WO2018173682A1 - Release film for molding and molding method - Google Patents

Release film for molding and molding method Download PDF

Info

Publication number
WO2018173682A1
WO2018173682A1 PCT/JP2018/007855 JP2018007855W WO2018173682A1 WO 2018173682 A1 WO2018173682 A1 WO 2018173682A1 JP 2018007855 W JP2018007855 W JP 2018007855W WO 2018173682 A1 WO2018173682 A1 WO 2018173682A1
Authority
WO
WIPO (PCT)
Prior art keywords
release film
mold release
resin composition
mold
layer
Prior art date
Application number
PCT/JP2018/007855
Other languages
French (fr)
Japanese (ja)
Inventor
惇 松本
白石 史広
研太 佐々木
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2018529670A priority Critical patent/JP6493628B2/en
Publication of WO2018173682A1 publication Critical patent/WO2018173682A1/en

Links

Images

Definitions

  • the present invention relates to a mold release film and a mold forming method.
  • Patent Document 1 discloses that a sealing material and a molding machine are used in molding a protective film for a circuit unit or a semiconductor sealing material or a light-emitting diode sealing material when an electronic board such as a flexible printed wiring board is manufactured.
  • a release film that is used as a mold release film for sandwiching between a mold and a mold to release the sealing material and the mold.
  • the release film includes a coating film formed from a composition containing a fluororesin containing a specific functional group and a release component, and a layer formed from a non-fluorinated polymer. It is described that it has excellent releasability.
  • the inventors of the present invention have studied the molding of a resin composition containing an epoxy resin using a conventional mold release film.
  • the mold release film described in Patent Document 1 is used, it is formed from a coating film formed from a composition containing a fluororesin containing a specific functional group and a release component, and a non-fluorinated polymer. It was found that the formed layer peeled off.
  • mold forming means shape
  • an object of the present invention is to provide a mold release film having excellent mold release properties and moldability.
  • the present inventors performed mold molding for sealing an electronic element with a first resin composition using a conventional mold release film, and then formed a molded product of the first resin composition.
  • the present inventors examined the surface structure of the molded product of the first resin composition in order to improve the readability of characters on the surface of the electronic device. As a result, it has been found that the readability of the printed characters is improved when the surface structure of the molded product of the first resin composition is not smooth but has an embossed pattern such as a matte tone.
  • the present inventors examined a method for imparting an embossed pattern to a molded product of the first resin composition.
  • the mold release film has a laminated structure in which the release layer is laminated on the base material layer, and the base material layer has unevenness on the surface on which the release layer is laminated.
  • an embossed pattern derived from the unevenness of the base material layer can be imparted to the molded product of the first resin composition.
  • the mold release film is interposed between the first resin composition and the mold, and the mold release layer of the mold release film is adhered to the first resin composition. I went there.
  • an object of the present invention is to provide a mold release film that can express the readability of characters printed on a molded product and the release property in a well-balanced manner.
  • an object of this invention is to improve mold moldability, such as mold release property and heat resistance of the mold release film.
  • This inventor examined the method of improving the adhesive force of a base material layer and a mold release layer, in order to suppress peeling with the base material layer and mold release layer of a mold release film. As a result, a specific surface modification is performed on the base material layer, and a base layer and a release layer are laminated on the base material layer by laminating a specific copolymer and a curing agent. It has been found that peeling of the mold layer can be suppressed. As a result, the present inventors have found that a mold release film excellent in mold release and moldability can be realized, and have completed the present invention.
  • the present inventor examined the raw material components constituting the release layer and the thickness of the release layer in order to express the readability of the characters printed on the molded product and the release property in a well-balanced manner.
  • the release layer is uniformly formed over the entire mold release film, and the release layer is also formed on the uneven portions of the base material layer. It was found that it can be formed.
  • the embossed pattern could be provided with respect to a molded article without embedding the unevenness
  • the present inventor has found that a mold release film for molding that can express the readability of the characters printed on the molded product and the mold release property in a well-balanced manner, and has completed the present invention.
  • the present inventors considered arranging a release layer formed of a specific fluorine compound as the outermost layer of the mold release film in order to prevent melting of the mold release film.
  • the mold release film was not melted and joined to the resin composition, and the heat resistance of the mold release film could be improved.
  • the desired releasability could not be obtained simply by forming the release layer of the mold release film with a specific fluorine compound.
  • the present inventors examined the contact angle of the release layer with respect to a specific solvent. As a result, it has been found that when the contact angle of hexadecane with respect to the release layer is within a specific numerical range, excellent release properties are exhibited. As described above, the present inventor has found that a mold release film having excellent heat resistance and releasability can be realized, and has completed the present invention.
  • the release layer constituted by the third resin composition has a laminated structure laminated on the base material layer constituted by the second resin composition, The release layer and the base material layer are directly bonded, The outermost layer of the laminated structure has the release layer,
  • the mold release layer is provided with a mold release film formed by crosslinking a copolymer represented by the following general formula (1) and a curing agent.
  • R 1 is a group containing a functional group that reacts with the curing agent.
  • a mold release film is interposed between the first resin composition and the mold, and a mold release layer is brought into intimate contact with the first resin composition to perform molding, whereby the first resin composition is formed.
  • a mold release film for molding used to give an embossed pattern to a molded product, Having a laminated structure in which the release layer constituted by the third resin composition is laminated on the base material layer constituted by the second resin composition;
  • the third resin composition includes a silicone compound or a fluorine compound,
  • the base material layer has irregularities on the surface on which the release layer is laminated,
  • a mold release film for molding is provided in which the release layer has a thickness of 15 ⁇ m or less.
  • a mold release film used for molding the first resin composition has a release layer as the outermost layer,
  • the release layer is composed of a third resin composition,
  • the third resin composition includes a fluorine compound,
  • the fluorine compound includes a fluorocarbon group,
  • a release film for molding wherein the contact angle of hexadecane with respect to the surface of the release layer is 20 ° or more and 77 ° or less.
  • a mold forming method using the mold release film An arrangement step of arranging the mold release film in a mold; And a introducing step of introducing the first resin composition into a molding space formed by the mold release film.
  • the mold release film and mold molding method which are excellent in mold release property and moldability are provided. Moreover, according to this invention, the mold release film and mold forming method which express the readability of the character printed on the molding, and mold release property with sufficient balance are provided. Moreover, according to this invention, the mold forming method using the mold release film excellent in heat resistance and mold release property and this mold release film can be provided.
  • the mold release film of the first embodiment is a mold release film used for molding the first resin composition, and the release layer constituted by the third resin composition is It has a laminated structure laminated on a base material layer constituted by the second resin composition, the release layer and the base material layer are directly bonded, and the outermost layer of the laminated structure is
  • the release layer is formed by cross-linking a copolymer having a specific structure and a curing agent.
  • a first resin composition and a mold to be molded are prepared, and molding is performed between the first resin composition and the mold.
  • a mold release film is interposed and a mold release layer described later is brought into close contact with the first resin composition to perform molding.
  • the first resin composition can be accurately formed into a desired shape.
  • the inventors of the present invention studied the molding of a first resin composition containing an epoxy resin using a conventional mold release film. As a result, it has been found that when a mold is formed using a conventional mold release film, the release layer and the base material layer are peeled off. Although the detailed mechanism is not clear, it is speculated that the cause of peeling is that the adhesion between the release layer and the base material layer is low, and that a high load is applied at a high temperature during molding.
  • the melted first resin composition comes into contact with a part other than the release layer, for example, the base material layer.
  • the first resin composition and the base material layer are fused, and the first resin composition is separated from the mold release film. There was an inconvenience that it was lost, that is, the releasability was lowered.
  • the release layer and the base material layer are peeled off, the shape of the molding space formed by the mold release film changes from the desired shape. Molding is performed by introducing the first resin composition into the molding space. Therefore, there is a problem that the shape of the molded first resin composition deviates from the desired shape, that is, the moldability is lowered.
  • the present inventors examined a method for improving the adhesion of the mold release film in order to suppress the peeling of the base layer and the release layer of the mold release film.
  • the base layer is subjected to specific surface modification described later, and then the specific copolymer and the curing agent are applied and crosslinked on the base layer. It has been found that forming the layer is important for directly bonding the base material layer and the release layer and improving the adhesion. Thereby, when using the mold release film, it can suppress that peeling arises in a base material layer and a mold release layer. Therefore, the mold release film according to the first embodiment can suppress the above-described deterioration of the mold release property and moldability.
  • FIG. 1 is an example of a mold release film 10 according to the first embodiment.
  • the mold release film according to the first embodiment has a laminated structure in which the release layer 2 is laminated on the base material layer 1. First, the base material layer 1 and the release layer 2 will be described.
  • the base material layer 1 is a film composed of the second resin composition.
  • the mold release layer 2 can be made smooth. it can.
  • molding the 1st resin composition molded it becomes possible to make the surface which the mold release layer 2 and the 1st resin composition contact into a mirror surface.
  • molded using the mold release film 10 can be used in order to seal electronic members, such as an electronic element, for example. That is, the mold release film 10 according to the first embodiment can be suitably used for sealing an electronic member such as an electronic composition while having a smooth surface, for example.
  • the lower limit of the thickness of the base material layer 1 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, further preferably 25 ⁇ m or more, and more preferably 50 ⁇ m or more. Particularly preferred. Thereby, the rigidity of the base material layer 1 can be appropriately improved as long as the followability of the mold release film 10 is not impaired. Therefore, it is possible to suppress the generation of wrinkles and the like during molding and improve the moldability.
  • the upper limit value of the thickness of the base material layer 1 is, for example, 100 ⁇ m or less, preferably 95 ⁇ m or less, more preferably 75 ⁇ m or less, and further preferably 55 mm or less. Thereby, it can suppress that the rigidity of the mold release film becomes large too much, and can also follow a fine mold shape. Therefore, moldability can be improved.
  • the base material layer 1 may be, for example, an unstretched film or a stretched film depending on the production method.
  • a stretched film is preferable.
  • the molecular chain of the thermoplastic resin contained in the second resin composition can be oriented. Therefore, it is possible to suppress physical deformation such as wrinkles when the mold release film 10 follows the mold. Therefore, it is possible to suppress unnecessary scratches from being transferred to the first resin composition and improve moldability.
  • the second resin composition includes, for example, a thermoplastic resin.
  • the second resin composition is, for example, an inorganic filler, an antioxidant, a slip agent, an antiblocking agent, an antistatic agent, a colorant, a hydrolysis stabilizer, and an antioxidant.
  • An agent, a lubricant, and a crystal nucleating agent may be further included.
  • the detail of a representative component is demonstrated about the content component of a 2nd resin composition.
  • thermoplastic resin examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycyclohexanedimethylene terephthalate, polyethylene isophthalate, terephthalic acid-isophthalic acid-ethylene glycol copolymer, terephthalic acid-ethylene glycol- Polyester resin such as 1,4-cyclohexanedimethanol copolymer; Polyamide resin such as nylon 6 and nylon 66; Polyvinyl resin such as polyvinyl chloride; Polyolefin resin such as polypropylene and poly (4-methyl-1-pentene); Examples thereof include polystyrene resins such as polystyrene resin having an tactic structure; and cellulose resins such as triacetyl cellulose resin.
  • thermoplastic resin it can use 1 type or in combination of 2 or more types among the said specific examples.
  • a thermoplastic resin it is preferable that it is a polyester resin among the said specific examples, for example.
  • the polyester resin for example, among the above specific examples, polyethylene terephthalate or polybutylene terephthalate is preferable, and polyethylene terephthalate is more preferable.
  • the inorganic filler is not limited, and specifically, carbon black; silica, quartz powder, glass beads, glass powder, calcium silicate, aluminum silicate, kaolin, talc, clay, diatomaceous earth, wollastonite, etc. Silicates; metal oxides such as iron oxide, titanium oxide and alumina; metal carbonates such as calcium carbonate and magnesium carbonate; metal sulfates such as calcium sulfate and barium sulfate; carbides such as silicon carbide; silicon nitride and nitriding Examples thereof include nitrides such as boron.
  • antioxidant for example, one or more selected from phenolic antioxidants, phosphorus antioxidants, and thioether antioxidants can be used.
  • phenolic antioxidants include pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3,9-bis ⁇ 2- [3- (3 -T-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl ⁇ 2,4,8,10-tetraoxaspiro [5.5] undecane, Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxy
  • Phosphorus antioxidants include bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, tris (2,4-di-t-butylphenylphosphite), tetrakis (2 , 4-Di-t-butyl-5-methylphenyl) -4,4'-biphenylenediphosphonite, 3,5-di-t-butyl-4-hydroxybenzylphosphonate-diethyl ester, bis- (2,6 -Dicumylphenyl) pentaerythritol diphosphite, 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite, Tris (mixed mono and di-nonylphenyl phosphite), bis (2, 4-di-t-butylphenyl) pentaerythritol diphosphite, bis
  • thioether antioxidants examples include dilauryl-3,3′-thiodipropionate, bis (2-methyl-4- (3-n-dodecyl) thiopropionyloxy) -5-tert-butylphenyl) sulfide , Distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis (3-lauryl) thiopropionate, and the like.
  • the colorant is not limited, and specific examples include carbon black, bengara, titanium oxide and the like.
  • 1 type (s) or 2 or more types can be mix
  • slip agent Specific examples of the slip agent include amides of saturated or unsaturated fatty acids such as lauric acid, palmitic acid, oleic acid, stearic acid, erucic acid, and ariaic acid.
  • 1 type (s) or 2 or more types can be mix
  • anti-blocking agent examples include fine silica, fine aluminum oxide, fine clay, fine silicone resin, liquid silicone resin, fine tetrafluoroethylene resin, fine acrylic resin, and fine methacrylic resin.
  • an antiblocking agent it can use 1 type or in combination of 2 or more types among the said specific examples.
  • the antistatic agent is not limited, and specifically, inorganic antistatic agents such as zinc oxide, titanium oxide, and carbon black; N, N-bis (hydroxyethyl) alkylamine, alkylallyl sulfonate, alkyl sulfonate, and the like Organic antistatic agents and the like.
  • inorganic antistatic agents such as zinc oxide, titanium oxide, and carbon black
  • Organic antistatic agents and the like Organic antistatic agents and the like.
  • the antistatic agent one or two or more of the above specific examples can be used in combination.
  • Hydrolysis stabilizer It does not limit as a hydrolysis stabilizer, Specifically, the compound etc. which contain a carbodiimide group are mentioned. Specific examples of the compound containing a carbodiimide group include monocarbodiimide compounds such as dicyclohexylcarbodiimide and bis-2,6-diisopropylphenylcarbodiimide; poly (4,4'-dicyclohexylmethanecarbodiimide), poly (N, N'- Examples of the hydrolysis stabilizer include di-2,6-diisopropylphenylcarbodiimide) and polycarbodiimide compounds such as poly (1,3,5-triisopropylphenylene-2,4-carbodiimide).
  • carbodiimide compounds include B2756 manufactured by Tokyo Chemical Industry; Carbodilite LA-1 manufactured by Nisshinbo Chemical; Stabaxol P, Stabaxol P400, and Stabaxol I manufactured by Rhein Chemie.
  • the lubricant is not limited, and specific examples include paraffin wax, microcrystalline wax, polyethylene wax, long chain fatty acids such as montanic acid and montanic acid ester, and esters thereof. As the lubricant, one or two or more of the above specific examples can be used in combination.
  • the crystal nucleating agent is not limited. Specifically, fatty acid esters such as stearic acid monoglyceride and behenic acid monoglyceride; hydroxy fatty acid esters such as 12-hydroxystearic acid triglyceride; hydroxy fatty acids such as 12-hydroxystearic acid monoethanolamide Monoamide; Aliphatic bisamides such as ethylene bislauric acid amide, ethylene biscapric acid amide, ethylene biscaprylic acid amide; Hydroxy fatty acid bisamides such as ethylene bis 12-hydroxystearic acid amide, hexamethylene bis 12-hydroxystearic acid amide; -Hydroxy fatty acid metal salts such as calcium hydroxystearate.
  • fatty acid esters such as stearic acid monoglyceride and behenic acid monoglyceride
  • hydroxy fatty acid esters such as 12-hydroxystearic acid triglyceride
  • hydroxy fatty acids such as 12-hydroxystearic acid monoethanolamide Monoamide
  • the release layer 2 is a thin film composed of the third resin composition.
  • the third resin composition includes a copolymer represented by the following general formula (1) and a curing agent.
  • the third resin composition is formed as a thin film by crosslinking the copolymer represented by the following general formula (1) and the curing agent. That is, the release layer 2 is formed by crosslinking a copolymer represented by the following general formula (1) and a curing agent.
  • R 1 is a group containing a functional group that reacts with the curing agent.
  • the upper limit value of the thickness of the release layer 2 is, for example, preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, further preferably 10 ⁇ m or less, further preferably 5 ⁇ m or less, and further preferably 2 ⁇ m or less. It is particularly preferable that Thereby, it can suppress that a film crack arises in the mold release layer 2, and can exhibit favorable followable
  • the lower limit of the thickness of the release layer is, for example, 0.1 ⁇ m or more, preferably 0.2 ⁇ m or more, more preferably 0.3 ⁇ m or more, and further preferably 0.4 ⁇ m or more. preferable. Thereby, possibility that a defect will arise in a mold release layer is reduced, and mold release property can be expressed suitably.
  • the thickness of the release layer 2 is the dry thickness of the release layer 2, that is, the release layer 2 is produced by crosslinking the third resin composition, and the solvent is volatilized. It is the thickness after.
  • the copolymer is represented by the general formula (1).
  • the copolymer represented by the general formula (1) can improve the releasability by including the structural unit of A, for example, and can form the release layer 2 by including the structural unit of B. .
  • the release layer 2 which is a thin film can be produced by reacting R 1 which is a group contained in B with a curing agent to form a crosslinked structure.
  • R 1 which is a group contained in B
  • R 1 which is a group contained in B
  • a curing agent to form a crosslinked structure.
  • the adhesion strength between the base material layer 1 and the release layer 2 is improved. It is important to do.
  • the arrangement of the structural units A and B is not limited. Specific examples of the arrangement of the copolymer represented by the general formula (1) include a random copolymer, an alternating copolymer, a block copolymer, and a periodic copolymer. As an arrangement of the copolymer represented by the general formula (1), among the above specific examples, for example, an alternating copolymer is preferable.
  • the structural unit of A and B can be disperse
  • the structural unit of A contains a fluorocarbon group.
  • the fluorocarbon group refers to a group in which part or all of the hydrogen atoms of the hydrocarbon group are substituted with fluorine atoms.
  • Such a fluorocarbon group has a bond of a carbon atom and a fluorine atom. Since the fluorocarbon group has a low polarizability, the surface free energy of the release layer 2 having the fluorocarbon group is reduced, and excellent release properties are exhibited even for the first resin composition containing an epoxy resin.
  • the structure of A include a structural unit in which tetrafluoroethylene, trifluoroethylene, 1,1-difluoroethylene, 1,2-difluoroethylene is cleaved, and the like.
  • An example of the cleaved structural unit will be described.
  • a group obtained by cleaving a structural unit in which a group composed of a hydrogen atom of trifluoroethylene is substituted with another group may be used.
  • specific examples of the structural unit in which a group composed of a hydrogen atom of trifluoroethylene is substituted with another group include chlorotrifluoroethylene.
  • the structure of A includes tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-vinylidene fluoride copolymer. It may be a structural unit derived from a copolymer of trifluoroethylene such as a copolymer of tetrafluoroethylene such as chlorotrifluoroethylene-ethylene copolymer. Moreover, as a structure of A, you may combine 1 type, or 2 or more types of structural units among the said specific examples.
  • A includes, for example, a structural unit represented by the following formula (A1), and more preferably includes a structural unit represented by the following general formula (A2). Thereby, surface free energy can be made small and mold release property can be improved.
  • n is an integer of 1 or more.
  • R A is selected from the group consisting of a hydrogen atom, a carbon atom, a silicon atom, a nitrogen atom, a phosphorus atom, an oxygen atom, a sulfur atom, a fluorine atom, a chlorine atom, and a bromine atom.
  • n is an integer of 1 or more.
  • n may be 1.
  • R A is one selected from the group consisting of a hydrogen atom, a carbon atom, a silicon atom, a nitrogen atom, a phosphorus atom, an oxygen atom, a sulfur atom, a fluorine atom, a chlorine atom, and a bromine atom. Or a group formed by two or more atoms.
  • the plurality of RA contained in the copolymer may have, for example, the same structure or different structures.
  • the carbon sequence can be, for example, linear, branched or cyclic. Among these, linear is preferable. Thereby, mold release property can be improved.
  • the structural unit of B is a structural unit represented by the following general formula (B1).
  • R 1 is a group containing a functional group that reacts with the curing agent.
  • R 1 is a group containing a functional group which reacts with the curing agent to be described later.
  • specific examples of the functional group that reacts with the curing agent include a hydroxyl group, a carboxyl group, and an amino group.
  • curing agent 1 type (s) or 2 or more types can be included among the said specific examples.
  • the amino group is preferably a primary amino group or a secondary amino group.
  • R 1 is not limited as long as it includes a functional group that reacts with the above-described curing agent.
  • Specific examples of the atoms constituting R 1 include a hydrogen atom, a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a fluorine atom, and a chlorine atom.
  • the R 1, for example, preferably contains a silicon atom.
  • a silicone bond —Si—O— may be provided. The silicone bond is considered to exhibit releasability with respect to the first resin composition. Therefore, in addition to the structure that reacts with the curing agent, a structure that further improves the releasability can be introduced into the structural unit of B, and the releasability of the release layer 2 can be improved.
  • R 1 may be a hydroxyl group, a carboxyl group, or an amino group itself.
  • a hydrogen atom of a monovalent organic group may be substituted with a hydroxyl group, a carboxyl group, or an amino group.
  • the monovalence of the monovalent organic group means the valence. Specific examples of such a monovalent organic group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and pentyl.
  • a contains a structural unit of the above formula (A2) and B contains a structural unit of the above general formula (B1) specifically, Obligato SS0057 manufactured by AGC Co., Ltd.
  • Obligato SS0061 Obligato PS291U-H, Obligato SS0051, Obligato PS309R, Obligato PW501U, and the like. These commercial products further contain a bifunctional or higher functional isocyanate compound as a curing agent in the same manner as Obligato PS306R manufactured by AGC Co-Tech.
  • the curing agent included in the third resin composition includes, for example, an isocyanate compound.
  • This isocyanate compound is a bifunctional or higher functional isocyanate compound. That is, the isocyanate compound contains two or more cyanate groups in its structural unit. In the first embodiment, the cyanate group represents —N ⁇ C ⁇ O.
  • the mold release film 10 concerning 1st Embodiment can couple
  • isocyanate compound described above examples include 2,4-tolylene diisocyanate, diphenylmethane-4,4′-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, lysine methyl ester diisocyanate, methylcyclohexyl diisocyanate, trimethylhexamethylene diisocyanate, Examples include hexamethylene diisocyanate and n-pentane-1,4-diisocyanate.
  • the release layer 2 is produced by dissolving the third resin composition in a solvent and coating it. That is, the third resin composition may further contain a solvent.
  • the solvent is not limited, and for example, any one or more of diethyl ether, tetrahydrofuran, toluene, methyl ethyl ketone, ethyl acetate, xylene, ethylbenzene, and the like can be used as the solvent.
  • the third resin composition may further contain other components as long as the release property of the release layer is not lowered.
  • Other components include, but are not limited to, antistatic agents such as N, N-bis (hydroxyethyl) alkylamine, alkylallyl sulfonate, alkyl sulfonate, and inorganic fillers such as titanium oxide, calcium carbonate, talc, silicon dioxide Materials: Organic fillers such as organosilicone powder, polyethylene powder, and polyacryl powder; leveling agents such as fluorine-based nonionic surfactants.
  • the manufacturing method of the mold release film 10 includes, for example, a preparation step (S1) for preparing the base material layer 1 and a surface modification for performing the surface modification treatment of the base material layer 1 first.
  • Step (S2) and the surface-modified base material layer 1 are coated with the third resin composition prepared in the varnish, and the third resin composition is subjected to a crosslinking reaction to produce a release layer 2 Coating step (S3) to be performed.
  • a manufacturing method of the mold release film 10 you may include the winding process (S4) which uses the mold release film 10 as a wound body after a coating process (S3), for example.
  • the base material layer 1 is prepared.
  • the method of manufacturing the base material layer 1 will not be limited if it is a method of producing the film comprised by a 2nd resin composition, According to the component which a 2nd resin composition contains. A known method can be used. It does not limit as a method of manufacturing the base material layer 1, Specifically, the inflation extrusion method, the T-die extrusion method, etc. are mentioned.
  • the surface modification treatment of the base material layer 1 is performed.
  • the surface modification treatment is not limited as long as it is a method of forming a functional group that reacts with the above-described curing agent on the surface of the base material layer 1.
  • Specific examples of the surface modification treatment include corona discharge treatment.
  • the corona discharge treatment for example, using a batch corona treatment machine (for example, CORONA GENERATOR CT-0212 manufactured by Kasuga Denki Co., Ltd.), the output is 0.1 kW or more and 2 kW or less, and the conveyance speed is 0.1 m / min. It is preferable that the discharge gap be 0.1 to 20 mm and not more than 40 m / min.
  • the present inventor performed a surface modification process (S2) for performing a surface modification treatment on the base material layer 1, and then immediately after the third step. It was found that it is important to perform the coating step (S3) for coating the resin composition.
  • S2 surface modification process
  • S3 coating step
  • an interval which performs a surface modification process (S2) and a coating process (S3) it is preferred that it is 10 minutes or more and 2 weeks or less, for example.
  • the interval which performs a surface modification process (S2) and a coating process (S3) is 24 hours or more, it is preferable that the film of the base material layer 1 is preserve
  • the copolymer represented by the general formula (1) in the third resin composition and the surface of the base material layer 1 are cross-linked through the curing agent in the third resin composition. Can do.
  • the cross-linking reaction between the surface of the base material layer 1 and the second resin composition, and the base material layer 1 and the release layer 2 being bonded is referred to as direct bonding.
  • the base material layer 1 and the mold release layer 2 are couple
  • the release layer 2 does not peel from the base material layer 1, which is convenient from the viewpoint of release properties and moldability.
  • the mold release film that is not directly bonded is pasted on the surface of the release layer 2 with, for example, an adhesive tape for packing use such as a gum tape (for example, Karariyan PP cut E manufactured by Denki Kagaku Kogyo Co., Ltd.)
  • an adhesive tape for packing use such as a gum tape (for example, Karariyan PP cut E manufactured by Denki Kagaku Kogyo Co., Ltd.)
  • the release layer 2 can be peeled from the base material layer 1 by peeling off the tape, and the release layer 2 can be transferred to the tape.
  • Specific examples of the method for coating the varnish of the third resin composition include a gravure roll coating method, a doctor blade coating method, a dip coating method, a spray coating method, and a bar coater coating method.
  • a method for applying the varnish of the third resin composition it is preferable to use any one of the gravure roll coating method, the bar coater coating method, and the spray coating method among the above specific examples.
  • the uniform release layer 2 can be produced. Therefore, the mold release film 10 can exhibit the release property evenly on the entire surface on which the release layer 2 is formed.
  • the release reaction 2 can be formed by allowing the crosslinking reaction to proceed sufficiently by standing for one week. It is also possible to promote the crosslinking reaction by heating. For example, when the temperature is 120 ° C., the release reaction 2 can be formed by sufficiently proceeding the crosslinking reaction by heating for 20 minutes. Therefore, the temperature and time conditions can be appropriately set under the conditions of a temperature of 25 ° C. or more and 120 ° C. or less and a period of 20 minutes or more and 1 week or less.
  • the mold release film 10 is used as a wound body.
  • the shape of the wound body is not limited, and may be, for example, a roll shape, that is, a cylindrical shape, or a rectangular shape obtained by laminating a single-wafer mold release film 10 for molding. .
  • the release layer 2 on the inner diameter side of the mold release film 10 and the base material layer 1 on the outer diameter side are used. However, even if they are in direct contact, the release layer 2 is not peeled off. Therefore, it is convenient in that the release property of the mold release film 10 is not impaired.
  • the mold release film 10 has a laminated structure in which a release layer is laminated on a base material layer. And the mold release film 10 has the release layer 2 in the outermost layer. The mold release film 10 is used so that the release layer 2 disposed in the outermost layer is in contact with the first resin composition when used for molding the first resin composition.
  • the lamination structure of the mold release film 10 is not limited as long as the release layer has a lamination structure laminated on the base material layer.
  • the mold release film 10 may include two or more base material layers 1 or may include two or more release layers 2.
  • the laminate structure of the mold release film 10 according to the first embodiment may be a laminate structure in which a release layer and a base material layer are laminated in this order.
  • the material layer and the second base material layer may be laminated in this order, and the release layer, the first base material layer, the second base material layer, and the third base material layer are laminated in this order.
  • the laminated structure may be a laminated structure in which the first release layer, the base material layer, and the second release layer are laminated in this order, and the first release layer, the first base material layer, Examples include a laminated structure in which the second base material layer and the second release layer are laminated in this order.
  • the upper limit of the thickness of the mold release film 10 is, for example, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, even more preferably 100 ⁇ m or less, and even more preferably 65 ⁇ m or less. . Thereby, the rigidity of the mold release film 10 can be appropriately controlled. Therefore, the followability to the fine structure of the mold can be improved and the moldability can be improved.
  • the lower limit of the thickness of the mold release film 10 is, for example, preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, still more preferably 30 ⁇ m or more, and more preferably 35 ⁇ m or more. Particularly preferred.
  • the release film for molding according to the first embodiment is used for molding the first resin composition.
  • the first resin composition is introduced into the molding step where the mold release film is placed in the mold (S1), and then into the molding space formed by the mold release film. Introducing step (S2).
  • the mold release film is placed in the mold.
  • the position where the mold release film is disposed is not limited.
  • the mold release film is placed in the mold so that the first resin composition does not contact the mold. It arranges in the molding space which forms. Thereby, the mold release film forms the molding space of the mold release film inside the molding space formed by the mold.
  • the whole mold surface may be covered with a mold release film, the mold may be appropriately exposed depending on the molding method, such as when a mold extrusion pin is present. Therefore, the molding space of the mold release film may be formed not only by the mold release film but also by the mold and the mold release film.
  • the position where the base layer and the release layer of the mold release film are arranged is not limited, but the first resin composition is introduced into the molding space of the mold release film in the introduction process described later. Therefore, it is preferable that the release layer forms a molding space for the mold release film. That is, it is preferable that the release layer included in the outermost layer of the mold release film forms a molding space of the mold release film.
  • the mold release film has a laminated structure in which a release layer and a base material layer are laminated in this order, a release layer forming space is formed, and the base material layer is disposed so as to be in contact with the mold. Is preferred.
  • the mold release film covers the exposed surface of the mold in the molding space formed by the mold and further causes the mold release film to follow the mold forming space. That is, the mold release film needs to have appropriate rigidity to follow the shape of the molding space of the mold.
  • a method of causing the mold release film to follow the molding space of the mold for example, there is a method of providing a hole for sucking gas in the cavity of the mold and sucking air from the hole.
  • an electronic member such as an electronic element may be arranged in the cavity of the mold before or after the mold release film is arranged in the mold.
  • an electronic element for example, a semiconductor element is preferable.
  • the semiconductor element include, but are not limited to, an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, and a solid-state imaging element.
  • the first resin composition is introduced into a molding space formed by the mold release film.
  • the method for introducing the first resin composition is not limited, but for example, a method for introducing a liquid first resin composition, a method for introducing a granular first resin composition, Examples thereof include a method of introducing the sheet-like first resin composition. Specifically, introduction of the liquid first resin composition by injection molding, introduction of the granular first resin composition by compression molding, and the like can be performed by a conventionally known method.
  • the electronic device can be molded with the first resin composition to produce an electronic device. That is, the 1st resin composition containing an electronic element can be shape
  • An electronic device is obtained by molding the electronic element with the first resin composition.
  • the electronic device is not limited, but for example, a semiconductor device obtained by molding a semiconductor element is preferable.
  • the types of semiconductor devices are not limited, but include MAP (Mold Array Package), QFP (Quad Flat Package), SOP (Small Outline Package), CSP (Chip Size Package), and QFN (Quad Flat Non-).
  • MAP Mold Array Package
  • QFP Quad Flat Package
  • SOP Small Outline Package
  • CSP Chip Size Package
  • QFN Quadraturethaned Bit Non-
  • Package SON (Small Outline Non-leaded Package), BGA (Ball Grid Array), LF-BGA (Lead Frame BGA), FCBGA (Flip Chip BW), MAPBGA (Molded Array B) BGA), FOWLP (Fan Out Wafer Level Pac kage).
  • the mold forming method using the mold forming release film according to the first embodiment is not limited as long as it includes the arranging step (S1) and the introducing step (S2).
  • Specific molding methods include a transfer molding method or a compression molding method (compression molding method).
  • the transfer molding method according to the first embodiment is not limited to the following example.
  • the mold release film is made to follow the upper mold in the mold while evacuating the mold.
  • an electronic element or a substrate on which the electronic element is mounted is placed and fixed on the lower mold.
  • the first resin composition in a fluid state is injected into the mold, and then the first resin composition is cured. Thereafter, by opening the upper mold and the lower mold, the molded product and the mold release film are released.
  • the shape of the 1st resin composition to be used is a tablet shape.
  • the compression molding method (compression molding method) according to the first embodiment is not limited to the following example.
  • the mold release film is made to follow the upper mold in the mold while evacuating the mold.
  • an electronic element or a substrate on which the electronic element is mounted is placed and fixed on the lower mold.
  • the lower mold removes the weighed first resin composition by a resin material supply mechanism such as a shutter that constitutes the bottom surface of the resin material supply container while reducing the distance between the upper mold and the lower mold. Supply into the lower mold cavity.
  • the first resin composition is heated to a predetermined temperature in the lower mold cavity and becomes fluidized.
  • the first resin composition in a fluid state is pressed against the molding object fixed to the upper mold, The first resin composition is cured while maintaining the state where the lower mold is bonded. Thereafter, by opening the upper mold and the lower mold, the molded product and the mold release film are released.
  • the shape of the first resin composition to be used is a tablet shape, a granular shape, a sealed shape. It is preferably processed into a granular shape or a sheet shape.
  • the lower limit of the molding temperature may be, for example, 120 ° C. or higher, 140 ° C. or higher, 150 ° C. or higher, 160 ° C. or higher, or 175 ° C. or higher.
  • the molding temperature is set to be equal to or higher than the lower limit, for example. If it was the conventional mold release film for mold forming, there existed a problem that the base material layer 1 and the release layer 2 will peel in mold shaping in the high temperature beyond the said lower limit.
  • the mold release film 10 since the base layer 1 and the release layer 2 are directly bonded, the base layer 1 and the release layer 2 are not peeled off. There is no inconvenience.
  • the upper limit of the molding temperature may be, for example, 240 ° C. or lower, 200 ° C. or lower, or 185 ° C. or lower.
  • the first resin composition according to the first embodiment is not limited.
  • a thermoplastic resin composition or a thermosetting resin composition can be used.
  • the release film for molding according to the first embodiment is suitably used for molding a first resin composition containing an epoxy resin. This is because the molding temperature of the first resin composition containing the epoxy resin is, for example, 175 ° C. or higher, but the moldability is not degraded even when the base material layer 1 and the release layer 2 are peeled off even at a high temperature of 175 ° C. or higher. It is because it can maintain.
  • thermosetting resin composition examples include an epoxy resin, a curing agent, and an inorganic filler.
  • epoxy resin As the epoxy resin, it is possible to use monomers, oligomers, and polymers in general having two or more epoxy groups in one molecule regardless of the molecular weight and molecular structure.
  • an epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol M type epoxy resin (4 , 4 '-(1,3-phenylenediisopridiene) bisphenol type epoxy resin), bisphenol P type epoxy resin (4,4'-(1,4-phenylenediisopridiene) bisphenol type epoxy resin), bisphenol Bisphenol type epoxy resins such as Z type epoxy resin (4,4'-cyclohexyldiene bisphenol type epoxy resin); phenol novolak type epoxy resin, brominated phenol novolak type epoxy resin, cresol novolak type epoxy resin, Novolak type epoxy resins such as laphenol group ethane type novolak type epoxy resins and novolak type
  • curing agent Specific examples of the curing agent include three types, for example, a polyaddition type curing agent, a catalyst type curing agent, and a condensation type curing agent.
  • polyaddition type curing agent used as the curing agent examples include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylenediamine (MXDA), and diaminodiphenylmethane (DDM).
  • DETA diethylenetriamine
  • TETA triethylenetetramine
  • MXDA metaxylylenediamine
  • DDM diaminodiphenylmethane
  • polyamine compounds including dicyandiamide (DICY) and organic acid dihydrazide; hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride Acid anhydrides including alicyclic acid anhydrides such as (MTHPA), trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), and benzophenone tetracarboxylic acid (BTDA);
  • Type Examples include phenolic resin-based curing agents such as diol resins, polyvinylphenols, and aralkyl-type phenolic resins; polymercaptan compounds such as polysulfides, thioesters, and thioethers; isocyanate compounds such as isocyanate prepolymers and blocked isocyanates; and carboxylic acid-containing polyester resins. .
  • the catalyst-type curing agent used as the curing agent include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30); Examples include imidazole compounds such as methylimidazole and 2-ethyl-4-methylimidazole (EMI24); Lewis acids such as BF3 complex.
  • BDMA benzyldimethylamine
  • DMP-30 2,4,6-trisdimethylaminomethylphenol
  • EMI24 2,4,6-trisdimethylaminomethylphenol
  • EMI24 2-ethyl-4-methylimidazole
  • Lewis acids such as BF3 complex.
  • curing agent the 1 type (s) or 2 or more types selected from the said specific example can be included.
  • condensation type curing agent used as the curing agent examples include a resol type phenol resin; a urea resin such as a methylol group-containing urea resin; and a melamine resin such as a methylol group-containing melamine resin.
  • a condensation type curing agent one type or two or more types selected from the above specific examples can be included.
  • the curing agents it is preferable to include a phenol resin curing agent.
  • a phenol resin curing agent monomers, oligomers, and polymers in general having two or more phenolic hydroxyl groups in one molecule can be used, and the molecular weight and molecular structure are not limited.
  • Specific examples of the phenol resin-based curing agent used as the curing agent include novolak type phenol resins such as phenol novolak resin, cresol novolak resin, bisphenol novolak, and phenol-biphenyl novolak resin; polyvinyl phenol; triphenylmethane type phenol resin, and the like.
  • Polyfunctional phenolic resin modified phenolic resin such as terpene modified phenolic resin, dicyclopentadiene modified phenolic resin; phenol aralkyl resin having phenylene skeleton and / or biphenylene skeleton, naphthol aralkyl resin having phenylene and / or biphenylene skeleton, etc.
  • Phenol aralkyl type phenol resin Bisphenol compounds such as bisphenol A, bisphenol F, and the like.
  • curing agent the 1 type (s) or 2 or more types selected from the said specific example can be included.
  • inorganic filler examples include silica such as fused crushed silica, fused spherical silica, crystalline silica, and secondary agglomerated silica; alumina; titanium white; aluminum hydroxide; talc; clay; mica; glass fiber and the like.
  • thermosetting resin composition one or two of various additives such as a curing accelerator, a coupling agent, a mold release agent, a flame retardant, an ion scavenger, a colorant, and a low stress agent, as necessary. You may mix the above. Hereinafter, representative components will be described.
  • the thermosetting resin composition may further contain a curing accelerator.
  • This hardening accelerator should just be what accelerates
  • Specific examples of the curing accelerator include diazabicycloalkenes such as 1,8-diazabicyclo [5.4.0] undecene-7 and derivatives thereof; amine compounds such as tributylamine and benzyldimethylamine; 2 -Imidazole compounds such as methylimidazole; Organic phosphines such as triphenylphosphine and methyldiphenylphosphine; Tetraphenylphosphonium / tetraphenylborate, Tetraphenylphosphonium / tetrabenzoic acid borate, Tetraphenylphosphonium / tetranaphthoic acid borate, Tetraphenyl Tetra-substituted phosphonium / tetra-substituted
  • the thermosetting resin composition may further contain a coupling agent.
  • coupling agents include epoxy silane coupling agents, cationic silane coupling agents, amino silane coupling agents, ⁇ -glycidoxypropyl trimethoxy silane coupling agents, and ⁇ -aminopropyl triethoxy silane cups.
  • Silane coupling agents such as ring agents, ⁇ -mercaptopropyltrimethoxysilane coupling agents, N-phenyl- ⁇ -aminopropyltrimethoxysilane coupling agents, mercaptosilane coupling agents, titanate coupling agents and silicone oil types
  • As a coupling agent it can use 1 type or in combination of 2 or more types among the said specific examples.
  • the thermosetting resin composition may further contain a release agent.
  • a release agent include natural waxes such as carbana wax; synthetic waxes such as montanic acid ester; higher fatty acids or metal salts thereof; paraffin; polyethylene oxide and the like.
  • a mold release agent it can use 1 type or in combination of 2 or more types among the said specific examples.
  • thermosetting resin composition may further contain a flame retardant.
  • flame retardant include magnesium hydroxide, zinc borate, zinc molybdate, and phosphazene.
  • the flame retardant one or more of the above specific examples can be used.
  • thermosetting resin composition may further contain a colorant.
  • a colorant include carbon black, bengara, and titanium oxide.
  • 1 type (s) or 2 or more types can be mix
  • the thermosetting resin composition may further contain an ion scavenger.
  • an ion scavenger include hydrotalcite; zeolite; hydrous oxide of an element selected from magnesium, aluminum, bismuth, titanium, and zirconium.
  • the ion scavenger one or two or more of the above specific examples can be used.
  • the thermosetting resin composition may further contain a low stress agent.
  • a low stress agent include polybutadiene compounds, acrylonitrile butadiene copolymer compounds, silicone compounds such as silicone oil and silicone rubber.
  • the low stress agent one or more of the above specific examples can be used in combination.
  • a mold release film is interposed between the first resin composition and the mold, and a release layer described later is adhered to the first resin composition.
  • a mold release film for molding that is used to give an embossed pattern to the molded product of the first resin composition by performing mold molding, and is constituted by the second resin composition It has a laminated structure in which the release layer constituted by the third resin composition is laminated on the base material layer, and the third resin composition contains a silicone compound or a fluorine compound, and The base material layer has irregularities on the surface on which the release layer is laminated, and the thickness of the release layer is 15 ⁇ m or less.
  • the inventor performs mold molding for sealing an electronic element with the first resin composition using a conventional mold release film, and then prints characters on the molding of the first resin composition.
  • the legibility of the electronic devices We examined the legibility of the electronic devices. As a result, it has been found that the readability of characters printed on the electronic device is low. The reason for the low readability is not clear, but is presumed as follows.
  • the release layer of the conventional mold release film has a smooth surface. Accordingly, when molding is performed with the release layer in close contact with the first resin composition, the surface of the first molded product becomes a mirror surface, and specular reflection occurs on the surface.
  • the printed portion is glossy, and it is assumed that the detector or the human body cannot recognize the elements that identify the printed portion and the non-printed portion, such as contrast of light and darkness, color difference, and focus. .
  • the readability of the printed character is low in the molded object and electronic device which were created using the conventional mold release film.
  • specific examples of the electronic device include a semiconductor device.
  • Specific examples of the characters printed on the electronic device include information indicating manufacturing information such as a lot, information indicating the position of the electronic device in an automated manufacturing process, and the like. As a result, when the readability of the characters is low, there are inconveniences in terms of management of the electronic device and automation of the manufacturing process of the electronic device.
  • a character Specifically, language symbols such as hiragana, katakana, alphabet, etc .; polygon, sphere, indefinite shape, linear, striped pattern, barcode, matrix type two-dimensional code, stack type two-dimensional Non-linguistic symbols such as codes; numerals such as Arabic numerals and Greek numerals; designs such as logo marks and schematic diagrams.
  • language symbols such as hiragana, katakana, alphabet, etc .
  • the inventor studied the surface structure of the molded product of the first resin composition in order to improve the readability of characters on the surface of the electronic device. As a result, it has been found that the readability of the printed characters is improved when the surface structure of the molded product of the first resin composition is not smooth but has an embossed pattern such as a matte tone.
  • the detailed mechanism is not clear, but the reason is presumed as follows.
  • the reflected light is the sum of regular reflection light and irregular reflection light.
  • the intensity of specular reflection light is reduced compared to the case where the surface of the molded product is smooth, and irregularly reflected light.
  • the strength of As a result it is considered that the gloss caused by the regular reflection light is less likely to occur in the print portion.
  • the present inventor examined the thickness of the release layer in order to improve the readability of the printed characters. As a result, when the thickness of the release layer is large, the release layer embeds unevenness of the base material layer, and an embossed pattern suitable for improving readability is imparted to the molded product of the first resin composition. It turned out not to be possible.
  • the release layer when reducing the thickness of the release layer, for example, the release layer cannot be appropriately formed on the convex and concave portions of the base material layer, and the first resin composition and the release film for molding are released. It has been found that there is an inconvenience that the performance decreases. From the above, the readability of the characters printed on the molded product and the releasability were in a trade-off relationship depending on the thickness of the release layer.
  • the present inventor has studied the raw material components constituting the release layer in order to express the readability of the characters printed on the molded product and the release property in a balanced manner. As a result, it has been found that a release layer can be formed thinly and uniformly on the entire mold release film by forming the release layer with a silicone compound or a fluorine compound. Thereby, it discovered that the embossed pattern derived from the unevenness
  • the mold release film according to the second embodiment can realize a mold release film that expresses the readability of the characters printed on the molded product and the mold release property in a well-balanced manner.
  • FIG. 2 is an example of a mold release film 10 according to the second embodiment.
  • the mold release film according to the second embodiment has a laminated structure in which a release layer 2 is laminated on a base material layer 1. First, the base material layer 1 and the release layer 2 will be described.
  • the base material layer 1 is a film composed of the second resin composition. At least one surface of the base material layer 1 is a surface having irregularities.
  • the mold release film 10 according to the second embodiment has a laminated structure in which a release layer is laminated on the surface of the base material layer 1 having the unevenness. Thereby, the embossed pattern originating in the unevenness
  • the said description does not limit that the both surfaces of the base material layer 1 are a surface provided with an unevenness
  • the mold release film 10 according to the second embodiment has, for example, unevenness on both surfaces of the base material layer 1 and lamination of the release layer 2 on both surfaces of the base material layer 1 according to the shape of the mold. A laminated structure may be provided.
  • the shape of the unevenness of the base material layer 1 is not limited, and can be set according to the embossed pattern transferred to the molded product of the first resin composition.
  • the shape of the unevenness and the shape of the embossed pattern are matte tone; mesh tone; fabric tone; stone tone such as cleaved surface of granite; skin tone; wood tone such as conduit groove, annual ring, myelin Tile-like; brick-like; pear-like.
  • the uneven shape and the embossed pattern shape are preferably matte, for example.
  • gap can be formed between the embossed shape of the mold release film 10 and the molding of the 1st resin composition in the case of mold release. Thereby, it is possible to release the entire close contact portion of the mold release film 10 and the molded product of the first resin composition starting from the release portion which is a void. Therefore, the releasability can be improved.
  • a lower limit of arithmetic mean roughness Ra it is preferable that it is 0.10 micrometer or more, for example, it is more preferable that it is 0.30 micrometer or more, It is 0.40 micrometer or more. More preferably, it is more preferably 0.50 ⁇ m or more, and still more preferably 0.65 ⁇ m or more.
  • the whole roughness of the base material layer 1 can be enlarged appropriately. Thereby, even when forming a release layer, an appropriate embossed pattern can be provided to the molded product of the first resin composition via the release layer. Therefore, the readability of characters can be improved.
  • arithmetic mean roughness Ra 1.0 micrometer or less may be sufficient, 0.90 micrometer or less may be sufficient, and 0.80 micrometer or less may be sufficient. Thereby, it can suppress that an unevenness
  • FIG. Thereby, it can suppress that an embossing shape bites into the 1st resin composition too much, and a mold release layer falls.
  • the arithmetic average roughness Ra can be measured in accordance with, for example, JIS B 0601-2013.
  • the lower limit of the 10-point average surface roughness Rz of the surface of the base material layer 1 having irregularities is, for example, preferably 1.0 ⁇ m or more, more preferably 2.0 ⁇ m or more, and 3.0 ⁇ m. More preferably, it is more preferably 4.0 ⁇ m or more, and even more preferably 4.5 ⁇ m or more. Thereby, the local roughness of the base material layer 1 can be enlarged appropriately. Thereby, even when forming a release layer, an appropriate embossed pattern can be provided to the molded product of the first resin composition via the release layer. Therefore, the readability of characters can be improved. Further, when Rz is equal to or more than the above lower limit value, the releasability can be improved.
  • the shape of the interface between the release layer and the molded product of the first resin composition can be made easier to peel.
  • corrugation of the base material layer 1 it may be 10.0 micrometers or less, may be 8.0 micrometers or less, and may be 6.0 micrometers or less, for example. Good. Thereby, it can suppress that an unevenness
  • FIG. Thereby, it can suppress that an embossing shape bites into the 1st resin composition too much, and a mold release layer falls.
  • the 10-point average surface roughness Rz can be measured according to, for example, JIS B 0601-1994.
  • the lower limit of the thickness of the base material layer 1 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, further preferably 25 ⁇ m or more, and preferably 30 ⁇ m or more. Particularly preferred. Thereby, the rigidity of the base material layer 1 can be appropriately improved as long as the followability of the mold release film 10 is not impaired. Therefore, the mold release film 10 can be prevented from being wrinkled, and a desired embossed pattern can be imparted to the molded product of the first resin composition.
  • the upper limit value of the thickness of the base material layer 1 is, for example, 100 ⁇ m or less, preferably 95 ⁇ m or less, more preferably 75 ⁇ m or less, and further preferably 55 mm or less.
  • the mold also has fine irregularities, and the mold shape of the mold release film 10 is required for the mold shape.
  • the thickness of the base material layer 1 is less than or equal to the above upper limit value, so that the mold release film 10 can be prevented from becoming too rigid and follow the fine irregularities of the mold. Is good.
  • thermoplastic resin it is preferable that it is a polyester resin among the said specific examples, for example.
  • polyester resin for example, among the above specific examples, polyethylene terephthalate or polybutylene terephthalate is preferable, and polyethylene terephthalate is more preferable.
  • strength can be provided also to the fine unevenness
  • the embossed pattern can be provided.
  • the release layer 2 is a thin film composed of the third resin composition.
  • the release layer 2 is formed on the surface having the unevenness of the base material layer 1 described above. Therefore, the mold release film has an emboss shape reflecting the unevenness of the base material layer on the surface provided with the release layer.
  • the manufacturing method of the mold release layer 2 coats the 3rd resin composition prepared in the varnish on the base material layer 1, for example. A method of cross-linking the third resin composition can be used.
  • the upper limit value of the thickness of the release layer 2 is 15 ⁇ m or less, for example, preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less, further preferably 5 ⁇ m or less, and preferably 3 ⁇ m or less. More preferably, it is particularly preferably 0.6 ⁇ m or less.
  • the mold release layer 2 can be formed without embedding the unevenness
  • the lower limit value of the thickness of the release layer 2 is, for example, 0.1 ⁇ m or more, preferably 0.2 ⁇ m or more, more preferably 0.3 ⁇ m or more, and 0.4 ⁇ m or more. More preferably. Thereby, it can suppress that the mold release layer 2 is not formed in the uneven
  • FIG. Therefore, the mold release film 10 can exhibit a release property suitably.
  • the thickness of the release layer 2 is the dry thickness of the release layer 2, that is, the release layer 2 is produced by crosslinking the third resin composition, and the solvent is volatilized. It is the thickness after.
  • the third resin composition includes, for example, a silicone compound or a fluorine compound and a curing agent.
  • the release layer 2 is formed by crosslinking the silicone compound or the fluorine compound with the curing agent. That is, the release layer 2 is formed by crosslinking a silicone compound or a fluorine compound and a curing agent.
  • the third resin composition preferably includes, for example, a fluorine compound. Thereby, mold release property can be improved more. In addition, even when the thickness is reduced, it is convenient from the viewpoint that the release layer 2 can be formed uniformly.
  • each component included in the third resin composition will be described in detail.
  • silicone compound examples include those containing polydialkylsiloxane. Such a silicone compound may be used in combination with a fluoropolyether.
  • polydialkylsiloxane what is represented by the following general formula (SI1) is mentioned, for example.
  • fluoro polyether what is represented by the following general formula (SI2) is mentioned, for example.
  • a plurality of R s each independently represents an organic group having 1 to 30 carbon atoms. At least one R S is a functional group that reacts with at least one curing agent.
  • a and b are each independently an integer of 1 or more.
  • a plurality of R s each independently represents an organic group having 1 to 30 carbon atoms. At least one R S is a functional group that reacts with at least one curing agent. D, e, and f are each independently an integer of 1 or more.
  • At least one R s includes a functional group that reacts with at least one curing agent.
  • specific examples of the functional group that reacts with the curing agent include a hydroxyl group, a carboxyl group, and an amino group.
  • curing agent 1 type (s) or 2 or more types can be included among the said specific examples.
  • the amino group is preferably a primary amino group or a secondary amino group.
  • R s specifically includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert -Alkyl groups such as butyl, pentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl; alkenyl such as allyl, pentenyl, vinyl; alkynyl such as ethynyl; methylidene Group, alkylidene group such as ethylidene group; aryl group such as tolyl group, xylyl group, phenyl group, naphthyl group and anthracenyl group; aralkyl group such as benzyl group and phenethyl group; adamantyl group, cyclopentyl group, cyclo
  • the release layer 2 is produced, for example, by dissolving the third resin composition in a solvent and coating it. That is, the third resin composition may further contain a solvent.
  • a solvent which concerns on 2nd Embodiment the thing similar to the solvent of 1st Embodiment mentioned above can be used.
  • the 3rd resin composition may contain another component in the range which can solve a subject.
  • the same antistatic agent, inorganic filler, organic filler, leveling agent and the like as in the first embodiment described above can be used.
  • a film composed of the second resin composition is prepared, and irregularities are imparted to the film to form the base material layer 1.
  • the surface modification for performing the surface modification treatment of the base material layer 1 is performed.
  • a quality step (S2) may be included.
  • Substrate preparation step (S1) First, in a base material preparation process (S1), the film comprised by the 2nd resin composition is prepared, an unevenness
  • FIG. 1nd Embodiment the method of manufacturing the film comprised with a 2nd resin composition is not limited, A well-known method can be used according to the component which a 2nd resin composition contains. Specific examples of the method for producing a film composed of the second resin composition include an inflation extrusion method and a T-die extrusion method.
  • a base material preparation process (S1), an unevenness
  • the method for imparting irregularities to the base material layer 1 is not limited, and a conventionally known method for forming irregularities on the film can be employed. Specifically, as a method for imparting unevenness to the base material layer 1, a method of transferring the unevenness of the embossing roll during or after the manufacture of the base material layer 1, or a sandblasting method or Examples thereof include a method of scraping the surface of the base material layer 1 using an etching method.
  • the embossed shape of the mold release film 10 can be made less bite into the first resin composition, and can be made suitable for improving the release property.
  • the base material layer 1 you may use the commercial item which provided the unevenness
  • the surface modification treatment include corona discharge treatment.
  • the corona discharge treatment for example, using a batch corona treatment machine (for example, CORONA GENERATOR CT-0212 manufactured by Kasuga Denki Co., Ltd.), the output is 0.1 kW or more and 2 kW or less, and the conveyance speed is 0.1 m / min. It is preferable that the discharge gap be 0.1 to 20 mm and not more than 40 m / min.
  • an interval which performs a surface modification process (S2) and a coating process (S3) it is preferred that it is 10 minutes or more and 2 weeks or less, for example.
  • the film of the base material layer 1 is exposed to air. It is preferable to store it so that it does not exist. Thereby, it can suppress that the functional group which reacts with the hardening
  • Coating process (S3) In a coating process (S3), the 3rd resin composition prepared to the varnish is applied on the base material layer 1, a 3rd resin composition is made to cross-link, and the mold release layer 2 is produced.
  • the method and conditions of the coating process can be the same as in the coating process (S3) of the first embodiment described above.
  • the mold release film 10 is used as a wound body.
  • the shape of the wound body is not limited, and may be, for example, a cylindrical shape or a rectangular shape.
  • the release layer 2 on the inner diameter side of the mold release film 10 and the base material layer 1 on the outer diameter side are used.
  • the embossed shape of the mold release film 10 derived from the unevenness of the base material layer 1 is not impaired. Therefore, it is convenient in that the release property of the mold release film 10 is not impaired.
  • the mold release film 10 has a laminated structure in which a release layer constituted by a third resin composition is laminated on a base material layer constituted by a second resin composition.
  • the mold release film 10 according to the second embodiment has an emboss shape derived from the unevenness of the base material layer 1.
  • the mold release film 10 has the release layer 2 in the outermost layer.
  • the laminate structure of the mold release film 10 is not limited as long as it has a laminate structure in which the release layer 2 is laminated on the base material layer 1.
  • corrugation of the base material layer 1 is reflected in the release layer 2 appropriately, and from a viewpoint of forming a desired emboss shape in the mold release film 10, between the base material layer 1 and the release layer 2 is provided.
  • the laminated structure of the mold release film 10 according to the second embodiment can be the same as that of the first embodiment.
  • the upper limit of the glossiness which is the reflectance of light at an incident angle of 60 °, is preferably 23 or less, and more preferably 20 or less. It is preferably 17 or less, more preferably 15 or less, and even more preferably 12 or less.
  • this inventor examined the method of controlling the glossiness of the surface provided with the embossed shape of the mold release film 10.
  • the mold release film according to the second embodiment includes the arithmetic average roughness Ra and the 10-point average surface roughness Rz of the surface having the unevenness of the base material layer 1, and the release layer 2 constituting the release layer 2. It was found that the glossiness can be controlled to the upper limit value or less by appropriately controlling the blending components of the resin composition 3 and the thickness of the release layer 2. Thereby, the embossed pattern suitable for improving the readability of printing can be transferred to the molded product of the first resin composition. Moreover, about the surface provided with the embossed shape of the mold release film 10, the lower limit of the glossiness, which is the reflectance of light at an incident angle of 60 °, may be 1 or more, for example, or 2 or more.
  • the gloss level can be measured in accordance with JIS Z 8741.
  • a specific method for measuring glossiness will be described.
  • the intensity of light having a reflectance of 10% is assumed to have a glossiness of 100 and the intensity of light having a reflectance of 0% is assumed to be 0 when the incident angle is 60 °.
  • a value of 1/100 of the intensity of light having a reflectance of 10% corresponds to a gloss level of 1.
  • strength of the light of the surface provided with the embossed pattern of the mold release film 10 is measured using the reflectometer of the geometric condition of incident angle 60 degrees. Then, the glossiness can be calculated by dividing the obtained light intensity by 1/100 of the light intensity having the reflectance of 10%.
  • the upper limit of the total thickness of the mold release film 10 is, for example, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 100 ⁇ m or less, and 65 ⁇ m or less. Particularly preferred. Thereby, the rigidity of the mold release film 10 can be appropriately improved as long as the followability to the mold is not impaired. Therefore, the mold release film 10 does not invade the desired molding space, which is advantageous in that a desired embossed pattern can be imparted to the molded product of the first resin composition. Further, the lower limit of the total thickness of the mold release film 10 is, for example, preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, further preferably 30 ⁇ m or more, and 35 ⁇ m or more.
  • the mold release film according to the second embodiment is used for molding the first resin composition.
  • the molding method according to the second embodiment and the obtained electronic device can be the same as those in the first embodiment described above.
  • the arrangement step (S1) for example, when the mold release film has a laminated structure in which a release layer and a base material layer are laminated in this order, a release layer forming space is formed, and the base material layer is formed. Is preferably arranged so as to be in contact with the mold.
  • the mold release film for molding is interposed between the first resin composition and the mold, the mold release layer is brought into close contact with the first resin composition, and the first resin is molded.
  • An embossed pattern can be imparted to the molded product of the composition.
  • the lower limit of the molding temperature may be, for example, 120 ° C. or higher, 140 ° C. or higher, 150 ° C. or higher, 160 ° C. or higher, or 175 ° C. or higher.
  • the molding temperature is set to be equal to or higher than the lower limit, for example.
  • the second resin composition and the third resin composition constituting the base layer 1 and the release layer 2 are selected according to the selection of the raw material components described above.
  • the mold release film according to the second embodiment is advantageous in that the base material layer 1 and the release layer 2 do not peel off even when used for high temperature and high pressure mold forming.
  • the upper limit of the molding temperature may be, for example, 240 ° C. or lower, 200 ° C. or lower, or 185 ° C. or lower.
  • the first resin composition according to the second embodiment is not limited.
  • a thermoplastic resin composition or a thermosetting resin composition can be used.
  • the mold release film according to the second embodiment is suitably used for molding a first resin composition containing an epoxy resin. This is because the molding temperature of the first resin composition containing the epoxy resin is, for example, 175 ° C. or higher, but the unevenness of the base material layer 1 does not collapse even at a high temperature of 175 ° C. or higher.
  • a thermosetting resin composition the thing similar to 1st Embodiment mentioned above can be used.
  • the mold release film in the third embodiment is a mold release film used for the molding of the first resin composition, and the mold release film has a release layer as the outermost layer.
  • the release layer is composed of a third resin composition, the third resin composition contains a fluorine compound, the fluorine compound contains a fluorocarbon group, and the surface of the release layer There is provided a mold release film in which the contact angle of hexadecane is 20 ° or more and 77 ° or less.
  • the present inventors examined the heat resistance of a mold release film when molding a first resin composition containing an epoxy resin. As a result, it has been found that the conventional mold release film melts and may be joined to the first resin composition. This is presumably because the mold temperature of the first resin composition containing the epoxy resin is high, for example, 175 ° C. or higher, and the conventional mold release film cannot withstand the high temperature. It was.
  • the present inventors considered arranging a release layer formed of a specific fluorine compound in the outermost layer of the mold release film in order to prevent melting of the mold release film. Thereby, the heat resistance of the mold release film could be improved.
  • the detailed mechanism is not clear, but the reason is presumed as follows.
  • the specific fluorine compound includes a fluorocarbon group.
  • a fluorocarbon group refers to a group in which some or all of the hydrogen atoms of a hydrocarbon group are substituted with fluorine atoms. Such a fluorocarbon group has a bond of a carbon atom and a fluorine atom.
  • the bond between carbon and fluorine atoms requires more thermal energy for the molecular motion of the bond, such as vibration and rotation, than the bond between carbon atoms, the bond between carbon and hydrogen atoms, and the bond between carbon and oxygen atoms. It is guessed. Therefore, it is considered that the movement of the molecular chain due to heat is limited and the heat resistance is improved.
  • the present inventors examined the mold release properties of the mold release film when the first resin composition containing the epoxy resin was molded. As a result, it has been found that simply forming the release layer with a specific fluorine compound does not improve the releasability to the required level. Therefore, the present inventors examined the contact angle of the release layer with respect to a specific solvent, that is, the wettability of the release layer in order to improve the release property. As a result, it has been found that when the contact angle of hexadecane with respect to the release layer is within a specific numerical range, excellent release properties are exhibited. Although the detailed mechanism is not clear, the reason is presumed as follows. First, the epoxy resin has a glycidyl group exhibiting polarity.
  • the contact angle of the release layer with respect to hexadecane is not more than a specific numerical range, it is possible to suppress the affinity with the glycidyl group from becoming too high.
  • the epoxy resin has a nonpolar skeleton.
  • the contact angle of the release layer with respect to hexadecane is not less than a specific numerical range, it is possible to suppress the affinity for the nonpolar skeleton from becoming too high. Therefore, when the contact angle of the release layer with respect to hexadecane is within a specific numerical range, it is estimated that the affinity between the release layer and the epoxy resin can be prevented from becoming too high, and the release property can be improved.
  • the mold release film according to the third embodiment is excellent in heat resistance and mold release and can improve the moldability.
  • the mold release film in the third embodiment has a release layer as at least the outermost layer.
  • the release layer is a film composed of the third resin composition.
  • the 3rd resin composition which forms a mold release layer is demonstrated.
  • the third resin composition contains at least a fluorine compound.
  • the fluorine compound only needs to contain a fluorocarbon group. Specifically as a fluorine compound, what is shown to following General formula (2) is preferable.
  • X is a group containing a fluorocarbon group.
  • Y is a group having at least one polar functional group at the terminal, and the polar functional group is selected from the group consisting of a carboxyl group, a sulfonic acid group, an amino group, a hydroxy group, a silanol group, and an alkoxysilane group. Species or two or more.
  • the present inventor has found that it is effective for controlling the contact angle that the fluorine compound has a polar functional group at the terminal.
  • the detailed mechanism is not clear, but the reason is presumed as follows.
  • the molecular chain of the fluorine compound has a low cohesive force between the molecular chains due to the influence of the interaction between fluorine atoms.
  • the fluorine compound has a polar functional group at the terminal, it is presumed that the polar functional groups are bonded to each other.
  • the fluorine compound which has a polar functional group at the terminal has high cohesive force of a molecular chain compared with the thing which does not have a polar functional group at the terminal. Therefore, it is considered that the density of fluorine atoms in the release layer can be improved, and the contact angle with respect to hexadecane can be made within a specific numerical range. Moreover, the strength of the release layer is improved by improving the cohesion of the molecular chain of the fluorine compound. Thereby, it can prevent that uneven
  • Y in the general formula (2) is a group having at least one polar functional group at the terminal.
  • the polar functional group include a carboxyl group, a sulfonic acid group, an amino group, a hydroxy group, a silanol group, and an alkoxysilane group.
  • a polar functional group it can use 1 type or in combination of 2 or more types among the said specific examples.
  • the polar functional group preferably includes a silanol group or an alkoxysilane group having 1 to 10 carbon atoms.
  • the fluorine compound containing a silanol group or an alkoxysilane group having 1 to 10 carbon atoms for example, a compound represented by the following general formula (3) is preferable.
  • a compound represented by the following general formula (3) when A is a hydroxy group, the fluorine compound contains a silanol group.
  • the fluorine compound when A is an alkoxy group, contains an alkoxysilane group.
  • a plurality of A's are groups formed by one or more atoms independently selected from the group consisting of a hydrogen atom, a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom and a silicon atom. . A may be the same as or different from each other. At least one of A is a hydroxy group or an alkoxy group having 1 to 10 carbon atoms. )
  • a plurality of A are each independently one or more selected from the group consisting of a hydrogen atom, a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom. It is a group formed by the atoms.
  • At least one of the plurality of A is a hydroxy group or an alkoxy group having 1 to 10 carbon atoms, preferably a hydroxy group or an alkoxy group having 1 to 7 carbon atoms. Further, a hydroxy group or an alkoxy group having 1 to 4 carbon atoms is more preferable, and an alkoxy group having 1 to 2 carbon atoms is more preferable.
  • a plurality of A may be the same as or different from each other. It is sufficient that at least one of A is a hydroxy group or an alkoxy group having 1 to 10 carbon atoms, and two or more of A are preferably a hydroxy group or an alkoxy group having 1 to 10 carbon atoms. It is more preferable that three of them are a hydroxy group or an alkoxy group having 1 to 10 carbon atoms.
  • a other than the hydroxy group or the alkoxy group having 1 to 10 carbon atoms specifically, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, Alkyl groups such as isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl; alkenyl such as allyl, pentenyl, vinyl Alkynyl group such as ethynyl group; alkylidene group such as methylidene group and ethylidene group; aryl group such as tolyl group, xylyl group, phenyl group, naphthyl group and anthracenyl group; aralkyl group such as benzyl group and phenethyl group
  • X is a monovalent group containing a fluorocarbon group.
  • the fluorocarbon group refers to a functional group in which part or all of the hydrogen atoms of the hydrocarbon group are substituted with fluorine atoms.
  • a monovalent group indicates a valence. That is, X indicates that there is one hand that bonds with another atom.
  • X preferably includes, for example, a structural unit represented by the following formula (X1). Thereby, the fluorine atom density of a mold release layer can be improved.
  • n is an integer of 2 or more.
  • X preferably includes, for example, an ether bond, that is, a carbon atom-oxygen atom-carbon atom bond.
  • X examples include tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-vinylidene fluoride. Mention may be made of structural units derived from tetrafluoroethylene such as copolymers and chlorotrifluoroethylene-ethylene copolymers. As the structure of X, among the above specific examples, one type or two or more types of structural units may be combined.
  • the carbon sequence of X can be, for example, linear, branched or cyclic. Among these, linear is preferable. Thereby, the density of the fluorine atom of a fluorine compound can be improved.
  • fluorine compounds represented by the above general formula (2) and containing the structural unit of (X1) include FG-5084SH or 6050 manufactured by Fluoro Technology Co., Ltd., Flease 85 manufactured by Neos Co., Ltd. CYTOP CTX-809A manufactured by AGC Seimi Chemical Co., RB-5910EX-III manufactured by Neos, and the like.
  • a fluorine compound it is preferable to use 1 type or in combination of 2 or more types among the said specific examples. Thereby, mold release property can be improved.
  • the third resin composition may further contain other components as long as the release property of the release layer is not lowered.
  • Other components include, but are not limited to, antistatic agents such as N, N-bis (hydroxyethyl) alkylamine, alkylallyl sulfonate, alkyl sulfonate, and inorganic fillers such as titanium oxide, calcium carbonate, talc, silicon dioxide Materials: Organic fillers such as organosilicone powder, polyethylene powder, and polyacryl powder; leveling agents such as fluorine-based nonionic surfactants.
  • the method to manufacture a release layer is not limited, A conventionally well-known method can be used according to a 3rd resin composition. Specifically, it is preferable to use a method of applying and drying the third resin composition prepared on the varnish with a solvent. Examples of the coating method include a gravure roll coating method, a doctor blade coating method, a dip coating method, a spray coating method, a bar coater coating method, and a direct coating method using paper.
  • a method for producing the release layer for example, a third resin composition is directly applied to a base material layer to be described later, and the third resin composition is dried to form a release film for molding. It is preferable to obtain.
  • the conditions for drying the coated third resin composition are not limited as long as volatile components such as a solvent can be dried. Specifically, the drying temperature condition can be 25 ° C. or more and 150 ° C. or less.
  • the lower limit of the contact angle of hexadecane to the surface of the release layer The value is 20 ° or more at 25 ° C., preferably 30 ° or more, and preferably 50 ° or more.
  • the upper limit of the contact angle of hexadecane with respect to the surface of the release layer is 75 ° or less and preferably 70 ° or less at 25 ° C.
  • the method for measuring the contact angle of hexadecane is not limited. For example, a commercially available contact angle meter such as DROPMASTER-501 manufactured by Kyowa Interface Science Co., Ltd. is used. The contact angle after 7 seconds can be measured by a liquid suitable method.
  • the upper limit value of the contact angle of water with respect to the surface of the release layer is preferably, for example, 118 ° or less, more preferably 113 ° or less, and further preferably 110 ° or less at 25 ° C. More preferably, it is 109 ° or less. Thereby, it can suppress that the affinity of the nonpolar group of a 1st resin composition and a release layer becomes high too much. Therefore, the releasability can be improved. Further, the lower limit value of the contact angle of water with the surface of the release layer is preferably 100 ° or more, and more preferably 105 ° or more at 25 ° C.
  • the method for measuring the water contact angle is not limited.
  • a commercially available contact angle meter such as DROPMASTER-501 manufactured by Kyowa Interface Science Co., Ltd. is used.
  • the contact angle 7 seconds after 2 ⁇ L of water is deposited can be measured by a liquid appropriate method.
  • the upper limit value of the thickness of the release layer is, for example, 80 ⁇ m or less, 55 ⁇ m or less, 40 ⁇ m or less, or 30 ⁇ m or less. Thereby, it can be set as the mold release film formed by the single mold release layer, and can follow favorable followability with respect to a metal mold
  • the release layer may be thinned when it is applied to a substrate.
  • the upper limit of the thickness of the release layer is, for example, preferably 5 ⁇ m or less, more preferably 2 ⁇ m or less, further preferably 1 ⁇ m or less, and 0.5 ⁇ m or less. Is more preferably 0.1 ⁇ m or less.
  • numerator of a fluorine compound can be arranged suitably, and the contact angle of hexadecane can be controlled within the said numerical range.
  • the lower limit of the thickness of the release layer is not particularly limited. For example, it is 0.0001 ⁇ m or more, preferably 0.0005 ⁇ m or more, more preferably 0.001 ⁇ m or more, and further preferably 0.005 ⁇ m or more. Thereby, possibility that a defect will arise in a mold release layer is reduced and it can control that mold release nature to the 1st resin composition falls.
  • the present inventors have found that it is effective to apply the above-described fluorine compound to 5 ⁇ m or less. . Although the detailed mechanism is not clear, it is presumed that the molecular chain of the fluorine compound can be suitably aligned by coating the fluorine compound so as to be 5 ⁇ m or less.
  • the mold release film according to the third embodiment may include a base material layer in addition to the release layer described above. That is, the mold release film may have a laminated structure in which a release layer and a base material layer are laminated. Thereby, appropriate rigidity can be provided to the mold release film. Therefore, it is possible to suppress the occurrence of deformation such as wrinkles in the mold release film.
  • the base material layer is a film composed of the second resin composition.
  • the second resin composition includes, for example, a thermoplastic resin.
  • the thermoplastic resin include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyethylene isophthalate; polyamide resins such as nylon 6 and nylon 66; polyvinyl resins such as polyvinyl chloride; polypropylene, poly ( Polyolefin resins such as 4-methyl-1-pentene); polystyrene resins such as polystyrene resins having a syndiotactic structure; thermoplastic elastomers such as styrene elastomers, polyester elastomers, polyamide elastomers, polyolefin elastomers, urethane elastomers Etc.
  • thermoplastic resin it can use 1 type or in combination of 2 or more types among the said specific examples.
  • thermoplastic resin contained in the second resin composition among the above specific examples, it is preferable to use a polyester resin.
  • the polyester resin is preferably polyethylene terephthalate or polybutylene terephthalate, and more preferably polyethylene terephthalate.
  • the polar functional group of the fluorine compound that forms the release layer and the residue of the carboxyl group on the surface of the base material layer form a bond. Therefore, the release layer can be uniformly formed on the surface of the base material layer, and the occurrence of defects in the release layer is suppressed. As described above, releasability can be improved. Furthermore, when polyethylene terephthalate is used as the thermoplastic resin, excellent release properties can be realized. Polyethylene terephthalate has high heat resistance and excellent strength at high temperatures. Thereby, even if heat and a load are applied to the mold release film, it is possible to suppress deformation with a large strain rate. Thereby, it can suppress that a release layer tracks a base material layer and is destroyed. Therefore, excellent releasability can be realized.
  • the second resin composition may further contain other components as necessary.
  • Other components include, but are not limited to, antioxidants, slip agents, antiblocking agents, antistatic agents, coloring agents such as dyes and pigments; additives such as stabilizers, impact resistance such as fluororesins and silicone rubber Giving agents; inorganic fillers such as titanium oxide, calcium carbonate, talc and the like.
  • the method of manufacturing a base material layer is not limited, A conventionally well-known method can be used according to the kind of 2nd resin composition.
  • the film containing the second resin composition as the base material layer may be an unstretched film or a film stretched in a uniaxial direction or a biaxial direction. Among these, it is preferable to use a film stretched in a uniaxial direction or a biaxial direction. Thereby, the molecular chain of the 2nd resin composition contained in a base material layer can be oriented. Thereby, intensity
  • the surface of the base material layer may be modified by surface treatment, for example.
  • Specific examples of the surface treatment include corona treatment and plasma treatment.
  • the corona treatment is preferable among the above specific examples.
  • the surface of the base material layer can be modified by corona treatment.
  • polar functional groups such as hydroxy groups and carboxyl groups can be formed on the surface of the substrate layer subjected to corona treatment. Therefore, when a release layer or a primer layer described later is formed on the surface of the base material layer, the release layer or the primer layer can be formed more uniformly. Therefore, it can suppress that the defect of the molecular chain which forms a mold release layer or a primer layer arises, and can suppress that a mold release property falls.
  • the adhesive strength of the base material layer surface, a mold release layer, or a primer layer can be improved by performing the said surface treatment. Thereby, it can suppress that the laminated structure of the mold release film for mold formation separates during mold forming. Therefore, moldability can be improved. Further, since the adhesion strength is improved, for example, when the mold release film is transported, even if the mold release film is deformed, there is no problem in that it is possible to suppress the separation of the laminated structure. .
  • the surface shape of the base material layer may be a smooth mirror surface shape or an uneven shape as long as it does not affect the releasability.
  • the contact angle with respect to hexadecane of the release layer and the contact angle with water within the specific numerical range described above are specified as follows. It has been found that it is preferable to subject the substrate layer to a corona treatment of conditions. Although the detailed mechanism is not clear, it is estimated that the terminal polar functional group of the above-mentioned fluorine compound forms a bond with the polar functional group on the surface of the base material layer. Thereby, the molecular chain of a fluorine compound arranges appropriately. Therefore, it is considered that the contact angle can be in a specific numerical range.
  • a condition of corona treatment when the contact angle is within the above-mentioned numerical range for example, a batch corona treatment machine (for example, CORONA GENERATOR CT-0212 manufactured by Kasuga Electric Co., Ltd.) is used, and the output is It is preferably performed at 0.1 kW or more and 2.0 kW or less, a conveyance speed of 0.1 m / min or more and 40 m / min or less, and a discharge gap of 0.1 mm or more and 20 mm or less.
  • a batch corona treatment machine for example, CORONA GENERATOR CT-0212 manufactured by Kasuga Electric Co., Ltd.
  • the output is It is preferably performed at 0.1 kW or more and 2.0 kW or less, a conveyance speed of 0.1 m / min or more and 40 m / min or less, and a discharge gap of 0.1 mm or more and 20 mm or less.
  • the lower limit value of the thickness of the base material layer according to the third embodiment is, for example, 10 ⁇ m or more, preferably 15 ⁇ m or more, and more preferably 20 ⁇ m or more. Thereby, it can prevent that the rigidity of the mold release film becomes too small. Accordingly, it is possible to prevent wrinkles from being generated on the mold release film at the time of molding and releasing, and transferring the shape of the wrinkles to the surface of the first resin composition to be molded.
  • the upper limit value of the thickness of the base material layer is, for example, 150 ⁇ m or less, preferably 100 ⁇ m or less, more preferably 75 ⁇ m or less, and further preferably 50 ⁇ m or less. Thereby, it can prevent that the rigidity of the mold release film for molding becomes large too much. Accordingly, it is possible to improve the followability of the mold release film to the mold without forming wrinkles during molding and mold release.
  • the lower limit value of the melting point of the base material layer according to the third embodiment is, for example, preferably 160 ° C. or higher, more preferably 200 ° C. or higher, further preferably 220 ° C. or higher, and 225 ° C. or higher. More preferably, it is 230 degreeC or more.
  • fusing point of a base material layer is not limited, For example, it can be 300 degrees C or less. Thereby, the base material layer can exhibit appropriate rigidity even at the time of molding. Therefore, deformation such as wrinkles can be suppressed in the mold release film, and moldability can be improved.
  • the laminated structure of the mold release film according to the third embodiment may further include a primer layer in addition to the release layer and the base material layer described above.
  • the laminated structure of the mold release film may have a primer layer between the release layer and the base material layer.
  • the primer layer is composed of a fourth resin composition.
  • a 4th resin composition is not limited, for example, it is preferable that a siloxane compound is included. Among siloxane compounds, those that form silanol groups by hydrolysis are preferred.
  • the fluorine compound of the third resin composition contains a silanol group, it is more preferable that the silanol groups of the siloxane compound and the fluorine compound can undergo a dehydration condensation reaction. Thereby, a release layer can be formed more stably. Therefore, it can suppress that a mold release property falls because a defect arises in a mold release layer.
  • siloxane compound included in the fourth resin composition examples include epoxy silane, amino silane, alkyl silane, ureido silane, mercapto silane, vinyl silane, styryl silane, methacryl silane, sulfide silane, and isocyanate silane.
  • siloxane compound examples include, for example, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ (amino Ethyl) - ⁇ -aminopropylmethyldimethoxysilane, N-phenyl- ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropyltriethoxysilane N-6- (aminohexyl) -3-aminopropyltrimethoxysilane, N- (3- (trimethoxysilylpropyl) -1,3-benzenedimethanane, ⁇ -glycidoxypropyltriethoxys
  • the method of manufacturing the thin film containing the 4th resin composition which is a primer layer is not limited, A conventionally well-known method can be used according to a 4th resin composition. Specifically, it is preferable to use a method of applying and drying the fourth resin composition prepared on the varnish with a solvent. Examples of the coating method include a roll coating method, a doctor blade coating method, a dip coating method, a spray coating method, a bar coater coating method, and a direct coating method using paper. For example, when producing a primer layer, it is preferable to apply a 4th resin composition directly with respect to the base material layer mentioned above, and to dry a 4th resin composition and to obtain a primer layer.
  • the thickness of the primer layer is not limited.
  • the lower limit of the thickness of the primer layer is, for example, 0.0005 ⁇ m or more, preferably 0.001 ⁇ m or more, more preferably 0.005 ⁇ m or more, and more preferably 0.01 ⁇ m or more. preferable.
  • the adhesiveness of a mold release layer and a base material layer can be improved. Therefore, the mold release film having a laminated structure in which the release layer, the primer layer, and the base material layer are laminated in this order can be stably formed.
  • the thickness of a primer layer it is preferable that it is 3 micrometers or less, for example, it is preferable that it is 2 micrometers or less, and it is preferable that it is 1 micrometer or less. Thereby, it can suppress that the crack arises on the surface of the mold release film, and also the mold followability of the mold release film can be improved.
  • the release film for molding in the third embodiment can be prepared by using a conventionally known method according to the laminated structure.
  • a mold release film having a laminated structure in which a release layer, a primer layer, and a base material layer are laminated in this order is prepared, for example, by preparing the base material layer described above, and a primer layer and a mold release on the base material layer. It can be produced by coating and forming the layers in this order.
  • the laminated structure of the mold release film has at least an outermost release layer.
  • the laminated structure may include one or more release layers, substrate layers, and primer layers, respectively.
  • the laminated structure is a laminated structure in which a release layer and a base material layer are laminated in this order; a laminated structure in which a release layer, a primer layer, and a base material layer are laminated in this order; A laminated structure in which a mold layer, a base material layer, and a second release layer are laminated in this order; a first release layer, a first primer layer, a base material layer, a second primer layer, a second release layer Examples include a laminated structure in which mold layers are laminated in this order; a laminated structure in which a release layer, a first base material layer, a second base material layer, and a third base material layer are laminated in this order.
  • the laminated structure is preferably a laminated structure in which a release layer, a primer layer, and a base material layer are laminated in this order.
  • a release layer a laminated structure in which a release layer, a primer layer, and a base material layer are laminated in this order.
  • mold release property and heat resistance can be improved.
  • the same thing may be used for a release layer, and a different thing may be used.
  • the same base material layer may be used and a different thing may be used.
  • the same primer layer may be used, or different ones may be used.
  • the upper limit of the thickness of the mold release film is, for example, 255 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and further preferably 80 ⁇ m or less. Thereby, the mold release film can ensure followability to the shape of the mold.
  • the lower limit of the thickness of the mold release film is, for example, 0.0001 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and further preferably 25 ⁇ m or more, More preferably, it is 30 ⁇ m or more. Thereby, the mold release film can exhibit mold release property suitably.
  • the release film for molding according to the third embodiment is used for molding the first resin composition.
  • the molding method according to the third embodiment and the obtained electronic device can be the same as those in the first embodiment described above.
  • the molding method using the mold release film according to the third embodiment is not limited as long as it includes the placement step (S1) and the introduction step (S2).
  • Specific molding methods include a transfer molding method or a compression molding method (compression molding method).
  • the release film for molding according to the third embodiment is suitably used in transfer molding. This is because the mold release film according to the third embodiment has a good balance between heat resistance and followability. Thereby, even if the first resin composition is introduced in transfer molding, the mold release film does not melt or shift and can exhibit good release properties.
  • the transfer mold molding method and the compression mold molding method can be the same as those in the first embodiment described above.
  • the mold release film according to the third embodiment can also be suitably used in mold forming at a temperature lower than 175 ° C.
  • the molding temperature of the first resin composition is not limited, and the molding temperature can be set according to the raw material components contained in the first resin composition described later.
  • the lower limit of the molding temperature may be, for example, 120 ° C. or higher, 140 ° C. or higher, 150 ° C. or higher, 160 ° C. or higher, or 175 ° C. or higher.
  • the mold release film for molding according to the third embodiment can exhibit suitable moldability even when it is molded at the lower limit value or more.
  • the upper limit of the molding temperature may be, for example, 240 ° C. or lower, 200 ° C. or lower, and preferably 185 ° C. or lower. Thereby, the fall of the heat resistance of a mold release film and a moldability can be suppressed.
  • the first resin composition according to the third embodiment is not limited.
  • a thermoplastic resin composition or a thermosetting resin composition can be used.
  • the mold release film according to the third embodiment is excellent in heat resistance. Thereby, it can be suitably used, for example, in the molding of a thermosetting resin composition performed at 175 ° C. or higher.
  • a thermosetting resin composition the thing similar to 1st Embodiment mentioned above can be used.
  • a mold release film used for molding the first resin composition The release layer has a laminated structure laminated on the base material layer, The release layer and the base material layer are directly bonded, The outermost layer of the laminated structure has the release layer,
  • the mold release layer is a mold release film formed by crosslinking a copolymer represented by the following general formula (1) and a curing agent.
  • R 1 is a group containing a functional group that reacts with the curing agent.
  • R 1 is a group containing a functional group that reacts with the curing agent.
  • 2. 1. A mold release film as described in A mold release film for molding, in which a surface of the base material layer directly bonded to the release layer is smooth. 3. 1. Or 2.
  • a mold release film as described in In the general formula (1), A is a mold release film including a structural unit represented by the following formula (A1). (In the above formula (A1), n is an integer of 1 or more.) 4). 1. To 3. A mold release film for molding according to any one of The curing agent is a mold release film containing an isocyanate compound. 5). 1. To 4.
  • a mold release film for molding according to any one of A mold forming method using the mold forming release film is a mold forming release film, which is a transfer mold forming method or a compression mold forming method.
  • the mold release film has a mold forming temperature of 120 ° C. or higher and 240 ° C. or lower. 10. 1.
  • a mold forming method using the mold release film according to any one of the above An arrangement step of arranging the mold release film in a mold; And a step of introducing a first resin composition into a molding space formed by the mold release film.
  • the first resin composition is a thermosetting resin composition
  • the said thermosetting resin composition is a molding method containing an epoxy resin.
  • a mold release film is interposed between the first resin composition and the mold, and a mold release layer is brought into intimate contact with the first resin composition to perform molding, whereby the first resin composition is formed.
  • a mold release film for molding used to give an embossed pattern to a molded product, Having a laminated structure in which a release layer constituted by the third resin composition is laminated on the base material layer constituted by the second resin composition;
  • the third resin composition includes a silicone compound or a fluorine compound,
  • the base material layer has irregularities on the surface on which the release layer is laminated,
  • the mold release film has a thickness of 15 ⁇ m or less.
  • a mold release film as described in The mold release film is a mold release film having an embossed shape on the surface provided with the release layer.
  • 3. A mold release film as described in A mold having a glossiness of 1 or more and 23 or less, which is a reflectance of light at an incident angle of 60 °, measured according to JIS Z 8741 with respect to the surface having the embossed shape of the mold release film. Mold release film. 4). 1. To 3. A mold release film for molding according to any one of The third resin composition includes the fluorine compound and a curing agent, The fluorine compound is a copolymer represented by the following general formula (1), The mold release layer is a mold release film formed by crosslinking the fluorine compound and the curing agent.
  • R 1 is a group containing a functional group that reacts with the curing agent.
  • n is an integer of 1 or more.) 6). 4). Or 5.
  • a mold release film as described in Functional group reactive with the curing agent wherein R 1 comprises comprises one or a two or more, release film for molding is selected from the group consisting of hydroxyl group, carboxyl group, an amino group. 7). 4).
  • a mold release film for molding according to any one of The curing agent is a mold release film containing an isocyanate compound. 8). 1.
  • a mold release film for molding according to any one of The mold release film has a mold forming temperature of 120 ° C. or higher and 240 ° C. or lower. 14 1.
  • a mold forming method using the mold release film according to any one of the above An arrangement step of arranging the mold release film in a mold; And a step of introducing a first resin composition into a molding space formed by the mold release film.
  • a mold release film used for molding the first resin composition The mold release film has a release layer as the outermost layer, The release layer is composed of a second resin composition, The second resin composition contains a fluorine compound, The fluorine compound includes a fluorocarbon group, A release film for molding, wherein the contact angle of hexadecane with respect to the surface of the release layer is 20 ° or more and 77 ° or less.
  • a mold release film as described in The mold release film has a laminated structure in which the release layer and the base material layer are laminated, The base material layer is composed of a third resin composition, The mold release film for molding, wherein the third resin composition contains a thermoplastic resin. 3.
  • a mold release film as described in The said fluorine compound is a mold release film shown by following General formula (2).
  • X is a group containing a fluorocarbon group.
  • Y is a group having at least one polar functional group at the terminal, and the polar functional group is selected from the group consisting of a carboxyl group, a sulfonic acid group, an amino group, a hydroxy group, a silanol group, and an alkoxysilane group. Species or two or more. ) 5). 4).
  • a mold release film as described in The said fluorine compound is a mold release film shown by following General formula (3).
  • X is the same as X in the general formula (2).
  • a plurality of A's are groups formed by one or more atoms independently selected from the group consisting of a hydrogen atom, a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom and a silicon atom. .
  • A may be the same as or different from each other.
  • At least one of A is a hydroxy group or an alkoxy group having 1 to 10 carbon atoms. ) 6). 2.
  • a mold release film according to any one of the above, The laminated structure has a primer layer between the release layer and the base material layer, The primer layer is composed of a fourth resin composition, The fourth resin composition is a mold release film containing a siloxane compound. 7). 1. To 6. A mold release film for molding according to any one of The first resin composition is a thermosetting resin composition, The thermosetting resin composition is a mold release film containing an epoxy resin. 8). 1. To 7. A mold release film for molding according to any one of The mold molding is a mold release film for molding which is a transfer mold molding method or a compression mold molding method. 9. 1. To 8.
  • Example A First, details of the release films for molding of Examples A-1 to A-4 and Comparative Examples A-1 to A-2 will be described in detail.
  • Example A-1 First, the base material layer 1 was prepared.
  • a stretched polyethylene terephthalate film (E5100, manufactured by Toyobo Co., Ltd.) having a thickness of 50 ⁇ m was prepared.
  • the base material layer 1 was a film having smooth surfaces.
  • the base material layer 1 was subjected to a surface modification treatment.
  • corona discharge treatment was performed. Specifically, the corona discharge treatment was performed using a batch corona treatment machine (CORONA GENERATOR CT-0212 manufactured by Kasuga Electric Co., Ltd.) with an output of 2 kW, a conveyance speed of 40 m / min, and a discharge gap of 20 mm.
  • CORONA GENERATOR CT-0212 manufactured by Kasuga Electric Co., Ltd.
  • the base material layer subjected to the corona discharge treatment was allowed to stand so as not to touch air. After 168 hours of standing, the third resin composition prepared in varnish was applied to the surface of the surface-modified base material layer 1.
  • a 3rd resin composition 13 weight part of main ingredients and 1 weight part of hardening
  • the main component of Obligato PS306R manufactured by AGC Co., Ltd. is represented by the general formula (1) described in the section of this embodiment, A includes the structural unit of the above formula (A2), and B includes the above general formula.
  • a copolymer containing the structural unit (B1) is included.
  • the curing agent of Obligato PS306R manufactured by AGC Co., Ltd. contains a bifunctional isocyanate compound.
  • the third resin composition was applied using a gravure roll coating method. After the coating, the mold of Example A-1 is obtained by sufficiently crosslinking the third resin composition at a temperature of 120 ° C. for 20 minutes to form the release layer 2 on the base material layer 1.
  • a mold release film 10 was obtained.
  • the dry thickness of the release layer 2 was 0.8 ⁇ m.
  • the mold release film of Example A-1 was prepared by applying an adhesive tape (Caraliyan PP cut E, manufactured by Denki Kagaku Kogyo Co., Ltd.) to the surface of the release layer 2, and then peeling the adhesive tape.
  • the release layer 2 could not be peeled from the base material layer 1.
  • Example A-2 As the third resin composition, the method described in Example A-1 was used except that 13 parts by weight of the main ingredient of obligato manufactured by AGC Co-Tech and 1 part by weight of the curing agent were dissolved in 42 parts by weight of methyl ethyl ketone. Then, a mold release film of Example A-2 was produced. The dry thickness of the release layer 2 was 0.4 ⁇ m. In addition, the mold release film of Example A-2 was obtained by applying an adhesive tape (Carariyan PP cut E, manufactured by Denki Kagaku Kogyo Co., Ltd.) to the surface of the release layer 2, and then peeling the adhesive tape. The release layer 2 could not be peeled from the base material layer 1.
  • an adhesive tape Carariyan PP cut E, manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Example A-3 Except that a stretched polyethylene terephthalate film (E5100, manufactured by Toyobo Co., Ltd.) having a thickness of 38 ⁇ m was prepared as the base material layer, the mold release film of Example A-3 was prepared by the method described in Example A-1. Produced.
  • the base material layer 1 was a film having smooth surfaces.
  • the mold release film of Example A-3 was obtained by applying an adhesive tape (Carariyan PP cut E, manufactured by Denki Kagaku Kogyo Co., Ltd.) to the surface of the release layer 2, and then peeling the adhesive tape. The release layer 2 could not be peeled from the base material layer 1.
  • an adhesive tape Carariyan PP cut E, manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Example A-4 As a base material layer, a stretched polyethylene terephthalate film (E5100, manufactured by Toyobo Co., Ltd.) having a thickness of 38 ⁇ m is prepared.
  • a release film for molding of Example A-4 was prepared by the method described in Example A-1, except that a part was dissolved in 42 parts by weight of methyl ethyl ketone.
  • the base material layer 1 was a film having smooth surfaces.
  • the dry thickness of the release layer 2 was 0.4 ⁇ m.
  • the mold release film of Example A-4 was obtained by applying an adhesive tape (Carariyan PP cut E, manufactured by Denki Kagaku Kogyo Co., Ltd.) to the surface of the release layer 2, and then peeling the adhesive tape.
  • the release layer 2 could not be peeled from the base material layer 1.
  • Comparative Example A-1 A mold release film for molding of Comparative Example A-1 was prepared by the method described in Example A-1, except that the surface modification treatment was not performed on the base material layer 1.
  • the mold release film of Comparative Example A-1 was obtained by applying an adhesive tape (Carariyan PP cut E, manufactured by Denki Kagaku Kogyo Co., Ltd.) to the surface of the release layer 2, and then peeling the adhesive tape. It was confirmed that the release layer 2 was peeled from the base material layer 1 and the release layer 2 could be transferred to the adhesive tape, and the release layer 2 and the base material layer 1 were not directly bonded. .
  • an adhesive tape Carariyan PP cut E, manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Comparative Example A-2 For the mold release film produced in Comparative Example A-1, the base material layer 1 was obtained by applying and peeling an adhesive tape (Carariyan PP cut E, manufactured by Denki Kagaku Kogyo Co., Ltd.) on the surface of the release layer 2. The release layer 2 was peeled off, and the release layer 2 was transferred to the adhesive tape. Next, an acrylic adhesive (Primal N580, manufactured by Rohm and Haas Co., Ltd.) is applied to the base material layer 1 at a coating amount of 50 g / m 2 , and the release layer 2 transferred to the adhesive tape is adhered and dried. Thus, a release film for molding of Comparative Example A-2 was produced, in which the base material layer 1, the dried acrylic adhesive, and the release layer 2 were laminated in this order. The thickness of the dried acrylic adhesive layer was 0.1 mm.
  • thermosetting resin composition used for evaluation of a moldability and mold release property was produced. Details of the manufacturing method will be described. The following were used as the raw material of the thermosetting resin composition used for evaluation of moldability and mold release.
  • Epoxy resin 1 Biphenyl aralkyl type epoxy resin (Nippon Kayaku Co., Ltd., NC-3000) -Epoxy resin 2: biphenyl type epoxy resin (Mitsubishi Chemical Corporation, YL6677)
  • Curing agent 1 Biphenylene skeleton-containing phenol aralkyl resin (Nippon Kayaku Co., Ltd., GPH-65)
  • Curing agent 2 triphenylmethane type phenol resin modified with formaldehyde (Air Water, HE910-20)
  • Curing accelerator Triphenylphosphine (Hokuko Chemical Industries, TPP) ⁇
  • Inorganic filler fused spherical silica (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-950FC)
  • Colorant Carbon black (Mitsubishi Chemical Corporation MA-600)
  • Coupling agent N-phenyl- ⁇ -aminopropyltrimethoxysilane (manufact
  • each raw material component was mixed at room temperature using a mixer, and then roll kneaded while heating with two rolls at 45 ° C. and 90 ° C. to obtain a kneaded product.
  • the kneaded product was cooled and then pulverized to obtain a pulverized product.
  • the pulverized product was tableted to obtain a tablet-shaped thermosetting resin composition.
  • thermosetting resin composition After setting the mold release film on the transfer mold machine (TOWA, Y-SERIES), the mold release machine's internal space is vacuumed to follow the mold release film. I let you. Next, the tablet of the thermosetting resin composition was disposed at a predetermined position. Thereafter, the mold provided in the molding machine is clamped at a clamping pressure of 300 kg / cm 2 , and then the molten thermosetting resin composition is provided in the molding machine at an injection pressure of 80 kg / cm 2. Poured into the interior space of the mold and molded at 175 ° C. for 2 minutes. After molding, the mold was opened, and the cured product of the thermosetting resin composition was taken out from the mold.
  • the mold release films 10 of Examples A-1 to A-4 have excellent moldability without causing the base material layer 1 and the release layer 2 to peel off by molding. It showed releasability.
  • the mold release films 10 of Comparative Examples A-1 and A-2 the base material layer 1 and the release layer 2 were peeled off by molding, and the moldability and mold release properties were as described in Example A- It was confirmed that the film was inferior to the mold release film of 1 to A-4.
  • Example B Details of the mold release films of Examples B-1 to B-4 and Comparative Examples B-1 to B-2 will be described in detail.
  • Example B-1 First, the base material layer 1 was prepared.
  • a biaxially stretched polyethylene terephthalate film (made by Kaisei Kogyo Co., Ltd., type A) having a thickness of 50 ⁇ m was prepared.
  • the base material layer 1 is obtained by subjecting one surface of a polyethylene terephthalate film to sandblasting. That is, one surface of the base material layer 1 is provided with unevenness, and the other surface is smooth.
  • a surface modification treatment was performed on the surface of the base material layer 1 having the unevenness. As the surface modification treatment, corona discharge treatment was performed.
  • the corona discharge treatment was performed using a batch corona treatment machine (CORONA GENERATOR CT-0212 manufactured by Kasuga Electric Co., Ltd.) with an output of 2 kW, a conveyance speed of 40 m / min, and a discharge gap of 20 mm.
  • a batch corona treatment machine CORONA GENERATOR CT-0212 manufactured by Kasuga Electric Co., Ltd.
  • the arithmetic average roughness Ra of the unevenness of the base material layer 1 was measured in accordance with JIS B 0601-2013, it was 0.62 ⁇ m.
  • the 10-point average surface roughness Rz was measured according to JIS B 0601-1994 and found to be 4.97 ⁇ m.
  • the base layer subjected to the corona discharge treatment was allowed to stand so as not to come into contact with air.
  • the 3rd resin composition prepared to the varnish was applied to the one surface provided with the unevenness
  • FIG. Here, as a 3rd resin composition, 13 weight part of main ingredients and 1 weight part of hardening
  • the main component of Obligato PS306R manufactured by AGC Co., Ltd. is represented by the general formula (1) described in the section of this embodiment, A includes the structural unit of the above formula (A2), and B includes the above general formula.
  • a copolymer containing the structural unit (B1) is included.
  • the curing agent of Obligato PS306R manufactured by AGC Co., Ltd. contains a bifunctional isocyanate compound.
  • the coating of the third resin composition was performed using a gravure roll coating method. After coating, the coating is dried at a temperature of 100 ° C. for 1 minute, and then subjected to a heat treatment at a temperature of 120 ° C. for 20 minutes to cause the third resin composition to undergo a crosslinking reaction, thereby sufficiently crosslinking the third resin composition.
  • the release layer 2 on the material layer 1 the release film 10 for molding of Example B-1 was obtained. Here, it was visually confirmed that the mold release film 10 has an embossed shape on the surface on which the release layer is formed.
  • the dry thickness of the release layer 2 was 0.4 ⁇ m. Moreover, about the surface provided with the embossed shape of the mold release film 10, the glossiness was 11.0. The glossiness was measured in accordance with JIS Z 8741 with an incident angle of light of 60 °.
  • Example B-2 Except that a biaxially stretched polyethylene terephthalate film (Kaisei Kogyo Co., Ltd., type AZ) having a thickness of 50 ⁇ m was prepared as the base material layer 1, the mold release of Example B-2 was carried out by the method described in Example B-1. A mold film 10 was produced. Here, it was visually confirmed that the mold release film 10 has an embossed shape on the surface on which the release layer is formed.
  • the base material layer 1 gives the sand blast process to the single side
  • the arithmetic mean roughness Ra of the unevenness of the base material layer 1 was measured according to JIS B 0601-2013, and was 0.67 ⁇ m. Further, the 10-point average surface roughness Rz was measured according to JIS B 0601-1994, and it was 5.24 ⁇ m. The dry thickness of the release layer 2 was 0.4 ⁇ m. Furthermore, the glossiness of the surface having the embossed shape of the mold release film 10 was 10.0. The glossiness was measured in accordance with JIS Z 8741 with an incident angle of light of 60 °.
  • Example B-3 Except that a biaxially stretched polyethylene terephthalate film (Kaisei Kogyo Co., Ltd., Type D) having a thickness of 50 ⁇ m was prepared as the base material layer 1, the mold release of Example B-3 was performed by the method described in Example B-1. A mold film 10 was produced. Here, it was visually confirmed that the mold release film 10 has an embossed shape on the surface on which the release layer is formed.
  • the base material layer 1 gives the sand blast process to the single side
  • the arithmetic mean roughness Ra of the unevenness of the base material layer 1 was measured according to JIS B 0601-2013, and was 0.43 ⁇ m. Further, the 10-point average surface roughness Rz was measured according to JIS B 0601-1994 and found to be 4.10 ⁇ m. The dry thickness of the release layer 2 was 0.4 ⁇ m. Moreover, about the surface provided with the embossed shape of the mold release film 10, the glossiness was 14.4. The glossiness was measured in accordance with JIS Z 8741 with an incident angle of light of 60 °.
  • Example B-4 A biaxially stretched polyethylene terephthalate film (made by Kaisei Kogyo Co., Ltd., type AZ) having a thickness of 50 ⁇ m is prepared as the base material layer 1, and the third resin composition is 13 wt. Part B and 1 part by weight of a curing agent were dissolved in 28 parts by weight of methyl ethyl ketone, and the coating of the third resin composition was carried out in Example B-1, except that the coating was performed using a bar coater coating method.
  • the mold release film 10 of Example B-4 was produced by the method described. Here, it was visually confirmed that the mold release film 10 has an embossed shape on the surface on which the release layer is formed.
  • the base material layer 1 gives the sand blast process to the single side
  • the arithmetic mean roughness Ra of the unevenness of the base material layer 1 was measured according to JIS B 0601-2013, and was 0.67 ⁇ m. Further, the 10-point average surface roughness Rz was measured according to JIS B 0601-1994, and it was 5.24 ⁇ m.
  • the release layer 2 had a dry thickness of 0.8 ⁇ m.
  • the glossiness of the surface having the embossed shape of the mold release film 10 was 12.7. The glossiness was measured in accordance with JIS Z 8741 with an incident angle of light of 60 °.
  • Comparative Example B-1 As the third resin composition, except that 13 parts by weight of the main ingredient of Obligato PS306R manufactured by AGC Co-Tech and 1 part by weight of the curing agent were dissolved in 42 parts by weight of methyl ethyl ketone and used as described in Example B-1. By the method, a mold release film 10 of Comparative Example B-1 was produced. The release layer 2 had a dry thickness of 16 ⁇ m.
  • a biaxially stretched polyethylene terephthalate film (made by Kaisei Kogyo Co., Ltd., type A) having a thickness of 50 ⁇ m was prepared.
  • the base material layer 1 is obtained by subjecting one surface of a polyethylene terephthalate film to sandblasting. That is, one surface of the base material layer 1 is provided with unevenness, and the other surface is smooth.
  • the arithmetic average roughness Ra of the unevenness of the base material layer 1 was measured in accordance with JIS B 0601-2013, it was 0.62 ⁇ m.
  • the 10-point average surface roughness Rz was measured according to JIS B 0601-1994 and found to be 4.97 ⁇ m.
  • This base material layer 1 was used as it was as the mold release film 10 of Comparative Example B-2.
  • the molding was performed such that the surface of the base material layer 1 having the unevenness was in close contact with the first resin composition. Note that when the mold was formed with the mold release film of Comparative Example B-2, the mold could not be released, so the printability test was not performed.
  • thermosetting resin compositions used for evaluation of print readability and mold release were prepared. Details of the manufacturing method will be described. The following were used as the raw material of the thermosetting resin composition used for evaluation of moldability and mold release.
  • Epoxy resin 1 Biphenyl aralkyl type epoxy resin (Nippon Kayaku Co., Ltd., NC-3000) -Epoxy resin 2: biphenyl type epoxy resin (Mitsubishi Chemical Corporation, YL6677)
  • Curing agent 1 Biphenylene skeleton-containing phenol aralkyl resin (Nippon Kayaku Co., Ltd., GPH-65)
  • Curing agent 2 triphenylmethane type phenol resin modified with formaldehyde (Air Water, HE910-20)
  • Curing accelerator Triphenylphosphine (Hokuko Chemical Industries, TPP) ⁇
  • Inorganic filler fused spherical silica (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-950FC)
  • Colorant Carbon black (Mitsubishi Chemical Corporation MA-600)
  • Coupling agent N-phenyl- ⁇ -aminopropyltrimethoxysilane (manufact
  • each raw material component was mixed at room temperature using a mixer, and then roll kneaded while heating with two rolls at 45 ° C. and 90 ° C. to obtain a kneaded product.
  • the kneaded product was cooled and then pulverized to obtain a pulverized product.
  • the pulverized product was tableted to obtain a tablet-shaped thermosetting resin composition.
  • thermosetting resin composition After setting the mold release film on the transfer mold machine (TOWA, Y-SERIES), the mold release machine's internal space is vacuumed to follow the mold release film. I let you. Next, the tablet of the thermosetting resin composition was disposed at a predetermined position. Thereafter, the mold provided in the molding machine is clamped at a clamping pressure of 300 kg / cm 2 , and then the molten thermosetting resin composition is provided in the molding machine at an injection pressure of 80 kg / cm 2. Poured into the interior space of the mold and molded at 175 ° C. for 2 minutes. The molding was performed so that the embossed shape of the release film for molding and the thermosetting resin composition were in close contact with each other. After molding, the mold was opened, and the cured product of the thermosetting resin composition was taken out from the mold.
  • the molded articles using the mold release films 10 of Examples B-1 to B-4 used the mold release films of Comparative Examples B-1 to B-2. Compared with the case, it was excellent in the readability of printing of a molded product. Further, as shown in Table 2, the mold release films 10 of Examples B-1 to B-4 were superior to the mold release films of Comparative Examples B-1 to B-2. It showed releasability.
  • Example C Details of the mold release films of Examples C-1 to C-8 and Comparative Examples C-1 to C-5 will be described in detail.
  • Example C-1 First, a biaxially stretched polyethylene terephthalate film (hereinafter referred to as O-PET film) (Toyobo Co., Ltd., ester film, model number E5100) having a thickness of 38 ⁇ m was prepared as a base material layer. The surface of the O-PET film was subjected to corona treatment with an output of 0.26 kW, a conveyance speed of 12 m / min, and a discharge gap of 4 mm. Next, a primer layer was formed on the surface of the base material layer.
  • O-PET film biaxially stretched polyethylene terephthalate film
  • Toyobo Co., Ltd., ester film, model number E5100 ester film, model number E5100
  • silane coupling agent 1 (Fluoro Technology Co., Ltd., PC-3B), which is a siloxane compound, was applied to one surface of the base material layer with a bar coater so as to have a coating thickness of 4 ⁇ m.
  • the silane coupling agent was dried at 120 ° C. for 10 minutes to form a primer layer.
  • the thickness of the primer layer after drying was 0.03 ⁇ m.
  • a release layer was formed on the surface of the primer layer.
  • fluorine compound 1 manufactured by Fluoro Technology, FG-5084SH
  • the fluorine compound 1 was dried at 25 ° C.
  • fluorine compound 1 manufactured by Fluoro Technology, FG-5084SH
  • FG-5084SH fluorine compound 1
  • the fluorine compound 1 was dried at 25 ° C. for 90 minutes to form a release layer.
  • the thickness of the release layer was 0.008 ⁇ m.
  • a mold release film was prepared by laminating a base material layer, a primer layer, and a release layer in this order.
  • the fluorine compound 1 includes the structural unit represented by (X1) described above.
  • the fluorine compound 1 contains an alkoxysilane group at the end of the molecular chain.
  • the fluorine compound 1 includes the structural unit represented by the above-described (X1) in the general formula (2) described above, and three of A are alkoxy groups having 1 to 10 carbon atoms.
  • Example C-2 A mold release film for molding was produced in the same manner as in Example C-1, except that the method for forming the release layer was changed as follows. Fluorine compound 1 (FG-5084SH, manufactured by Fluoro Technology Co., Ltd.) was applied to the primer layer surface with paper so as to have a coating thickness of 2 ⁇ m. Next, the fluorine compound 1 was dried at 25 ° C. for 90 minutes to form a release layer. After drying, the thickness of the release layer was 0.002 ⁇ m. From the above steps, a mold release film was prepared by laminating a base material layer, a primer layer, and a release layer in this order.
  • Fluorine compound 1 FG-5084SH, manufactured by Fluoro Technology Co., Ltd.
  • Example C-3 A mold release film for molding was produced in the same manner as in Example C-1, except that the method for forming the release layer was changed as follows.
  • Fluorine compound 1 (FG-5084SH, manufactured by Fluoro Technology Co., Ltd.) was applied to the primer layer surface with paper so as to have a coating thickness of 2 ⁇ m.
  • the fluorine compound 1 was dried at 25 ° C. for 90 minutes.
  • Fluorine Compound 1 manufactured by Fluoro Technology, FG-5084SH
  • a mold release film was prepared by laminating a base material layer, a primer layer, and a release layer in this order.
  • Example C-4 A mold release film for molding was produced in the same manner as in Example C-1, except that the molding method of the mold release layer was changed to 120 ° C. and 10 minutes for the drying condition of the fluorine compound 1. After drying, the thickness of the release layer was 0.008 ⁇ m.
  • Example C-5 a biaxially stretched polyethylene terephthalate film (hereinafter referred to as O-PET film) (Toyobo Co., Ltd., ester film, model number E5100) having a thickness of 38 ⁇ m was prepared as a base material layer.
  • O-PET film a biaxially stretched polyethylene terephthalate film (hereinafter referred to as O-PET film) (Toyobo Co., Ltd., ester film, model number E5100) having a thickness of 38 ⁇ m was prepared as a base material layer.
  • the surface of the O-PET film was subjected to corona treatment with an output of 0.26 kW, a conveyance speed of 12 m / min, and a discharge gap of 4 mm.
  • a release layer was formed on the surface of the base material layer.
  • the fluorine compound 2 (manufactured by Neos, Fleet 85) was molded on one side of the base material layer with a bar coater so as to have a coating thickness of 12 ⁇ m. Next, the fluorine compound 2 was dried at 25 ° C. for 24 hours to form a release layer. After drying, the thickness of the release layer was 0.12 ⁇ m. From the above steps, a mold release film was prepared by laminating the base material layer and the release layer in this order.
  • the fluorine compound 2 includes the structural unit represented by (X1) described above. Moreover, the fluorine compound 2 contains a carboxyl group at the end of the molecular chain. That is, the fluorine compound 2 is a compound in which, in the general formula (1) described above, X includes the structural unit represented by (X1) described above, and Y includes a carboxyl group at the terminal.
  • Example C-6 a biaxially stretched polyethylene terephthalate film (hereinafter referred to as O-PET film) (Toyobo Co., Ltd., ester film, model number E5100) having a thickness of 38 ⁇ m was prepared as a base material layer.
  • O-PET film a biaxially stretched polyethylene terephthalate film (hereinafter referred to as O-PET film) (Toyobo Co., Ltd., ester film, model number E5100) having a thickness of 38 ⁇ m was prepared as a base material layer.
  • the surface of the O-PET film was subjected to corona treatment with an output of 0.26 kW, a conveyance speed of 12 m / min, and a discharge gap of 4 mm.
  • a release layer was formed on the surface of the base material layer.
  • fluorine compound 3 manufactured by AGC Seimi Chemical Co., Cytop CTX-809A was applied to one surface of the base material layer with a bar coater so as to have a coating thickness of 12 ⁇ m.
  • fluorine compound 3 was dried at 25 ° C. for 20 minutes.
  • fluorine compound 3 AGC Seimi Chemical Co., Cytop CTX-809A was applied again with a bar coater to a coating thickness of 12 ⁇ m.
  • the fluorine compound 3 was dried at 25 ° C. for 20 minutes to form a release layer. The thickness of the release layer was 1.2 ⁇ m.
  • the fluorine compound 3 includes the structural unit represented by (X1) described above. Moreover, the fluorine compound 3 contains a carboxyl group at the end of the molecular chain. That is, the fluorine compound 3 is a compound in which, in the general formula (1) described above, X includes the structural unit represented by (X1) described above, and Y includes a carboxyl group at the terminal.
  • Example C-7 a biaxially stretched polyethylene terephthalate film (hereinafter referred to as O-PET film) (Toyobo Co., Ltd., ester film, model number E5100) having a thickness of 38 ⁇ m was prepared as a base material layer.
  • O-PET film a biaxially stretched polyethylene terephthalate film (hereinafter referred to as O-PET film) (Toyobo Co., Ltd., ester film, model number E5100) having a thickness of 38 ⁇ m was prepared as a base material layer.
  • the surface of the O-PET film was subjected to corona treatment with an output of 0.26 kW, a conveyance speed of 12 m / min, and a discharge gap of 4 mm.
  • a release layer was formed on the surface of the base material layer.
  • fluorine compound 4 (manufactured by Fluoro Technology, 6050) was formed on one side of the base material layer with a bar coater so as to have a coating thickness of 12 ⁇ m. Next, the fluorine compound 4 was dried at 80 ° C. for 10 minutes. After drying, the fluorine compound 4 (Fluoro Technology, 6050) was once again molded with a bar coater so as to have a coating thickness of 12 ⁇ m. Next, the fluorine compound 4 was dried at 80 ° C. for 10 minutes to form a release layer. The thickness of the release layer was 0.24 ⁇ m. From the above steps, a mold release film was prepared by laminating the base material layer and the release layer in this order.
  • the fluorine compound 4 includes the structural unit represented by (X1) described above. Moreover, the fluorine compound 4 contains a sulfonic acid group at the end of the molecular chain. That is, the fluorine compound 4 is a compound in which, in the general formula (1) described above, X includes the structural unit represented by (X1) described above, and Y includes a sulfonic acid group at the terminal.
  • Example C-8 First, as a base material layer, a biaxially stretched polyethylene terephthalate film (hereinafter referred to as O-PET film) (hereinafter referred to as O-PET film) having a thickness of 38 ⁇ m subjected to corona discharge treatment on both surfaces was prepared. . The surface of the O-PET film was subjected to corona treatment with an output of 0.26 kW, a conveyance speed of 12 m / min, and a discharge gap of 4 mm. Next, a release layer was formed on the surface of the base material layer.
  • O-PET film biaxially stretched polyethylene terephthalate film having a thickness of 38 ⁇ m subjected to corona discharge treatment on both surfaces
  • fluorine compound 5 (manufactured by Neos, RB-5910EX-III) was molded on one surface of the release layer with a bar coater so as to have a coating thickness of 12 ⁇ m. Next, the fluorine compound 5 was dried at 100 ° C. for 60 minutes to form a release layer. The thickness of the release layer was 0.1 ⁇ m. From the above steps, a mold release film was prepared by laminating the base material layer and the release layer in this order.
  • the fluorine compound 5 includes the structural unit represented by (X1) described above. Moreover, the fluorine compound 5 contains an alkoxysilane group at the end of the molecular chain.
  • the fluorine compound 5 includes the above-described general formula (2), wherein X includes the structural unit represented by the above-described (X1), and three of A are alkoxy groups having 1 to 10 carbon atoms. is there.
  • PVDF film having a thickness of 38 ⁇ m was prepared by an extrusion T-die method using a vinylidene fluoride homopolymer (Solvay (registered trademark) 9009) as a release layer. From the above steps, a mold release film comprising a release layer was prepared.
  • Solvay registered trademark
  • PTFE polytetrafluoroethylene resin film
  • Example C-5 A biaxially stretched polyethylene terephthalate film (hereinafter referred to as O-PET film) (Toyobo Co., Ltd., ester film, model number E5100) having a thickness of 38 ⁇ m was prepared as a base material layer.
  • O-PET film biaxially stretched polyethylene terephthalate film
  • the surface of the O-PET film was subjected to corona treatment with an output of 0.26 kW, a conveyance speed of 12 m / min, and a discharge gap of 4 mm.
  • a release layer was formed on the surface of the base material layer subjected to the corona discharge treatment.
  • fluorine compound 6 (FS-1010TH, manufactured by Fluoro Technology Co., Ltd.) was applied to one side of the base material layer with a bar coater so as to have a coating thickness of 12 ⁇ m. Next, the fluorine compound 6 was dried at 25 ° C. for 90 minutes. After drying, fluorine compound 6 (manufactured by Fluoro Technology, FS-1010TH) was applied again with a bar coater to a coating thickness of 12 ⁇ m. After molding, it was dried at 25 ° C. for 90 minutes to form a release layer. After drying, the release layer had a thickness of 3.0 ⁇ m.
  • the fluorine compound 6 includes the structural unit represented by (X1) described above.
  • the fluorine compound 6 does not contain a polar functional group at the end of the molecular chain.
  • thermosetting resin composition A tablet of a thermosetting resin composition used for evaluation of releasability and heat resistance was produced. Details of the manufacturing method will be described. The following were used as raw materials for the thermosetting resin composition used for evaluation of releasability and heat resistance.
  • Epoxy resin 1 Biphenyl aralkyl type epoxy resin (Nippon Kayaku Co., Ltd., NC-3000) -Epoxy resin 2: biphenyl type epoxy resin (Mitsubishi Chemical Corporation, YL6677)
  • Curing agent 1 Biphenylene skeleton-containing phenol aralkyl resin (Nippon Kayaku Co., Ltd., GPH-65)
  • Curing agent 2 triphenylmethane type phenol resin modified with formaldehyde (Air Water, HE910-20)
  • Curing accelerator Triphenylphosphine (Hokuko Chemical Industries, TPP) ⁇
  • Inorganic filler fused spherical silica (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-950FC)
  • Colorant Carbon black (Mitsubishi Chemical Corporation MA-600)
  • Coupling agent N-phenyl- ⁇ -aminopropyltrimethoxysilane (manufact
  • the mold release film is vacuum-evacuated to remove the mold release film. It was made to follow the mold.
  • the tablet of the thermosetting resin composition was placed at a predetermined position of the molding machine. Thereafter, the mold provided in the molding machine is clamped at a clamping pressure of 300 kg / cm 2 , and then the molten thermosetting resin composition is provided in the molding machine at an injection pressure of 80 kg / cm 2. Poured into the inner space of the mold and molded at 175 ° C. for 2 minutes to produce a cured product of the thermosetting resin composition.
  • the mold release property between the mold release film and the cured product of the thermosetting resin composition when the mold was opened was evaluated according to the following criteria.
  • X When the mold was opened, the mold release film and the cured product of the thermosetting resin composition were not released.
  • the mold release films of Examples C-1 to C-8 were more easily releasable than the mold release films of Comparative Examples C-1 to C-5. It was confirmed that it was excellent in heat resistance.

