell with a cell gap of 5 ⁇ m and measured at room temperature (25 ° C.) with a drive voltage of 5 V, a frame time of 16.6 ms, and a voltage application time of 64 ⁇ s. %, Preferably 40 to 90%, more preferably 50 to 80%.
  • the specific resistance of the liquid crystal composition is not so high in order to increase the speed of returning to the original alignment state when the charged potential of the detection target is lowered.
  • a cyano group as the polar substituent of the groups (a), (b) and (c) in the general formulas (J) and (N-1).
  • it is preferably in the range of 1 ⁇ 10 7 to 1 ⁇ 10 12 cm ⁇ at 25 ° C., more preferably in the range of 1 ⁇ 10 8 to 1 ⁇ 10 11 cm ⁇ , and 5 ⁇ 10 8 to 5 A range of ⁇ 10 10 cm ⁇ is particularly preferred.
  • the voltage holding ratio of the liquid crystal composition is used for the purpose of analyzing the instantaneous charged state later by holding and storing the charged state. Is preferably increased.
  • a fluorine atom, a chlorine atom, a trifluoromethyl group, a fluoromethoxy group as a polar substituent of the groups (a), (b), and (c) in the general formulas (J) and (N-1) A difluoromethoxy group, a trifluoromethoxy group or a 2,2,2-trifluoroethyl group is preferably used, and a fluorine atom is more preferable.
  • the specific value of the voltage holding ratio is 95% or more when injected into a liquid crystal cell with a cell gap of 5 ⁇ m and measured at room temperature (25 ° C.) with a drive voltage of 5 V, a frame time of 16.6 ms, and a voltage application time of 64 ⁇ s. Preferably, it is 97% or more, more preferably 99% or more. Even if the charged potential of the object to be detected decreases, the voltage holding ratio of the liquid crystal composition is used for the purpose of analyzing the instantaneous charged state later by holding and storing the charged state. Is preferably increased.
  • a fluorine atom, a chlorine atom, a trifluoromethyl group, a fluoromethoxy group, a polar substituent of the groups (a), (b), and (c) in the general formulas (J) and (N-1) is preferably used, and a fluorine atom is more preferable. Specifically, it is preferably 1 ⁇ 10 12 cm ⁇ or more, more preferably 1 ⁇ 10 13 cm ⁇ or more, and particularly preferably 1 ⁇ 10 14 cm ⁇ or more.
  • Sensitivity can be adjusted by the distance between the grounded electrode and the other electrode.
  • the distance between the electrodes is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and particularly preferably 5 ⁇ m or less. It is also effective to increase the absolute value of the dielectric anisotropy of the liquid crystal composition. Specifically, it is preferably adjusted to 2 or more, more preferably 5 or more, and still more preferably 8 or more.
  • a dichroic dye that is usually used can be suitably used.
  • the dichroic dye an azo dye or an anthraquinone dye is preferable. This method is preferable because it is not necessary to use a polarizing plate, which will be described later, and the configuration of the apparatus becomes simple.
  • dichroic dyes SI-486 (yellow), SI-426 (red), M-483 (blue), M-412 (blue), M-811 (blue), S-of Mitsui Chemicals Fine Co., Ltd.
  • a so-called polymer dispersed liquid crystal is preferably used.
  • a liquid crystal composition to which a polymerizable compound is added so that the liquid crystal composition is dispersed in the polymer chain and curing the polymerizable compound a polymer dispersed liquid crystal can be obtained.
  • a substrate used for the static electricity indicator in the present invention a substrate usually used for a liquid crystal device, a display, an optical component or an optical film can be suitably used. Examples of such a substrate include organic materials such as a glass substrate, a metal substrate, a ceramic substrate, and a plastic substrate.
  • the substrate when the substrate is an organic material, examples thereof include cellulose derivatives, polyolefins, polyesters, polyolefins, polycarbonates, polyacrylates, polyarylates, polyether sulfones, polyimides, polyphenylene sulfides, polyphenylene ethers, nylons, and polystyrenes.
  • plastic substrates such as polyester, polystyrene, polyolefin, cellulose derivatives, polyarylate, and polycarbonate are preferable.
  • a shape of a base material you may have a curved surface other than a flat plate. These base materials may have an electrode layer, an antireflection function, and a reflection function as needed. It is preferable that at least the substrate present between the liquid crystal composition and the observer is transparent.
  • the substrate is preferably flexible. Being flexible, it can be made into a roll shape when carrying the static electricity indicator, and can be bent according to the shape of the object to observe static electricity or the shape of the installation location. (electrode) Even if an electrode is individual, 2 or more may be 1 set. When it is single, the electrode is preferably grounded. In the case of using a plurality of electrodes, it is preferable that at least one of them is grounded. When using a plurality of electrodes, there may be a plurality of electrodes that are not grounded to the counter electrode for one electrode that is grounded, and a ground to the counter electrode for one electrode that is not grounded There may be a plurality of electrodes.
  • the electrode may have an electrode that is grounded on one base material and an electrode that is not grounded on the other base material when the static electricity indicator has a shape in which two base materials sandwich the liquid crystal composition. There may be both an electrode that is grounded only on one substrate and an electrode that is not grounded. More preferably, there is an embodiment in which there is an electrode grounded on one base material and an electrode not grounded on the other base material.
  • one electrode is connected (grounded) to a potential reference to function as an electrostatic indicator. Further, in order to measure the potential distribution, the electrode on the side not connected to the potential reference is arranged on the grid (two-dimensionally). Thus, the charging position of the object can be specified by arranging a plurality of electrodes on the static electricity indicator.
  • a conductive metal oxide can be used as a material for the transparent electrode, and examples of the metal oxide include indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), and zinc oxide ( ZnO), indium tin oxide (In 2 O 3 —SnO 2 ), indium zinc oxide (In 2 O 3 —ZnO), niobium-doped titanium dioxide (Ti 1-x Nb x O 2 ), fluorine-doped tin oxide, graphene nanoribbon Alternatively, metal nanowires or the like can be used, but zinc oxide (ZnO), indium tin oxide (In 2 O 3 —SnO 2 ), or indium zinc oxide (In 2 O 3 —ZnO) is preferable.
  • the liquid crystal composition may be approximately vertically aligned with respect to the substrate, or may be approximately horizontally aligned. good.
  • the p-type liquid crystal composition it is preferably horizontally aligned.
  • an n-type liquid crystal composition it is preferable that it is vertically aligned.
  • the substrate may be subjected to an alignment treatment or may be provided with an alignment film.
  • the alignment treatment include stretching treatment, rubbing treatment, polarized ultraviolet (visible?) Light irradiation treatment, ion beam treatment, and oblique deposition of SiO 2 on the substrate.
  • the alignment film a known and conventional alignment film is used.
  • alignment films include polyimide, polysiloxane, polyamide, polyvinyl alcohol, polycarbonate, polystyrene, polyphenylene ether, polyarylate, polyethylene terephthalate, polyether sulfone, epoxy resin, epoxy acrylate resin, acrylic resin, coumarin compound, chalcone.
  • the compound examples include compounds, cinnamate compounds, fulgide compounds, anthraquinone compounds, azo compounds, and arylethene compounds.
  • the compound subjected to the alignment treatment by rubbing is preferably an alignment treatment or a compound in which crystallization of the material is promoted by inserting a heating step after the alignment treatment.
  • the alignment film is generally formed by applying the alignment film material on a substrate by a method such as spin coating to form a resin film, but a uniaxial stretching method, Langmuir-Blodgett method, or the like can also be used. .
  • a polymerized optical anisotropic body (positive A plate) in a state where the polymerizable liquid crystal composition is homogeneously aligned may be used.
  • a polarizing plate can be used in addition to using the dichroic dye.
  • the deflecting plate can be installed so as to be normally white or normally black in a normal liquid crystal element. Any polarizing plate used for a normal liquid crystal display element can be preferably used.
  • Color filter The electrostatic indicator of the present invention may have a color filter.
  • the color filter includes a black matrix and at least an RGB three-color pixel portion. Any method may be used for forming the color filter layer. According to an example, a color filter layer is formed by applying a color coloring composition containing a pigment carrier and a color pigment dispersed therein to form a predetermined pattern, and curing this to obtain a colored pixel, and a color filter layer. Can be formed.
  • a color coloring composition containing a pigment carrier and a color pigment dispersed therein to form a predetermined pattern, and curing this to obtain a colored pixel, and a color filter layer.
  • an organic pigment and / or an inorganic pigment can be used as the pigment contained in the color coloring composition.
  • the color coloring composition may contain one kind of organic or inorganic pigment, and may contain a plurality of kinds of organic pigments and / or inorganic pigments.
  • the pigment preferably has high color developability and high heat resistance, particularly high heat decomposition resistance, and an organic pigment is usually used.
  • ground In the electrostatic indicator of the present invention, the higher the charged potential of the object, the higher the induced charged potential appearing on the electrode that is not grounded. As a result, the change in the alignment state of the liquid crystal composition increases, Can be visualized.
  • Grounding may be performed at a place where a reference potential is desired. Examples of the grounding method include a method in which the electrode is directly connected to the reference potential portion, and a method in which the electrode is connected to the reference potential portion with a conductor such as a copper wire.
  • the charged potential at the portion where the electrodes are arranged can be known.
  • the wiring for grounding the electrodes may be provided for each electrode, but all may be grounded as the same wiring as shown in FIG. Moreover, it is preferable that the induction charging electrodes are insulated from each other.
  • the insulating wall is preferably formed so as to connect the two substrates and so as to surround the liquid crystal. By doing so, the insulating wall serves to keep the distance between the two substrates constant, and at the same time serves as a partition that prevents the liquid crystal from leaking outside.
  • the indicator can be easily cut to any length with scissors or a cutter.
  • cutting is performed along an assumed cutting line indicated by a one-point difference line in FIG. 5, there is no risk of liquid crystal leaking to the outside, so cutting at this position is preferable.
  • the strip-shaped static electricity indicator it is preferable to cut the strip-shaped static electricity indicator so that it can be cut at the insulating wall portion.
  • the measured characteristics are as follows.
  • T ni Nematic phase-isotropic liquid phase transition temperature (° C.) ⁇ n: Refractive index anisotropy at 298K ⁇ : Dielectric anisotropy at 298K ⁇ : Viscosity at 293K (mPa ⁇ s) ⁇ 1 : rotational viscosity at 298 K (mPa ⁇ s) VHR: Voltage holding ratio (%) at 333 K under conditions of frequency 60 Hz and applied voltage 5 V In the examples, the following abbreviations are used for the description of compounds. (Ring structure)
  • composition P1 had a T ni of 81 ° C., ⁇ n of 0.098, ⁇ of 2.4, ⁇ 1 of 35 mPa ⁇ s, VHR of 99.1%, and a specific resistance of 1 ⁇ 10 13 ⁇ cm or more.
  • Reference Example 2 Preparation of Composition P2 Composition P2 shown in the table below was prepared.
  • T ni of the composition P2 is 100 ° C.
  • [Delta] n is 0.100
  • [Delta] [epsilon] is 8.1
  • gamma 1 is 72 MPa ⁇ s
  • VHR is 99.1%
  • the specific resistance was 1 ⁇ 10 13 ⁇ cm or more.
  • T ni of the composition P3 is 78 ° C.
  • [Delta] n is 0.102
  • [Delta] [epsilon] is 2.3
  • gamma 1 is 38 mPa ⁇ s
  • VHR is 99.2%
  • the specific resistance was 1 ⁇ 10 13 ⁇ cm or more.
  • composition P5 In composition P4, T ni was 73 ° C., ⁇ n was 0.107, ⁇ was 11.7, ⁇ 1 was 78 mPa ⁇ s, VHR was 98.0%, and the specific resistance was 1 ⁇ 10 13 ⁇ cm or more. (Reference Example 5) Preparation of Composition P5 Composition P5 shown in the table below was prepared.
  • T ni of the composition P4 is 87 ° C.
  • [Delta] n is 0.117
  • [Delta] [epsilon] is 6.3
  • gamma 1 is 54 MPa ⁇ s
  • VHR is 99.3%
  • the specific resistance was 1 ⁇ 10 13 ⁇ cm or more.
  • Composition N1 had a T ni of 76 ° C., ⁇ n of 0.098, ⁇ of ⁇ 3.7, ⁇ 1 of 89 mPa ⁇ s, VHR of 99.0%, and a specific resistance of 1 ⁇ 10 13 ⁇ cm or more.
  • Reference Example 7 Preparation of Composition N2 Composition N2 shown in the table below was prepared.
  • Composition N2 had a T ni of 91 ° C., ⁇ n of 0.115, ⁇ of ⁇ 4.0, ⁇ 1 of 121 mPa ⁇ s, VHR of 99.3%, and a specific resistance of 1 ⁇ 10 13 ⁇ cm or more.
  • Reference Example 8 Preparation of Composition N3 Composition N3 shown in the table below was prepared.
  • Composition N3 had a T ni of 76 ° C., ⁇ n of 0.114, ⁇ of ⁇ 4.4, ⁇ 1 of 117 mPa ⁇ s, VHR of 99.5%, and a specific resistance of 1 ⁇ 10 13 ⁇ cm or more.
  • Reference Example 9 Preparation of Composition N4 Composition N4 shown in the table below was prepared.
  • Composition N4 had T ni of 73 ° C., ⁇ n of 0.112, ⁇ of ⁇ 4.4, ⁇ 1 of 103 mPa ⁇ s, VHR of 99.4%, and a specific resistance of 1 ⁇ 10 13 ⁇ cm or more.
  • Reference Example 10 Preparation of Composition N5 Composition N5 shown in the table below was prepared.
  • T ni is 76 ° C. of the composition N5, [Delta] n is 0.101, [Delta] [epsilon] is -2.8, gamma 1 is 74mPa ⁇ s, VHR was 99.5%.
  • Reference Example 11 Measurement of physical properties of 4-cyano-4′-pentylbiphenyl (P6) ⁇ n of 4-cyano-4′-pentylbiphenyl is 0.185, ⁇ is 11.0, ⁇ 1 is 46 mPa ⁇ s, VHR was 52% and the specific resistance was 3 ⁇ 10 9 ⁇ cm.
  • composition N3R was prepared by adding 1% by mass of dichroic dye SI-426 manufactured by Mitsui Chemicals Fine Co., Ltd. to composition N3 prepared in Reference Example 8.
  • Example 1 Prepared as a reference example in a TN (twisted nematic: twisted nematic) glass liquid crystal cell with a pair of transparent electrodes facing each other, a polyimide alignment film rubbed on the transparent electrodes, and a distance between the transparent electrodes of 3 ⁇ m The liquid crystal composition P1 thus prepared was injected. A polarizing plate was affixed on both sides of the liquid crystal cell so that the transmission axes were parallel to each other, to produce an electrostatic indicator.
  • TN twisted nematic: twisted nematic
  • This static electricity indicator was in a state of not transmitting light (black) when there was no charged object nearby.
  • a bandegraph static electricity generator (charging part) was installed 15 cm away from the transparent electrode on the non-grounded side of this static electricity indicator. When the bandegraph static electricity generator was activated and charged to about 2 kV, the static electricity indicator changed slightly from being transparent to transmitting. When the vandegraph static electricity generator was turned off, it remained transparent for more than 3 minutes.
  • a bandegraph static electricity generator (charging part) was installed 10 cm away from the transparent electrode on the non-grounded side of the static electricity indicator.
  • the bandegraph static electricity generator was activated and charged to about 2 kV, the static electricity indicator changed from not transmitting light to transmitting.
  • the vandegraph static electricity generator was turned off, it remained transparent for more than 3 minutes.
  • Examples 2 to 6 The same experiment as in Example 1 was performed by changing the liquid crystal composition. The electrostatic indicator was evaluated as ⁇ when the light was slightly transmitted, ⁇ when the light was transmitted, and ⁇ when it was clearly transmitted.
  • Example 7 Prepared as a reference example in a VA (vertical alignment) glass liquid crystal cell having a pair of transparent electrodes facing each other, a polyimide alignment film rubbed on the transparent electrode, and a distance between the transparent electrodes of 3 ⁇ m.
  • the liquid crystal composition N1 was injected.
  • Polarizers were attached to both sides of the liquid crystal cell so that the transmission axes were perpendicular to each other, thereby producing an electrostatic indicator.
  • a copper wire was connected from one transparent electrode and grounded.
  • This static electricity indicator was in a state of not transmitting light (black) when there was no charged object nearby.
  • a bandegraph static electricity generator (charging part) was installed 15 cm away from the transparent electrode on the non-grounded side of this static electricity indicator. When the bandegraph static electricity generator was activated and charged to about 2 kV, the static electricity indicator changed slightly from being transparent to transmitting. When the vandegraph static electricity generator was turned off, it remained transparent for more than 3 minutes.
  • a bandegraph static electricity generator (charging part) was installed 10 cm away from the transparent electrode on the non-grounded side of the static electricity indicator.
  • the bandegraph static electricity generator was activated and charged to about 2 kV, the static electricity indicator changed from not transmitting light to transmitting.
  • the vandegraph static electricity generator was turned off, it remained transparent for more than 3 minutes.
  • Examples 8 to 11 The same experiment as in Example 7 was performed by changing the liquid crystal composition.
  • the electrostatic indicator was evaluated as ⁇ when the light was slightly transmitted, ⁇ when the light was transmitted, and ⁇ when it was clearly transmitted.
  • Example 12 A liquid crystal prepared in a reference example in a VA (Vertical Alignment: Vertical Alignment) liquid crystal cell having a pair of opposing transparent electrodes, a rubbed polyimide alignment film formed on the transparent electrodes, and a distance between the transparent electrodes of 3 ⁇ m Composition N3R was injected to produce an electrostatic indicator.
  • a copper wire was connected from one transparent electrode and grounded. This electrostatic indicator was in a state of transmitting light (transparent) when there was no charged object nearby.
  • a bandegraph static electricity generator (charging part) was installed 15 cm away from the transparent electrode on the non-grounded side of this static electricity indicator. When the bandegraph static electricity generator was activated and charged to about 2 kV, the static electricity indicator changed slightly from transparent to red. When the vandegraph static electricity generator was turned off, the red state was maintained for more than 2 minutes.
  • a bandegraph static electricity generator (charging part) was installed 10 cm away from the transparent electrode on the non-grounded side of the static electricity indicator.
  • the bandegraph static electricity generator was activated and charged to about 2 kV, the static electricity indicator changed from transparent to red.
  • the vandegraph static electricity generator was turned off, the red state was maintained for more than 2 minutes.
  • Example 13 Prepare a PET film substrate with a thickness of 3 cm and a length of 7 cm with a solid ITO transparent electrode and a thickness of 50 ⁇ m, and a PET film substrate with a thickness of 3 cm and a length of 7 cm with a patterned ITO transparent electrode as shown in FIG.
  • a polyimide vertical alignment film was formed on the transparent electrode substrate. As shown in FIG.
  • a copper wire was connected to the solid electrode side and grounded.
  • a bandegraph static electricity generator (charging part) was installed 15 cm away from the static electricity indicator. When the bandegraph static electricity generator was not operated, all three liquid crystal parts were transparent. When the bandegraph static electricity generator was activated and charged to about 2 kV, the liquid crystal part with three static electricity indicators changed to a deeper red color near the charging part. The charge distribution could be visualized. When the vandegraph static electricity generator was turned off, it remained red for about 1 minute.

