WO2018173484A1 - Pulse wave velocity measurement system, imaging device, and pulse wave velocity measurement method - Google Patents

Pulse wave velocity measurement system, imaging device, and pulse wave velocity measurement method Download PDF

Info

Publication number
WO2018173484A1
WO2018173484A1 PCT/JP2018/002738 JP2018002738W WO2018173484A1 WO 2018173484 A1 WO2018173484 A1 WO 2018173484A1 JP 2018002738 W JP2018002738 W JP 2018002738W WO 2018173484 A1 WO2018173484 A1 WO 2018173484A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse wave
measurement
human body
wave velocity
blood flow
Prior art date
Application number
PCT/JP2018/002738
Other languages
French (fr)
Japanese (ja)
Inventor
孝治 堀内
中村 剛
渕上 竜司
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018173484A1 publication Critical patent/WO2018173484A1/en

Links

Images

Definitions

  • the present disclosure relates to a pulse wave velocity measurement system, an imaging apparatus, and a pulse wave velocity measurement method.
  • Pulse wave velocity (PWV: Pulse ⁇ Wave Velocity) is used as one of the parameters for quantitatively diagnosing the progress of arteriosclerosis (blood vessel age). The harder (aging) the blood vessel, the faster the pulse wave velocity.
  • the pulse wave propagation velocity is calculated based on the time difference between the pulse waves measured at two parts of the human body and the distance between the two parts.
  • Patent Documents 1 and 2 two faces and hands are simultaneously captured by a camera, and pulse waves of the face and hand are detected based on temporal pixel value changes in the image data, and based on the time difference between the pulse waves.
  • a system for measuring pulse wave velocity is disclosed.
  • the measurement accuracy of the pulse wave velocity may be lowered.
  • One aspect of the present disclosure discloses a pulse wave velocity measurement system, an imaging device, and a pulse wave velocity measurement method that can improve the measurement accuracy of the pulse wave velocity.
  • a pulse wave velocity measurement system includes an imaging device that performs imaging and generates continuous image data in time series, detects a human body part from the image data, and detects the human body part. Accordingly, a blood flow direction is determined, two measurement parts having the same blood flow direction are determined from the parts of the human body, and a pulse wave of each measurement part is determined based on a pixel value change of the two measurement parts.
  • a pulse wave velocity calculating device that detects and calculates a pulse wave velocity based on a time difference between the pulse waves at the two measurement sites.
  • An imaging apparatus performs imaging, generates an image data that is continuous in time series, detects a human body part from the image data, and performs blood flow according to the human body part Determining a direction, determining two measurement parts having the same blood flow direction from the parts of the human body, detecting a pulse wave of each measurement part based on a pixel value change of the two measurement parts, And a processor for calculating a pulse wave propagation velocity based on a time difference between pulse waves at two measurement sites.
  • a pulse wave velocity measurement method performs imaging, generates time-series continuous image data, detects a human body part from the image data, and detects blood according to the human body part. Determining a flow direction, determining two measurement parts having the same blood flow direction from the parts of the human body, detecting a pulse wave of each measurement part based on a pixel value change of the two measurement parts, And calculating a pulse wave velocity based on a time difference between pulse waves at the two measurement sites.
  • the measurement accuracy of the pulse wave velocity can be improved.
  • FIG. 1 is a diagram illustrating a configuration of a pulse wave velocity measurement system according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a flowchart showing the pulse wave velocity measurement method according to the first embodiment of the present disclosure.
  • FIG. 3A is a diagram illustrating a facial blood flow direction determined by the pulse wave velocity measurement system according to Embodiment 1 of the present disclosure.
  • FIG. 3B is a diagram illustrating a facial blood flow direction determined by the pulse wave velocity measurement system according to Embodiment 1 of the present disclosure.
  • FIG. 4 is a diagram illustrating the blood flow direction of the hand determined by the pulse wave velocity measurement system according to the first embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating a face measurement site determined by the pulse wave velocity measurement system according to Embodiment 1 of the present disclosure.
  • FIG. 6 is a diagram illustrating a hand measurement site determined by the pulse wave velocity measurement system according to the first embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating a pulse wave detected by the pulse wave velocity measurement system according to the first embodiment of the present disclosure.
  • FIG. 8 is a diagram illustrating a configuration of a pulse wave velocity measurement system according to Embodiment 2 of the present disclosure.
  • FIG. 9 is a diagram illustrating a configuration of an imaging apparatus according to Embodiment 3 of the present disclosure.
  • FIG. 10 is a diagram illustrating a configuration of a pulse wave velocity measurement system according to the fourth embodiment of the present disclosure.
  • the pulse wave propagation velocity measurement system 1 includes an imaging device 11, a control device 12, and a display device 13.
  • the imaging device 11 is a high-sensitivity camera of 1000 fps (frame per second) or more, performs imaging under the control of the control device 12, generates time-series continuous image data, and outputs the image data to the control device 12.
  • the control device 12 detects a human body part from the image data input from the imaging device 11, determines a blood flow direction according to the detected human body part, and the blood flow direction is the same among the detected human body parts. Two measurement sites are determined. And the control apparatus 12 detects the pulse wave of each measurement part based on the pixel value change of two determined measurement parts, and calculates a pulse wave propagation speed based on the time difference of the pulse wave in two determined measurement parts To do.
  • control device 12 performs control to display the image of the image data input from the imaging device 11 on the display device 13.
  • the display device 13 displays an image captured by the imaging device 11 under the control of the control device 12.
  • the control device 12 includes an imaging instruction unit 111, a storage unit 112, an operation unit 113, a display instruction unit 114, and a CPU 115.
  • the imaging instruction unit 111 causes the imaging device 11 to start an imaging process when a detection signal of an imaging operation is input from the operation unit 113.
  • the imaging instruction unit 111 causes the storage unit 112 to store image data of an image captured by the imaging device 11.
  • the storage unit 112 stores image data.
  • the storage unit 112 stores a control program executed by the CPU 115.
  • the operation unit 113 When the operation unit 113 detects a user's imaging operation, the operation unit 113 outputs a detection signal of the imaging operation to the imaging instruction unit 111. When the operation unit 113 detects a display operation of the user, the operation unit 113 outputs a display operation detection signal to the display instruction unit 114.
  • the display instruction unit 114 causes the display device 13 to display an image of the image data stored in the storage unit 112 when the detection signal of the display operation is input from the operation unit 113.
  • the CPU 115 reads out and executes the control program stored in the storage unit 112.
  • the CPU 115 detects a part of the human body from the image data input from the imaging instruction unit 111 by executing a control program, determines a blood flow direction according to the detected part of the human body, and includes the detected part of the human body. To determine two measurement sites having the same blood flow direction. Then, the CPU 115 detects the pulse wave of each measurement site based on the pixel value change of the determined two measurement sites, and calculates the pulse wave propagation velocity based on the time difference between the pulse waves at the determined two measurement sites.
  • the CPU 115 includes a site detection processing unit 1151, a feature extraction processing unit 1152, a blood flow direction determination processing unit 1153, a measurement site determination processing unit 1154, a pulse wave information acquisition processing unit 1155, and a heart rate acquisition processing unit 1156. , And a pulse wave velocity calculation processing unit 1157.
  • Site detection processing unit 1151, feature extraction processing unit 1152, blood flow direction determination processing unit 1153, measurement site determination processing unit 1154, pulse wave information acquisition processing unit 1155, heart rate acquisition processing unit 1156, and pulse wave propagation velocity calculation processing unit 1157 Is configured as a function block when the CPU 115 executes the control program.
  • the part detection processing unit 1151 analyzes the image data stored in the storage unit 112 and detects a part of the human body from the image data.
  • the part detection processing unit 1151 outputs the detection result of the human body part to the feature extraction processing unit 1152 and the measurement part determination processing unit 1154.
  • the feature extraction processing unit 1152 extracts feature points in the human body part indicated by the detection result input from the part detection processing unit 1151 from the image data stored in the storage unit 112.
  • the feature extraction processing unit 1152 outputs the extracted feature point information to the blood flow direction determination processing unit 1153 and the measurement site determination processing unit 1154.
  • the blood flow direction determination processing unit 1153 determines the blood flow direction based on the feature point information input from the feature extraction processing unit 1152.
  • the blood flow direction determination processing unit 1153 outputs information on the determined blood flow direction to the measurement site determination processing unit 1154.
  • the measurement site determination processing unit 1154 is based on the blood flow direction information input from the blood flow direction determination processing unit 1153 and the feature point information input from the feature extraction processing unit 1152, and is stored in the storage unit 112. 2 are determined from the regions of the human body detected by the region detection processing unit 1151 in FIG. 2 in which the blood flow direction is shifted along the same blood flow direction.
  • the measurement site determination processing unit 1154 outputs information on the determined two measurement sites to the pulse wave information acquisition processing unit 1155.
  • the pulse wave information acquisition processing unit 1155 calculates the pulse wave of each measurement site based on the change in the pixel values of the two measurement sites input from the measurement site determination processing unit 1154 in the image data stored in the storage unit 112. To detect.
  • the pulse wave information acquisition processing unit 1155 filters the detected pulse wave signal and outputs the pulse wave signal from which noise has been removed to the heart rate acquisition processing unit 1156 and the pulse wave propagation velocity calculation processing unit 1157.
  • the heart rate acquisition processing unit 1156 acquires the heart rate of each measurement site based on the detection result of the pulse wave of each measurement site input from the pulse wave information acquisition processing unit 1155.
  • the heart rate acquisition processing unit 1156 outputs the acquired heart rate of each measurement site to the pulse wave propagation velocity calculation processing unit 1157.
  • the pulse wave velocity calculation processing unit 1157 performs each measurement indicated by the detection result input from the pulse wave information acquisition processing unit 1155 when the difference in heart rate between the measurement sites input from the heart rate acquisition processing unit 1156 is equal to or less than a threshold value.
  • the pulse wave velocity is calculated based on the time difference between the pulse waves of the parts.