Abstract

The present invention pertains to a release film (10) for molding, which is used for molding a first resin composition with a mold, and which has a laminate structure obtained by laminating a release layer comprising a third resin composition on a base material layer comprising a second resin composition, wherein: the release layer (2) and the base material layer (1) are directly joined; the laminate structure has the release layer (2) in the outermost layer thereof; and the release layer (2) is formed by crosslinking a copolymer of a specific structure and a curing agent.

Description

モールド成形用離型フィルム及びモールド成形方法Release film for molding and molding method
 本発明は、モールド成形用離型フィルム及びモールド成形方法に関する。 The present invention relates to a mold release film and a mold forming method.
 モールド成形用の離型フィルムとして、様々な技術が開発されている。例えば、特許文献1には、フレキシブルプリント配線基板等の電子基板の製造時における回路部の保護フィルム、または、半導体封止材料又は発光ダイオード封止材料のモールド成形において、封止材料とモールド成形機の金型との間に挟み込み、封止材料と金型とを離型するためのモールド成形用離型フィルムとして用いられる離型フィルムが記載されている。特許文献1によれば、離型フィルムが、特定の官能基を含有するフッ素樹脂及び離型成分を含む組成物から形成された塗膜と、非フッ素化ポリマーから形成された層とを含むことで、優れた離型性を有することが記載されている。 Various technologies have been developed as mold release films. For example, Patent Document 1 discloses that a sealing material and a molding machine are used in molding a protective film for a circuit unit or a semiconductor sealing material or a light-emitting diode sealing material when an electronic board such as a flexible printed wiring board is manufactured. There is described a release film that is used as a mold release film for sandwiching between a mold and a mold to release the sealing material and the mold. According to Patent Document 1, the release film includes a coating film formed from a composition containing a fluororesin containing a specific functional group and a release component, and a layer formed from a non-fluorinated polymer. It is described that it has excellent releasability.
特開2015-074201号公報Japanese Patent Laid-Open No. 2015-074201
 本発明者らは、従来のモールド成形用離型フィルムを用いて、エポキシ樹脂を含む樹脂組成物をモールド成形することについて検討した。その結果、特許文献1に記載のモールド成形用離型フィルムを用いる場合、特定の官能基を含有するフッ素樹脂及び離型成分を含む組成物から形成された塗膜と、非フッ素化ポリマーから形成された層とが剥離してしまうことがわかった。
 なお、本明細書において、モールド成形とは、金型を用いて成形することを示す。
The inventors of the present invention have studied the molding of a resin composition containing an epoxy resin using a conventional mold release film. As a result, when the mold release film described in Patent Document 1 is used, it is formed from a coating film formed from a composition containing a fluororesin containing a specific functional group and a release component, and a non-fluorinated polymer. It was found that the formed layer peeled off.
In addition, in this specification, mold forming means shape | molding using a metal mold | die.
 上述した塗膜及び層が剥離してしまう場合、モールド成形される樹脂組成物が、モールド成形用離型フィルムの離型性を備えない部材と接触してしまい、離型性が低下するという不都合があった。また、モールド成形用離型フィルムは、平滑な面を備え、モールド成形される樹脂組成物に鏡面を転写するが、剥離によって平滑な面が損なわれる。これにより、成形される樹脂組成物の表面に、剥離に由来する傷が転写されてしまい、成形性が低下するという不都合があった。
 以上より、本発明は、離型性、成形性に優れるモールド成形用離型フィルムを提供することを目的とする。
When the above-described coating film and layer are peeled off, the resin composition to be molded comes into contact with a member that does not have the mold release property of the mold release film, and the mold release property is lowered. was there. Moreover, the mold release film has a smooth surface and transfers the mirror surface to the resin composition to be molded, but the smooth surface is damaged by peeling. As a result, the surface of the resin composition to be molded is transferred with scratches derived from peeling, and the moldability is lowered.
In view of the above, an object of the present invention is to provide a mold release film having excellent mold release properties and moldability.
 また、本発明者らは、従来のモールド成形用離型フィルムを用いて、電子素子を第1の樹脂組成物で封止するモールド成形を行い、次いで、第1の樹脂組成物の成形物に文字を印字した電子装置について、文字の可読性を検討した。その結果、電子装置に印字された文字の可読性が低いことが判明した。
 ここで、本発明者らは、電子装置の表面の文字の可読性を向上させるために、第1の樹脂組成物の成形物の表面構造について検討した。その結果、第1の樹脂組成物の成形物の表面構造は、平滑ではなく、マット調などのエンボス模様であると、印字された文字の可読性が向上する事が判明した。
In addition, the present inventors performed mold molding for sealing an electronic element with a first resin composition using a conventional mold release film, and then formed a molded product of the first resin composition. We examined the legibility of electronic devices with printed characters. As a result, it has been found that the readability of characters printed on the electronic device is low.
Here, the present inventors examined the surface structure of the molded product of the first resin composition in order to improve the readability of characters on the surface of the electronic device. As a result, it has been found that the readability of the printed characters is improved when the surface structure of the molded product of the first resin composition is not smooth but has an embossed pattern such as a matte tone.
 本発明者らは、エンボス模様を第1の樹脂組成物の成形物に付与する方法について検討した。その結果、モールド成形用離型フィルムが、基材層の上に、離型層を積層する積層構造を有し、さらに、基材層が、離型層が積層される面に凹凸を備えることによって、第1の樹脂組成物の成形物に対して、基材層の凹凸に由来するエンボス模様を付与できることを知見した。
 ここで、上記モールド成形は、第1の樹脂組成物及び金型の間にモールド成形用離型フィルムを介在させ、第1の樹脂組成物にモールド成形用離型フィルムの離型層を密着させることで行った。
The present inventors examined a method for imparting an embossed pattern to a molded product of the first resin composition. As a result, the mold release film has a laminated structure in which the release layer is laminated on the base material layer, and the base material layer has unevenness on the surface on which the release layer is laminated. Thus, it was found that an embossed pattern derived from the unevenness of the base material layer can be imparted to the molded product of the first resin composition.
Here, in the molding, the mold release film is interposed between the first resin composition and the mold, and the mold release layer of the mold release film is adhered to the first resin composition. I went there.
 ここで、本発明者らは、印字された文字の可読性を向上させるために、離型層の厚みについて検討した。その結果、離型層の厚みが大きい場合、基材層の凹凸を離型層が埋設してしまい、可読性を向上させるのに十分なエンボス模様を第1の樹脂組成物の成形物に付与できないことが判明した。
 一方、離型層の厚みを小さくする場合、例えば、基材層の凹凸の凸部分に適切に離型層を形成できず、第1の樹脂組成物と及びモールド成形用離型フィルムの離型性が低下してしまうという不都合があることが判明した。
 以上より、本発明は、成形物に印字された文字の可読性と、離型性とをバランスよく発現できるモールド成形用離型フィルムを提供することを目的とする。
Here, the present inventors examined the thickness of the release layer in order to improve the readability of printed characters. As a result, when the thickness of the release layer is large, the unevenness of the base material layer is embedded in the release layer, and an embossed pattern sufficient to improve readability cannot be imparted to the molded product of the first resin composition. It has been found.
On the other hand, when reducing the thickness of the release layer, for example, the release layer cannot be appropriately formed on the convex and concave portions of the base material layer, and the first resin composition and the release film for molding are released. It has been found that there is an inconvenience that the performance decreases.
In view of the above, an object of the present invention is to provide a mold release film that can express the readability of characters printed on a molded product and the release property in a well-balanced manner.
 また、本発明者らは、モールド成形用離型フィルムを、エポキシ樹脂を含む樹脂組成物のモールド成形に用いることについて検討した。その結果、従来のモールド成形用離型フィルムは、モールド成形された樹脂組成物が離型する際に、樹脂組成物と、モールド成形用離型フィルムとが剥がれにくいことが判明した。また、モールド成形中、モールド成形用離型フィルムが溶融してしまい、樹脂組成物と接合した状態になってしまうことがあることが判明した。
 そこで、本発明は、モールド成形用離型フィルムの離型性、耐熱性といったモールド成形性を向上することを目的とする。
Moreover, the present inventors examined using the mold release film for molding of a resin composition containing an epoxy resin. As a result, it has been found that the conventional mold release film is difficult to peel off the resin composition and the mold release film when the molded resin composition is released. Further, it has been found that the mold release film melts during molding, and may be in a state of being joined to the resin composition.
Then, an object of this invention is to improve mold moldability, such as mold release property and heat resistance of the mold release film.
 本発明者は、モールド成形用離型フィルムの基材層及び離型層との剥離を抑制するために、基材層及び離型層の密着力を向上する方法について検討した。その結果、基材層に特定の表面改質をし、基材層の上に特定の共重合体と、硬化剤とを架橋してなる離型層を積層することで、基材層及び離型層の剥離を抑制できることを見出した。
 これにより、離型性、成形性に優れるモールド成形用離型フィルムを実現できることを本発明者が見出し、本発明を完成するに至った。
This inventor examined the method of improving the adhesive force of a base material layer and a mold release layer, in order to suppress peeling with the base material layer and mold release layer of a mold release film. As a result, a specific surface modification is performed on the base material layer, and a base layer and a release layer are laminated on the base material layer by laminating a specific copolymer and a curing agent. It has been found that peeling of the mold layer can be suppressed.
As a result, the present inventors have found that a mold release film excellent in mold release and moldability can be realized, and have completed the present invention.
 また、本発明者は、成形物に印字された文字の可読性と、離型性とをバランスよく発現するために、離型層を構成する原料成分と、離型層の厚みとを検討した。その結果、離型層をシリコーン化合物またはフッ素化合物によって形成することで、離型層を、モールド成形用離型フィルム全体で均一に形成し、基材層の凹凸の凸部分にも離型層を形成できることを見出した。また、離型層の厚みを適切な数値範囲とすることで、基材層の凹凸を埋設せず、成形物に対してエンボス模様を付与できることを見出した。
 これにより、成形物に印字された文字の可読性と、離型性とをバランスよく発現するモールド成形用離型フィルムを実現できることを本発明者が見出し、本発明を完成するに至った。
In addition, the present inventor examined the raw material components constituting the release layer and the thickness of the release layer in order to express the readability of the characters printed on the molded product and the release property in a well-balanced manner. As a result, by forming the release layer with a silicone compound or a fluorine compound, the release layer is uniformly formed over the entire mold release film, and the release layer is also formed on the uneven portions of the base material layer. It was found that it can be formed. Moreover, it discovered that the embossed pattern could be provided with respect to a molded article without embedding the unevenness | corrugation of a base material layer by making thickness of a mold release layer into an appropriate numerical range.
As a result, the present inventor has found that a mold release film for molding that can express the readability of the characters printed on the molded product and the mold release property in a well-balanced manner, and has completed the present invention.
 また、本発明者らは、モールド成形用離型フィルムの溶融を防ぐため、モールド成形用離型フィルムの最外層に、特定のフッ素化合物によって形成される離型層を配置することを考えた。これにより、モールド成形用離型フィルムが、溶融することで樹脂組成物と接合することがなくなり、モールド成形用離型フィルムの耐熱性を向上することができた。しかしながら、モールド成形用離型フィルムの離型層を特定のフッ素化合物によって形成しただけでは、所望の離型性は得られなかった。 In addition, the present inventors considered arranging a release layer formed of a specific fluorine compound as the outermost layer of the mold release film in order to prevent melting of the mold release film. Thereby, the mold release film was not melted and joined to the resin composition, and the heat resistance of the mold release film could be improved. However, the desired releasability could not be obtained simply by forming the release layer of the mold release film with a specific fluorine compound.
 本発明者らは、離型性を向上するために、特定の溶媒に対する離型層の接触角について検討した。その結果、離型層に対する、ヘキサデカンの接触角が特定の数値範囲内であることで、優れた離型性を発揮することを見出した。
 以上より、耐熱性及び離型性に優れるモールド成形用離型フィルムを実現できることを本発明者が見出し、本発明を完成するに至った。
In order to improve the releasability, the present inventors examined the contact angle of the release layer with respect to a specific solvent. As a result, it has been found that when the contact angle of hexadecane with respect to the release layer is within a specific numerical range, excellent release properties are exhibited.
As described above, the present inventor has found that a mold release film having excellent heat resistance and releasability can be realized, and has completed the present invention.
 本発明によれば、
 第1の樹脂組成物のモールド成形に用いられるモールド成形用離型フィルムであって、
 第3の樹脂組成物によって構成される離型層が、第2の樹脂組成物によって構成される基材層の上に積層された積層構造を有しており、
 前記離型層及び前記基材層が直接結合しており、
 前記積層構造の最外層は、前記離型層を有しており、
 前記離型層は、下記一般式(1)で示される共重合体と、硬化剤とを架橋してなる、モールド成形用離型フィルムが提供される。
According to the present invention,
A mold release film used for molding the first resin composition,
The release layer constituted by the third resin composition has a laminated structure laminated on the base material layer constituted by the second resin composition,
The release layer and the base material layer are directly bonded,
The outermost layer of the laminated structure has the release layer,
The mold release layer is provided with a mold release film formed by crosslinking a copolymer represented by the following general formula (1) and a curing agent.
Figure JPOXMLDOC01-appb-C000009

(一般式(1)中、
 lおよびmは、それぞれ、共重合体中における、A及びBのモル含有率を示し、
 l+m=1であり、
 Aは、フルオロカーボン基を含み、
 Bは、下記式(B1)により示される構造単位である。)
Figure JPOXMLDOC01-appb-C000009