Abstract

The present invention addresses the problem of providing a static electricity indicator for visualizing a charged location that spatially spreads and that changes moment by moment on a plane surface, and the charge amount of the location. As a result of various investigations, the inventors utilized a liquid crystal composition and used electrodes as necessary, thereby providing a static electricity indicator with which it is possible to visualize a charged position that spatially spreads and that changes moment by moment on a plane surface, and the charge amount of the position, without using a complicated mechanical mechanism.

Description

帯電インジケータCharge indicator
 本発明は帯電状態を可視化する帯電インジケータに関する。 The present invention relates to a charging indicator for visualizing a charged state.
 帯電状態を広い範囲にわたって常に把握することは極めて重要である。例えば、化学工業では有機溶媒ガスの静電気による着火を抑止することは安全確保の点から重要である(特許文献1、2)。しかしこれらは帯電しているかどうかは分かるものの、その位置を特定することは出来ないという問題点や外部から常に電気を供給しなければならないなどの問題点を有していた。 ∙ It is extremely important to always grasp the charged state over a wide range. For example, in the chemical industry, it is important from the viewpoint of ensuring safety to suppress ignition of organic solvent gas due to static electricity (Patent Documents 1 and 2). However, although it can be known whether or not these are charged, there are problems that the position cannot be specified and that electricity must always be supplied from the outside.
 また、半導体製造業では、半導体素子の静電気による破損を防ぐことは歩留まり向上の点から重要である。 In the semiconductor manufacturing industry, it is important from the viewpoint of yield improvement to prevent damage to the semiconductor elements due to static electricity.
 帯電状態を固定された一点で測定することは、通常用いられる電極プローブ(電位センサー)を用いた測定器を用いれば行えるものの、広い面積にわたって測定することが困難であった。これを解決するために、表面帯電分布の測定には、プローブを平面的に走査(X-Y軸で機械的に移動させて)測定する方法が提案されているが、平面を走査するのに時間がかかり一瞬で測定できないという欠点や、平面走査を機械的に行うため機械的接触による火花発生が心配されること、また構成が複雑になってしまうので、結果としてコスト高になってしまうことや故障確率が高まってしまう、更には測定に際しての消費電力が大きくなってしまうという欠点があった(特許文献3)。 Although it is possible to measure the charged state at a fixed point using a measuring instrument using a commonly used electrode probe (potential sensor), it is difficult to measure over a wide area. In order to solve this problem, a method of measuring the surface charge distribution by scanning the probe in a plane (mechanically moved along the XY axes) has been proposed. However, it takes time to scan the plane. The shortcoming that measurement cannot be performed in an instant, the occurrence of sparks due to mechanical contact due to mechanical scanning, and the configuration becomes complicated, resulting in high costs and malfunctions. There is a drawback that the probability increases and the power consumption during measurement increases (Patent Document 3).
 以上のような背景から、広い範囲にわたって複雑な機械的機構を用いることなく、刻々と変化する帯電状況を検知できるようにすることが強く求められている。 From the above background, there is a strong demand to be able to detect an ever-changing charging situation without using a complicated mechanical mechanism over a wide range.
特開2004-225200JP 2004-225200 A 特開平7-159467JP-A-7-159467 特開平11-211771JP-A-11-211771
 本発明が解決しようとする課題は、広がりを持った平面上で刻々と変化する帯電している場所及びその帯電量を可視化する静電気インジケータを提供することである。 The problem to be solved by the present invention is to provide a charged place that changes every moment on a wide plane and a static electricity indicator that visualizes the amount of charge.
 本発明者は、種々の検討を行った結果、液晶組成物を使用することにより、刻々と変化する帯電している位置とその帯電位を可視化する静電気インジケータを提供することが出来ることを見出し、本発明を完成するに至った。 As a result of various studies, the present inventors have found that by using a liquid crystal composition, it is possible to provide an electrostatic indicator that visualizes the charged position and the charged position that change every moment, The present invention has been completed.
 本発明の液晶組成物を使用した静電気インジケータは、広がりを持った平面上で対象とする物質の帯電状態を、刻々と変化する帯電している場所及びその帯電量を可視化すること出来るので、非常に有用である。 The static electricity indicator using the liquid crystal composition of the present invention can visualize the charged state of the target substance on a wide flat surface and the charged amount and its charge amount which change every moment. Useful for.
本発明の静電気インジケータの構成の一例を模式的に示す図(近くに帯電物がない場合)The figure which shows an example of a structure of the static electricity indicator of this invention typically (when there is no charged object nearby) 本発明の静電気インジケータの構成の一例を模式的に示す図(近くに帯電物がある場合)The figure which shows an example of a structure of the static electricity indicator of this invention typically (when there exists a charged object nearby) 本発明の静電気インジケータの構成の一例を模式的に示す図(帯電体側の電極が複数に分かれている場合)The figure which shows an example of a structure of the static electricity indicator of this invention typically (when the electrode by the side of a charging body is divided into plurality) 本発明の静電気インジケータの構成の一例を模式的に示す図(平行に複数設置した静電気インジケータ)The figure which shows typically an example of the structure of the static electricity indicator of this invention (the static electricity indicator which installed two or more in parallel) 図3に示した静電気インジケータを上から(帯電体側)から見た図The static electricity indicator shown in FIG. 3 is seen from above (charged body side) ITOのパターニング図ITO patterning diagram 液晶組成物及び接着剤の滴下位置Liquid crystal composition and adhesive dripping position ITOパターニング基板とITOベタ基板の位置(基板短辺方向)Position of ITO patterning substrate and ITO solid substrate (Substrate short side) 本発明の静電気インジケータの外観Appearance of the electrostatic indicator of the present invention
 本発明の静電気インジケータは、広がりを持った平面上で対象とする物質の帯電状態を、帯電している場所及びその帯電位を可視化すること出来る。広がりを持った平面状とは、静電気インジケータの形状が三角形、四角形、円盤状、棒状等であっても良く、後述するようにその素材を選択して、屈曲性を有する場合には、平面であるだけでなく、曲面となっていても良いことを意味する。本発明の静電気インジケータを曲面とすることが出来るのは液晶組成物を使用することの利点の一つである。 The electrostatic indicator of the present invention can visualize the charged state of a target substance on a wide plane and the charged place and its charged position. The spread flat shape may be a shape of the static electricity indicator such as a triangle, a quadrangle, a disk shape, a rod shape, and the like. It means that it may be curved as well. It is one of the advantages of using a liquid crystal composition that the electrostatic indicator of the present invention can be curved.
 静電気インジケータは、それ自体が単独のものであっても、複数が集まって、1つの装置となっていても良い。また、静電気インジケータは、板状であっても、シート状であっても、帯状であってもよく、それらを設置する場合、そのまま設置することも出来るが、必要な範囲に適応させるため、切断して設置することも出来る。これらは、シート状や帯状の静電気インジケータをロール状にし、運搬することや、設置する際に設置場所に適した長さに切断することも含む。 The static electricity indicator may be a single device or a plurality of static electricity indicators may be combined into a single device. In addition, the static electricity indicator may be plate-shaped, sheet-shaped, or belt-shaped, and when they are installed, they can be installed as they are, but they are cut to adapt to the required range. It can also be installed. These include rolling and transporting a sheet-like or belt-like static electricity indicator and cutting it to a length suitable for the installation location when installing.
 静電気インジケータは、液晶組成物を使用する。液晶組成物が静電気により、配向状態を変化させることを利用し、静電気の帯電場所及びその帯電位を可視化する。液晶組成物の配向状態の変化を可視化する方法としては、配向状態の変化により屈折率異方性(Δn)の変化を利用するものでもよく、偏光状態の変化を利用するものでもよく、透過・散乱を制御するものでもよく、液晶組成物に色素を添加するいわゆるゲストホスト方式でもよい。帯電位が高いほど、液晶組成物の配向状態の変化が大きくなるので、視覚的に帯電位の高さを認識できる。
(液晶組成物)
 使用する液晶組成物は、液晶組成物の誘電率異方性(Δε)の値が正のいわゆるp型液晶組成物であっても、Δεの値が負のいわゆるn型液晶組成物であっても良い。これら液晶組成物は、一般式(J)で表される化合物、一般式(N-1)で表される化合物及び一般式(L)で表される化合物から選ばれる化合物を適宜組み合わせて使用することが出来る。
The static electricity indicator uses a liquid crystal composition. By utilizing the fact that the liquid crystal composition changes the alignment state due to static electricity, the electrostatic charge location and the charged position are visualized. As a method of visualizing the change in the alignment state of the liquid crystal composition, a change in refractive index anisotropy (Δn) may be used depending on the change in the alignment state, or a change in the polarization state may be used. What controls scattering may be used, and what is called a guest host system which adds a pigment to a liquid crystal composition may be used. The higher the charged position, the larger the change in the alignment state of the liquid crystal composition, so that the height of the charged position can be visually recognized.
(Liquid crystal composition)
The liquid crystal composition used is a so-called n-type liquid crystal composition having a negative Δε value, even if it is a so-called p-type liquid crystal composition having a positive dielectric anisotropy (Δε). Also good. These liquid crystal compositions are used by appropriately combining a compound represented by general formula (J), a compound represented by general formula (N-1), and a compound represented by general formula (L). I can do it.
 p型液晶組成物は、一般式(J)で表される化合物を1種類又は2種類以上含有することが好ましい。これら化合物は誘電的に正の化合物(Δεが2より大きい。)に該当する。 The p-type liquid crystal composition preferably contains one or more compounds represented by the general formula (J). These compounds correspond to dielectrically positive compounds (Δε is greater than 2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、RJ1は炭素原子数1~8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の-CH-はそれぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換されていてもよく、
 nJ1は、0、1、2、3又は4を表し、
 AJ1、AJ2及びAJ3はそれぞれ独立して、
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-に置き換えられてもよい。)
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)及び
(c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子、塩素原子、メチル基、トリフルオロメチル基又はトリフルオロメトキシ基で置換されていても良く、
 ZJ1及びZJ2はそれぞれ独立して単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-、-COO-、-OCO-又は-C≡C-を表し、
 nJ1が2、3又は4であってAJ2が複数存在する場合は、それらは同一であっても異なっていても良く、nJ1が2、3又は4であってZJ1が複数存在する場合は、それらは同一であっても異なっていても良く、
 XJ1は、水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基又は2,2,2-トリフルオロエチル基を表す。)
 n型液晶組成物は、一般式(N-1)で表される化合物から選ばれる化合物を1種類又は2種類以上含有することが好ましい。これら化合物は誘電的に負の化合物(Δεの符号が負で、その絶対値が2より大きい。)に該当する。
(Wherein R J1 represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently —CH═CH—, — Optionally substituted by C≡C—, —O—, —CO—, —COO— or —OCO—,
n J1 represents 0, 1, 2, 3 or 4;
A J1 , A J2 and A J3 are each independently
(A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O-.)
(B) a 1,4-phenylene group (one —CH═ present in the group or two or more non-adjacent —CH═ may be replaced by —N═) and (c) Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl group (naphthalene-2,6-diyl group or 1,2 , 3,4-tetrahydronaphthalene-2,6-diyl group, one —CH═ or two or more non-adjacent —CH═ may be replaced by —N═.
The group (a), the group (b) and the group (c) are each independently selected from the group consisting of cyano group, fluorine atom, chlorine atom, methyl group, trifluoromethyl group or trifluoro May be substituted with a methoxy group,
Z J1 and Z J2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, Represents —COO—, —OCO— or —C≡C—,
When n J1 is 2, 3 or 4 and a plurality of A J2 are present, they may be the same or different, and n J1 is 2, 3 or 4 and a plurality of Z J1 is present. If they are the same or different,
X J1 represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a fluoromethoxy group, a difluoromethoxy group, a trifluoromethoxy group, or a 2,2,2-trifluoroethyl group. )
