WO2018173210A1 - Ultraviolet fluorescent color detection device and ultraviolet fluorescent color detection method - Google Patents

Ultraviolet fluorescent color detection device and ultraviolet fluorescent color detection method Download PDF

Info

Publication number
WO2018173210A1
WO2018173210A1 PCT/JP2017/011802 JP2017011802W WO2018173210A1 WO 2018173210 A1 WO2018173210 A1 WO 2018173210A1 JP 2017011802 W JP2017011802 W JP 2017011802W WO 2018173210 A1 WO2018173210 A1 WO 2018173210A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
ultraviolet
light source
light receiving
white
Prior art date
Application number
PCT/JP2017/011802
Other languages
French (fr)
Japanese (ja)
Inventor
勉 七尾
Original Assignee
株式会社ヴィーネックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヴィーネックス filed Critical 株式会社ヴィーネックス
Priority to CN201780000961.4A priority Critical patent/CN109155091B/en
Priority to PCT/JP2017/011802 priority patent/WO2018173210A1/en
Priority to EP17754594.4A priority patent/EP3474242B1/en
Priority to KR1020177026092A priority patent/KR101825339B1/en
Priority to JP2017528591A priority patent/JP6235765B1/en
Publication of WO2018173210A1 publication Critical patent/WO2018173210A1/en

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation

Definitions

  • the present invention relates to an optical line sensor device, and more particularly to an optical line sensor device for identification purposes for the purpose of identifying securities or banknotes, and the fluorescent color emission of phosphors contained in securities or banknotes when irradiated with ultraviolet rays.
  • the present invention relates to an ultraviolet fluorescent color detection device and an ultraviolet fluorescent color detection method that detect accurately.
  • a contact optical line sensor device using an equal magnification optical system such as a SELFOC lens array (registered trademark: manufactured by Nippon Sheet Glass) has been widely used. ing.
  • the light source unit of the optical line sensor device is equipped with a plurality of types of LEDs so that each wavelength can be emitted, and these LEDs are sequentially switched to emit light for each observation line.
  • the light output unit superimposes the light output signals for the respective observation lines to form image data, and the medium is identified based on the image data.
  • the present invention relates to a sensor for distinguishing fluorescence of a medium by ultraviolet rays.
  • the present invention has been achieved by finding new means as a result of diligent efforts to solve the above problems.
  • an optical line sensor device characterized by providing a color filter on the sensor pixel, it is possible to detect the fluorescent color of the medium at the time of ultraviolet light irradiation, but to obtain an accurate color tone. In this case, there are the following problems.
  • the visible light source for example, red, green, and blue LEDs
  • the ultraviolet light LED is turned on to detect the fluorescence of the medium as in the prior art
  • the output signal of each wavelength of the visible light LED is output.
  • the white balance of the color filter cannot be detected, another means is required for the color tone of the fluorescent color when irradiated with ultraviolet light. If not adopted, accurate information cannot be obtained.
  • the present invention has been made in view of the above circumstances, and provides an ultraviolet fluorescent color detection device and an ultraviolet fluorescent color detection method capable of easily and accurately detecting the reading accuracy of visible fluorescent color of a medium when irradiated with ultraviolet light. For the purpose.
  • the present inventor has made various studies to solve the above-described problems, uses a white light source that has an output in the entire visible light range, detects a white reference output for each color filter, and thereby performs sensitivity correction for each color filter.
  • a white light source that has an output in the entire visible light range
  • detects a white reference output for each color filter and thereby performs sensitivity correction for each color filter.
  • the fluorescent color of the medium when irradiated with ultraviolet light was tried to be taken out with good color balance, and it was found that the object could be achieved.
  • the light source instead of using a visible light single wavelength LED such as RGB, which is a visible light source (since each RGB color LED has different temperature characteristics and changes over time, it is difficult to stabilize the color balance),
  • RGB visible light single wavelength LED
  • the light source reads out the white medium as a reference, and corrects the output for each color filter, so that the visible fluorescent color of the medium when irradiated with ultraviolet light is adjusted. It has been found that the reading accuracy can be detected easily and accurately.
  • An ultraviolet fluorescent color detection device is an ultraviolet fluorescent color detection device that irradiates a medium with ultraviolet light from an ultraviolet light source and detects a fluorescent color emission generated from the medium with a light receiving unit, and includes a white LED light source, A light receiving element and a correction processing unit are provided.
  • the white LED light source generates white light by causing a fluorescent material to fluoresce.
  • the plurality of light receiving elements are provided in the light receiving unit, and light which has passed through at least one or more visible light color filters is incident thereon.
  • the correction processing unit receives light from a white reference object irradiated with white light from the white LED light source from each light receiving element obtained by entering the plurality of light receiving elements through the visible light color filter. Based on the output signal, the output signal from each light receiving element obtained by the fluorescence from the medium irradiated with the ultraviolet light from the ultraviolet light source entering the plurality of light receiving elements through the visible light color filter to correct.
  • white light is generated from the white LED light source by causing the phosphor to fluoresce, and the white reference object is irradiated with the white light so that the light from the white reference object is reflected by the visible light color filter.
  • the white reference object is irradiated with the white light so that the light from the white reference object is reflected by the visible light color filter.
  • each medium when identifying a medium such as securities or banknotes, each medium is irradiated with ultraviolet light from an ultraviolet light source, and fluorescence from the medium is incident on a plurality of light receiving elements through a visible light color filter. An output signal from the light receiving element is obtained. By correcting the output signal using the reference pixel output value, the color balance of the fluorescent color at the time of ultraviolet light irradiation can be obtained, so that a high-quality image with a desired color balance is obtained. be able to.
  • the ultraviolet light source irradiates, for example, ultraviolet light having a wavelength of 400 nm or less, particularly preferably 300 to 400 nm.
  • the ultraviolet light source is not particularly limited in composition and structure, but it is preferable that the luminous efficiency and output are large, and that there is no visible light subwavelength that becomes an obstacle.
  • a semiconductor ultraviolet LED mainly composed of gallium nitride as an ultraviolet light source.
  • each of the time until the output of the white LED light source rises from 10% to 90% and the time until it falls from 90% to 10% are 2 ⁇ sec or less.