(In general formula (1),
l and m respectively represent the molar content of A and B in the copolymer;
l + m = 1,
A contains a fluorocarbon group;
B is a structural unit represented by the following formula (B1). )
Figure JPOXMLDOC01-appb-C000010
(一般式(B1)中、
 Rは、前記硬化剤と反応する官能基を含む基である。)
Figure JPOXMLDOC01-appb-C000010
(In the general formula (B1),
R 1 is a group containing a functional group that reacts with the curing agent. )
 また、本発明によれば、
 第1の樹脂組成物及び金型の間にモールド成形用離型フィルムを介在させ、前記第1の樹脂組成物に離型層を密着させてモールド成形を行うことで、前記第1の樹脂組成物の成形物にエンボス模様を付与するために使用される当該モールド成形用離型フィルムであって、
 第2の樹脂組成物によって構成される基材層の上に、第3の樹脂組成物によって構成される前記離型層を積層する積層構造を有しており、
 前記第3の樹脂組成物は、シリコーン化合物またはフッ素化合物を含み、
 前記基材層は、前記離型層が積層される面に凹凸を備え、
 前記離型層の厚みは15μm以下である、モールド成形用離型フィルムが提供される。
Moreover, according to the present invention,
A mold release film is interposed between the first resin composition and the mold, and a mold release layer is brought into intimate contact with the first resin composition to perform molding, whereby the first resin composition is formed. A mold release film for molding used to give an embossed pattern to a molded product,
Having a laminated structure in which the release layer constituted by the third resin composition is laminated on the base material layer constituted by the second resin composition;
The third resin composition includes a silicone compound or a fluorine compound,
The base material layer has irregularities on the surface on which the release layer is laminated,
A mold release film for molding is provided in which the release layer has a thickness of 15 μm or less.
 また、本発明によれば、
 第1の樹脂組成物のモールド成形に用いられるモールド成形用離型フィルムであって、
 当該モールド成形用離型フィルムは最外層に離型層を有しており、
 前記離型層は第3の樹脂組成物によって構成され、
 前記第3の樹脂組成物は、フッ素化合物を含み、
 前記フッ素化合物は、フルオロカーボン基を含み、
 前記離型層の表面に対する、ヘキサデカンの接触角が20°以上77°以下である、モールド成形用離型フィルムが提供される。
Moreover, according to the present invention,
A mold release film used for molding the first resin composition,
The mold release film has a release layer as the outermost layer,
The release layer is composed of a third resin composition,
The third resin composition includes a fluorine compound,
The fluorine compound includes a fluorocarbon group,
There is provided a release film for molding, wherein the contact angle of hexadecane with respect to the surface of the release layer is 20 ° or more and 77 ° or less.
 また、本発明によれば、
 上記モールド成形用離型フィルムを用いたモールド成形方法であって、
 該モールド成形用離型フィルムを金型に配置する配置工程と、
 該モールド成形用離型フィルムが形成する成形空間に第1の樹脂組成物を導入する導入工程と、を含む、モールド成形方法が提供される。
Moreover, according to the present invention,
A mold forming method using the mold release film,
An arrangement step of arranging the mold release film in a mold;
And a introducing step of introducing the first resin composition into a molding space formed by the mold release film.
 本発明によれば、離型性、成形性に優れるモールド成形用離型フィルム及びモールド成形方法が提供される。
 また、本発明によれば、成形物に印字された文字の可読性と、離型性とをバランスよく発現するモールド成形用離型フィルム及びモールド成形方法が提供される。
 また、本発明によれば、耐熱性及び離型性に優れるモールド成形用離型フィルム及び該モールド成形用離型フィルムを用いたモールド成形方法を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the mold release film and mold molding method which are excellent in mold release property and moldability are provided.
Moreover, according to this invention, the mold release film and mold forming method which express the readability of the character printed on the molding, and mold release property with sufficient balance are provided.
Moreover, according to this invention, the mold forming method using the mold release film excellent in heat resistance and mold release property and this mold release film can be provided.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
第1実施形態に係るモールド成形用離型フィルムの一例を示す断面図である。It is sectional drawing which shows an example of the mold release film which concerns on 1st Embodiment. 第2実施形態に係るモールド成形用離型フィルムの一例を示す断面図である。It is sectional drawing which shows an example of the mold release film which concerns on 2nd Embodiment.
 以下、本発明の実施の形態について、適宜図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、その説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. In all the drawings, the same symbols are attached to the same components, and the description thereof is omitted.
(第1実施形態)
 第1実施形態のモールド成形用離型フィルムの概要について説明する。
 第1実施形態のモールド成形用離型フィルムは、第1の樹脂組成物のモールド成形に用いられるモールド成形用離型フィルムであって、第3の樹脂組成物によって構成される離型層が、第2の樹脂組成物によって構成される基材層の上に積層された積層構造を有しており、上記離型層及び上記基材層が直接結合しており、上記積層構造の最外層は、上記離型層を有しており、上記離型層は、特定の構造の共重合体と、硬化剤とを架橋してなる。
(First embodiment)
The outline | summary of the mold release film of 1st Embodiment is demonstrated.
The mold release film of the first embodiment is a mold release film used for molding the first resin composition, and the release layer constituted by the third resin composition is It has a laminated structure laminated on a base material layer constituted by the second resin composition, the release layer and the base material layer are directly bonded, and the outermost layer of the laminated structure is The release layer is formed by cross-linking a copolymer having a specific structure and a curing agent.
 第1実施形態のモールド成形用離型フィルムの使用方法としては、例えば、成形対象である第1の樹脂組成物及び金型を準備し、第1の樹脂組成物及び金型の間にモールド成形用離型フィルムを介在させ、第1の樹脂組成物に後述する離型層を密着させてモールド成形を行う方法が挙げられる。これにより、モールド成形時に、溶融した第1の樹脂組成物が金型などに付着して金型を汚染してしまうことを抑制できる。また、第1の樹脂組成物を、精度よく、所望の形状に成形することができる。 As a method for using the mold release film of the first embodiment, for example, a first resin composition and a mold to be molded are prepared, and molding is performed between the first resin composition and the mold. There is a method in which a mold release film is interposed and a mold release layer described later is brought into close contact with the first resin composition to perform molding. Thereby, it can suppress that the molten 1st resin composition adheres to a metal mold | die etc. and contaminates a metal mold | die at the time of mold forming. In addition, the first resin composition can be accurately formed into a desired shape.
 本発明者らは、従来のモールド成形用離型フィルムを用いて、エポキシ樹脂を含む第1の樹脂組成物をモールド成形することについて検討した。その結果、従来のモールド成形用離型フィルムを用いてモールド成形すると、離型層及び基材層が剥離してしまうことを知見した。詳細なメカニズムは明らかではないが、剥離が生じる原因は離型層及び基材層の密着力が低く、さらに、モールド成形時に、高温下で高荷重が加わることが原因であると推測された。 The inventors of the present invention studied the molding of a first resin composition containing an epoxy resin using a conventional mold release film. As a result, it has been found that when a mold is formed using a conventional mold release film, the release layer and the base material layer are peeled off. Although the detailed mechanism is not clear, it is speculated that the cause of peeling is that the adhesion between the release layer and the base material layer is low, and that a high load is applied at a high temperature during molding.
 かりに、離型層及び基材層の剥離が生じる場合、溶融した第1の樹脂組成物が、離型層以外の部分、例えば、基材層に接触してしまう。溶融した第1の樹脂組成物が、基材層に接触した場合、第1の樹脂組成物及び基材層が融着してしまい、第1の樹脂組成物がモールド成形用離型フィルムから離れなくなる、すなわち、離型性が低下するという不都合があった。
 また、かりに離型層及び基材層が剥離してしまう場合、モールド成形用離型フィルムが形成する成形空間の形状が、所望の形状から変化してしまう。モールド成形は、当該成形空間に、第1の樹脂組成物を導入することで行われる。したがって、成形された第1の樹脂組成物の形状が、所望の形状から外れてしまう、すなわち、成形性が低下するといった不都合があった。
However, when peeling of the release layer and the base material layer occurs, the melted first resin composition comes into contact with a part other than the release layer, for example, the base material layer. When the melted first resin composition comes into contact with the base material layer, the first resin composition and the base material layer are fused, and the first resin composition is separated from the mold release film. There was an inconvenience that it was lost, that is, the releasability was lowered.
In addition, when the release layer and the base material layer are peeled off, the shape of the molding space formed by the mold release film changes from the desired shape. Molding is performed by introducing the first resin composition into the molding space. Therefore, there is a problem that the shape of the molded first resin composition deviates from the desired shape, that is, the moldability is lowered.
 本発明者らは、モールド成形用離型フィルムの基材層及び離型層の剥離が生じることを抑制するために、モールド成形用離型フィルムの密着力を向上する方法について検討した。その結果、まず、基材層に後述する特定の表面改質を施し、次いで、当該基材層の上で、特定の共重合体と、硬化剤とを塗工し、架橋させることで離型層を形成することが、基材層及び離型層を直接結合し、密着力を向上するために重要であることを知見した。これにより、モールド成形用離型フィルムを使用する際に、基材層及び離型層に剥離が生じることを抑制できる。したがって、第1実施形態に係るモールド成形用離型フィルムは、上述した離型性及び成形性の低下を抑制することができる。 The present inventors examined a method for improving the adhesion of the mold release film in order to suppress the peeling of the base layer and the release layer of the mold release film. As a result, first, the base layer is subjected to specific surface modification described later, and then the specific copolymer and the curing agent are applied and crosslinked on the base layer. It has been found that forming the layer is important for directly bonding the base material layer and the release layer and improving the adhesion. Thereby, when using the mold release film, it can suppress that peeling arises in a base material layer and a mold release layer. Therefore, the mold release film according to the first embodiment can suppress the above-described deterioration of the mold release property and moldability.
 以下、第1実施形態に係るモールド成形用離型フィルムの構成について、さらに詳細に説明する。 Hereinafter, the configuration of the mold release film according to the first embodiment will be described in more detail.
 図1は、第1実施形態に係るモールド成形用離型フィルム10の一例である。第1実施形態に係るモールド成形用離型フィルムは、離型層2が、基材層1の上に積層している積層構造を有している。
 まず、基材層1、離型層2について説明する。
FIG. 1 is an example of a mold release film 10 according to the first embodiment. The mold release film according to the first embodiment has a laminated structure in which the release layer 2 is laminated on the base material layer 1.
First, the base material layer 1 and the release layer 2 will be described.
<基材層1>
 まず、基材層1について説明する。基材層1は、第2の樹脂組成物によって構成されるフィルムである。
 基材層1の表面形状としては、例えば、平滑なフィルムであることが好ましい。これにより、基材層1の上に離型層2を形成する第3の樹脂組成物を塗工及び架橋し、離型層2を形成したときに、離型層2を平滑にすることができる。これにより、モールド成形される第1の樹脂組成物を成形する際に、離型層2及び第1の樹脂組成物が接する面を鏡面にすることが可能となる。モールド成形用離型フィルム10を用いて成形される第1の樹脂組成物は、例えば、電子素子などの電子部材を封止するために用いることができる。すなわち、第1実施形態に係るモールド成形用離型フィルム10は、例えば、平滑な面を有しつつ、電子組成などの電子部材を封止するために好適に用いることができる。
<Base material layer 1>
First, the base material layer 1 will be described. The base material layer 1 is a film composed of the second resin composition.
As a surface shape of the base material layer 1, it is preferable that it is a smooth film, for example. Thereby, when the 3rd resin composition which forms the mold release layer 2 on the base material layer 1 is apply | coated and bridge | crosslinked and the mold release layer 2 is formed, the mold release layer 2 can be made smooth. it can. Thereby, when shape | molding the 1st resin composition molded, it becomes possible to make the surface which the mold release layer 2 and the 1st resin composition contact into a mirror surface. The 1st resin composition shape | molded using the mold release film 10 can be used in order to seal electronic members, such as an electronic element, for example. That is, the mold release film 10 according to the first embodiment can be suitably used for sealing an electronic member such as an electronic composition while having a smooth surface, for example.
 基材層1の厚みの下限値は、例えば、5μm以上であり、10μm以上であることが好ましく、20μm以上であることがさらに好ましく、25μm以上であることが一層好ましく、50μm以上であることが殊更好ましい。これにより、基材層1の剛性を、モールド成形用離型フィルム10の追従性が損なわれない範囲で適切に向上することができる。したがって、モールド成形時にシワなどが発生することを抑制し、成形性を向上できる。
 基材層1の厚みの上限値は、例えば、100μm以下であり、95μm以下であることが好ましく、75μm以下であることがさらに好ましく、55mm以下であることが一層好ましい。これにより、モールド成形用離型フィルムの剛性が大きくなり過ぎることを抑制し、微細な金型形状にも追従することができる。したがって、成形性を向上することができる。
The lower limit of the thickness of the base material layer 1 is, for example, 5 μm or more, preferably 10 μm or more, more preferably 20 μm or more, further preferably 25 μm or more, and more preferably 50 μm or more. Particularly preferred. Thereby, the rigidity of the base material layer 1 can be appropriately improved as long as the followability of the mold release film 10 is not impaired. Therefore, it is possible to suppress the generation of wrinkles and the like during molding and improve the moldability.
The upper limit value of the thickness of the base material layer 1 is, for example, 100 μm or less, preferably 95 μm or less, more preferably 75 μm or less, and further preferably 55 mm or less. Thereby, it can suppress that the rigidity of the mold release film becomes large too much, and can also follow a fine mold shape. Therefore, moldability can be improved.
 基材層1は、その製造方法に応じて、例えば、未延伸フィルムでもよく、延伸フィルムであってもよい。
 基材層1としては、例えば、延伸フィルムであることが好ましい。これにより、第2の樹脂組成物に含まれる熱可塑性樹脂の分子鎖を配向させることができる。したがって、モールド成形用離型フィルム10を金型に追従させる際にシワなどの物理的な変形が生じることを抑制できる。したがって、第1の樹脂組成物に不必要な傷を転写することを抑制し、成形性を向上することができる。
The base material layer 1 may be, for example, an unstretched film or a stretched film depending on the production method.
As the base material layer 1, for example, a stretched film is preferable. Thereby, the molecular chain of the thermoplastic resin contained in the second resin composition can be oriented. Therefore, it is possible to suppress physical deformation such as wrinkles when the mold release film 10 follows the mold. Therefore, it is possible to suppress unnecessary scratches from being transferred to the first resin composition and improve moldability.
 第2の樹脂組成物は、例えば、熱可塑性樹脂を含む。また、第2の樹脂組成物は、熱可塑性樹脂組成物のほかに、例えば、無機充填材、酸化防止剤、スリップ剤、アンチブロッキング剤、帯電防止剤、着色剤、加水分解安定剤、酸化防止剤、潤滑剤、結晶核剤を更に含んでもよい。
 以下、第2の樹脂組成物の含有成分について、代表成分の詳細を説明する。
The second resin composition includes, for example, a thermoplastic resin. In addition to the thermoplastic resin composition, the second resin composition is, for example, an inorganic filler, an antioxidant, a slip agent, an antiblocking agent, an antistatic agent, a colorant, a hydrolysis stabilizer, and an antioxidant. An agent, a lubricant, and a crystal nucleating agent may be further included.
Hereinafter, the detail of a representative component is demonstrated about the content component of a 2nd resin composition.
(熱可塑性樹脂)
 熱可塑性樹脂としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリシクロヘキサンジメチレンテレフタレート、ポリエチレンイソフタレート、テレフタル酸-イソフタル酸-エチレングリコール共重合体、テレフタル酸-エチレングリコール-1,4-シクロヘキサンジメタノール共重合などのポリエステル樹脂;ナイロン6、ナイロン66などのポリアミド樹脂;ポリ塩化ビニルなどのポリビニル樹脂;ポリプロピレン、ポリ(4-メチル-1-ペンテン)などのポリオレフィン樹脂;シンジオタクチック構造を有するポリスチレン樹脂などのポリスチレン樹脂;トリアセチルセルロース樹脂などのセルロース樹脂が挙げられる。熱可塑性樹脂としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
 熱可塑性樹脂としては、例えば、上記具体例のうち、ポリエステル樹脂であることが好ましい。ポリエステル樹脂としては、例えば、上記具体例のうち、ポリエチレンテレフタレートまたはポリブチレンテレフタレートであることが好ましく、ポリエチレンテレフタレートであることがより好ましい。これにより、後述する表面改質によって、基材層1の表面に形成された硬化剤と反応する官能基を形成し、好適に基材層1及び離型層2を直接結合できるようになる。
(Thermoplastic resin)
Specific examples of the thermoplastic resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycyclohexanedimethylene terephthalate, polyethylene isophthalate, terephthalic acid-isophthalic acid-ethylene glycol copolymer, terephthalic acid-ethylene glycol- Polyester resin such as 1,4-cyclohexanedimethanol copolymer; Polyamide resin such as nylon 6 and nylon 66; Polyvinyl resin such as polyvinyl chloride; Polyolefin resin such as polypropylene and poly (4-methyl-1-pentene); Examples thereof include polystyrene resins such as polystyrene resin having an tactic structure; and cellulose resins such as triacetyl cellulose resin. As a thermoplastic resin, it can use 1 type or in combination of 2 or more types among the said specific examples.
As a thermoplastic resin, it is preferable that it is a polyester resin among the said specific examples, for example. As the polyester resin, for example, among the above specific examples, polyethylene terephthalate or polybutylene terephthalate is preferable, and polyethylene terephthalate is more preferable. Thereby, the functional group which reacts with the hardening | curing agent formed in the surface of the base material layer 1 by the surface modification mentioned later can be formed, and the base material layer 1 and the release layer 2 can now be couple | bonded directly suitably.
(無機充填材)
 無機充填材としては限定されず、具体的には、カーボンブラック;シリカ、石英粉末、ガラスビーズ、ガラス粉、ケイ酸カルシウム、ケイ酸アルミニウム、カオリン、タルク、クレー、ケイ藻土、ワラストナイトなどのケイ酸塩;酸化鉄、酸化チタン、アルミナなどの金属酸化物;炭酸カルシウム、炭酸マグネシウムなどの金属炭酸塩;硫酸カルシウム、硫酸バリウムなどの金属硫酸塩;炭化珪素などの炭化物;窒化珪素、窒化ホウ素などの窒化物などが挙げられる。
(Inorganic filler)
The inorganic filler is not limited, and specifically, carbon black; silica, quartz powder, glass beads, glass powder, calcium silicate, aluminum silicate, kaolin, talc, clay, diatomaceous earth, wollastonite, etc. Silicates; metal oxides such as iron oxide, titanium oxide and alumina; metal carbonates such as calcium carbonate and magnesium carbonate; metal sulfates such as calcium sulfate and barium sulfate; carbides such as silicon carbide; silicon nitride and nitriding Examples thereof include nitrides such as boron.
(酸化防止剤)
 酸化防止剤としては、例えば、フェノ-ル系酸化防止剤、リン系酸化防止剤およびチオエ-テル系酸化防止剤から選択される1種以上を使用できる。
 フェノ-ル系酸化防止剤としては、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、3,9-ビス{2-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル}2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、
オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、2,6-ジフェニル-4-オクタデシロキシフェノール、ステアリル(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ジステアリル(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ホスホネート、チオジエチレングリコールビス〔(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、4,4'-チオビス(6-t-ブチル-m-クレゾール)、2-オクチルチオ-4,6-ジ(3,5-ジ-t-ブチル-4-ヒドロキシフェノキシ)-s-トリアジン、2,2'-メチレンビス(4-メチル-6-t-ブチル-6-ブチルフェノール)、2,-2'-メチレンビス(4-エチル-6-t-ブチルフェノール)、ビス〔3,3-ビス(4-ヒドロキシ-3-t-ブチルフェニル)ブチリックアシッド〕グリコールエステル、4,4'-ブチリデンビス(6-t-ブチル-m-クレゾール)、2,2'-エチリデンビス(4,6-ジ-t-ブチルフェノール)、2,2'-エチリデンビス(4-s-ブチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、ビス〔2-t-ブチル-4-メチル-6-(2-ヒドロキシ-3-t-ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-t-ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、1,3,5-トリス〔(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、テトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕メタン、2-t-ブチル-4-メチル-6-(2-アクリロイルオキシ-3-t-ブチル-5-メチルベンジル)フェノール、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4-8,10-テトラオキサスピロ[5.5]ウンデカン-ビス〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕、トリエチレングリコ-ルビス〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕、1,1'-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2'-メチレンビス(4-エチル-6-t-ブチルフェノール)、2,2'-メチレンビス(6-(1-メチルシクロヘキシル)-4-メチルフェノール)、4,4'-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、3,9-ビス(2-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニルプロピオニロキシ)1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、4,4'-チオビス(3-メチル-6-t-ブチルフェノール)、4,4'-ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)サルファイド、4,4'-チオビス(6-t-ブチル-2-メチルフェノール)、2,5-ジ-t-ブチルヒドロキノン、2,5-ジ-t-アミルヒドロキノン、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジメチル-6-(1-メチルシクロヘキシル、スチレネイティッドフェノール、2,4-ビス((オクチルチオ)メチル)-5-メチルフェノール、などが挙げられる。
 リン系酸化防止剤としては、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、トリス(2,4-ジ-t-ブチルフェニルホスファイト)、テトラキス(2,4-ジ-t-ブチル-5-メチルフェニル)-4,4'-ビフェニレンジホスホナイト、3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホネート-ジエチルエステル、ビス-(2,6-ジクミルフェニル)ペンタエリスリトールジホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、トリス(ミックスドモノandジ-ノニルフェニルホスファイト)、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-メトキシカルボニルエチル-フェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-オクタデシルオキシカルボニルエチルフェニル)ペンタエリスリトールジホスファイトなどが挙げられる。
 チオエ-テル系酸化防止剤としては、ジラウリル-3,3'-チオジプロピオネート、ビス(2-メチル-4-(3-n-ドデシル)チオプロピオニルオキシ)-5-t-ブチルフェニル)スルフィド、ジステアリル-3,3'-チオジプロピオネート、ペンタエリスリトール-テトラキス(3-ラウリル)チオプロピオネートなどが挙げられる。
(Antioxidant)
As the antioxidant, for example, one or more selected from phenolic antioxidants, phosphorus antioxidants, and thioether antioxidants can be used.
Examples of phenolic antioxidants include pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3,9-bis {2- [3- (3 -T-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl} 2,4,8,10-tetraoxaspiro [5.5] undecane,
Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, 2,6-di-tert-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, 2,6-diphenyl-4-octadecyloxyphenol, stearyl (3,5-di-t-butyl-4-hydroxyphenyl) propionate, distearyl ( 3,5-di-tert-butyl-4-hydroxybenzyl) phosphonate, thiodiethylene glycol bis [(3,5-di-tert-butyl-4-hydroxyphenyl) Lopionate], 4,4′-thiobis (6-tert-butyl-m-cresol), 2-octylthio-4,6-di (3,5-di-tert-butyl-4-hydroxyphenoxy) -s-triazine 2,2′-methylenebis (4-methyl-6-tert-butyl-6-butylphenol), 2, -2′-methylenebis (4-ethyl-6-tert-butylphenol), bis [3,3-bis ( 4-hydroxy-3-t-butylphenyl) butyric acid] glycol ester, 4,4′-butylidenebis (6-t-butyl-m-cresol), 2,2′-ethylidenebis (4,6-di-) t-butylphenol), 2,2′-ethylidenebis (4-s-butyl-6-t-butylphenol), 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) Butane, bis [2-tert-butyl-4-methyl-6- (2-hydroxy-3-tert-butyl-5-methylbenzyl) phenyl] terephthalate, 1,3,5-tris (2,6-dimethyl- 3-hydroxy-4-tert-butylbenzyl) isocyanurate, 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) -2,4,6-trimethylbenzene, 1,3 , 5-tris [(3,5-di-t-butyl-4-hydroxyphenyl) propionyloxyethyl] isocyanurate, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) Propionate] methane, 2-t-butyl-4-methyl-6- (2-acryloyloxy-3-t-butyl-5-methylbenzyl) phenol, 3,9-bis (1,1- Dimethyl-2-hydroxyethyl) -2,4-8,10-tetraoxaspiro [5.5] undecane-bis [β- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate], tri Ethylene glycol bis [β- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate], 1,1′-bis (4-hydroxyphenyl) cyclohexane, 2,2′-methylenebis (4-methyl -6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 2,2'-methylenebis (6- (1-methylcyclohexyl) -4-methylphenol), 4, 4′-butylidenebis (3-methyl-6-tert-butylphenol), 3,9-bis (2- (3-tert-butyl-4-hydroxy-5-methylphenol) Nylpropionyloxy) 1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane, 4,4′-thiobis (3-methyl-6-tert-butylphenol), 4 , 4′-bis (3,5-di-t-butyl-4-hydroxybenzyl) sulfide, 4,4′-thiobis (6-t-butyl-2-methylphenol), 2,5-di-t- Butylhydroquinone, 2,5-di-t-amylhydroquinone, 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2,4-dimethyl -6- (1-methylcyclohexyl, styrene phenol, 2,4-bis ((octylthio) methyl) -5-methylphenol, and the like.
Phosphorus antioxidants include bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, tris (2,4-di-t-butylphenylphosphite), tetrakis (2 , 4-Di-t-butyl-5-methylphenyl) -4,4'-biphenylenediphosphonite, 3,5-di-t-butyl-4-hydroxybenzylphosphonate-diethyl ester, bis- (2,6 -Dicumylphenyl) pentaerythritol diphosphite, 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite, Tris (mixed mono and di-nonylphenyl phosphite), bis (2, 4-di-t-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-4-methoxycal Bonylethyl-phenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-4-octadecyloxycarbonylethylphenyl) pentaerythritol diphosphite, and the like.
Examples of thioether antioxidants include dilauryl-3,3′-thiodipropionate, bis (2-methyl-4- (3-n-dodecyl) thiopropionyloxy) -5-tert-butylphenyl) sulfide , Distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis (3-lauryl) thiopropionate, and the like.
(着色剤)
 着色剤としては限定されず、具体的には、カーボンブラック、ベンガラ、酸化チタンなどを挙げることができる。着色剤としては、上記具体例のうち1種または2種以上を配合することができる。
(Coloring agent)
The colorant is not limited, and specific examples include carbon black, bengara, titanium oxide and the like. As a coloring agent, 1 type (s) or 2 or more types can be mix | blended among the said specific examples.
(スリップ剤)
 スリップ剤としては限定されず、具体的には、ラウリル酸、パルミチン酸、オレイン酸、ステアリン酸、エルカ酸、ヘベニン酸などの飽和または不飽和脂肪酸のアミドなどが挙げられる。スリップ剤としては、上記具体例のうち、1種または2種以上を配合することができる。
(Slip agent)
Specific examples of the slip agent include amides of saturated or unsaturated fatty acids such as lauric acid, palmitic acid, oleic acid, stearic acid, erucic acid, and hebenic acid. As a slip agent, 1 type (s) or 2 or more types can be mix | blended among the said specific examples.
(アンチブロッキング剤)
 アンチブロッキング剤としては限定されず、具体的には、微粉シリカ、微粉酸化アルミニウム、微粉クレー、微粉シリコーン樹脂、液体シリコーン樹脂、微粉テトラフロロエチレン樹脂、微粉アクリル樹脂、微粉メタクリル樹脂などが挙げられる。アンチブロッキング剤としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
(Anti-blocking agent)
Specific examples of the anti-blocking agent include fine silica, fine aluminum oxide, fine clay, fine silicone resin, liquid silicone resin, fine tetrafluoroethylene resin, fine acrylic resin, and fine methacrylic resin. As an antiblocking agent, it can use 1 type or in combination of 2 or more types among the said specific examples.
(帯電防止剤)
 帯電防止剤としては限定されず、具体的には、酸化亜鉛、酸化チタン、カーボンブラックなどの無機帯電防止剤;N,N-ビス(ヒドロキシエチル)アルキルアミン、アルキルアリルスルホネート、アルキルスルファネートなどの有機帯電防止剤などが挙げられる。帯電防止剤としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
(Antistatic agent)
The antistatic agent is not limited, and specifically, inorganic antistatic agents such as zinc oxide, titanium oxide, and carbon black; N, N-bis (hydroxyethyl) alkylamine, alkylallyl sulfonate, alkyl sulfonate, and the like Organic antistatic agents and the like. As the antistatic agent, one or two or more of the above specific examples can be used in combination.
(加水分解安定剤)
 加水分解安定剤としては限定されず、具体的には、カルボジイミド基を含む化合物などが挙げられる。
 カルボジイミド基を含む化合物としては、具体的には、ジシクロヘキシルカルボジイミド、ビス-2,6-ジイソプロピルフェニルカルボジイミドなどのモノカルボジイミド化合物;ポリ(4,4'-ジシクロヘキシルメタンカルボジイミド)、ポリ(N,N'-ジ-2,6-ジイソプロピルフェニルカルボジイミド)、ポリ(1,3,5-トリイソプロピルフェニレン-2,4-カルボジイミドなどのポリカルボジイミド化合物などが挙げられる。加水分解安定剤としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
 なお、カルボジイミド化合物の市販品としては、具体的には、東京化成製のB2756;日清紡ケミカル社製のカルボジライトLA-1;ラインケミー社製のStabaxol P、Stabaxol P400、Stabaxol Iなどが挙げられる。
(Hydrolysis stabilizer)
It does not limit as a hydrolysis stabilizer, Specifically, the compound etc. which contain a carbodiimide group are mentioned.
Specific examples of the compound containing a carbodiimide group include monocarbodiimide compounds such as dicyclohexylcarbodiimide and bis-2,6-diisopropylphenylcarbodiimide; poly (4,4'-dicyclohexylmethanecarbodiimide), poly (N, N'- Examples of the hydrolysis stabilizer include di-2,6-diisopropylphenylcarbodiimide) and polycarbodiimide compounds such as poly (1,3,5-triisopropylphenylene-2,4-carbodiimide). One or a combination of two or more can be used.
Specific examples of commercially available carbodiimide compounds include B2756 manufactured by Tokyo Chemical Industry; Carbodilite LA-1 manufactured by Nisshinbo Chemical; Stabaxol P, Stabaxol P400, and Stabaxol I manufactured by Rhein Chemie.
(潤滑剤)
 潤滑剤としては限定されず、具体的には、パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、モンタン酸やモンタン酸エステルなどの長鎖脂肪酸およびそのエステルなどが挙げられる。潤滑剤としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
(lubricant)
The lubricant is not limited, and specific examples include paraffin wax, microcrystalline wax, polyethylene wax, long chain fatty acids such as montanic acid and montanic acid ester, and esters thereof. As the lubricant, one or two or more of the above specific examples can be used in combination.
(結晶核剤)
 結晶核剤としては限定されず、具体的には、ステアリン酸モノグリセライド、ベヘニン酸モノグリセライドなどの脂肪酸エステル;12-ヒドロキシステアリン酸トリグリセライドなどのヒドロキシ脂肪酸エステル;12-ヒドロキシステアリン酸モノエタノールアミド等のヒドロキシ脂肪酸モノアミド;エチレンビスラウリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスカプリル酸アミドなどの脂肪族ビスアミド;エチレンビス12-ヒドロキシステアリン酸アミド、ヘキサメチレンビス12-ヒドロキシステアリン酸アミドなどのヒドロキシ脂肪酸ビスアミド;12-ヒドロキシステアリン酸カルシウム等のヒドロキシ脂肪酸金属塩などが挙げられる。結晶核剤としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
(Crystal nucleating agent)
The crystal nucleating agent is not limited. Specifically, fatty acid esters such as stearic acid monoglyceride and behenic acid monoglyceride; hydroxy fatty acid esters such as 12-hydroxystearic acid triglyceride; hydroxy fatty acids such as 12-hydroxystearic acid monoethanolamide Monoamide; Aliphatic bisamides such as ethylene bislauric acid amide, ethylene biscapric acid amide, ethylene biscaprylic acid amide; Hydroxy fatty acid bisamides such as ethylene bis 12-hydroxystearic acid amide, hexamethylene bis 12-hydroxystearic acid amide; -Hydroxy fatty acid metal salts such as calcium hydroxystearate. As the crystal nucleating agent, one or more of the above specific examples can be used in combination.
<離型層2>
 次に離型層2について説明する。
 離型層2は、第3の樹脂組成物によって構成される薄膜である。第3の樹脂組成物は、下記一般式(1)で表される共重合体と、硬化剤とを含む。第3の樹脂組成物は、下記一般式(1)で表される共重合体と、硬化剤とが架橋することで薄膜として形成される。すなわち、離型層2は、下記一般式(1)で表される共重合体と、硬化剤とが架橋してなる。
<Release layer 2>
Next, the release layer 2 will be described.
The release layer 2 is a thin film composed of the third resin composition. The third resin composition includes a copolymer represented by the following general formula (1) and a curing agent. The third resin composition is formed as a thin film by crosslinking the copolymer represented by the following general formula (1) and the curing agent. That is, the release layer 2 is formed by crosslinking a copolymer represented by the following general formula (1) and a curing agent.
Figure JPOXMLDOC01-appb-C000011
(一般式(1)中、
 lおよびmは、それぞれ、共重合体中における、A及びBのモル含有率を示し、
 l+m=1であり、
 Aは、フルオロカーボン基を含み、
 Bは、下記式(B1)により示される構造単位である。)
Figure JPOXMLDOC01-appb-C000011
(In general formula (1),
l and m respectively represent the molar content of A and B in the copolymer;
l + m = 1,
A contains a fluorocarbon group;
B is a structural unit represented by the following formula (B1). )
Figure JPOXMLDOC01-appb-C000012
(一般式(B1)中、
 Rは、硬化剤と反応する官能基を含む基である。)
Figure JPOXMLDOC01-appb-C000012
(In the general formula (B1),
R 1 is a group containing a functional group that reacts with the curing agent. )
 離型層2の厚みの上限値は、例えば、20μm以下であることが好ましく、15μm以下であることがより好ましく、10μm以下であることが更に好ましく、5μm以下であることが一層好ましく、2μm以下であることが殊更好ましい。これにより、離型層2に膜割れが生じることを抑制し、かつ、金型に対して良好な追従性を発揮することができる。したがって、成形される第1の樹脂組成物に傷を転写することを抑制し、成形性を向上できる。
 また、離型層の厚みの下限値は限定されない。離型層の厚みの下限値は、例えば、0.1μm以上であって、0.2μm以上であることが好ましく、0.3μm以上であることが更に好ましく、0.4μm以上であることが一層好ましい。これにより、離型層に欠陥が生じる可能性を低減し、好適に離型性を発現することができる。
 なお、第1実施形態において、離型層2の厚みとは、離型層2のドライ厚み、すなわち、第3の樹脂組成物を架橋して離型層2を作製し、溶媒を揮発させた後の厚みである。
The upper limit value of the thickness of the release layer 2 is, for example, preferably 20 μm or less, more preferably 15 μm or less, further preferably 10 μm or less, further preferably 5 μm or less, and further preferably 2 μm or less. It is particularly preferable that Thereby, it can suppress that a film crack arises in the mold release layer 2, and can exhibit favorable followable | trackability with respect to a metal mold | die. Therefore, it is possible to suppress transfer of scratches to the first resin composition to be molded, and to improve moldability.
Moreover, the lower limit of the thickness of the release layer is not limited. The lower limit of the thickness of the release layer is, for example, 0.1 μm or more, preferably 0.2 μm or more, more preferably 0.3 μm or more, and further preferably 0.4 μm or more. preferable. Thereby, possibility that a defect will arise in a mold release layer is reduced, and mold release property can be expressed suitably.
In the first embodiment, the thickness of the release layer 2 is the dry thickness of the release layer 2, that is, the release layer 2 is produced by crosslinking the third resin composition, and the solvent is volatilized. It is the thickness after.
 以下に、第3の樹脂組成物が含む共重合体と、硬化剤とについて詳細を説明する。 Hereinafter, the copolymer contained in the third resin composition and the curing agent will be described in detail.
(共重合体)
 共重合体は、上記一般式(1)で表される。
 上記一般式(1)で表される共重合体は、例えば、Aの構造単位を備えることで離型性を向上し、Bの構造単位を備えることで離型層2を形成することができる。具体的には、Bが含む基であるRと、硬化剤とが反応し、架橋構造を形成することで、薄膜である離型層2を作製することができる。また、後述するが、この架橋構造を形成する反応に、表面改質した基材層1の表面に存在する官能基を介在させることが、基材層1及び離型層2の密着強度を向上するのに重要である。
(Copolymer)
The copolymer is represented by the general formula (1).
The copolymer represented by the general formula (1) can improve the releasability by including the structural unit of A, for example, and can form the release layer 2 by including the structural unit of B. . Specifically, the release layer 2 which is a thin film can be produced by reacting R 1 which is a group contained in B with a curing agent to form a crosslinked structure. As will be described later, by interposing a functional group present on the surface of the surface-modified base material layer 1 in the reaction for forming this crosslinked structure, the adhesion strength between the base material layer 1 and the release layer 2 is improved. It is important to do.
 上記一般式(1)で表される共重合体において、A及びBの構造単位の配列は限定されない。上記一般式(1)で表される共重合体の配列としては、具体的には、ランダム共重合体、交互共重合体、ブロック共重合体、周期共重合体などが挙げられる。上記一般式(1)で表される共重合体の配列としては、上記具体例のうち例えば、交互共重合体であることが好ましい。これにより、A及びBの構造単位を均一に分散させることができ、離型層2及び基材層1の密着性、離型層2の離型性を向上できる。また、Aの構造単位が均一に分散することで、紫外線、酸素などによって、離型層2が、経時によって劣化するのを抑制できる点でも都合がよい。 In the copolymer represented by the general formula (1), the arrangement of the structural units A and B is not limited. Specific examples of the arrangement of the copolymer represented by the general formula (1) include a random copolymer, an alternating copolymer, a block copolymer, and a periodic copolymer. As an arrangement of the copolymer represented by the general formula (1), among the above specific examples, for example, an alternating copolymer is preferable. Thereby, the structural unit of A and B can be disperse | distributed uniformly, and the adhesiveness of the mold release layer 2 and the base material layer 1 and the mold release property of the mold release layer 2 can be improved. Further, it is advantageous in that the structural unit of A can be uniformly dispersed so that the release layer 2 can be prevented from being deteriorated over time by ultraviolet rays, oxygen, and the like.
 上記一般式(1)において、Aの構造単位は、フルオロカーボン基を含む。ここで、フルオロカーボン基とは、炭化水素基の水素原子の一部または全てが、フッ素原子で置換された基を示す。このようなフルオロカーボン基は、炭素原子及びフッ素原子の結合を有する。フルオロカーボン基は分極率が小さいため、フルオロカーボン基を備える離型層2の表面自由エネルギーが小さくなり、エポキシ樹脂を含む第1の樹脂組成物に対しても、優れた離型性を発現する。 In the above general formula (1), the structural unit of A contains a fluorocarbon group. Here, the fluorocarbon group refers to a group in which part or all of the hydrogen atoms of the hydrocarbon group are substituted with fluorine atoms. Such a fluorocarbon group has a bond of a carbon atom and a fluorine atom. Since the fluorocarbon group has a low polarizability, the surface free energy of the release layer 2 having the fluorocarbon group is reduced, and excellent release properties are exhibited even for the first resin composition containing an epoxy resin.
 Aの構造としては、具体的には、テトラフルオロエチレン、トリフルオロエチレン、1,1-ジフルオロエチレン、1,2-ジフルオロエチレンが開裂した構造単位などを挙げることができる。開裂した構造単位について一例を挙げて説明する。例えば、トリフルオロエチレンCF=CHFが開裂した構造単位は、-CF-CHF-である。また、後述する一般式(A2)の構造単位のように、トリフルオロエチレンの水素原子からなる基が、他の基で置換された構造単位が開裂したものでもよい。ここで、トリフルオロエチレンの水素原子からなる基がほかの基で置換された構造単位としては、具体的には、クロロトリフルオロエチレンなどが挙げられる。
 また、Aの構造としては、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-フッ化ビニリデン共重合体などのテトラフルオロエチレンの共重合体;クロロトリフルオロエチレン-エチレン共重合体などのトリフルオロエチレンの共重合体に由来する構造単位であってもよい。
 また、Aの構造としては、上記具体例のうち、1種または2種以上の構造単位を組み合わせてよい。
Specific examples of the structure of A include a structural unit in which tetrafluoroethylene, trifluoroethylene, 1,1-difluoroethylene, 1,2-difluoroethylene is cleaved, and the like. An example of the cleaved structural unit will be described. For example, the structural unit trifluoroethylene CF 2 = CHF is cleaved is a -CF 2 -CHF-. Further, as in the structural unit of the general formula (A2) described later, a group obtained by cleaving a structural unit in which a group composed of a hydrogen atom of trifluoroethylene is substituted with another group may be used. Here, specific examples of the structural unit in which a group composed of a hydrogen atom of trifluoroethylene is substituted with another group include chlorotrifluoroethylene.
The structure of A includes tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-vinylidene fluoride copolymer. It may be a structural unit derived from a copolymer of trifluoroethylene such as a copolymer of tetrafluoroethylene such as chlorotrifluoroethylene-ethylene copolymer.
Moreover, as a structure of A, you may combine 1 type, or 2 or more types of structural units among the said specific examples.
 Aとしては、例えば、下記式(A1)で表される構造単位を含むことが好ましく、下記一般式(A2)で表される構造単位を含むことがより好ましい。これにより、表面自由エネルギーを小さくし、離型性を向上できる。 A includes, for example, a structural unit represented by the following formula (A1), and more preferably includes a structural unit represented by the following general formula (A2). Thereby, surface free energy can be made small and mold release property can be improved.
Figure JPOXMLDOC01-appb-C000013
(上記式(A1)中、nは1以上の整数である。)
Figure JPOXMLDOC01-appb-C000013
(In the above formula (A1), n is an integer of 1 or more.)
Figure JPOXMLDOC01-appb-C000014
(上記一般式(A2)中、Rは、水素原子、炭素原子、ケイ素原子、窒素原子、リン原子、酸素原子、硫黄原子、フッ素原子、塩素原子及び臭素原子からなる群より選択される1種または2種以上の原子によって形成される基である。また、nは1以上の整数である。)
Figure JPOXMLDOC01-appb-C000014
(In the general formula (A2), R A is selected from the group consisting of a hydrogen atom, a carbon atom, a silicon atom, a nitrogen atom, a phosphorus atom, an oxygen atom, a sulfur atom, a fluorine atom, a chlorine atom, and a bromine atom. A group formed by a seed or two or more atoms, and n is an integer of 1 or more.)
 上記式(A1)、一般式(A2)において、nは、1以上の整数である。nは、例えば、1であってもよい。
 上記一般式(A2)において、Rは、水素原子、炭素原子、ケイ素原子、窒素原子、リン原子、酸素原子、硫黄原子、フッ素原子、塩素原子及び臭素原子からなる群より選択される1種または2種以上の原子によって形成される基である。
 なお、共重合体中に含まれる複数のRは、例えば、同一の構造でもよく、異なる構造でもよい。
In the above formula (A1) and general formula (A2), n is an integer of 1 or more. For example, n may be 1.
In the general formula (A2), R A is one selected from the group consisting of a hydrogen atom, a carbon atom, a silicon atom, a nitrogen atom, a phosphorus atom, an oxygen atom, a sulfur atom, a fluorine atom, a chlorine atom, and a bromine atom. Or a group formed by two or more atoms.
The plurality of RA contained in the copolymer may have, for example, the same structure or different structures.
 Aの構造単位において、炭素の配列としては、例えば、直鎖状、分岐状または環状とすることができる。これらの中でも直鎖状であることが好ましい。これにより、離型性を向上できる。 In the structural unit of A, the carbon sequence can be, for example, linear, branched or cyclic. Among these, linear is preferable. Thereby, mold release property can be improved.
 上記一般式(1)において、Bの構造単位は、下記一般式(B1)で表される構造単位である。 In the above general formula (1), the structural unit of B is a structural unit represented by the following general formula (B1).
Figure JPOXMLDOC01-appb-C000015
(一般式(B1)中、
 Rは、硬化剤と反応する官能基を含む基である。)
Figure JPOXMLDOC01-appb-C000015
(In the general formula (B1),
R 1 is a group containing a functional group that reacts with the curing agent. )
 上記一般式(B1)において、Rは、後述する硬化剤と反応する官能基を含む基である。
 ここで、硬化剤と反応する官能基としては、具体的には、ヒドロキシル基、カルボキシル基、アミノ基などが挙げられる。硬化剤と反応する官能基としては、上記具体例のうち、1種または2種以上を含むことができる。なお、アミノ基としては、1級アミノ基または2級アミノ基であることが好ましい。
In the general formula (B1), R 1 is a group containing a functional group which reacts with the curing agent to be described later.
Here, specific examples of the functional group that reacts with the curing agent include a hydroxyl group, a carboxyl group, and an amino group. As a functional group which reacts with a hardening | curing agent, 1 type (s) or 2 or more types can be included among the said specific examples. The amino group is preferably a primary amino group or a secondary amino group.
 上記一般式(B1)において、Rは上述した硬化剤と反応する官能基を含む基であれば限定されない。
 Rを構成する原子としては、具体的には、水素原子、炭素原子、酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、フッ素原子、塩素原子などが挙げられる。
 Rとしては、例えば、ケイ素原子を含むものが好ましい。また、ケイ素原子を含む場合、例えば、シリコーン結合-Si-O-を備えていてもよい。シリコーン結合は、第1の樹脂組成物に対する離型性発現すると考えられる。したがって、Bの構造単位に、硬化剤と反応させる構造に加えて、さらに離型性を向上させる構造とを導入でき、離型層2の離型性を向上できる。
In the general formula (B1), R 1 is not limited as long as it includes a functional group that reacts with the above-described curing agent.
Specific examples of the atoms constituting R 1 include a hydrogen atom, a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a fluorine atom, and a chlorine atom.
The R 1, for example, preferably contains a silicon atom. Further, when a silicon atom is contained, for example, a silicone bond —Si—O— may be provided. The silicone bond is considered to exhibit releasability with respect to the first resin composition. Therefore, in addition to the structure that reacts with the curing agent, a structure that further improves the releasability can be introduced into the structural unit of B, and the releasability of the release layer 2 can be improved.
 Rとしては、具体的には、ヒドロキシル基、カルボキシル基、アミノ基そのものであってもよい。
 また、Rとしては、例えば、1価の有機基の水素原子を、ヒドロキシル基、カルボキシル基、アミノ基によって置換したものであってもよい。なお、1価の有機基の1価とは、原子価のことを示す。このような、1価の有機基としては、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などのアルキル基;アリル基、ペンテニル基、ビニル基などのアルケニル基;エチニル基などのアルキニル基;メチリデン基、エチリデン基などのアルキリデン基;トリル基、キシリル基、フェニル基、ナフチル基、アントラセニル基などのアリール基;ベンジル基、フェネチル基などのアラルキル基;アダマンチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基などのシクロアルキル基;トリル基、キシリル基などのアルカリル基などが挙げられる。
Specifically, R 1 may be a hydroxyl group, a carboxyl group, or an amino group itself.
In addition, as R 1 , for example, a hydrogen atom of a monovalent organic group may be substituted with a hydroxyl group, a carboxyl group, or an amino group. In addition, the monovalence of the monovalent organic group means the valence. Specific examples of such a monovalent organic group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and pentyl. Group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and other alkyl groups; allyl group, pentenyl group, vinyl group and other alkenyl groups; ethynyl group and other alkynyl groups; methylidene group and ethylidene group and the like Alkylidene groups; aryl groups such as tolyl, xylyl, phenyl, naphthyl and anthracenyl groups; aralkyl groups such as benzyl and phenethyl groups; cycloalkyl groups such as adamantyl, cyclopentyl, cyclohexyl and cyclooctyl An alkaryl group such as a tolyl group or a xylyl group;
 上記一般式(1)で表され、Aが上記式(A2)の構造単位を含み、Bが上記一般式(B1)の構造単位を含む共重合体の市販品としては、旭硝子社製のルミフロン、AGCコーテック社製のオブリガートPS306Rなどを挙げることができる。なお、AGCコーテック社製のオブリガートは、2官能以上のイソシアネート化合物を硬化剤としてさらに含む。
 Aが上記式(A2)の構造単位を含み、Bが上記一般式(B1)の構造単位を含む共重合体を含むその他の市販品としては、具体的には、AGCコーテック社製のオブリガートSS0057、オブリガートSS0061、オブリガートPS291U-H、オブリガートSS0051、オブリガートPS309R、オブリガートPW501Uなどが挙げられる。なお、これらの市販品は、AGCコーテック社製のオブリガートPS306Rと同様に2官能以上のイソシアネート化合物を硬化剤としてさらに含む。
As a commercial product of a copolymer represented by the above general formula (1), A containing the structural unit of the above general formula (A2) and B containing the structural unit of the above general formula (B1), Lumiflon manufactured by Asahi Glass Co., Ltd. And Obligato PS306R manufactured by AGC Co-Tech. Obligato manufactured by AGC Co-Tech Co. further contains a bifunctional or higher isocyanate compound as a curing agent.
As other commercially available products including a copolymer in which A contains a structural unit of the above formula (A2) and B contains a structural unit of the above general formula (B1), specifically, Obligato SS0057 manufactured by AGC Co., Ltd. Obligato SS0061, Obligato PS291U-H, Obligato SS0051, Obligato PS309R, Obligato PW501U, and the like. These commercial products further contain a bifunctional or higher functional isocyanate compound as a curing agent in the same manner as Obligato PS306R manufactured by AGC Co-Tech.
(硬化剤)
 第3の樹脂組成物が含む硬化剤は、例えば、イソシアネート化合物を含む。このイソシアネート化合物は、2官能以上のイソシアネート化合物である。すなわち、イソシアネート化合物は、その構造単位中にシアネート基を2つ以上含む。なお、第1実施形態において、シアネート基とは、-N=C=Oのことを示す。これにより、第1実施形態にかかるモールド成形用離型フィルム10は、基材層1及び離型層2を、好適に直接結合させることができる。
(Curing agent)
The curing agent included in the third resin composition includes, for example, an isocyanate compound. This isocyanate compound is a bifunctional or higher functional isocyanate compound. That is, the isocyanate compound contains two or more cyanate groups in its structural unit. In the first embodiment, the cyanate group represents —N═C═O. Thereby, the mold release film 10 concerning 1st Embodiment can couple | bond the base material layer 1 and the release layer 2 suitably directly.
 上述したイソシアネート化合物としては、具体的には、2,4-トリレンジイソシアネート、ジフェニルメタン-4,4'-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、リジンメチルエステルジイソシアネート、メチルシクロヘキシルジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート、n-ペンタン-1,4-ジイソシアネートなどが挙げられる。 Specific examples of the isocyanate compound described above include 2,4-tolylene diisocyanate, diphenylmethane-4,4′-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, lysine methyl ester diisocyanate, methylcyclohexyl diisocyanate, trimethylhexamethylene diisocyanate, Examples include hexamethylene diisocyanate and n-pentane-1,4-diisocyanate.
(溶媒)
 離型層2は、第3の樹脂組成物を溶媒に溶解し、塗工することで作製される。すなわち、第3の樹脂組成物は、溶媒をさらに含んでよい。
 溶媒としては限定されず、例えば、ジエチルエーテル、テトラヒドロフラン、トルエン、メチルエチルケトン、酢酸エチル、キシレン、エチルベンゼン等のうち、いずれか1種以上を溶媒として使用することができる。
(solvent)
The release layer 2 is produced by dissolving the third resin composition in a solvent and coating it. That is, the third resin composition may further contain a solvent.
The solvent is not limited, and for example, any one or more of diethyl ether, tetrahydrofuran, toluene, methyl ethyl ketone, ethyl acetate, xylene, ethylbenzene, and the like can be used as the solvent.
(その他の成分)
 なお、第3の樹脂組成物は、離型層の離型性を低下させない範囲で、さらにその他の成分を含んでもよい。
 その他の成分としては、限定されないが、N,N-ビス(ヒドロキシエチル)アルキルアミン、アルキルアリルスルホネート、アルキルスルファネートなどの帯電防止剤;酸化チタン、炭酸カルシウム、タルク、二酸化ケイ素などの無機充填材;オルガノシリコーンパウダー、ポリエチレンパウダー、ポリアクリルパウダーなどの有機充填材;フッ素系ノニオン界面活性剤などのレベリング剤等が挙げられる。
(Other ingredients)
The third resin composition may further contain other components as long as the release property of the release layer is not lowered.
Other components include, but are not limited to, antistatic agents such as N, N-bis (hydroxyethyl) alkylamine, alkylallyl sulfonate, alkyl sulfonate, and inorganic fillers such as titanium oxide, calcium carbonate, talc, silicon dioxide Materials: Organic fillers such as organosilicone powder, polyethylene powder, and polyacryl powder; leveling agents such as fluorine-based nonionic surfactants.
<モールド成形用離型フィルム10の製造方法>
 次に、モールド成形用離型フィルム10の製造方法について説明する。
 第1実施形態に係るモールド成形用離型フィルム10の製造方法は、例えば、まず、基材層1を準備する準備工程(S1)と、基材層1の表面改質処理をする表面改質工程(S2)と、表面改質した基材層1の上に、ワニスに調製した第3の樹脂組成物を塗工し、第3の樹脂組成物を架橋反応させ、離型層2を作製する塗工工程(S3)と、を含む。
 また、モールド成形用離型フィルム10の製造方法としては、例えば、塗工工程(S3)の後、モールド成形用離型フィルム10を巻回体とする巻回工程(S4)を含んでもよい。
<Method for Producing Mold Release Film 10>
Next, the manufacturing method of the mold release film 10 is demonstrated.
The manufacturing method of the mold release film 10 according to the first embodiment includes, for example, a preparation step (S1) for preparing the base material layer 1 and a surface modification for performing the surface modification treatment of the base material layer 1 first. Step (S2) and the surface-modified base material layer 1 are coated with the third resin composition prepared in the varnish, and the third resin composition is subjected to a crosslinking reaction to produce a release layer 2 Coating step (S3) to be performed.
Moreover, as a manufacturing method of the mold release film 10, you may include the winding process (S4) which uses the mold release film 10 as a wound body after a coating process (S3), for example.
(準備工程(S1))
 まず、準備工程(S1)では、基材層1を準備する。
 第1実施形態において、基材層1を製造する方法は、第2の樹脂組成物により構成されるフィルムを作製する方法であれば限定されず、第2の樹脂組成物が含む成分に応じて公知の方法を用いることができる。基材層1を製造する方法としては限定されず、具体的には、インフレーション押出法、Tダイ押出法などが挙げられる。
(Preparation process (S1))
First, in the preparation step (S1), the base material layer 1 is prepared.
In 1st Embodiment, the method of manufacturing the base material layer 1 will not be limited if it is a method of producing the film comprised by a 2nd resin composition, According to the component which a 2nd resin composition contains. A known method can be used. It does not limit as a method of manufacturing the base material layer 1, Specifically, the inflation extrusion method, the T-die extrusion method, etc. are mentioned.
(表面改質工程(S2))
 表面改質工程では、基材層1の表面改質処理をする。
 表面改質処理としては、基材層1の表面に、上述した硬化剤と反応する官能基を形成する方法であれば限定されない。表面改質処理としては、具体的には、コロナ放電処理などが挙げられる。
 コロナ放電処理の条件としては、例えば、バッチコロナ処理機(例えば、春日電機(株)製、CORONA GENERATOR CT-0212)を用いて、出力0.1kW以上2kW以下、搬送速度が0.1m/分以上40m/分以下、放電隙間が0.1mm以上20mm以下で行うことが好ましい。
(Surface modification step (S2))
In the surface modification step, the surface modification treatment of the base material layer 1 is performed.
The surface modification treatment is not limited as long as it is a method of forming a functional group that reacts with the above-described curing agent on the surface of the base material layer 1. Specific examples of the surface modification treatment include corona discharge treatment.
As conditions for the corona discharge treatment, for example, using a batch corona treatment machine (for example, CORONA GENERATOR CT-0212 manufactured by Kasuga Denki Co., Ltd.), the output is 0.1 kW or more and 2 kW or less, and the conveyance speed is 0.1 m / min. It is preferable that the discharge gap be 0.1 to 20 mm and not more than 40 m / min.
 本発明者が基材層1及び離型層2の密着力を向上する方法を検討した結果、基材層1の表面改質処理する表面改質工程(S2)を行い、その後、ただちに第3樹脂組成物を塗工する塗工工程(S3)を行うことが重要であることを知見した。詳細なメカニズムは定かではないが、表面改質工程を行って長時間放置する場合、基材層1の表面に形成された硬化剤と反応する官能基が、例えば、大気中の酸素等と反応することで失活してしまい、硬化剤と反応可能な反応性を備えないと推測される。
 ここで、表面改質工程(S2)及び塗工工程(S3)を行う間隔としては、例えば、10分間以上2週間以下であることが好ましい。なお、表面改質工程(S2)及び塗工工程(S3)を行う間隔が24時間以上である場合、基材層1のフィルムは、空気に触れないように保存されることが好ましい。これにより、基材層1及び空気が接触することで、基材層1の表面に形成された硬化剤と反応する官能基が失活することを抑制できる。したがって、第3の樹脂組成物中の硬化剤と、基材層1の表面とで好適に架橋反応を起こすことができる。したがって、第3の樹脂組成物中の硬化剤を介して、第3の樹脂組成物中の上記一般式(1)で表される共重合体と、基材層1の表面とを架橋することができる。第1実施形態においては、基材層1の表面と、第2の樹脂組成物とで架橋反応を起こし、基材層1及び離型層2が結合していることを直接結合と称している。このように、基材層1及び離型層2が直接結合している場合、基材層1及び離型層2は、熱及び応力といった成形時に加わる負荷によって剥離しない。すなわち、基材層1及び離型層2が直接結合している場合、基材層1から離型層2が剥離せず、離型性、成形性の観点で都合がよい。
 なお、直接結合していないモールド成形用離型フィルムは、離型層2の表面に、例えば、ガムテープなどの梱包用途の粘着テープ(例えば、電気化学工業社製、カラリヤンPPカットE)を貼り、次いで、テープを剥がすことにより、基材層1から離型層2を剥離し、該テープに離型層2を転写することができるものである。
As a result of studying a method for improving the adhesion between the base material layer 1 and the release layer 2, the present inventor performed a surface modification process (S2) for performing a surface modification treatment on the base material layer 1, and then immediately after the third step. It was found that it is important to perform the coating step (S3) for coating the resin composition. Although the detailed mechanism is not clear, when the surface modification step is performed and left for a long time, the functional group that reacts with the curing agent formed on the surface of the base material layer 1 reacts with, for example, oxygen in the atmosphere. It is presumed that it does not have reactivity capable of reacting with the curing agent.
Here, as an interval which performs a surface modification process (S2) and a coating process (S3), it is preferred that it is 10 minutes or more and 2 weeks or less, for example. In addition, when the interval which performs a surface modification process (S2) and a coating process (S3) is 24 hours or more, it is preferable that the film of the base material layer 1 is preserve | saved so that air may not be touched. Thereby, it can suppress that the functional group which reacts with the hardening | curing agent formed in the surface of the base material layer 1 is deactivated because the base material layer 1 and air contact. Therefore, a crosslinking reaction can be suitably caused between the curing agent in the third resin composition and the surface of the base material layer 1. Therefore, the copolymer represented by the general formula (1) in the third resin composition and the surface of the base material layer 1 are cross-linked through the curing agent in the third resin composition. Can do. In the first embodiment, the cross-linking reaction between the surface of the base material layer 1 and the second resin composition, and the base material layer 1 and the release layer 2 being bonded is referred to as direct bonding. . Thus, when the base material layer 1 and the mold release layer 2 are couple | bonding directly, the base material layer 1 and the mold release layer 2 do not peel by the load added at the time of shaping | molding, such as a heat | fever and stress. That is, when the base material layer 1 and the release layer 2 are directly bonded, the release layer 2 does not peel from the base material layer 1, which is convenient from the viewpoint of release properties and moldability.
In addition, the mold release film that is not directly bonded is pasted on the surface of the release layer 2 with, for example, an adhesive tape for packing use such as a gum tape (for example, Karariyan PP cut E manufactured by Denki Kagaku Kogyo Co., Ltd.) Next, the release layer 2 can be peeled from the base material layer 1 by peeling off the tape, and the release layer 2 can be transferred to the tape.
(塗工工程(S3))
 塗工工程(S3)では、表面改質した基材層1の上に、ワニスに調製した第3の樹脂組成物を塗工し、第3の樹脂組成物を架橋反応させ、離型層2を作製する。
(Coating process (S3))
In the coating step (S3), the third resin composition prepared in the varnish is applied onto the surface-modified base material layer 1, the third resin composition is subjected to a crosslinking reaction, and the release layer 2 Is made.
 第3の樹脂組成物のワニスを塗工する方法としては、具体的には、グラビアロール塗工法、ドクターブレード塗工法、浸漬塗工法、スプレー塗工法、バーコーター塗工法、などが挙げられる。第3の樹脂組成物のワニスを塗工する方法としては、上記具体例のうち、グラビアロール塗工法、バーコーター塗工法、スプレー塗工法のいずれかを用いることが好ましい。これにより、均一な離型層2を作製することができる。したがって、モールド成形用離型フィルム10は、離型層2が形成される面全てにおいて、離型性をムラなく発現することができる。 Specific examples of the method for coating the varnish of the third resin composition include a gravure roll coating method, a doctor blade coating method, a dip coating method, a spray coating method, and a bar coater coating method. As a method for applying the varnish of the third resin composition, it is preferable to use any one of the gravure roll coating method, the bar coater coating method, and the spray coating method among the above specific examples. Thereby, the uniform release layer 2 can be produced. Therefore, the mold release film 10 can exhibit the release property evenly on the entire surface on which the release layer 2 is formed.
 第3の樹脂組成物を架橋反応させる条件としては、例えば、温度25℃であれば、1週間の静置で十分に架橋反応を進行させ、離型層2を形成できる。また、加熱によって架橋反応を促進することも可能である。例えば、温度120℃であれば20分間の加熱で、十分に架橋反応を進行させ、離型層2を形成できる。したがって、温度と時間の条件は、温度25℃以上120℃以下で、20分間以上1週間以下の条件で、適切に設定することができる。 As a condition for causing the third resin composition to undergo a crosslinking reaction, for example, if the temperature is 25 ° C., the release reaction 2 can be formed by allowing the crosslinking reaction to proceed sufficiently by standing for one week. It is also possible to promote the crosslinking reaction by heating. For example, when the temperature is 120 ° C., the release reaction 2 can be formed by sufficiently proceeding the crosslinking reaction by heating for 20 minutes. Therefore, the temperature and time conditions can be appropriately set under the conditions of a temperature of 25 ° C. or more and 120 ° C. or less and a period of 20 minutes or more and 1 week or less.
(巻回工程(S4))
 巻回工程(S4)では、モールド成形用離型フィルム10を巻回体とする。
 ここで、巻回体の形状としては限定されず、例えば、ロール形状、すなわち、円柱形状であってもよく、枚葉形状のモールド成形用離型フィルム10を積層した矩形形状であってもよい。第1実施形態にかかる巻回体は、かりに、巻回体が円柱形状に巻回する場合、モールド成形用離型フィルム10の内径側の離型層2と、外径側の基材層1とが、直接接触しても、離型層2が剥がれることがない。したがって、モールド成形用離型フィルム10の離型性が損なわれない点で都合がよい。
(Winding process (S4))
In the winding step (S4), the mold release film 10 is used as a wound body.
Here, the shape of the wound body is not limited, and may be, for example, a roll shape, that is, a cylindrical shape, or a rectangular shape obtained by laminating a single-wafer mold release film 10 for molding. . When the wound body according to the first embodiment is wound into a cylindrical shape, the release layer 2 on the inner diameter side of the mold release film 10 and the base material layer 1 on the outer diameter side are used. However, even if they are in direct contact, the release layer 2 is not peeled off. Therefore, it is convenient in that the release property of the mold release film 10 is not impaired.
<モールド成形用離型フィルム10>
 次に、第1実施形態に係るモールド成形用離型フィルム10について説明する。
 モールド成形用離型フィルム10は、離型層が、基材層の上に積層された積層構造を有している。そして、モールド成形用離型フィルム10は、最外層に離型層2を有している。
 モールド成形用離型フィルム10は、第1の樹脂組成物のモールド成形に用いられる際、最外層に配された離型層2が、第1の樹脂組成物と接するように使用される。
<Release film 10 for molding>
Next, the mold release film 10 according to the first embodiment will be described.
The mold release film 10 has a laminated structure in which a release layer is laminated on a base material layer. And the mold release film 10 has the release layer 2 in the outermost layer.
The mold release film 10 is used so that the release layer 2 disposed in the outermost layer is in contact with the first resin composition when used for molding the first resin composition.
 モールド成形用離型フィルム10の積層構造は、離型層が、基材層の上に積層された積層構造を有していれば限定されない。
 モールド成形用離型フィルム10は、2層以上の基材層1を含んでもよいし、2層以上の離型層2を含んでもよい。
 第1実施形態に係るモールド成形用離型フィルム10の積層構造として、具体的には、離型層、基材層がこの順で積層された積層構造でもよく、離型層、第1の基材層、第2の基材層がこの順で積層された積層構造でもよく、離型層、第1の基材層、第2の基材層、第3の基材層がこの順で積層された積層構造でもよく、第1の離型層、基材層、第2の離型層がこの順で積層された積層構造でもよく、第1の離型層、第1の基材層、第2の基材層、第2の離型層がこの順で積層された積層構造などが挙げられる。
The lamination structure of the mold release film 10 is not limited as long as the release layer has a lamination structure laminated on the base material layer.
The mold release film 10 may include two or more base material layers 1 or may include two or more release layers 2.
Specifically, the laminate structure of the mold release film 10 according to the first embodiment may be a laminate structure in which a release layer and a base material layer are laminated in this order. The material layer and the second base material layer may be laminated in this order, and the release layer, the first base material layer, the second base material layer, and the third base material layer are laminated in this order. The laminated structure may be a laminated structure in which the first release layer, the base material layer, and the second release layer are laminated in this order, and the first release layer, the first base material layer, Examples include a laminated structure in which the second base material layer and the second release layer are laminated in this order.
 モールド成形用離型フィルム10の厚みの上限値は、例えば、200μm以下であることが好ましく、150μm以下であることが更に好ましく、100μm以下であることが一層好ましく、65μm以下であることが殊更好ましい。これにより、モールド成形用離型フィルム10の剛性を適切に制御できる。したがって、金型の微細な構造に対する追従性を向上させ、成形性を向上できる。
 また、モールド成形用離型フィルム10の厚みの下限値は、例えば、10μm以上であることが好ましく、20μm以上であることが更に好ましく、30μm以上であることが一層好ましく、35μm以上であることが殊更好ましい。これにより、モールド成形用離型フィルム10が不必要に変形し、シワなどが生じることを抑制できる。したがって、モールド成形される第1の樹脂組成物に、モールド成形用離型フィルム10のシワが転写されることを抑制し、成形性を向上できる。
The upper limit of the thickness of the mold release film 10 is, for example, preferably 200 μm or less, more preferably 150 μm or less, even more preferably 100 μm or less, and even more preferably 65 μm or less. . Thereby, the rigidity of the mold release film 10 can be appropriately controlled. Therefore, the followability to the fine structure of the mold can be improved and the moldability can be improved.
The lower limit of the thickness of the mold release film 10 is, for example, preferably 10 μm or more, more preferably 20 μm or more, still more preferably 30 μm or more, and more preferably 35 μm or more. Particularly preferred. Thereby, it can suppress that the mold release film 10 deform | transforms unnecessarily, and a wrinkle etc. arise. Therefore, it can suppress that the wrinkles of the mold release film 10 are transferred to the first resin composition to be molded, and the moldability can be improved.
<用途>
 第1実施形態に係るモールド成形用離型フィルムは、第1の樹脂組成物のモールド成形に用いられる。
 モールド成形の方法としては、例えば、モールド成形用離型フィルムを金型に配置する配置工程(S1)と、次いで、モールド成形用離型フィルムが形成する成形空間に第1の樹脂組成物を導入する導入工程(S2)とを含む。
<Application>
The release film for molding according to the first embodiment is used for molding the first resin composition.
As a molding method, for example, the first resin composition is introduced into the molding step where the mold release film is placed in the mold (S1), and then into the molding space formed by the mold release film. Introducing step (S2).
(配置工程(S1))
 配置工程では、モールド成形用離型フィルムを金型に配置する。
 モールド成形用離型フィルムを配置する位置については限定されないが、例えば、後述の導入工程において、第1の樹脂組成物と金型とが接しないように、モールド成形用離型フィルムを、金型が形成する成形空間に配置する。これにより、モールド成形用離型フィルムは、金型が形成する成形空間内部に、モールド成形用離型フィルムの成形空間を形成する。なお、金型全面をモールド成形用離型フィルムで覆ってもよいが、金型の押出ピンなどが存在する場合など、成形方法に応じて、適宜金型が露出していてもよい。したがって、モールド成形用離型フィルムの成形空間は、モールド成形用離型フィルムのみではなく、金型及びモールド成形用離型フィルムによって形成されてもよい。
 モールド成形用離型フィルムの基材層及び離型層を配置する位置については、限定されないが、後述の導入工程において、モールド成形用離型フィルムの成形空間に第1の樹脂組成物を導入することから、離型層がモールド成形用離型フィルムの成形空間を形成することが好ましい。すなわち、モールド成形用離型フィルムが最外層に備える離型層が、モールド成形用離型フィルムの成形空間を形成することが好ましい。例えば、モールド成形用離型フィルムが、離型層、基材層をこの順で積層した積層構造を有する場合、離型層成形空間を形成し、基材層が金型と接するよう配置することが好ましい。
(Arrangement process (S1))
In the placing step, the mold release film is placed in the mold.
The position where the mold release film is disposed is not limited. For example, in the introduction process described later, the mold release film is placed in the mold so that the first resin composition does not contact the mold. It arranges in the molding space which forms. Thereby, the mold release film forms the molding space of the mold release film inside the molding space formed by the mold. In addition, although the whole mold surface may be covered with a mold release film, the mold may be appropriately exposed depending on the molding method, such as when a mold extrusion pin is present. Therefore, the molding space of the mold release film may be formed not only by the mold release film but also by the mold and the mold release film.
The position where the base layer and the release layer of the mold release film are arranged is not limited, but the first resin composition is introduced into the molding space of the mold release film in the introduction process described later. Therefore, it is preferable that the release layer forms a molding space for the mold release film. That is, it is preferable that the release layer included in the outermost layer of the mold release film forms a molding space of the mold release film. For example, when the mold release film has a laminated structure in which a release layer and a base material layer are laminated in this order, a release layer forming space is formed, and the base material layer is disposed so as to be in contact with the mold. Is preferred.
 モールド成形用離型フィルムを配置する方法については限定されないが、後述の導入工程において、モールド成形用離型フィルムの成形空間の外部に第1の樹脂組成物が溢れ出ることを抑制することが好ましい。したがって、モールド成形用離型フィルムは、金型が形成する成形空間における金型の露出面を覆い、さらに、モールド成形用離型フィルムを金型の成形空間に追従させることが好ましい。すなわち、モールド成形用離型フィルムは、金型の成形空間の形状に追従するために適切な剛性を備える必要がある。
 モールド成形用離型フィルムを金型の成形空間に追従させる方法として、例えば、金型のキャビティに気体を吸引する孔部を設け、孔部から大気を吸引する方法が挙げられる。
Although there is no limitation on the method of disposing the mold release film, it is preferable to prevent the first resin composition from overflowing outside the molding space of the mold release film in the introduction step described later. . Therefore, it is preferable that the mold release film covers the exposed surface of the mold in the molding space formed by the mold and further causes the mold release film to follow the mold forming space. That is, the mold release film needs to have appropriate rigidity to follow the shape of the molding space of the mold.
As a method of causing the mold release film to follow the molding space of the mold, for example, there is a method of providing a hole for sucking gas in the cavity of the mold and sucking air from the hole.
 配置工程において、モールド成形用離型フィルムを金型に配置する前または後に、金型のキャビティに電子素子などの電子部材を配置してもよい。
 電子素子としては、限定されるものではないが、例えば、半導体素子が好ましい。半導体素子としては、限定されるものではないが、例えば、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード、固体撮像素子が挙げられる。
In the arranging step, an electronic member such as an electronic element may be arranged in the cavity of the mold before or after the mold release film is arranged in the mold.
Although it does not limit as an electronic element, For example, a semiconductor element is preferable. Examples of the semiconductor element include, but are not limited to, an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, and a solid-state imaging element.
(導入工程(S2))
 導入工程では、モールド成形用離型フィルムが形成する成形空間に第1の樹脂組成物を導入する。
 第1の樹脂組成物を導入する方法としては限定されるものではないが、例えば、液体状の第1の樹脂組成物を導入する方法、顆粒状の第1の樹脂組成物を導入する方法、シート状の第1の樹脂組成物を導入する方法などが挙げられる。具体的には、射出成形による液体状の第1の樹脂組成物の導入、圧縮成形による顆粒状の第1の樹脂組成物の導入などを従来公知の方法で行うことができる。
 次いで、第1の樹脂組成物を硬化させることで、電子素子を第1の樹脂組成物でモールド成形し、電子装置を作製することができる。すなわち、モールド成形用離型フィルムが形成する成形空間と略同一の形状に、電子素子を含む第1の樹脂組成物を成形することができる。
(Introduction step (S2))
In the introducing step, the first resin composition is introduced into a molding space formed by the mold release film.
The method for introducing the first resin composition is not limited, but for example, a method for introducing a liquid first resin composition, a method for introducing a granular first resin composition, Examples thereof include a method of introducing the sheet-like first resin composition. Specifically, introduction of the liquid first resin composition by injection molding, introduction of the granular first resin composition by compression molding, and the like can be performed by a conventionally known method.
Next, by curing the first resin composition, the electronic device can be molded with the first resin composition to produce an electronic device. That is, the 1st resin composition containing an electronic element can be shape | molded in the shape substantially the same as the shaping | molding space which the mold release film forms.
 電子素子を第1の樹脂組成物でモールド成形することによって、電子装置が得られる。電子装置としては、限定されるものではないが、例えば、半導体素子をモールドすることにより得られる半導体装置が好ましい。
 半導体装置の種類としては、限定されるものではないが、MAP(Mold Array Package)、QFP(Quad Flat Package)、SOP(Small Outline Package)、CSP(Chip Size Package)、QFN(Quad Flat Non-leaded Package)、SON(Small Outline Non-leaded Package)、BGA(Ball Grid Array)、LF-BGA(Lead Flame BGA)、FCBGA(Flip Chip BGA)、MAPBGA(Molded Array Process BGA)、eWLB(Embedded Wafer-Level BGA)、FOWLP (Fan Out Wafer Level Package)などのタイプが挙げられる。
An electronic device is obtained by molding the electronic element with the first resin composition. The electronic device is not limited, but for example, a semiconductor device obtained by molding a semiconductor element is preferable.
The types of semiconductor devices are not limited, but include MAP (Mold Array Package), QFP (Quad Flat Package), SOP (Small Outline Package), CSP (Chip Size Package), and QFN (Quad Flat Non-). Package), SON (Small Outline Non-leaded Package), BGA (Ball Grid Array), LF-BGA (Lead Frame BGA), FCBGA (Flip Chip BW), MAPBGA (Molded Array B) BGA), FOWLP (Fan Out Wafer Level Pac kage).
 第1実施形態に係るモールド成形用離型フィルムを使用した、モールド成形の方法としては、配置工程(S1)と、導入工程(S2)とを備えていれば、限定されるものではない。
 具体的なモールド成形の方法としては、トランスファーモールド成形法またはコンプレッションモールド成形法(圧縮成形法)が挙げられる。
The mold forming method using the mold forming release film according to the first embodiment is not limited as long as it includes the arranging step (S1) and the introducing step (S2).