The n-type liquid crystal composition preferably contains one or more compounds selected from the compounds represented by formula (N-1). These compounds correspond to dielectrically negative compounds (the sign of Δε is negative and the absolute value is greater than 2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、RN11、RN12、はそれぞれ独立して炭素原子数1~8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の-CH-はそれぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換されていてもよく、
 AN11、AN12、はそれぞれ独立して
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-に置き換えられてもよい。)及び
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
(c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
(d) 1,4-シクロヘキセニレン基
からなる群より選ばれる基を表し、上記の基(a)、基(b)、基(c)及び基(d)はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
 ZN11、ZN12、はそれぞれ独立して単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-COO-、-OCO-、-OCF-、-CFO-、-CH=N-N=CH-、-CH=CH-、-CF=CF-又は-C≡C-を表し、
 nN11、nN12、はそれぞれ独立して0~3の整数を表すが、nN11+nN12はそれぞれ独立して1、2又は3であり、AN11~AN12、ZN11~ZN12が複数存在する場合は、それらは同一であっても異なっていても良い。)
 本発明の液晶組成物は、一般式(L)で表される化合物を1種類又は2種類以上含有することが好ましい。一般式(L)で表される化合物は誘電的にほぼ中性の化合物(Δεの値が-2~2)に該当する。
(Wherein R N11 and R N12 each independently represents an alkyl group having 1 to 8 carbon atoms, and one or non-adjacent two or more —CH 2 — in the alkyl group are each independently Optionally substituted by —CH═CH—, —C≡C—, —O—, —CO—, —COO— or —OCO—,
A N11, A N12, is one of -CH 2 present in each in independently (a) 1,4-cyclohexylene group (this group - or nonadjacent two or more -CH 2 - is - And (b) a 1,4-phenylene group (one —CH═ present in the group or two or more non-adjacent —CH═ represents —N = May be replaced.)
(C) Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl group (naphthalene-2,6-diyl group or One —CH═ present in the 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or two or more non-adjacent —CH═ may be replaced by —N═. )
(D) represents a group selected from the group consisting of 1,4-cyclohexenylene groups, and the groups (a), (b), (c) and (d) are each independently a cyano group, It may be substituted with a fluorine atom or a chlorine atom,
Z N11 and Z N12 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —OCF 2- , -CF 2 O-, -CH = NN-CH-, -CH = CH-, -CF = CF- or -C≡C-
n N11 and n N12 each independently represents an integer of 0 to 3, n n11 + n N12 each independently represents 1, 2 or 3, and a plurality of A N11 to A N12 and Z N11 to Z N12 If present, they may be the same or different. )
The liquid crystal composition of the present invention preferably contains one or more compounds represented by formula (L). The compound represented by the general formula (L) corresponds to a dielectrically neutral compound (Δε value is −2 to 2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、RL1及びRL2はそれぞれ独立して炭素原子数1~8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の-CH-はそれぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換されていてもよく、
 nL1は0、1、2又は3を表し、
 AL1、AL2及びAL3はそれぞれ独立して
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-に置き換えられてもよい。)及び
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
(c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
 ZL1及びZL2はそれぞれ独立して単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-COO-、-OCO-、-OCF-、-CFO-、-CH=N-N=CH-、-CH=CH-、-CF=CF-又は-C≡C-を表し、
 nL1が2又は3であってAL2が複数存在する場合は、それらは同一であっても異なっていても良く、nL1が2又は3であってZL2が複数存在する場合は、それらは同一であっても異なっていても良いが、一般式(N-1)及び(J)で表される化合物を除く。)
 組成物は、室温(25℃)において液晶相を呈することが好ましく、ネマチック相を呈することが更に好ましい。
(Wherein R L1 and R L2 each independently represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently Optionally substituted by —CH═CH—, —C≡C—, —O—, —CO—, —COO— or —OCO—,
n L1 represents 0, 1, 2 or 3,
A L1 , A L2 and A L3 each independently represent (a) a 1,4-cyclohexylene group (one —CH 2 — present in the group or two or more —CH 2 — not adjacent to each other). May be replaced by —O—) and (b) a 1,4-phenylene group (one —CH═ present in this group or two or more —CH═ not adjacent to each other —N May be replaced by =.)
(C) Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl group (naphthalene-2,6-diyl group or One —CH═ present in the 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or two or more non-adjacent —CH═ may be replaced by —N═. )
The group (a), the group (b) and the group (c) may be each independently substituted with a cyano group, a fluorine atom or a chlorine atom,
Z L1 and Z L2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —OCF 2 -, -CF 2 O-, -CH = NN-CH-, -CH = CH-, -CF = CF- or -C≡C-
When n L1 is 2 or 3, and a plurality of A L2 are present, they may be the same or different, and when n L1 is 2 or 3, and a plurality of Z L2 are present, May be the same or different, but excludes the compounds represented by formulas (N-1) and (J). )
The composition preferably exhibits a liquid crystal phase at room temperature (25 ° C.), and more preferably exhibits a nematic phase.
 組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの所望の性能に応じて組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類である。またさらに、本発明の別の実施形態では4種類であり、5種類であり、6種類であり、7種類以上である。 There are no particular restrictions on the types of compounds that can be combined, but they are used in combination according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence. For example, in one embodiment of the present invention, there are one kind, two kinds, and three kinds of compounds to be used. Furthermore, in another embodiment of the present invention, there are four types, five types, six types, and seven or more types.
 感度を向上させるためには、液晶組成物のΔεの絶対値を大きくすること及び液晶組成物の粘度(η)を低下させることが好ましく、Δεの絶対値を大きくするためには一般式(N-1)及び(J)で表される化合物の含有量を多くすることが好ましく、ηを小さくするには、一般式(L)で表される化合物の含有量を多くすることが好ましい。 In order to improve the sensitivity, it is preferable to increase the absolute value of Δε of the liquid crystal composition and to reduce the viscosity (η) of the liquid crystal composition, and in order to increase the absolute value of Δε, the general formula (N It is preferable to increase the content of the compounds represented by -1) and (J). To reduce η, it is preferable to increase the content of the compound represented by the general formula (L).
 検知対象物の帯電位が低下した際に、元の配向状態に戻る速度を早くするためには、液晶組成物の電圧保持率をあまり高くしないことが好ましい。このような場合には上記一般式(J)や(N-1)中の基(a)(b)(c)の極性置換基としてシアノ基を使用することが好ましい。電圧保持率の具体的な値としては、セルギャップ5μmの液晶セルに注入し、室温(25℃)にて駆動電圧5V、フレーム時間16.6ms、電圧印加時間64μsで測定したとき、20~95%の範囲にあることが好ましく、40~90%の範囲にあることが更に好ましく、50~80%の範囲にあることが特に好ましい。また、検知対象物の帯電位が低下した際に、元の配向状態に戻る速度を速くするためには液晶組成物の比抵抗をあまり高くしないことも好ましい。このような場合にも記一般式(J)や(N-1)中の基(a)(b)(c)の極性置換基としてシアノ基を使用することが好ましい。具体的には25℃において1×107~1×1012cmΩの範囲があるのが好ましく、1×108~1×1011cmΩの範囲にあることが更に好ましく、5×108~5×1010cmΩの範囲があるのが特に好ましい。 In order to increase the speed of returning to the original alignment state when the charged potential of the detection target is lowered, it is preferable that the voltage holding ratio of the liquid crystal composition is not so high. In such a case, it is preferable to use a cyano group as the polar substituent of the groups (a), (b) and (c) in the general formulas (J) and (N-1). Specific values of the voltage holding ratio are 20 to 95 when injected into a liquid crystal cell with a cell gap of 5 μm and measured at room temperature (25 ° C.) with a drive voltage of 5 V, a frame time of 16.6 ms, and a voltage application time of 64 μs. %, Preferably 40 to 90%, more preferably 50 to 80%. It is also preferable that the specific resistance of the liquid crystal composition is not so high in order to increase the speed of returning to the original alignment state when the charged potential of the detection target is lowered. Even in such a case, it is preferable to use a cyano group as the polar substituent of the groups (a), (b) and (c) in the general formulas (J) and (N-1). Specifically, it is preferably in the range of 1 × 10 7 to 1 × 10 12 cmΩ at 25 ° C., more preferably in the range of 1 × 10 8 to 1 × 10 11 cmΩ, and 5 × 10 8 to 5 A range of × 10 10 cmΩ is particularly preferred.
 検知対象物の帯電位が低下しても、帯電があったことを保持・記憶させることにより瞬間の帯電状態をあとから解析することなどを目的とする場合には、液晶組成物の電圧保持率を高くすることが好ましい。このような場合には上記一般式(J)や(N-1)中の基(a)(b)(c)の極性置換基としてフッ素原子、塩素原子、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基又は2,2,2-トリフルオロエチル基を使用することが好ましく、フッ素原子が更に好ましい。電圧保持率の具体的な値としては、セルギャップ5μmの液晶セルに注入し、室温(25℃)にて駆動電圧5V、フレーム時間16.6ms、電圧印加時間64μsで測定したとき、95%以上であることが好ましく、97%以上であることが更に好ましく、99%以上であることが特に好ましい。検知対象物の帯電位が低下しても、帯電があったことを保持・記憶させることにより瞬間の帯電状態をあとから解析することなどを目的とする場合には、液晶組成物の電圧保持率を高くすることが好ましい。このような場合にも上記一般式(J)や(N-1)中の基(a)(b)(c)の極性置換基としてフッ素原子、塩素原子、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基又は2,2,2-トリフルオロエチル基を使用することが好ましく、フッ素原子が更に好ましい。
具体的には1×1012cmΩ以上であることが好ましく、1×1013cmΩ以上であることが更に好ましく、1×1014cmΩ以上であること特に好ましい。
Even if the charged potential of the object to be detected decreases, the voltage holding ratio of the liquid crystal composition is used for the purpose of analyzing the instantaneous charged state later by holding and storing the charged state. Is preferably increased. In such a case, a fluorine atom, a chlorine atom, a trifluoromethyl group, a fluoromethoxy group as a polar substituent of the groups (a), (b), and (c) in the general formulas (J) and (N-1), A difluoromethoxy group, a trifluoromethoxy group or a 2,2,2-trifluoroethyl group is preferably used, and a fluorine atom is more preferable. The specific value of the voltage holding ratio is 95% or more when injected into a liquid crystal cell with a cell gap of 5 μm and measured at room temperature (25 ° C.) with a drive voltage of 5 V, a frame time of 16.6 ms, and a voltage application time of 64 μs. Preferably, it is 97% or more, more preferably 99% or more. Even if the charged potential of the object to be detected decreases, the voltage holding ratio of the liquid crystal composition is used for the purpose of analyzing the instantaneous charged state later by holding and storing the charged state. Is preferably increased. Even in such a case, a fluorine atom, a chlorine atom, a trifluoromethyl group, a fluoromethoxy group, a polar substituent of the groups (a), (b), and (c) in the general formulas (J) and (N-1), A difluoromethoxy group, a trifluoromethoxy group or a 2,2,2-trifluoroethyl group is preferably used, and a fluorine atom is more preferable.
Specifically, it is preferably 1 × 10 12 cmΩ or more, more preferably 1 × 10 13 cmΩ or more, and particularly preferably 1 × 10 14 cmΩ or more.
 帯電インジケータの感度を目的に合わせて調節することが好ましい。感度は、接地した電極と、もう一方の電極間の距離によって調節することができる。良好な感度を実現したい場合には電極間の距離を20μm以下にすることが好ましく、10μm以下にすることが更に好ましく、5μ以下にすることが特に好ましい。また、液晶組成物の誘電率の異方性の絶対値を大きくすることも有効である。具体的には2以上、更に好ましくは5以上、更に好ましくは8以上に調節することが好ましい。 It is preferable to adjust the sensitivity of the charging indicator according to the purpose. Sensitivity can be adjusted by the distance between the grounded electrode and the other electrode. In order to realize good sensitivity, the distance between the electrodes is preferably 20 μm or less, more preferably 10 μm or less, and particularly preferably 5 μm or less. It is also effective to increase the absolute value of the dielectric anisotropy of the liquid crystal composition. Specifically, it is preferably adjusted to 2 or more, more preferably 5 or more, and still more preferably 8 or more.