  • the imaging device 11 starts capturing a moving image (S1).
  • the CPU 115 executes a face detection process for detecting a face as a human body part or a hand detection process for detecting a hand as a human body part in the part detection processing unit 1151 (S2).
  • the CPU 115 determines whether or not the face detection unit 1151 detects a face or a hand (S3).
  • the CPU 115 extracts a feature point of the face or hand in the feature extraction processing unit 1152 (S4).
  • the feature extraction processing unit 1152 extracts eyes, nose, mouth, face outline, and the like as facial feature points, and detects finger, arm, and skin color portions of a human body as hand feature points.
  • the CPU 115 determines the blood flow direction in the blood flow direction determination processing unit 1153 (S5).
  • the blood flow direction determination processing unit 1153 when the part detection processing unit 1151 detects a face, the blood flow direction determination processing unit 1153, as shown in FIG. 3A, performs blood flow upward on a straight line orthogonal to a straight line connecting the left eye and the right eye. The direction is determined, or, as shown in FIG. Alternatively, when the region detection processing unit 1151 detects a hand, the blood flow direction determination processing unit 1153 scans the image horizontally and scans the plurality of width directions of the arm (skin color) portion as shown in FIG. The midpoint P1 of the length is detected, and the direction toward the finger on the straight line connecting the detected midpoints P1 is determined as the blood flow direction.
  • the CPU 115 determines two measurement sites having the same blood flow direction in the measurement site determination processing unit 1154 (S6).
  • the measurement site determination processing unit 1154 when the part detection processing unit 1151 detects a face, the measurement site determination processing unit 1154, as shown in FIG. 5, the eye, nose, mouth, and face contours extracted by the feature extraction processing unit 1152 The two parts (area 1 and area 2) that are separated from each other by a predetermined pixel and shifted in position along the blood flow direction are determined as measurement parts.
  • the site detection processing unit 1151 detects a hand
  • the measurement site determination processing unit 1154 is separated by a predetermined distance R1 from the midpoint P1 detected by the blood flow direction determination processing unit 1153, as shown in FIG. Further, a part centered on the two middle points is determined as a measurement part (region 1 and region 2).
  • the measurement site determination processing unit 1154 determines a site that is as parallel as possible to the imaging device 11 so that a large number of pixel values of the measurement site can be acquired. Thereby, the S / N ratio of the image data generated by the imaging device 11 can be increased, and the measurement accuracy of the pulse wave velocity can be improved.
  • the CPU 115 detects the pulse wave of each measurement site shown in FIG. 7 based on the change in the pixel values of the two measurement sites in the pulse wave information acquisition processing unit 1155, and acquires the detected value as pulse wave information. (S7).
  • the CPU 115 determines whether or not the heart rate is acquired by the heart rate acquisition processing unit 1156 (S8).
  • the CPU 115 compares the heart rate of each measurement site in the heart rate acquisition processing unit 1156 (S9).
  • the CPU 115 determines whether or not the difference in heart rate between the measurement sites is equal to or less than a threshold value (S10).
  • the CPU 115 calculates the pulse wave propagation speed in the pulse wave propagation speed calculation processing unit 1157 (S11).
  • the pulse wave propagation velocity calculation processing unit 1157 calculates the pulse wave propagation velocity based on the phase difference ⁇ T1 between the pulse wave in the region 1 and the pulse wave in the region 2. Since the pulse wave propagation velocity is calculated when the difference in the heart rate at each measurement site is equal to or less than the threshold value, the reliability of the calculated value of the pulse wave propagation velocity can be improved.
  • the blood flow direction is determined according to the human body part detected from the image data, and two measurement parts having the same blood flow direction are determined from the human body parts.
  • a pulse wave at each measurement site is detected based on the pixel value change of the two measurement sites, and a pulse wave propagation velocity is calculated based on the time difference between the pulse waves at the two measurement sites.
  • the pulse wave velocity can be calculated from two measurement sites having the same blood flow direction, the measurement accuracy of the pulse wave velocity can be improved.
  • FIG. 8 the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the pulse wave propagation velocity measurement system 2 includes an imaging device 11, a display device 13, a control device 21, and an irradiation device 22.
  • the imaging device 11 performs imaging under the control of the control device 21 and generates time-series continuous image data.
  • the imaging device 11 outputs the generated image data to the control device 21.
  • the control device 21 detects a human body part from the image data input from the imaging device 11, determines a blood flow direction according to the detected human body part, and the blood flow direction is the same among the detected human body parts. Two measurement sites are determined. The control device 21 detects the pulse wave of each measurement site based on the pixel value change of the determined two measurement sites, and calculates the pulse wave propagation velocity based on the time difference between the pulse waves at the determined two measurement sites. The control device 21 performs control to display the image of the image data input from the imaging device 11 on the display device 13.
  • the display device 13 displays an image captured by the imaging device 11 under the control of the control device 21.
  • the irradiation device 22 irradiates the human body excluding the eyes under the control of the control device 21.
  • the irradiation device 22 is a projector capable of altitude projection, for example.
  • control device 21 The configuration of the control device 21 according to the second embodiment of the present disclosure will be described in detail below with reference to FIG.
  • the control device 21 shown in FIG. 8 adopts a configuration in which an irradiation instruction unit 211 is added to the control device 12 shown in FIG.
  • the operation unit 113 detects an imaging operation, and outputs a detection signal of the imaging operation to the imaging instruction unit 111.
  • the operation unit 113 detects a display operation and outputs a display operation detection signal to the display instruction unit 114.
  • the operation unit 113 detects an irradiation operation and outputs a detection signal of the irradiation operation to the irradiation instruction unit 211.
  • the irradiation instruction unit 211 causes the irradiation device 22 to irradiate the human body when the detection signal of the irradiation operation is input from the operation unit 113.
  • pulse wave velocity measurement method according to the present embodiment is the same as that shown in FIG.
  • the pulse wave propagation speed can be calculated without bothering the user by imaging while irradiating the human body with the irradiation device 22. it can.
  • the imaging device 3 includes a storage unit 112, an operation unit 113, a CPU 115, an imaging unit 301, a display unit 302, and an irradiation unit 303.
  • the imaging device 3 is a high sensitivity camera of about 1000 fps (frame per second), for example.
  • the operation unit 113 detects an imaging operation, and outputs a detection signal of the imaging operation to the imaging unit 301.
  • the operation unit 113 detects a display operation and outputs a display operation detection signal to the display unit 302.
  • the operation unit 113 detects the irradiation operation and outputs a detection signal of the irradiation operation to the irradiation unit 303.
  • the imaging unit 301 performs imaging when a detection signal of the imaging operation is input from the operation unit 113, and generates time-series continuous image data.
  • the imaging unit 301 stores the generated image data in the storage unit 112.
  • the display unit 302 displays an image of the image data stored in the storage unit 112 when a display operation detection signal is input from the operation unit 113.
  • the irradiation unit 303 irradiates the human body excluding the eyes when the detection signal of the irradiation operation is input from the operation unit 113.
  • pulse wave velocity measurement method according to the present embodiment is the same as that shown in FIG.
  • the pulse wave propagation velocity without bothering the user by imaging while irradiating the human body with the irradiation unit 303. it can.
  • the pulse wave velocity can be measured only by the imaging device 3, the number of devices can be reduced, and the pulse wave velocity can be measured at a low cost.
  • the pulse wave velocity measurement system 4 includes an imaging device 41 and an irradiation device 42.
  • the imaging device 41 performs imaging and generates continuous image data in time series.
  • the imaging device 41 detects a human body part from the generated image data, determines a blood flow direction according to the detected human body part, and two measurement parts having the same blood flow direction from the detected human body parts To decide.
  • the imaging device 41 detects the pulse wave of each measurement part based on the determined pixel value change of the two measurement parts, and calculates the pulse wave propagation velocity based on the time difference between the pulse waves at the two measured measurement parts.
  • the imaging device 41 displays an image of the generated image data.
  • the irradiation device 42 irradiates the human body excluding the eyes under the control of the imaging device 41.
  • the irradiation device 42 is a projector capable of altitude projection, for example.
  • the imaging device 41 includes a storage unit 112, an operation unit 113, a CPU 115, an imaging unit 411, a display unit 412, and an irradiation instruction unit 413.
  • the imaging device 41 is a high sensitivity camera of about 1000 fps (frame per second), for example.
  • the operation unit 113 detects an imaging operation and outputs a detection signal of the imaging operation to the imaging unit 411.
  • the operation unit 113 detects a display operation and outputs a display operation detection signal to the display unit 412.
  • the operation unit 113 detects an irradiation operation and outputs a detection signal of the irradiation operation to the irradiation instruction unit 413.
  • the imaging unit 411 performs imaging when a detection signal of the imaging operation is input from the operation unit 113, and generates time-series continuous image data.
  • the imaging unit 411 stores the generated image data in the storage unit 112.
  • the display unit 412 displays an image of the image data stored in the storage unit 112 when a display operation detection signal is input from the operation unit 113.
  • the irradiation instruction unit 413 causes the irradiation device 42 to irradiate the human body when the detection signal of the irradiation operation is input from the operation unit 113.
  • pulse wave velocity measurement method according to the present embodiment is the same as that shown in FIG.
  • the pulse wave velocity without bothering the user by imaging while irradiating the human body with the irradiation device 42. it can.
  • the pulse wave propagation velocity can be measured by the imaging device 41 and the irradiation device 42. Therefore, the number of devices can be reduced compared to the first embodiment, and the pulse wave propagation velocity can be measured at a low cost. Can do.
  • the measurement site is determined from the face or hand.
  • a human body other than the face and hand can be determined as the measurement site.
  • the pulse wave propagation velocity is calculated based on the time difference between the pulse waves at the two measurement sites. However, based on the time difference between the pulse waves at three or more measurement sites. Thus, the pulse wave propagation velocity may be calculated. Thereby, the calculation accuracy of the pulse wave propagation velocity can be improved.
  • the present disclosure is suitable for a pulse wave velocity measurement system and a pulse wave velocity measurement method.