  • the LED for illumination normally uses a perovskite phosphor. As described in FIG. 9 as a comparative example, this phosphor has a slow response speed and has a rise time Tr2 and a fall time Tf2 of 1 ms. There are cases as described above, and it is necessary to evaluate the response speed in advance.
  • a white LED light source with high responsiveness by using a white LED light source with high responsiveness, it is possible to obtain a higher quality image with a desired color balance when irradiated with ultraviolet light. That is, in order to identify the medium in a short time, it is necessary to read at high speed, and it is preferable to use a white LED light source with high responsiveness in order to switch many wavelengths in a short time.
  • the LED element (not shown) is purple or blue and has a structure in which a phosphor is covered on the element. If YAG: Ce (cerium-doped yttrium oxide, aluminum garnet sintered body) that emits yellow light is used as the phosphor, a white LED light source with a high response speed can be obtained.
  • the plurality of light receiving elements may be arranged linearly along the main scanning direction. According to such a configuration, the visible fluorescent color of the medium when irradiated with ultraviolet light can be detected at high speed on one observation line.
  • An ultraviolet fluorescent color detection method is an ultraviolet fluorescent color detection method using an ultraviolet fluorescent color detection device that irradiates a medium with ultraviolet light from an ultraviolet light source and detects a fluorescent color emission generated from the medium at a light receiving unit.
  • the ultraviolet fluorescent color detecting device includes a white LED light source that generates white light by causing a fluorescent material to fluoresce, and a plurality of light beams that are provided in the light receiving unit and that have passed through at least one or more visible light color filters. Light receiving element.
  • each light receiving element obtained by allowing light from a white reference object irradiated with white light from the white LED light source to enter the plurality of light receiving elements through the visible light color filter Output from each light receiving element obtained by the fluorescence from the medium irradiated with the ultraviolet light from the ultraviolet light source entering the plurality of light receiving elements through the visible light color filter based on the output signal from Correct the signal.
  • white light is generated from a white LED light source by fluorescing a phosphor, and an output signal from each light receiving element obtained by irradiating the white reference object with the white light is used as a reference pixel output value.
  • FIG. 1 It is sectional drawing which shows schematically the structure of the optical line sensor unit in embodiment of this invention. It is sectional drawing which shows schematically the additional structure of an optical line sensor unit. It is a perspective view of a line light source. It is a disassembled perspective view which shows each structural member of a line light source. It is a side view of a line light source. It is a schematic diagram which shows the element arrangement
  • FIG. 1 is a schematic cross-sectional view showing a configuration of an optical line sensor unit according to an embodiment of the present invention.
  • the optical line sensor unit includes a housing 16, a line light source 10 for illuminating a paper sheet, and a lens for guiding light emitted from the line light source 10 toward the focal plane 20 and reflected by the paper sheet.
  • An array 11 and a light receiving unit 12 that receives the transmitted light that is mounted on the substrate 13 and guided by the lens array 11 are provided.
  • the paper sheets are conveyed in one direction x (sub-scanning direction) along the focal plane 20.
  • the casing 16, the line light source 10, the light receiving unit 12, and the lens array 11 extend in the y direction (main scanning direction), that is, in a direction perpendicular to the paper surface in FIG. 1, and FIG. ing.
  • the line light source 10 is a unit that emits light toward a paper sheet on the focal plane 20.
  • the types of emitted light are visible light, white light, and ultraviolet light, and infrared light may be emitted.
  • the ultraviolet light has a wavelength peak of 300 nm to 400 nm, and the infrared light has a wavelength peak up to 1500 nm.
  • at least ultraviolet light is emitted so as not to overlap with other light in time (that is, while being temporally switched).
  • Infrared light may be emitted over time with visible light or may be emitted without overlapping over time.
  • the light emitted from the line light source 10 passes through the protective glass 14 and is collected on the focal plane 20.
  • the protective glass 14 is not always necessary and may be omitted.
  • the line light source 10 and the lens array may be used because dust (dust such as paper dust generated when transporting paper sheets) is scattered or damaged during use (during use). It is desirable to install to protect 11.
  • the material of the protective glass 14 may be any material as long as it transmits light emitted from the line light source 10, and may be a transparent resin such as an acrylic resin or a cycloolefin resin. However, in the embodiment of the present invention, it is preferable to use a material that transmits ultraviolet light, such as white plate glass or borosilicate glass.
  • a substrate 5 for fixing the second light source unit 3 and the first light source unit 4 (see FIGS. 4 and 5) installed at both ends of the line light source 10 is installed.
  • This substrate 5 is a thin insulating plate made of phenol, glass epoxy or the like, and a wiring pattern made of copper foil is formed on the back surface thereof.
  • the terminals of the second light source unit 3 and the first light source unit 4 are inserted into holes formed in various places of the substrate 5 and joined to the wiring pattern with solder or the like on the back surface of the substrate 5 to thereby form the second light source unit 3.
  • the first light source unit 4 can be mounted on and fixed to the substrate 5, and the second light source unit 3 and the first light source unit 4 can be fixed from a predetermined driving power source (not shown) through a wiring pattern on the back surface of the substrate. Electric power can be supplied to drive and control the light emission.
  • the lens array 11 is an optical element that forms an image of the light reflected by the paper sheet on the light receiving unit 12, and a rod lens array such as a SELFOC lens array (registered trademark: manufactured by Nippon Sheet Glass) can be used.
  • the magnification of the lens array 11 is set to 1 (upright).
  • An ultraviolet light blocking filter as a “third optical filter” that blocks ultraviolet light by reflecting or absorbing ultraviolet light so that ultraviolet light does not enter the light receiving unit 12 at any position from the focal plane 20 to the light receiving unit 12. It is preferable to provide the film 15.
  • an ultraviolet light blocking filter film 15 is attached to the surface of the lens array 11 to have a function of blocking ultraviolet light.
  • blocking light means reflecting or absorbing light and not transmitting it.
  • the ultraviolet light blocking filter film 15 is not particularly limited, and any material and structure can be used as long as ultraviolet light can be prevented from entering the light receiving unit 12.
