WO2018173316A1 - Shaft seal device, and rotating machine - Google Patents

Shaft seal device, and rotating machine Download PDF

Info

Publication number
WO2018173316A1
WO2018173316A1 PCT/JP2017/031215 JP2017031215W WO2018173316A1 WO 2018173316 A1 WO2018173316 A1 WO 2018173316A1 JP 2017031215 W JP2017031215 W JP 2017031215W WO 2018173316 A1 WO2018173316 A1 WO 2018173316A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
rotor
pressure region
peripheral surface
communication groove
Prior art date
Application number
PCT/JP2017/031215
Other languages
French (fr)
Japanese (ja)
Inventor
亜積 吉田
昂平 尾▲崎▼
上原 秀和
西本 慎
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Publication of WO2018173316A1 publication Critical patent/WO2018173316A1/en

Links

Images

Definitions

  • the present invention relates to a shaft seal device and a rotary machine.
  • This application claims priority on March 23, 2017 based on Japanese Patent Application No. 2017-057979 filed in Japan, the contents of which are incorporated herein by reference.
  • Rotating machines such as gas turbines and steam turbines are provided with a shaft seal device in order to reduce the amount of leakage of working fluid flowing from the high pressure side to the low pressure side around the rotor.
  • the shaft seal device includes a seal member that partitions a high pressure region and a low pressure region around the rotor.
  • Patent Document 1 discloses a configuration in which a sealing member is provided with a through-hole penetrating in the axial direction of the rotor.
  • the through hole allows the low pressure region and the high pressure region to communicate with each other, and foreign matter can be discharged to the low pressure region through the through hole.
  • the sealing member described in Patent Document 1 needs to form a through-hole so as to bypass the seal body, which takes time and effort for processing.
  • the fluid moves from the high pressure region to the low pressure region through the through hole, so that the differential pressure before and after the seal member is reduced.
  • a distribution occurs in the differential pressure between the high pressure region and the low pressure region around the portion where the through hole is provided and the other portion.
  • An object of the present invention is to provide a shaft seal device and a rotary machine that can suppress the influence on the seal characteristics and reduce the influence of foreign matter on the seal body.
  • the shaft seal device is provided between the rotor and the stator surrounding the rotor, and a space between the rotor and the stator is a high pressure region in the central axis direction of the rotor. And the low pressure area.
  • the shaft seal device includes a seal ring and a seal body.
  • the seal ring is composed of a plurality of seal ring pieces provided in the circumferential direction so that end faces in the circumferential direction are adjacent to each other.
  • the seal body is fixed to each of the seal ring pieces and faces the rotor.
  • At least one of the seal ring pieces includes a communication groove.
  • the communication groove is formed to be recessed from the end surface, and communicates the high pressure region and the low pressure region so as to bypass the seal body.
  • Such a communication groove is formed on the end surface of the seal ring piece, and is formed on a mating surface with another seal ring piece adjacent in the circumferential direction. In the portion where the end faces of the seal ring pieces are adjacent to each other, the working fluid leaks between the high pressure area and the low pressure area through the gap between the end faces of the adjacent seal ring pieces, so the differential pressure between the high pressure area and the low pressure area Is small.
  • the processing for forming the communication groove can be easily performed as compared with the case where the through hole is formed in the seal ring piece.
  • the shaft seal device may include a guide member.
  • the guide member is provided in at least one of the high-pressure region and the low-pressure region with respect to the seal ring piece, and guides the working fluid radially outward from the gap between the seal body and the outer peripheral surface of the rotor.
  • the working fluid is guided radially outward from the gap between the seal body and the outer peripheral surface of the rotor by the guide member.
  • the foreign matter is guided radially outward from the gap between the seal body and the outer peripheral surface of the rotor together with the working fluid, and the foreign matter can be prevented from entering the gap between the seal body and the outer peripheral surface of the rotor. Therefore, it can suppress that a foreign material reaches a seal body.
  • the guide member according to the second aspect is a blade provided on the outer peripheral surface of the rotor and guiding the working fluid radially outward by rotating integrally with the rotor. Also good. With this configuration, when the blades provided on the outer peripheral surface of the rotor rotate integrally with the rotor, foreign matters are generated by the flow of the working fluid that is generated by the blades toward the outside in the radial direction. It is guided radially outward from the gap with the surface.
  • the guide member according to the second aspect may be a wall body provided on the outer peripheral surface of the rotor and extending radially outward. By comprising in this way, it is suppressed by a wall body that a foreign material enters into the clearance gap between a sealing body and the outer peripheral surface of a rotor. The foreign matter is guided radially outward together with the flow of the working fluid that has collided with the wall.
  • the guide member according to the second aspect may be an umbrella-shaped member provided on the seal ring piece and extending radially inward.
  • a plurality of sealing bodies may be provided at intervals in the central axis direction.
  • the communication groove may include a branch groove communicating between the seal bodies adjacent to each other in the central axis direction.
  • a guide surface may be formed on at least one of the outer peripheral surface of the seal body and the rotor.
  • the guide surface guides the working fluid flowing in the direction of the central axis through the gap between the seal body and the outer peripheral surface of the rotor to the branch groove side.
  • the shaft seal device may include a circumferential guide member that guides the working fluid to the communication groove.
  • the circumferential guide member is provided on the downstream side of the circumferential flow of the working fluid generated on the radially outer side of the rotor as the rotor rotates around the central axis with respect to the communication groove.
  • the shaft seal device is provided between the rotor and the stator surrounding the rotor, and partitions the high pressure region and the low pressure region in the central axis direction of the rotor.
  • the shaft seal device includes a seal ring including a plurality of seal ring pieces provided in the circumferential direction so that end faces in the circumferential direction are adjacent to each other, a seal body fixed to each of the seal ring pieces and facing the rotor, Is provided.
  • the shaft seal device includes a guide member that is provided at least on the high-pressure region side with respect to the seal ring piece and guides the working fluid radially outward from a gap between the seal body and the outer peripheral surface of the rotor.
  • the working fluid is guided radially outward from the gap between the seal body and the outer peripheral surface of the rotor by the guide member.
  • foreign matter that has entered the space between the rotor and the stator is guided radially outward together with the working fluid from the gap between the seal body and the outer circumferential surface of the rotor, and the gap between the seal body and the outer circumferential surface of the rotor. It is possible to prevent foreign matter from entering the door. Therefore, it can suppress that a foreign material reaches a seal body. Thereby, it can suppress that a sealing body is influenced by a foreign material.
  • a rotary machine includes the shaft seal device according to any one of the first to ninth aspects.
  • the shaft seal device according to any one of the first to ninth aspects.
  • the influence on the sealing characteristics can be suppressed, and the influence of the foreign matter on the sealing body can be reduced.
  • FIG. 1 is a view of the configuration of a shaft seal device provided in a rotary machine according to an embodiment of the present invention, viewed from the direction of the central axis of a rotor.
  • FIG. 2 is a sectional view taken along line XX in FIG.
  • FIG. 3 is a view showing a communication groove formed on an end face of a seal segment constituting the shaft seal device.
  • FIG. 4 is a perspective view of the seal member main body in which a communication groove is formed. As shown in FIGS.
  • a rotary machine 100 such as a steam turbine or a gas turbine is provided with a stator 103 attached to a passenger compartment (not shown) thereof and an inner side of the stator 103 in the radial direction Dr. And a rotor 102 provided rotatably (not shown).
  • the shaft seal device 1 ⁇ / b> A is provided in an annular space between the rotor 102 and the stator 103. As shown in FIG. 2, the shaft seal device 1 ⁇ / b> A has an annular space formed in the low pressure region S ⁇ b> 1 formed on the first side in the central axial direction Da of the rotor 102 and on the second side in the central axial direction Da. And the high pressure region S2.
  • the shaft seal device 1A includes a plurality of (eight in the present embodiment) seal segments (seal ring pieces) 20A extending in an arc shape.
  • the plurality of seal segments (seal ring pieces) 20A are annularly arranged in the circumferential direction Dc.
  • the shaft seal device 1A constitutes an annular seal ring 5 as a whole by arranging these eight seal segments 20A in the circumferential direction Dc. That is, the seal ring 5 of the shaft seal device 1 ⁇ / b> A has a structure that is divided into a plurality of portions in the circumferential direction Dc of the rotor 102.
  • the seal segment 20 ⁇ / b> A is held by a housing 104 provided inside the stator 103 in the radial direction Dr.
  • the housing 104 is formed with a groove 105 extending continuously in the circumferential direction Dc around the central axis of the rotor 102.
  • the groove 105 has an accommodation recess (high-pressure fluid introduction part) 106 and a communication part 107.
  • the accommodating recess 106 is formed in a rectangular cross section.
  • the communication portion 107 communicates the accommodating recess 106 with the inner peripheral surface 104 f of the housing 104.
  • Protruding portions 108 are formed on both sides of the communication portion 107 in the central axis direction Da so as to protrude from the inner wall surface 106a of the housing recess 106 toward the inside of the central axis direction Da. Due to these protrusions 108, the communication portion 107 has an opening dimension in the central axis direction Da smaller than a width dimension in the central axial direction Da of the housing recess 106.
  • the seal segment 20 ⁇ / b> A includes a seal member main body 21, a thin plate seal (seal body) 25, and a seal fin (seal body) 26.
  • the seal member body 21 is integrally provided with a pressure receiving portion 22, a base portion 23, and a connecting portion 24.
  • the pressure receiving portion 22 is housed in the housing recess 106.
  • a pressure receiving surface 22 f is formed outside the pressure receiving portion 22 in the radial direction Dr.
  • the seal member main body 21 includes notches 35 at a plurality of locations spaced in the circumferential direction Dc. These notches communicate the space 106 s between the pressure receiving surface 22 f and the inner peripheral surface 106 g located outside the radial direction Dr of the housing recess 106 and the high pressure region S ⁇ b> 2.
  • the base portion 23 is disposed on the inner side in the radial direction Dr from the inner peripheral surface 104 f of the housing 104.
  • the width dimension of the base portion 23 in the central axis direction Da is larger than the width dimension of the communication portion 107 in the central axis direction Da.
  • the connecting part 24 connects the pressure receiving part 22 and the base part 23 through the communication part 107.
  • the thin plate seal 25 includes a plurality of metal thin plate seal pieces 27 arranged in a multiple manner with a minute interval in the circumferential direction Dc of the rotor 102.
  • the base end portions 27a outside the radial direction Dr are fixed to each other by welding, for example.
  • the thin plate seal piece 27 is held by a holding member 28 at a base end portion 27 a outside in the radial direction Dr.
  • the holding member 28 includes holding rings 28a and 28b and a connection member 28c.
  • the retaining rings 28a and 28b are formed in a U-shaped cross section.
  • convex portions 27c and 27d extending on both sides in the central axis direction Da are formed at the base end portion 27a of the thin plate seal piece 27 connecting the holding rings 28a and 28b.
  • the thin plate seal piece 27 is held by the holding member 28 by the convex portions 27 c and 27 d being fitted into the holding rings 28 a and 28 b of the holding member 28.
  • These thin plate sealing pieces 27 are held by the holding member 28 so that the angle formed with the outer peripheral surface of the rotor 102 with respect to the rotation direction of the rotor 102 becomes an acute angle. Between the base end portion 27 a of the thin plate sealing piece 27 and the holding member 28, a spacer 29 for suppressing rattling of each thin plate sealing piece 27 is provided.
  • the thin plate seal 25 and the holding member 28 are accommodated in a concave groove 30 formed in the seal member main body 21.
  • the concave groove 30 includes an outer peripheral groove portion 31 and an inner peripheral groove portion 32.
  • the outer peripheral groove portion 31 is formed at an intermediate portion in the radial direction Dr of the seal member main body 21 and continuously extends in the peripheral direction Dc (see FIG. 1).
  • the inner circumferential groove portion 32 extends from the outer circumferential groove portion 31 toward the inner side in the radial direction Dr, and opens to the inner circumferential surface of the base portion 23 (in other words, the inner circumferential surface 21f of the seal member main body 21).
  • the outer circumferential groove portion 31 is formed to have a larger width dimension in the central axial direction Da than the inner circumferential groove portion 32.
  • the holding member 28 is accommodated in the outer peripheral groove portion 31.
  • the thin plate seal piece 27 has a distal end portion 27 b inside in the radial direction Dr protruding from the base portion 23 through the inner circumferential groove portion 32 inward in the radial direction Dr.
  • a leaf spring 33 is provided outside the holding member 28 in the radial direction Dr.
  • the plate spring 33 urges each thin plate seal piece 27 toward the rotor 102 inside in the radial direction Dr.
  • each thin plate seal piece 27 contacts the rotor 102 with a predetermined preload.
  • the thin plate seal 25 floats from the rotor 102 by the distal end portion 27 b of the thin plate seal piece 27 being displaced radially outward by the dynamic pressure effect generated by the rotation of the rotor 102.
  • the thin plate seal piece 27 and the rotor 102 are brought into a non-contact state through a slight seal clearance. Thereby, wear of the thin plate seal piece 27 and the rotor 102 is prevented, and leakage of the working fluid (steam) from the high pressure region S2 toward the low pressure region S1 is suppressed.
  • the seal fin 26 is provided on the base portion 23 of the seal member main body 21.
  • a plurality of seal fins 26 are provided at intervals in the central axis direction Da of the rotor 102. Each seal fin 26 protrudes from the base portion 23 of the seal member main body 21 toward the inside in the radial direction Dr.
  • a plurality of seal fins 26 are provided on both sides of the central axis direction Da with the thin plate seal 25 interposed therebetween.
  • a labyrinth seal is formed on the high-pressure side and the low-pressure side of the thin plate seal 25 by these seal fins 26.
  • the seal segment 20A has a difference in fluid pressure between the low pressure region S1 and the high pressure region S2 on both sides in the central axis direction Da with respect to the seal segment 20A.
  • the high-pressure fluid in the high-pressure region S ⁇ b> 2 flows through the notch 35 into the space 106 s between the pressure-receiving surface 22 f and the inner peripheral surface 106 g on the radially outer side of the housing recess 106.
  • the back pressure Ph that presses the pressure receiving surface 22f inward from the outside in the radial direction Dr is generated by the high-pressure fluid that has flowed in.
  • the shaft seal device 1A as described above includes a communication groove 50 in the seal segment 20A.
  • the communication groove 50 is formed on the end surface 21s located at the end of the seal member body 21 of the seal segment 20A in the circumferential direction Dc.
  • the communication groove 50 is formed in a groove shape extending along the end surface 21s and recessed inward in the circumferential direction Dc from the end surface 21s.
  • One end portion 50a of the communication groove 50 opens toward the low pressure region S1, and the other end portion 50b opens toward the high pressure region S2.
  • the communication groove 50 has one end 50a and the other end 50b extending in the central axis direction Da.
  • the communication groove 50 includes radial flow paths 50c and 50d and an axial flow path 50e between the one end 50a and the other end 50b.
  • the radial flow paths 50c and 50d extend from the one end 50a and the other end 50b toward the outside in the radial direction Dr.
  • the axial flow path 50 e is located outside the radial direction Dr of the thin plate seal 25.
  • the axial flow path 50e extends in the central axial direction Da and connects the outer ends of the radial flow paths 50c and 50d in the radial direction Dr. That is, the communication groove 50 is formed so as to bypass the thin plate seal 25.
  • the communication groove 50 communicates the high pressure region S2 and the low pressure region S1.
  • the communication groove 50 exemplified in this embodiment includes a plurality of branch grooves 51 communicating between the seal fins 26 adjacent to each other in the central axis direction Da. These branch grooves 51 are open toward the inside in the radial direction Dr on the inner peripheral surface 21 f of the seal member main body 21. These branch grooves 51 extend from the inner peripheral surface 21f toward the outer side in the radial direction Dr, and are connected to one end 50a and the other end 50b of the communication groove 50, respectively.
  • the communication groove 50 is formed on the end surface 21s of the seal member main body 21 of the seal segment 20A.
  • the working fluid leaks from the high pressure region S2 toward the low pressure region S1 through the gap between the adjacent end surfaces 21s.
  • the foreign matter that has entered the space between the stator 103 and the rotor 102 passes through the communication groove 50 together with the leakage flow of the working fluid flowing through the gap between the end faces 21s. In this way, the foreign matter that has entered the space between the rotor 102 and the stator 103 bypasses the thin plate seal 25 via the communication groove 50 and is discharged to the low pressure region S1.
  • the foreign matter when foreign matter enters the gap between the inner peripheral surface 21 f of the seal member main body 21 and the outer peripheral surface 102 f of the rotor 102, the foreign matter enters the communication groove 50 from the branch groove 51 provided between the plurality of seal fins 26. Then, through the communication groove 50, the thin plate seal 25 is bypassed and discharged to the low pressure region S1.
  • the shaft seal device 1 ⁇ / b> A and the rotary machine 100 of the first embodiment described above the foreign matter that has entered the space between the rotor 102 and the stator 103 bypasses the thin plate seal 25 via the communication groove 50. Discharged. Thereby, it can suppress that the thin plate seal
  • the processing for forming the communication groove 50 is performed by an end mill, electric discharge machining, or the like as compared with the case where the through hole is formed in the seal member main body 21. Can be easily performed.
  • a branch groove 51 communicating with the communication groove 50 is provided between the seal fins 26 adjacent to each other in the central axis direction Da.
  • the shaft seal device 1B is provided in an annular space between the rotor 102 and the stator 103, like the shaft seal device 1A shown in the first embodiment.
  • the shaft seal device 1B includes a plurality of seal segments (seal ring pieces) 20B.
  • FIG. 5 is a cross-sectional view showing a configuration in the second embodiment of the shaft seal device.
  • the shaft seal device 1 ⁇ / b> B has an annular space formed in the low pressure region S ⁇ b> 1 formed on the first side in the central axial direction Da of the rotor 102 and on the second side in the central axial direction Da.
  • the seal segment 20 ⁇ / b> B includes a seal member main body 21, a thin plate seal 25, and seal fins 26.
  • the seal segment 20 ⁇ / b> B includes a communication groove 50 on the end surface 21 s of the seal member main body 21.
  • the communication groove 50 is formed in a groove shape extending along the end surface 21s and recessed inward in the circumferential direction Dc from the end surface 21s.
  • One end portion 50a of the communication groove 50 opens toward the low pressure region S1, and the other end portion 50b opens toward the high pressure region S2.
  • the communication groove 50 has radial flow paths 50c and 50d and an axial flow path 50e between the one end 50a and the other end 50b, and is formed so as to bypass the thin plate seal 25.
  • the communication groove 50 communicates the high pressure region S2 and the low pressure region S1.
  • the communication groove 50 includes a branch groove 51 communicating between the seal fins 26 adjacent to each other in the central axis direction Da.
  • the seal segment 20B includes a guide member 60 that guides the working fluid to the outside in the radial direction Dr rather than the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102.
  • the guide member 60 includes a plurality of wings 61.
  • a plurality of blades 61 are provided on the outer peripheral surface 102f of the rotor 102 at intervals in the circumferential direction Dc. The plurality of blades 61 rotate integrally with the rotor 102 to guide the working fluid to the outside in the radial direction Dr.
  • the working fluid is guided by the guide member 60 to the outside in the radial direction Dr rather than the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102. Accordingly, the foreign matter is guided to the outside in the radial direction Dr together with the working fluid, and is difficult to enter the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102.
  • the guide member 60 guides the flow Fb of the working fluid to the outside in the radial direction Dr with respect to the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102. Is done. Thereby, it can suppress that a foreign material penetrate
  • FIG. By guiding the flow Fb of the working fluid to the outside in the radial direction Dr, the foreign matter easily flows into the communication groove 50 together with the working fluid. As a result, foreign substances can be prevented from reaching the thin plate seal 25.
  • the communication groove 50 is provided in a portion where the working fluid leaks between the high pressure region S2 and the low pressure region S1 through the gap between the end surfaces 21s of the seal segment 20B. Accordingly, even if the working fluid leaks through the communication groove 50, the influence of the communication groove 50 can be reduced. Furthermore, by forming the communication groove 50 on the end surface 21 s of the seal member main body 21, the processing for forming the communication groove 50 can be easily performed as compared with the case where the through hole is formed in the seal member main body 21. .
  • FIG. 6 is a cross-sectional view illustrating a configuration in a first modification of the second embodiment of the shaft seal device.
  • the seal segment (seal ring piece) 20C of the shaft seal device 1C is located on the outer side in the radial direction Dr with respect to the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102.
  • a guide member 60 for guiding the working fluid is provided.
  • the guide member 60 is a wall body 62 provided on the outer peripheral surface 102f of the rotor 102 and extending outward in the radial direction Dr.
  • the wall 62 extends continuously along the circumferential direction Dc.
  • the wall body 62 may be formed at a height extending outward in the radial direction Dr from the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102.
  • FIG. 7 is a cross-sectional view showing a configuration in a second modification of the second embodiment of the shaft seal device.
  • the seal segment (seal ring piece) 20D of the shaft seal device 1D is located on the outer side in the radial direction Dr with respect to the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102.
  • a guide member 60 for guiding the working fluid is provided.
  • the guide member 60 is an umbrella-like member 63 provided on the seal member main body 21 and extending inward in the radial direction Dr.
  • the umbrella-shaped member 63 is formed in an annular shape extending continuously in the circumferential direction Dc around the central axis of the rotor 102.
  • the umbrella-shaped member 63 is provided inside the radial direction Dr with the central axis of the rotor 102 as the center with respect to the other end portion 50 b of the communication groove 50.
  • the umbrella-shaped member 63 is formed in an umbrella shape in which the outer diameter around the central axis of the rotor 102 gradually decreases as the distance from the side surface of the base portion 23 of the seal member main body 21 toward the central axis direction Da increases. ing.
  • the umbrella member 63 does not contact the outer peripheral surface 102 f of the rotor 102.
  • the flow Fd of the working fluid hitting the umbrella-shaped member 63 by the guide member 60 including the umbrella-shaped member 63 causes the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102 to flow. It is guided to the outside in the radial direction Dr rather than the gap. That is, the working fluid flow Fd is guided toward the other end 50 b of the communication groove 50. This makes it difficult for foreign matter to enter the gap between the inner peripheral surface 21 f of the seal member main body 21 and the outer peripheral surface 102 f of the rotor 102.
  • the foreign matter By guiding the flow Fd of the working fluid to the outside of the radial direction Dr, the foreign matter easily flows into the communication groove 50 together with the working fluid. Therefore, it is possible to suppress foreign matters from reaching the thin plate seal 25.
  • the shaft seal device 1E is provided in an annular space between the rotor 102 and the stator 103, like the shaft seal device 1A of the first embodiment.
  • the shaft seal device 1E includes a plurality of seal segments (seal ring pieces) 20E.
  • FIG. 8 is a cross-sectional view showing the configuration of the third embodiment of the shaft seal device.
  • the shaft seal device 1 ⁇ / b> E has an annular space formed in the low pressure region S ⁇ b> 1 formed on the first side in the central axial direction Da of the rotor 102 and on the second side in the central axial direction Da.
  • the high pressure region S2 is a cross-sectional view showing the configuration of the third embodiment of the shaft seal device.
  • the shaft seal device 1 ⁇ / b> E has an annular space formed in the low pressure region S ⁇ b> 1 formed on the first side in the central axial direction Da of the rotor 102 and on the second side in the central axial direction Da.
  • the high pressure region S2 is a cross-sectional view showing the configuration of the third embodiment of the shaft seal device.
  • the seal segment 20E includes a seal member main body 21, a thin plate seal 25, and seal fins 26.
  • the seal segment 20E includes a communication groove 50 on the end surface 21s of the seal member main body 21.
  • the communication groove 50 is formed in a groove shape extending along the end surface 21s and recessed inward in the circumferential direction Dc from the end surface 21s.
  • One end portion 50a of the communication groove 50 opens toward the low pressure region S1, and the other end portion 50b opens toward the high pressure region S2.
  • the communication groove 50 has radial flow paths 50c and 50d and an axial flow path 50e between one end 50a and the other end 50b, and is formed so as to bypass the thin plate seal 25. .
  • the communication groove 50 allows the high pressure region S2 and the low pressure region S1 to communicate with each other.
  • the communication groove 50 includes a branch groove 51 communicating between the seal fins 26 adjacent to each other in the central axis direction Da.
  • the seal segment 20E includes a guide surface 64.
  • the guide surface 64 is formed facing the upstream side of the flow F of the working fluid in the seal fin 26.
  • the rotor 102 includes a guide surface 65.
  • the guide surface 65 is formed in an annular recess 66 formed in the outer peripheral surface 102 f of the rotor 102 and recessed inward in the radial direction Dr.
  • the guide surface 65 is formed in the recess 66 so as to face the upstream side of the flow F of the working fluid.
  • the seal fin 26 disposed in the portion where the recess 66 is formed is formed with such a length that the tip end portion 26a is disposed in the recess 66.
  • the flow Fe of the working fluid flowing into the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102 passes through the gap between the seal fin 26 and the outer peripheral surface 102f of the rotor 102, and then the guide surface 64. Or, when it hits the guide surface 65, it winds up in a spiral and is guided outward in the radial direction Dr. As a result, the working fluid efficiently flows into the branch groove 51.
  • the foreign matter that has entered the gap between the inner peripheral surface 21 f of the seal member main body 21 and the outer peripheral surface 102 f of the rotor 102 is guided to the branch groove 51 by the guide surfaces 64 and 65. As a result, the foreign matter can be more reliably fed into the communication groove 50 through the branch groove 51.
  • the shaft seal device 1E and the rotary machine 100 of the third embodiment described above the foreign matter that has flowed into the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102 is guided by the guide surface 64, 65 is guided in a direction toward the outer branching groove 51 in the radial direction Dr.
  • the foreign matter can be more reliably fed into the communication groove 50 through the branch groove 51.
  • the communication groove 50 is provided in a portion where the working fluid leaks between the high pressure region S2 and the low pressure region S1 through the gap between the end surfaces 21s of the seal segment 20E. Accordingly, even if the working fluid leaks through the communication groove 50, the influence of the communication groove 50 can be reduced. Furthermore, by forming the communication groove 50 on the end surface 21 s of the seal member main body 21, the processing for forming the communication groove 50 can be easily performed as compared with the case where the through hole is formed in the seal member main body 21. .
  • FIG. 9 is a cross-sectional view showing a configuration of a modification of the third embodiment of the shaft seal device.
  • the seal segment (seal ring piece) 20F of the shaft seal device 1F is a seal extending inward in the radial direction Dr from the inner peripheral surface 21f of the seal member main body 21.
  • the fins 26 and seal fins (seal bodies) 26F extending from the outer peripheral surface 102f of the rotor 102 to the outside in the radial direction Dr are alternately arranged at intervals in the central axis direction Da.
  • the seal segment 20F includes a guide surface 64.
  • the guide surface 64 is formed facing the upstream side of the flow F of the working fluid in the seal fin 26.
  • the rotor 102 includes seal fins 26 ⁇ / b> F that extend from the outer peripheral surface 102 f of the rotor 102 to the outside in the radial direction Dr.
  • the guide surface 67 is formed facing the upstream side of the flow F of the working fluid in the seal fin 26F.
  • the flow Ff of the working fluid that has flowed into the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102 passes through the gap between the seal fin 26 and the outer peripheral surface 102f of the rotor 102, and then the guide surface 64.
  • it hits the guide surface 67 it winds up in a spiral shape and is guided outward in the radial direction Dr.
  • the working fluid efficiently flows into the branch groove 51.
  • the foreign matter that has entered the gap between the inner peripheral surface 21 f of the seal member main body 21 and the outer peripheral surface 102 f of the rotor 102 can be more reliably sent to the communication groove 50 through the branch groove 51.
  • the shaft seal device 1G is provided in an annular space between the rotor 102 and the stator 103, similarly to the shaft seal device 1A shown in the first embodiment.
  • the shaft seal device 1G includes a plurality of seal segments (seal ring pieces) 20G.
  • FIG. 10 is a view of the circumferential guide member provided in the facing portion between the fixed seal member and the seal segment as viewed from the central axis direction of the rotor in the fourth embodiment of the shaft seal device.
  • the seal segment 20 ⁇ / b> G includes a seal member main body 21, a thin plate seal 25, and seal fins 26.
  • the seal segment 20G includes a communication groove 50 on the end surface 21s of the seal member main body 21.
  • the communication groove 50 is formed in a groove shape extending along the end surface 21s and recessed inward in the circumferential direction Dc from the end surface 21s.
  • the communication groove 50 communicates the high pressure region S2 and the low pressure region S1.
  • the seal segment 20G includes a circumferential guide member 68.
  • the circumferential guide member 68 is provided on the downstream side of the flow Fg in the circumferential direction Dc of the working fluid generated outside the radial direction Dr of the rotor 102 when the rotor 102 rotates around the central axis with respect to the communication groove 50. Yes.
  • the circumferential guide member 68 is formed on the inner circumferential surface 21f of the seal member main body 21 of the seal segment 20C so as to protrude inward in the radial direction Dr.
  • the flow Fg of the working fluid in the circumferential direction Dc generated outside the radial direction Dr of the rotor 102 collides with the circumferential direction guide member 68, thereby communicating radially outside. Guided to the groove 50. As a result, the foreign matter can be more reliably fed into the communication groove 50. As a result, it is possible to suppress foreign matter from reaching the thin plate seal 25 and to suppress the thin plate seal 25 from being affected.
  • the communication groove 50 is provided in a portion where the working fluid leaks between the high pressure region S2 and the low pressure region S1 through the gap between the end surfaces 21s of the seal segment 20G. Accordingly, even if the working fluid leaks through the communication groove 50, the influence of the communication groove 50 can be reduced. Furthermore, by forming the communication groove 50 on the end surface 21 s of the seal member main body 21, the processing for forming the communication groove 50 can be easily performed as compared with the case where the through hole is formed in the seal member main body 21. .
  • the present invention is not limited to the above-described embodiments and modifications, and includes various modifications made to the above-described embodiments without departing from the spirit of the invention. That is, the specific shapes, configurations, and the like given in the embodiment are merely examples, and can be changed as appropriate.
  • the shaft seal devices 1A to 1G are provided with the thin plate seal 25 and the seal fin 26.
  • other seal structures are appropriately used. May be adopted.
  • the blade 61, the wall body 62, and the umbrella-shaped member 63 are formed between the seal fins 26 adjacent to each other in the central axis direction of the rotor 102 or between the seal fins 26 and 26F, and the flow F is formed on the branch groove 51 side. You may make it lead to.
  • shaft seal devices 1A to 1G described above are not limited to steam turbines and gas turbines but can be applied to other rotating machines.
  • This invention can be applied to a shaft seal device and a rotary machine. According to the present invention, the influence on the sealing characteristics can be suppressed, and the influence of foreign matters on the seal body can be reduced.