Specific molding methods include a transfer molding method or a compression molding method (compression molding method).
 具体的なトランスファーモールド成形法の手順について説明する。ただし、第1実施形態に係るトランスファーモールド成形法は以下の例に限定されるものではない。
 まず、金型内を真空引きしながら、モールド成形用離型フィルムを該金型内における上型に追従させる。次に、下型に電子素子または電子素子を搭載した基板を配置して固定する。次いで、上型と下型とを締めてから金型内部に流動状態にある第1の樹脂組成物を注入した後、該第1の樹脂組成物を硬化させる。その後、上型と下型とを開くことにより、成形品とモールド成形用離型フィルムとを離型する。
 なお、第1実施形態に係るモールド成形用離型フィルムを上述したトランスファーモールド成形法に適用する場合、使用する第1の樹脂組成物の形状は、タブレット状であることが好ましい。
A specific procedure of the transfer molding method will be described. However, the transfer molding method according to the first embodiment is not limited to the following example.
First, the mold release film is made to follow the upper mold in the mold while evacuating the mold. Next, an electronic element or a substrate on which the electronic element is mounted is placed and fixed on the lower mold. Next, after tightening the upper mold and the lower mold, the first resin composition in a fluid state is injected into the mold, and then the first resin composition is cured. Thereafter, by opening the upper mold and the lower mold, the molded product and the mold release film are released.
In addition, when applying the mold release film which concerns on 1st Embodiment to the transfer mold shaping | molding method mentioned above, it is preferable that the shape of the 1st resin composition to be used is a tablet shape.
 次に、具体的なコンプレッションモールド成形法(圧縮成形法)の手順について、以下に説明する。ただし、第1実施形態に係るコンプレッションモールド成形法(圧縮成形法)は以下の例に限定されるものではない。
 まず、金型内を真空引きしながら、モールド成形用離型フィルムを該金型内における上型に追従させる。次に、下型に電子素子または電子素子を搭載した基板を配置して固定する。次いで、減圧下、金型の上型と下型の間隔を狭めながら、樹脂材料供給容器の底面を構成するシャッター等の樹脂材料供給機構により、秤量された第1の樹脂組成物を下型が備える下型キャビティ内へ供給する。これにより、第1の樹脂組成物は、下型キャビティ内で所定温度に加熱され、流動状態となる。次いで、金型の上型と下型を結合させることにより、流動状態にある第1の樹脂組成物を上型に固定された成形対象物に対して押し当てた後、金型の上型と下型を結合させた状態を保持しながら、第1の樹脂組成物を硬化させる。その後、上型と下型とを開くことにより、成形品とモールド成形用離型フィルムとを離型する。
 なお、第1実施形態に係るモールド成形用離型フィルムを上述したコンプレッションモールド成形法(圧縮成形法)に適用する場合、使用する第1の樹脂組成物の形状は、タブレット状、顆粒状、封粒状またはシート状に加工されたものであることが好ましい。
Next, a specific compression molding method (compression molding method) procedure will be described below. However, the compression molding method (compression molding method) according to the first embodiment is not limited to the following example.
First, the mold release film is made to follow the upper mold in the mold while evacuating the mold. Next, an electronic element or a substrate on which the electronic element is mounted is placed and fixed on the lower mold. Next, under reduced pressure, the lower mold removes the weighed first resin composition by a resin material supply mechanism such as a shutter that constitutes the bottom surface of the resin material supply container while reducing the distance between the upper mold and the lower mold. Supply into the lower mold cavity. As a result, the first resin composition is heated to a predetermined temperature in the lower mold cavity and becomes fluidized. Next, by bonding the upper mold and the lower mold of the mold, the first resin composition in a fluid state is pressed against the molding object fixed to the upper mold, The first resin composition is cured while maintaining the state where the lower mold is bonded. Thereafter, by opening the upper mold and the lower mold, the molded product and the mold release film are released.
In addition, when the mold release film according to the first embodiment is applied to the compression molding method (compression molding method) described above, the shape of the first resin composition to be used is a tablet shape, a granular shape, a sealed shape. It is preferably processed into a granular shape or a sheet shape.
 モールド成形温度の下限値は、例えば、120℃以上としてもよく、140℃以上としてもよく、150℃以上としてもよく、160℃以上としてもよく、175℃以上としてもよい。なお、第1実施形態に係るモールド成形用離型フィルムは、上記下限値以上で成形した場合においても、好適なモールド成形性を発揮することができる。
 第1の樹脂組成物がエポキシ樹脂を含む場合、モールド成形温度は、例えば、上記下限値以上に設定される。従来のモールド成形用離型フィルムであれば、上記下限値以上の高温におけるモールド成形において、基材層1及び離型層2が剥離してしまうという不都合があった。これは、高温下において、基材層1及び離型層2の界面における分子運動が活発になり、基材層1及び離型層2の密着性を保持できないためと推測される。一方、第1実施形態におけるモールド成形用離型フィルム10は、基材層1及び離型層2が直接結合しているため、基材層1及び離型層2の剥離が生じないという点で不都合がない。
 また、モールド成形温度の上限値は、例えば、240℃以下としてもよく、200℃以下としてもよく、185℃以下としてもよい。
The lower limit of the molding temperature may be, for example, 120 ° C. or higher, 140 ° C. or higher, 150 ° C. or higher, 160 ° C. or higher, or 175 ° C. or higher. In addition, even when the mold release film according to the first embodiment is molded with the lower limit value or more, suitable moldability can be exhibited.
When the first resin composition contains an epoxy resin, the molding temperature is set to be equal to or higher than the lower limit, for example. If it was the conventional mold release film for mold forming, there existed a problem that the base material layer 1 and the release layer 2 will peel in mold shaping in the high temperature beyond the said lower limit. This is presumably because the molecular motion at the interface between the base material layer 1 and the release layer 2 becomes active at high temperatures, and the adhesion between the base material layer 1 and the release layer 2 cannot be maintained. On the other hand, in the mold release film 10 according to the first embodiment, since the base layer 1 and the release layer 2 are directly bonded, the base layer 1 and the release layer 2 are not peeled off. There is no inconvenience.
Moreover, the upper limit of the molding temperature may be, for example, 240 ° C. or lower, 200 ° C. or lower, or 185 ° C. or lower.
<第1の樹脂組成物>
 第1実施形態に係る第1の樹脂組成物は限定されるものではない。例えば、熱可塑性樹脂組成物または熱硬化性樹脂組成物を用いることができる。第1実施形態に係るモールド成形用離型フィルムはエポキシ樹脂を含む第1の樹脂組成物のモールド成形に好適に用いられる。なぜなら、エポキシ樹脂を含む第1の樹脂組成物のモールド成形温度は、例えば175℃以上であるが、175℃以上の高温においても基材層1及び離型層2が剥離することなく、成形性を維持できるためである。
<First resin composition>
The first resin composition according to the first embodiment is not limited. For example, a thermoplastic resin composition or a thermosetting resin composition can be used. The release film for molding according to the first embodiment is suitably used for molding a first resin composition containing an epoxy resin. This is because the molding temperature of the first resin composition containing the epoxy resin is, for example, 175 ° C. or higher, but the moldability is not degraded even when the base material layer 1 and the release layer 2 are peeled off even at a high temperature of 175 ° C. or higher. It is because it can maintain.
 熱硬化性樹脂組成物としては、例えば、エポキシ樹脂と、硬化剤と、無機充填材とを含むものが挙げられる。 Examples of the thermosetting resin composition include an epoxy resin, a curing agent, and an inorganic filler.
(エポキシ樹脂)
 エポキシ樹脂としては、その分子量、分子構造に関係なく、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を使用することが可能である。このようなエポキシ樹脂の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールM型エポキシ樹脂(4,4'-(1,3-フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールP型エポキシ樹脂(4,4'-(1,4-フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールZ型エポキシ樹脂(4,4'-シクロヘキシジエンビスフェノール型エポキシ樹脂)などのビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、テトラフェノール基エタン型ノボラック型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂などのアラルキル型エポキシ樹脂;ナフチレンエーテル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能エポキシ型ナフタレン樹脂、ビナフチル型エポキシ樹脂、ナフタレンアラルキル型エポキシ樹脂などのナフタレン骨格を有するエポキシ樹脂;アントラセン型エポキシ樹脂;フェノキシ型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ノルボルネン型エポキシ樹脂;アダマンタン型エポキシ樹脂;フルオレン型エポキシ樹脂、リン含有エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビキシレノール型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、トリグリシジルイソシアヌレートなどの複素環式エポキシ樹脂;N,N,N',N'-テトラグリシジルメタキシレンジアミン、N,N,N',N'-テトラグリシジルビスアミノメチルシクロヘキサン、N,N-ジグリシジルアニリンなどのグリシジルアミン類や、グリシジル(メタ)アクリレートとエチレン性不飽和二重結合を有する化合物との共重合物、ブタジエン構造を有するエポキシ樹脂、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のグリシジルエーテル化物から選択される一種または二種以上を含むことができる。
(Epoxy resin)
As the epoxy resin, it is possible to use monomers, oligomers, and polymers in general having two or more epoxy groups in one molecule regardless of the molecular weight and molecular structure. Specific examples of such an epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol M type epoxy resin (4 , 4 '-(1,3-phenylenediisopridiene) bisphenol type epoxy resin), bisphenol P type epoxy resin (4,4'-(1,4-phenylenediisopridiene) bisphenol type epoxy resin), bisphenol Bisphenol type epoxy resins such as Z type epoxy resin (4,4'-cyclohexyldiene bisphenol type epoxy resin); phenol novolak type epoxy resin, brominated phenol novolak type epoxy resin, cresol novolak type epoxy resin, Novolak type epoxy resins such as laphenol group ethane type novolak type epoxy resins and novolak type epoxy resins having a condensed ring aromatic hydrocarbon structure; biphenyl type epoxy resins; aralkyl type epoxies such as xylylene type epoxy resins and biphenyl aralkyl type epoxy resins Resin: Naphthalene skeleton such as naphthylene ether type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, naphthalene diol type epoxy resin, bifunctional or tetrafunctional epoxy type naphthalene resin, binaphthyl type epoxy resin, naphthalene aralkyl type epoxy resin Epoxy resin; anthracene epoxy resin; phenoxy epoxy resin; dicyclopentadiene epoxy resin; norbornene epoxy resin; adamantane epoxy resin Fluorene type epoxy resin, phosphorus-containing epoxy resin, cycloaliphatic epoxy resin, aliphatic chain epoxy resin, bisphenol A novolac type epoxy resin, bixylenol type epoxy resin, triphenolmethane type epoxy resin, trihydroxyphenylmethane type epoxy resin Heterocyclic epoxy resins such as tetraphenylolethane type epoxy resin and triglycidyl isocyanurate; N, N, N ′, N′-tetraglycidylmetaxylenediamine, N, N, N ′, N′-tetraglycidylbis Glycidylamines such as aminomethylcyclohexane and N, N-diglycidylaniline, copolymers of glycidyl (meth) acrylate and compounds having an ethylenically unsaturated double bond, epoxy resins having a butadiene structure, bisphenol diglycid It can include ether compound, diglycidyl ethers of naphthalene diol, the one or more selected from glycidyl ethers of phenols.
(硬化剤)
 硬化剤としては、具体的には、例えば重付加型の硬化剤、触媒型の硬化剤、および縮合型の硬化剤の3タイプが挙げられる。
(Curing agent)
Specific examples of the curing agent include three types, for example, a polyaddition type curing agent, a catalyst type curing agent, and a condensation type curing agent.
 上記硬化剤として用いられる重付加型の硬化剤は、具体的には、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)などの脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m-フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)などの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドラジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物;ノボラック型フェノール樹脂、ポリビニルフェノール、アラルキル型フェノール樹脂などのフェノール樹脂系硬化剤;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などが挙げられる。重付加型の硬化剤としては、上記具体例の中から選択される1種類または2種類以上を含むことができる。 Specific examples of the polyaddition type curing agent used as the curing agent include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylenediamine (MXDA), and diaminodiphenylmethane (DDM). In addition to aromatic polyamines such as m-phenylenediamine (MPDA) and diaminodiphenylsulfone (DDS), polyamine compounds including dicyandiamide (DICY) and organic acid dihydrazide; hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride Acid anhydrides including alicyclic acid anhydrides such as (MTHPA), trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), and benzophenone tetracarboxylic acid (BTDA); Type Examples include phenolic resin-based curing agents such as diol resins, polyvinylphenols, and aralkyl-type phenolic resins; polymercaptan compounds such as polysulfides, thioesters, and thioethers; isocyanate compounds such as isocyanate prepolymers and blocked isocyanates; and carboxylic acid-containing polyester resins. . As a polyaddition type hardening | curing agent, the 1 type (s) or 2 or more types selected from the said specific example can be included.
 上記硬化剤として用いられる触媒型の硬化剤は、具体的には、ベンジルジメチルアミン(BDMA)、2,4,6-トリスジメチルアミノメチルフェノール(DMP-30)などの3級アミン化合物;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(EMI24)などのイミダゾール化合物;BF3錯体などのルイス酸などが挙げられる。触媒型の硬化剤としては、上記具体例の中から選択される1種類または2種類以上を含むことができる。 Specific examples of the catalyst-type curing agent used as the curing agent include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30); Examples include imidazole compounds such as methylimidazole and 2-ethyl-4-methylimidazole (EMI24); Lewis acids such as BF3 complex. As a catalyst type hardening | curing agent, the 1 type (s) or 2 or more types selected from the said specific example can be included.
 上記硬化剤として用いられる縮合型の硬化剤は、具体的には、レゾール型フェノール樹脂;メチロール基含有尿素樹脂などの尿素樹脂;メチロール基含有メラミン樹脂などのメラミン樹脂などが挙げられる。縮合型の硬化剤としては、上記具体例の中から選択される1種類または2種類以上を含むことができる。 Specific examples of the condensation type curing agent used as the curing agent include a resol type phenol resin; a urea resin such as a methylol group-containing urea resin; and a melamine resin such as a methylol group-containing melamine resin. As the condensation type curing agent, one type or two or more types selected from the above specific examples can be included.
 上記硬化剤の中でも、フェノール樹脂系硬化剤を含むことが好ましい。
 フェノール樹脂系硬化剤としては、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般を用いることができ、その分子量、分子構造は限定されない。
 硬化剤として用いられるフェノール樹脂系硬化剤は、具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック、フェノール-ビフェニルノボラック樹脂等のノボラック型フェノール樹脂;ポリビニルフェノール;トリフェニルメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のフェノールアラルキル型フェノール樹脂;ビスフェノールA、ビスフェノールF、等のビスフェノール化合物などが挙げられる。フェノール樹脂系硬化剤としては、上記具体例の中から選択される1種類または2種類以上を含むことができる。
Among the curing agents, it is preferable to include a phenol resin curing agent.
As the phenol resin-based curing agent, monomers, oligomers, and polymers in general having two or more phenolic hydroxyl groups in one molecule can be used, and the molecular weight and molecular structure are not limited.
Specific examples of the phenol resin-based curing agent used as the curing agent include novolak type phenol resins such as phenol novolak resin, cresol novolak resin, bisphenol novolak, and phenol-biphenyl novolak resin; polyvinyl phenol; triphenylmethane type phenol resin, and the like. Polyfunctional phenolic resin; modified phenolic resin such as terpene modified phenolic resin, dicyclopentadiene modified phenolic resin; phenol aralkyl resin having phenylene skeleton and / or biphenylene skeleton, naphthol aralkyl resin having phenylene and / or biphenylene skeleton, etc. Phenol aralkyl type phenol resin; Bisphenol compounds such as bisphenol A, bisphenol F, and the like. As a phenol resin hardening | curing agent, the 1 type (s) or 2 or more types selected from the said specific example can be included.
(無機充填材)
 無機充填材としては、例えば、溶融破砕シリカ、溶融球状シリカ、結晶シリカ、2次凝集シリカ等のシリカ;アルミナ;チタンホワイト;水酸化アルミニウム;タルク;クレー;マイカ;ガラス繊維等が挙げられる。
(Inorganic filler)
Examples of the inorganic filler include silica such as fused crushed silica, fused spherical silica, crystalline silica, and secondary agglomerated silica; alumina; titanium white; aluminum hydroxide; talc; clay; mica; glass fiber and the like.
 熱硬化性樹脂組成物には、必要に応じて、硬化促進剤、カップリング剤、離型剤、難燃剤、イオン捕捉剤、着色剤及び低応力剤等の各種添加剤のうち一種または二種以上を配合してもよい。
 以下に代表成分について説明する。
In the thermosetting resin composition, one or two of various additives such as a curing accelerator, a coupling agent, a mold release agent, a flame retardant, an ion scavenger, a colorant, and a low stress agent, as necessary. You may mix the above.
Hereinafter, representative components will be described.
(硬化促進剤)
 熱硬化性樹脂組成物には、硬化促進剤をさらに含有させてもよい。この硬化促進剤は、エポキシ基と硬化剤との硬化反応を促進させるものであればよい。
 上記硬化促進剤としては、具体的には、1,8-ジアザビシクロ[5.4.0]ウンデセン-7等のジアザビシクロアルケン及びその誘導体;トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物;2-メチルイミダゾール等のイミダゾール化合物;トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類;テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ安息香酸ボレート、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、テトラフェニルホスホニウム・テトラナフトイルオキシボレート、テトラフェニルホスホニウム・テトラナフチルオキシボレート等のテトラ置換ホスホニウム・テトラ置換ボレート;ベンゾキノンをアダクトしたトリフェニルホスフィン等が挙げられる。硬化促進剤としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
(Curing accelerator)
The thermosetting resin composition may further contain a curing accelerator. This hardening accelerator should just be what accelerates | stimulates hardening reaction with an epoxy group and a hardening | curing agent.
Specific examples of the curing accelerator include diazabicycloalkenes such as 1,8-diazabicyclo [5.4.0] undecene-7 and derivatives thereof; amine compounds such as tributylamine and benzyldimethylamine; 2 -Imidazole compounds such as methylimidazole; Organic phosphines such as triphenylphosphine and methyldiphenylphosphine; Tetraphenylphosphonium / tetraphenylborate, Tetraphenylphosphonium / tetrabenzoic acid borate, Tetraphenylphosphonium / tetranaphthoic acid borate, Tetraphenyl Tetra-substituted phosphonium / tetra-substituted borates such as phosphonium / tetranaphthoyloxyborate and tetraphenylphosphonium / tetranaphthyloxyborate; Triphenylphosphine and the like. As a hardening accelerator, it can use 1 type or in combination of 2 or more types among the said specific examples.
(カップリング剤)
 熱硬化性樹脂組成物には、カップリング剤をさらに含有させてもよい。
 カップリング剤としては、具体的には、エポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、γ-グリシドキシプロピルトリメトキシシランカップリング剤、γ-アミノプロピルトリエトキシシランカップリング剤、γ-メルカプトプロピルトリメトキシシランカップリング剤、N-フェニル-γ-アミノプロピルトリメトキシシランカップリング剤、メルカプトシランカップリング剤などのシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤などが挙げられる。カップリング剤としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
(Coupling agent)
The thermosetting resin composition may further contain a coupling agent.
Specific examples of coupling agents include epoxy silane coupling agents, cationic silane coupling agents, amino silane coupling agents, γ-glycidoxypropyl trimethoxy silane coupling agents, and γ-aminopropyl triethoxy silane cups. Silane coupling agents such as ring agents, γ-mercaptopropyltrimethoxysilane coupling agents, N-phenyl-γ-aminopropyltrimethoxysilane coupling agents, mercaptosilane coupling agents, titanate coupling agents and silicone oil types A coupling agent etc. are mentioned. As a coupling agent, it can use 1 type or in combination of 2 or more types among the said specific examples.
(離型剤)
 熱硬化性樹脂組成物には、離型剤をさらに含有させてもよい。
 離型剤としては、具体的には、カルバナワックスなどの天然ワックス;モンタン酸エステル等の合成ワックス;高級脂肪酸もしくはその金属塩類;パラフィン;酸化ポリエチレン等が挙げられる。離型剤としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
(Release agent)
The thermosetting resin composition may further contain a release agent.
Specific examples of the release agent include natural waxes such as carbana wax; synthetic waxes such as montanic acid ester; higher fatty acids or metal salts thereof; paraffin; polyethylene oxide and the like. As a mold release agent, it can use 1 type or in combination of 2 or more types among the said specific examples.
(難燃剤)
 熱硬化性樹脂組成物には、難燃剤をさらに含有させてもよい。
 難燃剤としては、具体的には、水酸化マグネシウム、ホウ酸亜鉛、モリブデン酸亜鉛、ホスファゼンなどが挙げられる。難燃剤としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
(Flame retardants)
The thermosetting resin composition may further contain a flame retardant.
Specific examples of the flame retardant include magnesium hydroxide, zinc borate, zinc molybdate, and phosphazene. As the flame retardant, one or more of the above specific examples can be used.
(着色剤)
 熱硬化性樹脂組成物には、着色剤をさらに含有させてもよい。
 着色剤としては、具体的には、カーボンブラック、ベンガラ、酸化チタンなどを挙げることができる。着色剤としては、上記具体例のうち1種または2種以上を配合することができる。
(Coloring agent)
The thermosetting resin composition may further contain a colorant.
Specific examples of the colorant include carbon black, bengara, and titanium oxide. As a coloring agent, 1 type (s) or 2 or more types can be mix | blended among the said specific examples.
(イオン捕捉剤)
 熱硬化性樹脂組成物には、イオン捕捉剤をさらに含有させてもよい。
 イオン捕捉剤としては、具体的には、ハイドロタルサイト;ゼオライト;マグネシウム、アルミニウム、ビスマス、チタン、ジルコニウムから選ばれる元素の含水酸化物などを挙げることができる。イオン捕捉剤としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
(Ion scavenger)
The thermosetting resin composition may further contain an ion scavenger.
Specific examples of the ion scavenger include hydrotalcite; zeolite; hydrous oxide of an element selected from magnesium, aluminum, bismuth, titanium, and zirconium. As the ion scavenger, one or two or more of the above specific examples can be used.
(低応力剤)
 熱硬化性樹脂組成物には、低応力剤をさらに含有させてもよい。
 低応力剤としては、具体的には、ポリブタジエン化合物、アクリロニトリルブタジエン共重合化合物、シリコーンオイル、シリコーンゴム等のシリコーン化合物などが挙げられる。低応力剤としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
(Low stress agent)
The thermosetting resin composition may further contain a low stress agent.
Specific examples of the low stress agent include polybutadiene compounds, acrylonitrile butadiene copolymer compounds, silicone compounds such as silicone oil and silicone rubber. As the low stress agent, one or more of the above specific examples can be used in combination.
(第2実施形態)
 以下、第2実施形態に係るモールド成形用離型フィルムについて説明するが、上述した第1実施形態との相違点を中心に説明する。説明の無い事項については、第1実施形態と同様とすることができる。
(Second Embodiment)
Hereinafter, although the mold release film for molding according to the second embodiment will be described, the difference from the above-described first embodiment will be mainly described. Matters not described can be the same as in the first embodiment.
 第2実施形態のモールド成形用離型フィルムの概要について説明する。
 第2実施形態のモールド成形用離型フィルムは、第1の樹脂組成物及び金型の間にモールド成形用離型フィルムを介在させ、上記第1の樹脂組成物に後述する離型層を密着させてモールド成形を行うことで、上記第1の樹脂組成物の成形物にエンボス模様を付与するために使用されるモールド成形用離型フィルムであって、第2の樹脂組成物によって構成される基材層の上に、第3の樹脂組成物によって構成される上記離型層を積層する積層構造を有しており、上記第3の樹脂組成物は、シリコーン化合物またはフッ素化合物を含み、上記基材層は、上記離型層が積層される面に凹凸を備え、上記離型層の厚みは15μm以下である。
The outline | summary of the mold release film of 2nd Embodiment is demonstrated.
In the mold release film of the second embodiment, a mold release film is interposed between the first resin composition and the mold, and a release layer described later is adhered to the first resin composition. A mold release film for molding that is used to give an embossed pattern to the molded product of the first resin composition by performing mold molding, and is constituted by the second resin composition It has a laminated structure in which the release layer constituted by the third resin composition is laminated on the base material layer, and the third resin composition contains a silicone compound or a fluorine compound, and The base material layer has irregularities on the surface on which the release layer is laminated, and the thickness of the release layer is 15 μm or less.
 近年、電子装置の微細化に伴い、電子装置に印字される文字を小さくすることが要求されている。本発明者は、従来のモールド成形用離型フィルムを用いて、電子素子を第1の樹脂組成物で封止するモールド成形を行い、次いで、第1の樹脂組成物の成形物に文字を印字した電子装置について、文字の可読性を検討した。その結果、電子装置に印字された文字の可読性が低いことが判明した。可読性が低い理由としては、詳細なメカニズムは定かではないが、以下のように推測される。
 従来のモールド成形用離型フィルムの離型層は、その表面が、平滑であった。したがって、第1の樹脂組成物に離型層を密着させてモールド成形を行う場合、第1の成形物表面が鏡面となり、その表面で鏡面反射が生じる。この場合、印字部分に光沢が生じ、明暗のコントラスト、色味の差、焦点などといった印字されている部分及び印字されていない部分を識別する要素を、検出器または人体が認識できないと推測される。以上より、従来のモールド成形用離型フィルムを用いて作成した成形物、電子装置は、印字された文字の可読性が低いと推測される。
 ここで、電子装置としては、具体的には、半導体装置などが挙げられる。また、電子装置に印字される文字としては、具体的には、ロットなどの製造情報を示す情報、自動化した製造工程において電子装置の位置を示す情報などが挙げられる。これにより、文字の可読性が低い場合、電子装置の管理、電子装置の製造工程の自動化といった観点で不都合があった。なお、文字としては限定されず、具体的には、ひらがな、カタカナ、アルファベットなどの言語記号;多角形、球形、不定形、線形、縞模様、バーコード、マトリックス型二次元コード、スタック型二次元コードなどの非言語記号;、アラビア数字、ギリシア数字などの数字;ロゴマーク、概略図などの絵柄などが挙げられる。
In recent years, with the miniaturization of electronic devices, it has been required to reduce the characters printed on the electronic devices. The inventor performs mold molding for sealing an electronic element with the first resin composition using a conventional mold release film, and then prints characters on the molding of the first resin composition. We examined the legibility of the electronic devices. As a result, it has been found that the readability of characters printed on the electronic device is low. The reason for the low readability is not clear, but is presumed as follows.
The release layer of the conventional mold release film has a smooth surface. Accordingly, when molding is performed with the release layer in close contact with the first resin composition, the surface of the first molded product becomes a mirror surface, and specular reflection occurs on the surface. In this case, the printed portion is glossy, and it is assumed that the detector or the human body cannot recognize the elements that identify the printed portion and the non-printed portion, such as contrast of light and darkness, color difference, and focus. . As mentioned above, it is estimated that the readability of the printed character is low in the molded object and electronic device which were created using the conventional mold release film.
Here, specific examples of the electronic device include a semiconductor device. Specific examples of the characters printed on the electronic device include information indicating manufacturing information such as a lot, information indicating the position of the electronic device in an automated manufacturing process, and the like. As a result, when the readability of the characters is low, there are inconveniences in terms of management of the electronic device and automation of the manufacturing process of the electronic device. In addition, it is not limited as a character, Specifically, language symbols such as hiragana, katakana, alphabet, etc .; polygon, sphere, indefinite shape, linear, striped pattern, barcode, matrix type two-dimensional code, stack type two-dimensional Non-linguistic symbols such as codes; numerals such as Arabic numerals and Greek numerals; designs such as logo marks and schematic diagrams.
 本発明者は、電子装置の表面の文字の可読性を向上させるために、第1の樹脂組成物の成形物の表面構造について検討した。その結果、第1の樹脂組成物の成形物の表面構造は、平滑ではなく、マット調などのエンボス模様であると、印字された文字の可読性が向上する事が判明した。詳細なメカニズムは定かではないが、この理由は以下のように推測される。まず、前提として、反射光は、正反射光及び乱反射光の和である。ここで、第1の樹脂組成物の成形物の表面に適切なエンボス模様が形成されることによって、成形物の表面が平滑である場合と比べて、正反射光の強度が減少し、乱反射光の強度が増加すると推測される。これにより、正反射光に起因する光沢が、印字部分に生じにくくなると考えられる。以上より、第1の樹脂組成物の成形物の表面構造がマット調などのエンボス模様であると、印字された文字の可読性が向上すると推測される。
 そこで、本発明者は、印字された文字の可読性を向上させるために、離型層の厚みについて検討した。その結果、離型層の厚みが大きい場合、離型層が基材層の凹凸を埋設してしまい、可読性を向上させるのに適当なエンボス模様を、第1の樹脂組成物の成形物に付与できないことが判明した。
 一方、離型層の厚みを小さくする場合、例えば、基材層の凹凸の凸部分に適切に離型層を形成できず、第1の樹脂組成物と及びモールド成形用離型フィルムの離型性が低下してしまうという不都合があることが判明した。
 以上より、成形物に印字された文字の可読性と、離型性とは、離型層の厚みに依存して、トレードオフの関係にあった。
The inventor studied the surface structure of the molded product of the first resin composition in order to improve the readability of characters on the surface of the electronic device. As a result, it has been found that the readability of the printed characters is improved when the surface structure of the molded product of the first resin composition is not smooth but has an embossed pattern such as a matte tone. The detailed mechanism is not clear, but the reason is presumed as follows. First, as a premise, the reflected light is the sum of regular reflection light and irregular reflection light. Here, by forming an appropriate embossed pattern on the surface of the molded product of the first resin composition, the intensity of specular reflection light is reduced compared to the case where the surface of the molded product is smooth, and irregularly reflected light. It is estimated that the strength of As a result, it is considered that the gloss caused by the regular reflection light is less likely to occur in the print portion. From the above, it is presumed that the readability of printed characters is improved when the surface structure of the molded product of the first resin composition is an embossed pattern such as a matte tone.
Therefore, the present inventor examined the thickness of the release layer in order to improve the readability of the printed characters. As a result, when the thickness of the release layer is large, the release layer embeds unevenness of the base material layer, and an embossed pattern suitable for improving readability is imparted to the molded product of the first resin composition. It turned out not to be possible.
On the other hand, when reducing the thickness of the release layer, for example, the release layer cannot be appropriately formed on the convex and concave portions of the base material layer, and the first resin composition and the release film for molding are released. It has been found that there is an inconvenience that the performance decreases.
From the above, the readability of the characters printed on the molded product and the releasability were in a trade-off relationship depending on the thickness of the release layer.
 本発明者は、成形物に印字された文字の可読性と、離型性とをバランスよく発現するために、離型層を構成する原料成分を検討した。その結果、離型層を、シリコーン化合物またはフッ素化合物によって形成することで、モールド成形用離型フィルム全体に、薄く均一に離型層を形成できることを見出した。これにより、基材層の凹凸を埋設せず、成形物に対して、基材層の凹凸に由来するエンボス模様を付与できることを見出した。
 また、本発明者が、モールド成形用離型フィルムの離型性について検討した結果、シリコーン化合物またはフッ素化合物を用いた場合、離型層の厚みが小さい場合でも、十分な離型性を発現できることを見出した。
 以上より、第2実施形態に係るモールド成形用離型フィルムは、成形物に印字された文字の可読性と、離型性とをバランスよく発現するモールド成形用離型フィルムを実現できる。
The present inventor has studied the raw material components constituting the release layer in order to express the readability of the characters printed on the molded product and the release property in a balanced manner. As a result, it has been found that a release layer can be formed thinly and uniformly on the entire mold release film by forming the release layer with a silicone compound or a fluorine compound. Thereby, it discovered that the embossed pattern derived from the unevenness | corrugation of a base material layer could be provided with respect to a molded object, without embedding the unevenness | corrugation of a base material layer.
In addition, as a result of the inventor's study on the release property of a mold release film, when a silicone compound or a fluorine compound is used, sufficient release properties can be exhibited even when the release layer is thin. I found.
From the above, the mold release film according to the second embodiment can realize a mold release film that expresses the readability of the characters printed on the molded product and the mold release property in a well-balanced manner.
 以下、第2実施形態に係るモールド成形用離型フィルムの構成について、さらに詳細に説明する。 Hereinafter, the configuration of the mold release film according to the second embodiment will be described in more detail.
 図2は、第2実施形態に係るモールド成形用離型フィルム10の一例である。第2実施形態に係るモールド成形用離型フィルムは、基材層1の上に、離型層2を積層する積層構造を有している。
 まず、基材層1、離型層2について説明する。
FIG. 2 is an example of a mold release film 10 according to the second embodiment. The mold release film according to the second embodiment has a laminated structure in which a release layer 2 is laminated on a base material layer 1.
First, the base material layer 1 and the release layer 2 will be described.
<基材層1>
 まず、第2実施形態に係る基材層1について説明する。基材層1は、第2の樹脂組成物によって構成されるフィルムである。
 基材層1の少なくとも片方の面は、凹凸を備える面である。第2実施形態に係るモールド成形用離型フィルム10は、基材層1の凹凸を備える面の上に、離型層を積層する積層構造を有している。これにより、基材層1の凹凸に由来するエンボス模様を、第1の樹脂組成物の成形物に付与することができる。
 なお、上記記載は、基材層1の両面が凹凸を備える面であることを限定するものではない。第2実施形態に係るモールド成形用離型フィルム10は、例えば、金型の形状に応じて、基材層1の両面に凹凸を配し、基材層1の両面に離型層2を積層する積層構造を備えていてもよい。
<Base material layer 1>
First, the base material layer 1 according to the second embodiment will be described. The base material layer 1 is a film composed of the second resin composition.
At least one surface of the base material layer 1 is a surface having irregularities. The mold release film 10 according to the second embodiment has a laminated structure in which a release layer is laminated on the surface of the base material layer 1 having the unevenness. Thereby, the embossed pattern originating in the unevenness | corrugation of the base material layer 1 can be provided to the molded product of the 1st resin composition.
In addition, the said description does not limit that the both surfaces of the base material layer 1 are a surface provided with an unevenness | corrugation. The mold release film 10 according to the second embodiment has, for example, unevenness on both surfaces of the base material layer 1 and lamination of the release layer 2 on both surfaces of the base material layer 1 according to the shape of the mold. A laminated structure may be provided.
 基材層1の凹凸の形状は限定されず、第1の樹脂組成物の成形物に転写するエンボス模様に応じて、設定することができる。凹凸の形状及びエンボス模様の形状としては、具体的には、マット調;メッシュ調;布目調;花崗岩の劈開面などの石目調;皮目調;導管溝、年輪、髄線などの木目調;タイル調;レンガ調;梨地調などが挙げられる。凹凸の形状及びエンボス模様の形状としては、上記具体例のうち、例えば、マット調であることが好ましい。また、マット調のうちでもサンドブラストによって形成されるサンドマット調であることがより好ましい。これにより、正反射光の光束を減じ、乱反射光の光束を増やすことができると考えられる。したがって、印字の可読性を向上できる。また、離型の際に、モールド成形用離型フィルム10のエンボス形状及び第1の樹脂組成物の成形物の間に空隙である離型部分を形成できる。これにより、空隙である離型部分を起点として、モールド成形用離型フィルム10及び第1の樹脂組成物の成形物の密着部分全体を離型できる。したがって、離型性を向上できる。 The shape of the unevenness of the base material layer 1 is not limited, and can be set according to the embossed pattern transferred to the molded product of the first resin composition. Specifically, the shape of the unevenness and the shape of the embossed pattern are matte tone; mesh tone; fabric tone; stone tone such as cleaved surface of granite; skin tone; wood tone such as conduit groove, annual ring, myelin Tile-like; brick-like; pear-like. Of the above specific examples, the uneven shape and the embossed pattern shape are preferably matte, for example. Moreover, it is more preferable that it is a sand mat tone formed by sand blasting among the mat tones. Thereby, it is considered that the light flux of the regular reflection light can be reduced and the light flux of the irregular reflection light can be increased. Therefore, the readability of printing can be improved. Moreover, the mold release part which is a space | gap can be formed between the embossed shape of the mold release film 10 and the molding of the 1st resin composition in the case of mold release. Thereby, it is possible to release the entire close contact portion of the mold release film 10 and the molded product of the first resin composition starting from the release portion which is a void. Therefore, the releasability can be improved.
 基材層1の凹凸を備える面について、算術平均粗さRaの下限値としては、例えば、0.10μm以上であることが好ましく、0.30μm以上であることがより好ましく、0.40μm以上であることが更に好ましく、0.50μm以上であることが一層好ましく、0.65μm以上であることが殊更好ましい。上記下限値以上であることにより、基材層1の全体の粗さを適切に大きくすることができる。これにより、離型層を形成する場合でも、離型層を介して、適切なエンボス模様を第1の樹脂組成物の成形物に付与することができる。したがって、文字の可読性を向上できる。
 また、基材層1の凹凸を備える面について、算術平均粗さRaの上限値としては、例えば、1.0μm以下でもよく、0.90μm以下でもよく、0.80μm以下でもよい。これにより、基材層1の全体で、凹凸が大きくなり過ぎることを抑制できる。これにより、エンボス形状が、第1の樹脂組成物に食い込み過ぎて、離型層が低下することを抑制できる。
 なお、第2実施形態において、算術平均粗さRaは、例えば、JIS B 0601-2013に準拠して測定することができる。
About the surface provided with the unevenness | corrugation of the base material layer 1, as a lower limit of arithmetic mean roughness Ra, it is preferable that it is 0.10 micrometer or more, for example, it is more preferable that it is 0.30 micrometer or more, It is 0.40 micrometer or more. More preferably, it is more preferably 0.50 μm or more, and still more preferably 0.65 μm or more. By being more than the said lower limit, the whole roughness of the base material layer 1 can be enlarged appropriately. Thereby, even when forming a release layer, an appropriate embossed pattern can be provided to the molded product of the first resin composition via the release layer. Therefore, the readability of characters can be improved.
Moreover, about the surface provided with the unevenness | corrugation of the base material layer 1, as upper limit of arithmetic mean roughness Ra, 1.0 micrometer or less may be sufficient, 0.90 micrometer or less may be sufficient, and 0.80 micrometer or less may be sufficient. Thereby, it can suppress that an unevenness | corrugation becomes large too much in the whole base material layer 1. FIG. Thereby, it can suppress that an embossing shape bites into the 1st resin composition too much, and a mold release layer falls.
In the second embodiment, the arithmetic average roughness Ra can be measured in accordance with, for example, JIS B 0601-2013.
 基材層1の凹凸を備える面について、10点平均表面粗さRzの下限値としては、例えば、1.0μm以上であることが好ましく、2.0μm以上であることがより好ましく、3.0μm以上であることが更に好ましく、4.0μm以上であることが一層好ましく、4.5μm以上であることが殊更好ましい。これにより、基材層1の局所的な粗さを適切に大きくすることができる。これにより、離型層を形成する場合でも、離型層を介して、適切なエンボス模様を第1の樹脂組成物の成形物に付与することができる。したがって、文字の可読性を向上できる。
 また、Rzが上記下限値以上であることにより、離型性が向上できる。詳細なメカニズムは定かではないが、離型層及び第1の樹脂組成物の成形物の界面の形状を、より剥離しやすい形状にできると推測される。
 また、基材層1の凹凸を備える面について、10点平均表面粗さRzの上限値としては、例えば、10.0μm以下としてもよく、8.0μm以下としてもよく、6.0μm以下としてもよい。これにより、基材層1について局所的な観点で、凹凸が大きくなり過ぎることを抑制できる。これにより、エンボス形状が、第1の樹脂組成物に食い込み過ぎて、離型層が低下することを抑制できる。
 なお、第2実施形態において、10点平均表面粗さRzは、例えば、JIS B 0601-1994に準拠して測定することができる。
The lower limit of the 10-point average surface roughness Rz of the surface of the base material layer 1 having irregularities is, for example, preferably 1.0 μm or more, more preferably 2.0 μm or more, and 3.0 μm. More preferably, it is more preferably 4.0 μm or more, and even more preferably 4.5 μm or more. Thereby, the local roughness of the base material layer 1 can be enlarged appropriately. Thereby, even when forming a release layer, an appropriate embossed pattern can be provided to the molded product of the first resin composition via the release layer. Therefore, the readability of characters can be improved.
Further, when Rz is equal to or more than the above lower limit value, the releasability can be improved. Although the detailed mechanism is not clear, it is presumed that the shape of the interface between the release layer and the molded product of the first resin composition can be made easier to peel.
Moreover, as an upper limit of 10-point average surface roughness Rz about the surface provided with the unevenness | corrugation of the base material layer 1, it may be 10.0 micrometers or less, may be 8.0 micrometers or less, and may be 6.0 micrometers or less, for example. Good. Thereby, it can suppress that an unevenness | corrugation becomes large too much from the local viewpoint about the base material layer 1. FIG. Thereby, it can suppress that an embossing shape bites into the 1st resin composition too much, and a mold release layer falls.
In the second embodiment, the 10-point average surface roughness Rz can be measured according to, for example, JIS B 0601-1994.
 基材層1の厚みの下限値は、例えば、5μm以上であり、10μm以上であることが好ましく、20μm以上であることがさらに好ましく、25μm以上であることが一層好ましく、30μm以上であることが殊更好ましい。これにより、基材層1の剛性を、モールド成形用離型フィルム10の追従性が損なわれない範囲で適切に向上することができる。したがって、モールド成形用離型フィルム10にシワができることを抑制し、第1の樹脂組成物の成形物に対して、所望のエンボス模様を付与できる。
 基材層1の厚みの上限値は、例えば、100μm以下であり、95μm以下であることが好ましく、75μm以下であることがさらに好ましく、55mm以下であることが一層好ましい。微細な電子装置は、金型も微細な凹凸を備えており、その金型形状に対して、モールド成形用離型フィルム10の金型に対する追従性が求められる。基材層1の厚みが上記上限値以下であることにより、モールド成形用離型フィルム10の剛性が大きくなり過ぎることを抑制し、金型の微細な凹凸にも追従することができる点で都合がよい。
The lower limit of the thickness of the base material layer 1 is, for example, 5 μm or more, preferably 10 μm or more, more preferably 20 μm or more, further preferably 25 μm or more, and preferably 30 μm or more. Particularly preferred. Thereby, the rigidity of the base material layer 1 can be appropriately improved as long as the followability of the mold release film 10 is not impaired. Therefore, the mold release film 10 can be prevented from being wrinkled, and a desired embossed pattern can be imparted to the molded product of the first resin composition.
The upper limit value of the thickness of the base material layer 1 is, for example, 100 μm or less, preferably 95 μm or less, more preferably 75 μm or less, and further preferably 55 mm or less. In the fine electronic device, the mold also has fine irregularities, and the mold shape of the mold release film 10 is required for the mold shape. Convenient in that the thickness of the base material layer 1 is less than or equal to the above upper limit value, so that the mold release film 10 can be prevented from becoming too rigid and follow the fine irregularities of the mold. Is good.
 第2実施形態に係る第2の樹脂組成物としては、第1実施形態と同様の物を使用できる。
 なお、熱可塑性樹脂としては、例えば、上記具体例のうち、ポリエステル樹脂であることが好ましい。ポリエステル樹脂としては、例えば、上記具体例のうち、ポリエチレンテレフタレートまたはポリブチレンテレフタレートであることが好ましく、ポリエチレンテレフタレートであることがより好ましい。これにより、基材層の微細な凹凸にも、耐熱性及び強度を付与することができる。したがって、モールド成形において、モールド成形用離型フィルム10が高温高圧に晒されても、基材層1の凹凸が崩壊することを抑制し、第1の樹脂組成物の成形物に対して、所望のエンボス模様を付与することができる。
As a 2nd resin composition which concerns on 2nd Embodiment, the thing similar to 1st Embodiment can be used.
In addition, as a thermoplastic resin, it is preferable that it is a polyester resin among the said specific examples, for example. As the polyester resin, for example, among the above specific examples, polyethylene terephthalate or polybutylene terephthalate is preferable, and polyethylene terephthalate is more preferable. Thereby, heat resistance and intensity | strength can be provided also to the fine unevenness | corrugation of a base material layer. Therefore, in molding, even if the mold release film 10 is exposed to high temperature and pressure, the unevenness of the base material layer 1 is prevented from collapsing, and desired for the molded product of the first resin composition. The embossed pattern can be provided.
<離型層2>
 次に第2実施形態に係る離型層2について説明する。
 離型層2は、第3の樹脂組成物によって構成される薄膜である。離型層2は、上述した基材層1の凹凸を備える面の上に形成する。したがって、モールド成形用離型フィルムは、離型層を備える面に、基材層の凹凸を反映したエンボス形状を有する。
 モールド成形用離型フィルム10の製造方法にて詳述するが、離型層2の製造方法は、例えば、基材層1の上に、ワニスに調製した第3の樹脂組成物を塗工し、第3の樹脂組成物を架橋反応させる方法を用いることができる。
<Release layer 2>
Next, the release layer 2 according to the second embodiment will be described.
The release layer 2 is a thin film composed of the third resin composition. The release layer 2 is formed on the surface having the unevenness of the base material layer 1 described above. Therefore, the mold release film has an emboss shape reflecting the unevenness of the base material layer on the surface provided with the release layer.
Although it explains in full detail in the manufacturing method of the mold release film 10, the manufacturing method of the mold release layer 2 coats the 3rd resin composition prepared in the varnish on the base material layer 1, for example. A method of cross-linking the third resin composition can be used.
 離型層2の厚みの上限値は、15μm以下であり、例えば、10μm以下であることが好ましく、7μm以下であることがより好ましく、5μm以下であることが更に好ましく、3μm以下であることが一層好ましく、0.6μm以下であることが殊更好ましい。これにより、上述した基材層1の凹凸を埋設せずに、離型層2を形成することができる。すなわち、モールド成形用離型フィルム10はエンボス形状を備えることができる。したがって、モールド成形時に、第1の樹脂組成物の成形物に対して、エンボス模様を好適に付与することができ、印字の可読性を向上できる。
 また、離型層2の厚みの下限値は、例えば、0.1μm以上であって、0.2μm以上であることが好ましく、0.3μm以上であることが更に好ましく、0.4μm以上であることが一層好ましい。これにより、基材層1の凹凸の凸部分に離型層2が形成されないことを抑制できる。したがって、モールド成形用離型フィルム10は、好適に離型性を発現することができる。
 なお、第2実施形態において、離型層2の厚みとは、離型層2のドライ厚み、すなわち、第3の樹脂組成物を架橋して離型層2を作製し、溶媒を揮発させた後の厚みである。
The upper limit value of the thickness of the release layer 2 is 15 μm or less, for example, preferably 10 μm or less, more preferably 7 μm or less, further preferably 5 μm or less, and preferably 3 μm or less. More preferably, it is particularly preferably 0.6 μm or less. Thereby, the mold release layer 2 can be formed without embedding the unevenness | corrugation of the base material layer 1 mentioned above. That is, the mold release film 10 can have an embossed shape. Therefore, at the time of molding, an embossed pattern can be suitably imparted to the molded product of the first resin composition, and the readability of printing can be improved.
The lower limit value of the thickness of the release layer 2 is, for example, 0.1 μm or more, preferably 0.2 μm or more, more preferably 0.3 μm or more, and 0.4 μm or more. More preferably. Thereby, it can suppress that the mold release layer 2 is not formed in the uneven | corrugated convex part of the base material layer 1. FIG. Therefore, the mold release film 10 can exhibit a release property suitably.
In the second embodiment, the thickness of the release layer 2 is the dry thickness of the release layer 2, that is, the release layer 2 is produced by crosslinking the third resin composition, and the solvent is volatilized. It is the thickness after.
 第3の樹脂組成物は、例えば、シリコーン化合物またはフッ素化合物と、硬化剤とを含む。これにより、シリコーン化合物またはフッ素化合物を、硬化剤によって架橋して、離型層2を形成する。すなわち、離型層2は、シリコーン化合物またはフッ素化合物と、硬化剤とを架橋してなる。
 ここで、第3の樹脂組成物は、例えば、フッ素化合物を含むことが好ましい。これにより、より離型性を向上できる。また、薄膜化した際でも、離型層2を均一に形成できる観点からも都合がよい。
 以下、第3の樹脂組成物が含む各成分について詳細を説明する。
The third resin composition includes, for example, a silicone compound or a fluorine compound and a curing agent. Thereby, the release layer 2 is formed by crosslinking the silicone compound or the fluorine compound with the curing agent. That is, the release layer 2 is formed by crosslinking a silicone compound or a fluorine compound and a curing agent.
Here, the third resin composition preferably includes, for example, a fluorine compound. Thereby, mold release property can be improved more. In addition, even when the thickness is reduced, it is convenient from the viewpoint that the release layer 2 can be formed uniformly.
Hereinafter, each component included in the third resin composition will be described in detail.
(フッ素化合物)
 第2実施形態に係るフッ素化合物としては、第1の実施形態にて説明した一般式(1)で示される共重合体を用いることができる。
(Fluorine compound)
As the fluorine compound according to the second embodiment, the copolymer represented by the general formula (1) described in the first embodiment can be used.
(シリコーン化合物)
 シリコーン化合物としては、具体的には、ポリジアルキルシロキサンを含むものが挙げられる。このようなシリコーン化合物は、フルオロポリエーテルと併用してもよい。ポリジアルキルシロキサンとしては、例えば、下記一般式(SI1)で表されるものが挙げられる。また、フルオロポリエーテルとしては、例えば、下記一般式(SI2)で表されるものが挙げられる。
(Silicone compound)
Specific examples of the silicone compound include those containing polydialkylsiloxane. Such a silicone compound may be used in combination with a fluoropolyether. As polydialkylsiloxane, what is represented by the following general formula (SI1) is mentioned, for example. Moreover, as a fluoro polyether, what is represented by the following general formula (SI2) is mentioned, for example.
Figure JPOXMLDOC01-appb-C000016
(上記一般式(SI1)中、複数のRは、それぞれ独立して、炭素数1以上30以下の有機基を表す。少なくとも1つのRは、少なくとも1つ以上の硬化剤と反応する官能基を備える。a、bは、それぞれ独立して、1以上の整数である。)
Figure JPOXMLDOC01-appb-C000016
(In the general formula (SI1), a plurality of R s each independently represents an organic group having 1 to 30 carbon atoms. At least one R S is a functional group that reacts with at least one curing agent. A and b are each independently an integer of 1 or more.)
Figure JPOXMLDOC01-appb-C000017
(上記一般式(SI2)中、複数のRは、それぞれ独立して、炭素数1以上30以下の有機基を表す。少なくとも1つのRは、少なくとも1つ以上の硬化剤と反応する官能基を備える。d、e、fは、それぞれ独立して、1以上の整数である。)
Figure JPOXMLDOC01-appb-C000017
(In the general formula (SI2), a plurality of R s each independently represents an organic group having 1 to 30 carbon atoms. At least one R S is a functional group that reacts with at least one curing agent. D, e, and f are each independently an integer of 1 or more.)
 上記一般式(SI1)及び(SI2)で表されるポリジアルキルシロキサン、フルオロポリエーテルにおいて、少なくとも1つのRは、少なくとも1つ以上の硬化剤と反応する官能基を備える。
 ここで、硬化剤と反応する官能基としては、具体的には、ヒドロキシル基、カルボキシル基、アミノ基などが挙げられる。硬化剤と反応する官能基としては、上記具体例のうち、1種または2種以上を含むことができる。なお、アミノ基としては、1級アミノ基または2級アミノ基であることが好ましい。
In the polydialkylsiloxane and fluoropolyether represented by the general formulas (SI1) and (SI2), at least one R s includes a functional group that reacts with at least one curing agent.
Here, specific examples of the functional group that reacts with the curing agent include a hydroxyl group, a carboxyl group, and an amino group. As a functional group which reacts with a hardening | curing agent, 1 type (s) or 2 or more types can be included among the said specific examples. The amino group is preferably a primary amino group or a secondary amino group.
 上記一般式(SI1)及び(SI2)において、Rとしては、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などのアルキル基;アリル基、ペンテニル基、ビニル基などのアルケニル基;エチニル基などのアルキニル基;メチリデン基、エチリデン基などのアルキリデン基;トリル基、キシリル基、フェニル基、ナフチル基、アントラセニル基などのアリール基;ベンジル基、フェネチル基などのアラルキル基;アダマンチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基などのシクロアルキル基;トリル基、キシリル基などのアルカリル基などが挙げられる。
 また、硬化剤と反応する官能基を備えるRは、上記具体例における水素原子を、該硬化剤と反応する官能基で置換したものを用いることができる。
In the above general formulas (SI1) and (SI2), R s specifically includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert -Alkyl groups such as butyl, pentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl; alkenyl such as allyl, pentenyl, vinyl; alkynyl such as ethynyl; methylidene Group, alkylidene group such as ethylidene group; aryl group such as tolyl group, xylyl group, phenyl group, naphthyl group and anthracenyl group; aralkyl group such as benzyl group and phenethyl group; adamantyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group A cycloalkyl group such as: tolyl group, xylyl group, etc. Examples include a ryl group.
Further, R s with a functional group which reacts with the curing agent may be used after replacing a hydrogen atom in the above embodiment, a functional group which reacts with the curing agent.
(硬化剤)
 第2実施形態に係る硬化剤としては、第1の実施形態の硬化剤と同様のものを用いることができる。
(Curing agent)
As a hardening | curing agent which concerns on 2nd Embodiment, the thing similar to the hardening | curing agent of 1st Embodiment can be used.
(溶媒)
 また、離型層2は、例えば、第3の樹脂組成物を溶媒に溶解し、塗工することで作製される。すなわち、第3の樹脂組成物は溶媒を更に含んでもよい。
 第2実施形態に係る溶媒としては、上述した第1実施形態の溶媒と同様のものを用いることができる。
(solvent)
The release layer 2 is produced, for example, by dissolving the third resin composition in a solvent and coating it. That is, the third resin composition may further contain a solvent.
As a solvent which concerns on 2nd Embodiment, the thing similar to the solvent of 1st Embodiment mentioned above can be used.
(その他の成分)
 なお、第3の樹脂組成物は、課題を解決できる範囲で、さらにその他の成分を含んでもよい。
 第2実施形態に係るその他の成分としては、上述した第1実施形態と同様の帯電防止剤、無機充填材、有機充填材、レベリング剤などを用いることができる。
(Other ingredients)
In addition, the 3rd resin composition may contain another component in the range which can solve a subject.
As other components according to the second embodiment, the same antistatic agent, inorganic filler, organic filler, leveling agent and the like as in the first embodiment described above can be used.
<モールド成形用離型フィルム10の製造方法>
 次に、モールド成形用離型フィルム10の製造方法について説明する。
 第2実施形態に係るモールド成形用離型フィルム10の製造方法は、例えば、まず、第2の樹脂組成物によって構成されるフィルムを準備し、該フィルムに凹凸を付与して基材層1とする基材作製工程(S1)と、ワニスに調製した第3の樹脂組成物を塗工し、第3の樹脂組成物を架橋反応させ、離型層2を作製する塗工工程(S3)と、を含む。
 なお、モールド成形用離型フィルム10の製造方法としては、例えば、基材作製工程(S1)の後、塗工工程(S3)の前に、基材層1の表面改質処理をする表面改質工程(S2)を含んでもよい。また、モールド成形用離型フィルム10の製造方法としては、例えば、塗工工程(S3)の後、モールド成形用離型フィルム10を巻回体とする巻回工程(S4)を含んでもよい。
<Method for Producing Mold Release Film 10>
Next, the manufacturing method of the mold release film 10 is demonstrated.
In the method for producing the mold release film 10 according to the second embodiment, for example, first, a film composed of the second resin composition is prepared, and irregularities are imparted to the film to form the base material layer 1. A base material preparation step (S1), a coating step (S3) for applying the third resin composition prepared on the varnish, causing the third resin composition to undergo a crosslinking reaction, and preparing the release layer 2; ,including.
In addition, as a manufacturing method of the mold release film 10, for example, after the base material preparation step (S1), and before the coating step (S3), the surface modification for performing the surface modification treatment of the base material layer 1 is performed. A quality step (S2) may be included. Moreover, as a manufacturing method of the mold release film 10, you may include the winding process (S4) which uses the mold release film 10 as a wound body after a coating process (S3), for example.
(基材作製工程(S1))
 まず、基材作製工程(S1)では、第2の樹脂組成物によって構成されるフィルムを準備し、該フィルムに凹凸を付与して基材層1とする。
 第2実施形態において、第2の樹脂組成物によって構成されるフィルムを製造する方法は限定されず、第2の樹脂組成物が含む成分に応じて公知の方法を用いることができる。第2の樹脂組成物によって構成されるフィルムを製造する方法としては、具体的には、インフレーション押出法、Tダイ押出法などが挙げられる。
(Substrate preparation step (S1))
First, in a base material preparation process (S1), the film comprised by the 2nd resin composition is prepared, an unevenness | corrugation is provided to this film, and it is set as the base material layer 1. FIG.
In 2nd Embodiment, the method of manufacturing the film comprised with a 2nd resin composition is not limited, A well-known method can be used according to the component which a 2nd resin composition contains. Specific examples of the method for producing a film composed of the second resin composition include an inflation extrusion method and a T-die extrusion method.
 次いで、基材作製工程(S1)では、第2の樹脂組成物によって構成されるフィルムに、凹凸を付与する。
 基材層1に凹凸を付与する方法は限定されず、フィルムに凹凸を形成する従来公知の手法を採用することができる。基材層1に凹凸を付与する方法としては、具体的には、基材層1の製造中または製造後にエンボスロールの凹凸を転写成形する方法、あるいは、基材層1の製造後にサンドブラスト法またはエッチング法を用いて基材層1の表面を削る方法などが挙げられる。基材層1に凹凸を付与する方法としては、上記具体例のうち例えば、サンドブラスト法を用いることが好ましい。これにより、モールド成形用離型フィルム10のエンボス形状を、第1の樹脂組成物に対する食い込みが少ないものとし、離型性の向上に好適なものにできる。
 なお、基材層1としては、例えば、サンドブラスト法を用いて凹凸を付与した市販品を用いてもよい。
Subsequently, in a base material preparation process (S1), an unevenness | corrugation is provided to the film comprised with a 2nd resin composition.
The method for imparting irregularities to the base material layer 1 is not limited, and a conventionally known method for forming irregularities on the film can be employed. Specifically, as a method for imparting unevenness to the base material layer 1, a method of transferring the unevenness of the embossing roll during or after the manufacture of the base material layer 1, or a sandblasting method or Examples thereof include a method of scraping the surface of the base material layer 1 using an etching method. As a method for imparting irregularities to the base material layer 1, it is preferable to use, for example, a sandblast method among the above specific examples. Thereby, the embossed shape of the mold release film 10 can be made less bite into the first resin composition, and can be made suitable for improving the release property.
In addition, as the base material layer 1, you may use the commercial item which provided the unevenness | corrugation using the sandblast method, for example.
(表面改質工程(S2))
 基材作製工程の後、塗工工程の前に、基材層1の表面改質処理をする表面改質工程を行ってもよい。表面改質工程では、基材層1の表面改質処理をする。これにより、第3の樹脂組成物中の硬化剤と、基材層1の表面とで架橋反応を起こすことができると推測される。したがって、基材層1及び離型層2の密着力を向上でき、モールド成形時に、基材層1及び離型層2が剥離してしまうという不都合が生じることを抑制できる。
 表面改質処理としては、基材層1の表面に、上述した硬化剤と反応する官能基を形成する処理を行うことができる。表面改質処理としては、具体的には、コロナ放電処理などが挙げられる。
 コロナ放電処理の条件としては、例えば、バッチコロナ処理機(例えば、春日電機(株)製、CORONA GENERATOR CT-0212)を用いて、出力0.1kW以上2kW以下、搬送速度が0.1m/分以上40m/分以下、放電隙間が0.1mm以上20mm以下で行うことが好ましい。
 ここで、表面改質工程(S2)及び塗工工程(S3)を行う間隔としては、例えば、10分間以上2週間以下であることが好ましい。なお、表面改質処理として、コロナ放電を行った場合、表面改質工程(S2)及び塗工工程(S3)を行う間隔が24時間以上である場合、基材層1のフィルムを空気に触れないよう保存することが好ましい。これにより、基材層1及び空気が接触することで、基材層1の表面に形成された硬化剤と反応する官能基が失活することを抑制できる。したがって、第3の樹脂組成物中の硬化剤と、基材層1の表面とで好適に架橋反応を起こすことができ、離型層2及び基材層1が適切に密着できる。したがって、基材層1の凹凸形状が存在しても、好適な離型性を発現できる。
(Surface modification step (S2))
You may perform the surface modification process which performs the surface modification process of the base material layer 1 after a base material preparation process and before a coating process. In the surface modification step, the surface modification treatment of the base material layer 1 is performed. Thereby, it is estimated that a crosslinking reaction can be caused by the curing agent in the third resin composition and the surface of the base material layer 1. Therefore, the adhesive force of the base material layer 1 and the release layer 2 can be improved, and it is possible to suppress the inconvenience that the base material layer 1 and the release layer 2 are peeled off during molding.
As the surface modification treatment, a treatment for forming a functional group that reacts with the above-described curing agent on the surface of the base material layer 1 can be performed. Specific examples of the surface modification treatment include corona discharge treatment.
As conditions for the corona discharge treatment, for example, using a batch corona treatment machine (for example, CORONA GENERATOR CT-0212 manufactured by Kasuga Denki Co., Ltd.), the output is 0.1 kW or more and 2 kW or less, and the conveyance speed is 0.1 m / min. It is preferable that the discharge gap be 0.1 to 20 mm and not more than 40 m / min.
Here, as an interval which performs a surface modification process (S2) and a coating process (S3), it is preferred that it is 10 minutes or more and 2 weeks or less, for example. In addition, when corona discharge is performed as the surface modification treatment, when the interval for performing the surface modification step (S2) and the coating step (S3) is 24 hours or more, the film of the base material layer 1 is exposed to air. It is preferable to store it so that it does not exist. Thereby, it can suppress that the functional group which reacts with the hardening | curing agent formed in the surface of the base material layer 1 is deactivated because the base material layer 1 and air contact. Therefore, a crosslinking reaction can be suitably caused by the curing agent in the third resin composition and the surface of the base material layer 1, and the release layer 2 and the base material layer 1 can be appropriately adhered. Therefore, even if the uneven | corrugated shape of the base material layer 1 exists, suitable releasability can be expressed.
(塗工工程(S3))
 塗工工程(S3)では、基材層1の上に、ワニスに調製した第3の樹脂組成物を塗工し、第3の樹脂組成物を架橋反応させ、離型層2を作製する。
 塗工工程の方法、条件は、上述した第1実施形態の塗工工程(S3)と同様とすることができる。
(Coating process (S3))
In a coating process (S3), the 3rd resin composition prepared to the varnish is applied on the base material layer 1, a 3rd resin composition is made to cross-link, and the mold release layer 2 is produced.
The method and conditions of the coating process can be the same as in the coating process (S3) of the first embodiment described above.
(巻回工程(S4))
 巻回工程(S4)では、モールド成形用離型フィルム10を巻回体とする。
 ここで、巻回体の形状としては限定されず、例えば、円柱形状であってもよく、矩形形状であってもよい。第2実施形態にかかる巻回体は、かりに、巻回体が円柱形状に巻回する場合、モールド成形用離型フィルム10の内径側の離型層2と、外径側の基材層1とが、直接接触しても、基材層1の凹凸に由来するモールド成形用離型フィルム10のエンボス形状が損なわれない。したがって、モールド成形用離型フィルム10の離型性が損なわれない点で都合がよい。
(Winding process (S4))
In the winding step (S4), the mold release film 10 is used as a wound body.
Here, the shape of the wound body is not limited, and may be, for example, a cylindrical shape or a rectangular shape. When the wound body according to the second embodiment is wound into a columnar shape, the release layer 2 on the inner diameter side of the mold release film 10 and the base material layer 1 on the outer diameter side are used. However, even if it contacts directly, the embossed shape of the mold release film 10 derived from the unevenness of the base material layer 1 is not impaired. Therefore, it is convenient in that the release property of the mold release film 10 is not impaired.
<モールド成形用離型フィルム10>
 次に、第2実施形態に係るモールド成形用離型フィルム10について説明する。
 モールド成形用離型フィルム10は、第2の樹脂組成物によって構成される基材層の上に、第3の樹脂組成物によって構成される離型層を積層する積層構造を有している。これにより、第2実施形態に係るモールド成形用離型フィルム10は、基材層1の凹凸に由来するエンボス形状を備える。
 なお、モールド成形用離型フィルム10は、最外層に離型層2を有している。これにより、モールド成形を行う際に、第1の樹脂組成物に離型層2を密着させてモールド成形を行うことができる。
<Release film 10 for molding>
Next, the mold release film 10 according to the second embodiment will be described.
The mold release film 10 has a laminated structure in which a release layer constituted by a third resin composition is laminated on a base material layer constituted by a second resin composition. Thereby, the mold release film 10 according to the second embodiment has an emboss shape derived from the unevenness of the base material layer 1.
In addition, the mold release film 10 has the release layer 2 in the outermost layer. Thereby, when performing mold shaping | molding, the mold release layer 2 can be closely_contact | adhered to 1st resin composition, and mold shaping | molding can be performed.
 モールド成形用離型フィルム10の積層構造は、基材層1の上に、離型層2を積層する積層構造を有していれば限定されない。なお、基材層1の凹凸を適切に離型層2に反映し、モールド成形用離型フィルム10に所望のエンボス形状を形成する観点から、基材層1及び離型層2の間には、例えば、接着層などを備えないことが好ましい。
 なお、第2実施形態に係るモールド成形用離型フィルム10の積層構造は、第1実施形態のものと同様とすることができる。
The laminate structure of the mold release film 10 is not limited as long as it has a laminate structure in which the release layer 2 is laminated on the base material layer 1. In addition, the unevenness | corrugation of the base material layer 1 is reflected in the release layer 2 appropriately, and from a viewpoint of forming a desired emboss shape in the mold release film 10, between the base material layer 1 and the release layer 2 is provided. For example, it is preferable not to include an adhesive layer.
In addition, the laminated structure of the mold release film 10 according to the second embodiment can be the same as that of the first embodiment.
 モールド成形用離型フィルム10のエンボス形状を備える面について、入射角度60°における光の反射率である光沢度の上限値は、例えば、23以下であることが好ましく、20以下であることがより好ましく、17以下であることが更に好ましく、15以下であることが一層好ましく、12以下であることが殊更好ましい。これにより、第1の樹脂組成物の成形物のエンボス模様によって、正反射光の強度を低減し、乱反射光の強度を向上できる。
 ここで、本発明者は、モールド成形用離型フィルム10のエンボス形状を備える面の光沢度を制御する方法について検討した。その結果、第2実施形態に係るモールド成形用離型フィルムは、基材層1の凹凸を備える面の算術平均粗さRa及び10点平均表面粗さRzと、離型層2を構成する第3の樹脂組成物の配合成分と、離型層2の厚みとを適切に制御することで、光沢度を上記上限値以下に制御できることが判明した。これにより、第1の樹脂組成物の成形物に、印字の可読性を向上するのに好適なエンボス模様を転写できる。
 また、モールド成形用離型フィルム10のエンボス形状を備える面について、入射角度60°における光の反射率である光沢度の下限値は、例えば、1以上でもよく、2以上でもよい。
 なお、第2実施形態において、光沢度は、JIS Z 8741に準拠して測定することができる。光沢度の具体的な測定方法について説明する。前提として、屈折率が1.567である表面において、入射角度60°の場合における、反射率10%の光の強度を光沢度100とし、さらに、反射率0%の光の強度を0と仮定する。これにより、反射率10%の光の強度の100分の1の値が、光沢度1に相当する。ここで、入射角度60°の幾何条件の反射率計を用いてモールド成形用離型フィルム10のエンボス模様を備える面の光の強度を測定する。そして、得られた光の強度を上述した反射率10%の光の強度の100分の1の値で割ることで、光沢度を算出できる。
For the surface having the embossed shape of the mold release film 10, the upper limit of the glossiness, which is the reflectance of light at an incident angle of 60 °, is preferably 23 or less, and more preferably 20 or less. It is preferably 17 or less, more preferably 15 or less, and even more preferably 12 or less. Thereby, the intensity | strength of specular reflection light can be reduced and the intensity | strength of irregular reflection light can be improved with the embossing pattern of the molding of the 1st resin composition.
Here, this inventor examined the method of controlling the glossiness of the surface provided with the embossed shape of the mold release film 10. As a result, the mold release film according to the second embodiment includes the arithmetic average roughness Ra and the 10-point average surface roughness Rz of the surface having the unevenness of the base material layer 1, and the release layer 2 constituting the release layer 2. It was found that the glossiness can be controlled to the upper limit value or less by appropriately controlling the blending components of the resin composition 3 and the thickness of the release layer 2. Thereby, the embossed pattern suitable for improving the readability of printing can be transferred to the molded product of the first resin composition.
Moreover, about the surface provided with the embossed shape of the mold release film 10, the lower limit of the glossiness, which is the reflectance of light at an incident angle of 60 °, may be 1 or more, for example, or 2 or more.
In the second embodiment, the gloss level can be measured in accordance with JIS Z 8741. A specific method for measuring glossiness will be described. As a premise, on the surface having a refractive index of 1.567, the intensity of light having a reflectance of 10% is assumed to have a glossiness of 100 and the intensity of light having a reflectance of 0% is assumed to be 0 when the incident angle is 60 °. To do. Accordingly, a value of 1/100 of the intensity of light having a reflectance of 10% corresponds to a gloss level of 1. Here, the intensity | strength of the light of the surface provided with the embossed pattern of the mold release film 10 is measured using the reflectometer of the geometric condition of incident angle 60 degrees. Then, the glossiness can be calculated by dividing the obtained light intensity by 1/100 of the light intensity having the reflectance of 10%.
 モールド成形用離型フィルム10の全体の厚みの上限値は、例えば、200μm以下であることが好ましく、150μm以下であることが更に好ましく、100μm以下であることが一層好ましく、65μm以下であることが殊更好ましい。これにより、モールド成形用離型フィルム10の剛性を、金型に対する追従性が損なわれない範囲で適切に向上することができる。したがって、モールド成形用離型フィルム10が所望の成形空間を侵すことが無く、第1の樹脂組成物の成形物に対して、所望のエンボス模様を付与できる点で都合がよい。
 また、モールド成形用離型フィルム10の全体の厚みの下限値は、例えば、10μm以上であることが好ましく、20μm以上であることが更に好ましく、30μm以上であることが一層好ましく、35μm以上であることが殊更好ましい。これにより、モールド成形用離型フィルム10が不必要に変形し、シワなどが生じることを抑制できる。したがって、第1の樹脂組成物の成形物に対して、所望のエンボス模様を付与できる。
The upper limit of the total thickness of the mold release film 10 is, for example, preferably 200 μm or less, more preferably 150 μm or less, still more preferably 100 μm or less, and 65 μm or less. Particularly preferred. Thereby, the rigidity of the mold release film 10 can be appropriately improved as long as the followability to the mold is not impaired. Therefore, the mold release film 10 does not invade the desired molding space, which is advantageous in that a desired embossed pattern can be imparted to the molded product of the first resin composition.
Further, the lower limit of the total thickness of the mold release film 10 is, for example, preferably 10 μm or more, more preferably 20 μm or more, further preferably 30 μm or more, and 35 μm or more. It is particularly preferable. Thereby, it can suppress that the mold release film 10 deform | transforms unnecessarily, and a wrinkle etc. arise. Therefore, a desired embossed pattern can be imparted to the molded product of the first resin composition.
<用途>
 第2実施形態に係るモールド成形用離型フィルムは、第1の樹脂組成物のモールド成形に用いられる。
 第2実施形態に係るモールド成形の方法、得られる電子装置としては、上述した第1実施形態と同様とすることができる。
 なお、配置工程(S1)において、例えば、モールド成形用離型フィルムが、離型層、基材層をこの順で積層した積層構造を有する場合、離型層成形空間を形成し、基材層が金型と接するよう配置することが好ましい。これにより、第1の樹脂組成物及び金型の間にモールド成形用離型フィルムを介在させ、第1の樹脂組成物に離型層を密着させてモールド成形を行うことで、第1の樹脂組成物の成形物にエンボス模様を付与できる。
<Application>
The mold release film according to the second embodiment is used for molding the first resin composition.
The molding method according to the second embodiment and the obtained electronic device can be the same as those in the first embodiment described above.
In the arrangement step (S1), for example, when the mold release film has a laminated structure in which a release layer and a base material layer are laminated in this order, a release layer forming space is formed, and the base material layer is formed. Is preferably arranged so as to be in contact with the mold. Thereby, the mold release film for molding is interposed between the first resin composition and the mold, the mold release layer is brought into close contact with the first resin composition, and the first resin is molded. An embossed pattern can be imparted to the molded product of the composition.
 モールド成形温度の下限値は、例えば、120℃以上としてもよく、140℃以上としてもよく、150℃以上としてもよく、160℃以上としてもよく、175℃以上としてもよい。第1の樹脂組成物がエポキシ樹脂を含む場合、モールド成形温度は、例えば、上記下限値以上に設定される。従来のモールド成形用離型フィルムであれば、上記下限値以上の高温におけるモールド成形では耐熱性が不足し、エンボス形状が崩壊してしまうという不都合があった。しかしながら、第2実施形態に係るモールド成形用離型フィルムは、その基材層1及び離型層2を構成する第2の樹脂組成物及び第3の樹脂組成物の原料成分の選択によって、上記下限値以上の高温におけるモールド成形でもエンボス形状が崩壊しないという点で都合がよい。これにより、第1の樹脂組成物の成形物に対して、好適にエンボス模様を付与できる。したがって、印字の可読性を向上できる。
 なお、第2実施形態にかかるモールド成形用離型フィルムは、高温高圧のモールド成形に用いても、基材層1及び離型層2が剥離しないという点で都合がよい。詳細なメカニズムは定かではないが、基材層1の微細な凹凸に、離型層2が食い込み、あたかもアンカー効果のように作用するため、基材層1及び離型層2の密着性が高いと推測される。