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

This pulse wave velocity measurement system (1) is equipped with: an imaging device (11) for capturing images and generating chronologically continuous image data; and a control device (12) that detects sites of a human body from the image data, determines the direction of blood flow according to the sites of the human body, determines two measurement sites at which the direction of blood flow is the same from among the sites of the human body, detects pulse waves at the two measurement sites on the basis of changes in pixel value at each measurement site, and calculates the pulse wave velocity on the basis of the time differences in the pulse waves between the two measurement sites.

Description

脈波伝播速度測定システム、撮像装置および脈波伝播速度測定方法Pulse wave velocity measuring system, imaging device, and pulse wave velocity measuring method
 本開示は、脈波伝播速度測定システム、撮像装置および脈波伝播速度測定方法に関する。 The present disclosure relates to a pulse wave velocity measurement system, an imaging apparatus, and a pulse wave velocity measurement method.
 動脈硬化(血管年齢)の進展を定量的に診断するためのパラメータの一つとして、脈波伝播速度(PWV:Pulse Wave Velocity)が用いられている。血管が硬化(老化)するほど、脈波伝播速度は速くなる。 Pulse wave velocity (PWV: Pulse 進展 Wave Velocity) is used as one of the parameters for quantitatively diagnosing the progress of arteriosclerosis (blood vessel age). The harder (aging) the blood vessel, the faster the pulse wave velocity.
 脈波伝播速度は、人体の2箇所の部位で測定した脈波の時間差と該2箇所の部位の距離とに基づいて算出される。特許文献1、2には、顔と手の2箇所を同時にカメラで撮像し、画像データにおける時間的な画素値変化に基づいて顔と手の脈波を検出し、脈波の時間差に基づいて脈波伝播速度を測定するシステムが開示されている。 The pulse wave propagation velocity is calculated based on the time difference between the pulse waves measured at two parts of the human body and the distance between the two parts. In Patent Documents 1 and 2, two faces and hands are simultaneously captured by a camera, and pulse waves of the face and hand are detected based on temporal pixel value changes in the image data, and based on the time difference between the pulse waves. A system for measuring pulse wave velocity is disclosed.
国際公開第2014/136310号International Publication No. 2014/136310 特開2014-198199号公報JP 2014-198199 A
 しかしながら、顔と手では血流方向が異なるため、脈波伝播速度の測定精度が低くなるおそれがある。 However, since the blood flow direction is different between the face and the hand, the measurement accuracy of the pulse wave velocity may be lowered.
 本開示の一態様は、脈波伝播速度の測定精度を向上させることができる脈波伝播速度測定システム、撮像装置および脈波伝播速度測定方法を開示する。 One aspect of the present disclosure discloses a pulse wave velocity measurement system, an imaging device, and a pulse wave velocity measurement method that can improve the measurement accuracy of the pulse wave velocity.
 本開示の一態様に係る脈波伝播速度測定システムは、撮像を行い、時系列的に連続した画像データを生成する撮像装置と、前記画像データから人体の部位を検出し、前記人体の部位に応じて血流方向を決定し、前記人体の部位の中から前記血流方向が同一の2つの測定部位を決定し、前記2つの測定部位の画素値変化に基づいて各測定部位の脈波を検出し、前記2つの測定部位における脈波の時間差に基づいて脈波伝播速度を算出する脈波伝播速度算出装置と、を具備する。 A pulse wave velocity measurement system according to an aspect of the present disclosure includes an imaging device that performs imaging and generates continuous image data in time series, detects a human body part from the image data, and detects the human body part. Accordingly, a blood flow direction is determined, two measurement parts having the same blood flow direction are determined from the parts of the human body, and a pulse wave of each measurement part is determined based on a pixel value change of the two measurement parts. A pulse wave velocity calculating device that detects and calculates a pulse wave velocity based on a time difference between the pulse waves at the two measurement sites.
 本開示の一態様に係る撮像装置は、撮像を行い、時系列的に連続した画像データを生成する撮像部と、前記画像データから人体の部位を検出し、前記人体の部位に応じて血流方向を決定し、前記人体の部位の中から前記血流方向が同一の2つの測定部位を決定し、前記2つの測定部位の画素値変化に基づいて各測定部位の脈波を検出し、前記2つの測定部位における脈波の時間差に基づいて脈波伝播速度を算出するプロセッサと、を具備する。 An imaging apparatus according to an aspect of the present disclosure performs imaging, generates an image data that is continuous in time series, detects a human body part from the image data, and performs blood flow according to the human body part Determining a direction, determining two measurement parts having the same blood flow direction from the parts of the human body, detecting a pulse wave of each measurement part based on a pixel value change of the two measurement parts, And a processor for calculating a pulse wave propagation velocity based on a time difference between pulse waves at two measurement sites.
 本開示の一態様に係る脈波伝播速度測定方法は、撮像を行い、時系列的に連続した画像データを生成し、前記画像データから人体の部位を検出し、前記人体の部位に応じて血流方向を決定し、前記人体の部位の中から前記血流方向が同一の2つの測定部位を決定し、前記2つの測定部位の画素値変化に基づいて各測定部位の脈波を検出し、前記2つの測定部位における脈波の時間差に基づいて脈波伝播速度を算出する、を具備する。 A pulse wave velocity measurement method according to an aspect of the present disclosure performs imaging, generates time-series continuous image data, detects a human body part from the image data, and detects blood according to the human body part. Determining a flow direction, determining two measurement parts having the same blood flow direction from the parts of the human body, detecting a pulse wave of each measurement part based on a pixel value change of the two measurement parts, And calculating a pulse wave velocity based on a time difference between pulse waves at the two measurement sites.
 本開示の一態様によれば、脈波伝播速度の測定精度を向上させることができる。 According to one aspect of the present disclosure, the measurement accuracy of the pulse wave velocity can be improved.
図1は、本開示の実施の形態1に係る脈波伝播速度測定システムの構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a pulse wave velocity measurement system according to Embodiment 1 of the present disclosure. 図2は、本開示の実施の形態1に係る脈波伝播速度測定方法を示すフロー図である。FIG. 2 is a flowchart showing the pulse wave velocity measurement method according to the first embodiment of the present disclosure. 図3Aは、本開示の実施の形態1に係る脈波伝播速度測定システムで決定した顔の血流方向を示す図である。FIG. 3A is a diagram illustrating a facial blood flow direction determined by the pulse wave velocity measurement system according to Embodiment 1 of the present disclosure. 図3Bは、本開示の実施の形態1に係る脈波伝播速度測定システムで決定した顔の血流方向を示す図である。FIG. 3B is a diagram illustrating a facial blood flow direction determined by the pulse wave velocity measurement system according to Embodiment 1 of the present disclosure. 図4は、本開示の実施の形態1に係る脈波伝播速度測定システムで決定した手の血流方向を示す図である。FIG. 4 is a diagram illustrating the blood flow direction of the hand determined by the pulse wave velocity measurement system according to the first embodiment of the present disclosure. 図5は、本開示の実施の形態1に係る脈波伝播速度測定システムで決定した顔の測定部位を示す図である。FIG. 5 is a diagram illustrating a face measurement site determined by the pulse wave velocity measurement system according to Embodiment 1 of the present disclosure. 図6は、本開示の実施の形態1に係る脈波伝播速度測定システムで決定した手の測定部位を示す図である。FIG. 6 is a diagram illustrating a hand measurement site determined by the pulse wave velocity measurement system according to the first embodiment of the present disclosure. 図7は、本開示の実施の形態1に係る脈波伝播速度測定システムで検出した脈波を示す図である。FIG. 7 is a diagram illustrating a pulse wave detected by the pulse wave velocity measurement system according to the first embodiment of the present disclosure. 図8は、本開示の実施の形態2に係る脈波伝播速度測定システムの構成を示す図である。FIG. 8 is a diagram illustrating a configuration of a pulse wave velocity measurement system according to Embodiment 2 of the present disclosure. 図9は、本開示の実施の形態3に係る撮像装置の構成を示す図である。FIG. 9 is a diagram illustrating a configuration of an imaging apparatus according to Embodiment 3 of the present disclosure. 図10は、本開示の実施の形態4に係る脈波伝播速度測定システムの構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a pulse wave velocity measurement system according to the fourth embodiment of the present disclosure.
 以下、図面を適宜参照して、本開示の実施の形態について、詳細に説明する。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために、提供されるのであって、これらにより請求の範囲に記載の主題を限定することは意図されていない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings as appropriate. The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the claimed subject matter.
 (実施の形態1)
 <脈波伝播速度測定システムの構成>
 本開示の実施の形態1に係る脈波伝播速度測定システム1の構成について、図1を参照しながら、以下に詳細に説明する。
(Embodiment 1)
<Configuration of pulse wave velocity measurement system>
The configuration of the pulse wave velocity measurement system 1 according to the first embodiment of the present disclosure will be described in detail below with reference to FIG.
 脈波伝播速度測定システム1は、撮像装置11と、制御装置12と、表示装置13と、を有している。 The pulse wave propagation velocity measurement system 1 includes an imaging device 11, a control device 12, and a display device 13.
 撮像装置11は、1000fps(frame per second)以上の高感度カメラであり、制御装置12の制御により撮像を行い、時系列的に連続した画像データを生成し、制御装置12に出力する。 The imaging device 11 is a high-sensitivity camera of 1000 fps (frame per second) or more, performs imaging under the control of the control device 12, generates time-series continuous image data, and outputs the image data to the control device 12.
 制御装置12は、撮像装置11から入力した画像データから人体の部位を検出し、検出した人体の部位に応じて血流方向を決定し、検出した人体の部位の中から血流方向が同一の2つの測定部位を決定する。そして、制御装置12は、決定した2つの測定部位の画素値変化に基づいて各測定部位の脈波を検出し、決定した2つの測定部位における脈波の時間差に基づいて脈波伝播速度を算出する。 The control device 12 detects a human body part from the image data input from the imaging device 11, determines a blood flow direction according to the detected human body part, and the blood flow direction is the same among the detected human body parts. Two measurement sites are determined. And the control apparatus 12 detects the pulse wave of each measurement part based on the pixel value change of two determined measurement parts, and calculates a pulse wave propagation speed based on the time difference of the pulse wave in two determined measurement parts To do.
 また、制御装置12は、撮像装置11から入力した画像データの画像を表示装置13に表示させる制御を行う。 Further, the control device 12 performs control to display the image of the image data input from the imaging device 11 on the display device 13.
 表示装置13は、制御装置12の制御により、撮像装置11で撮像した画像を表示する。 The display device 13 displays an image captured by the imaging device 11 under the control of the control device 12.
 <制御装置の構成>
 次に、本開示の実施の形態1に係る制御装置12の内部構成について、図1を参照しながら詳細に説明する。
<Configuration of control device>