Landscapes

  • Sealing Devices (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

This shaft seal device (1A) is provided with a seal ring and a thin-plate seal (25). The seal ring comprises a plurality of seal segments (20A) provided in the circumferential direction such that end surfaces (21s) in the circumferential direction are adjacent to each other. The thin-plate seal (25) is fixed to a seal member main body (21), and faces a rotor (102). The shaft seal device (1A) is provided with a communication groove (50). The communication groove (50) is formed in at least one of the seal segments (20A). The communication groove (50) is formed so as to be recessed from an end surface (21s). The communication groove (50) allows communication between a high-pressure region (S2) and a low-pressure region (S1) such that the thin-plate seal (25) is bypassed.

Description

軸シール装置、回転機械Shaft seal device, rotating machine
 この発明は、軸シール装置、回転機械に関する。
 本願は、2017年3月23日に、日本に出願された特願2017-057979号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a shaft seal device and a rotary machine.
This application claims priority on March 23, 2017 based on Japanese Patent Application No. 2017-057979 filed in Japan, the contents of which are incorporated herein by reference.
 ガスタービン、蒸気タービン等の回転機械は、ロータの周囲で高圧側から低圧側に流れる作動流体の漏れ量を少なくするために、軸シール装置を備えている。軸シール装置は、ロータの周囲の高圧領域と低圧領域とを仕切るシール部材を備えている。 Rotating machines such as gas turbines and steam turbines are provided with a shaft seal device in order to reduce the amount of leakage of working fluid flowing from the high pressure side to the low pressure side around the rotor. The shaft seal device includes a seal member that partitions a high pressure region and a low pressure region around the rotor.
 回転機械においては、回転機械の上流側よりスケール等の異物が侵入する場合がある。この異物は、シール部材においてロータの外周面に対向するように設けられたシール体に到達する可能性がある。シール体は、このように異物が到達することによって影響を受け、そのシール特性が変化する場合がある。 In a rotating machine, foreign matter such as scale may enter from the upstream side of the rotating machine. There is a possibility that the foreign matter reaches a seal body provided to face the outer peripheral surface of the rotor in the seal member. The seal body is affected by the arrival of foreign matter in this way, and the seal characteristics may change.
 特許文献1には、シール部材に、ロータの軸方向に貫通する貫通孔を備える構成が開示されている。この貫通孔により、低圧領域と前記高圧領域とが連通されて、この貫通孔を通して、異物を低圧領域に排出することができる。 Patent Document 1 discloses a configuration in which a sealing member is provided with a through-hole penetrating in the axial direction of the rotor. The through hole allows the low pressure region and the high pressure region to communicate with each other, and foreign matter can be discharged to the low pressure region through the through hole.
特許第5851890号公報Japanese Patent No. 585890
 特許文献1に記載のシール部材は、シール体を迂回するように貫通孔を形成する必要があり、加工の手間がかかる。
 特許文献1に記載のシール部材は、貫通孔を通して高圧領域から低圧領域に流体が移動することで、シール部材の前後の差圧が小さくなる。すると、ロータの径方向外側の周方向において、貫通孔が設けられた部分の周囲と、それ以外の部分とで、高圧領域と低圧領域との差圧に分布が生じる。その結果、回転機械の効率等が低下する場合がある。
 この発明は、シール特性への影響を抑制できるとともに、シール体への異物の影響を低減させることができる軸シール装置、回転機械を提供することを目的とする。
The sealing member described in Patent Document 1 needs to form a through-hole so as to bypass the seal body, which takes time and effort for processing.
In the seal member described in Patent Document 1, the fluid moves from the high pressure region to the low pressure region through the through hole, so that the differential pressure before and after the seal member is reduced. Then, in the circumferential direction outside the rotor in the radial direction, a distribution occurs in the differential pressure between the high pressure region and the low pressure region around the portion where the through hole is provided and the other portion. As a result, the efficiency of the rotating machine may be reduced.
An object of the present invention is to provide a shaft seal device and a rotary machine that can suppress the influence on the seal characteristics and reduce the influence of foreign matter on the seal body.
 この発明の第一態様によれば、軸シール装置は、ロータと前記ロータを囲うステータとの間に設けられて、前記ロータと前記ステータとの間の空間を前記ロータの中心軸方向において高圧領域と低圧領域とに仕切る。軸シール装置は、シールリングと、シール体と、を備える。シールリングは、互いに周方向の端面同士が隣接するように周方向に複数設けられたシールリング片からなる。シール体は、各前記シールリング片に固定されて前記ロータに対向する。少なくとも一つの前記シールリング片は、連通溝を備える。連通溝は、前記端面から凹むように形成されて、前記シール体を迂回するように前記高圧領域と前記低圧領域とを連通させる。 According to the first aspect of the present invention, the shaft seal device is provided between the rotor and the stator surrounding the rotor, and a space between the rotor and the stator is a high pressure region in the central axis direction of the rotor. And the low pressure area. The shaft seal device includes a seal ring and a seal body. The seal ring is composed of a plurality of seal ring pieces provided in the circumferential direction so that end faces in the circumferential direction are adjacent to each other. The seal body is fixed to each of the seal ring pieces and faces the rotor. At least one of the seal ring pieces includes a communication groove. The communication groove is formed to be recessed from the end surface, and communicates the high pressure region and the low pressure region so as to bypass the seal body.
 このように構成することで、ロータとステータとの間の空間に侵入してシール体に到達した異物は、連通溝を介して、シール体を迂回して排出される。これによって、異物によってシール体が影響を受けることを抑制できる。
 このような連通溝は、シールリング片の端面に形成され、周方向で隣接する他のシールリング片との合わせ面に形成されている。シールリング片の端面同士が隣接する部分においては、互いに隣接するシールリング片の端面同士の隙間を通して、高圧領域と低圧領域との間で作動流体が漏れるので、高圧領域と低圧領域との差圧が小さい。このように差圧が小さい部分に設けた連通溝を通して作動流体が漏れても、そもそも差圧が小さいので、連通溝を通しての作動流体の漏れによる影響が小さくて済む。
 さらに、連通溝をシールリング片の端面に形成することで、シールリング片に貫通孔を形成する場合に比較すると、連通溝を形成するための加工を容易に行うことができる。
With this configuration, the foreign matter that has entered the space between the rotor and the stator and has reached the seal body is discharged around the seal body via the communication groove. Thereby, it can suppress that a sealing body is influenced by a foreign material.
Such a communication groove is formed on the end surface of the seal ring piece, and is formed on a mating surface with another seal ring piece adjacent in the circumferential direction. In the portion where the end faces of the seal ring pieces are adjacent to each other, the working fluid leaks between the high pressure area and the low pressure area through the gap between the end faces of the adjacent seal ring pieces, so the differential pressure between the high pressure area and the low pressure area Is small. Even if the working fluid leaks through the communication groove provided in the portion where the differential pressure is small in this way, the influence of the leakage of the working fluid through the communication groove is small because the differential pressure is small in the first place.
Furthermore, by forming the communication groove on the end face of the seal ring piece, the processing for forming the communication groove can be easily performed as compared with the case where the through hole is formed in the seal ring piece.
 この発明の第二態様によれば、第一態様に係る軸シール装置は、案内部材を備えるようにしてもよい。案内部材は、前記シールリング片に対し、前記高圧領域及び前記低圧領域の少なくとも一方に設けられ、前記シール体と前記ロータの外周面との隙間よりも径方向外方に作動流体を導く。
 このように構成することで、案内部材によって作動流体がシール体とロータの外周面との隙間よりも径方向外方に案内される。これにより、異物は、作動流体とともにシール体とロータの外周面との隙間よりも径方向外方に導かれ、シール体とロータの外周面との隙間に異物が侵入することを抑制できる。したがって、シール体まで異物が到達することを抑制できる。
According to the second aspect of the present invention, the shaft seal device according to the first aspect may include a guide member. The guide member is provided in at least one of the high-pressure region and the low-pressure region with respect to the seal ring piece, and guides the working fluid radially outward from the gap between the seal body and the outer peripheral surface of the rotor.
With this configuration, the working fluid is guided radially outward from the gap between the seal body and the outer peripheral surface of the rotor by the guide member. Thereby, the foreign matter is guided radially outward from the gap between the seal body and the outer peripheral surface of the rotor together with the working fluid, and the foreign matter can be prevented from entering the gap between the seal body and the outer peripheral surface of the rotor. Therefore, it can suppress that a foreign material reaches a seal body.
 この発明の第三態様によれば、第二態様に係る案内部材は、前記ロータの外周面に設けられ、前記ロータと一体に回転することで前記作動流体を径方向外側に導く翼であってもよい。
 このように構成することで、ロータの外周面に設けられた翼がロータと一体に回転すると、翼によって生成された径方向外側に向かう作動流体の流れによって、異物は、シール体とロータの外周面との隙間よりも径方向外方に案内される。
According to a third aspect of the present invention, the guide member according to the second aspect is a blade provided on the outer peripheral surface of the rotor and guiding the working fluid radially outward by rotating integrally with the rotor. Also good.
With this configuration, when the blades provided on the outer peripheral surface of the rotor rotate integrally with the rotor, foreign matters are generated by the flow of the working fluid that is generated by the blades toward the outside in the radial direction. It is guided radially outward from the gap with the surface.
 この発明の第四態様によれば、第二態様に係る案内部材は、前記ロータの外周面に設けられ、径方向外側に延びる壁体であってもよい。
 このように構成することで、壁体によって、異物がシール体とロータの外周面との隙間に入り込むことが抑えられる。異物は、壁体に衝突した作動流体の流れとともに、径方向外方に案内される。
According to the fourth aspect of the present invention, the guide member according to the second aspect may be a wall body provided on the outer peripheral surface of the rotor and extending radially outward.
By comprising in this way, it is suppressed by a wall body that a foreign material enters into the clearance gap between a sealing body and the outer peripheral surface of a rotor. The foreign matter is guided radially outward together with the flow of the working fluid that has collided with the wall.
 この発明の第五態様によれば、第二態様に係る前記案内部材は、前記シールリング片に設けられ、径方向内側に延びる傘状部材であってもよい。
 このように構成することで、傘状の案内部材によって、異物がシール体とロータの外周面との隙間に入り込み難くなる。
According to a fifth aspect of the present invention, the guide member according to the second aspect may be an umbrella-shaped member provided on the seal ring piece and extending radially inward.
By comprising in this way, it becomes difficult for a foreign material to enter into the clearance gap between a sealing body and the outer peripheral surface of a rotor by an umbrella-shaped guide member.
 この発明の第六態様によれば、第一から第五態様の何れか一つの態様に係るシール体は、前記中心軸方向に間隔をあけて複数設けられてもよい。連通溝は、前記中心軸方向において互いに隣接する前記シール体同士の間に連通する分岐溝を備えるようにしてもよい。
 このように構成することで、異物がシール体とロータの外周面との隙間に入り込んだ場合であっても、異物が、複数のシール体の間に設けられた分岐溝を介して、シール体を迂回して排出される。
According to the sixth aspect of the present invention, a plurality of sealing bodies according to any one of the first to fifth aspects may be provided at intervals in the central axis direction. The communication groove may include a branch groove communicating between the seal bodies adjacent to each other in the central axis direction.
With this configuration, even when foreign matter enters the gap between the seal body and the outer peripheral surface of the rotor, the foreign matter passes through the branch groove provided between the plurality of seal bodies. It is discharged by detouring.
 この発明の第七態様によれば、第六態様に係る軸シール装置は、前記シール体及び前記ロータの外周面の少なくとも一方に、案内面が形成されているようにしてもよい。案内面は、前記シール体と前記ロータの外周面との隙間を前記中心軸方向に流れる作動流体を、前記分岐溝側に案内する。
 このように構成することで、シール体とロータの外周面との隙間に入り込んだ異物は、案内面によって分岐溝側に案内される。これによって、異物を、より確実に分岐溝を通して連通溝に送り込むことができる。
According to the seventh aspect of the present invention, in the shaft sealing device according to the sixth aspect, a guide surface may be formed on at least one of the outer peripheral surface of the seal body and the rotor. The guide surface guides the working fluid flowing in the direction of the central axis through the gap between the seal body and the outer peripheral surface of the rotor to the branch groove side.
With this configuration, the foreign matter that has entered the gap between the seal body and the outer peripheral surface of the rotor is guided to the branch groove side by the guide surface. Thereby, the foreign matter can be more reliably fed into the communication groove through the branch groove.
 この発明の第八態様によれば、第一から第七態様の何れか一つの態様に係る軸シール装置は、作動流体を前記連通溝に案内する周方向案内部材を備えていてもよい。周方向案内部材は、前記連通溝に対し、前記ロータが前記中心軸周りに回転することで前記ロータの径方向外側で生じる前記作動流体の前記周方向の流れの下流側に設けられている。
 このように構成することで、作動流体とともに周方向に流れる異物が、周方向案内部材によって、連通溝に案内される。これによって、異物を、より確実に連通溝に送り込むことができる。
According to the eighth aspect of the present invention, the shaft seal device according to any one of the first to seventh aspects may include a circumferential guide member that guides the working fluid to the communication groove. The circumferential guide member is provided on the downstream side of the circumferential flow of the working fluid generated on the radially outer side of the rotor as the rotor rotates around the central axis with respect to the communication groove.
By comprising in this way, the foreign material which flows with a working fluid in the circumferential direction is guided to a communicating groove by the circumferential direction guide member. As a result, the foreign matter can be more reliably fed into the communication groove.
 この発明の第九態様によれば、軸シール装置は、ロータと前記ロータを囲うステータとの間に設けられて、前記ロータの中心軸方向で高圧領域と低圧領域とを仕切る。軸シール装置は、互いに周方向の端面同士が隣接するように周方向に複数設けられたシールリング片からなるシールリングと、各前記シールリング片に固定されて前記ロータに対向するシール体と、を備える。軸シール装置は、前記シールリング片に対し、少なくとも前記高圧領域側に設けられ、前記シール体と前記ロータの外周面との隙間よりも径方向外方に作動流体を導く案内部材を備える。
 このように構成することで、案内部材によって作動流体がシール体とロータの外周面との隙間よりも径方向外方に案内される。これにより、ロータとステータとの間の空間に侵入した異物は、作動流体とともにシール体とロータの外周面との隙間よりも径方向外方に導かれ、シール体とロータの外周面との隙間に異物が侵入することを抑制できる。したがって、シール体まで異物が到達することを抑制できる。これによって、異物によってシール体が影響を受けることを抑制できる。
According to the ninth aspect of the present invention, the shaft seal device is provided between the rotor and the stator surrounding the rotor, and partitions the high pressure region and the low pressure region in the central axis direction of the rotor. The shaft seal device includes a seal ring including a plurality of seal ring pieces provided in the circumferential direction so that end faces in the circumferential direction are adjacent to each other, a seal body fixed to each of the seal ring pieces and facing the rotor, Is provided. The shaft seal device includes a guide member that is provided at least on the high-pressure region side with respect to the seal ring piece and guides the working fluid radially outward from a gap between the seal body and the outer peripheral surface of the rotor.