 液晶組成物に色素を添加する場合には通常使用される2色性色素を好適に用いることができる。2色性色素といては、アゾ系又はアントラキノン系色素が好ましい。この方式では、後述する偏光板を用いる必要がないため、装置の構成が単純になり、好ましい。二色性色素としては三井化学ファイン(株)のSI-486(黄)、SI-426(赤)、M-483(青)、M-412(青)、M-811(青)、S-428(黒)、M-1012(黒)、三菱化学(株)のLSY-116(黄)、LSR-401(マゼンタ)、LSR-406(赤)、LSR-426(紫)、LSB-278(青)、LSB-350(青)、LSR-426(シアン)等を挙げることができる。 In the case of adding a dye to the liquid crystal composition, a dichroic dye that is usually used can be suitably used. As the dichroic dye, an azo dye or an anthraquinone dye is preferable. This method is preferable because it is not necessary to use a polarizing plate, which will be described later, and the configuration of the apparatus becomes simple. As dichroic dyes, SI-486 (yellow), SI-426 (red), M-483 (blue), M-412 (blue), M-811 (blue), S-of Mitsui Chemicals Fine Co., Ltd. 428 (black), M-1012 (black), Mitsubishi Chemical Corporation LSY-116 (yellow), LSR-401 (magenta), LSR-406 (red), LSR-426 (purple), LSB-278 ( Blue), LSB-350 (blue), LSR-426 (cyan), and the like.
 また、透過・散乱を制御する方式では、いわゆる高分子分散型液晶とすることが好ましい。高分子鎖中に液晶組成物が分散するよう、重合性化合物を添加した液晶組成物を使用し、重合性化合物を硬化させることにより高分子分散型液晶とすることが出来る。
(基材)
 本発明における静電気インジケータに用いられる基材は、液晶デバイス、ディスプレイ、光学部品や光学フィルムに通常使用する基材が好適に使用できる。そのような基材としては、ガラス基材、金属基材、セラミックス基材やプラスチック基材等の有機材料が挙げられる。特に基材が有機材料の場合、セルロース誘導体、ポリオレフィン、ポリエステル、ポリオレフィン、ポリカーボネート、ポリアクリレート、ポリアリレート、ポリエーテルサルホン、ポリイミド、ポリフェニレンスルフィド、ポリフェニレンエーテル、ナイロン又はポリスチレン等が挙げられる。中でもポリエステル、ポリスチレン、ポリオレフィン、セルロース誘導体、ポリアリレート、ポリカーボネート等のプラスチック基材が好ましい。基材の形状としては、平板の他、曲面を有するものであっても良い。これらの基材は、必要に応じて、電極層、反射防止機能、反射機能を有していてもよい。少なくとも液晶組成物と観測者との間に存在する基材は透明であることが好ましい。
In the method of controlling transmission / scattering, a so-called polymer dispersed liquid crystal is preferably used. By using a liquid crystal composition to which a polymerizable compound is added so that the liquid crystal composition is dispersed in the polymer chain and curing the polymerizable compound, a polymer dispersed liquid crystal can be obtained.
(Base material)
As the substrate used for the static electricity indicator in the present invention, a substrate usually used for a liquid crystal device, a display, an optical component or an optical film can be suitably used. Examples of such a substrate include organic materials such as a glass substrate, a metal substrate, a ceramic substrate, and a plastic substrate. In particular, when the substrate is an organic material, examples thereof include cellulose derivatives, polyolefins, polyesters, polyolefins, polycarbonates, polyacrylates, polyarylates, polyether sulfones, polyimides, polyphenylene sulfides, polyphenylene ethers, nylons, and polystyrenes. Of these, plastic substrates such as polyester, polystyrene, polyolefin, cellulose derivatives, polyarylate, and polycarbonate are preferable. As a shape of a base material, you may have a curved surface other than a flat plate. These base materials may have an electrode layer, an antireflection function, and a reflection function as needed. It is preferable that at least the substrate present between the liquid crystal composition and the observer is transparent.
 基材は屈曲性を有していることが好ましい。屈曲性を有することで、静電気インジケータを運搬する際にロール状にすることが出来、静電気を観測する対象物の形状や設置場所の形状に応じて湾曲させることが出来好ましい。
(電極)
 電極は、単独であっても、2個以上が1組となっていても良い。単独である場合にはその電極は接地されていることが好ましく。複数の電極を使用する場合には、少なくとも1つが接地されていることが好ましい。複数の電極を使用する場合には、接地されている1つの電極に対し、その対極に接地されていない複数の電極があってもよく、接地されていない1つの電極に対し、その対極に接地されている複数の電極があってもよい。
The substrate is preferably flexible. Being flexible, it can be made into a roll shape when carrying the static electricity indicator, and can be bent according to the shape of the object to observe static electricity or the shape of the installation location.
(electrode)
Even if an electrode is individual, 2 or more may be 1 set. When it is single, the electrode is preferably grounded. In the case of using a plurality of electrodes, it is preferable that at least one of them is grounded. When using a plurality of electrodes, there may be a plurality of electrodes that are not grounded to the counter electrode for one electrode that is grounded, and a ground to the counter electrode for one electrode that is not grounded There may be a plurality of electrodes.
 電極は、静電気インジケータが2枚の基材が液晶組成物を挟持した形状である場合に、片方の基材に接地されている電極、他方の基材に接地されていない電極があってもよく、片方の基板にのみ接地されている電極及び接地されていない電極の両方があってもよい。より好ましくは、片方の基材に接地されている電極、他方の基材に接地されていない電極がある形態である。 The electrode may have an electrode that is grounded on one base material and an electrode that is not grounded on the other base material when the static electricity indicator has a shape in which two base materials sandwich the liquid crystal composition. There may be both an electrode that is grounded only on one substrate and an electrode that is not grounded. More preferably, there is an embodiment in which there is an electrode grounded on one base material and an electrode not grounded on the other base material.
 より好ましい実施形態は、静電気インジケータとして機能するように一方の電極を電位基準と結線(接地)する。また、電位分布を測定するために、電位基準に結線していない側の電極を格子上(二次元に)配置するものである。このように、静電気インジケータに複数の電極を配置することで、対象物の帯電位置が特定できる。 In a more preferred embodiment, one electrode is connected (grounded) to a potential reference to function as an electrostatic indicator. Further, in order to measure the potential distribution, the electrode on the side not connected to the potential reference is arranged on the grid (two-dimensionally). Thus, the charging position of the object can be specified by arranging a plurality of electrodes on the static electricity indicator.
 本発明の静電気インジケータにおいて、透明電極の材料としては、導電性の金属酸化物を用いることができ、金属酸化物としては酸化インジウム(In)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化インジウムスズ(In―SnO)、酸化インジウム亜鉛(In―ZnO)、ニオブ添加二酸化チタン(Ti1-xNbx)、フッ素ドープ酸化スズ、グラフェンナノリボン又は金属ナノワイヤー等が使用できるが、酸化亜鉛(ZnO)、酸化インジウムスズ(In―SnO)又は酸化インジウム亜鉛(In―ZnO)が好ましい。これらの透明導電膜のパターニングには、フォト・エッチング法やマスクを用いる方法などを使用することができる。少なくとも液晶組成物と観測者との間に存在する電極は透明であることが好ましい。
(液晶組成物の配向)
 液晶組成物の配向状態としては、接地した電極と接地していない電極間の電位差がおおよそ0Vである際に、基材に対しておおよそ垂直配向していてもよく、おおよそ水平配向していても良い。p型液晶組成物を使用する際は、水平配向していることが好ましく。n型液晶組成物を使用する際は垂直配向していることが好ましい。
(配向処理)
 また、液晶組成物の配向を制御するために、上記基材には、配向処理を行っているか、又は配向膜が設けられていても良い。配向処理としては、延伸処理、ラビング処理、偏光紫外(可視?)光照射処理、イオンビーム処理、基材へのSiOの斜方蒸着処理、等が挙げられる。配向膜を用いる場合、配向膜は公知慣用のものが用いられる。そのような配向膜としては、ポリイミド、ポリシロキサン、ポリアミド、ポリビニルアルコール、ポリカーボネート、ポリスチレン、ポリフェニレンエーテル、ポリアリレート、ポリエチレンテレフタレート、ポリエーテルサルホン、エポキシ樹脂、エポキシアクリレート樹脂、アクリル樹脂、クマリン化合物、カルコン化合物、シンナメート化合物、フルギド化合物、アントラキノン化合物、アゾ化合物、アリールエテン化合物等の化合物が挙げられる。ラビングにより配向処理する化合物は、配向処理、もしくは配向処理の後に加熱工程を入れることで材料の結晶化が促進されるものが好ましい。ラビング以外の配向処理を行う化合物の中では光配向材料を用いることが好ましい。
In the electrostatic indicator of the present invention, a conductive metal oxide can be used as a material for the transparent electrode, and examples of the metal oxide include indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), and zinc oxide ( ZnO), indium tin oxide (In 2 O 3 —SnO 2 ), indium zinc oxide (In 2 O 3 —ZnO), niobium-doped titanium dioxide (Ti 1-x Nb x O 2 ), fluorine-doped tin oxide, graphene nanoribbon Alternatively, metal nanowires or the like can be used, but zinc oxide (ZnO), indium tin oxide (In 2 O 3 —SnO 2 ), or indium zinc oxide (In 2 O 3 —ZnO) is preferable. For patterning these transparent conductive films, a photo-etching method or a method using a mask can be used. It is preferable that at least the electrode existing between the liquid crystal composition and the observer is transparent.
(Alignment of liquid crystal composition)
As the alignment state of the liquid crystal composition, when the potential difference between the grounded electrode and the ungrounded electrode is approximately 0 V, the liquid crystal composition may be approximately vertically aligned with respect to the substrate, or may be approximately horizontally aligned. good. When the p-type liquid crystal composition is used, it is preferably horizontally aligned. When using an n-type liquid crystal composition, it is preferable that it is vertically aligned.
(Orientation treatment)
In order to control the alignment of the liquid crystal composition, the substrate may be subjected to an alignment treatment or may be provided with an alignment film. Examples of the alignment treatment include stretching treatment, rubbing treatment, polarized ultraviolet (visible?) Light irradiation treatment, ion beam treatment, and oblique deposition of SiO 2 on the substrate. When the alignment film is used, a known and conventional alignment film is used. Such alignment films include polyimide, polysiloxane, polyamide, polyvinyl alcohol, polycarbonate, polystyrene, polyphenylene ether, polyarylate, polyethylene terephthalate, polyether sulfone, epoxy resin, epoxy acrylate resin, acrylic resin, coumarin compound, chalcone. Examples of the compound include compounds, cinnamate compounds, fulgide compounds, anthraquinone compounds, azo compounds, and arylethene compounds. The compound subjected to the alignment treatment by rubbing is preferably an alignment treatment or a compound in which crystallization of the material is promoted by inserting a heating step after the alignment treatment. Among the compounds that perform alignment treatment other than rubbing, it is preferable to use a photo-alignment material.
 配向膜は、基板上に前記配向膜材料をスピンコート法などの方法により塗布して樹脂膜を形成することが一般的であるが、一軸延伸法、ラングミュア・ブロジェット法等を用いることもできる。 The alignment film is generally formed by applying the alignment film material on a substrate by a method such as spin coating to form a resin film, but a uniaxial stretching method, Langmuir-Blodgett method, or the like can also be used. .
 また、配向膜材料として、重合性液晶組成物をホモジニアス配向させた状態で、重合させた光学異方体(ポジティブAプレート)を使用してもよい。
(偏光板)
 液晶組成物の配向状態の変化を可視化する方法として、2色性色素を使用する以外に、偏光板を用いることも出来る。液晶組成物の配向状態と偏光板の設置方法により、通常の液晶素子におけるノーマリーホワイト又はノーマリーブラックの状態になるよう偏向板を設置することができる。通常の液晶表示素子に使用される偏光板であれば好適に使用できる。
(カラーフィルタ)
 本発明の静電気インジケータは、カラーフィルタを有していてもよい。カラーフィルタは、ブラックマトリックス及び少なくともRGB三色画素部から構成される。カラーフィルタ層の形成には、何れの方法を用いてもよい。一例によると、顔料担体とこれに分散させたカラー顔料とを含んだカラー着色組成物を塗布して所定パターンとし、これを硬化させることによって着色画素を得る工程を必要回数繰り返して、カラーフィルタ層を形成することができる。カラー着色組成物に含まれる顔料としては、有機顔料および/または無機顔料を使用することができる。カラー着色組成物は、1種の有機または無機顔料を含んでいてもよく、複数種の有機顔料および/または無機顔料を含んでいてもよい。顔料は、発色性が高く且つ耐熱性、特に耐熱分解性の高いことが好ましく、通常は有機顔料が用いられる。
(接地)
 本発明の静電気インジケータは、対象物の帯電位が高いいほど、接地されていない側の電極に現れる誘導帯電位が高くなるので、結果として液晶組成物の配向状態の変化が大きくなり、帯電位の可視化が可能になる。
Further, as the alignment film material, a polymerized optical anisotropic body (positive A plate) in a state where the polymerizable liquid crystal composition is homogeneously aligned may be used.
(Polarizer)
As a method for visualizing the change in the alignment state of the liquid crystal composition, a polarizing plate can be used in addition to using the dichroic dye. Depending on the alignment state of the liquid crystal composition and the installation method of the polarizing plate, the deflecting plate can be installed so as to be normally white or normally black in a normal liquid crystal element. Any polarizing plate used for a normal liquid crystal display element can be preferably used.
(Color filter)