Next, the internal configuration of the control device 12 according to the first embodiment of the present disclosure will be described in detail with reference to FIG.
 制御装置12は、撮像指示部111と、記憶部112と、操作部113と、表示指示部114と、CPU115と、を有している。 The control device 12 includes an imaging instruction unit 111, a storage unit 112, an operation unit 113, a display instruction unit 114, and a CPU 115.
 撮像指示部111は、操作部113から撮像操作の検出信号を入力した際に、撮像装置11に撮像処理を開始させる。また、撮像指示部111は、撮像装置11が撮像した画像の画像データを記憶部112に記憶させる。 The imaging instruction unit 111 causes the imaging device 11 to start an imaging process when a detection signal of an imaging operation is input from the operation unit 113. In addition, the imaging instruction unit 111 causes the storage unit 112 to store image data of an image captured by the imaging device 11.
 記憶部112は、画像データを記憶する。また、記憶部112は、CPU115が実行する制御プログラムを記憶している。 The storage unit 112 stores image data. The storage unit 112 stores a control program executed by the CPU 115.
 操作部113は、ユーザの撮像操作を検出した場合、撮像操作の検出信号を撮像指示部111に出力する。また、操作部113は、ユーザの表示操作を検出した場合、表示操作の検出信号を表示指示部114に出力する。 When the operation unit 113 detects a user's imaging operation, the operation unit 113 outputs a detection signal of the imaging operation to the imaging instruction unit 111. When the operation unit 113 detects a display operation of the user, the operation unit 113 outputs a display operation detection signal to the display instruction unit 114.
 表示指示部114は、操作部113から表示操作の検出信号を入力した際に、記憶部112に記憶されている画像データの画像を表示装置13に表示させる。 The display instruction unit 114 causes the display device 13 to display an image of the image data stored in the storage unit 112 when the detection signal of the display operation is input from the operation unit 113.
 CPU115は、記憶部112に記憶されている制御プログラムを読み出して実行する。特に、CPU115は、制御プログラムの実行により、撮像指示部111から入力した画像データから人体の部位を検出し、検出した人体の部位に応じて血流方向を決定し、検出した人体の部位の中から血流方向が同一の2つの測定部位を決定する。そして、CPU115は、決定した2つの測定部位の画素値変化に基づいて各測定部位の脈波を検出し、決定した2つの測定部位における脈波の時間差に基づいて脈波伝播速度を算出する。 The CPU 115 reads out and executes the control program stored in the storage unit 112. In particular, the CPU 115 detects a part of the human body from the image data input from the imaging instruction unit 111 by executing a control program, determines a blood flow direction according to the detected part of the human body, and includes the detected part of the human body. To determine two measurement sites having the same blood flow direction. Then, the CPU 115 detects the pulse wave of each measurement site based on the pixel value change of the determined two measurement sites, and calculates the pulse wave propagation velocity based on the time difference between the pulse waves at the determined two measurement sites.
 CPU115は、部位検出処理部1151と、特徴抽出処理部1152と、血流方向決定処理部1153と、測定部位決定処理部1154と、脈波情報取得処理部1155と、心拍数取得処理部1156と、脈波伝搬速度算出処理部1157と、を備えている。部位検出処理部1151、特徴抽出処理部1152、血流方向決定処理部1153、測定部位決定処理部1154、脈波情報取得処理部1155、心拍数取得処理部1156及び脈波伝搬速度算出処理部1157は、CPU115における制御プログラム実行時の機能ブロックとして構成される。 The CPU 115 includes a site detection processing unit 1151, a feature extraction processing unit 1152, a blood flow direction determination processing unit 1153, a measurement site determination processing unit 1154, a pulse wave information acquisition processing unit 1155, and a heart rate acquisition processing unit 1156. , And a pulse wave velocity calculation processing unit 1157. Site detection processing unit 1151, feature extraction processing unit 1152, blood flow direction determination processing unit 1153, measurement site determination processing unit 1154, pulse wave information acquisition processing unit 1155, heart rate acquisition processing unit 1156, and pulse wave propagation velocity calculation processing unit 1157 Is configured as a function block when the CPU 115 executes the control program.
 部位検出処理部1151は、記憶部112に記憶されている画像データを解析し、画像データから人体の部位を検出する。部位検出処理部1151は、人体の部位の検出結果を特徴抽出処理部1152および測定部位決定処理部1154に出力する。 The part detection processing unit 1151 analyzes the image data stored in the storage unit 112 and detects a part of the human body from the image data. The part detection processing unit 1151 outputs the detection result of the human body part to the feature extraction processing unit 1152 and the measurement part determination processing unit 1154.
 特徴抽出処理部1152は、記憶部112に記憶されている画像データより、部位検出処理部1151から入力した検出結果が示す人体の部位における特徴点を抽出する。特徴抽出処理部1152は、抽出した特徴点の情報を血流方向決定処理部1153および測定部位決定処理部1154に出力する。 The feature extraction processing unit 1152 extracts feature points in the human body part indicated by the detection result input from the part detection processing unit 1151 from the image data stored in the storage unit 112. The feature extraction processing unit 1152 outputs the extracted feature point information to the blood flow direction determination processing unit 1153 and the measurement site determination processing unit 1154.
 血流方向決定処理部1153は、特徴抽出処理部1152から入力した特徴点の情報に基づいて血流方向を決定する。血流方向決定処理部1153は、決定した血流方向の情報を測定部位決定処理部1154に出力する。 The blood flow direction determination processing unit 1153 determines the blood flow direction based on the feature point information input from the feature extraction processing unit 1152. The blood flow direction determination processing unit 1153 outputs information on the determined blood flow direction to the measurement site determination processing unit 1154.
 測定部位決定処理部1154は、血流方向決定処理部1153から入力した血流方向の情報及び特徴抽出処理部1152から入力した特徴点の情報に基づいて、記憶部112に記憶されている画像データにおける部位検出処理部1151により検出した人体の部位の中から、血流方向が同一の血流方向に沿って位置をずらした2つの測定部位を決定する。測定部位決定処理部1154は、決定した2つの測定部位の情報を脈波情報取得処理部1155に出力する。 The measurement site determination processing unit 1154 is based on the blood flow direction information input from the blood flow direction determination processing unit 1153 and the feature point information input from the feature extraction processing unit 1152, and is stored in the storage unit 112. 2 are determined from the regions of the human body detected by the region detection processing unit 1151 in FIG. 2 in which the blood flow direction is shifted along the same blood flow direction. The measurement site determination processing unit 1154 outputs information on the determined two measurement sites to the pulse wave information acquisition processing unit 1155.
 脈波情報取得処理部1155は、記憶部112に記憶されている画像データにおける、測定部位決定処理部1154から入力した2つの測定部位の画素値の変化に基づいて、各測定部位の脈波を検出する。脈波情報取得処理部1155は、検出した脈波の信号をフィルタ処理し、ノイズを除去した脈波の信号を心拍数取得処理部1156及び脈波伝搬速度算出処理部1157に出力する。 The pulse wave information acquisition processing unit 1155 calculates the pulse wave of each measurement site based on the change in the pixel values of the two measurement sites input from the measurement site determination processing unit 1154 in the image data stored in the storage unit 112. To detect. The pulse wave information acquisition processing unit 1155 filters the detected pulse wave signal and outputs the pulse wave signal from which noise has been removed to the heart rate acquisition processing unit 1156 and the pulse wave propagation velocity calculation processing unit 1157.
 心拍数取得処理部1156は、脈波情報取得処理部1155から入力した各測定部位の脈波の検出結果に基づいて各測定部位の心拍数を取得する。心拍数取得処理部1156は、取得した各測定部位の心拍数を脈波伝搬速度算出処理部1157に出力する。 The heart rate acquisition processing unit 1156 acquires the heart rate of each measurement site based on the detection result of the pulse wave of each measurement site input from the pulse wave information acquisition processing unit 1155. The heart rate acquisition processing unit 1156 outputs the acquired heart rate of each measurement site to the pulse wave propagation velocity calculation processing unit 1157.
 脈波伝搬速度算出処理部1157は、心拍数取得処理部1156から入力した各測定部位の心拍数の差が閾値以下の場合に、脈波情報取得処理部1155から入力した検出結果の示す各測定部位の脈波の時間差に基づいて脈波伝播速度を算出する。 The pulse wave velocity calculation processing unit 1157 performs each measurement indicated by the detection result input from the pulse wave information acquisition processing unit 1155 when the difference in heart rate between the measurement sites input from the heart rate acquisition processing unit 1156 is equal to or less than a threshold value. The pulse wave velocity is calculated based on the time difference between the pulse waves of the parts.
 <脈波伝播速度測定方法>
 次に、本開示の実施の形態1に係る脈波伝播速度測定方法について、図2等を参照しながら詳細に説明する。
<Pulse wave velocity measurement method>
Next, the pulse wave velocity measurement method according to the first embodiment of the present disclosure will be described in detail with reference to FIG.
 まず、撮像装置11が、動画の撮像を開始する(S1)。 First, the imaging device 11 starts capturing a moving image (S1).
 次に、CPU115が、部位検出処理部1151において、人体の部位として顔を検出する顔検出処理、又は人体の部位として手を検出する手検出処理を実行する(S2)。 Next, the CPU 115 executes a face detection process for detecting a face as a human body part or a hand detection process for detecting a hand as a human body part in the part detection processing unit 1151 (S2).
 次に、CPU115が、部位検出処理部1151において顔又は手を検出したか否かを判定する(S3)。 Next, the CPU 115 determines whether or not the face detection unit 1151 detects a face or a hand (S3).
 顔又は手を検出しなかった場合(S3:No)、フローはステップS2に戻る。 If no face or hand is detected (S3: No), the flow returns to step S2.
 一方、顔又は手を検出した場合(S3:Yes)、CPU115が、特徴抽出処理部1152において顔又は手の特徴点を抽出する(S4)。具体的には、特徴抽出処理部1152は、顔の特徴点として目、鼻、口及び顔の輪郭等を抽出し、手の特徴点として指、腕及び人体の肌色の部分等を検出する。 On the other hand, when a face or hand is detected (S3: Yes), the CPU 115 extracts a feature point of the face or hand in the feature extraction processing unit 1152 (S4). Specifically, the feature extraction processing unit 1152 extracts eyes, nose, mouth, face outline, and the like as facial feature points, and detects finger, arm, and skin color portions of a human body as hand feature points.
 次に、CPU115が、血流方向決定処理部1153において血流方向を決定する(S5)。 Next, the CPU 115 determines the blood flow direction in the blood flow direction determination processing unit 1153 (S5).