With this configuration, the working fluid is guided radially outward from the gap between the seal body and the outer peripheral surface of the rotor by the guide member. As a result, foreign matter that has entered the space between the rotor and the stator is guided radially outward together with the working fluid from the gap between the seal body and the outer circumferential surface of the rotor, and the gap between the seal body and the outer circumferential surface of the rotor. It is possible to prevent foreign matter from entering the door. Therefore, it can suppress that a foreign material reaches a seal body. Thereby, it can suppress that a sealing body is influenced by a foreign material.
 この発明の第十態様によれば、回転機械は、第一から第九態様の何れか一つの態様における軸シール装置を備える。
 このように、異物を、連通溝を介して、シール体を迂回して排出することで、異物によってシール体が影響を受けることを抑制できる。高圧領域と低圧領域との差圧が小さいシールリング片の端面同士が対向する部分に連通溝を形成することで、連通溝による影響が小さくて済み、回転機械の作動効率の低下を抑制することができる。さらに、連通溝をシールリング片の端面に形成することで、連通溝を形成するための加工を容易に行うことができる。
According to a tenth aspect of the present invention, a rotary machine includes the shaft seal device according to any one of the first to ninth aspects.
In this way, by discharging the foreign matter around the seal body via the communication groove, it is possible to suppress the seal body from being affected by the foreign matter. By forming a communication groove in the part where the end faces of the seal ring pieces with a small differential pressure between the high pressure area and the low pressure area face each other, the influence of the communication groove can be reduced, and the reduction in the operating efficiency of the rotating machine can be suppressed. Can do. Furthermore, the process for forming a communication groove can be easily performed by forming a communication groove in the end surface of a seal ring piece.
 上記軸シール装置、回転機械によれば、シール特性への影響を抑制できるとともに、シール体への異物の影響を低減させることができる。 According to the shaft sealing device and the rotating machine, the influence on the sealing characteristics can be suppressed, and the influence of the foreign matter on the sealing body can be reduced.
この発明の一実施形態における、回転機械に設けられた軸シール装置の構成を、ロータの中心軸方向から見た図である。It is the figure which looked at the structure of the shaft seal apparatus provided in the rotary machine in one Embodiment of this invention from the center axis direction of the rotor. 上記軸シール装置の第一実施形態における構成を示す図であり、図1のX-X線に沿う断面図である。It is a figure which shows the structure in 1st embodiment of the said shaft seal apparatus, and is sectional drawing which follows the XX line of FIG. 上記軸シール装置を構成するシールセグメントの端面に形成された連通溝を示す図である。It is a figure which shows the communicating groove formed in the end surface of the seal segment which comprises the said shaft seal apparatus. 上記連通溝が形成されたシール部材本体の斜視図である。It is a perspective view of the sealing member main body in which the said communicating groove was formed. 上記軸シール装置の第二実施形態における構成を示す断面図である。It is sectional drawing which shows the structure in 2nd embodiment of the said shaft seal apparatus. 上記軸シール装置の第二実施形態の第一変形例における構成を示す断面図である。It is sectional drawing which shows the structure in the 1st modification of 2nd embodiment of the said shaft seal apparatus. 上記軸シール装置の第二実施形態の第二変形例における構成を示す断面図である。It is sectional drawing which shows the structure in the 2nd modification of 2nd embodiment of the said shaft seal apparatus. 上記軸シール装置の第三実施形態における構成を示す断面図である。It is sectional drawing which shows the structure in 3rd embodiment of the said shaft seal apparatus. 上記軸シール装置の第三実施形態の変形例における構成を示す断面図である。It is sectional drawing which shows the structure in the modification of 3rd embodiment of the said shaft seal apparatus. 上記軸シール装置の第四実施形態において、固定シール部材とシールセグメントとの対向部に設けられた周方向案内部材を、ロータの中心軸方向から見た図である。In 4th embodiment of the said shaft seal apparatus, it is the figure which looked at the circumferential direction guide member provided in the opposing part of a fixed seal member and a seal segment from the central-axis direction of the rotor.
 以下、この発明の一実施形態における軸シール装置、回転機械を図面に基づいて説明する。
(第一実施形態)
 図1は、この発明の一実施形態における回転機械に設けられた軸シール装置の構成を、ロータの中心軸方向から見た図である。図2は、図1のX-X線に沿う断面図である。図3は、軸シール装置を構成するシールセグメントの端面に形成された連通溝を示す図である。図4は、連通溝が形成されたシール部材本体の斜視図である。
 図1、図2に示すように、蒸気タービンやガスタービン等の回転機械100は、その車室(図示無し)に取り付けられたステータ103と、ステータ103の径方向Drの内側に配置され、軸受(図示無し)によって回転自在に設けられたロータ102と、を備えている。
Hereinafter, a shaft seal device and a rotary machine according to an embodiment of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a view of the configuration of a shaft seal device provided in a rotary machine according to an embodiment of the present invention, viewed from the direction of the central axis of a rotor. FIG. 2 is a sectional view taken along line XX in FIG. FIG. 3 is a view showing a communication groove formed on an end face of a seal segment constituting the shaft seal device. FIG. 4 is a perspective view of the seal member main body in which a communication groove is formed.
As shown in FIGS. 1 and 2, a rotary machine 100 such as a steam turbine or a gas turbine is provided with a stator 103 attached to a passenger compartment (not shown) thereof and an inner side of the stator 103 in the radial direction Dr. And a rotor 102 provided rotatably (not shown).
 軸シール装置1Aは、ロータ102とステータ103との間の環状空間に設けられている。
 図2に示すように、軸シール装置1Aは、環状空間を、ロータ102の中心軸方向Daの第一の側に形成された低圧領域S1と、中心軸方向Daの第二の側に形成された高圧領域S2とを区分する。
The shaft seal device 1 </ b> A is provided in an annular space between the rotor 102 and the stator 103.
As shown in FIG. 2, the shaft seal device 1 </ b> A has an annular space formed in the low pressure region S <b> 1 formed on the first side in the central axial direction Da of the rotor 102 and on the second side in the central axial direction Da. And the high pressure region S2.
 図1に示すように、軸シール装置1Aは、円弧状に延びる複数(本実施形態では8つ)のシールセグメント(シールリング片)20Aを備えている。複数のシールセグメント(シールリング片)20Aは、周方向Dcに環状に配置されている。軸シール装置1Aは、これら8つのシールセグメント20Aを周方向Dcに配置することで、全体として円環状のシールリング5を構成している。即ち、軸シール装置1Aのシールリング5は、ロータ102の周方向Dcに複数に分割されたような構造となっている。 As shown in FIG. 1, the shaft seal device 1A includes a plurality of (eight in the present embodiment) seal segments (seal ring pieces) 20A extending in an arc shape. The plurality of seal segments (seal ring pieces) 20A are annularly arranged in the circumferential direction Dc. The shaft seal device 1A constitutes an annular seal ring 5 as a whole by arranging these eight seal segments 20A in the circumferential direction Dc. That is, the seal ring 5 of the shaft seal device 1 </ b> A has a structure that is divided into a plurality of portions in the circumferential direction Dc of the rotor 102.
 図2に示すように、シールセグメント20Aは、ステータ103の径方向Drの内側に設けられたハウジング104に保持されている。ハウジング104には、ロータ102の中心軸周りの周方向Dcに連続して延びる溝105が形成されている。
 溝105は、収容凹部(高圧流体導入部)106と、連通部107と、を有している。収容凹部106は、断面矩形状に形成されている。連通部107は、収容凹部106とハウジング104の内周面104fとを連通する。連通部107に対し、中心軸方向Daの両側には、収容凹部106の内壁面106aよりも中心軸方向Daの内側に向かって突出する突出部108がそれぞれ形成されている。これら突出部108により、連通部107は、中心軸方向Daの開口寸法が、収容凹部106の中心軸方向Daの幅寸法よりも小さくなっている。
As shown in FIG. 2, the seal segment 20 </ b> A is held by a housing 104 provided inside the stator 103 in the radial direction Dr. The housing 104 is formed with a groove 105 extending continuously in the circumferential direction Dc around the central axis of the rotor 102.
The groove 105 has an accommodation recess (high-pressure fluid introduction part) 106 and a communication part 107. The accommodating recess 106 is formed in a rectangular cross section. The communication portion 107 communicates the accommodating recess 106 with the inner peripheral surface 104 f of the housing 104. Protruding portions 108 are formed on both sides of the communication portion 107 in the central axis direction Da so as to protrude from the inner wall surface 106a of the housing recess 106 toward the inside of the central axis direction Da. Due to these protrusions 108, the communication portion 107 has an opening dimension in the central axis direction Da smaller than a width dimension in the central axial direction Da of the housing recess 106.
 シールセグメント20Aは、シール部材本体21と、薄板シール(シール体)25と、シールフィン(シール体)26と、を備えている。
 シール部材本体21は、受圧部22と、ベース部23と、連結部24と、を一体に備えている。
The seal segment 20 </ b> A includes a seal member main body 21, a thin plate seal (seal body) 25, and a seal fin (seal body) 26.
The seal member body 21 is integrally provided with a pressure receiving portion 22, a base portion 23, and a connecting portion 24.
 受圧部22は、収容凹部106内に収容されている。受圧部22の径方向Drの外側には、受圧面22fが形成されている。
 ここで、シール部材本体21は、周方向Dcに間隔をあけた複数個所に、切欠き35を備えている。これら切欠き35は、受圧面22fと収容凹部106の径方向Drの外側に位置する内周面106gとの間の空間106sと、高圧領域S2とを連通する。
The pressure receiving portion 22 is housed in the housing recess 106. A pressure receiving surface 22 f is formed outside the pressure receiving portion 22 in the radial direction Dr.
Here, the seal member main body 21 includes notches 35 at a plurality of locations spaced in the circumferential direction Dc. These notches communicate the space 106 s between the pressure receiving surface 22 f and the inner peripheral surface 106 g located outside the radial direction Dr of the housing recess 106 and the high pressure region S <b> 2.
 ベース部23は、ハウジング104の内周面104fよりも径方向Dr内側に配置されている。ベース部23は、その中心軸方向Daの幅寸法が、連通部107の中心軸方向Daの幅寸法よりも大きくなっている。
 連結部24は、連通部107を通して受圧部22とベース部23とを連結している。
The base portion 23 is disposed on the inner side in the radial direction Dr from the inner peripheral surface 104 f of the housing 104. The width dimension of the base portion 23 in the central axis direction Da is larger than the width dimension of the communication portion 107 in the central axis direction Da.
The connecting part 24 connects the pressure receiving part 22 and the base part 23 through the communication part 107.
 薄板シール25は、ロータ102の周方向Dcに互いに微少間隔を開けて多重に配列された複数枚の金属製の薄板シール片27を備える。複数枚の薄板シール片27は、径方向Dr外側の基端部27aが、例えば溶接によって互いに固定されている。 The thin plate seal 25 includes a plurality of metal thin plate seal pieces 27 arranged in a multiple manner with a minute interval in the circumferential direction Dc of the rotor 102. In the plurality of thin plate seal pieces 27, the base end portions 27a outside the radial direction Dr are fixed to each other by welding, for example.
 薄板シール片27は、径方向Drの外側の基端部27aが、保持部材28によって保持されている。保持部材28は、保持リング28a,28bと、接続部材28cと、を備えている。保持リング28a,28bは、断面U字型に形成されている。接続部材28cは、これらの保持リング28a,28b同士を接続している薄板シール片27の基端部27aには、中心軸方向Daの両側に延びる凸部27c,27dが形成されている。薄板シール片27は、凸部27c,27dが保持部材28の保持リング28a,28bに嵌め込まれることで、保持部材28に保持されている。これら薄板シール片27は、ロータ102の回転方向に対してロータ102の外周面となす角が鋭角となるよう、保持部材28に保持されている。
 薄板シール片27の基端部27aと保持部材28との間には、各薄板シール片27のがたつきを抑制するためのスペーサ29が設けられている。
The thin plate seal piece 27 is held by a holding member 28 at a base end portion 27 a outside in the radial direction Dr. The holding member 28 includes holding rings 28a and 28b and a connection member 28c. The retaining rings 28a and 28b are formed in a U-shaped cross section. In the connecting member 28c, convex portions 27c and 27d extending on both sides in the central axis direction Da are formed at the base end portion 27a of the thin plate seal piece 27 connecting the holding rings 28a and 28b. The thin plate seal piece 27 is held by the holding member 28 by the convex portions 27 c and 27 d being fitted into the holding rings 28 a and 28 b of the holding member 28. These thin plate sealing pieces 27 are held by the holding member 28 so that the angle formed with the outer peripheral surface of the rotor 102 with respect to the rotation direction of the rotor 102 becomes an acute angle.
Between the base end portion 27 a of the thin plate sealing piece 27 and the holding member 28, a spacer 29 for suppressing rattling of each thin plate sealing piece 27 is provided.
 薄板シール25及び保持部材28は、シール部材本体21に形成された凹溝30に収容されている。凹溝30は、外周溝部31と、内周溝部32と、を備えている。外周溝部31は、シール部材本体21の径方向Drの中間部に形成され、周方向Dc(図1参照)に連続して延びている。内周溝部32は、外周溝部31から径方向Drの内側に向かって延び、ベース部23の内周面(言い換えれば、シール部材本体21の内周面21f)に開口している。外周溝部31は、内周溝部32よりも、中心軸方向Daの幅寸法が大きく形成されている。保持部材28は、この外周溝部31内に収容されている。薄板シール片27は、その径方向Drの内側の先端部27bが、内周溝部32を通してベース部23から径方向Drの内側に突出している。 The thin plate seal 25 and the holding member 28 are accommodated in a concave groove 30 formed in the seal member main body 21. The concave groove 30 includes an outer peripheral groove portion 31 and an inner peripheral groove portion 32. The outer peripheral groove portion 31 is formed at an intermediate portion in the radial direction Dr of the seal member main body 21 and continuously extends in the peripheral direction Dc (see FIG. 1). The inner circumferential groove portion 32 extends from the outer circumferential groove portion 31 toward the inner side in the radial direction Dr, and opens to the inner circumferential surface of the base portion 23 (in other words, the inner circumferential surface 21f of the seal member main body 21). The outer circumferential groove portion 31 is formed to have a larger width dimension in the central axial direction Da than the inner circumferential groove portion 32. The holding member 28 is accommodated in the outer peripheral groove portion 31. The thin plate seal piece 27 has a distal end portion 27 b inside in the radial direction Dr protruding from the base portion 23 through the inner circumferential groove portion 32 inward in the radial direction Dr.
 保持部材28の径方向Drの外側には、板バネ33が設けられている。板バネ33は、各薄板シール片27を径方向Drの内側のロータ102に向かって付勢する。 A leaf spring 33 is provided outside the holding member 28 in the radial direction Dr. The plate spring 33 urges each thin plate seal piece 27 toward the rotor 102 inside in the radial direction Dr.