 また、モールド成形温度の上限値は、例えば、240℃以下としてもよく、200℃以下としてもよく、185℃以下としてもよい。
The lower limit of the molding temperature may be, for example, 120 ° C. or higher, 140 ° C. or higher, 150 ° C. or higher, 160 ° C. or higher, or 175 ° C. or higher. When the first resin composition contains an epoxy resin, the molding temperature is set to be equal to or higher than the lower limit, for example. In the case of a conventional mold release film for molding, there is an inconvenience that the molding at a high temperature equal to or higher than the lower limit value is insufficient in heat resistance and the embossed shape collapses. However, in the mold release film according to the second embodiment, the second resin composition and the third resin composition constituting the base layer 1 and the release layer 2 are selected according to the selection of the raw material components described above. It is convenient in that the embossed shape does not collapse even when molding at a high temperature equal to or higher than the lower limit. Thereby, an embossed pattern can be suitably given with respect to the molding of the 1st resin composition. Therefore, the readability of printing can be improved.
The mold release film according to the second embodiment is advantageous in that the base material layer 1 and the release layer 2 do not peel off even when used for high temperature and high pressure mold forming. Although the detailed mechanism is not clear, since the release layer 2 bites into the fine irregularities of the base material layer 1 and acts as an anchor effect, the adhesion between the base material layer 1 and the release layer 2 is high. It is guessed.
Moreover, the upper limit of the molding temperature may be, for example, 240 ° C. or lower, 200 ° C. or lower, or 185 ° C. or lower.
<第1の樹脂組成物>
 第2実施形態に係る第1の樹脂組成物は限定されるものではない。例えば、熱可塑性樹脂組成物または熱硬化性樹脂組成物を用いることができる。第2実施形態に係るモールド成形用離型フィルムはエポキシ樹脂を含む第1の樹脂組成物のモールド成形に好適に用いられる。なぜなら、エポキシ樹脂を含む第1の樹脂組成物のモールド成形温度は、例えば175℃以上であるが、175℃以上の高温においても基材層1の凹凸が崩壊することがないためである。
 熱硬化性樹脂組成物としては、上述した第1実施形態と同様のものを用いることができる。
<First resin composition>
The first resin composition according to the second embodiment is not limited. For example, a thermoplastic resin composition or a thermosetting resin composition can be used. The mold release film according to the second embodiment is suitably used for molding a first resin composition containing an epoxy resin. This is because the molding temperature of the first resin composition containing the epoxy resin is, for example, 175 ° C. or higher, but the unevenness of the base material layer 1 does not collapse even at a high temperature of 175 ° C. or higher.
As a thermosetting resin composition, the thing similar to 1st Embodiment mentioned above can be used.
(第3実施形態)
 以下、第3実施形態に係るモールド成形用離型フィルムについて説明するが、上述した第1実施形態との相違点を中心に説明する。説明の無い事項については、第1実施形態と同様とすることができる。
(Third embodiment)
Hereinafter, the mold release film for molding according to the third embodiment will be described. The description will focus on differences from the first embodiment described above. Matters not described can be the same as in the first embodiment.
 第3実施形態におけるモールド成形用離型フィルムは、第1の樹脂組成物のモールド成形に用いられるモールド成形用離型フィルムであって、当該モールド成形用離型フィルムは最外層に離型層を有しており、前記離型層は第3の樹脂組成物によって構成され、前記第3の樹脂組成物は、フッ素化合物を含み、前記フッ素化合物は、フルオロカーボン基を含み、前記離型層の表面に対する、ヘキサデカンの接触角が20°以上77°以下である、モールド成形用離型フィルムが提供される。 The mold release film in the third embodiment is a mold release film used for the molding of the first resin composition, and the mold release film has a release layer as the outermost layer. The release layer is composed of a third resin composition, the third resin composition contains a fluorine compound, the fluorine compound contains a fluorocarbon group, and the surface of the release layer There is provided a mold release film in which the contact angle of hexadecane is 20 ° or more and 77 ° or less.
 本発明者らは、エポキシ樹脂を含む第1の樹脂組成物をモールド成形する際における、モールド成形用離型フィルムの耐熱性について検討した。その結果、従来のモールド成形用離型フィルムは溶融してしまい、第1の樹脂組成物に対して接合した状態となってしまうことがあることが判明した。これは、エポキシ樹脂を含む第1の樹脂組成物は、モールド成形の温度が、例えば、175℃以上と高温であり、従来のモールド成形用離型フィルムは、高温に耐えられないためと推測された。 The present inventors examined the heat resistance of a mold release film when molding a first resin composition containing an epoxy resin. As a result, it has been found that the conventional mold release film melts and may be joined to the first resin composition. This is presumably because the mold temperature of the first resin composition containing the epoxy resin is high, for example, 175 ° C. or higher, and the conventional mold release film cannot withstand the high temperature. It was.
 本発明者らは、モールド成形用離型フィルムの溶融を防ぐため、モールド成形用離型フィルムの最外層に、特定のフッ素化合物によって形成される離型層を配置することを考えた。これにより、モールド成形用離型フィルムの耐熱性を向上することができた。詳細なメカニズムは定かではないが、この理由は以下のように推測される。上記特定のフッ素化合物は、フルオロカーボン基を含む。フルオロカーボン基とは、炭化水素基の水素原子の一部または全てが、フッ素原子で置換された基を示す。このようなフルオロカーボン基は、炭素原子及びフッ素原子の結合を有する。炭素原子及びフッ素原子の結合は、炭素原子同士の結合、炭素原子及び水素原子の結合、炭素原子及び酸素原子の結合と比べて、振動、回転などの結合の分子運動に必要な熱エネルギーが大きいと推測される。したがって、熱による分子鎖の運動を制限し、耐熱性が向上すると考えられる。 The present inventors considered arranging a release layer formed of a specific fluorine compound in the outermost layer of the mold release film in order to prevent melting of the mold release film. Thereby, the heat resistance of the mold release film could be improved. The detailed mechanism is not clear, but the reason is presumed as follows. The specific fluorine compound includes a fluorocarbon group. A fluorocarbon group refers to a group in which some or all of the hydrogen atoms of a hydrocarbon group are substituted with fluorine atoms. Such a fluorocarbon group has a bond of a carbon atom and a fluorine atom. The bond between carbon and fluorine atoms requires more thermal energy for the molecular motion of the bond, such as vibration and rotation, than the bond between carbon atoms, the bond between carbon and hydrogen atoms, and the bond between carbon and oxygen atoms. It is guessed. Therefore, it is considered that the movement of the molecular chain due to heat is limited and the heat resistance is improved.
 次いで、本発明者らがエポキシ樹脂を含む第1の樹脂組成物をモールド成形する際における、モールド成形用離型フィルムの離型性について検討した。その結果、特定のフッ素化合物によって離型層を単に形成するだけでは、離型性が求められる水準まで向上しないことが判明した。そこで、本発明者らは、離型性を向上するために、特定の溶媒に対する離型層の接触角、すなわち、離型層の濡れ性について検討した。その結果、離型層に対する、ヘキサデカンの接触角が特定の数値範囲内であることで、優れた離型性を発揮することを見出した。詳細なメカニズムは明らかではないが、この理由は以下のように推測される。
 まず、エポキシ樹脂は、極性を示すグリシジル基を有する。離型層のヘキサデカンに対する接触角が特定の数値範囲以下であることにより、グリシジル基との親和性が高くなり過ぎることを抑制できる。また、エポキシ樹脂は、非極性の骨格を有する。離型層のヘキサデカンに対する接触角が特定の数値範囲以上であることにより、非極性の骨格に対する親和性が高くなり過ぎることを抑制できる。したがって、離型層のヘキサデカンに対する接触角が特定の数値範囲内であることにより、離型層と、エポキシ樹脂との親和性が高くなり過ぎることを抑制でき、離型性を向上できると推測される。
 以上より、第3実施形態に係るモールド成形用離型フィルムは、耐熱性及び離型性に優れ、モールド成形性を向上できるものと推測される。
Next, the present inventors examined the mold release properties of the mold release film when the first resin composition containing the epoxy resin was molded. As a result, it has been found that simply forming the release layer with a specific fluorine compound does not improve the releasability to the required level. Therefore, the present inventors examined the contact angle of the release layer with respect to a specific solvent, that is, the wettability of the release layer in order to improve the release property. As a result, it has been found that when the contact angle of hexadecane with respect to the release layer is within a specific numerical range, excellent release properties are exhibited. Although the detailed mechanism is not clear, the reason is presumed as follows.
First, the epoxy resin has a glycidyl group exhibiting polarity. When the contact angle of the release layer with respect to hexadecane is not more than a specific numerical range, it is possible to suppress the affinity with the glycidyl group from becoming too high. The epoxy resin has a nonpolar skeleton. When the contact angle of the release layer with respect to hexadecane is not less than a specific numerical range, it is possible to suppress the affinity for the nonpolar skeleton from becoming too high. Therefore, when the contact angle of the release layer with respect to hexadecane is within a specific numerical range, it is estimated that the affinity between the release layer and the epoxy resin can be prevented from becoming too high, and the release property can be improved. The
From the above, it is presumed that the mold release film according to the third embodiment is excellent in heat resistance and mold release and can improve the moldability.
 以下、第3実施形態に係るモールド成形用離型フィルムの構成について、さらに詳細に説明する。 Hereinafter, the configuration of the mold release film according to the third embodiment will be described in more detail.
<離型層>
 まず、離型層について説明する。
 第3実施形態におけるモールド成形用離型フィルムは、少なくとも最外層に離型層を有している。離型層は、第3の樹脂組成物によって構成されるフィルムである。
<Release layer>
First, the release layer will be described.
The mold release film in the third embodiment has a release layer as at least the outermost layer. The release layer is a film composed of the third resin composition.
<第3の樹脂組成物>
 離型層を形成する第3の樹脂組成物について説明する。
 第3の樹脂組成物は、少なくともフッ素化合物を含む。
 フッ素化合物は、フルオロカーボン基を含むものであればよい。フッ素化合物としては、具体的には、下記一般式(2)に示すものが好ましい。
<Third resin composition>
The 3rd resin composition which forms a mold release layer is demonstrated.
The third resin composition contains at least a fluorine compound.
The fluorine compound only needs to contain a fluorocarbon group. Specifically as a fluorine compound, what is shown to following General formula (2) is preferable.
Figure JPOXMLDOC01-appb-C000018
(上記一般式(2)中、
 Xはフルオロカーボン基を含む基である。
 Yは、末端に極性官能基を少なくとも1つ有する基であり、該極性官能基は、カルボキシル基、スルホン酸基、アミノ基、ヒドロキシ基、シラノール基及びアルコキシシラン基からなる群より選択される1種または2種以上である。)
Figure JPOXMLDOC01-appb-C000018
(In the above general formula (2),
X is a group containing a fluorocarbon group.
Y is a group having at least one polar functional group at the terminal, and the polar functional group is selected from the group consisting of a carboxyl group, a sulfonic acid group, an amino group, a hydroxy group, a silanol group, and an alkoxysilane group. Species or two or more. )
 本発明者が、ヘキサデカンに対する接触角を特定の数値範囲にすることについて検討した結果、フッ素化合物が末端に極性官能基を有することが、当該接触角の制御に有効であることを見出した。詳細なメカニズムは定かではないが、この理由は以下のように推測される。
 フッ素化合物の分子鎖は、フッ素原子同士の相互作用による影響で分子鎖同士の凝集力が低い。しかしながら、フッ素化合物が末端に極性官能基を有すると、極性官能基同士が結合すると推測される。これにより、末端に極性官能基を有するフッ素化合物は、末端に極性官能基を有さないものと比べて、分子鎖の凝集力が高い。したがって、離型層のフッ素原子の密度を向上することができ、ヘキサデカンに対する接触角を特定の数値範囲以下にできると考えられる。
 また、フッ素化合物の分子鎖の凝集力が向上することで、離型層の強度が向上する。これにより、離型層にヒケなどの凹凸形状が生じることを防ぐことができる。このような離型層を備えるモールド成形用離型フィルムを、モールド成形に用いる場合、前記凹凸形状が転写されないという意味で不都合がない。したがって、第3実施形態のモールド成形用離型フィルムは、モールド成形性を向上できるものである。
As a result of studying that the contact angle with respect to hexadecane is in a specific numerical range, the present inventor has found that it is effective for controlling the contact angle that the fluorine compound has a polar functional group at the terminal. The detailed mechanism is not clear, but the reason is presumed as follows.
The molecular chain of the fluorine compound has a low cohesive force between the molecular chains due to the influence of the interaction between fluorine atoms. However, when the fluorine compound has a polar functional group at the terminal, it is presumed that the polar functional groups are bonded to each other. Thereby, the fluorine compound which has a polar functional group at the terminal has high cohesive force of a molecular chain compared with the thing which does not have a polar functional group at the terminal. Therefore, it is considered that the density of fluorine atoms in the release layer can be improved, and the contact angle with respect to hexadecane can be made within a specific numerical range.
Moreover, the strength of the release layer is improved by improving the cohesion of the molecular chain of the fluorine compound. Thereby, it can prevent that uneven | corrugated shapes, such as a sink mark, arise in a mold release layer. When a mold release film having such a release layer is used for molding, there is no problem in that the uneven shape is not transferred. Accordingly, the mold release film of the third embodiment can improve moldability.
 上記一般式(2)におけるYは、末端に極性官能基を少なくとも1つ有する基である。
 上記極性官能基としては、具体的には、カルボキシル基、スルホン酸基、アミノ基、ヒドロキシ基、シラノール基、アルコキシシラン基などが挙げられる。極性官能基としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
 極性官能基としては、上記具体例のうち、シラノール基または炭素数1以上10以下のアルコキシシラン基を含むことが好ましい。これにより、フッ素化合物の分子鎖同士が好適に結合できる。したがって、フッ素化合物中に極性基が残存し、エポキシ樹脂との離型性が低下することを抑制できる。
 シラノール基または炭素数1以上10以下のアルコキシシラン基を含むフッ素化合物としては、例えば、下記一般式(3)で示されるものが好ましい。なお、下記一般式(3)においてAがヒドロキシ基の場合、フッ素化合物はシラノール基を含む。また、下記一般式(3)においてAがアルコキシ基の場合、フッ素化合物はアルコキシシラン基を含む。
Y in the general formula (2) is a group having at least one polar functional group at the terminal.
Specific examples of the polar functional group include a carboxyl group, a sulfonic acid group, an amino group, a hydroxy group, a silanol group, and an alkoxysilane group. As a polar functional group, it can use 1 type or in combination of 2 or more types among the said specific examples.
Of the above specific examples, the polar functional group preferably includes a silanol group or an alkoxysilane group having 1 to 10 carbon atoms. Thereby, the molecular chains of a fluorine compound can couple | bond together suitably. Therefore, it can suppress that a polar group remains in a fluorine compound and mold release property with an epoxy resin falls.
As the fluorine compound containing a silanol group or an alkoxysilane group having 1 to 10 carbon atoms, for example, a compound represented by the following general formula (3) is preferable. In the following general formula (3), when A is a hydroxy group, the fluorine compound contains a silanol group. In the following general formula (3), when A is an alkoxy group, the fluorine compound contains an alkoxysilane group.
Figure JPOXMLDOC01-appb-C000019
(上記一般式(3)中、Xは上記一般式(2)と同様である。
 複数のAはそれぞれ独立して水素原子、炭素原子、酸素原子、窒素原子、硫黄原子、リン原子及びケイ素原子からなる群より選択される1種または2種以上の原子によって形成される基である。Aは互いに同一でもよく、互いに異なっていてもよい。Aのうち少なくとも一つは、ヒドロキシ基または炭素数1以上10以下のアルコキシ基である。)
Figure JPOXMLDOC01-appb-C000019
(In the general formula (3), X is the same as in the general formula (2).
A plurality of A's are groups formed by one or more atoms independently selected from the group consisting of a hydrogen atom, a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom and a silicon atom. . A may be the same as or different from each other. At least one of A is a hydroxy group or an alkoxy group having 1 to 10 carbon atoms. )
 上記一般式(3)において、複数のAは、それぞれ独立して水素原子、炭素原子、酸素原子、窒素原子、硫黄原子、リン原子及びケイ素原子からなる群より選択される1種または2種以上の原子によって形成される基である。 In the general formula (3), a plurality of A are each independently one or more selected from the group consisting of a hydrogen atom, a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom. It is a group formed by the atoms.
 上記一般式(3)において、複数のAのうち少なくとも一つは、ヒドロキシ基または炭素数1以上10以下のアルコキシ基であり、ヒドロキシ基または炭素数1以上7以下のアルコキシ基であることが好ましく、ヒドロキシ基または炭素数1以上4以下のアルコキシ基であることが更に好ましく、炭素数1以上2以下のアルコキシ基であることが一層好ましい。 In the general formula (3), at least one of the plurality of A is a hydroxy group or an alkoxy group having 1 to 10 carbon atoms, preferably a hydroxy group or an alkoxy group having 1 to 7 carbon atoms. Further, a hydroxy group or an alkoxy group having 1 to 4 carbon atoms is more preferable, and an alkoxy group having 1 to 2 carbon atoms is more preferable.
 上記一般式(3)において、複数のAは互いに同一でもよく、互いに異なっていてもよい。
 Aのうち少なくとも1つがヒドロキシ基または炭素数1以上10以下のアルコキシ基であればよく、Aのうち2つ以上がヒドロキシ基または炭素数1以上10以下のアルコキシ基であることが好ましく、Aのうち3つがヒドロキシ基または炭素数1以上10以下のアルコキシ基であることがより好ましい。これにより、後述するプライマー層または基材層が存在する場合、極性官能基を含むAと、プライマー層または基材層と、が結合を形成することにより、プライマー層または基材層上に離型層を安定して形成することができる。
 上記一般式(3)において、Aのうち2つ以上がヒドロキシ基または炭素数1以上10以下のアルコキシ基であることにより、フッ素化合物の分子鎖間でA同士が反応し、分子鎖がAを介して結合し、均一かつフッ素原子の密度が高い離型層を形成することができる。したがって、離型層を形成する分子鎖の欠陥が生じることを抑制でき、離型性をさらに向上することができる。
In the general formula (3), a plurality of A may be the same as or different from each other.
It is sufficient that at least one of A is a hydroxy group or an alkoxy group having 1 to 10 carbon atoms, and two or more of A are preferably a hydroxy group or an alkoxy group having 1 to 10 carbon atoms. It is more preferable that three of them are a hydroxy group or an alkoxy group having 1 to 10 carbon atoms. Thereby, when the primer layer or base material layer to be described later is present, the A containing the polar functional group and the primer layer or the base material layer form a bond, thereby releasing on the primer layer or the base material layer. A layer can be formed stably.
In the general formula (3), when two or more of A are a hydroxy group or an alkoxy group having 1 to 10 carbon atoms, A reacts between the molecular chains of the fluorine compound, and the molecular chain represents A. Thus, a release layer having a uniform and high density of fluorine atoms can be formed. Therefore, it can suppress that the defect of the molecular chain which forms a mold release layer arises, and can further improve mold release property.
 上記一般式(3)において、ヒドロキシ基または炭素数1以上10以下のアルコキシ基以外のAとしては、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などのアルキル基;アリル基、ペンテニル基、ビニル基などのアルケニル基;エチニル基などのアルキニル基;メチリデン基、エチリデン基などのアルキリデン基;トリル基、キシリル基、フェニル基、ナフチル基、アントラセニル基などのアリール基;ベンジル基、フェネチル基などのアラルキル基;アダマンチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基などのシクロアルキル基;トリル基、キシリル基などのアルカリル基などが挙げられる。 In the general formula (3), as A other than the hydroxy group or the alkoxy group having 1 to 10 carbon atoms, specifically, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, Alkyl groups such as isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl; alkenyl such as allyl, pentenyl, vinyl Alkynyl group such as ethynyl group; alkylidene group such as methylidene group and ethylidene group; aryl group such as tolyl group, xylyl group, phenyl group, naphthyl group and anthracenyl group; aralkyl group such as benzyl group and phenethyl group; adamantyl group; Cycloal such as cyclopentyl, cyclohexyl and cyclooctyl Le group; tolyl group, and alkaryl groups, such as xylyl group.
 上記一般式(2)及び(3)において、Xは、フルオロカーボン基を含む1価の基である。第3実施形態において、フルオロカーボン基とは、炭化水素基の水素原子の一部または全てが、フッ素原子で置換された官能基を指す。また、1価の基とは、原子価のことを示す。すなわち、Xがほかの原子と結合する手が1個であることを示す。 In the above general formulas (2) and (3), X is a monovalent group containing a fluorocarbon group. In the third embodiment, the fluorocarbon group refers to a functional group in which part or all of the hydrogen atoms of the hydrocarbon group are substituted with fluorine atoms. A monovalent group indicates a valence. That is, X indicates that there is one hand that bonds with another atom.
 Xとしては、例えば、下記式(X1)で表される構造単位を含むことが好ましい。これにより、離型層のフッ素原子密度を向上させることができる。 X preferably includes, for example, a structural unit represented by the following formula (X1). Thereby, the fluorine atom density of a mold release layer can be improved.
Figure JPOXMLDOC01-appb-C000020
(上記式(X1)中、nは、2以上の整数である。)
Figure JPOXMLDOC01-appb-C000020
(In the above formula (X1), n is an integer of 2 or more.)
 Xとしては、例えば、エーテル結合、すなわち、炭素原子-酸素原子-炭素原子の結合を含むことが好ましい。これにより、上記一般式(2)及び(3)におけるXの部分の運動性が大きくなると推測される。したがって、離型層の柔軟性が向上し、モールド成形などで変形が加わったとしても、離型層に欠陥が生じづらくなる。以上より、成形性を向上できる。 X preferably includes, for example, an ether bond, that is, a carbon atom-oxygen atom-carbon atom bond. Thereby, it is estimated that the mobility of the part of X in the general formulas (2) and (3) is increased. Therefore, the flexibility of the release layer is improved, and even if deformation is applied by molding or the like, it is difficult for defects to occur in the release layer. From the above, the moldability can be improved.
 Xの構造としては、具体的には、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-フッ化ビニリデン共重合体、クロロトリフルオロエチレン-エチレン共重合体等のテトラフルオロエチレンに由来する構造単位を挙げることができる。Xの構造としては、上記具体例のうち、1種または2種以上の構造単位を組み合わせてよい。 Specific examples of the structure of X include tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-vinylidene fluoride. Mention may be made of structural units derived from tetrafluoroethylene such as copolymers and chlorotrifluoroethylene-ethylene copolymers. As the structure of X, among the above specific examples, one type or two or more types of structural units may be combined.
 Xの炭素の配列としては、例えば、直鎖状、分岐状または環状とすることができる。これらの中でも直鎖状であることが好ましい。これにより、フッ素化合物のフッ素原子の密度を向上することができる。 The carbon sequence of X can be, for example, linear, branched or cyclic. Among these, linear is preferable. Thereby, the density of the fluorine atom of a fluorine compound can be improved.
 上記一般式(2)で表され、上記(X1)の構造単位を含むフッ素化合物の市販品としては、具体的には、フロロテクノロジー社製のFG-5084SHまたは6050、ネオス社製のフリリース85、AGCセイミケミカル社製のサイトップCTX-809A、ネオス社製のRB-5910EX-IIIなどに含まれる。フッ素化合物としては、上記具体例のうち、1種または2種以上を組み合わせて用いることが好ましい。これにより、離型性を向上できる。 Specific examples of commercially available fluorine compounds represented by the above general formula (2) and containing the structural unit of (X1) include FG-5084SH or 6050 manufactured by Fluoro Technology Co., Ltd., Flease 85 manufactured by Neos Co., Ltd. CYTOP CTX-809A manufactured by AGC Seimi Chemical Co., RB-5910EX-III manufactured by Neos, and the like. As a fluorine compound, it is preferable to use 1 type or in combination of 2 or more types among the said specific examples. Thereby, mold release property can be improved.
 第3の樹脂組成物は、離型層の離型性を低下させない範囲で、さらにその他の成分を含んでもよい。
 その他の成分としては、限定されないが、N,N-ビス(ヒドロキシエチル)アルキルアミン、アルキルアリルスルホネート、アルキルスルファネートなどの帯電防止剤;酸化チタン、炭酸カルシウム、タルク、二酸化ケイ素などの無機充填材;オルガノシリコーンパウダー、ポリエチレンパウダー、ポリアクリルパウダーなどの有機充填材;フッ素系ノニオン界面活性剤などのレベリング剤等が挙げられる。
The third resin composition may further contain other components as long as the release property of the release layer is not lowered.
Other components include, but are not limited to, antistatic agents such as N, N-bis (hydroxyethyl) alkylamine, alkylallyl sulfonate, alkyl sulfonate, and inorganic fillers such as titanium oxide, calcium carbonate, talc, silicon dioxide Materials: Organic fillers such as organosilicone powder, polyethylene powder, and polyacryl powder; leveling agents such as fluorine-based nonionic surfactants.
<離型層の製造方法>
 第3実施形態において、離型層を製造する方法は限定されず、第3の樹脂組成物にあわせて従来公知の方法を用いることができる。具体的には、溶媒によってワニスに調製した第3の樹脂組成物を塗工し、乾燥する方法を用いることが好ましい。塗工する方法としては、グラビアロール塗工法、ドクターブレード塗工法、浸漬塗工法、スプレー塗工法、バーコーター塗工法、紙による直接塗工法などが挙げられる。
 離型層を作製する方法としては、例えば、後述する基材層に対して、第3の樹脂組成物を直接塗工し、第3の樹脂組成物を乾燥させてモールド成形用離型フィルムを得ることが好ましい。これにより、寸法精度よく、離型層及びモールド成形用離型フィルムを作製することができる。
 なお、塗工した第3の樹脂組成物を乾燥させる条件は限定されず、溶媒など揮発成分を乾燥できればよい。具体的には、乾燥の温度条件を25℃以上150℃以下とすることができる。
<Manufacturing method of release layer>
In 3rd Embodiment, the method to manufacture a release layer is not limited, A conventionally well-known method can be used according to a 3rd resin composition. Specifically, it is preferable to use a method of applying and drying the third resin composition prepared on the varnish with a solvent. Examples of the coating method include a gravure roll coating method, a doctor blade coating method, a dip coating method, a spray coating method, a bar coater coating method, and a direct coating method using paper.
As a method for producing the release layer, for example, a third resin composition is directly applied to a base material layer to be described later, and the third resin composition is dried to form a release film for molding. It is preferable to obtain. Thereby, a release layer and a mold release film can be produced with high dimensional accuracy.
The conditions for drying the coated third resin composition are not limited as long as volatile components such as a solvent can be dried. Specifically, the drying temperature condition can be 25 ° C. or more and 150 ° C. or less.
 離型層及び第1の樹脂組成物の親和性が高くなりすぎることを抑制し、モールド成形用離型フィルムの離型性を向上させる観点から、離型層の表面に対するヘキサデカンの接触角の下限値は、25℃において、20°以上であって、30°以上であることが好ましく、50°以上であることが好ましい。
 また、同様の観点から、離型層の表面に対するヘキサデカンの接触角の上限値は、25℃において、75°以下であり、70°以下であることが好ましい。
 ヘキサデカンの接触角の測定方法としては限定されず、例えば、協和界面科学社製、DROPMASTER-501等の市販の接触角計を使用し、測定対象を平面に静置し、測定対象表面にヘキサデカン2μLを着滴して7秒後の接触角を液適法にて測定することができる。
From the viewpoint of suppressing the affinity between the release layer and the first resin composition from becoming too high and improving the release property of the release film for molding, the lower limit of the contact angle of hexadecane to the surface of the release layer The value is 20 ° or more at 25 ° C., preferably 30 ° or more, and preferably 50 ° or more.
From the same viewpoint, the upper limit of the contact angle of hexadecane with respect to the surface of the release layer is 75 ° or less and preferably 70 ° or less at 25 ° C.
The method for measuring the contact angle of hexadecane is not limited. For example, a commercially available contact angle meter such as DROPMASTER-501 manufactured by Kyowa Interface Science Co., Ltd. is used. The contact angle after 7 seconds can be measured by a liquid suitable method.
 離型層の表面に対する水の接触角の上限値は、25℃において、例えば、118°以下であることが好ましく、113°以下であることがより好ましく、110°以下であることが更に好ましく、109°以下であることが一層好ましい。これにより、第1の樹脂組成物の非極性基と、離型層との親和性が高くなり過ぎることを抑制できる。したがって、離型性を向上できる。
 また、離型層の表面に対する水の接触角の下限値は、25℃において、例えば、100°以上であることが好ましく、105°以上であることがより好ましい。これにより、エポキシ樹脂を含む第1の樹脂組成物をモールド成形する場合、エポキシ樹脂のグリシジル基などの極性基と、離型層との親和性が高くなり過ぎることを抑制できる。したがって、離型性を向上できる。
 水の接触角の測定方法としては、限定されず、例えば、協和界面科学社製、DROPMASTER-501等の市販の接触角計を使用し、測定対象を平面に静置し、測定対象表面に精製水2μLを着滴して7秒後の接触角を液適法にて測定することができる。
The upper limit value of the contact angle of water with respect to the surface of the release layer is preferably, for example, 118 ° or less, more preferably 113 ° or less, and further preferably 110 ° or less at 25 ° C. More preferably, it is 109 ° or less. Thereby, it can suppress that the affinity of the nonpolar group of a 1st resin composition and a release layer becomes high too much. Therefore, the releasability can be improved.
Further, the lower limit value of the contact angle of water with the surface of the release layer is preferably 100 ° or more, and more preferably 105 ° or more at 25 ° C. Thereby, when mold-molding the 1st resin composition containing an epoxy resin, it can suppress that affinity with polar groups, such as a glycidyl group of an epoxy resin, and a mold release layer becomes high too much. Therefore, the releasability can be improved.
The method for measuring the water contact angle is not limited. For example, a commercially available contact angle meter such as DROPMASTER-501 manufactured by Kyowa Interface Science Co., Ltd. is used. The contact angle 7 seconds after 2 μL of water is deposited can be measured by a liquid appropriate method.
 離型層の厚みの上限値は、例えば、80μm以下であり、55μm以下であり、40μm以下であり、30μm以下とすることもできる。これにより、単一の離型層により形成されるモールド成形用離型フィルムとすることができ、かつ、金型に対して良好な追従性を発揮することができる。
 なお、離型層を、基材に塗工して作製する場合薄膜化してもよい。薄膜化する場合、離型層の厚みの上限値は、例えば、5μm以下であることが好ましく、2μm以下であることがより好ましく、1μm以下であることが更に好ましく、0.5μm以下であることが一層好ましく、0.1μm以下であることが殊更好ましい。これにより、上述したように、フッ素化合物の分子を好適に整列させることができ、ヘキサデカンの接触角を上記数値範囲内に制御することができる。
 また、離型層の厚みの下限値はとくに限定されない。例えば、0.0001μm以上であって、0.0005μm以上であることが好ましく、0.001μm以上であることが更に好ましく、0.005μm以上であることが一層好ましい。これにより、離型層に欠陥が生じる可能性を低減し、第1の樹脂組成物に対する離型性が低下することを抑制できる。
The upper limit value of the thickness of the release layer is, for example, 80 μm or less, 55 μm or less, 40 μm or less, or 30 μm or less. Thereby, it can be set as the mold release film formed by the single mold release layer, and can follow favorable followability with respect to a metal mold | die.
The release layer may be thinned when it is applied to a substrate. When thinning, the upper limit of the thickness of the release layer is, for example, preferably 5 μm or less, more preferably 2 μm or less, further preferably 1 μm or less, and 0.5 μm or less. Is more preferably 0.1 μm or less. Thereby, as above-mentioned, the molecule | numerator of a fluorine compound can be arranged suitably, and the contact angle of hexadecane can be controlled within the said numerical range.
Moreover, the lower limit of the thickness of the release layer is not particularly limited. For example, it is 0.0001 μm or more, preferably 0.0005 μm or more, more preferably 0.001 μm or more, and further preferably 0.005 μm or more. Thereby, possibility that a defect will arise in a mold release layer is reduced and it can control that mold release nature to the 1st resin composition falls.
 本発明者らが、離型層の表面におけるヘキサデカンの接触角を上記特定の数値範囲とする方法について検討した結果、上述したフッ素化合物を5μm以下に塗工することが有効であることがわかった。詳細なメカニズムは定かではないが、フッ素化合物を5μm以下となるように塗工することで、フッ素化合物の分子鎖を好適に整列させることができると推測される。 As a result of studying a method for setting the contact angle of hexadecane on the surface of the release layer to the above specific numerical range, the present inventors have found that it is effective to apply the above-described fluorine compound to 5 μm or less. . Although the detailed mechanism is not clear, it is presumed that the molecular chain of the fluorine compound can be suitably aligned by coating the fluorine compound so as to be 5 μm or less.
<基材層>
 第3実施形態にかかるモールド成形用離型フィルムは、上述した離型層に加えて、基材層を備えていてもよい。すなわち、モールド成形用離型フィルムは、離型層と、基材層と、が積層された積層構造を有してもよい。これにより、モールド成形用離型フィルムに適切な剛性を付与することができる。したがって、モールド成形用離型フィルムに、シワなどの変形が生じることを抑制することができる。
 ここで、基材層は第2の樹脂組成物によって構成されるフィルムである。
<Base material layer>
The mold release film according to the third embodiment may include a base material layer in addition to the release layer described above. That is, the mold release film may have a laminated structure in which a release layer and a base material layer are laminated. Thereby, appropriate rigidity can be provided to the mold release film. Therefore, it is possible to suppress the occurrence of deformation such as wrinkles in the mold release film.
Here, the base material layer is a film composed of the second resin composition.
<第2の樹脂組成物>
 第2の樹脂組成物は、例えば、熱可塑性樹脂を含む。
 上記熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンイソフタレートなどのポリエステル樹脂;ナイロン6、ナイロン66などのポリアミド樹脂;ポリ塩化ビニルなどのポリビニル樹脂;ポリプロピレン、ポリ(4-メチル-1-ペンテン)などのポリオレフィン樹脂;シンジオタクチック構造を有するポリスチレン樹脂などのポリスチレン樹脂;スチレン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリオレフィン系エラストマー、ウレタン系エラストマーなどの熱可塑性エラストマーなどが挙げられる。熱可塑性樹脂としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
 第2の樹脂組成物が含む熱可塑性樹脂としては、上記具体例のうち、ポリエステル樹脂を用いることが好ましい。ポリエステル樹脂としては、上記具体例のうち、ポリエチレンテレフタレートまたはポリブチレンテレフタレートであることが好ましく、ポリエチレンテレフタレートであることがより好ましい。これにより、離型性を向上できる。この理由について、詳細なメカニズムは定かではないが、以下のように推測される。まず、基材層の表面にわずかにカルボキシル基の残渣が存在すると推測される。これにより、離型層を形成するフッ素化合物の極性官能基と、基材層の表面のカルボキシル基の残渣が結合を形成すると考えられる。したがって、離型層を基材層表面に均一に形成することができ、離型層の欠陥が生じることを抑制する。以上より、離型性を向上できる。
 さらに、熱可塑性樹脂としてポリエチレンテレフタレートを用いる場合、優れた離型性を実現できる。ポリエチレンテレフタレートは、耐熱性が高く、高温時の強度にも優れる。これにより、モールド成形用離型フィルムに熱と荷重が加わったとしても、歪み速度の大きな変形がおこることを抑制できる。これにより、離型層が、基材層に追従して破壊されてしまうことを抑制できる。したがって、優れた離型性を実現することができる。
<Second resin composition>
The second resin composition includes, for example, a thermoplastic resin.
Examples of the thermoplastic resin include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyethylene isophthalate; polyamide resins such as nylon 6 and nylon 66; polyvinyl resins such as polyvinyl chloride; polypropylene, poly ( Polyolefin resins such as 4-methyl-1-pentene); polystyrene resins such as polystyrene resins having a syndiotactic structure; thermoplastic elastomers such as styrene elastomers, polyester elastomers, polyamide elastomers, polyolefin elastomers, urethane elastomers Etc. As a thermoplastic resin, it can use 1 type or in combination of 2 or more types among the said specific examples.
As the thermoplastic resin contained in the second resin composition, among the above specific examples, it is preferable to use a polyester resin. Among the above specific examples, the polyester resin is preferably polyethylene terephthalate or polybutylene terephthalate, and more preferably polyethylene terephthalate. Thereby, mold release property can be improved. Although the detailed mechanism is not clear about this reason, it estimates as follows. First, it is presumed that a slight carboxyl group residue exists on the surface of the base material layer. Thereby, it is thought that the polar functional group of the fluorine compound that forms the release layer and the residue of the carboxyl group on the surface of the base material layer form a bond. Therefore, the release layer can be uniformly formed on the surface of the base material layer, and the occurrence of defects in the release layer is suppressed. As described above, releasability can be improved.
Furthermore, when polyethylene terephthalate is used as the thermoplastic resin, excellent release properties can be realized. Polyethylene terephthalate has high heat resistance and excellent strength at high temperatures. Thereby, even if heat and a load are applied to the mold release film, it is possible to suppress deformation with a large strain rate. Thereby, it can suppress that a release layer tracks a base material layer and is destroyed. Therefore, excellent releasability can be realized.
 第2の樹脂組成物は、必要に応じて、さらにその他の成分を含んでもよい。
 その他の成分としては、限定されないが、酸化防止剤、スリップ剤、アンチブロッキング剤、帯電防止剤、染料および顔料等の着色剤;安定剤等の添加剤、フッ素樹脂、シリコーンゴム等の耐衝撃性付与剤;酸化チタン、炭酸カルシウム、タルク等の無機充填材等が挙げられる。
The second resin composition may further contain other components as necessary.
Other components include, but are not limited to, antioxidants, slip agents, antiblocking agents, antistatic agents, coloring agents such as dyes and pigments; additives such as stabilizers, impact resistance such as fluororesins and silicone rubber Giving agents; inorganic fillers such as titanium oxide, calcium carbonate, talc and the like.
<基材層の製造方法>
 第3実施形態において、基材層を製造する方法は限定されず、第2の樹脂組成物の種類に応じて、従来公知の方法を用いることができる。基材層である第2の樹脂組成物を含むフィルムは、未延伸フィルムでもよく、一軸方向または二軸方向に延伸したフィルムであってもよい。これらのなかでも一軸方向または二軸方向に延伸したフィルムを用いることが好ましい。これにより、基材層に含まれる第2の樹脂組成物の分子鎖を配向させることができる。これにより、強度と耐熱性を向上することができ、モールド成形用離型フィルムにシワなどの変形が生じることを抑制できる。
<Manufacturing method of base material layer>
In 3rd Embodiment, the method of manufacturing a base material layer is not limited, A conventionally well-known method can be used according to the kind of 2nd resin composition. The film containing the second resin composition as the base material layer may be an unstretched film or a film stretched in a uniaxial direction or a biaxial direction. Among these, it is preferable to use a film stretched in a uniaxial direction or a biaxial direction. Thereby, the molecular chain of the 2nd resin composition contained in a base material layer can be oriented. Thereby, intensity | strength and heat resistance can be improved and it can suppress that deformation | transformation, such as a wrinkle, arises in the mold release film.
 基材層の表面は、例えば、表面処理によって改質してもよい。表面処理としては、具体的には、コロナ処理、プラズマ処理などが挙げられる。表面処理としては、上記具体例のうち、コロナ処理するのが好ましい。コロナ処理により、基材層の表面を改質することができる。表面の改質としては、具体的には、コロナ処理を施した基材層表面に、ヒドロキシ基、カルボキシル基などの極性官能基を形成することができる。したがって、離型層、または、後述するプライマー層を基材層表面に形成する場合、離型層またはプライマー層をより均一に形成することができる。したがって、離型層またはプライマー層を形成する分子鎖の欠陥が生じることを抑制し、離型性が低下するのを抑制することができる。
 また、上記表面処理を行うことで、基材層表面と、離型層またはプライマー層との密着強度を向上できる。これにより、モールド成形中に、モールド成形用離型フィルムの積層構造が分離してしまうことを抑制できる。したがって、モールド成形性を向上できる。また、密着強度が向上することで、例えば、モールド成形用離型フィルムを搬送する際に、モールド成形用離型フィルムが変形したとしても、積層構造が分離することを抑制できる点で不都合がない。
 なお、基材層の表面形状は、離型性に影響を与えない範囲で、平滑な鏡面形状であってもよく、凹凸形状があってもよい。
The surface of the base material layer may be modified by surface treatment, for example. Specific examples of the surface treatment include corona treatment and plasma treatment. As the surface treatment, the corona treatment is preferable among the above specific examples. The surface of the base material layer can be modified by corona treatment. Specifically, as the surface modification, polar functional groups such as hydroxy groups and carboxyl groups can be formed on the surface of the substrate layer subjected to corona treatment. Therefore, when a release layer or a primer layer described later is formed on the surface of the base material layer, the release layer or the primer layer can be formed more uniformly. Therefore, it can suppress that the defect of the molecular chain which forms a mold release layer or a primer layer arises, and can suppress that a mold release property falls.
Moreover, the adhesive strength of the base material layer surface, a mold release layer, or a primer layer can be improved by performing the said surface treatment. Thereby, it can suppress that the laminated structure of the mold release film for mold formation separates during mold forming. Therefore, moldability can be improved. Further, since the adhesion strength is improved, for example, when the mold release film is transported, even if the mold release film is deformed, there is no problem in that it is possible to suppress the separation of the laminated structure. .
In addition, the surface shape of the base material layer may be a smooth mirror surface shape or an uneven shape as long as it does not affect the releasability.
 また、本発明者が検討した結果、基材層が存在する場合に、離型層のヘキサデカンに対する接触角、及び、水に対する接触角を上述した特定の数値範囲内とするには、下記特定の条件のコロナ処理を基材層に施すことが好ましいことを見出した。詳細なメカニズムは定かではないが、上述したフッ素化合物の末端極性官能基が、基材層表面の極性官能基と結合を形成すると推測される。これにより、フッ素化合物の分子鎖が、適切に配列する。したがって、接触角を特定の数値範囲とできると考えられる。
 ここで、接触角を上述した数値範囲内とする際のコロナ処理の条件としては、例えば、バッチコロナ処理機(例えば、春日電機(株)製、CORONA GENERATOR CT-0212)を用いて、出力が0.1kW以上大きく2.0kW以下、搬送速度が0.1m/分以上40m/分以下、放電隙間が0.1mm以上20mm以下で行うことが好ましい。
In addition, as a result of the study by the present inventors, when the base layer is present, the contact angle with respect to hexadecane of the release layer and the contact angle with water within the specific numerical range described above are specified as follows. It has been found that it is preferable to subject the substrate layer to a corona treatment of conditions. Although the detailed mechanism is not clear, it is estimated that the terminal polar functional group of the above-mentioned fluorine compound forms a bond with the polar functional group on the surface of the base material layer. Thereby, the molecular chain of a fluorine compound arranges appropriately. Therefore, it is considered that the contact angle can be in a specific numerical range.
Here, as a condition of corona treatment when the contact angle is within the above-mentioned numerical range, for example, a batch corona treatment machine (for example, CORONA GENERATOR CT-0212 manufactured by Kasuga Electric Co., Ltd.) is used, and the output is It is preferably performed at 0.1 kW or more and 2.0 kW or less, a conveyance speed of 0.1 m / min or more and 40 m / min or less, and a discharge gap of 0.1 mm or more and 20 mm or less.
 第3実施形態に係る基材層の厚みの下限値は、例えば、10μm以上であり、15μm以上であることが好ましく、20μm以上であることがさらに好ましい。これにより、モールド成形用離型フィルムの剛性が小さくなり過ぎることを防ぐことができる。したがって、成形時及び離型時に、モールド成形用離型フィルムにシワが生じ、モールド成形される第1の樹脂組成物の表面に該シワの形状を転写することを防ぐことができる。
 また、基材層の厚みの上限値は、例えば、150μm以下であり、100μm以下であることが好ましく、75μm以下であることがさらに好ましく、50μm以下であることが一層好ましい。これにより、モールド成形用離型フィルムの剛性が大きくなり過ぎることを防ぐことができる。したがって、成形時及び離型時に、シワを生じさせずにモールド成形用離型フィルムの金型に対する追従性を向上できる。
The lower limit value of the thickness of the base material layer according to the third embodiment is, for example, 10 μm or more, preferably 15 μm or more, and more preferably 20 μm or more. Thereby, it can prevent that the rigidity of the mold release film becomes too small. Accordingly, it is possible to prevent wrinkles from being generated on the mold release film at the time of molding and releasing, and transferring the shape of the wrinkles to the surface of the first resin composition to be molded.
Further, the upper limit value of the thickness of the base material layer is, for example, 150 μm or less, preferably 100 μm or less, more preferably 75 μm or less, and further preferably 50 μm or less. Thereby, it can prevent that the rigidity of the mold release film for molding becomes large too much. Accordingly, it is possible to improve the followability of the mold release film to the mold without forming wrinkles during molding and mold release.
 第3実施形態に係る基材層の融点の下限値は、例えば、160℃以上であることが好ましく、200℃以上であることがより好ましく、220℃以上であることが更に好ましく、225℃以上であることが一層好ましく、230℃以上であることが殊更好ましい。これにより、基材層が金型と接する場合でも、モールド成形用離型フィルムの溶融を抑制できる。したがって、モールド成形用離型フィルムの耐熱性を向上できる。
 また、基材層の融点の上限値は限定されず、例えば、300℃以下とすることができる。これにより、モールド成形時においても基材層は適切な剛性を発揮することができる。したがって、モールド成形用離型フィルムにシワ等の変形が生じることを抑制でき、モールド成形性を向上できる。
The lower limit value of the melting point of the base material layer according to the third embodiment is, for example, preferably 160 ° C. or higher, more preferably 200 ° C. or higher, further preferably 220 ° C. or higher, and 225 ° C. or higher. More preferably, it is 230 degreeC or more. Thereby, even when a base material layer touches a metal mold | die, melting | fusing of the mold release film can be suppressed. Therefore, the heat resistance of the mold release film can be improved.
Moreover, the upper limit of melting | fusing point of a base material layer is not limited, For example, it can be 300 degrees C or less. Thereby, the base material layer can exhibit appropriate rigidity even at the time of molding. Therefore, deformation such as wrinkles can be suppressed in the mold release film, and moldability can be improved.
<プライマー層>
 第3実施形態にかかるモールド成形用離型フィルムの積層構造は、上述した離型層及び基材層に加えて、さらに、プライマー層を備えていてもよい。ここで、モールド成形用離型フィルムの積層構造は、前記離型層と、前記基材層との間に、プライマー層を有してもよい。これにより、離型層及び基材層の接着性を向上し、さらに、モールド成形用離型フィルムの離型性を安定して発現することができる。
<Primer layer>
The laminated structure of the mold release film according to the third embodiment may further include a primer layer in addition to the release layer and the base material layer described above. Here, the laminated structure of the mold release film may have a primer layer between the release layer and the base material layer. Thereby, the adhesiveness of a mold release layer and a base material layer can be improved, and also the mold release property of the mold release film can be stably expressed.
<第4の樹脂組成物>
 プライマー層は第4の樹脂組成物によって構成される。
 第4の樹脂組成物は限定されないが、例えば、シロキサン化合物を含むことが好ましい。
 シロキサン化合物の中でも、加水分解によってシラノール基を形成するものが好ましい。さらに、第3の樹脂組成物のフッ素化合物がシラノール基を含む場合、上記シロキサン化合物及びフッ素化合物のシラノール基同士が脱水縮合反応できることがより好ましい。これにより、離型層をより安定して形成することができる。したがって、離型層に欠陥が生じることにより離型性が低下することを抑制できる。
<Fourth resin composition>
The primer layer is composed of a fourth resin composition.
Although a 4th resin composition is not limited, For example, it is preferable that a siloxane compound is included.
Among siloxane compounds, those that form silanol groups by hydrolysis are preferred. Furthermore, when the fluorine compound of the third resin composition contains a silanol group, it is more preferable that the silanol groups of the siloxane compound and the fluorine compound can undergo a dehydration condensation reaction. Thereby, a release layer can be formed more stably. Therefore, it can suppress that a mold release property falls because a defect arises in a mold release layer.
 第4の樹脂組成物が含む具体的なシロキサン化合物としては、例えば、エポキシシラン、アミノシラン、アルキルシラン、ウレイドシラン、メルカプトシラン、ビニルシラン、スチリルシラン、メタクリルシラン、スルフィドシラン、イソシアネートシラン等が挙げられる。
 シロキサン化合物の具体的な物質名としては、例えば、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-6-(アミノヘキシル)-3-アミノプロピルトリメトキシシラン、N-(3-(トリメトキシシリルプロピル)-1,3-ベンゼンジメタナン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、メチルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、ビニルトリエトキシシラン等が挙げられる。第4の樹脂組成物は、これらの中から1種を単独で含んでもよいし、2種以上を含んでもよい。
Specific examples of the siloxane compound included in the fourth resin composition include epoxy silane, amino silane, alkyl silane, ureido silane, mercapto silane, vinyl silane, styryl silane, methacryl silane, sulfide silane, and isocyanate silane.
Specific substance names of the siloxane compound include, for example, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β (amino Ethyl) -γ-aminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropyltriethoxysilane N-6- (aminohexyl) -3-aminopropyltrimethoxysilane, N- (3- (trimethoxysilylpropyl) -1,3-benzenedimethanane, γ-glycidoxypropyltriethoxysilane, γ -Glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyl Examples include methoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, methyltrimethoxysilane, γ-ureidopropyltriethoxysilane, and vinyltriethoxysilane. The resin composition may contain one of these alone or two or more.
<プライマー層の製造方法>
 第3実施形態において、プライマー層である第4の樹脂組成物を含む薄膜を製造する方法は限定されず、第4の樹脂組成物にあわせて従来公知の方法を用いることができる。具体的には、溶媒によってワニスに調製した第4の樹脂組成物を塗工し、乾燥する方法を用いることが好ましい。塗工する方法としては、ロール塗工法、ドクターブレード塗工法、浸漬塗工法、スプレー塗工法、バーコーター塗工法、紙による直接塗工法などが挙げられる。
 例えば、プライマー層を作製する際、上述した基材層に対して、第4の樹脂組成物を直接塗工し、第4の樹脂組成物を乾燥させてプライマー層を得ることが好ましい。これにより、寸法精度よく、プライマー層を作製することができる。
 なお、プライマー層の厚みは限定されない。プライマー層の厚みの下限値としては、例えば、0.0005μm以上であって、0.001μm以上であることが好ましく、0.005μm以上であることが更に好ましく、0.01μm以上であることが一層好ましい。これにより、離型層と、基材層との接着性を向上させることができる。したがって、離型層、プライマー層、基材層がこの順で積層される積層構造を有するモールド成形用離型フィルムを安定して成形することができる。
 また、プライマー層の厚みの上限値としては、例えば、3μm以下であることが好ましく、2μm以下であることが好ましく、1μm以下であることが好ましい。これにより、モールド成形用離型フィルムの表面にクラックが生じることを抑制でき、さらに、モールド成形用離型フィルムの金型追従性を向上できる。
<Manufacturing method of primer layer>
In 3rd Embodiment, the method of manufacturing the thin film containing the 4th resin composition which is a primer layer is not limited, A conventionally well-known method can be used according to a 4th resin composition. Specifically, it is preferable to use a method of applying and drying the fourth resin composition prepared on the varnish with a solvent. Examples of the coating method include a roll coating method, a doctor blade coating method, a dip coating method, a spray coating method, a bar coater coating method, and a direct coating method using paper.
For example, when producing a primer layer, it is preferable to apply a 4th resin composition directly with respect to the base material layer mentioned above, and to dry a 4th resin composition and to obtain a primer layer. Thereby, a primer layer can be produced with high dimensional accuracy.
The thickness of the primer layer is not limited. The lower limit of the thickness of the primer layer is, for example, 0.0005 μm or more, preferably 0.001 μm or more, more preferably 0.005 μm or more, and more preferably 0.01 μm or more. preferable. Thereby, the adhesiveness of a mold release layer and a base material layer can be improved. Therefore, the mold release film having a laminated structure in which the release layer, the primer layer, and the base material layer are laminated in this order can be stably formed.
Moreover, as an upper limit of the thickness of a primer layer, it is preferable that it is 3 micrometers or less, for example, it is preferable that it is 2 micrometers or less, and it is preferable that it is 1 micrometer or less. Thereby, it can suppress that the crack arises on the surface of the mold release film, and also the mold followability of the mold release film can be improved.
<モールド成形用離型フィルムの製造方法>
 第3実施形態におけるモールド成形用離型フィルムは、その積層構造に応じた従来公知の方法を用いて作成することができる。
 離型層、プライマー層、基材層がこの順で積層された積層構造を有するモールド成形用離型フィルムは、例えば、上述した基材層を準備し、基材層上にプライマー層、離型層をこの順で塗工し、形成することによって、作製することができる。
<Method for producing mold release film>
The release film for molding in the third embodiment can be prepared by using a conventionally known method according to the laminated structure.
A mold release film having a laminated structure in which a release layer, a primer layer, and a base material layer are laminated in this order is prepared, for example, by preparing the base material layer described above, and a primer layer and a mold release on the base material layer. It can be produced by coating and forming the layers in this order.
 モールド成形用離型フィルムの積層構造は、少なくとも最外層に離型層を有する。積層構造は、離型層、基材層、プライマー層を、それぞれ1層または2層以上含んでもよい。
 積層構造として、具体的には、離型層、基材層がこの順で積層された積層構造;離型層、プライマー層、基材層がこの順で積層された積層構造;第1の離型層、基材層、第2の離型層がこの順で積層された積層構造;第1の離型層、第1のプライマー層、基材層、第2のプライマー層、第2の離型層がこの順で積層された積層構造;離型層、第1の基材層、第2の基材層、第3の基材層がこの順で積層された積層構造などが挙げられる。
 積層構造としては、上記具体例のうち、離型層、プライマー層、基材層がこの順で積層された積層構造であることが好ましい。これにより、離型性及び耐熱性を向上できる。
 なお、複数の離型層が存在する場合、離型層は同様のものを用いてもよく、異なるものを用いてもよい。また、複数の基材層が存在する場合、基材層は同様のものを用いてもよく、異なるものを用いてもよい。また、複数のプライマー層が存在する場合、プライマー層は同様の物を用いてもよく、異なるものを用いてもよい。
The laminated structure of the mold release film has at least an outermost release layer. The laminated structure may include one or more release layers, substrate layers, and primer layers, respectively.
Specifically, the laminated structure is a laminated structure in which a release layer and a base material layer are laminated in this order; a laminated structure in which a release layer, a primer layer, and a base material layer are laminated in this order; A laminated structure in which a mold layer, a base material layer, and a second release layer are laminated in this order; a first release layer, a first primer layer, a base material layer, a second primer layer, a second release layer Examples include a laminated structure in which mold layers are laminated in this order; a laminated structure in which a release layer, a first base material layer, a second base material layer, and a third base material layer are laminated in this order.
Of the above specific examples, the laminated structure is preferably a laminated structure in which a release layer, a primer layer, and a base material layer are laminated in this order. Thereby, mold release property and heat resistance can be improved.
In addition, when a several release layer exists, the same thing may be used for a release layer, and a different thing may be used. Moreover, when a several base material layer exists, the same base material layer may be used and a different thing may be used. In addition, when a plurality of primer layers are present, the same primer layer may be used, or different ones may be used.
 モールド成形用離型フィルムの厚みの上限値は、例えば255μm以下であり、200μm以下であることが好ましく、100μm以下であることがより好ましく、80μm以下であることが更に好ましい。これにより、モールド成形用離型フィルムが、金型の形状に対する追従性を確保することができる。
 また、モールド成形用離型フィルムの厚みの下限値は、例えば、0.0001μm以上であり、10μm以上であることが好ましく、20μm以上であることがより好ましく、25μm以上であることがさらに好ましく、30μm以上であることが一層好ましい。これにより、モールド成形用離型フィルムは離型性を好適に発現することができる。
The upper limit of the thickness of the mold release film is, for example, 255 μm or less, preferably 200 μm or less, more preferably 100 μm or less, and further preferably 80 μm or less. Thereby, the mold release film can ensure followability to the shape of the mold.
Further, the lower limit of the thickness of the mold release film is, for example, 0.0001 μm or more, preferably 10 μm or more, more preferably 20 μm or more, and further preferably 25 μm or more, More preferably, it is 30 μm or more. Thereby, the mold release film can exhibit mold release property suitably.
<用途>
 第3実施形態に係るモールド成形用離型フィルムは、第1の樹脂組成物のモールド成形に用いられる。
 第3実施形態に係るモールド成形の方法、得られる電子装置としては、上述した第1実施形態と同様とすることができる。
<Application>
The release film for molding according to the third embodiment is used for molding the first resin composition.
The molding method according to the third embodiment and the obtained electronic device can be the same as those in the first embodiment described above.
 第3実施形態に係るモールド成形用離型フィルムを使用した、モールド成形の方法としては、配置工程(S1)と、導入工程(S2)とを備えていれば、限定されるものではない。
 具体的なモールド成形の方法としては、トランスファーモールド成形法またはコンプレッションモールド成形法(圧縮成形法)が挙げられる。これらの中でも、第3実施形態に係るモールド成形用離型フィルムは、トランスファーモールド成形において、好適に用いられる。なぜなら、第3実施形態に係るモールド成形用離型フィルムは、耐熱性、追従性のバランスが良い。これにより、トランスファーモールド成形において第1の樹脂組成物を導入したとしても、モールド成形用離型フィルムが溶融したり、ずれたりすることがなく、良好な離型性を発揮できるからである。
 なお、トランスファーモールド成形法、コンプレッションモールド成形法は、上述した第1実施形態と同様の方法とすることができる。
The molding method using the mold release film according to the third embodiment is not limited as long as it includes the placement step (S1) and the introduction step (S2).
Specific molding methods include a transfer molding method or a compression molding method (compression molding method). Among these, the release film for molding according to the third embodiment is suitably used in transfer molding. This is because the mold release film according to the third embodiment has a good balance between heat resistance and followability. Thereby, even if the first resin composition is introduced in transfer molding, the mold release film does not melt or shift and can exhibit good release properties.
The transfer mold molding method and the compression mold molding method can be the same as those in the first embodiment described above.
 なお、第3実施形態に係るモールド成形用離型フィルムは、175℃よりも低温におけるモールド成形においても好適に用いることができる。第1の樹脂組成物の成形温度としては限定されず、後述する第1の樹脂組成物が含む原料成分に応じて成形温度を設定することができる。
 モールド成形温度の下限値は、例えば、120℃以上としてもよく、140℃以上としてもよく、150℃以上としてもよく、160℃以上としてもよく、175℃以上としてもよい。第3実施形態に係るモールド成形用離型フィルムは、上記下限値以上で成形した場合においても、好適なモールド成形性を発揮することができる。
 また、モールド成形温度の上限値は、例えば、240℃以下としてもよく、200℃以下としてもよく、185℃以下とすることが好ましい。これにより、モールド成形用離型フィルムの耐熱性、成形性の低下を抑制することができる。
The mold release film according to the third embodiment can also be suitably used in mold forming at a temperature lower than 175 ° C. The molding temperature of the first resin composition is not limited, and the molding temperature can be set according to the raw material components contained in the first resin composition described later.
The lower limit of the molding temperature may be, for example, 120 ° C. or higher, 140 ° C. or higher, 150 ° C. or higher, 160 ° C. or higher, or 175 ° C. or higher. The mold release film for molding according to the third embodiment can exhibit suitable moldability even when it is molded at the lower limit value or more.
Moreover, the upper limit of the molding temperature may be, for example, 240 ° C. or lower, 200 ° C. or lower, and preferably 185 ° C. or lower. Thereby, the fall of the heat resistance of a mold release film and a moldability can be suppressed.
<第1の樹脂組成物>
 第3実施形態に係る第1の樹脂組成物は限定されるものではない。例えば、熱可塑性樹脂組成物または熱硬化性樹脂組成物を用いることができる。第3実施形態に係るモールド成形用離型フィルムは耐熱性に優れる。これにより、例えば、175℃以上で行われる熱硬化性樹脂組成物のモールド成形においても好適に用いることができる。
 熱硬化性樹脂組成物としては、上述した第1実施形態と同様のものを用いることができる。
<First resin composition>
The first resin composition according to the third embodiment is not limited. For example, a thermoplastic resin composition or a thermosetting resin composition can be used. The mold release film according to the third embodiment is excellent in heat resistance. Thereby, it can be suitably used, for example, in the molding of a thermosetting resin composition performed at 175 ° C. or higher.
As a thermosetting resin composition, the thing similar to 1st Embodiment mentioned above can be used.
 以下、参考形態の例を付記する。
1. 第1の樹脂組成物のモールド成形に用いられるモールド成形用離型フィルムであって、
 離型層が、基材層の上に積層された積層構造を有しており、
 前記離型層及び前記基材層が直接結合しており、
 前記積層構造の最外層は、前記離型層を有しており、
 前記離型層は、下記一般式(1)で示される共重合体と、硬化剤とを架橋してなる、モールド成形用離型フィルム。
Figure JPOXMLDOC01-appb-C000021
(一般式(1)中、
 lおよびmは、それぞれ、共重合体中における、A及びBのモル含有率を示し、
 l+m=1であり、
 Aは、フルオロカーボン基を含み、
 Bは、下記式(B1)により示される構造単位である。)
Figure JPOXMLDOC01-appb-C000022
(一般式(B1)中、
 Rは、前記硬化剤と反応する官能基を含む基である。)
2. 1.に記載のモールド成形用離型フィルムであって、
 前記基材層の、前記離型層と直接結合する面が平滑である、モールド成形用離型フィルム。
3. 1.または2.に記載のモールド成形用離型フィルムであって、
 前記一般式(1)において、Aは、下記式(A1)で示される構造単位を含む、モールド成形用離型フィルム。
Figure JPOXMLDOC01-appb-C000023
(上記式(A1)中、nは1以上の整数である。)
4. 1.から3.のいずれか1つに記載のモールド成形用離型フィルムであって、
 前記硬化剤は、イソシアネート化合物を含む、モールド成形用離型フィルム。
5. 1.から4.のいずれか1つに記載のモールド成形用離型フィルムであって、
 前記Rの、前記硬化剤と反応する官能基は、ヒドロキシル基、カルボキシル基、アミノ基からなる群より選択される1種または2種以上からを含む、モールド成形用離型フィルム。
6. 1.から5.のいずれか1つに記載のモールド成形用離型フィルムであって、
 前記第1の樹脂組成物は熱硬化性樹脂を含み、
 前記熱硬化性樹脂はエポキシ樹脂を含む、モールド成形用離型フィルム。
7. 1.から6.のいずれか1つに記載のモールド成形用離型フィルムであって、
 前記基材層は第2の樹脂組成物によって構成され、
 前記第2の樹脂組成物は、ポリエステル樹脂を含む、モールド成形用離型フィルム。
8. 1.から7.のいずれか1つに記載のモールド成形用離型フィルムであって、
 当該モールド成形用離型フィルムを用いたモールド成形方法は、トランスファーモールド成形法またはコンプレッションモールド成形法である、モールド成形用離型フィルム。
9. 1.から8.のいずれか1つに記載のモールド成形用離型フィルムを用いたモールド成形方法であって、
 前記モールド成形の温度は120℃以上240℃以下である、モールド成形用離型フィルム。
10. 1.から9.のいずれか1つに記載のモールド成形用離型フィルムを用いたモールド成形方法であって、
 該モールド成形用離型フィルムを金型に配置する配置工程と、
 該モールド成形用離型フィルムが形成する成形空間に第1の樹脂組成物を導入する導入工程と、を含む、モールド成形方法。
11. 10.に記載のモールド成形方法であって、
 前記第1の樹脂組成物は、熱硬化性樹脂組成物であり、
 前記熱硬化性樹脂組成物はエポキシ樹脂を含む、モールド成形方法。
Hereinafter, examples of the reference form will be added.
1. A mold release film used for molding the first resin composition,
The release layer has a laminated structure laminated on the base material layer,
The release layer and the base material layer are directly bonded,
The outermost layer of the laminated structure has the release layer,
The mold release layer is a mold release film formed by crosslinking a copolymer represented by the following general formula (1) and a curing agent.
Figure JPOXMLDOC01-appb-C000021
(In general formula (1),
l and m respectively represent the molar content of A and B in the copolymer;
l + m = 1,
A contains a fluorocarbon group;
B is a structural unit represented by the following formula (B1). )
Figure JPOXMLDOC01-appb-C000022
(In the general formula (B1),
R 1 is a group containing a functional group that reacts with the curing agent. )
2. 1. A mold release film as described in
A mold release film for molding, in which a surface of the base material layer directly bonded to the release layer is smooth.
3. 1. Or 2. A mold release film as described in
In the general formula (1), A is a mold release film including a structural unit represented by the following formula (A1).
Figure JPOXMLDOC01-appb-C000023
(In the above formula (A1), n is an integer of 1 or more.)
4). 1. To 3. A mold release film for molding according to any one of
The curing agent is a mold release film containing an isocyanate compound.
5). 1. To 4. A mold release film for molding according to any one of
The mold release film for molding, wherein the functional group of R 1 that reacts with the curing agent includes one or more selected from the group consisting of a hydroxyl group, a carboxyl group, and an amino group.
6). 1. To 5. A mold release film for molding according to any one of
The first resin composition includes a thermosetting resin,
The thermosetting resin is a mold release film containing an epoxy resin.
7). 1. To 6. A mold release film for molding according to any one of
The base material layer is composed of a second resin composition,
The second resin composition is a mold release film containing a polyester resin.
8). 1. To 7. A mold release film for molding according to any one of
A mold forming method using the mold forming release film is a mold forming release film, which is a transfer mold forming method or a compression mold forming method.
9. 1. To 8. A mold forming method using the mold release film according to any one of the above,
The mold release film has a mold forming temperature of 120 ° C. or higher and 240 ° C. or lower.
10. 1. To 9. A mold forming method using the mold release film according to any one of the above,
An arrangement step of arranging the mold release film in a mold;
And a step of introducing a first resin composition into a molding space formed by the mold release film.
11. 10. The mold forming method according to claim 1,
The first resin composition is a thermosetting resin composition,
The said thermosetting resin composition is a molding method containing an epoxy resin.
 以下、参考形態の例を付記する。
1. 第1の樹脂組成物及び金型の間にモールド成形用離型フィルムを介在させ、前記第1の樹脂組成物に離型層を密着させてモールド成形を行うことで、前記第1の樹脂組成物の成形物にエンボス模様を付与するために使用される当該モールド成形用離型フィルムであって、
 第2の樹脂組成物によって構成される基材層の上に、第3の樹脂組成物によって構成される離型層を積層する積層構造を有しており、
 前記第3の樹脂組成物は、シリコーン化合物またはフッ素化合物を含み、
 前記基材層は、前記離型層が積層される面に凹凸を備え、
 前記離型層の厚みは15μm以下である、モールド成形用離型フィルム。
2. 1.に記載のモールド成形用離型フィルムであって、
 当該モールド成形用離型フィルムは、前記離型層を備える面にエンボス形状を有する、モールド成形用離型フィルム。
3. 2.に記載のモールド成形用離型フィルムであって、
 当該モールド成形用離型フィルムの、前記エンボス形状を備える面について、JIS Z 8741に準拠して測定した、入射角度60°における光の反射率である光沢度が、1以上23以下である、モールド成形用離型フィルム。
4. 1.から3.のいずれか1つに記載のモールド成形用離型フィルムであって、
 前記第3の樹脂組成物は、前記フッ素化合物と、硬化剤とを含み、
 前記フッ素化合物は、下記一般式(1)で示される共重合体であり、
 前記離型層は前記フッ素化合物と、前記硬化剤とを架橋してなる、モールド成形用離型フィルム。
Figure JPOXMLDOC01-appb-C000024
(一般式(1)中、
 lおよびmは、それぞれ、共重合体中における、A及びBのモル含有率を示し、
 l+m=1であり、
 Aは、フルオロカーボン基を含み、
 Bは、下記一般式(B1)により示される構造単位である。)
Figure JPOXMLDOC01-appb-C000025
(一般式(B1)中、
 Rは、前記硬化剤と反応する官能基を含む基である。)
5. 4.に記載のモールド成形用離型フィルムであって、
 前記一般式(1)で示される共重合体において、Aは、下記式(A1)で示される構造単位を含む、モールド成形用離型フィルム。
Figure JPOXMLDOC01-appb-C000026
(上記式(A1)中、nは1以上の整数である。)
6. 4.または5.に記載のモールド成形用離型フィルムであって、
 前記Rが備える前記硬化剤と反応する官能基は、ヒドロキシル基、カルボキシル基、アミノ基からなる群より選択される1種または2種以上を含む、モールド成形用離型フィルム。
7. 4.から6.のいずれか1つに記載のモールド成形用離型フィルムであって、
 前記硬化剤は、イソシアネート化合物を含む、モールド成形用離型フィルム。
8. 1.から7.のいずれか1つに記載のモールド成形用離型フィルムであって、
 前記基材層の前記凹凸を備える面について、算術平均粗さRaが、0.10μm以上1.0μm以下である、モールド成形用離型フィルム。
9. 1.から8.のいずれか1つに記載のモールド成形用離型フィルムであって、
 前記基材層の前記凹凸を備える面について、10点平均表面粗さRzが、1.0μm以上10.0μm以下である、モールド成形用離型フィルム。
10. 1.から9.のいずれか1つに記載のモールド成形用離型フィルムであって、
 前記第1の樹脂組成物は熱硬化性樹脂を含み、
 前記熱硬化性樹脂はエポキシ樹脂である、モールド成形用離型フィルム。
11. 1.から10.のいずれか1つに記載のモールド成形用離型フィルムであって、
 前記第2の樹脂組成物は、ポリエステル樹脂を含む、モールド成形用離型フィルム。
12. 1.から11.のいずれか1つに記載のモールド成形用離型フィルムであって、
 前記モールド成形の方法は、トランスファーモールド成形法またはコンプレッションモールド成形法である、モールド成形用離型フィルム。
13. 1.から12.のいずれか1つに記載のモールド成形用離型フィルムであって、
 前記モールド成形の温度は120℃以上240℃以下である、モールド成形用離型フィルム。
14. 1.から13.のいずれか1つに記載のモールド成形用離型フィルムを用いたモールド成形方法であって、
 該モールド成形用離型フィルムを金型に配置する配置工程と、
 該モールド成形用離型フィルムが形成する成形空間に第1の樹脂組成物を導入する導入工程と、を含む、モールド成形方法。
Hereinafter, examples of the reference form will be added.
1. A mold release film is interposed between the first resin composition and the mold, and a mold release layer is brought into intimate contact with the first resin composition to perform molding, whereby the first resin composition is formed. A mold release film for molding used to give an embossed pattern to a molded product,
Having a laminated structure in which a release layer constituted by the third resin composition is laminated on the base material layer constituted by the second resin composition;
The third resin composition includes a silicone compound or a fluorine compound,
The base material layer has irregularities on the surface on which the release layer is laminated,
The mold release film has a thickness of 15 μm or less.
2. 1. A mold release film as described in
The mold release film is a mold release film having an embossed shape on the surface provided with the release layer.
3. 2. A mold release film as described in
A mold having a glossiness of 1 or more and 23 or less, which is a reflectance of light at an incident angle of 60 °, measured according to JIS Z 8741 with respect to the surface having the embossed shape of the mold release film. Mold release film.
4). 1. To 3. A mold release film for molding according to any one of
The third resin composition includes the fluorine compound and a curing agent,
The fluorine compound is a copolymer represented by the following general formula (1),
The mold release layer is a mold release film formed by crosslinking the fluorine compound and the curing agent.
Figure JPOXMLDOC01-appb-C000024
(In general formula (1),
l and m respectively represent the molar content of A and B in the copolymer;
l + m = 1,
A contains a fluorocarbon group;
B is a structural unit represented by the following general formula (B1). )
Figure JPOXMLDOC01-appb-C000025
(In the general formula (B1),
R 1 is a group containing a functional group that reacts with the curing agent. )
5). 4). A mold release film as described in
In the copolymer represented by the general formula (1), A is a mold release film containing a structural unit represented by the following formula (A1).
Figure JPOXMLDOC01-appb-C000026
(In the above formula (A1), n is an integer of 1 or more.)
6). 4). Or 5. A mold release film as described in
Functional group reactive with the curing agent wherein R 1 comprises comprises one or a two or more, release film for molding is selected from the group consisting of hydroxyl group, carboxyl group, an amino group.
7). 4). To 6. A mold release film for molding according to any one of
The curing agent is a mold release film containing an isocyanate compound.
8). 1. To 7. A mold release film for molding according to any one of
A mold release film for molding which has an arithmetic average roughness Ra of 0.10 μm or more and 1.0 μm or less on the surface of the base material layer having the unevenness.
9. 1. To 8. A mold release film for molding according to any one of
A mold release film having a 10-point average surface roughness Rz of 1.0 μm or more and 10.0 μm or less on the surface of the base material layer having the unevenness.
10. 1. To 9. A mold release film for molding according to any one of
The first resin composition includes a thermosetting resin,
The release film for molding, wherein the thermosetting resin is an epoxy resin.
11. 1. To 10. A mold release film for molding according to any one of
The second resin composition is a mold release film containing a polyester resin.
12 1. To 11. A mold release film for molding according to any one of
The mold forming method is a mold release film which is a transfer mold forming method or a compression mold forming method.
13. 1. To 12. A mold release film for molding according to any one of
The mold release film has a mold forming temperature of 120 ° C. or higher and 240 ° C. or lower.
14 1. To 13. A mold forming method using the mold release film according to any one of the above,
An arrangement step of arranging the mold release film in a mold;
And a step of introducing a first resin composition into a molding space formed by the mold release film.
 以下、参考形態の例を付記する。
1. 第1の樹脂組成物のモールド成形に用いられるモールド成形用離型フィルムであって、
 当該モールド成形用離型フィルムは最外層に離型層を有しており、
 前記離型層は第2の樹脂組成物によって構成され、
 前記第2の樹脂組成物は、フッ素化合物を含み、
 前記フッ素化合物は、フルオロカーボン基を含み、
 前記離型層の表面に対する、ヘキサデカンの接触角が20°以上77°以下である、モールド成形用離型フィルム。
2. 1.に記載のモールド成形用離型フィルムであって、
 該モールド成形用離型フィルムは、前記離型層と、基材層と、が積層された積層構造を有し、
 前記基材層は第3の樹脂組成物によって構成され、
 前記第3の樹脂組成物は熱可塑性樹脂を含む、モールド成形用離型フィルム。
3. 2.に記載のモールド成形用離型フィルムであって、
 前記基材層の融点が160℃以上300℃以下である、モールド成形用離型フィルム。
4. 2.または3.に記載のモールド成形用離型フィルムであって、
 前記フッ素化合物は、下記一般式(2)で示される、モールド成形用離型フィルム。
Figure JPOXMLDOC01-appb-C000027
(上記一般式(2)中、Xはフルオロカーボン基を含む基である。
 Yは、末端に極性官能基を少なくとも1つ有する基であり、該極性官能基は、カルボキシル基、スルホン酸基、アミノ基、ヒドロキシ基、シラノール基及びアルコキシシラン基からなる群より選択される1種または2種以上である。)
5. 4.に記載のモールド成形用離型フィルムであって、
 前記フッ素化合物は、下記一般式(3)で示される、モールド成形用離型フィルム。
Figure JPOXMLDOC01-appb-C000028
(上記一般式(3)中、Xは前記一般式(2)におけるXと同様である。
 複数のAはそれぞれ独立して水素原子、炭素原子、酸素原子、窒素原子、硫黄原子、リン原子及びケイ素原子からなる群より選択される1種または2種以上の原子によって形成される基である。Aは互いに同一でもよく、互いに異なっていてもよい。Aのうち少なくとも一つは、ヒドロキシ基または炭素数1以上10以下のアルコキシ基である。)
6. 2.から5.のいずれか一つに記載のモールド成形用離型フィルムであって、
 前記積層構造は、前記離型層と、前記基材層との間に、プライマー層を有し、
 前記プライマー層は、第4の樹脂組成物によって構成され、
 前記第4の樹脂組成物は、シロキサン化合物を含む、モールド成形用離型フィルム。
7. 1.から6.のいずれか1つに記載のモールド成形用離型フィルムであって、
 前記第1の樹脂組成物は、熱硬化性樹脂組成物であり、
 前記熱硬化性樹脂組成物はエポキシ樹脂を含む、モールド成形用離型フィルム。
8. 1.から7.のいずれか1つに記載のモールド成形用離型フィルムであって、
 前記モールド成形は、トランスファーモールド成形法またはコンプレッションモールド成形法である、モールド成形用離型フィルム。
9. 1.から8.のいずれか1つに記載のモールド成形用離型フィルムであって、
 前記離型層の表面に対する、水の接触角が100°以上118°以下である、モールド成形用離型フィルム。
10. 1.から9.のいずれか1つに記載のモールド成形用離型フィルムであって、
 前記離型層の厚みが0.0001μm以上5μm以下である、モールド成形用離型フィルム。
11. 1.から10.のいずれか1つに記載のモールド成形用離型フィルムを用いたモールド成形方法であって、
 該モールド成形用離型フィルムを金型に配置する配置工程と、
 該モールド成形用離型フィルムが形成する成形空間に第1の樹脂組成物を導入する導入工程と、を含む、モールド成形方法。
12. 11.に記載のモールド成形方法であって、
 前記第1の樹脂組成物は、熱硬化性樹脂組成物であり、