The electrostatic indicator of the present invention may have a color filter. The color filter includes a black matrix and at least an RGB three-color pixel portion. Any method may be used for forming the color filter layer. According to an example, a color filter layer is formed by applying a color coloring composition containing a pigment carrier and a color pigment dispersed therein to form a predetermined pattern, and curing this to obtain a colored pixel, and a color filter layer. Can be formed. As the pigment contained in the color coloring composition, an organic pigment and / or an inorganic pigment can be used. The color coloring composition may contain one kind of organic or inorganic pigment, and may contain a plurality of kinds of organic pigments and / or inorganic pigments. The pigment preferably has high color developability and high heat resistance, particularly high heat decomposition resistance, and an organic pigment is usually used.
(ground)
In the electrostatic indicator of the present invention, the higher the charged potential of the object, the higher the induced charged potential appearing on the electrode that is not grounded. As a result, the change in the alignment state of the liquid crystal composition increases, Can be visualized.
 例えば、図1及び2に示すように1組の電極を有する実施形態の場合、一方の電極を接地させ、他方の電極を接地させない場合において、接地させた電極と、接地していない電極が対象物の帯電位に応じて静電誘導により電位差が生じることにより、両電極間に存在する液晶組成物の配向状態が変化することにより、帯電量の可視化が可能になる(図1及び2では、誘電率の異方性が正の液晶組成物を用いた例を示した)
 接地は、基準電位としたい場所に接地すればよい。接地の方法としては、電極を直接基準電位部と導通させる方法、電極と基準電位部を例えば銅線などの伝導体にて導通させる方法などを挙げることができる。
For example, in the case of an embodiment having a pair of electrodes as shown in FIGS. 1 and 2, when one electrode is grounded and the other electrode is not grounded, the grounded electrode and the non-grounded electrode are targeted. Due to the potential difference caused by electrostatic induction according to the charged position of the object, the orientation state of the liquid crystal composition existing between the two electrodes changes, thereby enabling visualization of the charge amount (in FIGS. 1 and 2). An example using a liquid crystal composition with positive dielectric anisotropy was shown)
Grounding may be performed at a place where a reference potential is desired. Examples of the grounding method include a method in which the electrode is directly connected to the reference potential portion, and a method in which the electrode is connected to the reference potential portion with a conductor such as a copper wire.
 この、1組の電極を1次元に複数配置することにより、その電極が配置されている部分での帯電位がわかる。 ¡By arranging a plurality of one set of electrodes in a one-dimensional manner, the charged potential at the portion where the electrodes are arranged can be known.
 電極を接地するための配線は電極ごとに設置しても良いが、図3に示すようにすべてを同一の配線として接地するようにしてもよい。また、誘導帯電する電極についてはお互いに絶縁されている状態にすることが好ましい。 The wiring for grounding the electrodes may be provided for each electrode, but all may be grounded as the same wiring as shown in FIG. Moreover, it is preferable that the induction charging electrodes are insulated from each other.
 このような1次元に配列した線状の帯電インジケータを、図4に示すように平行に複数設置すれば、2次元の帯電分布を可視化することができる。 If a plurality of such linear charge indicators arranged in one dimension are installed in parallel as shown in FIG. 4, a two-dimensional charge distribution can be visualized.
 さらに、複数の1組の電極がある場合、図5に示すように電極の間には絶縁層(絶縁壁)があることが好ましい。絶縁壁は、2つの基板の間を連結するように形成され、かつ液晶を取り囲むように形成することが好ましい。このようにすることで絶縁壁は2つ基板の間の距離を一定に保つ役割を果たすと同時に、液晶が外部に漏れ出さないようにする隔壁としての役割も果たす。 Furthermore, when there are a plurality of sets of electrodes, it is preferable that there are insulating layers (insulating walls) between the electrodes as shown in FIG. The insulating wall is preferably formed so as to connect the two substrates and so as to surround the liquid crystal. By doing so, the insulating wall serves to keep the distance between the two substrates constant, and at the same time serves as a partition that prevents the liquid crystal from leaking outside.
 基板としては折り曲げ可能なプラスチック基板、絶縁壁もプラスチックで形成すれば、ハサミやカッター等で容易に任意の長さでインジケータを切断できる。特に図5中の一点差線で示した切断想定線で切断すれば、液晶が外部に漏れ出す危険が無いので、この位置での切断が好ましい。 If the substrate is a foldable plastic substrate and the insulating wall is also made of plastic, the indicator can be easily cut to any length with scissors or a cutter. In particular, if cutting is performed along an assumed cutting line indicated by a one-point difference line in FIG. 5, there is no risk of liquid crystal leaking to the outside, so cutting at this position is preferable.
 また、帯状の静電気インジケータを絶縁壁部分で切断可能なように切り込み等の加工をしておくことが好ましい。 Also, it is preferable to cut the strip-shaped static electricity indicator so that it can be cut at the insulating wall portion.
 以下に実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は『質量%』を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Further, “%” in the compositions of the following Examples and Comparative Examples means “% by mass”.
 実施例中、測定した特性は以下の通りである。 In the examples, the measured characteristics are as follows.
 Tni :ネマチック相-等方性液体相転移温度(℃)
 Δn :298Kにおける屈折率異方性
 Δε :298Kにおける誘電率異方性
 η  :293Kにおける粘度(mPa・s)
 γ :298Kにおける回転粘度(mPa・s)
VHR:周波数60Hz,印加電圧5Vの条件下で333Kにおける電圧保持率(%)
尚、実施例において化合物の記載について以下の略号を用いる。
(環構造)
T ni : Nematic phase-isotropic liquid phase transition temperature (° C.)
Δn: Refractive index anisotropy at 298K Δε: Dielectric anisotropy at 298K η: Viscosity at 293K (mPa · s)
γ 1 : rotational viscosity at 298 K (mPa · s)
VHR: Voltage holding ratio (%) at 333 K under conditions of frequency 60 Hz and applied voltage 5 V
In the examples, the following abbreviations are used for the description of compounds.
(Ring structure)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(側鎖構造及び連結構造) (Side chain structure and linking structure)
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(参考例1)
 下表の組成物P1を調製した。
(Reference Example 1)
The composition P1 shown in the table below was prepared.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 組成物P1のTniは81℃、Δnは0.098、Δεは2.4、γは35mPa・s、VHRは99.1%、比抵抗は1×1013Ωcm以上であった。
(参考例2) 組成物P2の調製
 下表の組成物P2を調製した。
The composition P1 had a T ni of 81 ° C., Δn of 0.098, Δε of 2.4, γ 1 of 35 mPa · s, VHR of 99.1%, and a specific resistance of 1 × 10 13 Ωcm or more.
Reference Example 2 Preparation of Composition P2 Composition P2 shown in the table below was prepared.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 組成物P2のTniは100℃、Δnは0.100、Δεは8.1、γは72mPa・s、VHRは99.1%、比抵抗は1×1013Ωcm以上であった。
(参考例3) 組成物P3の調製
 下表の組成物P3を調製した。
T ni of the composition P2 is 100 ° C., [Delta] n is 0.100, [Delta] [epsilon] is 8.1, gamma 1 is 72 MPa · s, VHR is 99.1%, the specific resistance was 1 × 10 13 Ωcm or more.
Reference Example 3 Preparation of Composition P3 Composition P3 shown in the table below was prepared.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 組成物P3のTniは78℃、Δnは0.102、Δεは2.3、γは38mPa・s、VHRは99.2%、比抵抗は1×1013Ωcm以上であった。
(参考例4) 組成物P4の調製
 下表の組成物P4を調製した。
T ni of the composition P3 is 78 ° C., [Delta] n is 0.102, [Delta] [epsilon] is 2.3, gamma 1 is 38 mPa · s, VHR is 99.2%, the specific resistance was 1 × 10 13 Ωcm or more.
Reference Example 4 Preparation of Composition P4 Composition P4 shown in the table below was prepared.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 組成物P4のTniは73℃、Δnは0.107、Δεは11.7、γは78mPa・s、VHRは98.0%、比抵抗は1×1013Ωcm以上であった。
(参考例5) 組成物P5の調製
 下表の組成物P5を調製した。
In composition P4, T ni was 73 ° C., Δn was 0.107, Δε was 11.7, γ 1 was 78 mPa · s, VHR was 98.0%, and the specific resistance was 1 × 10 13 Ωcm or more.
(Reference Example 5) Preparation of Composition P5 Composition P5 shown in the table below was prepared.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 組成物P4のTniは87℃、Δnは0.117、Δεは6.3、γは54mPa・s、VHRは99.3%、比抵抗は1×1013Ωcm以上であった。
(参考例6) 組成物N1の調製
 下表の組成物N1を調製した。
T ni of the composition P4 is 87 ° C., [Delta] n is 0.117, [Delta] [epsilon] is 6.3, gamma 1 is 54 MPa · s, VHR is 99.3%, the specific resistance was 1 × 10 13 Ωcm or more.
(Reference Example 6) Preparation of Composition N1 Composition N1 shown in the table below was prepared.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 組成物N1のTniは76℃、Δnは0.098、Δεは-3.7、γは89mPa・s、VHRは99.0%、比抵抗は1×1013Ωcm以上であった。
(参考例7) 組成物N2の調製
 下表の組成物N2を調製した。
Composition N1 had a T ni of 76 ° C., Δn of 0.098, Δε of −3.7, γ 1 of 89 mPa · s, VHR of 99.0%, and a specific resistance of 1 × 10 13 Ωcm or more.
Reference Example 7 Preparation of Composition N2 Composition N2 shown in the table below was prepared.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 組成物N2のTniは91℃、Δnは0.115、Δεは-4.0、γは121mPa・s、VHRは99.3%、比抵抗は1×1013Ωcm以上であった。
(参考例8) 組成物N3の調製
 下表の組成物N3を調製した。
Composition N2 had a T ni of 91 ° C., Δn of 0.115, Δε of −4.0, γ 1 of 121 mPa · s, VHR of 99.3%, and a specific resistance of 1 × 10 13 Ωcm or more.
Reference Example 8 Preparation of Composition N3 Composition N3 shown in the table below was prepared.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 組成物N3のTniは76℃、Δnは0.114、Δεは-4.4、γは117mPa・s、VHRは99.5%、比抵抗は1×1013Ωcm以上であった。
(参考例9) 組成物N4の調製
 下表の組成物N4を調製した。
Composition N3 had a T ni of 76 ° C., Δn of 0.114, Δε of −4.4, γ 1 of 117 mPa · s, VHR of 99.5%, and a specific resistance of 1 × 10 13 Ωcm or more.
Reference Example 9 Preparation of Composition N4 Composition N4 shown in the table below was prepared.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 組成物N4のTniは73℃、Δnは0.112、Δεは-4.4、γは103mPa・s、VHRは99.4%、比抵抗は1×1013Ωcm以上であった。
(参考例10) 組成物N5の調製
 下表の組成物N5を調製した。
Composition N4 had T ni of 73 ° C., Δn of 0.112, Δε of −4.4, γ 1 of 103 mPa · s, VHR of 99.4%, and a specific resistance of 1 × 10 13 Ωcm or more.
(Reference Example 10) Preparation of Composition N5 Composition N5 shown in the table below was prepared.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 組成物N5のTniは76℃、Δnは0.101、Δεは-2.8、γは74mPa・s、VHRは99.5%であった。
(参考例11)4-シアノ-4’-ペンチルビフェニル(P6)の物性測定
 4-シアノ-4’-ペンチルビフェニルのΔnは0.185、Δεは11.0、γは46mPa・s、VHRは52%、比抵抗は3×109Ωcmであった。
(参考例12) 組成物N3Rの調製
 参考例8で調製した組成物N3に三井化学ファイン(株)製の二色性色素SI-426を1質量%添加して組成物N3Rを調整した。
(実施例1)
 対向する一対の透明電極を有し、透明電極上にラビングしたポリイミド配向膜が形成され、かつ透明電極間の距離が3μmのTN(ツイステッドネマチック:ねじれネマチック)ガラス製液晶セルに、参考例で調製した液晶組成物P1を注入した。この液晶セルの両面に透過軸がお互いに平行になるように偏光板を貼り付けて静電気インジケータを作製した。次に一方の透明電極から銅線を結線し接地した。この静電気インジケータは近くに帯電物が無い場合には、光を透過しない状態(黒)状態であった。この静電気インジケータの接地していない側の透明電極から15cm離れたところにバンデグラフ静電気発生器(の帯電部)を設置した。バンデグラフ静電気発生器を作動させ、約2kVに帯電させたところ、静電気インジケータが光を透過しない状態から、透過する状態に若干変化した。バンデグラフ静電気発生器の作動を止めたところ、3分以上透明状態を保持した。
T ni is 76 ° C. of the composition N5, [Delta] n is 0.101, [Delta] [epsilon] is -2.8, gamma 1 is 74mPa · s, VHR was 99.5%.
Reference Example 11 Measurement of physical properties of 4-cyano-4′-pentylbiphenyl (P6) Δn of 4-cyano-4′-pentylbiphenyl is 0.185, Δε is 11.0, γ 1 is 46 mPa · s, VHR Was 52% and the specific resistance was 3 × 10 9 Ωcm.
Reference Example 12 Preparation of Composition N3R Composition N3R was prepared by adding 1% by mass of dichroic dye SI-426 manufactured by Mitsui Chemicals Fine Co., Ltd. to composition N3 prepared in Reference Example 8.
Example 1