 このような薄板シール25は、ロータ102の停止時に、各薄板シール片27の先端部27bが、所定の予圧でロータ102に接触する。薄板シール25は、ロータ102の回転時に、ロータ102が回転することで生じる動圧効果によって、薄板シール片27の先端部27bが径方向外側に変位してロータ102から浮上する。その結果、薄板シール片27とロータ102とが僅かなシールクリアランスを介して非接触状態となる。これにより、薄板シール片27及びロータ102の磨耗が防止されるとともに高圧領域S2から低圧領域S1に向かっての作動流体(蒸気)の漏洩が抑制される。 In such a thin plate seal 25, when the rotor 102 is stopped, the leading end portion 27b of each thin plate seal piece 27 contacts the rotor 102 with a predetermined preload. When the rotor 102 rotates, the thin plate seal 25 floats from the rotor 102 by the distal end portion 27 b of the thin plate seal piece 27 being displaced radially outward by the dynamic pressure effect generated by the rotation of the rotor 102. As a result, the thin plate seal piece 27 and the rotor 102 are brought into a non-contact state through a slight seal clearance. Thereby, wear of the thin plate seal piece 27 and the rotor 102 is prevented, and leakage of the working fluid (steam) from the high pressure region S2 toward the low pressure region S1 is suppressed.
 シールフィン26は、シール部材本体21のベース部23に設けられている。シールフィン26は、ロータ102の中心軸方向Daに互いに間隔をあけて複数設けられている。各シールフィン26は、シール部材本体21のベース部23から、径方向Drの内側に向かって突出している。シールフィン26は、薄板シール25を挟んで、中心軸方向Daの両側にそれぞれ複数設けられている。これらのシールフィン26によって、薄板シール25の高圧側及び低圧側にラビリンスシールが構成されている。 The seal fin 26 is provided on the base portion 23 of the seal member main body 21. A plurality of seal fins 26 are provided at intervals in the central axis direction Da of the rotor 102. Each seal fin 26 protrudes from the base portion 23 of the seal member main body 21 toward the inside in the radial direction Dr. A plurality of seal fins 26 are provided on both sides of the central axis direction Da with the thin plate seal 25 interposed therebetween. A labyrinth seal is formed on the high-pressure side and the low-pressure side of the thin plate seal 25 by these seal fins 26.
 シールセグメント20Aは、定格運転時においては、シールセグメント20Aに対して中心軸方向Daの両側の低圧領域S1と高圧領域S2とで流体の圧力に差が生じる。図2に示すように、高圧領域S2の高圧流体は、切欠き35を通して、受圧面22fと収容凹部106の径方向外側の内周面106gとの間の空間106sに流れ込む。すると、図1に示すように、流れ込んだ高圧流体によって、受圧面22fを径方向Drの外側から内側に向かって押圧する背面圧力Phが生じる。この背面圧力Phによって、シール部材本体21はロータ102に近い側に移動する。これにより、薄板シール25及びシールフィン26とロータ102の外周面との間のクリアランスが減少し、高圧領域S2と低圧領域S1とが仕切られて、シール機能が発現する。 During the rated operation, the seal segment 20A has a difference in fluid pressure between the low pressure region S1 and the high pressure region S2 on both sides in the central axis direction Da with respect to the seal segment 20A. As shown in FIG. 2, the high-pressure fluid in the high-pressure region S <b> 2 flows through the notch 35 into the space 106 s between the pressure-receiving surface 22 f and the inner peripheral surface 106 g on the radially outer side of the housing recess 106. Then, as shown in FIG. 1, the back pressure Ph that presses the pressure receiving surface 22f inward from the outside in the radial direction Dr is generated by the high-pressure fluid that has flowed in. With this back pressure Ph, the seal member main body 21 moves closer to the rotor 102. Thereby, the clearance between the thin plate seal 25 and the seal fin 26 and the outer peripheral surface of the rotor 102 is reduced, and the high pressure region S2 and the low pressure region S1 are partitioned, and a sealing function is exhibited.
 上記したような軸シール装置1Aは、シールセグメント20Aに、連通溝50を備えている。この実施形態では、図3、図4に示すように、例えば、連通溝50を、シールセグメント20Aのシール部材本体21の周方向Dcの端部に位置する端面21sに形成した。 The shaft seal device 1A as described above includes a communication groove 50 in the seal segment 20A. In this embodiment, as shown in FIGS. 3 and 4, for example, the communication groove 50 is formed on the end surface 21s located at the end of the seal member body 21 of the seal segment 20A in the circumferential direction Dc.
 連通溝50は、端面21sに沿って延び、端面21sから周方向Dcの内方に凹む溝状に形成されている。連通溝50は、その一端部50aが低圧領域S1に向かって開口し、他端部50bが高圧領域S2に向かって開口している。連通溝50は、一端部50a、他端部50bが、それぞれ中心軸方向Daに延びている。連通溝50は、一端部50aと他端部50bとの間に、径方向流路50c,50dと、軸方向流路50eと、を有する。径方向流路50c,50dは、一端部50a、他端部50bのそれぞれから径方向Drの外側に向かって延びている。軸方向流路50eは、薄板シール25の径方向Drの外側に位置する。軸方向流路50eは、中心軸方向Daに延び、径方向流路50c,50dの径方向Drの外側の端部同士を接続している。つまり、連通溝50は、薄板シール25を迂回するように形成されている。この連通溝50によって、高圧領域S2と低圧領域S1とが連通されている。 The communication groove 50 is formed in a groove shape extending along the end surface 21s and recessed inward in the circumferential direction Dc from the end surface 21s. One end portion 50a of the communication groove 50 opens toward the low pressure region S1, and the other end portion 50b opens toward the high pressure region S2. The communication groove 50 has one end 50a and the other end 50b extending in the central axis direction Da. The communication groove 50 includes radial flow paths 50c and 50d and an axial flow path 50e between the one end 50a and the other end 50b. The radial flow paths 50c and 50d extend from the one end 50a and the other end 50b toward the outside in the radial direction Dr. The axial flow path 50 e is located outside the radial direction Dr of the thin plate seal 25. The axial flow path 50e extends in the central axial direction Da and connects the outer ends of the radial flow paths 50c and 50d in the radial direction Dr. That is, the communication groove 50 is formed so as to bypass the thin plate seal 25. The communication groove 50 communicates the high pressure region S2 and the low pressure region S1.
 この実施形態で例示する連通溝50は、中心軸方向Daにおいて互いに隣接するシールフィン26同士の間に連通する分岐溝51を複数備えている。これら分岐溝51は、シール部材本体21の内周面21fにおいて、径方向Drの内側に向かって開口している。これら分岐溝51は、内周面21fから径方向Drの外側に向かって延び、連通溝50の一端部50a、他端部50bにそれぞれ接続されている。 The communication groove 50 exemplified in this embodiment includes a plurality of branch grooves 51 communicating between the seal fins 26 adjacent to each other in the central axis direction Da. These branch grooves 51 are open toward the inside in the radial direction Dr on the inner peripheral surface 21 f of the seal member main body 21. These branch grooves 51 extend from the inner peripheral surface 21f toward the outer side in the radial direction Dr, and are connected to one end 50a and the other end 50b of the communication groove 50, respectively.
 連通溝50は、シールセグメント20Aのシール部材本体21の端面21sに形成されている。シールセグメント20Aの端面21s同士が周方向Dcで隣接する部分においては、互いに隣接する端面21s同士の隙間を通して、高圧領域S2から低圧領域S1に向けて作動流体が漏れる。ステータ103とロータ102との間の空間に侵入した異物は、この端面21s同士の隙間を流れる作動流体の漏れ流れとともに、連通溝50を通過する。このようにして、ロータ102とステータ103との間の空間に侵入した異物は、連通溝50を介して、薄板シール25を迂回して低圧領域S1に排出される。
 また、異物がシール部材本体21の内周面21fとロータ102の外周面102fとの隙間に入り込んだ場合、異物は、複数のシールフィン26の間に設けられた分岐溝51から連通溝50に入り、この連通溝50を通して、薄板シール25を迂回して低圧領域S1に排出される。
The communication groove 50 is formed on the end surface 21s of the seal member main body 21 of the seal segment 20A. In the portion where the end surfaces 21s of the seal segment 20A are adjacent to each other in the circumferential direction Dc, the working fluid leaks from the high pressure region S2 toward the low pressure region S1 through the gap between the adjacent end surfaces 21s. The foreign matter that has entered the space between the stator 103 and the rotor 102 passes through the communication groove 50 together with the leakage flow of the working fluid flowing through the gap between the end faces 21s. In this way, the foreign matter that has entered the space between the rotor 102 and the stator 103 bypasses the thin plate seal 25 via the communication groove 50 and is discharged to the low pressure region S1.
Further, when foreign matter enters the gap between the inner peripheral surface 21 f of the seal member main body 21 and the outer peripheral surface 102 f of the rotor 102, the foreign matter enters the communication groove 50 from the branch groove 51 provided between the plurality of seal fins 26. Then, through the communication groove 50, the thin plate seal 25 is bypassed and discharged to the low pressure region S1.
 したがって、上述した第一実施形態の軸シール装置1A、回転機械100によれば、ロータ102とステータ103との間の空間に侵入した異物が、連通溝50を介して、薄板シール25を迂回して排出される。これによって、異物によって薄板シール25が影響を受けることを抑制できる。
 シールセグメント20Aの端面21s同士の隙間を通して、高圧領域S2と低圧領域S1との間で作動流体が漏れるため、連通溝50が設けられた部分においては、そもそも高圧領域S2と低圧領域S1との差圧が小さい。このように差圧が小さい部分に設けた連通溝50を通して作動流体が漏れても、そもそもの差圧が小さいので、連通溝50における作動流体の漏れによる影響が小さくて済む。
 さらに、連通溝50をシール部材本体21の端面21sに形成することで、シール部材本体21に貫通孔を形成する場合に比較すると、連通溝50を形成するための加工を、エンドミルや放電加工等を用いて容易に行うことができる。
Therefore, according to the shaft seal device 1 </ b> A and the rotary machine 100 of the first embodiment described above, the foreign matter that has entered the space between the rotor 102 and the stator 103 bypasses the thin plate seal 25 via the communication groove 50. Discharged. Thereby, it can suppress that the thin plate seal | sticker 25 is influenced by a foreign material.
Since the working fluid leaks between the high pressure region S2 and the low pressure region S1 through the gap between the end surfaces 21s of the seal segment 20A, the difference between the high pressure region S2 and the low pressure region S1 is originally provided in the portion where the communication groove 50 is provided. The pressure is small. Even if the working fluid leaks through the communication groove 50 provided in the portion where the differential pressure is small in this way, the effect of the leakage of the working fluid in the communication groove 50 is small because the differential pressure is small in the first place.
Further, by forming the communication groove 50 on the end surface 21 s of the seal member main body 21, the processing for forming the communication groove 50 is performed by an end mill, electric discharge machining, or the like as compared with the case where the through hole is formed in the seal member main body 21. Can be easily performed.
 さらに、中心軸方向Daにおいて互いに隣接するシールフィン26同士の間に、連通溝50に連通する分岐溝51が設けられている。これによって、異物がシール部材本体21の内周面21fとロータ102の外周面102fとの隙間に入り込んだ場合であっても、分岐溝51を通して、及び連通溝50を介して、薄板シール25を迂回して異物を排出することができる。 Further, a branch groove 51 communicating with the communication groove 50 is provided between the seal fins 26 adjacent to each other in the central axis direction Da. As a result, even if the foreign matter enters the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102, the thin plate seal 25 is passed through the branch groove 51 and the communication groove 50. It is possible to discharge foreign substances by detour.
 このようにすることで、軸シール装置1Aとしてのシール特性への影響を抑制できるとともに、薄板シール25への異物の影響を低減させることができる。 In this way, the influence on the sealing characteristics of the shaft seal device 1A can be suppressed, and the influence of foreign matter on the thin plate seal 25 can be reduced.
(第二実施形態)
 次に、この発明に係る軸シール装置、回転機械の第二実施形態について説明する。以下に説明する第二実施形態においては、第一実施形態で示した構成に加えて、案内部材を備える構成のみが異なるので、図1を援用するとともに、第一実施形態と同一部分に同一符号を付して説明する。また第一実施形態と重複する説明は省略する。
(Second embodiment)
Next, a second embodiment of the shaft seal device and the rotary machine according to the present invention will be described. In the second embodiment described below, in addition to the configuration shown in the first embodiment, only the configuration including the guide member is different, so that FIG. 1 is used and the same reference numerals are used for the same parts as in the first embodiment. Will be described. Further, the description overlapping with the first embodiment is omitted.
 図1に示すように、軸シール装置1Bは、上記第一実施形態で示した軸シール装置1Aと同様、ロータ102とステータ103との間の環状空間に設けられている。軸シール装置1Bは、複数のシールセグメント(シールリング片)20Bを備える。 As shown in FIG. 1, the shaft seal device 1B is provided in an annular space between the rotor 102 and the stator 103, like the shaft seal device 1A shown in the first embodiment. The shaft seal device 1B includes a plurality of seal segments (seal ring pieces) 20B.
 図5は、軸シール装置の第二実施形態における構成を示す断面図である。
 図5に示すように、軸シール装置1Bは、環状空間を、ロータ102の中心軸方向Daの第一の側に形成された低圧領域S1と、中心軸方向Daの第二の側に形成された高圧領域S2とを区分する。
 シールセグメント20Bは、シール部材本体21と、薄板シール25と、シールフィン26とを有している。
FIG. 5 is a cross-sectional view showing a configuration in the second embodiment of the shaft seal device.
As shown in FIG. 5, the shaft seal device 1 </ b> B has an annular space formed in the low pressure region S <b> 1 formed on the first side in the central axial direction Da of the rotor 102 and on the second side in the central axial direction Da. And the high pressure region S2.
The seal segment 20 </ b> B includes a seal member main body 21, a thin plate seal 25, and seal fins 26.
 シールセグメント20Bは、シール部材本体21の端面21sに、連通溝50を備えている。
 連通溝50は、端面21sに沿って延び、端面21sから周方向Dcの内方に凹む溝状に形成されている。連通溝50は、その一端部50aが低圧領域S1に向かって開口し、他端部50bが高圧領域S2に向かって開口している。連通溝50は、一端部50aと他端部50bとの間に、径方向流路50c,50dと、軸方向流路50eと、を有し、薄板シール25迂回するように形成されている。この連通溝50によって、高圧領域S2と低圧領域S1とが連通されている。
The seal segment 20 </ b> B includes a communication groove 50 on the end surface 21 s of the seal member main body 21.
The communication groove 50 is formed in a groove shape extending along the end surface 21s and recessed inward in the circumferential direction Dc from the end surface 21s. One end portion 50a of the communication groove 50 opens toward the low pressure region S1, and the other end portion 50b opens toward the high pressure region S2. The communication groove 50 has radial flow paths 50c and 50d and an axial flow path 50e between the one end 50a and the other end 50b, and is formed so as to bypass the thin plate seal 25. The communication groove 50 communicates the high pressure region S2 and the low pressure region S1.
 連通溝50は、中心軸方向Daにおいて互いに隣接するシールフィン26同士の間に連通する分岐溝51を備える。 The communication groove 50 includes a branch groove 51 communicating between the seal fins 26 adjacent to each other in the central axis direction Da.
 シールセグメント20Bは、シール部材本体21の内周面21fとロータ102の外周面102fとの隙間よりも径方向Drの外側に作動流体を導く案内部材60を備えている。この実施形態において、案内部材60は、複数の翼61からなる。翼61は、ロータ102の外周面102fに、周方向Dcに間隔をあけて複数設けられている。これら複数の翼61は、ロータ102と一体に回転することで、作動流体を径方向Drの外側に導く。 The seal segment 20B includes a guide member 60 that guides the working fluid to the outside in the radial direction Dr rather than the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102. In this embodiment, the guide member 60 includes a plurality of wings 61. A plurality of blades 61 are provided on the outer peripheral surface 102f of the rotor 102 at intervals in the circumferential direction Dc. The plurality of blades 61 rotate integrally with the rotor 102 to guide the working fluid to the outside in the radial direction Dr.