 具体的には、血流方向決定処理部1153は、部位検出処理部1151において顔を検出した場合に、図3Aに示すように、左目と右目とを結ぶ直線に直交する直線において上方を血流方向と決定し、又は、図3Bに示すように、口と鼻とを結ぶ直線において上方を血流方向と決定する。又は、血流方向決定処理部1153は、部位検出処理部1151において手を検出した場合に、図4に示すように、画像を水平にスキャンして腕(肌色)の部分の複数の幅方向の長さの中点P1を検出し、検出した中点P1を結ぶ直線において指に向かう方向を血流方向と決定する。 Specifically, when the part detection processing unit 1151 detects a face, the blood flow direction determination processing unit 1153, as shown in FIG. 3A, performs blood flow upward on a straight line orthogonal to a straight line connecting the left eye and the right eye. The direction is determined, or, as shown in FIG. Alternatively, when the region detection processing unit 1151 detects a hand, the blood flow direction determination processing unit 1153 scans the image horizontally and scans the plurality of width directions of the arm (skin color) portion as shown in FIG. The midpoint P1 of the length is detected, and the direction toward the finger on the straight line connecting the detected midpoints P1 is determined as the blood flow direction.
 次に、CPU115が、測定部位決定処理部1154において血流方向が同一の2つの測定部位を決定する(S6)。 Next, the CPU 115 determines two measurement sites having the same blood flow direction in the measurement site determination processing unit 1154 (S6).
 具体的には、測定部位決定処理部1154は、部位検出処理部1151において顔を検出した場合に、図5に示すように、特徴抽出処理部1152により抽出した目、鼻、口及び顔の輪郭から所定画素離れた部位であって、血流方向に沿って互いに位置をずらした2つの部位(領域1及び領域2)を測定部位として決定する。又は、測定部位決定処理部1154は、部位検出処理部1151において手を検出した場合に、図6に示すように、血流方向決定処理部1153において検出した中点P1のうち、所定距離R1離れた2つの中点を中心とする部位を測定部位(領域1及び領域2)として決定する。 Specifically, when the part detection processing unit 1151 detects a face, the measurement site determination processing unit 1154, as shown in FIG. 5, the eye, nose, mouth, and face contours extracted by the feature extraction processing unit 1152 The two parts (area 1 and area 2) that are separated from each other by a predetermined pixel and shifted in position along the blood flow direction are determined as measurement parts. Alternatively, when the site detection processing unit 1151 detects a hand, the measurement site determination processing unit 1154 is separated by a predetermined distance R1 from the midpoint P1 detected by the blood flow direction determination processing unit 1153, as shown in FIG. Further, a part centered on the two middle points is determined as a measurement part (region 1 and region 2).
 なお、測定部位決定処理部1154は、測定部位の画素値を多く取得することができるように、撮像装置11に対してできるだけ平行な部位を決定する。これにより、撮像装置11で生成する画像データのS/N比を上げることができ、脈波伝播速度の測定精度を向上させることができる。 Note that the measurement site determination processing unit 1154 determines a site that is as parallel as possible to the imaging device 11 so that a large number of pixel values of the measurement site can be acquired. Thereby, the S / N ratio of the image data generated by the imaging device 11 can be increased, and the measurement accuracy of the pulse wave velocity can be improved.
 次に、CPU115が、脈波情報取得処理部1155において2つの測定部位の画素値の変化に基づいて、図7に示す各測定部位の脈波を検出し、検出値を脈波情報として取得する(S7)。 Next, the CPU 115 detects the pulse wave of each measurement site shown in FIG. 7 based on the change in the pixel values of the two measurement sites in the pulse wave information acquisition processing unit 1155, and acquires the detected value as pulse wave information. (S7).
 次に、CPU115が、心拍数取得処理部1156において心拍数を取得したか否かを判定する(S8)。 Next, the CPU 115 determines whether or not the heart rate is acquired by the heart rate acquisition processing unit 1156 (S8).
 心拍数を取得しなかった場合(S8:No)、フローはステップS6に戻る。 If the heart rate has not been acquired (S8: No), the flow returns to step S6.
 一方、心拍数を取得した場合(S8:Yes)、CPU115が、心拍数取得処理部1156において各測定部位の心拍数を比較する(S9)。 On the other hand, when the heart rate is acquired (S8: Yes), the CPU 115 compares the heart rate of each measurement site in the heart rate acquisition processing unit 1156 (S9).
 次に、CPU115が、各測定部位の心拍数の差が閾値以下であるか否かを判定する(S10)。 Next, the CPU 115 determines whether or not the difference in heart rate between the measurement sites is equal to or less than a threshold value (S10).
 各側部位の心拍数の差が閾値より大きい場合(S10:No)、フローはステップS9に戻る。 If the difference in heart rate between the side parts is larger than the threshold (S10: No), the flow returns to step S9.
 一方、各測定部位の心拍数の差が閾値以下の場合(S10:Yes)、CPU115が、脈波伝搬速度算出処理部1157において脈波伝搬速度を算出する(S11)。 On the other hand, when the difference in the heart rate at each measurement site is equal to or less than the threshold (S10: Yes), the CPU 115 calculates the pulse wave propagation speed in the pulse wave propagation speed calculation processing unit 1157 (S11).
 具体的には、脈波伝搬速度算出処理部1157は、図7に示すように、領域1の脈波と領域2の脈波との位相差ΔT1に基づいて脈波伝播速度を算出する。各測定部位の心拍数の差が閾値以下の場合に脈波伝搬速度を算出するので、脈波伝搬速度の算出値の信頼性を向上させることができる。 Specifically, as shown in FIG. 7, the pulse wave propagation velocity calculation processing unit 1157 calculates the pulse wave propagation velocity based on the phase difference ΔT1 between the pulse wave in the region 1 and the pulse wave in the region 2. Since the pulse wave propagation velocity is calculated when the difference in the heart rate at each measurement site is equal to or less than the threshold value, the reliability of the calculated value of the pulse wave propagation velocity can be improved.
 <効果>
 このように、本実施の形態によれば、画像データから検出した人体の部位に応じて血流方向を決定し、人体の部位の中から血流方向が同一の2つの測定部位を決定し、2つの測定部位の画素値変化に基づいて各測定部位の脈波を検出し、2つの測定部位における脈波の時間差に基づいて脈波伝播速度を算出する。
<Effect>
Thus, according to the present embodiment, the blood flow direction is determined according to the human body part detected from the image data, and two measurement parts having the same blood flow direction are determined from the human body parts. A pulse wave at each measurement site is detected based on the pixel value change of the two measurement sites, and a pulse wave propagation velocity is calculated based on the time difference between the pulse waves at the two measurement sites.
 これにより、血流方向が同一の2つの測定部位から脈波伝播速度を算出することができるので、脈波伝播速度の測定精度を向上させることができる。 Thereby, since the pulse wave velocity can be calculated from two measurement sites having the same blood flow direction, the measurement accuracy of the pulse wave velocity can be improved.
 (実施の形態2)
 <脈波伝播速度測定システムの構成>
 本開示の実施の形態2に係る脈波伝播速度測定システム2の構成について、図8を参照しながら、以下に詳細に説明する。
(Embodiment 2)
<Configuration of pulse wave velocity measurement system>
The configuration of the pulse wave velocity measurement system 2 according to Embodiment 2 of the present disclosure will be described in detail below with reference to FIG.
 なお、図8において、図1と同一構成である部分については同一符号を付してその詳しい説明を省略する。 In FIG. 8, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
 脈波伝播速度測定システム2は、撮像装置11と、表示装置13と、制御装置21と、照射装置22と、を有している。 The pulse wave propagation velocity measurement system 2 includes an imaging device 11, a display device 13, a control device 21, and an irradiation device 22.
 撮像装置11は、制御装置21の制御により撮像を行い、時系列的に連続した画像データを生成する。撮像装置11は、生成した画像データを制御装置21に出力する。 The imaging device 11 performs imaging under the control of the control device 21 and generates time-series continuous image data. The imaging device 11 outputs the generated image data to the control device 21.
 制御装置21は、撮像装置11から入力した画像データから人体の部位を検出し、検出した人体の部位に応じて血流方向を決定し、検出した人体の部位の中から血流方向が同一の2つの測定部位を決定する。制御装置21は、決定した2つの測定部位の画素値変化に基づいて各測定部位の脈波を検出し、決定した2つの測定部位における脈波の時間差に基づいて脈波伝播速度を算出する。制御装置21は、撮像装置11から入力した画像データの画像を表示装置13に表示させる制御を行う。 The control device 21 detects a human body part from the image data input from the imaging device 11, determines a blood flow direction according to the detected human body part, and the blood flow direction is the same among the detected human body parts. Two measurement sites are determined. The control device 21 detects the pulse wave of each measurement site based on the pixel value change of the determined two measurement sites, and calculates the pulse wave propagation velocity based on the time difference between the pulse waves at the determined two measurement sites. The control device 21 performs control to display the image of the image data input from the imaging device 11 on the display device 13.
 表示装置13は、制御装置21の制御により、撮像装置11で撮像した画像を表示する。 The display device 13 displays an image captured by the imaging device 11 under the control of the control device 21.
 照射装置22は、制御装置21の制御により目を除く人体を照射する。照射装置22は、例えば高度投影が可能なプロジェクタである。 The irradiation device 22 irradiates the human body excluding the eyes under the control of the control device 21. The irradiation device 22 is a projector capable of altitude projection, for example.
 <制御装置の構成>
 本開示の実施の形態2に係る制御装置21の構成について、図8を参照しながら、以下に詳細に説明する。
<Configuration of control device>
The configuration of the control device 21 according to the second embodiment of the present disclosure will be described in detail below with reference to FIG.
 図8に示す制御装置21は、図1に示した制御装置12に対して、照射指示部211を追加した構成を採る。 The control device 21 shown in FIG. 8 adopts a configuration in which an irradiation instruction unit 211 is added to the control device 12 shown in FIG.
 操作部113は、撮像操作を検出し、撮像操作の検出信号を撮像指示部111に出力する。操作部113は、表示操作を検出し、表示操作の検出信号を表示指示部114に出力する。操作部113は、照射操作を検出し、照射操作の検出信号を照射指示部211に出力する。 The operation unit 113 detects an imaging operation, and outputs a detection signal of the imaging operation to the imaging instruction unit 111. The operation unit 113 detects a display operation and outputs a display operation detection signal to the display instruction unit 114. The operation unit 113 detects an irradiation operation and outputs a detection signal of the irradiation operation to the irradiation instruction unit 211.
 照射指示部211は、照射操作の検出信号が操作部113から入力した際に、照射装置22に人体を照射させる。 The irradiation instruction unit 211 causes the irradiation device 22 to irradiate the human body when the detection signal of the irradiation operation is input from the operation unit 113.
 なお、本実施の形態に係る脈波伝播速度測定方法は図2と同一方法であるので、その説明を省略する。 Note that the pulse wave velocity measurement method according to the present embodiment is the same as that shown in FIG.
 本実施の形態によれば、上記実施の形態1の効果に加えて、照射装置22で人体を照射しながら撮像することにより、ユーザの手を煩わせずに脈波伝播速度を算出することができる。 According to the present embodiment, in addition to the effects of the first embodiment, the pulse wave propagation speed can be calculated without bothering the user by imaging while irradiating the human body with the irradiation device 22. it can.
 (実施の形態3)
 <撮像装置の構成>
 本開示の実施の形態3に係る撮像装置3の構成について、図9を参照しながら、以下に詳細に説明する。