  • an ultraviolet light absorbing film in which an organic ultraviolet light absorber is mixed or coated on a transparent film, and a thin film of metal oxide or dielectric material having different transmittance and refractive index such as titanium oxide and silicon oxide is deposited on the glass surface in multiple layers.
  • the interference filter (bandpass filter) obtained by (1) is preferable.
  • the ultraviolet light blocking filter film 15 is attached to the exit surface of the lens array 11, it may be attached to the entrance surface or intermediate portion of the lens array 11, and is used by directly depositing or coating on the inner surface of the protective glass 14. Also good. In short, it is only necessary to prevent the ultraviolet light reflected by the paper sheets from entering the light receiving unit 12.
  • the light receiving unit 12 is mounted on a substrate 13 and includes a light receiving element that receives reflected light and reads an image as an electrical output by photoelectric conversion.
  • the material and structure of the light receiving element are not particularly defined, and a photodiode or a phototransistor using amorphous silicon, crystalline silicon, CdS, CdSe, or the like may be disposed.
  • a CCD (Charge Coupled Device) linear image sensor may be used.
  • the light receiving unit 12 a so-called multichip linear image sensor in which a plurality of ICs (Integrated Circuits) in which a photodiode, a phototransistor, a drive circuit, and an amplifier circuit are integrated can be used.
  • an electric circuit such as a drive circuit or an amplifier circuit or a connector for taking out a signal to the outside can be mounted on the substrate 13.
  • an A / D converter, various correction circuits, an image processing circuit, a line memory, an I / O control circuit, and the like can be simultaneously mounted on the substrate 13 and taken out as a digital signal.
  • the optical line sensor unit described above is a reflective optical line sensor unit that receives light emitted from the line light source 10 toward the paper sheet and reflected by the paper sheet, but as shown in FIG.
  • the transmissive type light source 10 receives the light emitted from the line light source 10 toward the paper sheet and transmitted through the paper sheet, with the line light source 10 placed at a position opposite to the light receiving unit 12 with respect to the focal plane 20. It may be an optical line sensor unit. In this case, the position of the line light source 10 is located below the focal plane 20 only in the arrangement of FIG. 1, and the structure of the line light source 10 itself is not different from that described so far. Further, both a reflection type optical line sensor unit and a transmission type optical line sensor unit may be included.
  • FIG. 3 is a perspective view schematically showing an appearance of the line light source 10 in the optical line sensor unit shown in FIG.
  • FIG. 4 is an exploded perspective view of each component of the line light source 10
  • FIG. 5 is a side view of the line light source 10.
  • the cover member 2 is not shown.
  • the line light source 10 is provided near the transparent light guide 1 extending along the longitudinal direction L
  • the second light source unit 3 provided near one end face in the longitudinal direction L
  • the other end face in the longitudinal direction L between the first light source unit 4 and the cover member 2 for holding the side surfaces (the bottom side surface 1a and the left and right side surfaces 1b and 1c) of the light guide 1, and the bottom side surface 1a and the left and right side surfaces 1b.
  • the light guide 1 may be formed of a highly light-transmitting resin such as acrylic resin or optical glass, but in the embodiment of the present invention, the first light source unit 4 that emits ultraviolet light is used.
  • a fluorine-based resin or a cycloolefin-based resin that has relatively little attenuation with respect to ultraviolet light is preferable (see Patent Document 2).
  • the light guide 1 has an elongated columnar shape, and a cross section perpendicular to the longitudinal direction L has substantially the same shape and the same dimensions at any cut end in the longitudinal direction L.
  • the ratio of the proportion of the light guide 1, that is, the length in the longitudinal direction L of the light guide 1 and the height H of the cross section perpendicular to the longitudinal direction L is greater than 10, preferably greater than 30.
  • the height H of the cross section orthogonal to the longitudinal direction L is about 5 mm.
  • the side surfaces of the light guide 1 are a light diffusion pattern forming surface 1g (corresponding to an oblique cut surface of the light guide 1 in FIG. 4), a bottom side surface 1a, left and right side surfaces 1b and 1c, and a light emitting side surface 1d (light guide in FIG. 4). (Corresponding to the upper surface of the body 1).
  • the bottom side surface 1a and the left and right side surfaces 1b and 1c have a planar shape, and the light emitting side surface 1d is formed in a smooth convex curve outwardly so as to have a condensing effect of the lens.
  • the light emission side surface 1d is not necessarily formed in a convex shape, and may be a planar shape.
  • a lens for condensing the light emitted from the light guide 1 may be disposed so as to face the light emission side surface 1d.
  • the light diffusion pattern P on the light diffusion pattern forming surface 1g extends in a straight line along the longitudinal direction L of the light guide 1 while maintaining a certain width.
  • the dimension of the light diffusion pattern P along the longitudinal direction L is formed to be longer than the reading length of the image sensor (that is, the width of the reading area of the light receiving unit 12).
  • the light diffusion pattern P is constituted by a plurality of V-shaped grooves engraved on the light diffusion pattern forming surface 1 g of the light guide 1.
  • Each of the plurality of V-shaped grooves is formed to extend in a direction orthogonal to the longitudinal direction L of the light guide 1 and has the same length.
  • the plurality of V-shaped grooves may have, for example, an isosceles triangle shape in cross section.
  • this light diffusion pattern P light that is incident from the end faces 1e and 1f of the light guide 1 and propagates in the light guide 1 in the longitudinal direction L is refracted and diffused, and is substantially uniform along the longitudinal direction L. It can irradiate from the light emission side surface 1d with brightness. Thereby, the light irradiated to paper sheets can be made substantially constant in the entire longitudinal direction L of the light guide 1, and unevenness in illuminance can be eliminated.
  • the V-shape of the groove of the light diffusion pattern P is an example, and can be arbitrarily changed, for example, a U-shape instead of a V-shape, as long as the illuminance unevenness is not significant.
  • the width of the light diffusion pattern P need not be maintained at a constant width, and the width may change along the longitudinal direction L of the light guide 1.
  • the depth of the groove and the opening width of the groove can also be changed as appropriate.