 前記熱硬化性樹脂組成物はエポキシ樹脂を含むモールド成形方法。
Hereinafter, examples of the reference form will be added.
1. A mold release film used for molding the first resin composition,
The mold release film has a release layer as the outermost layer,
The release layer is composed of a second resin composition,
The second resin composition contains a fluorine compound,
The fluorine compound includes a fluorocarbon group,
A release film for molding, wherein the contact angle of hexadecane with respect to the surface of the release layer is 20 ° or more and 77 ° or less.
2. 1. A mold release film as described in
The mold release film has a laminated structure in which the release layer and the base material layer are laminated,
The base material layer is composed of a third resin composition,
The mold release film for molding, wherein the third resin composition contains a thermoplastic resin.
3. 2. A mold release film as described in
A mold release film for molding, wherein the base material layer has a melting point of 160 ° C or higher and 300 ° C or lower.
4). 2. Or 3. A mold release film as described in
The said fluorine compound is a mold release film shown by following General formula (2).
Figure JPOXMLDOC01-appb-C000027
(In the general formula (2), X is a group containing a fluorocarbon group.
Y is a group having at least one polar functional group at the terminal, and the polar functional group is selected from the group consisting of a carboxyl group, a sulfonic acid group, an amino group, a hydroxy group, a silanol group, and an alkoxysilane group. Species or two or more. )
5). 4). A mold release film as described in
The said fluorine compound is a mold release film shown by following General formula (3).
Figure JPOXMLDOC01-appb-C000028
(In the general formula (3), X is the same as X in the general formula (2).
A plurality of A's are groups formed by one or more atoms independently selected from the group consisting of a hydrogen atom, a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom and a silicon atom. . A may be the same as or different from each other. At least one of A is a hydroxy group or an alkoxy group having 1 to 10 carbon atoms. )
6). 2. To 5. A mold release film according to any one of the above,
The laminated structure has a primer layer between the release layer and the base material layer,
The primer layer is composed of a fourth resin composition,
The fourth resin composition is a mold release film containing a siloxane compound.
7). 1. To 6. A mold release film for molding according to any one of
The first resin composition is a thermosetting resin composition,
The thermosetting resin composition is a mold release film containing an epoxy resin.
8). 1. To 7. A mold release film for molding according to any one of
The mold molding is a mold release film for molding which is a transfer mold molding method or a compression mold molding method.
9. 1. To 8. A mold release film for molding according to any one of
A mold release film having a water contact angle of 100 ° or more and 118 ° or less with respect to the surface of the release layer.
10. 1. To 9. A mold release film for molding according to any one of
A mold release film for molding, wherein the release layer has a thickness of 0.0001 μm or more and 5 μm or less.
11. 1. To 10. A mold forming method using the mold release film according to any one of the above,
An arrangement step of arranging the mold release film in a mold;
And a step of introducing a first resin composition into a molding space formed by the mold release film.
12 11. The mold forming method according to claim 1,
The first resin composition is a thermosetting resin composition,
The thermosetting resin composition is a molding method including an epoxy resin.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and various structures other than the above can also be employ | adopted.
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to these.
[実施例A]
 まず、実施例A-1~A-4、比較例A-1~A-2のモールド成形用離型フィルムについて、詳細を説明する。
[Example A]
First, details of the release films for molding of Examples A-1 to A-4 and Comparative Examples A-1 to A-2 will be described in detail.
(実施例A-1)
 まず、基材層1を準備した。基材層1としては、厚み50μmの延伸ポリエチレンテレフタレートフィルム(東洋紡株式会社製、E5100)を準備した。基材層1は両面が平滑なフィルムであった。
 次いで、基材層1に表面改質処理を施した。表面改質処理としては、コロナ放電処理を行った。コロナ放電処理は、具体的には、バッチコロナ処理機(春日電機(株)製、CORONA GENERATOR CT-0212)を用いて、出力2kW、搬送速度が40m/分、放電隙間が20mmで行った。
 コロナ放電処理した基材層は、空気に触れないようにして静置した。静置して168時間後、表面改質した基材層1の表面に、ワニスに調製した第3の樹脂組成物を塗工した。ここで、第3の樹脂組成物としては、AGCコーテック社製のオブリガートPS306Rの主剤13重量部及び硬化剤1重量部を、メチルエチルケトン28重量部に溶解させて用いた。ここで、AGCコーテック社製のオブリガートPS306Rの主剤は、本実施形態の項で述べた、一般式(1)で表され、Aとして上記式(A2)の構造単位を含み、Bとして上記一般式(B1)の構造単位を含む共重合体を含む。また、AGCコーテック社製のオブリガートPS306Rの硬化剤は、2官能のイソシアネート化合物を含む。第3の樹脂組成物の塗工は、グラビアロール塗工法を用いて行った。塗工後、温度120℃、20分間の条件で第3の樹脂組成物を十分に架橋反応させ、基材層1の上に離型層2を形成することで、実施例A-1のモールド成形用離型フィルム10を得た。なお、離型層2のドライ厚みは0.8μmであった。
 なお、実施例A-1のモールド成形用離型フィルムは、離型層2の表面に、粘着テープ(電気化学工業社製、カラリヤンPPカットE)を貼り、次いで、粘着テープを剥がすことにより、基材層1から離型層2を剥離できなかった。
Example A-1
First, the base material layer 1 was prepared. As the base material layer 1, a stretched polyethylene terephthalate film (E5100, manufactured by Toyobo Co., Ltd.) having a thickness of 50 μm was prepared. The base material layer 1 was a film having smooth surfaces.
Subsequently, the base material layer 1 was subjected to a surface modification treatment. As the surface modification treatment, corona discharge treatment was performed. Specifically, the corona discharge treatment was performed using a batch corona treatment machine (CORONA GENERATOR CT-0212 manufactured by Kasuga Electric Co., Ltd.) with an output of 2 kW, a conveyance speed of 40 m / min, and a discharge gap of 20 mm.
The base material layer subjected to the corona discharge treatment was allowed to stand so as not to touch air. After 168 hours of standing, the third resin composition prepared in varnish was applied to the surface of the surface-modified base material layer 1. Here, as a 3rd resin composition, 13 weight part of main ingredients and 1 weight part of hardening | curing agents of Obligato PS306R made from AGC Cortec were dissolved in 28 weight part of methyl ethyl ketone, and used. Here, the main component of Obligato PS306R manufactured by AGC Co., Ltd. is represented by the general formula (1) described in the section of this embodiment, A includes the structural unit of the above formula (A2), and B includes the above general formula. A copolymer containing the structural unit (B1) is included. Moreover, the curing agent of Obligato PS306R manufactured by AGC Co., Ltd. contains a bifunctional isocyanate compound. The third resin composition was applied using a gravure roll coating method. After the coating, the mold of Example A-1 is obtained by sufficiently crosslinking the third resin composition at a temperature of 120 ° C. for 20 minutes to form the release layer 2 on the base material layer 1. A mold release film 10 was obtained. The dry thickness of the release layer 2 was 0.8 μm.
In addition, the mold release film of Example A-1 was prepared by applying an adhesive tape (Caraliyan PP cut E, manufactured by Denki Kagaku Kogyo Co., Ltd.) to the surface of the release layer 2, and then peeling the adhesive tape. The release layer 2 could not be peeled from the base material layer 1.
(実施例A-2)
 第3の樹脂組成物として、AGCコーテック社製のオブリガートの主剤13重量部及び硬化剤1重量部を、メチルエチルケトン42重量部に溶解させて用いた以外は、実施例A-1に記載の方法で、実施例A-2のモールド成形用離型フィルムを作製した。
 なお、離型層2のドライ厚みは0.4μmであった。
 なお、実施例A-2のモールド成形用離型フィルムは、離型層2の表面に、粘着テープ(電気化学工業社製、カラリヤンPPカットE)を貼り、次いで、粘着テープを剥がすことにより、基材層1から離型層2を剥離できなかった。
Example A-2
As the third resin composition, the method described in Example A-1 was used except that 13 parts by weight of the main ingredient of obligato manufactured by AGC Co-Tech and 1 part by weight of the curing agent were dissolved in 42 parts by weight of methyl ethyl ketone. Then, a mold release film of Example A-2 was produced.
The dry thickness of the release layer 2 was 0.4 μm.
In addition, the mold release film of Example A-2 was obtained by applying an adhesive tape (Carariyan PP cut E, manufactured by Denki Kagaku Kogyo Co., Ltd.) to the surface of the release layer 2, and then peeling the adhesive tape. The release layer 2 could not be peeled from the base material layer 1.
(実施例A-3)
 基材層として、厚み38μmの延伸ポリエチレンテレフタレートフィルム(東洋紡株式会社製、E5100)を準備した以外は、実施例A-1に記載の方法で、実施例A-3のモールド成形用離型フィルムを作製した。ここで、基材層1は両面が平滑なフィルムであった。
 なお、実施例A-3のモールド成形用離型フィルムは、離型層2の表面に、粘着テープ(電気化学工業社製、カラリヤンPPカットE)を貼り、次いで、粘着テープを剥がすことにより、基材層1から離型層2を剥離できなかった。
Example A-3
Except that a stretched polyethylene terephthalate film (E5100, manufactured by Toyobo Co., Ltd.) having a thickness of 38 μm was prepared as the base material layer, the mold release film of Example A-3 was prepared by the method described in Example A-1. Produced. Here, the base material layer 1 was a film having smooth surfaces.
In addition, the mold release film of Example A-3 was obtained by applying an adhesive tape (Carariyan PP cut E, manufactured by Denki Kagaku Kogyo Co., Ltd.) to the surface of the release layer 2, and then peeling the adhesive tape. The release layer 2 could not be peeled from the base material layer 1.
(実施例A-4)
 基材層として、厚み38μmの延伸ポリエチレンテレフタレートフィルム(東洋紡株式会社製、E5100)を準備し、さらに、第3の樹脂組成物として、AGCコーテック社製のオブリガートの主剤13重量部及び硬化剤1重量部を、メチルエチルケトン42重量部に溶解させて用いた以外は、実施例A-1に記載の方法で、実施例A-4のモールド成形用離型フィルムを作製した。ここで、基材層1は両面が平滑なフィルムであった。
 なお、離型層2のドライ厚みは0.4μmであった。
 また、実施例A-4のモールド成形用離型フィルムは、離型層2の表面に、粘着テープ(電気化学工業社製、カラリヤンPPカットE)を貼り、次いで、粘着テープを剥がすことにより、基材層1から離型層2を剥離できなかった。
Example A-4
As a base material layer, a stretched polyethylene terephthalate film (E5100, manufactured by Toyobo Co., Ltd.) having a thickness of 38 μm is prepared. A release film for molding of Example A-4 was prepared by the method described in Example A-1, except that a part was dissolved in 42 parts by weight of methyl ethyl ketone. Here, the base material layer 1 was a film having smooth surfaces.
The dry thickness of the release layer 2 was 0.4 μm.
In addition, the mold release film of Example A-4 was obtained by applying an adhesive tape (Carariyan PP cut E, manufactured by Denki Kagaku Kogyo Co., Ltd.) to the surface of the release layer 2, and then peeling the adhesive tape. The release layer 2 could not be peeled from the base material layer 1.
(比較例A-1)
 基材層1に表面改質処理を施さなかった以外は、実施例A-1に記載の方法で、比較例A-1のモールド成形用離型フィルムを作製した。
 なお、比較例A-1のモールド成形用離型フィルムは、離型層2の表面に、粘着テープ(電気化学工業社製、カラリヤンPPカットE)を貼り、次いで、粘着テープを剥がすことにより、基材層1から離型層2を剥離し、該粘着テープに離型層2を転写することができるものであり、離型層2及び基材層1が直接結合していないことを確認した。
(Comparative Example A-1)
A mold release film for molding of Comparative Example A-1 was prepared by the method described in Example A-1, except that the surface modification treatment was not performed on the base material layer 1.
In addition, the mold release film of Comparative Example A-1 was obtained by applying an adhesive tape (Carariyan PP cut E, manufactured by Denki Kagaku Kogyo Co., Ltd.) to the surface of the release layer 2, and then peeling the adhesive tape. It was confirmed that the release layer 2 was peeled from the base material layer 1 and the release layer 2 could be transferred to the adhesive tape, and the release layer 2 and the base material layer 1 were not directly bonded. .
(比較例A-2)
 比較例A-1で作製したモールド成形用離型フィルムについて、離型層2の表面に、粘着テープ(電気化学工業社製、カラリヤンPPカットE)を貼って、剥がすことにより、基材層1から離型層2を剥離し、該粘着テープに離型層2を転写した。次いで、基材層1にアクリル接着剤(ローム・アンド・ハース社製、プライマルN580)を50g/mの塗布量で塗布し、粘着テープに転写した離型層2を密着し、乾燥することで、基材層1、乾燥したアクリル接着剤、離型層2をこの順で積層してなる、比較例A-2のモールド成形用離型フィルムを作製した。なお、乾燥したアクリル接着剤からなる層の厚みは0.1mmであった。
(Comparative Example A-2)
For the mold release film produced in Comparative Example A-1, the base material layer 1 was obtained by applying and peeling an adhesive tape (Carariyan PP cut E, manufactured by Denki Kagaku Kogyo Co., Ltd.) on the surface of the release layer 2. The release layer 2 was peeled off, and the release layer 2 was transferred to the adhesive tape. Next, an acrylic adhesive (Primal N580, manufactured by Rohm and Haas Co., Ltd.) is applied to the base material layer 1 at a coating amount of 50 g / m 2 , and the release layer 2 transferred to the adhesive tape is adhered and dried. Thus, a release film for molding of Comparative Example A-2 was produced, in which the base material layer 1, the dried acrylic adhesive, and the release layer 2 were laminated in this order. The thickness of the dried acrylic adhesive layer was 0.1 mm.
 各実施例および各比較例の各モールド成形用離型フィルムについて、成形性、離型性の評価に用いる熱硬化性樹脂組成物のタブレットを作製した。その作製方法について詳細を説明する。
 成形性、離型性の評価に用いた熱硬化性樹脂組成物の原料として、以下のものを用いた。
・エポキシ樹脂1:ビフェニルアラルキル型エポキシ樹脂(日本化薬社製、NC-3000)
・エポキシ樹脂2:ビフェニル型エポキシ樹脂(三菱化学社製、YL6677)
・硬化剤1:ビフェニレン骨格含有フェノールアラルキル樹脂(日本化薬社製、GPH-65)
・硬化剤2:ホルムアルデヒドで変性したトリフェニルメタン型フェノール樹脂(エア・ウォーター社製、HE910-20)
・硬化促進剤:トリフェニルホスフィン(北興化学工業社製、TPP)
・無機充填材:溶融球状シリカ(電気化学工業社製、FB-950FC)
・着色剤:カーボンブラック(三菱化学社製、MA-600)
・カップリング剤:N-フェニル-γ-アミノプロピルトリメトキシシラン(信越化学社製、KBM-573)
・離型剤:カルナバワックス(日興ファイン社製、ニッコウカルナバ)
About each mold-molding release film of each Example and each comparative example, the tablet of the thermosetting resin composition used for evaluation of a moldability and mold release property was produced. Details of the manufacturing method will be described.
The following were used as the raw material of the thermosetting resin composition used for evaluation of moldability and mold release.
・ Epoxy resin 1: Biphenyl aralkyl type epoxy resin (Nippon Kayaku Co., Ltd., NC-3000)
-Epoxy resin 2: biphenyl type epoxy resin (Mitsubishi Chemical Corporation, YL6677)
Curing agent 1: Biphenylene skeleton-containing phenol aralkyl resin (Nippon Kayaku Co., Ltd., GPH-65)
Curing agent 2: triphenylmethane type phenol resin modified with formaldehyde (Air Water, HE910-20)
Curing accelerator: Triphenylphosphine (Hokuko Chemical Industries, TPP)
・ Inorganic filler: fused spherical silica (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-950FC)
Colorant: Carbon black (Mitsubishi Chemical Corporation MA-600)
Coupling agent: N-phenyl-γ-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical, KBM-573)
・ Release agent: Carnauba wax (Nikko Fine, Nikko Carnauba)
 まず、上述した、エポキシ樹脂1を4.5重量部、エポキシ樹脂2を4.5重量部、硬化剤1を2.8重量部、硬化剤2を2.8重量部、硬化促進剤を0.4重量部、無機充填材を84.2重量部、着色剤を0.2重量部、カップリング剤を0.4重量部、離型剤を0.2重量部準備した。次いで、各原料成分を常温でミキサーを用いて混合した後、45℃及び90℃の2本ロールで加熱しながらロール混練し、混練物を得た。次いで、前記混練物を冷却した後、これを粉砕し、粉砕物を得た。次いで、粉砕物を打錠成形することで、タブレット形状の熱硬化性樹脂組成物を得た。 First, 4.5 parts by weight of the epoxy resin 1, 4.5 parts by weight of the epoxy resin 2, 2.8 parts by weight of the curing agent 1, 2.8 parts by weight of the curing agent 2, and 0% of the curing accelerator described above. 4 parts by weight, 84.2 parts by weight of an inorganic filler, 0.2 parts by weight of a colorant, 0.4 parts by weight of a coupling agent, and 0.2 parts by weight of a release agent were prepared. Next, each raw material component was mixed at room temperature using a mixer, and then roll kneaded while heating with two rolls at 45 ° C. and 90 ° C. to obtain a kneaded product. Next, the kneaded product was cooled and then pulverized to obtain a pulverized product. Next, the pulverized product was tableted to obtain a tablet-shaped thermosetting resin composition.
<モールド成形>
 トランスファーモールド成型機(TOWA社製、Y-SERIES)にモールド成形用離型フィルムをセットした後、成型機が備える金型の内部空間を真空引きすることにより、該離型フィルムを金型に追従させた。次に、熱硬化性樹脂組成物のタブレットを所定の位置に配置した。その後、成型機が備える金型をクランプ圧力300kg/cmの条件で締めてから、溶融させた状態にある上記熱硬化性樹脂組成物を射出圧力80kg/cmの条件で成型機が備える金型の内部空間に流し込み、175℃で2分間成形した。成形後、金型を開いて、熱硬化性樹脂組成物の硬化物を金型から取り出した。
<Molding>
After setting the mold release film on the transfer mold machine (TOWA, Y-SERIES), the mold release machine's internal space is vacuumed to follow the mold release film. I let you. Next, the tablet of the thermosetting resin composition was disposed at a predetermined position. Thereafter, the mold provided in the molding machine is clamped at a clamping pressure of 300 kg / cm 2 , and then the molten thermosetting resin composition is provided in the molding machine at an injection pressure of 80 kg / cm 2. Poured into the interior space of the mold and molded at 175 ° C. for 2 minutes. After molding, the mold was opened, and the cured product of the thermosetting resin composition was taken out from the mold.
(成形性)
 上記モールド成形後、モールド成形用離型フィルム10の外観、及び、得られた熱硬化性樹脂組成物の硬化物の外観を目視で観察し、成形性を以下の基準で評価した。評価結果を以下の表1に示す。
◎:成形後のモールド成形用離型フィルムについて、基材層1及び離型層2の剥離が観察されなかった。また、熱硬化性樹脂組成物の硬化物の表面を目視で観察したところ、鏡面に仕上がっており、モールド成形用離型フィルムの剥離に由来する跡が転写することによる傷はなかった。
○:成形後のモールド成形用離型フィルムについて、基材層1及び離型層2の剥離が観察されなかった。また、熱硬化性樹脂組成物の硬化物の表面を目視で観察したところ、モールド成形用離型フィルムのシワに由来する微細な跡があるものの、鏡面としては問題ない程度であった。また、モールド成形用離型フィルムの剥離はなく、該剥離に由来する跡が転写した傷はなかった。
×:熱硬化性樹脂組成物の硬化物の表面を目視で観察したところ、基材層1及び離型層2の剥離が観察された。また、熱硬化性樹脂組成物の硬化物の表面を目視で観察したところ、モールド成形用離型フィルムの剥離に由来する跡が転写し、所望の鏡面が得られていなかった。
(Formability)
After the molding, the appearance of the mold release film 10 and the appearance of the cured product of the obtained thermosetting resin composition were visually observed, and the moldability was evaluated according to the following criteria. The evaluation results are shown in Table 1 below.
(Double-circle): About the mold release film for shaping | molding after shaping | molding, peeling of the base material layer 1 and the mold release layer 2 was not observed. Moreover, when the surface of the hardened | cured material of the thermosetting resin composition was observed visually, it was finished in the mirror surface and there was no damage | wound by the trace originating from peeling of the mold release film for transcription | transfer.
◯: No peeling of the base material layer 1 and the release layer 2 was observed for the mold release film after molding. Moreover, when the surface of the hardened | cured material of the thermosetting resin composition was observed visually, although there was a fine trace derived from the wrinkle of the mold release film, it was a grade which is satisfactory as a mirror surface. Moreover, there was no peeling of the mold release film, and there were no scratches transferred with traces derived from the peeling.
X: When the surface of the hardened | cured material of the thermosetting resin composition was observed visually, peeling of the base material layer 1 and the mold release layer 2 was observed. Moreover, when the surface of the hardened | cured material of the thermosetting resin composition was observed visually, the trace derived from peeling of the mold release film was transferred, and the desired mirror surface was not obtained.
(離型性)
 上記モールド成形において、金型を開いた際における、モールド成形用離型フィルムと、熱硬化性樹脂組成物との離型性を以下の基準で評価した。評価結果を以下の表1に示す。
○:金型を開いた際に、モールド成形用離型フィルムと熱硬化性樹脂組成物の硬化物とが、自然と離型した。
×:金型を開いた際に、モールド成形用離型フィルムと熱硬化性樹脂組成物の硬化物とが、離型しなかった。
(Releasability)
In the above mold molding, the mold releasability between the mold forming release film and the thermosetting resin composition when the mold was opened was evaluated according to the following criteria. The evaluation results are shown in Table 1 below.
○: When the mold was opened, the mold release film and the cured product of the thermosetting resin composition were released naturally.
X: When the mold was opened, the mold release film and the cured product of the thermosetting resin composition were not released.
 上記評価項目に関する評価結果を、以下の表1に示す。 The evaluation results for the above evaluation items are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表1に示すように、実施例A-1~A-4のモールド成形用離型フィルム10は、基材層1及び離型層2が、モールド成形によって剥離することなく、優れた成形性、離型性を示した。
 一方、比較例A-1~A-2のモールド成形用離型フィルム10は、基材層1及び離型層2が、モールド成形によって剥離し、成形性、離型性が、実施例A-1~A-4のモールド成形用離型フィルムに比べて劣ることが確認された。
As shown in Table 1, the mold release films 10 of Examples A-1 to A-4 have excellent moldability without causing the base material layer 1 and the release layer 2 to peel off by molding. It showed releasability.
On the other hand, in the mold release films 10 of Comparative Examples A-1 and A-2, the base material layer 1 and the release layer 2 were peeled off by molding, and the moldability and mold release properties were as described in Example A- It was confirmed that the film was inferior to the mold release film of 1 to A-4.
[実施例B]
 また、実施例B-1~B-4、比較例B-1~B-2のモールド成形用離型フィルムについて、詳細を説明する。
[Example B]
Details of the mold release films of Examples B-1 to B-4 and Comparative Examples B-1 to B-2 will be described in detail.
(実施例B-1)
 まず、基材層1を準備した。基材層1としては、厚み50μmの二軸延伸ポリエチレンテレフタレートフィルム(開成工業社製、タイプA)を準備した。ここで、基材層1は、ポリエチレンテレフタレートフィルムの片面にサンドブラスト処理を施したものである。すなわち、基材層1の一方面は凹凸を備え、もう一方面は平滑である。
 次いで、基材層1の凹凸を備える面に表面改質処理を施した。表面改質処理としては、コロナ放電処理を行った。コロナ放電処理は、具体的には、バッチコロナ処理機(春日電機(株)製、CORONA GENERATOR CT-0212)を用いて、出力2kW、搬送速度が40m/分、放電隙間が20mmで行った。
 ここで、基材層1の凹凸について、JIS B 0601-2013に準拠して算術平均粗さRaを測定したところ、0.62μmであった。また、JIS B 0601-1994に準拠して10点平均表面粗さRzを測定したところ、4.97μmであった。
 コロナ放電処理した基材層は、空気に触れないように静置した。静置して168時間後、基材層1の凹凸を備える一方面に、ワニスに調製した第3の樹脂組成物を塗工した。ここで、第3の樹脂組成物としては、AGCコーテック社製のオブリガートPS306Rの主剤13重量部及び硬化剤1重量部を、メチルエチルケトン42重量部に溶解させて用いた。ここで、AGCコーテック社製のオブリガートPS306Rの主剤は、本実施形態の項で述べた、一般式(1)で表され、Aとして上記式(A2)の構造単位を含み、Bとして上記一般式(B1)の構造単位を含む共重合体を含む。また、AGCコーテック社製のオブリガートPS306Rの硬化剤は、2官能のイソシアネート化合物を含む。ここで、第3の樹脂組成物の塗工は、グラビアロール塗工法を用いて行った。塗工後、温度100℃で1分間乾燥させ、次いで、温度120℃で20分間熱処理することで第3の樹脂組成物を架橋反応させ、第3の樹脂組成物を十分に架橋反応させ、基材層1の上に離型層2を形成することで、実施例B-1のモールド成形用離型フィルム10を得た。ここで、モールド成形用離型フィルム10は、離型層が形成されている面にエンボス形状を備えることが目視にて確認された。
 なお、離型層2のドライ厚みは0.4μmであった。また、モールド成形用離型フィルム10のエンボス形状を備える面について、光沢度は11.0であった。なお、光沢度は、JIS Z 8741に準拠して、光の入射角度を60°として測定した。
Example B-1
First, the base material layer 1 was prepared. As the base material layer 1, a biaxially stretched polyethylene terephthalate film (made by Kaisei Kogyo Co., Ltd., type A) having a thickness of 50 μm was prepared. Here, the base material layer 1 is obtained by subjecting one surface of a polyethylene terephthalate film to sandblasting. That is, one surface of the base material layer 1 is provided with unevenness, and the other surface is smooth.
Next, a surface modification treatment was performed on the surface of the base material layer 1 having the unevenness. As the surface modification treatment, corona discharge treatment was performed. Specifically, the corona discharge treatment was performed using a batch corona treatment machine (CORONA GENERATOR CT-0212 manufactured by Kasuga Electric Co., Ltd.) with an output of 2 kW, a conveyance speed of 40 m / min, and a discharge gap of 20 mm.
Here, when the arithmetic average roughness Ra of the unevenness of the base material layer 1 was measured in accordance with JIS B 0601-2013, it was 0.62 μm. Further, the 10-point average surface roughness Rz was measured according to JIS B 0601-1994 and found to be 4.97 μm.
The base layer subjected to the corona discharge treatment was allowed to stand so as not to come into contact with air. 168 hours after standing still, the 3rd resin composition prepared to the varnish was applied to the one surface provided with the unevenness | corrugation of the base material layer 1. FIG. Here, as a 3rd resin composition, 13 weight part of main ingredients and 1 weight part of hardening | curing agents of Obligato PS306R made from AGC Cortec were dissolved in 42 weight part of methyl ethyl ketone, and were used. Here, the main component of Obligato PS306R manufactured by AGC Co., Ltd. is represented by the general formula (1) described in the section of this embodiment, A includes the structural unit of the above formula (A2), and B includes the above general formula. A copolymer containing the structural unit (B1) is included. Moreover, the curing agent of Obligato PS306R manufactured by AGC Co., Ltd. contains a bifunctional isocyanate compound. Here, the coating of the third resin composition was performed using a gravure roll coating method. After coating, the coating is dried at a temperature of 100 ° C. for 1 minute, and then subjected to a heat treatment at a temperature of 120 ° C. for 20 minutes to cause the third resin composition to undergo a crosslinking reaction, thereby sufficiently crosslinking the third resin composition. By forming the release layer 2 on the material layer 1, the release film 10 for molding of Example B-1 was obtained. Here, it was visually confirmed that the mold release film 10 has an embossed shape on the surface on which the release layer is formed.
The dry thickness of the release layer 2 was 0.4 μm. Moreover, about the surface provided with the embossed shape of the mold release film 10, the glossiness was 11.0. The glossiness was measured in accordance with JIS Z 8741 with an incident angle of light of 60 °.
(実施例B-2)
 基材層1として、厚み50μmの二軸延伸ポリエチレンテレフタレートフィルム(開成工業社製、タイプAZ)を準備した以外は実施例B-1に記載の方法で、実施例B-2のモールド成形用離型フィルム10を作製した。ここで、モールド成形用離型フィルム10は、離型層が形成されている面にエンボス形状を備えることが目視にて確認された。
 なお、基材層1は、ポリエチレンテレフタレートフィルムの片面にサンドブラスト処理を施したものである。すなわち、基材層1の一方面は凹凸を備え、もう一方面は平滑である。
 なお、基材層1の凹凸について、JIS B 0601-2013に準拠して算術平均粗さRaを測定したところ、0.67μmであった。また、JIS B 0601-1994に準拠して10点平均表面粗さRzを測定したところ、5.24μmであった。
 なお、離型層2のドライ厚みは0.4μmであった。さらに、モールド成形用離型フィルム10のエンボス形状を備える面について、光沢度は10.0であった。なお、光沢度は、JIS Z 8741に準拠して、光の入射角度を60°として測定した。
Example B-2
Except that a biaxially stretched polyethylene terephthalate film (Kaisei Kogyo Co., Ltd., type AZ) having a thickness of 50 μm was prepared as the base material layer 1, the mold release of Example B-2 was carried out by the method described in Example B-1. A mold film 10 was produced. Here, it was visually confirmed that the mold release film 10 has an embossed shape on the surface on which the release layer is formed.
In addition, the base material layer 1 gives the sand blast process to the single side | surface of a polyethylene terephthalate film. That is, one surface of the base material layer 1 is provided with unevenness, and the other surface is smooth.
The arithmetic mean roughness Ra of the unevenness of the base material layer 1 was measured according to JIS B 0601-2013, and was 0.67 μm. Further, the 10-point average surface roughness Rz was measured according to JIS B 0601-1994, and it was 5.24 μm.
The dry thickness of the release layer 2 was 0.4 μm. Furthermore, the glossiness of the surface having the embossed shape of the mold release film 10 was 10.0. The glossiness was measured in accordance with JIS Z 8741 with an incident angle of light of 60 °.
(実施例B-3)
 基材層1として、厚み50μmの二軸延伸ポリエチレンテレフタレートフィルム(開成工業社製、タイプD)を準備した以外は実施例B-1に記載の方法で、実施例B-3のモールド成形用離型フィルム10を作製した。ここで、モールド成形用離型フィルム10は、離型層が形成されている面にエンボス形状を備えることが目視にて確認された。
 なお、基材層1は、ポリエチレンテレフタレートフィルムの片面にサンドブラスト処理を施したものである。すなわち、基材層1の一方面は凹凸を備え、もう一方面は平滑である。
 なお、基材層1の凹凸について、JIS B 0601-2013に準拠して算術平均粗さRaを測定したところ、0.43μmであった。また、JIS B 0601-1994に準拠して10点平均表面粗さRzを測定したところ、4.10μmであった。
 なお、離型層2のドライ厚みは0.4μmであった。また、モールド成形用離型フィルム10のエンボス形状を備える面について、光沢度は14.4であった。なお、光沢度は、JIS Z 8741に準拠して、光の入射角度を60°として測定した。
Example B-3
Except that a biaxially stretched polyethylene terephthalate film (Kaisei Kogyo Co., Ltd., Type D) having a thickness of 50 μm was prepared as the base material layer 1, the mold release of Example B-3 was performed by the method described in Example B-1. A mold film 10 was produced. Here, it was visually confirmed that the mold release film 10 has an embossed shape on the surface on which the release layer is formed.
In addition, the base material layer 1 gives the sand blast process to the single side | surface of a polyethylene terephthalate film. That is, one surface of the base material layer 1 is provided with unevenness, and the other surface is smooth.
The arithmetic mean roughness Ra of the unevenness of the base material layer 1 was measured according to JIS B 0601-2013, and was 0.43 μm. Further, the 10-point average surface roughness Rz was measured according to JIS B 0601-1994 and found to be 4.10 μm.
The dry thickness of the release layer 2 was 0.4 μm. Moreover, about the surface provided with the embossed shape of the mold release film 10, the glossiness was 14.4. The glossiness was measured in accordance with JIS Z 8741 with an incident angle of light of 60 °.
(実施例B-4)
 基材層1として、厚み50μmの二軸延伸ポリエチレンテレフタレートフィルム(開成工業社製、タイプAZ)を準備し、さらに、第3の樹脂組成物としては、AGCコーテック社製のオブリガートPS306Rの主剤13重量部及び硬化剤1重量部を、メチルエチルケトン28重量部に溶解させて用い、さらに、第3の樹脂組成物の塗工は、バーコーター塗工法を用いて行った以外は、実施例B-1に記載の方法で、実施例B-4のモールド成形用離型フィルム10を作製した。ここで、モールド成形用離型フィルム10は、離型層が形成されている面にエンボス形状を備えることが目視にて確認された。
 なお、基材層1は、ポリエチレンテレフタレートフィルムの片面にサンドブラスト処理を施したものである。すなわち、基材層1の一方面は凹凸を備え、もう一方面は平滑である。
 なお、基材層1の凹凸について、JIS B 0601-2013に準拠して算術平均粗さRaを測定したところ、0.67μmであった。また、JIS B 0601-1994に準拠して10点平均表面粗さRzを測定したところ、5.24μmであった。
 また、離型層2のドライ厚みは0.8μmであった。また、モールド成形用離型フィルム10のエンボス形状を備える面について、光沢度は12.7であった。なお、光沢度は、JIS Z 8741に準拠して、光の入射角度を60°として測定した。
Example B-4
A biaxially stretched polyethylene terephthalate film (made by Kaisei Kogyo Co., Ltd., type AZ) having a thickness of 50 μm is prepared as the base material layer 1, and the third resin composition is 13 wt. Part B and 1 part by weight of a curing agent were dissolved in 28 parts by weight of methyl ethyl ketone, and the coating of the third resin composition was carried out in Example B-1, except that the coating was performed using a bar coater coating method. The mold release film 10 of Example B-4 was produced by the method described. Here, it was visually confirmed that the mold release film 10 has an embossed shape on the surface on which the release layer is formed.
In addition, the base material layer 1 gives the sand blast process to the single side | surface of a polyethylene terephthalate film. That is, one surface of the base material layer 1 is provided with unevenness, and the other surface is smooth.
The arithmetic mean roughness Ra of the unevenness of the base material layer 1 was measured according to JIS B 0601-2013, and was 0.67 μm. Further, the 10-point average surface roughness Rz was measured according to JIS B 0601-1994, and it was 5.24 μm.
The release layer 2 had a dry thickness of 0.8 μm. Moreover, the glossiness of the surface having the embossed shape of the mold release film 10 was 12.7. The glossiness was measured in accordance with JIS Z 8741 with an incident angle of light of 60 °.
(比較例B-1)
 第3の樹脂組成物としては、AGCコーテック社製のオブリガートPS306Rの主剤13重量部及び硬化剤1重量部を、メチルエチルケトン42重量部に溶解させて用いた以外は、実施例B-1に記載の方法で、比較例B-1のモールド成形用離型フィルム10を作製した。
 なお、離型層2のドライ厚みは、16μmであった。
(Comparative Example B-1)
As the third resin composition, except that 13 parts by weight of the main ingredient of Obligato PS306R manufactured by AGC Co-Tech and 1 part by weight of the curing agent were dissolved in 42 parts by weight of methyl ethyl ketone and used as described in Example B-1. By the method, a mold release film 10 of Comparative Example B-1 was produced.
The release layer 2 had a dry thickness of 16 μm.
(比較例B-2)
 基材層1として、厚み50μmの二軸延伸ポリエチレンテレフタレートフィルム(開成工業社製、タイプA)を準備した。ここで、基材層1は、ポリエチレンテレフタレートフィルムの片面にサンドブラスト処理を施したものである。すなわち、基材層1の一方面は凹凸を備え、もう一方面は平滑である。
 ここで、基材層1の凹凸について、JIS B 0601-2013に準拠して算術平均粗さRaを測定したところ、0.62μmであった。また、JIS B 0601-1994に準拠して10点平均表面粗さRzを測定したところ、4.97μmであった。
 この基材層1をそのまま、比較例B-2のモールド成形用離型フィルム10として用いた。なお、後述する評価において、モールド成形は、基材層1の凹凸を備える面が、第1の樹脂組成物と密着するようにして行った。
 なお、比較例B-2のモールド成形用離型フィルムでモールド成形を行うと、離型できないため、印字の可読性試験は行わなかった。
(Comparative Example B-2)
As the base material layer 1, a biaxially stretched polyethylene terephthalate film (made by Kaisei Kogyo Co., Ltd., type A) having a thickness of 50 μm was prepared. Here, the base material layer 1 is obtained by subjecting one surface of a polyethylene terephthalate film to sandblasting. That is, one surface of the base material layer 1 is provided with unevenness, and the other surface is smooth.
Here, when the arithmetic average roughness Ra of the unevenness of the base material layer 1 was measured in accordance with JIS B 0601-2013, it was 0.62 μm. Further, the 10-point average surface roughness Rz was measured according to JIS B 0601-1994 and found to be 4.97 μm.
This base material layer 1 was used as it was as the mold release film 10 of Comparative Example B-2. In the evaluation described later, the molding was performed such that the surface of the base material layer 1 having the unevenness was in close contact with the first resin composition.
Note that when the mold was formed with the mold release film of Comparative Example B-2, the mold could not be released, so the printability test was not performed.
 実施例B-1~B-4および比較例B-1~B-2のモールド成形用離型フィルムについて、印字の可読性、離型性の評価に用いる熱硬化性樹脂組成物のタブレットを作製した。その作製方法について詳細を説明する。
 成形性、離型性の評価に用いた熱硬化性樹脂組成物の原料として、以下のものを用いた。
・エポキシ樹脂1:ビフェニルアラルキル型エポキシ樹脂(日本化薬社製、NC-3000)
・エポキシ樹脂2:ビフェニル型エポキシ樹脂(三菱化学社製、YL6677)
・硬化剤1:ビフェニレン骨格含有フェノールアラルキル樹脂(日本化薬社製、GPH-65)
・硬化剤2:ホルムアルデヒドで変性したトリフェニルメタン型フェノール樹脂(エア・ウォーター社製、HE910-20)
・硬化促進剤:トリフェニルホスフィン(北興化学工業社製、TPP)
・無機充填材:溶融球状シリカ(電気化学工業社製、FB-950FC)
・着色剤:カーボンブラック(三菱化学社製、MA-600)
・カップリング剤:N-フェニル-γ-アミノプロピルトリメトキシシラン(信越化学社製、KBM-573)
・離型剤:カルナバワックス(日興ファイン社製、ニッコウカルナバ)
For the mold release films of Examples B-1 to B-4 and Comparative Examples B-1 to B-2, tablets of thermosetting resin compositions used for evaluation of print readability and mold release were prepared. . Details of the manufacturing method will be described.
The following were used as the raw material of the thermosetting resin composition used for evaluation of moldability and mold release.
・ Epoxy resin 1: Biphenyl aralkyl type epoxy resin (Nippon Kayaku Co., Ltd., NC-3000)
-Epoxy resin 2: biphenyl type epoxy resin (Mitsubishi Chemical Corporation, YL6677)
Curing agent 1: Biphenylene skeleton-containing phenol aralkyl resin (Nippon Kayaku Co., Ltd., GPH-65)
Curing agent 2: triphenylmethane type phenol resin modified with formaldehyde (Air Water, HE910-20)
Curing accelerator: Triphenylphosphine (Hokuko Chemical Industries, TPP)
・ Inorganic filler: fused spherical silica (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-950FC)
Colorant: Carbon black (Mitsubishi Chemical Corporation MA-600)
Coupling agent: N-phenyl-γ-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical, KBM-573)
・ Release agent: Carnauba wax (Nikko Fine, Nikko Carnauba)
 まず、上述した、エポキシ樹脂1を4.5重量部、エポキシ樹脂2を4.5重量部、硬化剤1を2.8重量部、硬化剤2を2.8重量部、硬化促進剤を0.4重量部、無機充填材を84.2重量部、着色剤を0.2重量部、カップリング剤を0.4重量部、離型剤を0.2重量部準備した。次いで、各原料成分を常温でミキサーを用いて混合した後、45℃及び90℃の2本ロールで加熱しながらロール混練し、混練物を得た。次いで、前記混練物を冷却した後、これを粉砕し、粉砕物を得た。次いで、粉砕物を打錠成形することで、タブレット形状の熱硬化性樹脂組成物を得た。 First, 4.5 parts by weight of the epoxy resin 1, 4.5 parts by weight of the epoxy resin 2, 2.8 parts by weight of the curing agent 1, 2.8 parts by weight of the curing agent 2, and 0% of the curing accelerator described above. 4 parts by weight, 84.2 parts by weight of an inorganic filler, 0.2 parts by weight of a colorant, 0.4 parts by weight of a coupling agent, and 0.2 parts by weight of a release agent were prepared. Next, each raw material component was mixed at room temperature using a mixer, and then roll kneaded while heating with two rolls at 45 ° C. and 90 ° C. to obtain a kneaded product. Next, the kneaded product was cooled and then pulverized to obtain a pulverized product. Next, the pulverized product was tableted to obtain a tablet-shaped thermosetting resin composition.
<モールド成形>
 トランスファーモールド成型機(TOWA社製、Y-SERIES)にモールド成形用離型フィルムをセットした後、成型機が備える金型の内部空間を真空引きすることにより、該離型フィルムを金型に追従させた。次に、熱硬化性樹脂組成物のタブレットを所定の位置に配置した。その後、成型機が備える金型をクランプ圧力300kg/cmの条件で締めてから、溶融させた状態にある上記熱硬化性樹脂組成物を射出圧力80kg/cmの条件で成型機が備える金型の内部空間に流し込み、175℃で2分間成形した。なお、モールド成形は、モールド成形用離型フィルムのエンボス形状、及び、熱硬化性樹脂組成物が密着するようにおこなった。成形後、金型を開いて、熱硬化性樹脂組成物の硬化物を金型から取り出した。
<Molding>
After setting the mold release film on the transfer mold machine (TOWA, Y-SERIES), the mold release machine's internal space is vacuumed to follow the mold release film. I let you. Next, the tablet of the thermosetting resin composition was disposed at a predetermined position. Thereafter, the mold provided in the molding machine is clamped at a clamping pressure of 300 kg / cm 2 , and then the molten thermosetting resin composition is provided in the molding machine at an injection pressure of 80 kg / cm 2. Poured into the interior space of the mold and molded at 175 ° C. for 2 minutes. The molding was performed so that the embossed shape of the release film for molding and the thermosetting resin composition were in close contact with each other. After molding, the mold was opened, and the cured product of the thermosetting resin composition was taken out from the mold.
(印字の可読性)
 まず、熱硬化性樹脂組成物の硬化物のエンボス模様が転写された面に、レーザー印字を用いて、長さ2mm×幅2mmのアルファベット及びアラビア数字からなるランダムな10文字の文字列を印字した。なお、熱硬化性樹脂組成物の硬化物は黒色であり、印字は白色であった。次いで、1.0mの距離から、46mm×46mmの上記文字列が印字された領域を固定カメラで撮影し、画像データを得た。得られた画像データを二値化し、上記文字列を読み取る試験を行った。この試験を100個の熱硬化性樹脂組成物の硬化物について行い、以下の基準で評価した。評価結果を以下の表2に示す。なお、比較例B-2では、熱硬化性樹脂組成物の硬化物と、モールド成形用離型フィルムとが剥離できないため、評価を行わなかった。
◎:熱硬化性樹脂組成物の硬化物に印字された文字列について、全て認識することができた。また、文字列を構成する文字についても好適に識別することができた。
○:熱硬化性樹脂組成物の硬化物に印字された文字列について、文字列を形成する記号の一部分が光沢に起因して欠けて認識されることがあったが、記号の識別上は問題なかった。
×:熱硬化性樹脂組成物の硬化物について、光沢に起因して文字列が認識できないものが、1個以上あった。
(Readability of printing)
First, a random 10-character string consisting of 2 mm long and 2 mm wide alphabets and Arabic numerals was printed on the surface onto which the embossed pattern of the cured product of the thermosetting resin composition was transferred. . The cured product of the thermosetting resin composition was black and the printing was white. Next, an area where the character string of 46 mm × 46 mm was printed was photographed with a fixed camera from a distance of 1.0 m to obtain image data. The obtained image data was binarized and a test for reading the character string was performed. This test was performed on 100 cured products of the thermosetting resin composition and evaluated according to the following criteria. The evaluation results are shown in Table 2 below. In Comparative Example B-2, evaluation was not performed because the cured product of the thermosetting resin composition and the mold release film could not be peeled off.
A: All character strings printed on the cured product of the thermosetting resin composition could be recognized. Further, the characters constituting the character string could be suitably identified.
○: Regarding the character string printed on the cured product of the thermosetting resin composition, a part of the symbol forming the character string was sometimes recognized missing due to the gloss, but there was a problem in identifying the symbol. There wasn't.
X: Regarding the cured product of the thermosetting resin composition, there was one or more that could not recognize a character string due to gloss.
(離型性)
 上記モールド成形において、金型を開いた際における、モールド成形用離型フィルムと、熱硬化性樹脂組成物との離型性を以下の基準で評価した。評価結果を以下の表2に示す。
○:金型を開いた際に、モールド成形用離型フィルムと熱硬化性樹脂組成物の硬化物とが、自然と離型した。
×:金型を開いた際に、モールド成形用離型フィルムと熱硬化性樹脂組成物の硬化物とが、離型しなかった。
(Releasability)
In the above mold molding, the mold releasability between the mold forming release film and the thermosetting resin composition when the mold was opened was evaluated according to the following criteria. The evaluation results are shown in Table 2 below.
○: When the mold was opened, the mold release film and the cured product of the thermosetting resin composition were released naturally.
X: When the mold was opened, the mold release film and the cured product of the thermosetting resin composition were not released.
 上記評価項目に関する評価結果を、以下の表2に示す。 The evaluation results for the above evaluation items are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 表2に示すように、実施例B-1~B-4のモールド成形用離型フィルム10を用いた成形物は、比較例B-1~B-2のモールド成形用離型フィルムを用いた場合と比べて、成形物の印字の可読性に優れるものであった。
 また、表2に示すように、実施例B-1~B-4のモールド成形用離型フィルム10は、比較例B-1~B-2のモールド成形用離型フィルムと比べて、優れた離型性を示した。
As shown in Table 2, the molded articles using the mold release films 10 of Examples B-1 to B-4 used the mold release films of Comparative Examples B-1 to B-2. Compared with the case, it was excellent in the readability of printing of a molded product.
Further, as shown in Table 2, the mold release films 10 of Examples B-1 to B-4 were superior to the mold release films of Comparative Examples B-1 to B-2. It showed releasability.
[実施例C]
 また、実施例C-1~C-8、比較例C-1~C-5のモールド成形用離型フィルムについて、詳細を説明する。
[Example C]
Details of the mold release films of Examples C-1 to C-8 and Comparative Examples C-1 to C-5 will be described in detail.
(実施例C-1)
 まず、基材層として、厚み38μmの二軸延伸ポリエチレンテレフタレートフィルム(以下、O-PETフィルムという。)(東洋紡社製、エステルフィルム、型番E5100)を準備した。O-PETフィルムの表面には、コロナ処理を、出力0.26kW、搬送速度12m/分、放電隙間が4mmで行った。
 次いで、基材層の表面にプライマー層を成形した。具体的には、基材層の片面に、シロキサン化合物であるシランカップリング剤1(フロロテクノロジー社製、PC-3B)を、塗工厚み4μmとなるようにバーコーターで塗工した。次いで、120℃、10分の条件で、シランカップリング剤を乾燥させ、プライマー層を成形した。乾燥後のプライマー層の厚みは0.03μmであった。
 次いで、プライマー層の表面に、離型層を成形した。具体的には、プライマー層表面に、フッ素化合物1(フロロテクノロジー社製、FG-5084SH)を、塗工厚み4μmとなるようにバーコーターで塗工した。次いで、25℃、90分の条件でフッ素化合物1を乾燥した。乾燥後、もう一度、フッ素化合物1(フロロテクノロジー社製、FG-5084SH)を、塗工厚み4μmとなるようにバーコーターで塗工した。次いで、25℃、90分の条件で、フッ素化合物1を乾燥し、離型層を成形した。離型層の厚みは0.008μmであった。
 以上の工程より、基材層、プライマー層、離型層をこの順で積層してなるモールド成形用離型フィルムを作製した。
 なお、フッ素化合物1は、上述した(X1)で示される構造単位を含む。また、フッ素化合物1は、分子鎖の末端にアルコキシシラン基を含む。当該アルコキシシラン基において、ケイ素原子と炭素数1以上10以下のアルコキシ基とが結合する。すなわち、フッ素化合物1は、上述した一般式(2)において、Xが上述した(X1)で示される構造単位を含み、さらに、Aのうち3つが炭素数1以上10以下のアルコキシ基である。
Example C-1
First, a biaxially stretched polyethylene terephthalate film (hereinafter referred to as O-PET film) (Toyobo Co., Ltd., ester film, model number E5100) having a thickness of 38 μm was prepared as a base material layer. The surface of the O-PET film was subjected to corona treatment with an output of 0.26 kW, a conveyance speed of 12 m / min, and a discharge gap of 4 mm.
Next, a primer layer was formed on the surface of the base material layer. Specifically, silane coupling agent 1 (Fluoro Technology Co., Ltd., PC-3B), which is a siloxane compound, was applied to one surface of the base material layer with a bar coater so as to have a coating thickness of 4 μm. Next, the silane coupling agent was dried at 120 ° C. for 10 minutes to form a primer layer. The thickness of the primer layer after drying was 0.03 μm.
Next, a release layer was formed on the surface of the primer layer. Specifically, fluorine compound 1 (manufactured by Fluoro Technology, FG-5084SH) was applied to the primer layer surface with a bar coater so as to have a coating thickness of 4 μm. Next, the fluorine compound 1 was dried at 25 ° C. for 90 minutes. After drying, fluorine compound 1 (manufactured by Fluoro Technology, FG-5084SH) was applied again with a bar coater to a coating thickness of 4 μm. Next, the fluorine compound 1 was dried at 25 ° C. for 90 minutes to form a release layer. The thickness of the release layer was 0.008 μm.
From the above steps, a mold release film was prepared by laminating a base material layer, a primer layer, and a release layer in this order.
In addition, the fluorine compound 1 includes the structural unit represented by (X1) described above. Moreover, the fluorine compound 1 contains an alkoxysilane group at the end of the molecular chain. In the alkoxysilane group, a silicon atom and an alkoxy group having 1 to 10 carbon atoms are bonded to each other. That is, the fluorine compound 1 includes the structural unit represented by the above-described (X1) in the general formula (2) described above, and three of A are alkoxy groups having 1 to 10 carbon atoms.
(実施例C-2)
 離型層の成形方法を以下のように変更した以外は、実施例C-1と同様にして、モールド成形用離型フィルムを作製した。
 プライマー層表面に、フッ素化合物1(フロロテクノロジー社製、FG-5084SH)を、塗工厚み2μmとなるように紙により塗工した。次いで、25℃、90分の条件で、フッ素化合物1を乾燥し、離型層を成形した。乾燥後、離型層の厚みは0.002μmであった。
 以上の工程より、基材層、プライマー層、離型層をこの順で積層してなるモールド成形用離型フィルムを作製した。
Example C-2
A mold release film for molding was produced in the same manner as in Example C-1, except that the method for forming the release layer was changed as follows.
Fluorine compound 1 (FG-5084SH, manufactured by Fluoro Technology Co., Ltd.) was applied to the primer layer surface with paper so as to have a coating thickness of 2 μm. Next, the fluorine compound 1 was dried at 25 ° C. for 90 minutes to form a release layer. After drying, the thickness of the release layer was 0.002 μm.
From the above steps, a mold release film was prepared by laminating a base material layer, a primer layer, and a release layer in this order.
(実施例C-3)
 離型層の成形方法を以下のように変更した以外は、実施例C-1と同様にして、モールド成形用離型フィルムを作製した。
 プライマー層表面に、フッ素化合物1(フロロテクノロジー社製、FG-5084SH)を、塗工厚み2μmとなるように紙により塗工した。次いで、25℃、90分の条件で、フッ素化合物1を乾燥した。乾燥後、もう一度、フッ素化合物1(フロロテクノロジー社製、FG-5084SH)を、塗工厚み2μmとなるように紙により塗工した。次いで、25℃、90分の条件で、乾燥し、離型層を成形した。乾燥後、離型層の厚みは0.004μmであった。
 以上の工程より、基材層、プライマー層、離型層をこの順で積層してなるモールド成形用離型フィルムを作製した。
Example C-3
A mold release film for molding was produced in the same manner as in Example C-1, except that the method for forming the release layer was changed as follows.
Fluorine compound 1 (FG-5084SH, manufactured by Fluoro Technology Co., Ltd.) was applied to the primer layer surface with paper so as to have a coating thickness of 2 μm. Next, the fluorine compound 1 was dried at 25 ° C. for 90 minutes. After drying, Fluorine Compound 1 (manufactured by Fluoro Technology, FG-5084SH) was applied again with paper to a coating thickness of 2 μm. Subsequently, it dried on 25 degreeC and the conditions for 90 minutes, and shape | molded the mold release layer. After drying, the thickness of the release layer was 0.004 μm.
From the above steps, a mold release film was prepared by laminating a base material layer, a primer layer, and a release layer in this order.
(実施例C-4)
 離型層の成形方法を、フッ素化合物1の乾燥条件を120℃、10分に変更した以外は実施例C-1と同様にして、モールド成形用離型フィルムを作製した。乾燥後、離型層の厚みは0.008μmであった。
Example C-4
A mold release film for molding was produced in the same manner as in Example C-1, except that the molding method of the mold release layer was changed to 120 ° C. and 10 minutes for the drying condition of the fluorine compound 1. After drying, the thickness of the release layer was 0.008 μm.
(実施例C-5)
 まず、基材層として、厚み38μmの二軸延伸ポリエチレンテレフタレートフィルム(以下、O-PETフィルムという。)(東洋紡社製、エステルフィルム、型番E5100)を準備した。O-PETフィルムの表面には、コロナ処理を、出力0.26kW、搬送速度12m/分、放電隙間が4mmで行った。
 次いで、基材層表面に、離型層を形成した。具体的には、基材層の片面に、フッ素化合物2(ネオス社製、フリリース85)を、塗工厚み12μmとなるようにバーコーターで成形した。次いで、25℃、24時間の条件で、フッ素化合物2を乾燥し、離型層を成形した。乾燥後、離型層の厚みは0.12μmであった。
 以上の工程より、基材層、離型層をこの順で積層してなるモールド成形用離型フィルムを作製した。
 なお、フッ素化合物2は、上述した(X1)で示される構造単位を含む。また、フッ素化合物2は、分子鎖の末端にカルボキシル基を含む。すなわち、フッ素化合物2は、上述した一般式(1)において、Xが上述した(X1)で示される構造単位を含み、さらに、Yが末端にカルボキシル基を含むものである。
(Example C-5)
First, a biaxially stretched polyethylene terephthalate film (hereinafter referred to as O-PET film) (Toyobo Co., Ltd., ester film, model number E5100) having a thickness of 38 μm was prepared as a base material layer. The surface of the O-PET film was subjected to corona treatment with an output of 0.26 kW, a conveyance speed of 12 m / min, and a discharge gap of 4 mm.
Next, a release layer was formed on the surface of the base material layer. Specifically, the fluorine compound 2 (manufactured by Neos, Fleet 85) was molded on one side of the base material layer with a bar coater so as to have a coating thickness of 12 μm. Next, the fluorine compound 2 was dried at 25 ° C. for 24 hours to form a release layer. After drying, the thickness of the release layer was 0.12 μm.
From the above steps, a mold release film was prepared by laminating the base material layer and the release layer in this order.
In addition, the fluorine compound 2 includes the structural unit represented by (X1) described above. Moreover, the fluorine compound 2 contains a carboxyl group at the end of the molecular chain. That is, the fluorine compound 2 is a compound in which, in the general formula (1) described above, X includes the structural unit represented by (X1) described above, and Y includes a carboxyl group at the terminal.
(実施例C-6)
 まず、基材層として、厚み38μmの二軸延伸ポリエチレンテレフタレートフィルム(以下、O-PETフィルムという。)(東洋紡社製、エステルフィルム、型番E5100)を準備した。O-PETフィルムの表面には、コロナ処理を、出力0.26kW、搬送速度12m/分、放電隙間が4mmで行った。
 次いで、基材層表面に、離型層を形成した。具体的には、基材層の片面に、フッ素化合物3(AGCセイミケミカル社製、サイトップ CTX-809A)を、塗工厚み12μmとなるようにバーコーターで塗工した。次いで、25℃、20分の条件で、フッ素化合物3を乾燥した。乾燥後、もう一度、フッ素化合物3(AGCセイミケミカル社製、サイトップ CTX-809A)を、塗工厚み12μmとなるようにバーコーターで塗工した。次いで、25℃、20分の条件でフッ素化合物3を乾燥し、離型層を成形した。離型層の厚みは1.2μmであった。
 以上の工程より、基材層、離型層をこの順で積層してなるモールド成形用離型フィルムを作製した。
 なお、フッ素化合物3は、上述した(X1)で示される構造単位を含む。また、フッ素化合物3は、分子鎖の末端にカルボキシル基を含む。すなわち、フッ素化合物3は、上述した一般式(1)において、Xが上述した(X1)で示される構造単位を含み、さらに、Yが末端にカルボキシル基を含むものである。
(Example C-6)
First, a biaxially stretched polyethylene terephthalate film (hereinafter referred to as O-PET film) (Toyobo Co., Ltd., ester film, model number E5100) having a thickness of 38 μm was prepared as a base material layer. The surface of the O-PET film was subjected to corona treatment with an output of 0.26 kW, a conveyance speed of 12 m / min, and a discharge gap of 4 mm.
Next, a release layer was formed on the surface of the base material layer. Specifically, fluorine compound 3 (manufactured by AGC Seimi Chemical Co., Cytop CTX-809A) was applied to one surface of the base material layer with a bar coater so as to have a coating thickness of 12 μm. Next, the fluorine compound 3 was dried at 25 ° C. for 20 minutes. After drying, fluorine compound 3 (AGC Seimi Chemical Co., Cytop CTX-809A) was applied again with a bar coater to a coating thickness of 12 μm. Next, the fluorine compound 3 was dried at 25 ° C. for 20 minutes to form a release layer. The thickness of the release layer was 1.2 μm.
From the above steps, a mold release film was prepared by laminating the base material layer and the release layer in this order.
In addition, the fluorine compound 3 includes the structural unit represented by (X1) described above. Moreover, the fluorine compound 3 contains a carboxyl group at the end of the molecular chain. That is, the fluorine compound 3 is a compound in which, in the general formula (1) described above, X includes the structural unit represented by (X1) described above, and Y includes a carboxyl group at the terminal.
(実施例C-7)
 まず、基材層として、厚み38μmの二軸延伸ポリエチレンテレフタレートフィルム(以下、O-PETフィルムという。)(東洋紡社製、エステルフィルム、型番E5100)を準備した。O-PETフィルムの表面には、コロナ処理を、出力0.26kW、搬送速度12m/分、放電隙間が4mmで行った。
 次いで、基材層の表面に、離型層を形成した。具体的には、基材層の片面に、フッ素化合物4(フロロテクノロジー社製、6050)を、塗工厚み12μmとなるようにバーコーターで成形した。次いで、80℃、10分の条件で、フッ素化合物4を乾燥した。乾燥後、もう一度、フッ素化合物4(フロロテクノロジー社製、6050)を、塗工厚み12μmとなるようにバーコーターで成形した。次いで、80℃、10分の条件で、フッ素化合物4を乾燥し、離型層を成形した。離型層の厚みは0.24μmであった。
 以上の工程より、基材層、離型層をこの順で積層してなるモールド成形用離型フィルムを作製した。
 なお、フッ素化合物4は、上述した(X1)で示される構造単位を含む。また、フッ素化合物4は、分子鎖の末端にスルホン酸基を含む。すなわち、フッ素化合物4は、上述した一般式(1)において、Xが上述した(X1)で示される構造単位を含み、さらに、Yが末端にスルホン酸基を含むものである。
(Example C-7)
First, a biaxially stretched polyethylene terephthalate film (hereinafter referred to as O-PET film) (Toyobo Co., Ltd., ester film, model number E5100) having a thickness of 38 μm was prepared as a base material layer. The surface of the O-PET film was subjected to corona treatment with an output of 0.26 kW, a conveyance speed of 12 m / min, and a discharge gap of 4 mm.
Next, a release layer was formed on the surface of the base material layer. Specifically, fluorine compound 4 (manufactured by Fluoro Technology, 6050) was formed on one side of the base material layer with a bar coater so as to have a coating thickness of 12 μm. Next, the fluorine compound 4 was dried at 80 ° C. for 10 minutes. After drying, the fluorine compound 4 (Fluoro Technology, 6050) was once again molded with a bar coater so as to have a coating thickness of 12 μm. Next, the fluorine compound 4 was dried at 80 ° C. for 10 minutes to form a release layer. The thickness of the release layer was 0.24 μm.
From the above steps, a mold release film was prepared by laminating the base material layer and the release layer in this order.
In addition, the fluorine compound 4 includes the structural unit represented by (X1) described above. Moreover, the fluorine compound 4 contains a sulfonic acid group at the end of the molecular chain. That is, the fluorine compound 4 is a compound in which, in the general formula (1) described above, X includes the structural unit represented by (X1) described above, and Y includes a sulfonic acid group at the terminal.
(実施例C-8)
 まず、基材層として、両面に対してコロナ放電処理を施した厚み38μmの二軸延伸ポリエチレンテレフタレートフィルム(以下、O-PETフィルムという。)(東洋紡社製、エステルフィルム、型番E5100)を準備した。O-PETフィルムの表面には、コロナ処理を、出力0.26kW、搬送速度12m/分、放電隙間が4mmで行った。
 次いで、基材層表面に、離型層を形成した。具体的には、離型層片面に、フッ素化合物5(ネオス社製、RB-5910EX-III)を、塗工厚み12μmとなるようにバーコーターで成形した。次いで、100℃、60分の条件で、フッ素化合物5を乾燥し、離型層を成形した。離型層の厚みは0.1μmであった。
 以上の工程より、基材層、離型層をこの順で積層してなるモールド成形用離型フィルムを作製した。
 なお、フッ素化合物5は、上述した(X1)で示される構造単位を含む。また、フッ素化合物5は、分子鎖の末端にアルコキシシラン基を含む。当該アルコキシシラン基において、ケイ素原子と炭素数1以上10以下のアルコキシ基とが結合する。すなわち、フッ素化合物5は、上述した一般式(2)において、Xが上述した(X1)で示される構造単位を含み、さらに、Aのうち3つが炭素数1以上10以下のアルコキシ基のものである。
(Example C-8)
First, as a base material layer, a biaxially stretched polyethylene terephthalate film (hereinafter referred to as O-PET film) (hereinafter referred to as O-PET film) having a thickness of 38 μm subjected to corona discharge treatment on both surfaces was prepared. . The surface of the O-PET film was subjected to corona treatment with an output of 0.26 kW, a conveyance speed of 12 m / min, and a discharge gap of 4 mm.
Next, a release layer was formed on the surface of the base material layer. Specifically, fluorine compound 5 (manufactured by Neos, RB-5910EX-III) was molded on one surface of the release layer with a bar coater so as to have a coating thickness of 12 μm. Next, the fluorine compound 5 was dried at 100 ° C. for 60 minutes to form a release layer. The thickness of the release layer was 0.1 μm.
From the above steps, a mold release film was prepared by laminating the base material layer and the release layer in this order.
In addition, the fluorine compound 5 includes the structural unit represented by (X1) described above. Moreover, the fluorine compound 5 contains an alkoxysilane group at the end of the molecular chain. In the alkoxysilane group, a silicon atom and an alkoxy group having 1 to 10 carbon atoms are bonded to each other. That is, the fluorine compound 5 includes the above-described general formula (2), wherein X includes the structural unit represented by the above-described (X1), and three of A are alkoxy groups having 1 to 10 carbon atoms. is there.
(比較例C-1)
 基材層として、厚み38μmの二軸延伸ポリエチレンテレフタレートフィルム(以下、O-PETフィルムという。)(東洋紡社製、エステルフィルム、型番E5100)を準備した。
 以上の工程より、基材層からなるモールド成形用離型フィルムを準備した。
(Comparative Example C-1)
A biaxially stretched polyethylene terephthalate film (hereinafter referred to as O-PET film) (Toyobo Co., Ltd., ester film, model number E5100) having a thickness of 38 μm was prepared as a base material layer.
From the above steps, a mold release film comprising a base material layer was prepared.
(比較例C-2)
 基材層として、ポリメチルペンテン樹脂(TPX(登録商標))(三井化学社製、TPX DX845)を用いて、押出Tダイ法にて厚さ50μmTPXフィルムを作製した。
 以上の工程より、基材層からなるモールド成形用離型フィルムを準備した。
(Comparative Example C-2)
Using a polymethylpentene resin (TPX (registered trademark)) (manufactured by Mitsui Chemicals, TPX DX845) as a base material layer, a 50 μm-thick TPX film was produced by an extrusion T-die method.
From the above steps, a mold release film comprising a base material layer was prepared.
(比較例C-3)
 離型層として、フッ化ビニリデン単独重合体(Solvay社製、ソレフ(登録商標)9009)を用いて、押出Tダイ法にて厚さ38μmのPVDFフィルムを作製した。
 以上の工程より、離型層からなるモールド成形用離型フィルムを準備した。
(Comparative Example C-3)
A PVDF film having a thickness of 38 μm was prepared by an extrusion T-die method using a vinylidene fluoride homopolymer (Solvay (registered trademark) 9009) as a release layer.
From the above steps, a mold release film comprising a release layer was prepared.
(比較例C-4)
 離型層として、ポリテトラフルオロエチレン樹脂フィルム(以下、PTFEという。)(ダイキン工業淀川ヒューテック製、ヨドフロンPTFE、50μm)を準備した。
 以上の工程より、離型層からなるモールド成形用離型フィルムを準備した。
(Comparative Example C-4)
A polytetrafluoroethylene resin film (hereinafter referred to as PTFE) (manufactured by Daikin Industries Yodogawa Hutec, Yodoflon PTFE, 50 μm) was prepared as a release layer.
From the above steps, a mold release film comprising a release layer was prepared.
(比較例C-5)
 基材層として、厚み38μmの二軸延伸ポリエチレンテレフタレートフィルム(以下、O-PETフィルムという。)(東洋紡社製、エステルフィルム、型番E5100)を準備した。O-PETフィルムの表面には、コロナ処理を、出力0.26kW、搬送速度12m/分、放電隙間が4mmで行った。
 次いで、コロナ放電処理を施した基材層の表面に、離型層を成形した。具体的には、基材層の片面に、フッ素化合物6(フロロテクノロジー社製、FS-1010TH)を、塗工厚み12μmとなるようにバーコーターで塗工した。次いで、25℃、90分の条件で、フッ素化合物6を乾燥した。乾燥後、もう一度、フッ素化合物6(フロロテクノロジー社製、FS-1010TH)を、塗工厚み12μmとなるようにバーコーターで塗工した。成形後、25℃、90分の条件で乾燥し、離型層を成形した。乾燥後、離型層の厚み3.0μmであった。
 以上の工程より、基材層、離型層をこの順で積層してなる比較例C-5に係るモールド成形用離型フィルムを作製した。
 なお、フッ素化合物6は、上述した(X1)で示される構造単位を含む。また、フッ素化合物6は、分子鎖の末端に極性官能基を含まない。
(Comparative Example C-5)
A biaxially stretched polyethylene terephthalate film (hereinafter referred to as O-PET film) (Toyobo Co., Ltd., ester film, model number E5100) having a thickness of 38 μm was prepared as a base material layer. The surface of the O-PET film was subjected to corona treatment with an output of 0.26 kW, a conveyance speed of 12 m / min, and a discharge gap of 4 mm.
Next, a release layer was formed on the surface of the base material layer subjected to the corona discharge treatment. Specifically, fluorine compound 6 (FS-1010TH, manufactured by Fluoro Technology Co., Ltd.) was applied to one side of the base material layer with a bar coater so as to have a coating thickness of 12 μm. Next, the fluorine compound 6 was dried at 25 ° C. for 90 minutes. After drying, fluorine compound 6 (manufactured by Fluoro Technology, FS-1010TH) was applied again with a bar coater to a coating thickness of 12 μm. After molding, it was dried at 25 ° C. for 90 minutes to form a release layer. After drying, the release layer had a thickness of 3.0 μm.
Through the above steps, a mold release film according to Comparative Example C-5 was produced by laminating the base material layer and the release layer in this order.
In addition, the fluorine compound 6 includes the structural unit represented by (X1) described above. The fluorine compound 6 does not contain a polar functional group at the end of the molecular chain.
 実施例C-1~C-8および比較例C-1~C-5の各モールド成形用離型フィルムについて、以下の評価を行った。結果を表3に示す。 The following evaluations were performed for the mold release films for Examples C-1 to C-8 and Comparative Examples C-1 to C-5. The results are shown in Table 3.
(基材層の融点)
 実施例C-1~C-8、比較例C-1~C-5の基材層について、示唆走査熱量測定(DSC、セイコーインスツル社製、DSC6220)を用い、試料質量10mg、測定温度範囲20℃~280℃、昇温速度5℃/min、試料用容器Alパン、窒素フロー30ml/minの条件で、昇温過程にて融点の測定を行った。評価結果を下記表3に示す。
 なお、比較例C-3の基材層の融点として、PVDFフィルムの融点を評価した。また、比較例C-4の基材層の融点として、ポリテトラフルオロエチレン樹脂フィルムの融点を評価した。
(Melting point of base material layer)
Using the suggested scanning calorimetry (DSC, manufactured by Seiko Instruments Inc., DSC 6220) for the base material layers of Examples C-1 to C-8 and Comparative Examples C-1 to C-5, a sample mass of 10 mg, a measurement temperature range The melting point was measured during the temperature rising process under the conditions of 20 ° C. to 280 ° C., temperature rising rate 5 ° C./min, sample container Al pan, nitrogen flow 30 ml / min. The evaluation results are shown in Table 3 below.
Note that the melting point of the PVDF film was evaluated as the melting point of the base material layer of Comparative Example C-3. Further, the melting point of the polytetrafluoroethylene resin film was evaluated as the melting point of the base material layer of Comparative Example C-4.
(熱硬化性樹脂組成物)
 離型性、耐熱性の評価に用いる熱硬化性樹脂組成物のタブレットを作製した。その作製方法について詳細を説明する。
 離型性、耐熱性の評価に用いた熱硬化性樹脂組成物の原料として、以下のものを用いた。
・エポキシ樹脂1:ビフェニルアラルキル型エポキシ樹脂(日本化薬社製、NC-3000)
・エポキシ樹脂2:ビフェニル型エポキシ樹脂(三菱化学社製、YL6677)
・硬化剤1:ビフェニレン骨格含有フェノールアラルキル樹脂(日本化薬社製、GPH-65)
・硬化剤2:ホルムアルデヒドで変性したトリフェニルメタン型フェノール樹脂(エア・ウォーター社製、HE910-20)
・硬化促進剤:トリフェニルホスフィン(北興化学工業社製、TPP)
・無機充填材:溶融球状シリカ(電気化学工業社製、FB-950FC)
・着色剤:カーボンブラック(三菱化学社製、MA-600)
・カップリング剤:N-フェニル-γ-アミノプロピルトリメトキシシラン(信越化学社製、KBM-573)
・離型剤:カルナバワックス(日興ファイン社製、ニッコウカルナバ)
(Thermosetting resin composition)
A tablet of a thermosetting resin composition used for evaluation of releasability and heat resistance was produced. Details of the manufacturing method will be described.
The following were used as raw materials for the thermosetting resin composition used for evaluation of releasability and heat resistance.
・ Epoxy resin 1: Biphenyl aralkyl type epoxy resin (Nippon Kayaku Co., Ltd., NC-3000)
-Epoxy resin 2: biphenyl type epoxy resin (Mitsubishi Chemical Corporation, YL6677)
Curing agent 1: Biphenylene skeleton-containing phenol aralkyl resin (Nippon Kayaku Co., Ltd., GPH-65)
Curing agent 2: triphenylmethane type phenol resin modified with formaldehyde (Air Water, HE910-20)
Curing accelerator: Triphenylphosphine (Hokuko Chemical Industries, TPP)
・ Inorganic filler: fused spherical silica (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-950FC)
Colorant: Carbon black (Mitsubishi Chemical Corporation MA-600)
Coupling agent: N-phenyl-γ-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical, KBM-573)
・ Release agent: Carnauba wax (Nikko Fine, Nikko Carnauba)
 まず、上述した、エポキシ樹脂1を4.5質量部、エポキシ樹脂2を4.5質量部、フェノール樹脂硬化剤1を2.8質量部、フェノール樹脂硬化剤2を2.8質量部、硬化促進剤を0.4質量部、無機充填材を84.2質量部、着色剤を0.2質量部、シランカップリング剤を0.4質量部、離型剤を0.2質量部準備した。次いで、各原料成分を常温でミキサーを用いて混合した後、45℃及び90℃の2本ロールで加熱しながらロール混練し、混練物を得た。次いで、前記混練物を冷却した後、これを粉砕し、粉砕物を得た。次いで、粉砕物を打錠成形することで、タブレット形状の熱硬化性樹脂組成物を得た。 First, 4.5 parts by mass of the epoxy resin 1, 4.5 parts by mass of the epoxy resin 2, 2.8 parts by mass of the phenol resin curing agent 1, and 2.8 parts by mass of the phenol resin curing agent 2 described above are cured. 0.4 parts by mass of accelerator, 84.2 parts by mass of inorganic filler, 0.2 parts by mass of colorant, 0.4 parts by mass of silane coupling agent, and 0.2 parts by mass of release agent were prepared. . Next, each raw material component was mixed at room temperature using a mixer, and then roll kneaded while heating with two rolls at 45 ° C. and 90 ° C. to obtain a kneaded product. Next, the kneaded product was cooled and then pulverized to obtain a pulverized product. Next, the pulverized product was tableted to obtain a tablet-shaped thermosetting resin composition.
(離型性)
 トランスファーモールド成形機(TOWA社製、Y-SERIES)にモールド成形用離型フィルムをセットした後、成形機が備える金型の内部空間を真空引きすることにより、該モールド成形用離型フィルムを金型に追従させた。次に、熱硬化性樹脂組成物のタブレットを、成形機の所定の位置に配置した。その後、成形機が備える金型をクランプ圧力300kg/cmの条件で締めてから、溶融させた状態にある上記熱硬化性樹脂組成物を射出圧力80kg/cmの条件で成形機が備える金型の内部空間に流し込み、175℃で2分間成形し、熱硬化性樹脂組成物の硬化物を作製した。次いで、金型を開いた際における、モールド成形用離型フィルムと熱硬化性樹脂組成物の硬化物との離型性を以下の基準で評価した。
◎:金型を開いた際に、モールド成形用離型フィルムと熱硬化性樹脂組成物の硬化物とが、自然と離型した。また、得られた硬化物の表面に、目視で荒れが観察されなかった。
○:金型を開いた際に、モールド成形用離型フィルムと熱硬化性樹脂組成物の硬化物とが、離型した。また、得られた硬化物の表面に、目視で荒れが観察されたが、実用上問題のない荒れであった。
×:金型を開いた際に、モールド成形用離型フィルムと熱硬化性樹脂組成物の硬化物とが、離型しなかった。
(Releasability)
After setting the mold release film on a transfer mold machine (TOWA, Y-SERIES), the mold release film is vacuum-evacuated to remove the mold release film. It was made to follow the mold. Next, the tablet of the thermosetting resin composition was placed at a predetermined position of the molding machine. Thereafter, the mold provided in the molding machine is clamped at a clamping pressure of 300 kg / cm 2 , and then the molten thermosetting resin composition is provided in the molding machine at an injection pressure of 80 kg / cm 2. Poured into the inner space of the mold and molded at 175 ° C. for 2 minutes to produce a cured product of the thermosetting resin composition. Subsequently, the mold release property between the mold release film and the cured product of the thermosetting resin composition when the mold was opened was evaluated according to the following criteria.
A: When the mold was opened, the mold release film and the cured product of the thermosetting resin composition spontaneously released. Further, no roughness was visually observed on the surface of the obtained cured product.
○: When the mold was opened, the mold release film and the cured product of the thermosetting resin composition were released. Further, although roughening was visually observed on the surface of the obtained cured product, it was rough with no practical problem.
X: When the mold was opened, the mold release film and the cured product of the thermosetting resin composition were not released.
(耐熱性)
 トランスファーモールド成形機(TOWA社製、Y-SERIES)に、モールド成形用離型フィルムをセットした後、成形機が備える金型の内部空間を真空引きすることにより、該離型フィルムを金型に追従させた。このときの金型に対する上記離型フィルムの耐熱性を以下の基準で評価した。
○:離型フィルムにシワや浮きが生じることなく金型に追従していることが確認された。
×:モールド成形用離型フィルムにシワ、浮きまたは破れの発生が確認された。または、モールド成形用離型フィルムが、溶融または半溶融し、金型に対して接合した状態になった。
(Heat-resistant)
After setting a mold release film on a transfer mold machine (TOWA, Y-SERIES), the mold release machine is vacuumed to release the mold release film into the mold. I made it follow. The heat resistance of the release film with respect to the mold at this time was evaluated according to the following criteria.
○: It was confirmed that the release film was following the mold without causing wrinkles or floats.
X: Generation | occurrence | production of a wrinkle, a float, or a tear was confirmed by the release film for shaping | molding. Alternatively, the mold release film was melted or semi-molten and joined to the mold.
(水の接触角)
 得られたモールド成形用離型フィルムの離型面について、接触角計(協和界面科学社製、DROPMASTER-501)を用い、測定面に精製水2μLを着滴してから7秒後の接触角を液滴法にて測定した。測定温度は、25℃とした。なお、単位は、°である。
(Water contact angle)
Using a contact angle meter (DROPMASTER-501, manufactured by Kyowa Interface Science Co., Ltd.), the contact angle 7 seconds after 2 μL of purified water was deposited on the measurement surface of the release surface of the obtained mold release film. Was measured by the droplet method. The measurement temperature was 25 ° C. The unit is °.
(ヘキサデカンの接触角)
 得られたモールド成形用離型フィルムの離型面について、接触角計(協和界面科学社製、DROPMASTER-501)を用い、測定面にヘキサデカン2μLを着滴してから7秒後の接触角を液滴法にて測定した。測定温度は、25℃とした。なお、単位は、°である。
(Hexadecane contact angle)
Using a contact angle meter (Dropmaster-501, manufactured by Kyowa Interface Science Co., Ltd.), the contact angle 7 seconds after 6 μl of hexadecane was deposited on the measurement surface of the release surface of the obtained mold release film. It was measured by the droplet method. The measurement temperature was 25 ° C. The unit is °.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表3に示すように、実施例C-1~C-8のモールド成形用離型フィルムは、比較例C-1~C-5のモールド成形用離型フィルムと比較して、離型性及び耐熱性に優れることが確認された。 As shown in Table 3, the mold release films of Examples C-1 to C-8 were more easily releasable than the mold release films of Comparative Examples C-1 to C-5. It was confirmed that it was excellent in heat resistance.
 この出願は、2017年6月16日に出願された日本出願特願2017-119070、2017年6月16日に出願された日本出願特願2017-119072、2017年3月24日に出願された日本出願特願2017-59177を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application was filed on June 16, 2017, Japanese Patent Application No. 2017-1119070 filed on June 16, 2017, Japanese Application No. 2017-119072, filed on June 16, 2017, and filed on March 24, 2017. Claiming priority based on Japanese Patent Application No. 2017-59177, the entire disclosure of which is incorporated herein.