 このように構成することで、作動流体は、案内部材60によって、シール部材本体21の内周面21fとロータ102の外周面102fとの隙間よりも径方向Drの外側に案内される。これにより、異物は、作動流体とともに径方向Drの外側に導かれ、シール部材本体21の内周面21fとロータ102の外周面102fとの隙間に入り込みにくくなる。 With this configuration, the working fluid is guided by the guide member 60 to the outside in the radial direction Dr rather than the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102. Accordingly, the foreign matter is guided to the outside in the radial direction Dr together with the working fluid, and is difficult to enter the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102.
 したがって、上述した第二実施形態によれば、案内部材60によって作動流体の流れFbがシール部材本体21の内周面21fとロータ102の外周面102fとの隙間よりも径方向Drの外側に案内される。これにより、シール部材本体21の内周面21fとロータ102の外周面102fとの隙間に異物が侵入することを抑制できる。径方向Drの外側に作動流体の流れFbが案内されることで、異物は作動流体とともに連通溝50に流入し易くなる。その結果、薄板シール25まで異物が到達することを抑制できる。 Therefore, according to the second embodiment described above, the guide member 60 guides the flow Fb of the working fluid to the outside in the radial direction Dr with respect to the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102. Is done. Thereby, it can suppress that a foreign material penetrate | invades in the clearance gap between the internal peripheral surface 21f of the sealing member main body 21, and the outer peripheral surface 102f of the rotor 102. FIG. By guiding the flow Fb of the working fluid to the outside in the radial direction Dr, the foreign matter easily flows into the communication groove 50 together with the working fluid. As a result, foreign substances can be prevented from reaching the thin plate seal 25.
 上記第一実施形態と同様、ロータ102とステータ103との間の空間に侵入した異物が、連通溝50を介して、薄板シール25を迂回して排出される。これによって、異物によって薄板シール25が影響を受けることを抑制できる。
 さらに、シールセグメント20Bの端面21s同士の隙間を通して、高圧領域S2と低圧領域S1との間で作動流体が漏れる部分に連通溝50を設けた。これによって、連通溝50を通して作動流体が漏れても、連通溝50による影響が小さくて済む。
 さらに、連通溝50をシール部材本体21の端面21sに形成することで、シール部材本体21に貫通孔を形成する場合に比較すると、連通溝50を形成するための加工を容易に行うことができる。
As in the first embodiment, foreign matter that has entered the space between the rotor 102 and the stator 103 is discharged via the communication groove 50 while bypassing the thin plate seal 25. Thereby, it can suppress that the thin plate seal | sticker 25 is influenced by a foreign material.
Further, the communication groove 50 is provided in a portion where the working fluid leaks between the high pressure region S2 and the low pressure region S1 through the gap between the end surfaces 21s of the seal segment 20B. Accordingly, even if the working fluid leaks through the communication groove 50, the influence of the communication groove 50 can be reduced.
Furthermore, by forming the communication groove 50 on the end surface 21 s of the seal member main body 21, the processing for forming the communication groove 50 can be easily performed as compared with the case where the through hole is formed in the seal member main body 21. .
 このようにすることで、軸シール装置1Bとしてのシール特性への影響を抑制できるとともに、薄板シール25への異物の影響を低減させることができる。 By doing in this way, the influence on the seal characteristics as the shaft seal device 1B can be suppressed, and the influence of foreign matter on the thin plate seal 25 can be reduced.
(第二実施形態の第一変形例)
 第二実施形態では、案内部材60として、翼61を備えるようにしたが、これに限るものではない。
 図6は、軸シール装置の第二実施形態の第一変形例における構成を示す断面図である。
 この図6に示すように、軸シール装置1Cのシールセグメント(シールリング片)20Cは、シール部材本体21の内周面21fとロータ102の外周面102fとの隙間よりも径方向Drの外側に作動流体を導く案内部材60を備えている。この実施形態において、案内部材60は、ロータ102の外周面102fに設けられ、径方向Drの外側に延びる壁体62である。
 この壁体62は、周方向Dcに沿って連続して延びている。壁体62は、シール部材本体21の内周面21fとロータ102の外周面102fとの隙間よりも、径方向Drの外側に延びる高さに形成するようにしてもよい。
(First modification of the second embodiment)
In the second embodiment, the wing 61 is provided as the guide member 60, but is not limited thereto.
FIG. 6 is a cross-sectional view illustrating a configuration in a first modification of the second embodiment of the shaft seal device.
As shown in FIG. 6, the seal segment (seal ring piece) 20C of the shaft seal device 1C is located on the outer side in the radial direction Dr with respect to the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102. A guide member 60 for guiding the working fluid is provided. In this embodiment, the guide member 60 is a wall body 62 provided on the outer peripheral surface 102f of the rotor 102 and extending outward in the radial direction Dr.
The wall 62 extends continuously along the circumferential direction Dc. The wall body 62 may be formed at a height extending outward in the radial direction Dr from the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102.
 このように構成することで、作動流体が壁体62に当たると、その流れFcが径方向Drの外側に向かって変わる。これによって、異物がシール部材本体21の内周面21fとロータ102の外周面102fとの隙間に入り込むことが抑えられる。径方向Drの外側に作動流体の流れFcが案内されることで、異物は作動流体とともに連通溝50に流入し易くなる。したがって、薄板シール25まで異物が到達することを抑制できる。 With this configuration, when the working fluid hits the wall body 62, the flow Fc changes toward the outside in the radial direction Dr. This prevents foreign matter from entering the gap between the inner peripheral surface 21 f of the seal member main body 21 and the outer peripheral surface 102 f of the rotor 102. Since the working fluid flow Fc is guided outside the radial direction Dr, the foreign matter easily flows into the communication groove 50 together with the working fluid. Therefore, it is possible to suppress foreign matters from reaching the thin plate seal 25.
(第二実施形態の第二変形例)
 図7は、軸シール装置の第二実施形態の第二変形例における構成を示す断面図である。
 この図7に示すように、軸シール装置1Dのシールセグメント(シールリング片)20Dは、シール部材本体21の内周面21fとロータ102の外周面102fとの隙間よりも径方向Drの外側に作動流体を導く案内部材60を備えている。
(Second modification of the second embodiment)
FIG. 7 is a cross-sectional view showing a configuration in a second modification of the second embodiment of the shaft seal device.
As shown in FIG. 7, the seal segment (seal ring piece) 20D of the shaft seal device 1D is located on the outer side in the radial direction Dr with respect to the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102. A guide member 60 for guiding the working fluid is provided.
 この実施形態において、案内部材60は、シール部材本体21に設けられ、径方向Drの内側に延びる傘状部材63である。傘状部材63は、ロータ102の中心軸周りの周方向Dcに連続して延びる円環状に形成されている。傘状部材63は、連通溝50の他端部50bに対して、ロータ102の中心軸を中心とする径方向Drの内側に設けられている。傘状部材63は、シール部材本体21のベース部23の側面から中心軸方向Daに向かって離間するにしたがって、そのロータ102の中心軸を中心とした外径が漸次窄まる傘状に形成されている。この傘状部材63は、ロータ102の外周面102fに接触しない。 In this embodiment, the guide member 60 is an umbrella-like member 63 provided on the seal member main body 21 and extending inward in the radial direction Dr. The umbrella-shaped member 63 is formed in an annular shape extending continuously in the circumferential direction Dc around the central axis of the rotor 102. The umbrella-shaped member 63 is provided inside the radial direction Dr with the central axis of the rotor 102 as the center with respect to the other end portion 50 b of the communication groove 50. The umbrella-shaped member 63 is formed in an umbrella shape in which the outer diameter around the central axis of the rotor 102 gradually decreases as the distance from the side surface of the base portion 23 of the seal member main body 21 toward the central axis direction Da increases. ing. The umbrella member 63 does not contact the outer peripheral surface 102 f of the rotor 102.
 このように構成することで、傘状部材63からなる案内部材60によって、傘状部材63に当たった作動流体の流れFdは、シール部材本体21の内周面21fとロータ102の外周面102fとの隙間よりも径方向Drの外側に導かれる。つまり、作動流体の流れFdは、連通溝50の他端部50bに向かって案内される。これにより、異物がシール部材本体21の内周面21fとロータ102の外周面102fとの隙間に入り込み難くなる。径方向Drの外側に作動流体の流れFdが案内されることで、異物は作動流体とともに連通溝50に流入し易くなる。したがって、薄板シール25まで異物が到達することを抑制できる。 With this configuration, the flow Fd of the working fluid hitting the umbrella-shaped member 63 by the guide member 60 including the umbrella-shaped member 63 causes the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102 to flow. It is guided to the outside in the radial direction Dr rather than the gap. That is, the working fluid flow Fd is guided toward the other end 50 b of the communication groove 50. This makes it difficult for foreign matter to enter the gap between the inner peripheral surface 21 f of the seal member main body 21 and the outer peripheral surface 102 f of the rotor 102. By guiding the flow Fd of the working fluid to the outside of the radial direction Dr, the foreign matter easily flows into the communication groove 50 together with the working fluid. Therefore, it is possible to suppress foreign matters from reaching the thin plate seal 25.
 第二実施形態及びその各変形例においては、連通溝50及び分岐溝51を備えない構成とすることも可能である。 In the second embodiment and its modifications, it is possible to adopt a configuration in which the communication groove 50 and the branch groove 51 are not provided.
(第三実施形態)
 次に、この発明に係る軸シール装置、回転機械の第三実施形態について説明する。以下に説明する第三実施形態においては、第一実施形態で示した構成に加えて、案内面を備える構成のみが異なるので、図1を援用するとともに、第一実施形態と同一部分に同一符号を付して説明する。また、第一実施形態と重複する説明は省略する。
(Third embodiment)
Next, a third embodiment of the shaft seal device and the rotary machine according to the present invention will be described. In the third embodiment described below, in addition to the configuration shown in the first embodiment, only the configuration including the guide surface is different, so that FIG. 1 is used and the same reference numerals are used for the same parts as in the first embodiment. Will be described. Moreover, the description which overlaps with 1st embodiment is abbreviate | omitted.
 図1に示すように、軸シール装置1Eは、第一実施形態の軸シール装置1Aと同様に、ロータ102とステータ103との間の環状空間に設けられている。軸シール装置1Eは、複数のシールセグメント(シールリング片)20Eを備える。 As shown in FIG. 1, the shaft seal device 1E is provided in an annular space between the rotor 102 and the stator 103, like the shaft seal device 1A of the first embodiment. The shaft seal device 1E includes a plurality of seal segments (seal ring pieces) 20E.
 図8は、軸シール装置の第三実施形態における構成を示す断面図である。
 図8に示すように、軸シール装置1Eは、環状空間を、ロータ102の中心軸方向Daの第一の側に形成された低圧領域S1と、中心軸方向Daの第二の側に形成された高圧領域S2とを区分する。
FIG. 8 is a cross-sectional view showing the configuration of the third embodiment of the shaft seal device.
As shown in FIG. 8, the shaft seal device 1 </ b> E has an annular space formed in the low pressure region S <b> 1 formed on the first side in the central axial direction Da of the rotor 102 and on the second side in the central axial direction Da. And the high pressure region S2.
 シールセグメント20Eは、シール部材本体21と、薄板シール25と、シールフィン26とを有している。 The seal segment 20E includes a seal member main body 21, a thin plate seal 25, and seal fins 26.
 シールセグメント20Eは、シール部材本体21の端面21sに、連通溝50を備えている。連通溝50は、端面21sに沿って延び、端面21sから周方向Dcの内方に凹む溝状に形成されている。連通溝50は、その一端部50aが低圧領域S1に向かって開口し、他端部50bが高圧領域S2に向かって開口している。連通溝50は、一端部50aと他端部50bとの間に、径方向流路50c,50dと、軸方向流路50eと、を有し、薄板シール25を迂回するように形成されている。この連通溝50は、高圧領域S2と低圧領域S1とを連通させる。 The seal segment 20E includes a communication groove 50 on the end surface 21s of the seal member main body 21. The communication groove 50 is formed in a groove shape extending along the end surface 21s and recessed inward in the circumferential direction Dc from the end surface 21s. One end portion 50a of the communication groove 50 opens toward the low pressure region S1, and the other end portion 50b opens toward the high pressure region S2. The communication groove 50 has radial flow paths 50c and 50d and an axial flow path 50e between one end 50a and the other end 50b, and is formed so as to bypass the thin plate seal 25. . The communication groove 50 allows the high pressure region S2 and the low pressure region S1 to communicate with each other.
 連通溝50は、中心軸方向Daにおいて互いに隣接するシールフィン26同士の間に連通する分岐溝51を備える。 The communication groove 50 includes a branch groove 51 communicating between the seal fins 26 adjacent to each other in the central axis direction Da.
 シールセグメント20Eは、案内面64を備えている。案内面64は、シールフィン26において、作動流体の流れFの上流側を向いて形成されている。
 ロータ102は、案内面65を備えている。案内面65は、ロータ102の外周面102fに形成された、径方向Drの内側に凹む円環状の凹部66に形成されている。案内面65は、凹部66において、作動流体の流れFの上流側を向いて形成されている。中心軸方向Daにおいて、凹部66が形成された部分に配置されるシールフィン26は、その先端部26aが凹部66内に配置されるような長さで形成されている。
The seal segment 20E includes a guide surface 64. The guide surface 64 is formed facing the upstream side of the flow F of the working fluid in the seal fin 26.
The rotor 102 includes a guide surface 65. The guide surface 65 is formed in an annular recess 66 formed in the outer peripheral surface 102 f of the rotor 102 and recessed inward in the radial direction Dr. The guide surface 65 is formed in the recess 66 so as to face the upstream side of the flow F of the working fluid. In the central axis direction Da, the seal fin 26 disposed in the portion where the recess 66 is formed is formed with such a length that the tip end portion 26a is disposed in the recess 66.
 シール部材本体21の内周面21fとロータ102の外周面102fとの隙間に流れ込んだ作動流体の流れFeは、シールフィン26とロータ102の外周面102fとの隙間を通過した後、案内面64又は案内面65に当たることで、渦状に巻き上がり、径方向Dr外側に案内される。これにより、作動流体は、分岐溝51に効率良く流れ込む。このように構成することで、シール部材本体21の内周面21fとロータ102の外周面102fとの隙間に入り込んだ異物は、案内面64,65によって分岐溝51に案内される。これによって、異物を、より確実に分岐溝51を通して連通溝50に送り込むことができる。 The flow Fe of the working fluid flowing into the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102 passes through the gap between the seal fin 26 and the outer peripheral surface 102f of the rotor 102, and then the guide surface 64. Or, when it hits the guide surface 65, it winds up in a spiral and is guided outward in the radial direction Dr. As a result, the working fluid efficiently flows into the branch groove 51. With this configuration, the foreign matter that has entered the gap between the inner peripheral surface 21 f of the seal member main body 21 and the outer peripheral surface 102 f of the rotor 102 is guided to the branch groove 51 by the guide surfaces 64 and 65. As a result, the foreign matter can be more reliably fed into the communication groove 50 through the branch groove 51.
 したがって、上述した第三実施形態の軸シール装置1E、回転機械100によれば、シール部材本体21の内周面21fとロータ102の外周面102fとの隙間に流れ込んだ異物は、案内面64,65によって径方向Drの外側の分岐溝51に向かう方向に導かれる。これにより、異物を、より確実に分岐溝51を通して連通溝50に送り込むことができる。