Prepared as a reference example in a TN (twisted nematic: twisted nematic) glass liquid crystal cell with a pair of transparent electrodes facing each other, a polyimide alignment film rubbed on the transparent electrodes, and a distance between the transparent electrodes of 3 μm The liquid crystal composition P1 thus prepared was injected. A polarizing plate was affixed on both sides of the liquid crystal cell so that the transmission axes were parallel to each other, to produce an electrostatic indicator. Next, a copper wire was connected from one transparent electrode and grounded. This static electricity indicator was in a state of not transmitting light (black) when there was no charged object nearby. A bandegraph static electricity generator (charging part) was installed 15 cm away from the transparent electrode on the non-grounded side of this static electricity indicator. When the bandegraph static electricity generator was activated and charged to about 2 kV, the static electricity indicator changed slightly from being transparent to transmitting. When the vandegraph static electricity generator was turned off, it remained transparent for more than 3 minutes.
 次に、静電気インジケータの接地していない側の透明電極から10cm離れたところにバンデグラフ静電気発生器(の帯電部)を設置した。バンデグラフ静電気発生器を作動させ、約2kVに帯電させたところ、静電気インジケータが光を透過しない状態から、透過する状態に変化した。バンデグラフ静電気発生器の作動を止めたところ、3分以上透明状態を保持した。
(実施例2~6)
 液晶組成物を変えて、実施例1と同様の実験を行った。静電気インジケータが光を若干透過する状態になったものを△、透過する状態になったものを○、明確に透過する状態になったものを◎と評価した。
Next, a bandegraph static electricity generator (charging part) was installed 10 cm away from the transparent electrode on the non-grounded side of the static electricity indicator. When the bandegraph static electricity generator was activated and charged to about 2 kV, the static electricity indicator changed from not transmitting light to transmitting. When the vandegraph static electricity generator was turned off, it remained transparent for more than 3 minutes.
(Examples 2 to 6)
The same experiment as in Example 1 was performed by changing the liquid crystal composition. The electrostatic indicator was evaluated as Δ when the light was slightly transmitted, ○ when the light was transmitted, and ◎ when it was clearly transmitted.
 下表の結果から、液晶材料の誘電率の異方性が大きいほど、静電気に対する感度が高いことがわかる。また、液晶材料の電圧保持率、比抵抗が高いほど、周囲に帯電物が無くなってもある一定期間、静電気があったことを示す性質があることがわかる。液晶として電圧保持率、比抵抗が低いシアノ系液晶材料を用いると、周囲に帯電物が無くなったときに素早く光透過状態から透過しない状態に変化することがわかる。 From the results in the table below, it can be seen that the greater the dielectric anisotropy of the liquid crystal material, the higher the sensitivity to static electricity. In addition, it can be seen that the higher the voltage holding ratio and specific resistance of the liquid crystal material, there is a property indicating that there was static electricity for a certain period even when there were no charged objects around. It can be seen that when a cyano liquid crystal material having a low voltage holding ratio and specific resistance is used as the liquid crystal, the state quickly changes from the light transmitting state to the non-transmitting state when there is no charged object around.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
(実施例7)
 対向する一対の透明電極を有し、透明電極上にラビングしたポリイミド配向膜が形成され、かつ透明電極間の距離が3μmのVA(バーティカルアライン:垂直配向)ガラス製液晶セルに、参考例で調製した液晶組成物N1を注入した。この液晶セルの両面に透過軸がお互いに垂直になるように偏光板を貼り付けて静電気インジケータを作製した。次に一方の透明電極から銅線を結線し接地した。この静電気インジケータは近くに帯電物が無い場合には、光を透過しない状態(黒)状態であった。この静電気インジケータの接地していない側の透明電極から15cm離れたところにバンデグラフ静電気発生器(の帯電部)を設置した。バンデグラフ静電気発生器を作動させ、約2kVに帯電させたところ、静電気インジケータが光を透過しない状態から、透過する状態に若干変化した。バンデグラフ静電気発生器の作動を止めたところ、3分以上透明状態を保持した。
(Example 7)
Prepared as a reference example in a VA (vertical alignment) glass liquid crystal cell having a pair of transparent electrodes facing each other, a polyimide alignment film rubbed on the transparent electrode, and a distance between the transparent electrodes of 3 μm. The liquid crystal composition N1 was injected. Polarizers were attached to both sides of the liquid crystal cell so that the transmission axes were perpendicular to each other, thereby producing an electrostatic indicator. Next, a copper wire was connected from one transparent electrode and grounded. This static electricity indicator was in a state of not transmitting light (black) when there was no charged object nearby. A bandegraph static electricity generator (charging part) was installed 15 cm away from the transparent electrode on the non-grounded side of this static electricity indicator. When the bandegraph static electricity generator was activated and charged to about 2 kV, the static electricity indicator changed slightly from being transparent to transmitting. When the vandegraph static electricity generator was turned off, it remained transparent for more than 3 minutes.
 次に、静電気インジケータの接地していない側の透明電極から10cm離れたところにバンデグラフ静電気発生器(の帯電部)を設置した。バンデグラフ静電気発生器を作動させ、約2kVに帯電させたところ、静電気インジケータが光を透過しない状態から、透過する状態に変化した。バンデグラフ静電気発生器の作動を止めたところ、3分以上透明状態を保持した。
(実施例8~11)
 液晶組成物を変えて、実施例7と同様の実験を行った。静電気インジケータが光を若干透過する状態になったものを△、透過する状態になったものを○、明確に透過する状態になったものを◎と評価した。
Next, a bandegraph static electricity generator (charging part) was installed 10 cm away from the transparent electrode on the non-grounded side of the static electricity indicator. When the bandegraph static electricity generator was activated and charged to about 2 kV, the static electricity indicator changed from not transmitting light to transmitting. When the vandegraph static electricity generator was turned off, it remained transparent for more than 3 minutes.
(Examples 8 to 11)
The same experiment as in Example 7 was performed by changing the liquid crystal composition. The electrostatic indicator was evaluated as Δ when the light was slightly transmitted, ○ when the light was transmitted, and ◎ when it was clearly transmitted.
 下表の結果から、液晶材料の誘電率の異方性の絶対値が大きいほど、静電気に対する感度が高いことがわかる。 From the results in the table below, it can be seen that the greater the absolute value of the dielectric anisotropy of the liquid crystal material, the higher the sensitivity to static electricity.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
(実施例12)
 対向する一対の透明電極を有し、透明電極上にラビングしたポリイミド配向膜が形成され、かつ透明電極間の距離が3μmのVA(バーティカルアライン:垂直配向)液晶セルに、参考例で調製した液晶組成物N3Rを注入して、静電気インジケータを作製した。一方の透明電極から銅線を結線し接地した。この静電気インジケータは近くに帯電物が無い場合には、光を透過する状態(透明)であった。この静電気インジケータの接地していない側の透明電極から15cm離れたところにバンデグラフ静電気発生器(の帯電部)を設置した。バンデグラフ静電気発生器を作動させ、約2kVに帯電させたところ、静電気インジケータが透明状態から、赤色に若干変化した。バンデグラフ静電気発生器の作動を止めたところ、2分以上赤色状態を保持した。
(Example 12)
A liquid crystal prepared in a reference example in a VA (Vertical Alignment: Vertical Alignment) liquid crystal cell having a pair of opposing transparent electrodes, a rubbed polyimide alignment film formed on the transparent electrodes, and a distance between the transparent electrodes of 3 μm Composition N3R was injected to produce an electrostatic indicator. A copper wire was connected from one transparent electrode and grounded. This electrostatic indicator was in a state of transmitting light (transparent) when there was no charged object nearby. A bandegraph static electricity generator (charging part) was installed 15 cm away from the transparent electrode on the non-grounded side of this static electricity indicator. When the bandegraph static electricity generator was activated and charged to about 2 kV, the static electricity indicator changed slightly from transparent to red. When the vandegraph static electricity generator was turned off, the red state was maintained for more than 2 minutes.
 次に、静電気インジケータの接地していない側の透明電極から10cm離れたところにバンデグラフ静電気発生器(の帯電部)を設置した。バンデグラフ静電気発生器を作動させ、約2kVに帯電させたところ、静電気インジケータが透明状態から、赤色に変化した。バンデグラフ静電気発生器の作動を止めたところ、2分以上赤色状態を保持した。
(実施例13)
 幅3cm、長さ7cmのベタITO透明電極付きの厚み50μmのPETフィルム基板、図5に示した幅3cm、長さ7cmのパターン化ITO透明電極付きの厚み50μmのPETフィルム基板を用意し、ITO透明電極基板上にポリイミド垂直配向膜を形成した。図6に示すように、3箇所に組成物N3Rを0.8mg滴下、8箇所にスリーボンド社製紫外線硬化型接着剤3052Bを3.1mg滴下した。この状態でベタ電極付きPETフィルムを電極面がお互いに対向するようにして貼りあわせて面全体に圧力をかけた。この時、図7に示すようにフィルム短辺では2mmずらし、フィルム長辺ではずらさず貼りあわせをした。また2枚のフィルム基板間の距離は10μmになるように設定した。この状態で、365nmの紫外光を300mJ/cm2照射して紫外線硬化型接着剤を硬化させた。このようにすることで図8に示すような外観を有する帯状静電気インジケータを作製した。ベタ電極側に銅線を結線し接地させた。この静電気インジケータから15cm離れたところにバンデグラフ静電気発生器(の帯電部)を設置した。バンデグラフ静電気発生器を作動させていないときは3つある液晶部は全て透明状態であった。バンデグラフ静電気発生器を作動させて約2kVに帯電させたところ、静電気インジケータの3つある液晶部は、帯電部に近いところがより濃い赤色に変化した。帯電分布を可視化できた。バンデグラフ静電気発生器の作動を止めたところ、1分程度赤色状態を維持した。
Next, a bandegraph static electricity generator (charging part) was installed 10 cm away from the transparent electrode on the non-grounded side of the static electricity indicator. When the bandegraph static electricity generator was activated and charged to about 2 kV, the static electricity indicator changed from transparent to red. When the vandegraph static electricity generator was turned off, the red state was maintained for more than 2 minutes.
(Example 13)
Prepare a PET film substrate with a thickness of 3 cm and a length of 7 cm with a solid ITO transparent electrode and a thickness of 50 μm, and a PET film substrate with a thickness of 3 cm and a length of 7 cm with a patterned ITO transparent electrode as shown in FIG. A polyimide vertical alignment film was formed on the transparent electrode substrate. As shown in FIG. 6, 0.8 mg of the composition N3R was dropped at 3 locations, and 3.1 mg of Three Bond UV curable adhesive 3052B was dropped at 8 locations. In this state, the PET film with a solid electrode was bonded so that the electrode surfaces face each other, and pressure was applied to the entire surface. At this time, as shown in FIG. 7, the film was shifted by 2 mm on the short side of the film and bonded without shifting on the long side of the film. The distance between the two film substrates was set to 10 μm. In this state, the ultraviolet curable adhesive was cured by irradiating ultraviolet light at 365 nm with 300 mJ / cm 2. In this way, a strip-shaped electrostatic indicator having an appearance as shown in FIG. 8 was produced. A copper wire was connected to the solid electrode side and grounded. A bandegraph static electricity generator (charging part) was installed 15 cm away from the static electricity indicator. When the bandegraph static electricity generator was not operated, all three liquid crystal parts were transparent. When the bandegraph static electricity generator was activated and charged to about 2 kV, the liquid crystal part with three static electricity indicators changed to a deeper red color near the charging part. The charge distribution could be visualized. When the vandegraph static electricity generator was turned off, it remained red for about 1 minute.
11 基板(帯電物側)
12 基板(接地側)
13、14 電極
13A、13B、13C お互いに電気的に導通していない電極
15 液晶組成物(液晶分子)
16 接地(基準電位)
17 帯電物
20 一組の静電気インジケータ
25 液晶組成物滴下部
26 接着剤滴下部
27 液晶組成物の領域
28 接着剤が硬化した絶縁壁(樹脂製)
31 絶縁壁
33、34、35 電極
36、37 切断想定線
11 Substrate (charged material side)
12 Substrate (ground side)
13, 14 Electrodes 13A, 13B, 13C Electrodes 15 that are not electrically connected to each other 15 Liquid crystal composition (liquid crystal molecules)
16 Grounding (reference potential)
17 Charged material 20 A set of static electricity indicator 25 Liquid crystal composition dripping portion 26 Adhesive dripping portion 27 Liquid crystal composition region 28 Insulating wall with adhesive cured (made of resin)
31 Insulating wall 33, 34, 35 Electrode 36, 37 Expected cutting line