Claims (28)

  1.  第1の樹脂組成物のモールド成形に用いられるモールド成形用離型フィルムであって、
     第3の樹脂組成物によって構成される離型層が、第2の樹脂組成物によって構成される基材層の上に積層された積層構造を有しており、
     前記離型層及び前記基材層が直接結合しており、
     前記積層構造の最外層は、前記離型層を有しており、
     前記離型層は、下記一般式(1)で示される共重合体と、硬化剤とを架橋してなる、モールド成形用離型フィルム。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、
     lおよびmは、それぞれ、共重合体中における、A及びBのモル含有率を示し、
     l+m=1であり、
     Aは、フルオロカーボン基を含み、
     Bは、下記式(B1)により示される構造単位である。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(B1)中、
     Rは、前記硬化剤と反応する官能基を含む基である。)
    A mold release film used for molding the first resin composition,
    The release layer constituted by the third resin composition has a laminated structure laminated on the base material layer constituted by the second resin composition,
    The release layer and the base material layer are directly bonded,
    The outermost layer of the laminated structure has the release layer,
    The mold release layer is a mold release film formed by crosslinking a copolymer represented by the following general formula (1) and a curing agent.
    Figure JPOXMLDOC01-appb-C000001
    (In general formula (1),
    l and m respectively represent the molar content of A and B in the copolymer;
    l + m = 1,
    A contains a fluorocarbon group;
    B is a structural unit represented by the following formula (B1). )
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (B1),
    R 1 is a group containing a functional group that reacts with the curing agent. )
  2.  請求項1に記載のモールド成形用離型フィルムであって、
     前記基材層の、前記離型層と直接結合する面が平滑である、モールド成形用離型フィルム。
    A mold release film according to claim 1,
    A mold release film for molding, in which a surface of the base material layer directly bonded to the release layer is smooth.
  3.  請求項1または2に記載のモールド成形用離型フィルムであって、
     前記一般式(1)において、Aは、下記式(A1)で示される構造単位を含む、モールド成形用離型フィルム。
    Figure JPOXMLDOC01-appb-C000003
    (上記式(A1)中、nは1以上の整数である。)
    The mold release film for molding according to claim 1 or 2,
    In the general formula (1), A is a mold release film including a structural unit represented by the following formula (A1).
    Figure JPOXMLDOC01-appb-C000003
    (In the above formula (A1), n is an integer of 1 or more.)
  4.  請求項1から3のいずれか1項に記載のモールド成形用離型フィルムであって、
     前記硬化剤は、イソシアネート化合物を含む、モールド成形用離型フィルム。
    It is a mold release film for molding according to any one of claims 1 to 3,
    The curing agent is a mold release film containing an isocyanate compound.
  5.  請求項1から4のいずれか1項に記載のモールド成形用離型フィルムであって、
     前記Rの、前記硬化剤と反応する官能基は、ヒドロキシル基、カルボキシル基、アミノ基からなる群より選択される1種または2種以上を含む、モールド成形用離型フィルム。
    A mold release film for molding according to any one of claims 1 to 4,
    The mold release film for molding, wherein the functional group of R 1 that reacts with the curing agent includes one or more selected from the group consisting of a hydroxyl group, a carboxyl group, and an amino group.
  6.  第1の樹脂組成物及び金型の間にモールド成形用離型フィルムを介在させ、前記第1の樹脂組成物に離型層を密着させてモールド成形を行うことで、前記第1の樹脂組成物の成形物にエンボス模様を付与するために使用される当該モールド成形用離型フィルムであって、
     第2の樹脂組成物によって構成される基材層の上に、第3の樹脂組成物によって構成される前記離型層を積層する積層構造を有しており、
     前記第3の樹脂組成物は、シリコーン化合物またはフッ素化合物を含み、
     前記基材層は、前記離型層が積層される面に凹凸を備え、
     前記離型層の厚みは15μm以下である、モールド成形用離型フィルム。
    A mold release film is interposed between the first resin composition and the mold, and a mold release layer is brought into intimate contact with the first resin composition to perform molding, whereby the first resin composition is formed. A mold release film for molding used to give an embossed pattern to a molded product,
    Having a laminated structure in which the release layer constituted by the third resin composition is laminated on the base material layer constituted by the second resin composition;
    The third resin composition includes a silicone compound or a fluorine compound,
    The base material layer has irregularities on the surface on which the release layer is laminated,
    The mold release film has a thickness of 15 μm or less.
  7.  請求項6に記載のモールド成形用離型フィルムであって、
     当該モールド成形用離型フィルムは、前記離型層を備える面にエンボス形状を有する、モールド成形用離型フィルム。
    It is a mold release film for molding according to claim 6,
    The mold release film is a mold release film having an embossed shape on the surface provided with the release layer.
  8.  請求項7に記載のモールド成形用離型フィルムであって、
     当該モールド成形用離型フィルムの、前記エンボス形状を備える面について、JIS Z 8741に準拠して測定した、入射角度60°における光の反射率である光沢度が、1以上23以下である、モールド成形用離型フィルム。
    It is a mold release film for molding according to claim 7,
    A mold having a glossiness of 1 or more and 23 or less, which is a reflectance of light at an incident angle of 60 °, measured according to JIS Z 8741 with respect to the surface having the embossed shape of the mold release film. Mold release film.
  9.  請求項6から8のいずれか1項に記載のモールド成形用離型フィルムであって、
     前記第3の樹脂組成物は、前記フッ素化合物と、硬化剤とを含み、
     前記フッ素化合物は、下記一般式(1)で示される共重合体であり、
     前記離型層は前記フッ素化合物と、前記硬化剤とを架橋してなる、モールド成形用離型フィルム。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(1)中、
     lおよびmは、それぞれ、共重合体中における、A及びBのモル含有率を示し、
     l+m=1であり、
     Aは、フルオロカーボン基を含み、
     Bは、下記一般式(B1)により示される構造単位である。)
    Figure JPOXMLDOC01-appb-C000005
    (一般式(B1)中、
     Rは、前記硬化剤と反応する官能基を含む基である。)
    A mold release film for molding according to any one of claims 6 to 8,
    The third resin composition includes the fluorine compound and a curing agent,
    The fluorine compound is a copolymer represented by the following general formula (1),
    The mold release layer is a mold release film formed by crosslinking the fluorine compound and the curing agent.
    Figure JPOXMLDOC01-appb-C000004
    (In general formula (1),
    l and m respectively represent the molar content of A and B in the copolymer;
    l + m = 1,
    A contains a fluorocarbon group;
    B is a structural unit represented by the following general formula (B1). )
    Figure JPOXMLDOC01-appb-C000005
    (In the general formula (B1),
    R 1 is a group containing a functional group that reacts with the curing agent. )
  10.  請求項9に記載のモールド成形用離型フィルムであって、
     前記一般式(1)で示される共重合体において、Aは、下記式(A1)で示される構造単位を含む、モールド成形用離型フィルム。
    Figure JPOXMLDOC01-appb-C000006
    (上記式(A1)中、nは1以上の整数である。)
    A mold release film according to claim 9, wherein
    In the copolymer represented by the general formula (1), A is a mold release film containing a structural unit represented by the following formula (A1).
    Figure JPOXMLDOC01-appb-C000006
    (In the above formula (A1), n is an integer of 1 or more.)
  11.  請求項9または10に記載のモールド成形用離型フィルムであって、
     前記Rが備える前記硬化剤と反応する官能基は、ヒドロキシル基、カルボキシル基、アミノ基からなる群より選択される1種または2種以上を含む、モールド成形用離型フィルム。
    The mold release film for molding according to claim 9 or 10,
    Functional group reactive with the curing agent wherein R 1 comprises comprises one or a two or more, release film for molding is selected from the group consisting of hydroxyl group, carboxyl group, an amino group.
  12.  請求項9から11のいずれか1項に記載のモールド成形用離型フィルムであって、
     前記硬化剤は、イソシアネート化合物を含む、モールド成形用離型フィルム。
    It is a mold release film for molding according to any one of claims 9 to 11,
    The curing agent is a mold release film containing an isocyanate compound.
  13.  請求項6から12のいずれか1項に記載のモールド成形用離型フィルムであって、
     前記基材層の前記凹凸を備える面について、算術平均粗さRaが、0.10μm以上1.0μm以下である、モールド成形用離型フィルム。
    A mold release film for molding according to any one of claims 6 to 12,
    A mold release film for molding which has an arithmetic average roughness Ra of 0.10 μm or more and 1.0 μm or less on the surface of the base material layer having the unevenness.
  14.  請求項6から13のいずれか1項に記載のモールド成形用離型フィルムであって、
     前記基材層の前記凹凸を備える面について、10点平均表面粗さRzが、1.0μm以上10.0μm以下である、モールド成形用離型フィルム。
    The mold release film for molding according to any one of claims 6 to 13,
    A mold release film having a 10-point average surface roughness Rz of 1.0 μm or more and 10.0 μm or less on the surface of the base material layer having the unevenness.
  15.  第1の樹脂組成物のモールド成形に用いられるモールド成形用離型フィルムであって、
     当該モールド成形用離型フィルムは最外層に離型層を有しており、
     前記離型層は第3の樹脂組成物によって構成され、
     前記第3の樹脂組成物は、フッ素化合物を含み、
     前記フッ素化合物は、フルオロカーボン基を含み、
     前記離型層の表面に対する、ヘキサデカンの接触角が20°以上77°以下である、モールド成形用離型フィルム。
    A mold release film used for molding the first resin composition,
    The mold release film has a release layer as the outermost layer,
    The release layer is composed of a third resin composition,
    The third resin composition includes a fluorine compound,
    The fluorine compound includes a fluorocarbon group,
    A release film for molding, wherein the contact angle of hexadecane with respect to the surface of the release layer is 20 ° or more and 77 ° or less.
  16.  請求項15に記載のモールド成形用離型フィルムであって、
     当該モールド成形用離型フィルムは、前記離型層と、基材層と、が積層された積層構造を有し、
     前記基材層は第2の樹脂組成物によって構成され、
     前記第2の樹脂組成物は熱可塑性樹脂を含む、モールド成形用離型フィルム。
    The mold release film according to claim 15,
    The mold release film has a laminated structure in which the release layer and the base material layer are laminated,
    The base material layer is composed of a second resin composition,
    The mold release film for molding, wherein the second resin composition contains a thermoplastic resin.
  17.  請求項16に記載のモールド成形用離型フィルムであって、
     前記基材層の融点が160℃以上300℃以下である、モールド成形用離型フィルム。
    A mold release film for molding according to claim 16,
    A mold release film for molding, wherein the base material layer has a melting point of 160 ° C or higher and 300 ° C or lower.
  18.  請求項16または17のいずれか一項に記載のモールド成形用離型フィルムであって、
     前記積層構造は、前記離型層と、前記基材層との間に、プライマー層を有し、
     前記プライマー層は、第4の樹脂組成物によって構成され、
     前記第4の樹脂組成物は、シロキサン化合物を含む、モールド成形用離型フィルム。
    A mold release film for molding according to any one of claims 16 and 17,
    The laminated structure has a primer layer between the release layer and the base material layer,
    The primer layer is composed of a fourth resin composition,
    The fourth resin composition is a mold release film containing a siloxane compound.
  19.  請求項15から18のいずれか1項に記載のモールド成形用離型フィルムであって、
     前記フッ素化合物は、下記一般式(2)で示される、モールド成形用離型フィルム。
    Figure JPOXMLDOC01-appb-C000007
    (上記一般式(2)中、Xはフルオロカーボン基を含む基である。
     Yは、末端に極性官能基を少なくとも1つ有する基であり、当該極性官能基は、カルボキシル基、スルホン酸基、アミノ基、ヒドロキシ基、シラノール基及びアルコキシシラン基からなる群より選択される1種または2種以上である。)
    The mold release film for molding according to any one of claims 15 to 18,
    The said fluorine compound is a mold release film shown by following General formula (2).
    Figure JPOXMLDOC01-appb-C000007
    (In the general formula (2), X is a group containing a fluorocarbon group.
    Y is a group having at least one polar functional group at the terminal, and the polar functional group is selected from the group consisting of a carboxyl group, a sulfonic acid group, an amino group, a hydroxy group, a silanol group, and an alkoxysilane group. Species or two or more. )
  20.  請求項19に記載のモールド成形用離型フィルムであって、
     前記フッ素化合物は、下記一般式(3)で示される、モールド成形用離型フィルム。
    Figure JPOXMLDOC01-appb-C000008
    (上記一般式(3)中、Xは前記一般式(2)におけるXと同様である。
     複数のAはそれぞれ独立して水素原子、炭素原子、酸素原子、窒素原子、硫黄原子、リン原子及びケイ素原子からなる群より選択される1種または2種以上の原子によって形成される基である。Aは互いに同一でもよく、互いに異なっていてもよい。Aのうち少なくとも一つは、ヒドロキシ基または炭素数1以上10以下のアルコキシ基である。)
    A mold release film for molding according to claim 19,
    The said fluorine compound is a mold release film shown by following General formula (3).
    Figure JPOXMLDOC01-appb-C000008
    (In the general formula (3), X is the same as X in the general formula (2).
    A plurality of A's are groups formed by one or more atoms independently selected from the group consisting of a hydrogen atom, a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom and a silicon atom. . A may be the same as or different from each other. At least one of A is a hydroxy group or an alkoxy group having 1 to 10 carbon atoms. )
  21.  請求項15から20のいずれか1項に記載のモールド成形用離型フィルムであって、
     前記離型層の表面に対する、水の接触角が100°以上118°以下である、モールド成形用離型フィルム。
    The mold release film for molding according to any one of claims 15 to 20,
    A mold release film having a water contact angle of 100 ° or more and 118 ° or less with respect to the surface of the release layer.
  22.  請求項15から21のいずれか1項に記載のモールド成形用離型フィルムであって、
     前記離型層の厚みが0.0001μm以上5μm以下である、モールド成形用離型フィルム。
    The release film for molding according to any one of claims 15 to 21,
    A mold release film for molding, wherein the release layer has a thickness of 0.0001 μm or more and 5 μm or less.
  23.  請求項1から22のいずれか1項に記載のモールド成形用離型フィルムであって、
     前記第1の樹脂組成物は熱硬化性樹脂を含み、
     前記熱硬化性樹脂はエポキシ樹脂を含む、モールド成形用離型フィルム。
    A mold release film for molding according to any one of claims 1 to 22,
    The first resin composition includes a thermosetting resin,
    The thermosetting resin is a mold release film containing an epoxy resin.
  24.  請求項1から14、または、請求項16から23のいずれか1項に記載のモールド成形用離型フィルムであって、
     前記第2の樹脂組成物は、ポリエステル樹脂を含む、モールド成形用離型フィルム。
    The mold release film for molding according to any one of claims 1 to 14 or claim 16 to 23,
    The second resin composition is a mold release film containing a polyester resin.
  25.  請求項1から24のいずれか1項に記載のモールド成形用離型フィルムであって、
     前記モールド成形の方法は、トランスファーモールド成形法またはコンプレッションモールド成形法である、モールド成形用離型フィルム。
    A mold release film for molding according to any one of claims 1 to 24,
    The mold forming method is a mold release film which is a transfer mold forming method or a compression mold forming method.
  26.  請求項1から25のいずれか1項に記載のモールド成形用離型フィルムを用いたモールド成形方法であって、
     前記モールド成形の温度は120℃以上240℃以下である、モールド成形用離型フィルム。
    A mold forming method using the mold release film according to any one of claims 1 to 25,
    The mold release film has a mold forming temperature of 120 ° C. or higher and 240 ° C. or lower.
  27.  請求項1から26のいずれか1項に記載のモールド成形用離型フィルムを用いたモールド成形方法であって、
     当該モールド成形用離型フィルムを金型に配置する配置工程と、
     当該モールド成形用離型フィルムが形成する成形空間に第1の樹脂組成物を導入する導入工程と、を含む、モールド成形方法。
    A molding method using the mold release film according to any one of claims 1 to 26,
    An arrangement step of arranging the mold release film on the mold;
    And an introduction step of introducing the first resin composition into a molding space formed by the mold release film.
  28.  請求項27に記載のモールド成形方法であって、
     前記第1の樹脂組成物は、熱硬化性樹脂組成物であり、
     前記熱硬化性樹脂組成物はエポキシ樹脂を含む、モールド成形方法。
    The mold forming method according to claim 27,
    The first resin composition is a thermosetting resin composition,
    The said thermosetting resin composition is a molding method containing an epoxy resin.
PCT/JP2018/007855 2017-03-24 2018-03-01 Release film for molding and molding method WO2018173682A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018529670A JP6493628B2 (en) 2017-03-24 2018-03-01 Release film for molding and molding method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017059177 2017-03-24
JP2017-059177 2017-03-24
JP2017119072 2017-06-16
JP2017-119070 2017-06-16
JP2017-119072 2017-06-16
JP2017119070 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018173682A1 true WO2018173682A1 (en) 2018-09-27