(Embodiment 3)
<Configuration of imaging device>
The configuration of the imaging device 3 according to Embodiment 3 of the present disclosure will be described in detail below with reference to FIG.
 図9において、図1と同一構成である部分については同一符号を付して、その説明を省略する。 9, parts having the same configuration as in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
 撮像装置3は、記憶部112と、操作部113と、CPU115と、撮像部301と、表示部302と、照射部303と、を有している。撮像装置3は、例えば1000fps(frame per second)程度の高感度カメラである。 The imaging device 3 includes a storage unit 112, an operation unit 113, a CPU 115, an imaging unit 301, a display unit 302, and an irradiation unit 303. The imaging device 3 is a high sensitivity camera of about 1000 fps (frame per second), for example.
 操作部113は、撮像操作を検出し、撮像操作の検出信号を撮像部301に出力する。操作部113は、表示操作を検出し、表示操作の検出信号を表示部302に出力する。操作部113は、照射操作を検出し、照射操作の検出信号を照射部303に出力する。 The operation unit 113 detects an imaging operation, and outputs a detection signal of the imaging operation to the imaging unit 301. The operation unit 113 detects a display operation and outputs a display operation detection signal to the display unit 302. The operation unit 113 detects the irradiation operation and outputs a detection signal of the irradiation operation to the irradiation unit 303.
 撮像部301は、撮像操作の検出信号が操作部113から入力した際に撮像を行い、時系列的に連続した画像データを生成する。撮像部301は、生成した画像データを記憶部112に記憶させる。 The imaging unit 301 performs imaging when a detection signal of the imaging operation is input from the operation unit 113, and generates time-series continuous image data. The imaging unit 301 stores the generated image data in the storage unit 112.
 表示部302は、表示操作の検出信号が操作部113から入力した際に、記憶部112に記憶されている画像データの画像を表示する。 The display unit 302 displays an image of the image data stored in the storage unit 112 when a display operation detection signal is input from the operation unit 113.
 照射部303は、照射操作の検出信号が操作部113から入力した際に、目を除く人体を照射する。 The irradiation unit 303 irradiates the human body excluding the eyes when the detection signal of the irradiation operation is input from the operation unit 113.
 なお、本実施の形態に係る脈波伝播速度測定方法は図2と同一方法であるので、その説明を省略する。 Note that the pulse wave velocity measurement method according to the present embodiment is the same as that shown in FIG.
 本実施の形態によれば、上記実施の形態1の効果に加えて、照射部303で人体を照射しながら撮像することにより、ユーザの手を煩わせずに脈波伝播速度を算出することができる。 According to the present embodiment, in addition to the effect of the first embodiment, it is possible to calculate the pulse wave propagation velocity without bothering the user by imaging while irradiating the human body with the irradiation unit 303. it can.
 また、本実施の形態によれば、撮像装置3のみで脈波伝播速度を測定できるため、装置数を少なくでき、脈波伝播速度を安価に測定することができる。 Further, according to the present embodiment, since the pulse wave velocity can be measured only by the imaging device 3, the number of devices can be reduced, and the pulse wave velocity can be measured at a low cost.
 (実施の形態4)
 <脈波伝播速度測定システムの構成>
 本開示の実施の形態4に係る脈波伝播速度測定システム4の構成について、図10を参照しながら、以下に詳細に説明する。
(Embodiment 4)
<Configuration of pulse wave velocity measurement system>
The configuration of the pulse wave velocity measurement system 4 according to the fourth embodiment of the present disclosure will be described in detail below with reference to FIG.
 脈波伝播速度測定システム4は、撮像装置41と、照射装置42と、を有している。 The pulse wave velocity measurement system 4 includes an imaging device 41 and an irradiation device 42.
 撮像装置41は、撮像を行い、時系列的に連続した画像データを生成する。撮像装置41は、生成した画像データから人体の部位を検出し、検出した人体の部位に応じて血流方向を決定し、検出した人体の部位の中から血流方向が同一の2つの測定部位を決定する。撮像装置41は、決定した2つの測定部位の画素値変化に基づいて各測定部位の脈波を検出し、決定した2つの測定部位における脈波の時間差に基づいて脈波伝播速度を算出する。撮像装置41は、生成した画像データの画像を表示する。 The imaging device 41 performs imaging and generates continuous image data in time series. The imaging device 41 detects a human body part from the generated image data, determines a blood flow direction according to the detected human body part, and two measurement parts having the same blood flow direction from the detected human body parts To decide. The imaging device 41 detects the pulse wave of each measurement part based on the determined pixel value change of the two measurement parts, and calculates the pulse wave propagation velocity based on the time difference between the pulse waves at the two measured measurement parts. The imaging device 41 displays an image of the generated image data.
 照射装置42は、撮像装置41の制御により目を除く人体を照射する。照射装置42は、例えば高度投影が可能なプロジェクタである。 The irradiation device 42 irradiates the human body excluding the eyes under the control of the imaging device 41. The irradiation device 42 is a projector capable of altitude projection, for example.
 <撮像装置の構成>
 本開示の実施の形態4に係る撮像装置41の構成について、図10を参照しながら、以下に詳細に説明する。
<Configuration of imaging device>
The configuration of the imaging device 41 according to Embodiment 4 of the present disclosure will be described in detail below with reference to FIG.
 図10において、図1と同一構成である部分については同一符号を付して、その説明を省略する。 10, parts having the same configuration as in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
 撮像装置41は、記憶部112と、操作部113と、CPU115と、撮像部411と、表示部412と、照射指示部413と、を有している。撮像装置41は、例えば1000fps(frame per second)程度の高感度カメラである。 The imaging device 41 includes a storage unit 112, an operation unit 113, a CPU 115, an imaging unit 411, a display unit 412, and an irradiation instruction unit 413. The imaging device 41 is a high sensitivity camera of about 1000 fps (frame per second), for example.
 操作部113は、撮像操作を検出し、撮像操作の検出信号を撮像部411に出力する。操作部113は、表示操作を検出し、表示操作の検出信号を表示部412に出力する。操作部113は、照射操作を検出し、照射操作の検出信号を照射指示部413に出力する。 The operation unit 113 detects an imaging operation and outputs a detection signal of the imaging operation to the imaging unit 411. The operation unit 113 detects a display operation and outputs a display operation detection signal to the display unit 412. The operation unit 113 detects an irradiation operation and outputs a detection signal of the irradiation operation to the irradiation instruction unit 413.
 撮像部411は、撮像操作の検出信号が操作部113から入力した際に撮像を行い、時系列的に連続した画像データを生成する。撮像部411は、生成した画像データを記憶部112に記憶させる。 The imaging unit 411 performs imaging when a detection signal of the imaging operation is input from the operation unit 113, and generates time-series continuous image data. The imaging unit 411 stores the generated image data in the storage unit 112.
 表示部412は、表示操作の検出信号が操作部113から入力した際に、記憶部112に記憶されている画像データの画像を表示する。 The display unit 412 displays an image of the image data stored in the storage unit 112 when a display operation detection signal is input from the operation unit 113.
 照射指示部413は、照射操作の検出信号が操作部113から入力した際に、照射装置42に人体を照射させる。 The irradiation instruction unit 413 causes the irradiation device 42 to irradiate the human body when the detection signal of the irradiation operation is input from the operation unit 113.
 なお、本実施の形態に係る脈波伝播速度測定方法は図2と同一方法であるので、その説明を省略する。 Note that the pulse wave velocity measurement method according to the present embodiment is the same as that shown in FIG.
 本実施の形態によれば、上記実施の形態1の効果に加えて、照射装置42で人体を照射しながら撮像することにより、ユーザの手を煩わせずに脈波伝播速度を算出することができる。 According to the present embodiment, in addition to the effects of the first embodiment, it is possible to calculate the pulse wave velocity without bothering the user by imaging while irradiating the human body with the irradiation device 42. it can.
 また、本実施の形態によれば、撮像装置41及び照射装置42で脈波伝播速度を測定できるため、実施の形態1に比べて装置数を少なくでき、脈波伝播速度を安価に測定することができる。 In addition, according to the present embodiment, the pulse wave propagation velocity can be measured by the imaging device 41 and the irradiation device 42. Therefore, the number of devices can be reduced compared to the first embodiment, and the pulse wave propagation velocity can be measured at a low cost. Can do.
 なお、本開示は、部材の種類、配置、個数等は前述の実施の形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更することができる。 The present disclosure is not limited to the above-described embodiments in terms of the type, arrangement, number, etc. of the members, and departs from the gist of the invention, such as appropriately replacing the constituent elements with those having the same operational effects. It can change suitably in the range which does not.
 具体的には、上記実施の形態1から実施の形態4において、顔又は手の中から測定部位を決定したが、顔及び手以外の人体の部位を測定部位として決定することができる。 Specifically, in the first to fourth embodiments, the measurement site is determined from the face or hand. However, a human body other than the face and hand can be determined as the measurement site.
 また、上記実施の形態1から実施の形態4において、2つの測定部位における脈波の時間差に基づいて脈波伝播速度を算出したが、3つ以上の複数の測定部位における脈波の時間差に基づいて脈波伝播速度を算出してもよい。これにより、脈波伝搬速度の算出精度を向上させることができる。 In the first to fourth embodiments, the pulse wave propagation velocity is calculated based on the time difference between the pulse waves at the two measurement sites. However, based on the time difference between the pulse waves at three or more measurement sites. Thus, the pulse wave propagation velocity may be calculated. Thereby, the calculation accuracy of the pulse wave propagation velocity can be improved.
 本開示は、脈波伝播速度測定システムおよび脈波伝播速度測定方法に好適である。 The present disclosure is suitable for a pulse wave velocity measurement system and a pulse wave velocity measurement method.
 1,2,4 脈波伝播速度測定システム
 3,11,41 撮像装置
 12,21 制御装置
 13 表示装置
 22,42 照射装置
 111 撮像指示部
 112 記憶部
 113 操作部
 114 表示指示部
 115 CPU
 211,413 照射指示部
 301,411 撮像部
 302,412 表示部
 303 照射部
 1151 部位検出処理部
 1152 特徴抽出処理部
 1153 血流方向決定処理部
 1154 測定部位決定処理部
 1155 脈波情報取得処理部
 1156 心拍数取得処理部
 1157 脈波伝搬速度算出処理部
1, 2, 4 Pulse wave velocity measurement system 3, 11, 41 Imaging device 12, 21 Control device 13 Display device 22, 42 Irradiation device 111 Imaging instruction unit 112 Storage unit 113 Operation unit 114 Display instruction unit 115 CPU
211, 413 Irradiation instruction unit 301, 411 Imaging unit 302, 412 Display unit 303 Irradiation unit 1151 Site detection processing unit 1152 Feature extraction processing unit 1153 Blood flow direction determination processing unit 1154 Measurement site determination processing unit 1155 Pulse wave information acquisition processing unit 1156 Heart rate acquisition processing unit 1157 Pulse wave velocity calculation processing unit