 その結果、薄板シール25まで異物が到達することを抑え、薄板シール25が影響を受けることを抑制できる。
Therefore, according to the shaft seal device 1E and the rotary machine 100 of the third embodiment described above, the foreign matter that has flowed into the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102 is guided by the guide surface 64, 65 is guided in a direction toward the outer branching groove 51 in the radial direction Dr. Thereby, the foreign matter can be more reliably fed into the communication groove 50 through the branch groove 51.
As a result, it is possible to suppress foreign matter from reaching the thin plate seal 25 and to suppress the thin plate seal 25 from being affected.
 上記第一実施形態と同様、シールセグメント20Eの端面21s同士の隙間を通して、高圧領域S2と低圧領域S1との間で作動流体が漏れる部分に連通溝50を設けた。これによって、連通溝50を通して作動流体が漏れても、連通溝50による影響が小さくて済む。
 さらに、連通溝50をシール部材本体21の端面21sに形成することで、シール部材本体21に貫通孔を形成する場合に比較すると、連通溝50を形成するための加工を容易に行うことができる。
Similar to the first embodiment, the communication groove 50 is provided in a portion where the working fluid leaks between the high pressure region S2 and the low pressure region S1 through the gap between the end surfaces 21s of the seal segment 20E. Accordingly, even if the working fluid leaks through the communication groove 50, the influence of the communication groove 50 can be reduced.
Furthermore, by forming the communication groove 50 on the end surface 21 s of the seal member main body 21, the processing for forming the communication groove 50 can be easily performed as compared with the case where the through hole is formed in the seal member main body 21. .
 このようにして、軸シール装置1Eとしてのシール特性への影響を抑制できるとともに、薄板シール25への異物の影響を低減させることができる。 In this way, the influence on the sealing characteristics of the shaft seal device 1E can be suppressed, and the influence of foreign matter on the thin plate seal 25 can be reduced.
(第三実施形態の変形例)
 第三実施形態では、ロータ102の外周面102fに形成した凹部66に案内面65を形成するようにしたが、これに限るものではない。
 図9は、軸シール装置の第三実施形態の変形例における構成を示す断面図である。
 図9に示すように、この第三実施形態の変形例では、軸シール装置1Fのシールセグメント(シールリング片)20Fは、シール部材本体21の内周面21fから径方向Drの内側に延びるシールフィン26と、ロータ102の外周面102fから径方向Drの外側に延びるシールフィン(シール体)26Fとが、中心軸方向Daに間隔をあけて交互に配列されている。
(Modification of the third embodiment)
In the third embodiment, the guide surface 65 is formed in the recess 66 formed in the outer peripheral surface 102f of the rotor 102. However, the present invention is not limited to this.
FIG. 9 is a cross-sectional view showing a configuration of a modification of the third embodiment of the shaft seal device.
As shown in FIG. 9, in the modification of the third embodiment, the seal segment (seal ring piece) 20F of the shaft seal device 1F is a seal extending inward in the radial direction Dr from the inner peripheral surface 21f of the seal member main body 21. The fins 26 and seal fins (seal bodies) 26F extending from the outer peripheral surface 102f of the rotor 102 to the outside in the radial direction Dr are alternately arranged at intervals in the central axis direction Da.
 シールセグメント20Fは、案内面64を備えている。案内面64は、シールフィン26において、作動流体の流れFの上流側を向いて形成されている。ロータ102は、ロータ102の外周面102fから径方向Drの外側に延びるシールフィン26Fを備えている。案内面67は、シールフィン26Fにおいて、作動流体の流れFの上流側を向いて形成されている。 The seal segment 20F includes a guide surface 64. The guide surface 64 is formed facing the upstream side of the flow F of the working fluid in the seal fin 26. The rotor 102 includes seal fins 26 </ b> F that extend from the outer peripheral surface 102 f of the rotor 102 to the outside in the radial direction Dr. The guide surface 67 is formed facing the upstream side of the flow F of the working fluid in the seal fin 26F.
 シール部材本体21の内周面21fとロータ102の外周面102fとの隙間に流れ込んだ作動流体の流れFfは、シールフィン26とロータ102の外周面102fとの隙間を通過した後、案内面64又は案内面67に当たることで、渦状に巻き上がり、径方向Dr外側に案内される。これにより、作動流体は、分岐溝51に効率良く流れ込む。このように構成することで、シール部材本体21の内周面21fとロータ102の外周面102fとの隙間に入り込んだ異物を、より確実に分岐溝51を通して連通溝50に送り込むことができる。 The flow Ff of the working fluid that has flowed into the gap between the inner peripheral surface 21f of the seal member main body 21 and the outer peripheral surface 102f of the rotor 102 passes through the gap between the seal fin 26 and the outer peripheral surface 102f of the rotor 102, and then the guide surface 64. Alternatively, when it hits the guide surface 67, it winds up in a spiral shape and is guided outward in the radial direction Dr. As a result, the working fluid efficiently flows into the branch groove 51. With this configuration, the foreign matter that has entered the gap between the inner peripheral surface 21 f of the seal member main body 21 and the outer peripheral surface 102 f of the rotor 102 can be more reliably sent to the communication groove 50 through the branch groove 51.
(第四実施形態)
 次に、この発明に係る軸シール装置、回転機械の第四実施形態について説明する。以下に説明する第四実施形態においては、第一実施形態で示した構成に加えて、周方向案内部材を備える構成のみが異なるので、図1を援用するとともに、第一実施形態と同一部分に同一符号を付して説明する。さらに、第一実施形態と重複する説明は省略する。
(Fourth embodiment)
Next, a fourth embodiment of the shaft seal device and the rotary machine according to the present invention will be described. In the fourth embodiment described below, in addition to the configuration shown in the first embodiment, only the configuration including the circumferential guide member is different, so that FIG. 1 is used and the same part as the first embodiment is used. The same reference numerals are used for explanation. Furthermore, the description which overlaps with 1st embodiment is abbreviate | omitted.
 図1に示すように、軸シール装置1Gは、上記第一実施形態で示した軸シール装置1Aと同様、ロータ102とステータ103との間の環状空間に設けられている。軸シール装置1Gは、複数のシールセグメント(シールリング片)20Gを備える。 As shown in FIG. 1, the shaft seal device 1G is provided in an annular space between the rotor 102 and the stator 103, similarly to the shaft seal device 1A shown in the first embodiment. The shaft seal device 1G includes a plurality of seal segments (seal ring pieces) 20G.
 図10は、軸シール装置の第四実施形態において、固定シール部材とシールセグメントとの対向部に設けられた周方向案内部材を、ロータの中心軸方向から見た図である。
 図10に示すように、シールセグメント20Gは、シール部材本体21と、薄板シール25と、シールフィン26とを備えている。
FIG. 10 is a view of the circumferential guide member provided in the facing portion between the fixed seal member and the seal segment as viewed from the central axis direction of the rotor in the fourth embodiment of the shaft seal device.
As shown in FIG. 10, the seal segment 20 </ b> G includes a seal member main body 21, a thin plate seal 25, and seal fins 26.
 シールセグメント20Gは、シール部材本体21の端面21sに、連通溝50を備えている。連通溝50は、端面21sに沿って延び、端面21sから周方向Dcの内方に凹む溝状に形成されている。この連通溝50によって、高圧領域S2と低圧領域S1とが連通されている。 The seal segment 20G includes a communication groove 50 on the end surface 21s of the seal member main body 21. The communication groove 50 is formed in a groove shape extending along the end surface 21s and recessed inward in the circumferential direction Dc from the end surface 21s. The communication groove 50 communicates the high pressure region S2 and the low pressure region S1.
 シールセグメント20Gは、周方向案内部材68を備えている。周方向案内部材68は、連通溝50に対し、ロータ102が中心軸周りに回転することでロータ102の径方向Drの外側で生じる作動流体の周方向Dcの流れFgの下流側に設けられている。周方向案内部材68は、シールセグメント20Cのシール部材本体21の内周面21fに、径方向Drの内側に向かって突出するよう形成されている。 The seal segment 20G includes a circumferential guide member 68. The circumferential guide member 68 is provided on the downstream side of the flow Fg in the circumferential direction Dc of the working fluid generated outside the radial direction Dr of the rotor 102 when the rotor 102 rotates around the central axis with respect to the communication groove 50. Yes. The circumferential guide member 68 is formed on the inner circumferential surface 21f of the seal member main body 21 of the seal segment 20C so as to protrude inward in the radial direction Dr.
 ロータ102の径方向の外側の作動流体は、ロータ102が回転すると、ロータ102の外周面102fとの間に生じる摩擦力の影響などを受けて、ロータ102の回転方向R1と同方向に旋回する流れFgとなる。ロータ102の径方向Drの外側で生じる作動流体の周方向Dcの流れFgは、周方向案内部材68に衝突することで、径方向外側の連通溝50に案内される。 When the rotor 102 rotates, the working fluid on the outer side in the radial direction of the rotor 102 is swung in the same direction as the rotation direction R1 of the rotor 102 under the influence of frictional force generated between the rotor 102 and the outer peripheral surface 102f of the rotor 102. The flow becomes Fg. The flow Fg in the circumferential direction Dc of the working fluid generated outside the rotor 102 in the radial direction Dr is collided with the circumferential guide member 68 and thereby guided to the communication groove 50 on the radially outer side.
 したがって、上述した第四実施形態によれば、ロータ102の径方向Drの外側で生じる作動流体の周方向Dcへの流れFgは、周方向案内部材68に衝突することで、径方向外側の連通溝50に案内される。これによって、異物を、より確実に連通溝50に送り込むことができる。その結果、薄板シール25まで異物が到達することを抑え、薄板シール25が影響を受けることを抑制できる。 Therefore, according to the above-described fourth embodiment, the flow Fg of the working fluid in the circumferential direction Dc generated outside the radial direction Dr of the rotor 102 collides with the circumferential direction guide member 68, thereby communicating radially outside. Guided to the groove 50. As a result, the foreign matter can be more reliably fed into the communication groove 50. As a result, it is possible to suppress foreign matter from reaching the thin plate seal 25 and to suppress the thin plate seal 25 from being affected.
 また、上記第一実施形態と同様、シールセグメント20Gの端面21s同士の隙間を通して、高圧領域S2と低圧領域S1との間で作動流体が漏れる部分に連通溝50を設けた。これによって、連通溝50を通して作動流体が漏れても、連通溝50による影響が小さくて済む。
 さらに、連通溝50をシール部材本体21の端面21sに形成することで、シール部材本体21に貫通孔を形成する場合に比較すると、連通溝50を形成するための加工を容易に行うことができる。
Similarly to the first embodiment, the communication groove 50 is provided in a portion where the working fluid leaks between the high pressure region S2 and the low pressure region S1 through the gap between the end surfaces 21s of the seal segment 20G. Accordingly, even if the working fluid leaks through the communication groove 50, the influence of the communication groove 50 can be reduced.
Furthermore, by forming the communication groove 50 on the end surface 21 s of the seal member main body 21, the processing for forming the communication groove 50 can be easily performed as compared with the case where the through hole is formed in the seal member main body 21. .
 このようにして、軸シール装置1Gとしてのシール特性への影響を抑制できるとともに、薄板シール25への異物の影響を低減させることができる。 In this way, the influence on the sealing characteristics of the shaft seal device 1G can be suppressed, and the influence of foreign matter on the thin plate seal 25 can be reduced.
(その他の変形例)
 この発明は、上述した各実施形態及び各変形例に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
 例えば、軸シール装置1A~1Gは、薄板シール25とシールフィン26とを備えるようにしたが、高圧領域S2と低圧領域S1との間でシール機能を発揮できるのであれば、適宜他のシール構造を採用してもよい。
(Other variations)
The present invention is not limited to the above-described embodiments and modifications, and includes various modifications made to the above-described embodiments without departing from the spirit of the invention. That is, the specific shapes, configurations, and the like given in the embodiment are merely examples, and can be changed as appropriate.
For example, the shaft seal devices 1A to 1G are provided with the thin plate seal 25 and the seal fin 26. However, as long as the seal function can be exhibited between the high pressure region S2 and the low pressure region S1, other seal structures are appropriately used. May be adopted.
 上記各実施形態で示した構成は、適宜組み合わせて採用することができる。
 例えば、翼61、壁体62、傘状部材63を、ロータ102の中心軸方向に隣り合うシールフィン26の間、又はシールフィン26,26Fの間に形成して、流れFを分岐溝51側に導くようにしても良い。
The configurations shown in the above embodiments can be used in appropriate combination.
For example, the blade 61, the wall body 62, and the umbrella-shaped member 63 are formed between the seal fins 26 adjacent to each other in the central axis direction of the rotor 102 or between the seal fins 26 and 26F, and the flow F is formed on the branch groove 51 side. You may make it lead to.
 さらに、上記の軸シール装置1A~1Gは、蒸気タービンやガスタービンに限らず、他の回転機械にも適用可能である。 Furthermore, the shaft seal devices 1A to 1G described above are not limited to steam turbines and gas turbines but can be applied to other rotating machines.
 この発明は、軸シール装置、及び回転機械に適用できる。この発明によれば、シール特性への影響を抑制できるとともに、シール体への異物の影響を低減させることができる。 This invention can be applied to a shaft seal device and a rotary machine. According to the present invention, the influence on the sealing characteristics can be suppressed, and the influence of foreign matters on the seal body can be reduced.
1A~1G 軸シール装置
5 シールリング
20A~20G シールセグメント(シールリング片)
21 シール部材本体
21f 内周面
21s 端面
22 受圧部
22f 受圧面
23 ベース部
24 連結部
25 薄板シール(シール体)
26,26F シールフィン(シール体)
26a 先端部
27 薄板シール片
27a 基端部
27b 先端部
27c,27d 凸部
28 保持部材
28a,28b 保持リング
28c 接続部材
29 スペーサ
30 凹溝
31 外周溝部
32 内周溝部
33 板バネ
35 切欠き
50 連通溝
50a 一端部
50b 他端部
50c,50d 径方向流路
50e 軸方向流路
51 分岐溝
60 案内部材
61 翼
62 壁体
63 傘状部材
64,65,67 案内面
66 凹部
68 周方向案内部材
100 回転機械
102 ロータ
102f 外周面
103 ステータ
103f 内周面
105 溝
106 収容凹部
106a 内壁面
106g 内周面
106s 空間
107 連通部
108 突出部
Da 中心軸方向
Dc 周方向
Dr 径方向
F 方向
Ph 背面圧力
R1 回転方向
R2 方向
S1 低圧領域
S2 高圧領域 
1A to 1G Shaft seal device 5 Seal ring 20A to 20G Seal segment (seal ring piece)
21 Seal member body 21f Inner peripheral surface 21s End surface 22 Pressure receiving portion 22f Pressure receiving surface 23 Base portion 24 Connecting portion 25 Thin plate seal (seal body)
26, 26F Seal fin (seal body)
26a distal end 27 thin plate seal piece 27a proximal end 27b distal end 27c, 27d convex 28 holding member 28a, 28b holding ring 28c connecting member 29 spacer 30 concave groove 31 outer peripheral groove 32 inner peripheral groove 33 leaf spring 35 notch 50 communication Groove 50a One end 50b Other end 50c, 50d Radial flow path 50e Axial flow path 51 Branch groove 60 Guide member 61 Wing 62 Wall body 63 Umbrella-shaped member 64, 65, 67 Guide surface 66 Recess 68 Circumferential guide member 100 Rotating machine 102 Rotor 102f Outer peripheral surface 103 Stator 103f Inner peripheral surface 105 Groove 106 Housing recess 106a Inner wall surface 106g Inner peripheral surface 106s Space 107 Communication portion 108 Protruding portion Da Central axis direction Dc Circumferential direction Dr Radial direction F Direction Ph Back pressure R1 Rotation Direction R2 Direction S1 Low pressure region S2 High pressure region