  • the cover member 2 has an elongated shape along the longitudinal direction L of the light guide 1, and the light diffusion of the light guide 1 so that the bottom side surface 1a and the left and right side surfaces 1b and 1c of the light guide 1 can be covered.
  • the light guide 1 has a bottom surface 2a facing the pattern forming surface 1g, a right side surface 2b facing the right side surface 1b of the light guide 1, and a left side surface 2c facing the left side surface of the light guide 1.
  • These three side surfaces each form a flat surface, and a concave portion having a substantially U-shaped cross section is formed by these three inner surfaces, so that the light guide 1 can be inserted into the concave portion.
  • the bottom surface 2a of the cover member 2 is in close contact with the bottom side surface 1a of the light guide 1
  • the right side surface 2b of the cover member 2 is in close contact with the right side surface 1b of the light guide 1
  • the left side surface 2c is guided.
  • the light body 1 is in close contact with the left side surface 1c. For this reason, the light guide 1 can be protected by the cover member 2.
  • the cover member 2 is not limited to a transparent cover, and may be translucent or opaque.
  • the cover member 2 is coated with a white resin molded product having a high reflectance or the white resin so that light leaking from the side surface other than the light emitting side surface of the light guide 1 is reflected again into the light guide 1. It may be a molded product of the prepared resin. Or you may form the cover member 2 with metal bodies, such as stainless steel and aluminum.
  • the second light source unit 3 includes a light source 3a that emits visible light or light having a wavelength ranging from visible to infrared, and a light source 3b that emits white light.
  • the light source 3a has, for example, a plurality of LEDs (Light Emitting ⁇ ⁇ Diode) that emit light of each wavelength of near infrared, red, green, and blue.
  • the light source 3b is a white LED light source that generates white light by fluorescing the phosphor.
  • a white LED light source that generates white light by fluorescing the phosphor with a blue or purple LED, or a fluorescent light with an ultraviolet LED.
  • a white LED light source that fluoresces the body to generate white light is used.
  • the phosphor is mixed with a coating or sealing agent on the LED element, and becomes a white LED light source having an output in the entire visible light range by adding the light emission of the phosphor to the light from the LED.
  • the light source 3b as the white LED light source preferably has high responsiveness. As described in the embodiment in FIG. 9, for example, the response time (rise time Tr1) until the output (relative light emission intensity) rises from 10% to 90%. ), And the response time (fall time Tf1) until it falls from 90% to 10% is 2 ⁇ sec or less, particularly preferably 0.5 ⁇ sec or less.
  • a white LED light source that fluoresces a fluorescent material to generate white light has a hindered response due to the use of the fluorescent material, and therefore it is preferable to employ a specific fluorescent material.
  • the LED element (not shown) of the light source 3b is purple or blue, and the phosphor is covered on the element. If YAG: Ce (cerium-doped yttrium oxide, aluminum garnet sintered body) that emits yellow light is used as the phosphor, a white LED light source with a high response speed can be obtained.
  • the first light source unit 4 is an ultraviolet light source that emits ultraviolet light to the light guide 1, and an ultraviolet LED light source of 300 nm to 400 nm or the like can be used.
  • An ultraviolet light emitting diode having a peak emission wavelength in the range of 330 nm to 380 nm is preferably used.
  • a terminal 31 for mounting on the substrate 5 is formed.
  • the drive power supply selects the electrode terminal that applies a voltage to the second light source unit 3 and the electrode terminal that applies a voltage to the first light source unit 4, so that the second light source unit 3 and the first light source unit are selected.
  • 4 has a circuit configuration capable of emitting light by switching simultaneously or temporally. It is also possible to select any LED from among the plurality of LEDs built in the second light source unit 3 and to emit light by switching simultaneously or temporally.
  • light in a wavelength range including visible light or visible light to infrared light is incident on the light guide 1 from the end face 1e where the second light source unit 3 (light source 3a) is installed in a compact configuration.
  • the ultraviolet light can be incident on the light guide 1 from the end face 1f where the first light source unit 4 is installed.
  • the light emitted from the first light source unit 4 or the light emitted from the second light source unit 3 can be emitted from the light emitting side surface 1 d of the light guide 1.
  • white light can be incident on the light guide 1 by the light source 3b from the same end surface 1e on the side where the light source 3a is installed, and can be emitted from the light emission side surface 1d of the light guide 1.
  • the end surface 1e on which the second light source unit 3 of the light guide 1 is installed transmits infrared light and visible light of 420 nm or more, and cuts off by reflecting or absorbing ultraviolet light of less than 400 nm.
  • a second optical filter 6 is provided.
  • the end face 1f of the light guide 1 on which the first light source unit 4 is installed transmits the ultraviolet light of less than 400 nm, and cuts off by reflecting or absorbing the infrared light and visible light of 420 nm or more.
  • the optical filter 7 is provided.
  • the second optical filter 6 and the first optical filter 7 are not particularly limited, and any material and structure can be used as long as they block the target wavelength range.
  • an interference filter (bandpass filter) obtained by multilayer deposition of metal oxide or dielectric thin films having different transmittances and refractive indexes on the glass surface is preferable.
  • an interference filter to be reflected for example, silicon oxide and tantalum pentoxide are adopted, and by adjusting the transmittance, refractive index, and film thickness of each layer, multilayer deposition is performed to secure desired bandpass filter characteristics. can get.
  • the bandpass filter that has been conventionally produced for the normal optical related industry as long as it satisfies the required performance.
  • the second optical filter 6 is an optical filter that absorbs ultraviolet light
  • an ultraviolet light absorbing film obtained by mixing or coating an organic ultraviolet light absorbent in a transparent film
  • the interference filter employs, for example, silicon oxide and titanium oxide, and adjusts the transmittance, refractive index, and film thickness of each layer to deposit multiple layers, thereby blocking ultraviolet light by both reflecting and absorbing functions. Desired wavelength characteristics may be secured.
  • the first optical filter 7 is an optical filter that absorbs visible light and infrared light, a substance that transmits ultraviolet light and cuts visible light and infrared light may be added to the film.
  • the installation method to the light guide 1 of the 2nd optical filter 6 and the 1st optical filter 7 is arbitrary, and you may coat
  • a film-like or plate-like second optical filter 6 and a first optical filter 7 are prepared and are brought into close contact with the end faces 1e and 1f of the light guide 1 or at a certain distance from the end faces 1e and 1f. It may be attached.