Claims (8)

  1.  液晶組成物を使用した静電気インジケータ。 Electrostatic indicator using liquid crystal composition.
  2.  対向する2つの電極の間に液晶組成物を狭持した請求項1記載の静電気インジケータ。 The electrostatic indicator according to claim 1, wherein a liquid crystal composition is sandwiched between two opposing electrodes.
  3.  電極を有する2枚の基材により狭持された液晶組成物を用いた請求項1記載の静電気インジケータ。 The electrostatic indicator according to claim 1, wherein the liquid crystal composition is sandwiched between two substrates having electrodes.
  4.  少なくとも一つの電極が接地した請求項2又は3記載の静電気インジケータ。 4. The static electricity indicator according to claim 2, wherein at least one electrode is grounded.
  5.  少なくとも一方の基材がお互いに電気的に導通していない2つ以上の電極を有する請求項3又は4記載の静電気インジケータ。 The electrostatic indicator according to claim 3 or 4, wherein at least one of the substrates has two or more electrodes that are not electrically connected to each other.
  6.  一方の基板上の1又は2以上の電極が等電位である請求項3~5のいずれか1項に記載の静電気インジケータ。 The electrostatic indicator according to any one of claims 3 to 5, wherein one or more electrodes on one substrate are equipotential.
  7.  液晶組成物が2色性色素を含有する請求項1~6のいずれか1項に記載の静電気インジケータ。 The electrostatic indicator according to any one of claims 1 to 6, wherein the liquid crystal composition contains a dichroic dye.
  8.  重合性化合物の硬化物を用いた請求項1~6のいずれか1項に記載の静電気インジケータ。 The electrostatic indicator according to any one of claims 1 to 6, wherein a cured product of a polymerizable compound is used.
PCT/JP2018/008933 2017-03-23 2018-03-08 Charge indicator WO2018173767A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018545515A JP6607420B2 (en) 2017-03-23 2018-03-08 Charge indicator
CN201880012457.0A CN110300898A (en) 2017-03-23 2018-03-08 Potential indicator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-057420 2017-03-23
JP2017057420 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018173767A1 true WO2018173767A1 (en) 2018-09-27