Claims (10)

  1.  ロータと前記ロータを囲うステータとの間に設けられて、前記ロータの中心軸方向で高圧領域と低圧領域とを仕切る軸シール装置であって、
     互いに周方向の端面同士が隣接するように周方向に複数設けられたシールリング片からなるシールリングと、
     各前記シールリング片に固定されて前記ロータに対向するシール体と、を備え、
     少なくとも一つの前記シールリング片は、前記端面から凹むように形成されて、前記シール体を迂回するように前記高圧領域と前記低圧領域とを連通させる連通溝を備える軸シール装置。
    A shaft seal device provided between a rotor and a stator surrounding the rotor, and partitioning a high pressure region and a low pressure region in a central axis direction of the rotor,
    A seal ring composed of a plurality of seal ring pieces provided in the circumferential direction so that end faces in the circumferential direction are adjacent to each other;
    A seal body fixed to each seal ring piece and facing the rotor,
    At least one of the seal ring pieces is formed to be recessed from the end surface, and includes a communication groove that communicates the high pressure region and the low pressure region so as to bypass the seal body.
  2.  前記シールリング片に対し、少なくとも前記高圧領域側に設けられ、前記シール体と前記ロータの外周面との隙間よりも径方向外方に作動流体を導く案内部材を備える請求項1に記載の軸シール装置。 2. The shaft according to claim 1, further comprising a guide member that is provided at least on the high-pressure region side with respect to the seal ring piece and guides the working fluid radially outward from a gap between the seal body and the outer peripheral surface of the rotor. Sealing device.
  3.  前記案内部材は、前記ロータの外周面に設けられ、前記ロータと一体に回転することで前記作動流体を径方向外側に導く翼を備える請求項2に記載の軸シール装置。 3. The shaft seal device according to claim 2, wherein the guide member is provided on an outer peripheral surface of the rotor, and includes a blade that guides the working fluid radially outward by rotating integrally with the rotor.
  4.  前記案内部材は、前記ロータの外周面に設けられ、径方向外側に延びる壁体である請求項2に記載の軸シール装置。 3. The shaft seal device according to claim 2, wherein the guide member is a wall provided on an outer peripheral surface of the rotor and extending radially outward.
  5.  前記案内部材は、前記シールリング片に設けられ、径方向内側に延びる傘状部材である請求項2に記載の軸シール装置。 The shaft seal device according to claim 2, wherein the guide member is an umbrella-shaped member provided on the seal ring piece and extending radially inward.
  6.  前記シール体は、前記中心軸方向に間隔をあけて複数設けられ、
     前記連通溝は、前記中心軸方向において互いに隣接する前記シール体同士の間に連通する分岐溝を備える請求項1から5の何れか一項に記載の軸シール装置。
    A plurality of the sealing bodies are provided at intervals in the central axis direction,
    6. The shaft sealing device according to claim 1, wherein the communication groove includes a branch groove that communicates between the seal bodies adjacent to each other in the central axis direction.
  7.  前記シール体及び前記ロータの外周面の少なくとも一方に、前記シール体と前記ロータの外周面との隙間を前記中心軸方向に流れる作動流体を、前記分岐溝側に案内する案内面が形成されている請求項6に記載の軸シール装置。 At least one of the outer peripheral surface of the seal body and the rotor is formed with a guide surface that guides the working fluid flowing in the central axis direction through the gap between the seal body and the outer peripheral surface of the rotor to the branch groove side. The shaft seal device according to claim 6.
  8.  作動流体を前記連通溝に案内する周方向案内部材を備え、
     前記周方向案内部材は、
     前記連通溝に対し、前記ロータが前記中心軸周りに回転することで前記ロータの径方向外側で生じる前記作動流体の前記周方向の流れの下流側に配置されている請求項1から7の何れか一項に記載の軸シール装置。
    A circumferential guide member for guiding the working fluid to the communication groove;
    The circumferential guide member is
    8. The device according to claim 1, wherein the rotor is disposed on the downstream side of the circumferential flow of the working fluid generated on the radially outer side of the rotor by rotating the rotor around the central axis with respect to the communication groove. The shaft sealing device according to claim 1.
  9.  ロータと前記ロータを囲うステータとの間に設けられて、前記ロータの中心軸方向で高圧領域と低圧領域とを仕切る軸シール装置であって、
     互いに周方向の端面同士が隣接するように周方向に複数設けられたシールリング片からなるシールリングと、
     各前記シールリング片に固定されて前記ロータに対向するシール体と、
     前記シールリング片に対し、前記高圧領域及び前記低圧領域の少なくとも一方に設けられ、前記シール体と前記ロータの外周面との隙間よりも径方向外方に作動流体を導く案内部材と、
    を備える軸シール装置。
    A shaft seal device provided between a rotor and a stator surrounding the rotor, and partitioning a high pressure region and a low pressure region in a central axis direction of the rotor,
    A seal ring composed of a plurality of seal ring pieces provided in the circumferential direction so that end faces in the circumferential direction are adjacent to each other;
    A seal body fixed to each of the seal ring pieces and facing the rotor;
    A guide member that is provided in at least one of the high-pressure region and the low-pressure region with respect to the seal ring piece, and guides the working fluid radially outward from the gap between the seal body and the outer peripheral surface of the rotor;
    A shaft seal device comprising:
  10.  請求項1から9の何れか一項に記載の軸シール装置を備えた回転機械。 A rotary machine provided with the shaft seal device according to any one of claims 1 to 9.
PCT/JP2017/031215 2017-03-23 2017-08-30 Shaft seal device, and rotating machine WO2018173316A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017057979A JP6842963B2 (en) 2017-03-23 2017-03-23 Shaft sealing device, rotating machine
JP2017-057979 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018173316A1 true WO2018173316A1 (en) 2018-09-27