  • the second optical filter 6 and the first optical filter 7 may be provided on the second light source unit 3 and the first light source unit 4 instead of being provided on the end faces 1 e and 1 f of the light guide 1. is there.
  • the light filters 3 and 4 may be coated with the optical filters 6 and 7 by coating or vapor deposition, or the film-like or plate-like optical filters 6 and 7 are prepared and are in close contact with the light sources 3 and 4. It may be attached.
  • the optical filter 6 may be configured.
  • the first light source unit 4 may be sealed by adding a material that transmits ultraviolet light and blocks visible light or light in a wavelength range including visible light to infrared light.
  • the optical filter 7 may be configured.
  • the first optical filter 7 is an optical filter that transmits ultraviolet light and reflects or absorbs infrared light and visible light, the following advantages are obtained. Assume that the first light source unit 4 employs a mounting substrate that emits fluorescence having a wavelength of about 690 nm when irradiated with ultraviolet light, such as an aluminum oxide / ceramic sintered body. When ultraviolet light is irradiated from the first light source unit 4, the irradiation light hits the mounting substrate of the first light source unit 4, and fluorescence around 690 nm is secondarily irradiated and enters the light guide 1. There is a need to prevent.
  • the first optical filter 7 is designed so as to reflect or absorb infrared light and visible light so that the secondary irradiated fluorescence does not enter the light guide 1. Unnecessary fluorescence emission from the light emission side surface 1d of the light body 1 can be prevented, and the contrast of the ultraviolet fluorescence of the paper sheet can be improved. In addition, not only the aluminum oxide / ceramic sintered body that fluoresces ultraviolet light but also the case where the sealing resin fluoresces can prevent secondary irradiation.
  • the second optical filter 6 is an optical filter that transmits infrared light and visible light and reflects or absorbs ultraviolet light, the following advantages are obtained.
  • the second light source unit 3 employs a mounting substrate that emits fluorescence having a wavelength of about 690 nm when irradiated with ultraviolet light, such as an aluminum oxide / ceramic sintered body.
  • the ultraviolet light emitted from the first light source unit 4 passes through the end face 1e of the light guide 1 and hits the second light source unit 3
  • fluorescence near 690 nm is secondarily irradiated from the second light source unit 3. Since it enters the light guide 1, it is necessary to prevent this.
  • the second optical filter 6 is designed so as to reflect or absorb ultraviolet light so that the ultraviolet light does not come out of the end face 1e of the light guide 1, it will hit the second light source unit 3. There is nothing. Therefore, unnecessary fluorescence emission from the light emission side surface 1d of the light guide 1 can be prevented. As a result, the contrast of the ultraviolet fluorescence of the paper sheet can be improved.
  • the second optical filter 6 is preferably an optical filter that transmits infrared light and visible light and reflects ultraviolet light, and has the following advantages. Since the amount of ultraviolet light that enters the light guide 1 from the first light source unit 4 and is reflected by the second optical filter 6 and returns to the light guide 1 increases, as a result, the light emission side surface 1d of the light guide 1 is increased. The effect that the emitted light quantity of the ultraviolet light from the light increases is obtained. In this case, since the second optical filter 6 transmits infrared light and visible light emitted from the second light source unit 3, the infrared light and visible light from the second light source unit 3 are guided by the light guide 1. There is no hindrance to entering.
  • the first optical filter 7 is an optical filter that transmits ultraviolet light and reflects visible light and infrared light
  • the first optical filter 7 is irradiated from the second light source unit 3 and is incident on the light guide 1 to be incident on the first optical filter.
  • the amount of visible light and infrared light reflected by the filter 7 and returning to the light guide 1 increases, and as a result, the amount of visible light and infrared light emitted from the light exit side surface 1d of the light guide 1 increases. The effect is obtained.
  • the first optical filter 7 since the first optical filter 7 transmits the ultraviolet light emitted from the first light source unit 4, the ultraviolet light can be emitted from the light emitting side surface 1 d of the light guide 1.
  • the ultraviolet light emitted from the first light source unit 4 is incident on the light guide 1 through the first optical filter 7, diffused and refracted by the light diffusion pattern forming surface 1g, and focused from the light emitting side surface 1d.
  • the sheet (medium) on the surface 20 is irradiated. Thereby, fluorescence is generated from the paper sheet, and the fluorescent color emission is detected by the light receiving unit 12, whereby the paper sheet using ultraviolet light can be identified.
  • Visible light emitted from the light source 3a of the second light source unit 3 or light in a wavelength range including visible light to infrared light is incident on the light guide 1 via the second optical filter 6 and diffuses light.
  • the light is diffused and refracted by the pattern forming surface 1g, and is irradiated onto the paper sheet (medium) on the focal plane 20 from the light emitting side surface 1d.
  • the paper sheet can be identified using visible light or infrared light.
  • FIG. 6 is a schematic diagram showing an element arrangement of the light receiving unit 12.
  • the light receiving unit 12 includes a plurality of light receiving elements (each composed of a photodiode, a phototransistor, etc.) arranged linearly in the y direction, and a sensor IC chip in which the signal processing unit 21 and the driver 22 are integrated. Each light receiving element is covered with a color filter and mounted on a substrate.
  • the driver 22 is a circuit part that generates and supplies a bias current for driving the light receiving element
  • the signal processing unit 21 is a circuit part that reads and processes a light detection signal of the light receiving element.
  • the kind of light receiving element is not limited, for example, a silicon PN diode or a PIN diode is used.
  • the exposure time for reading the line information of the paper sheet (referred to as optical reading time) can be arbitrarily set according to the intensity of the light source, the wavelength sensitivity of the sensor, and the like.
  • the moving speed of paper sheets in the x direction is 1500 to 2000 mm / sec in ATMs and banknote processors, and if the optical reading time is 0.5 to 1.0 ms, the x direction of the observation line
  • the width is 0.75 to 2 mm.
  • a plurality of, for example, four light receiving elements are linearly arranged per one pixel of the light receiving unit 12 (a pixel means a spatial unit for reading and processing image data). They are arranged side by side.