Claims (8)

  1.  撮像を行い、時系列的に連続した画像データを生成する撮像装置と、
     前記画像データから人体の部位を検出し、前記人体の部位に応じて血流方向を決定し、前記人体の部位の中から前記血流方向が同一の2つの測定部位を決定し、前記2つの測定部位の画素値変化に基づいて各測定部位の脈波を検出し、前記2つの測定部位における脈波の時間差に基づいて脈波伝播速度を算出する脈波伝播速度算出装置と、
     を具備する脈波伝播速度測定システム。
    An imaging device that performs imaging and generates time-series continuous image data;
    A human body part is detected from the image data, a blood flow direction is determined according to the human body part, two measurement parts having the same blood flow direction are determined from the human body parts, and the two A pulse wave velocity calculating device that detects a pulse wave of each measurement region based on a pixel value change of the measurement region and calculates a pulse wave propagation velocity based on a time difference between the pulse waves in the two measurement regions;
    A pulse wave velocity measurement system comprising:
  2.  記憶部に記憶されている前記画像データより前記人体の部位における特徴点を抽出し、前記特徴点に基づいて血流方向を決定する、
     請求項1に記載の脈波伝播速度測定システム。
    Extracting a feature point in the part of the human body from the image data stored in the storage unit, and determining a blood flow direction based on the feature point;
    The pulse wave velocity measurement system according to claim 1.
  3.  前記人体の部位は顔であり、
     前記顔の特徴点として目、鼻、口を抽出し、
     左目と右目とを結ぶ直線に直交する直線において上方を血流方向と決定する、あるいは、口と鼻とを結ぶ直線において上方を血流方向と決定する、
     請求項2に記載の脈波伝播速度測定システム。
    The part of the human body is the face;
    Extract eyes, nose and mouth as feature points of the face,
    In the straight line orthogonal to the straight line connecting the left eye and the right eye, the upper direction is determined as the blood flow direction, or in the straight line connecting the mouth and the nose, the upper direction is determined as the blood flow direction.
    The pulse wave velocity measurement system according to claim 2.
  4.  前記人体の部位は手であり、
     前記手の特徴点として指、腕を抽出し、
     画像を水平にスキャンして腕の部分の複数の幅方向の長さの中点を検出し、前記中点を結ぶ直線において指に向かう方向を血流方向と決定する、
     請求項2に記載の脈波伝播速度測定システム。
    The human body part is a hand;
    Extract fingers and arms as feature points of the hand,
    The image is scanned horizontally to detect the midpoint of the lengths of the plurality of width directions of the arm portion, and the direction toward the finger in the straight line connecting the midpoints is determined as the blood flow direction.
    The pulse wave velocity measurement system according to claim 2.
  5.  前記撮像装置は、1000fps以上の高感度カメラである、
     請求項1から4のいずれか一項に記載の脈波伝播速度測定システム。
    The imaging device is a high-sensitivity camera of 1000 fps or higher.
    The pulse wave velocity measurement system according to any one of claims 1 to 4.
  6.  前記撮像装置が撮像を行っている間、目を除く人体を照射する照射装置をさらに具備する、
     請求項1から5のいずれか一項に記載の脈波伝播速度測定システム。
    An irradiation device for irradiating the human body excluding the eyes while the imaging device is imaging;
    The pulse wave velocity measurement system according to any one of claims 1 to 5.
  7.  撮像を行い、時系列的に連続した画像データを生成する撮像部と、
     前記画像データから人体の部位を検出し、前記人体の部位に応じて血流方向を決定し、前記人体の部位の中から前記血流方向が同一の2つの測定部位を決定し、前記2つの測定部位の画素値変化に基づいて各測定部位の脈波を検出し、前記2つの測定部位における脈波の時間差に基づいて脈波伝播速度を算出するプロセッサと、
     を具備する撮像装置。
    An imaging unit that performs imaging and generates time-series continuous image data;
    A human body part is detected from the image data, a blood flow direction is determined according to the human body part, two measurement parts having the same blood flow direction are determined from the human body parts, and the two A processor that detects a pulse wave of each measurement site based on a pixel value change of the measurement site, and calculates a pulse wave velocity based on a time difference between the pulse waves in the two measurement sites;
    An imaging apparatus comprising:
  8.  撮像を行い、
     時系列的に連続した画像データを生成し、
     前記画像データから人体の部位を検出し、
     前記人体の部位に応じて血流方向を決定し、
     前記人体の部位の中から前記血流方向が同一の2つの測定部位を決定し、
     前記2つの測定部位の画素値変化に基づいて各測定部位の脈波を検出し、
     前記2つの測定部位における脈波の時間差に基づいて脈波伝播速度を算出する、
     脈波伝播速度測定方法。
    Take an image,
    Generate time-series continuous image data,
    Detecting a part of the human body from the image data,
    Determining the direction of blood flow according to the part of the human body,
    Determining two measurement sites having the same blood flow direction from the regions of the human body;
    Detecting a pulse wave of each measurement region based on the pixel value change of the two measurement regions;
    Calculating a pulse wave velocity based on a time difference between pulse waves at the two measurement sites;
    Pulse wave velocity measurement method.
PCT/JP2018/002738 2017-03-21 2018-01-29 Pulse wave velocity measurement system, imaging device, and pulse wave velocity measurement method WO2018173484A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-054616 2017-03-21
JP2017054616A JP2018153555A (en) 2017-03-21 2017-03-21 Pulse wave velocity measurement system, imaging device and pulse wave velocity measurement method