Family

ID=63585440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007855 WO2018173682A1 (en) 2017-03-24 2018-03-01 Release film for molding and molding method

Country Status (3)

Country Link
JP (2) JP6493628B2 (en)
TW (1) TW201841734A (en)
WO (1) WO2018173682A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020104489A (en) * 2018-12-28 2020-07-09 三井化学東セロ株式会社 Release film, and manufacturing method of electronic equipment
JP2020146852A (en) * 2019-03-11 2020-09-17 三井化学東セロ株式会社 Release film and manufacturing method of electronic device
JP2020151949A (en) * 2019-03-20 2020-09-24 株式会社コバヤシ Combination of mold and release film, release film, mold, and method for manufacturing molding
KR20200121021A (en) * 2019-04-15 2020-10-23 도레이첨단소재 주식회사 Fluoro release film
JP2021172021A (en) * 2020-04-27 2021-11-01 株式会社コバヤシ Release film
CN115042371A (en) * 2022-06-29 2022-09-13 长春三友智造科技发展有限公司 Polydicyclopentadiene reaction injection molding method
CN115612147A (en) * 2022-11-09 2023-01-17 惠州市鑫亚凯立科技有限公司 Optical fluorine release film with multilayer structure and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023063069A (en) * 2021-10-22 2023-05-09 東洋鋼鈑株式会社 film mold

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639970A (en) * 1992-03-31 1994-02-15 E I Du Pont De Nemours & Co Releasable polymer film
JP2003261702A (en) * 2002-03-06 2003-09-19 Unitika Ltd Fluororesin-coated polyester film and method for producing the same
WO2008020543A1 (en) * 2006-08-18 2008-02-21 Asahi Glass Company, Limited Mold release film for the resin encapsulation of semiconductors
JP2012011658A (en) * 2010-06-30 2012-01-19 Teijin Dupont Films Japan Ltd Adhesive releasing polyester film for in-mold transfer material
JP2014065218A (en) * 2012-09-26 2014-04-17 Shin Etsu Polymer Co Ltd Mold release film
JP2014065219A (en) * 2012-09-26 2014-04-17 Shin Etsu Polymer Co Ltd Mold release film
WO2014156722A1 (en) * 2013-03-29 2014-10-02 住友ベークライト株式会社 Process film, usage thereof, process for producing molded product, and molded body
WO2015037426A1 (en) * 2013-09-10 2015-03-19 旭化成ケミカルズ株式会社 Release film, method for manufacturing molded article, semiconductor component, and reflector component

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639970A (en) * 1992-03-31 1994-02-15 E I Du Pont De Nemours & Co Releasable polymer film
JP2003261702A (en) * 2002-03-06 2003-09-19 Unitika Ltd Fluororesin-coated polyester film and method for producing the same
WO2008020543A1 (en) * 2006-08-18 2008-02-21 Asahi Glass Company, Limited Mold release film for the resin encapsulation of semiconductors
JP2012011658A (en) * 2010-06-30 2012-01-19 Teijin Dupont Films Japan Ltd Adhesive releasing polyester film for in-mold transfer material
JP2014065218A (en) * 2012-09-26 2014-04-17 Shin Etsu Polymer Co Ltd Mold release film
JP2014065219A (en) * 2012-09-26 2014-04-17 Shin Etsu Polymer Co Ltd Mold release film
WO2014156722A1 (en) * 2013-03-29 2014-10-02 住友ベークライト株式会社 Process film, usage thereof, process for producing molded product, and molded body
WO2015037426A1 (en) * 2013-09-10 2015-03-19 旭化成ケミカルズ株式会社 Release film, method for manufacturing molded article, semiconductor component, and reflector component

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7254512B2 (en) 2018-12-28 2023-04-10 三井化学東セロ株式会社 Release film and method for manufacturing electronic device
JP2020104489A (en) * 2018-12-28 2020-07-09 三井化学東セロ株式会社 Release film, and manufacturing method of electronic equipment
JP2020146852A (en) * 2019-03-11 2020-09-17 三井化学東セロ株式会社 Release film and manufacturing method of electronic device
JP7408286B2 (en) 2019-03-11 2024-01-05 三井化学東セロ株式会社 Release film and electronic device manufacturing method
JP2020151949A (en) * 2019-03-20 2020-09-24 株式会社コバヤシ Combination of mold and release film, release film, mold, and method for manufacturing molding
WO2020188859A1 (en) * 2019-03-20 2020-09-24 株式会社コバヤシ Combination of mold and release film, release film, mold, and method for producing molded article
KR20200121021A (en) * 2019-04-15 2020-10-23 도레이첨단소재 주식회사 Fluoro release film
KR102171736B1 (en) 2019-04-15 2020-10-29 도레이첨단소재 주식회사 Fluoro release film
JP2021172021A (en) * 2020-04-27 2021-11-01 株式会社コバヤシ Release film
WO2021220523A1 (en) * 2020-04-27 2021-11-04 株式会社コバヤシ Mold-release film
US11919205B2 (en) 2020-04-27 2024-03-05 Kobayashi & Co., Ltd. Mold-release film
CN115042371A (en) * 2022-06-29 2022-09-13 长春三友智造科技发展有限公司 Polydicyclopentadiene reaction injection molding method
CN115042371B (en) * 2022-06-29 2024-01-05 长春三友智造科技发展有限公司 Polydicyclopentadiene reaction injection molding method
CN115612147A (en) * 2022-11-09 2023-01-17 惠州市鑫亚凯立科技有限公司 Optical fluorine release film with multilayer structure and manufacturing method thereof
CN115612147B (en) * 2022-11-09 2023-06-06 惠州市鑫亚凯立科技有限公司 Optical fluorine release film with multilayer structure and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2018173682A1 (en) 2019-03-28
JP2019073022A (en) 2019-05-16
TW201841734A (en) 2018-12-01
JP6493628B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6493628B2 (en) Release film for molding and molding method
TWI619209B (en) Packaging material with semiconductor package substrate, semiconductor device, and method of manufacturing semiconductor device
JP6981054B2 (en) Release film for molding and molding method
JP5385247B2 (en) Wafer mold material and semiconductor device manufacturing method
JP6874350B2 (en) Resin sheet
US10177059B2 (en) Method for manufacturing semiconductor apparatus using a base-attached encapsulant
WO2014126150A1 (en) Sealing sheet for semiconductor element, semiconductor device, and semiconductor-device production method
TW201532151A (en) Production method for semiconductor package
KR20160051623A (en) Silicone resin, resin composition, resin film, semiconductor device, and making method
TWI763877B (en) Thermosetting epoxy resin sheet for semiconductor sealing, semiconductor device, and manufacturing method thereof
JP2008227475A (en) Release sheet for semiconductor sealing, and its production process
JP2015179769A (en) Sealant with substrate for semiconductor encapsulation, semiconductor apparatus, and manufacturing method of semiconductor apparatus
JP7251135B2 (en) Release film for molding and molding method
TWI733014B (en) Manufacturing method of sealing film, electronic part device, and electronic part device
JP7124819B2 (en) Sealing film, sealing structure, and method for producing sealing structure
JP7210850B2 (en) Encapsulating sheet, encapsulating structure, and method for producing encapsulating structure
TWI824114B (en) Sheet for sealing
US20240075656A1 (en) Mold release film
JP6834265B2 (en) Manufacturing method of sealing structure, sealing material and cured product
WO2021193877A1 (en) Release film for use in semiconductor sealing, marking film for use in semiconductor sealing, semiconductor package, and method for manufacturing semiconductor package
WO2021192178A1 (en) Release film used for semiconductor encapsulation, release film laminate used for semiconductor encapsulation, semiconductor package, and semiconductor package production method
JP2022108853A (en) release film
WO2021192179A1 (en) Mold release film for semiconductor encapsulation, marking film for semiconductor encapsulation, semiconductor package, and semiconductor package production method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529670

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772321

Country of ref document: EP

Kind code of ref document: A1