  • the first light receiving element is covered with a red (R) color filter
  • the second light receiving element is covered with a green (G) color filter
  • the third light receiving element is It is covered with a blue (B) color filter.
  • the fourth light receiving element is covered with a transparent (W) filter or not covered with each color filter.
  • the color filters (R, G, B) are usually opaque to 300 to 400 nm ultraviolet light and transparent to infrared light having a wavelength of 800 nm or more.
  • the light receiving unit 12 is provided with the visible light color filters (R, G, B) in association with the respective pixels, and light transmitted through the color filters is incident on the light receiving elements.
  • the color filter is not limited to three colors for each pixel, and one or more color filters may be provided. In FIG. 6, only one element is covered with the same color filter, but two or more light receiving elements may be covered with the same color filter.
  • the transparent (W) filter is a “transparent” filter without any coloring.
  • the material of the film that forms such a “transparent filter” is selected from transparent acrylic resin, cycloolefin resin, silicone resin, and fluorine resin for organic materials, and silicon nitride film and silicon oxide for inorganic materials. Selected from among membranes.
  • Each of these color filter materials is transparent to ultraviolet light of 300 to 400 nm. These optical filter materials are transparent to infrared light having a wavelength of 800 nm or more.
  • the transparent material containing the ultraviolet light absorber used for a liquid crystal use is not transparent with respect to ultraviolet light, it is not preferable to employ
  • the light receiving unit 12 is provided with a plurality of light receiving elements and color filters covering each color in one pixel, each of the light receiving units 12 independently emits light in a desired wavelength region without switching the wavelength of the light source. It is possible to simultaneously turn on a plurality of light emitting elements that can be irradiated and to output color information of paper sheets at one observation line.
  • the light detection signal of the light receiving unit 12 having such a configuration is a signal obtained by simultaneously acquiring the light detection signals of the respective light receiving elements, and these are input to the signal processing unit 21.
  • the signal processing unit 21 determines the color information of the paper sheet based on the signal intensity of the light receiving element that has passed through the R, G, and B color filters of the light receiving unit 12, and transmits the transparent (W) filter.
  • the total amount of light entering the pixel is calculated based on the signal intensity that does not pass through the color filters. Thereby, image data based on the accurate light amount of each color signal can be obtained with the total light amount as the denominator (reference).
  • a signal from the signal processing unit 21 is input to the control unit 100.
  • the control unit 100 includes a CPU (Central Processing Unit), for example, and functions as the determination unit 101 and the correction processing unit 102 when the CPU executes a program.
  • the determination unit 101 determines authenticity, denomination, contamination, and the like by comparing the image data of the paper sheet read by the light receiving element with, for example, master data.
  • the correction processing unit 102 generates corrected image data by correcting the signal input from the signal processing unit 21.
  • the determination unit 101 performs determination based on the image data corrected by the correction processing unit 102.
  • the element arrangement of the light receiving unit 12 is not limited to the above-described form.
  • the light receiving elements of the light receiving unit 12 are not necessarily arranged in a row such as RGBWRGBW... Good.
  • FIG. 7B is a diagram in which the light receiving elements are arranged 2 ⁇ 2 per pixel, and a transparent (W) filter or each color filter is provided at one corner of the two columns (for example, the lower column).
  • a blank second light receiving element is arranged is shown.
  • FIG. 7C the light receiving elements are arranged in four rows per pixel, and the transparent (W) filter or each color filter is not provided in the first row (for example, the lower row) among the four rows.
  • a green (G) color filter may be provided to arrange RGBGRGBG.
  • the type and number of color filters provided in each pixel are arbitrary, and it is sufficient that at least one visible color filter is provided in each pixel.
  • FIG. 8 is a schematic diagram for explaining an aspect when correction is performed by the correction processing unit 102.
  • the correction processing unit 102 by performing correction using white light emitted from the light source 3b of the second light source unit 3, it is possible to achieve a color balance of the fluorescent color during ultraviolet light irradiation. ing.
  • the white reference object 200 is conveyed in the x direction along the focal plane 20.
  • the white reference object 200 is made of, for example, a white sheet having a high reflectance.
  • white light is emitted from the light source 3 b of the second light source unit 3, and the white light is emitted from the light emission side surface 1 d of the light guide 1 to be irradiated on the white reference object 200.
  • the reflected light from the white reference object 200 irradiated with white light passes through the lens array 11 and enters the light receiving unit 12, and is received by a plurality of light receiving elements through the color filters of the light receiving unit 12. Thereby, the signal intensity of the output signal from each light receiving element is detected.
  • the value of the signal intensity corresponding to each RGB color in each pixel obtained from white light is divided by the smallest value in each pixel, whereby the ratio of the normalized output of each RGB color (Rn: Gn: Bn) is calculated for each pixel as a reference pixel output value.
  • the paper sheet (medium) is conveyed in the x direction along the focal plane 20.
  • ultraviolet light is emitted from the first light source unit 4, and the ultraviolet light is emitted from the light emitting side surface 1 d of the light guide 1 to be irradiated on the paper sheet.
  • Fluorescence is generated from the paper sheet irradiated with ultraviolet light, and the fluorescence passes through the lens array 11 and enters the light receiving unit 12, and is received by a plurality of light receiving elements through each color filter of the light receiving unit 12. .
  • the signal strengths Rf, Gf, Bf of the output signals from the respective light receiving elements are detected.
  • the signal intensity values Rf, Gf, Bf corresponding to the RGB colors in each pixel obtained from the fluorescence are the ratios (Rn: Gn: Bn) of the normalized output of each RGB color calculated in advance in each pixel.
  • Rn: Gn: Bn the ratios of the normalized output of each RGB color calculated in advance in each pixel.
  • the corrected signal intensity value Rfc corresponding to red (R) in each pixel is calculated by the following equation (1)
  • the corrected signal intensity value Gfc corresponding to green (G) in each pixel is
  • the corrected signal intensity value Bfc corresponding to the blue color (B) in each pixel is calculated by the following equation (3).