Publications (1)

Publication Number Publication Date
WO2018173484A1 true WO2018173484A1 (en) 2018-09-27

Family

ID=63584481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002738 WO2018173484A1 (en) 2017-03-21 2018-01-29 Pulse wave velocity measurement system, imaging device, and pulse wave velocity measurement method

Country Status (2)

Country Link
JP (1) JP2018153555A (en)
WO (1) WO2018173484A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7373298B2 (en) * 2019-04-26 2023-11-02 株式会社日立製作所 Biological information detection device, biological information detection method, and biological information detection program
CN112307863B (en) * 2019-10-30 2022-04-08 上海筱启数字科技集团有限公司 Operation speed big data regulation and control system and corresponding terminal
WO2024116255A1 (en) * 2022-11-29 2024-06-06 三菱電機株式会社 Pulse wave estimation device, pulse wave estimation method, state estimation system, and state estimation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163019A1 (en) * 2015-04-10 2016-10-13 株式会社日立製作所 Biological information analyzing system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163019A1 (en) * 2015-04-10 2016-10-13 株式会社日立製作所 Biological information analyzing system

Also Published As

Publication number Publication date
JP2018153555A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP6349075B2 (en) Heart rate measuring device and heart rate measuring method
US20170007137A1 (en) Method of estimating blood pressure based on image
EP2979631B1 (en) Blood flow index calculation method, blood flow index calculation program and blood flow index calculation device
US20200082161A1 (en) Spoofing detection device, spoofing detection method, and recording medium
JP6102433B2 (en) Pulse wave detection program, pulse wave detection method, and pulse wave detection device
WO2018173484A1 (en) Pulse wave velocity measurement system, imaging device, and pulse wave velocity measurement method
US20160228011A1 (en) Bio-information acquiring device and bio-information acquiring method
US10478079B2 (en) Pulse estimation device, pulse estimation system, and pulse estimation method
EP2457499B1 (en) Line-of-sight estimation device
US9433345B2 (en) Cycloduction measurement device, cycloduction measurement method, and cycloduction measurement program
JPWO2016006027A1 (en) Pulse wave detection method, pulse wave detection program, and pulse wave detection device
JP6052005B2 (en) Pulse wave detection device, pulse wave detection method, and pulse wave detection program
EP2777485A1 (en) Signal processor, signal processing method, and signal processing program
JP2013232181A5 (en)
US9826884B2 (en) Image processing device for correcting captured image based on extracted irregularity information and enhancement level, information storage device, and image processing method
US10896343B2 (en) Information processing apparatus and information processing method
WO2016147678A1 (en) Vital sign measurement apparatus, vital sign measurement method, and vital sign measurement program
US11224404B2 (en) Information processing apparatus, information processing method, and non-transitory computer-readable storage medium
US8503737B2 (en) Visual line estimating apparatus
JP6248780B2 (en) Pulse wave detection device, pulse wave detection method, and pulse wave detection program
JP5349350B2 (en) Eye opening degree determination device and eye opening degree determination method
JP2009088801A (en) Motionlessness deciding method and device for photograph object
JP6652263B2 (en) Mouth region detection device and mouth region detection method
WO2020003910A1 (en) Heartbeat detection device, heartbeat detection method, and program
JP6379899B2 (en) Information processing apparatus, pulse wave measurement program, and pulse wave measurement method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770194

Country of ref document: EP

Kind code of ref document: A1