Family

ID=63584309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031215 WO2018173316A1 (en) 2017-03-23 2017-08-30 Shaft seal device, and rotating machine

Country Status (2)

Country Link
JP (1) JP6842963B2 (en)
WO (1) WO2018173316A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114483209A (en) * 2021-12-27 2022-05-13 东方电气集团东方汽轮机有限公司 Shaft end gland sealing structure of steam turbine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257014A (en) * 1998-03-06 1999-09-21 Toshiba Corp Working fluid leakage prevention apparatus for axial-flow turbine
US20090297341A1 (en) * 2008-06-02 2009-12-03 General Electric Company Fluidic sealing for turbomachinery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257014A (en) * 1998-03-06 1999-09-21 Toshiba Corp Working fluid leakage prevention apparatus for axial-flow turbine
US20090297341A1 (en) * 2008-06-02 2009-12-03 General Electric Company Fluidic sealing for turbomachinery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114483209A (en) * 2021-12-27 2022-05-13 东方电气集团东方汽轮机有限公司 Shaft end gland sealing structure of steam turbine
CN114483209B (en) * 2021-12-27 2023-07-14 东方电气集团东方汽轮机有限公司 Sealing structure of steam seal body at shaft end of steam turbine

Also Published As

Publication number Publication date
JP2018159356A (en) 2018-10-11
JP6842963B2 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
US10385714B2 (en) Seal structure and rotary machine
US10605105B2 (en) Bi-directional shaft seal
KR20170137727A (en) Sliding parts
EP3832178B1 (en) Slide component
EP3680519A1 (en) Sliding component
KR102020138B1 (en) Labyrinth Seal
JP2008128042A (en) Bearing structure of turbocharger
KR20150013585A (en) Axial bearing arrangement
WO2014129371A1 (en) Shaft seal device and rotary machine
EP3168510A1 (en) Seal mechanism and rotating machine
CN110242360B (en) Moving blade side sealing device, stationary blade side sealing device, and rotary machine
WO2012090793A1 (en) Shaft sealing device, and rotary machine equipped therewith
US20190048734A1 (en) Rotary machine
WO2018173316A1 (en) Shaft seal device, and rotating machine
EP2894377B1 (en) Turbo-engine
US9677463B2 (en) Axial-flow turbine for turbocharger
US11702947B2 (en) Rotating machine
CN108368744B (en) Sealing fin, sealing structure and turbine machine
CN113260796B (en) Bearing device and turbocharger having the same
JP2018159392A (en) Rolling bearing
US10895324B2 (en) Aspirating face seal assembly for a rotary machine
EP3232010B1 (en) Nozzle structure and rotary machine
EP3760850A1 (en) Rotating machine and turbocharger
EP3872375A1 (en) Sliding member
US10598213B2 (en) Axial bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902117

Country of ref document: EP

Kind code of ref document: A1