  • Rfc Rf / Rn (1)
  • Gfc Gf / Gn (2)
  • Bfc Bf / Bn (3)
  • the white LED light source (the light source 3b of the second light source unit 3) of the present invention, that is, the excitation light source is covered with a phosphor on purple and blue LEDs, and the light emission of the LED element and the phosphor
  • the white reference object 200 By irradiating the white reference object 200 with white light obtained by synthesizing the fluorescence, light from the white reference object 200 enters the plurality of light receiving elements via the visible light color filter.
  • the output signals from the respective light receiving elements obtained at this time as the reference pixel output values Rn, Gn, Bn, it is possible to easily and accurately detect the reading accuracy of the visible fluorescent color of the paper sheet when irradiated with ultraviolet light.
  • the ultraviolet light source (first light source unit 4) irradiates the paper sheets with ultraviolet light, and the fluorescence from the paper sheets is visible.
  • the light receiving elements By entering the light receiving elements through the optical color filter, output signals Rf, Gf, and Bf from the respective light receiving elements are obtained.
  • the output signals Rf, Gf, Bf are corrected by the above formulas (1) to (3) using the reference pixel output values Rn, Gn, Bn.
  • a white LED light source (light source 3b of the second light source unit 3) that has a short rise time and a short fall time and high responsiveness, a desired color balance can be obtained during ultraviolet light irradiation.
  • a higher quality image can be obtained. That is, in order to identify paper sheets in a short time, high-speed reading (for example, the reading speed of one line is 100 ⁇ sec or less) is required, and a large number of wavelengths are switched in a short time. It is preferable to use a high white LED light source.
  • a plurality of light receiving elements are arranged linearly along the y direction (main scanning direction).
  • the visible fluorescent color of the paper sheet at the time of ultraviolet light irradiation can be detected at high speed on one observation line.
  • the light source 3a of the second light source unit 3 is a light source that emits visible light or light having a wavelength ranging from visible to infrared, but may be a light source that emits only visible light.
  • the light source 3a of the second light source unit 3 may be omitted, and only the light source 3b as a white LED light source may be provided.
  • the formation surface of the light diffusion pattern P can be disposed on any surface other than the light emission side surface 1 d of the light guide 1.
  • a light diffusion pattern may be formed on the bottom side surface 1a, and this may be used as a surface on which the light diffusion pattern P is formed (in this case, it is not necessary to form a diagonal surface between the bottom side surface 1a and the left and right side surfaces 1b).
  • the second light source unit is not an output signal from each light receiving element obtained by the fluorescence from the paper sheet irradiated with ultraviolet light from the first light source unit 4 entering the light receiving unit 12.
  • the output signal from each light receiving element obtained when the light from the paper sheet irradiated with the visible light from the light source 3a of 3 or the light having the wavelength ranging from visible to infrared is incident on the light receiving unit 12 is a reference pixel. Correction may be performed using the output values Rn, Gn, and Bn.
  • the line light source 10 is not limited to the configuration in which light is incident on the light guide 1 from one or both end faces in the longitudinal direction L, and the light is diffused and refracted by the light diffusion pattern P.
  • a configuration in which light is directly irradiated onto the focal plane 20 from the bottom side surface 1a side through the light emission side surface 1d (so-called direct type) may be used. Thereby, even if it is a case where cheap LED with comparatively small output is used as a light source, a desired light quantity can be ensured by arranging in a direct type. In the case of such a direct type configuration, the light guide 1 can be omitted.
  • observation line is not limited to one line, and a plurality of observation lines extending along the y direction (main scanning direction) may be set side by side in the x direction (sub scanning direction).
  • a plurality of observation lines extending along the y direction may be set side by side in the x direction (sub scanning direction).
  • an average value of output signals in pixels in the same column in the x direction may be calculated, and correction processing may be performed using the average value.

Abstract

Provided are an ultraviolet fluorescent color detection device and an ultraviolet fluorescent color detection method capable of simply and accurately detecting the reading accuracy of a visible fluorescent color of a medium during irradiation with ultraviolet light. Ultraviolet rays are radiated to the medium from an ultraviolet light source (a first light source unit (4)). A white LED light source (a light source included in a second light source unit (3)) emits white light by causing fluorescence of a fluorescent substance. Light that has passed through at least one visible light color filter is incident on a plurality of light receiving elements provided in a light receiving unit. An output signal from each light receiving element obtained when the fluorescent light from the medium irradiated with the ultraviolet light from the ultraviolet light source is incident on the plurality of light receiving elements through the visible light color filter is corrected on the basis of output signals from the light receiving elements obtained when the light from a white reference material (200) irradiated with white light from the white LED light source is incident on the plurality of light receiving elements through the visible light color filter.

Description

紫外線蛍光色検出装置及び紫外線蛍光色検出方法Ultraviolet fluorescent color detection device and ultraviolet fluorescent color detection method
 本発明は、光学ラインセンサ装置に関し、特に有価証券や紙幣等の鑑別を目的とする鑑別用途光学ラインセンサ装置に関するもので、紫外線照射時に有価証券や紙幣などに含まれる蛍光体の蛍光色発光を精度良く検出する紫外線蛍光色検出装置及び紫外線蛍光色検出方法に関するものである。 The present invention relates to an optical line sensor device, and more particularly to an optical line sensor device for identification purposes for the purpose of identifying securities or banknotes, and the fluorescent color emission of phosphors contained in securities or banknotes when irradiated with ultraviolet rays. The present invention relates to an ultraviolet fluorescent color detection device and an ultraviolet fluorescent color detection method that detect accurately.
 最近の印刷技術や複写技術の目覚ましい性能向上に伴い、紙幣、有価証券等の偽造がますます精巧になってきており、これらを的確に判別して排除することが国家の社会秩序を維持するために重要視されている。特にATMや紙幣処理機など紙幣を取り扱う機器において、より高速で高性能な真偽判定目的の鑑別システムが強く求められてきている。 With recent remarkable improvements in printing technology and copying technology, counterfeiting of banknotes, securities, etc. is becoming more and more sophisticated, and to accurately identify and eliminate these in order to maintain the national social order Is important. In particular, in a device that handles banknotes such as ATMs and banknote processors, there is a strong demand for a higher-speed and higher-performance discrimination system for authenticity determination purposes.