Family

ID=63585331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008933 WO2018173767A1 (en) 2017-03-23 2018-03-08 Charge indicator

Country Status (3)

Country Link
JP (2) JP6607420B2 (en)
CN (1) CN110300898A (en)
WO (1) WO2018173767A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579889B (en) * 2020-05-28 2021-07-06 浙江大学 Device and method for detecting electric field intensity under extra-high voltage direct current transmission line
WO2023047600A1 (en) * 2021-09-27 2023-03-30 株式会社東陽テクニカ Charge amount measurement method and charge amount measurement system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102864U (en) * 1980-12-16 1982-06-24
JP2001116788A (en) * 1999-10-20 2001-04-27 Nec Corp Charge measuring apparatus
JP2007121062A (en) * 2005-10-27 2007-05-17 Techno Ryowa Ltd Simplified electrified plate monitor using liquid crystal display
JP2010145762A (en) * 2008-12-19 2010-07-01 Stanley Electric Co Ltd Liquid crystal display element, photographing device and method of manufacturing liquid crystal display element

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198914A (en) * 1990-11-29 1992-07-20 Idemitsu Kosan Co Ltd Production of liquid crystal panel
JP2783215B2 (en) * 1995-09-27 1998-08-06 日本電気株式会社 Liquid crystal optical element
JP4315298B2 (en) * 1996-05-10 2009-08-19 Dic株式会社 Alkenyltolane derivatives
JP3226845B2 (en) * 1997-09-03 2001-11-05 松下電器産業株式会社 Method for manufacturing polymer dispersed liquid crystal display element
JPH1144876A (en) * 1996-09-25 1999-02-16 Matsushita Electric Ind Co Ltd High polymer dispersion type liquid crystal display element and its production
JPH10253993A (en) * 1997-03-14 1998-09-25 Toshiba Corp Liquid crystal display element
JP2005173209A (en) * 2003-12-11 2005-06-30 Alps Electric Co Ltd Bistable nematic liquid crystal display device
JP2005242125A (en) * 2004-02-27 2005-09-08 Optrex Corp Multiple chamfering board for manufacturing electrooptical display panel
JP4961700B2 (en) * 2005-09-08 2012-06-27 Jnc株式会社 Naphthalene derivative having terminal hydrogen, liquid crystal composition containing the derivative, and liquid crystal display device containing the liquid crystal composition
JP5135876B2 (en) * 2007-05-16 2013-02-06 富士通株式会社 Charge amount evaluation element
CN201562005U (en) * 2009-12-08 2010-08-25 上海颉瑞电力科技有限公司 Novel passive high voltage charge indicator
WO2016080244A1 (en) * 2014-11-19 2016-05-26 シャープ株式会社 Optical device
CN105807146B (en) * 2014-12-31 2018-10-02 清华大学 Electrostatic apparatus for measuring distribution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102864U (en) * 1980-12-16 1982-06-24
JP2001116788A (en) * 1999-10-20 2001-04-27 Nec Corp Charge measuring apparatus
JP2007121062A (en) * 2005-10-27 2007-05-17 Techno Ryowa Ltd Simplified electrified plate monitor using liquid crystal display
JP2010145762A (en) * 2008-12-19 2010-07-01 Stanley Electric Co Ltd Liquid crystal display element, photographing device and method of manufacturing liquid crystal display element

Also Published As

Publication number Publication date
JPWO2018173767A1 (en) 2019-03-28
JP6607420B2 (en) 2019-11-20
CN110300898A (en) 2019-10-01
JP2020008586A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
KR101508227B1 (en) Liquid crystal composition and liquid crystal display element produced using same
KR102017601B1 (en) Nematic liquid-crystal composition and liquid-crystal display element obtained using same
KR101498575B1 (en) Nematic liquid crystal composition and liquid crystal display element using same
KR101603152B1 (en) Liquid crystal composition, liquid crystal display element, and liquid crystal display
WO2014013625A1 (en) Nematic liquid crystal composition and liquid crystal display element using same
KR101530595B1 (en) Nematic liquid crystal composition and liquid crystal display element using same
WO2017082230A1 (en) Composition, and liquid crystal display element using same
WO2017098954A1 (en) Liquid crystal display element
JP6607420B2 (en) Charge indicator
KR101455793B1 (en) Nematic liquid crystal composition and liquid crystal display utilizing the same
EP3037501A1 (en) Liquid crystal composition and liquid crystal display element using same
US10788526B2 (en) Electrostatic indicator
WO2018043144A1 (en) Liquid crystal display element
WO2017195585A1 (en) Liquid crystal display element
JP6409995B2 (en) Liquid crystal display element
JP5360309B1 (en) Nematic liquid crystal composition and liquid crystal display device using the same
WO2017002701A1 (en) Liquid crystal composition and liquid crystal display element using same
WO2014073573A1 (en) Liquid crystal composition, and liquid crystal display element using same
CN104818030A (en) Liquid crystal composition, liquid crystal displaying element and liquid crystal display

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545515

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772324

Country of ref document: EP

Kind code of ref document: A1