 これら紙幣や有価証券(以下、「媒体」と略す)の鑑別方法として、セルフォックレンズアレイ(登録商標:日本板硝子製)などの等倍光学系を用いた密着光学ラインセンサ装置が広く使われてきている。 As a method for discriminating these bills and securities (hereinafter abbreviated as “medium”), a contact optical line sensor device using an equal magnification optical system such as a SELFOC lens array (registered trademark: manufactured by Nippon Sheet Glass) has been widely used. ing.
 上記光学ラインセンサ装置に関しては、媒体の偽造がますます巧妙化していることにより高精度の鑑別方法が求められており、対象媒体の表・裏・透過の3方位から可視光あるいは赤外光を発光する光源を用いて、複数の波長毎の画像を取り込んで媒体の鑑別を実施している。 With regard to the above optical line sensor device, there is a demand for a highly accurate discrimination method due to increasingly sophisticated counterfeiting of the medium. Visible light or infrared light is transmitted from the three directions of the front, back, and transmission of the target medium. Using a light source that emits light, an image for each of a plurality of wavelengths is captured to identify the medium.
 このため、光学ラインセンサ装置の光源部は、それぞれの波長を発光することができるように複数種類のLEDを装備し、観測ラインごとに、これらのLEDを順次切り替えて発光させる。そして、受光部にてそれぞれの観測ラインごとの光出力信号を重ね合わせて画像データとし、これをもとに媒体の鑑別を実施している。 For this reason, the light source unit of the optical line sensor device is equipped with a plurality of types of LEDs so that each wavelength can be emitted, and these LEDs are sequentially switched to emit light for each observation line. The light output unit superimposes the light output signals for the respective observation lines to form image data, and the medium is identified based on the image data.
 さらには、紫外光LEDの性能向上に伴い、反射光源に紫外光LEDを搭載して、媒体及び媒体表面印刷インクの紫外線励起による蛍光像を識別する手段も新たに採用されてきている。
 本発明は、紫外線により媒体の蛍光を鑑別するセンサに関すものである。
Furthermore, along with the improvement of the performance of the ultraviolet LED, a means for identifying the fluorescent image by the ultraviolet excitation of the medium and the medium surface printing ink by mounting the ultraviolet LED in the reflection light source has been newly adopted.
The present invention relates to a sensor for distinguishing fluorescence of a medium by ultraviolet rays.
 従来の紫外線による媒体の鑑別方法では、紫外光を照射し、それにより蛍光した媒体表面の反射像の可視光あるいは赤外光を、紫外線を遮蔽した状態で、光センサ上に受光してその出力を判別する手段が取られている。しかしながら、この識別方法は出力がモノトーンで検出されるため、実際に肉眼で蛍光を識別する際とイメージが大きく異なり、さらには媒体基材の蛍光による阻害などに起因して、目的とする蛍光対象を十分なコントラストで得られないという問題点を有している。 In the conventional method of identifying a medium using ultraviolet light, visible light or infrared light reflected on the surface of the medium that has been irradiated with ultraviolet light is received on an optical sensor while the ultraviolet light is shielded, and the output is output. Means for discriminating are taken. However, since this identification method detects the output in monotone, the image is very different from that when actually identifying fluorescence with the naked eye. Cannot be obtained with sufficient contrast.
 このような問題点を解決する目的で、ラインセンサの画素上に少なくとも1色以上の可視光カラーフィルタ膜を設けて、媒体の蛍光色を直接検出する試みが、本発明者を含め、提案されてきている。これにより、媒体に紫外光照射した際、媒体の蛍光色を直接検出することが可能となって、さらなる鑑別精度の向上が期待されている。 In order to solve such problems, an attempt has been proposed including the present inventor to directly detect the fluorescent color of the medium by providing a visible light color filter film of at least one color on the pixel of the line sensor. It is coming. As a result, when the medium is irradiated with ultraviolet light, the fluorescent color of the medium can be directly detected, and further improvement in discrimination accuracy is expected.
 しかしながら、上記手段において、紫外線照射時の媒体蛍光の色の読み取り精度を肉眼での識別と同様なカラーバランスで検出するには、種々の課題があることが判ってきた。 However, it has been found that there are various problems in the above-mentioned means for detecting the reading accuracy of the color of the medium fluorescence at the time of ultraviolet irradiation with the same color balance as that with the naked eye.
 すなわち、従来の鑑別センサでは、赤、緑、青などの可視光LED単色光を順次点灯し、それぞれの媒体の出力画像の濃淡バランスを補正して適正なカラー出力画像に合成することができるが、センサ画素毎にカラーフィルタを設けて蛍光色を検出するには、カラーフィルタ毎の出力バランスが補正できず、所望する紫外線照射時の蛍光色の濃淡を正確に検出できない問題点がある。 That is, in the conventional discrimination sensor, visible light single color lights such as red, green, and blue can be sequentially turned on, and the tone balance of the output image of each medium can be corrected and synthesized into an appropriate color output image. In order to detect a fluorescent color by providing a color filter for each sensor pixel, there is a problem in that the output balance of each color filter cannot be corrected, and the density of the fluorescent color at the time of desired ultraviolet irradiation cannot be detected accurately.
特開2006-39996号公報JP 2006-39996 A 特開2001-229722号公報JP 2001-229722 A
 本発明は、上記問題点の解決に鋭意取り組んだ結果、新たな手段を見出し、到達したものである。 The present invention has been achieved by finding new means as a result of diligent efforts to solve the above problems.
 センサの画素上にカラーフィルタを設けることを特徴とする光学ラインセンサ装置を用いることで、紫外光照射時の媒体の蛍光色を検出することが可能であるが、正確な色調を得ようとする場合、以下に記す問題点がある。 By using an optical line sensor device characterized by providing a color filter on the sensor pixel, it is possible to detect the fluorescent color of the medium at the time of ultraviolet light irradiation, but to obtain an accurate color tone. In this case, there are the following problems.
 例えば、従来技術のように可視光光源、例えば赤、緑、青のLEDを順次点灯してさらに紫外光LEDを点灯して媒体の蛍光を検出する場合、可視光LEDそれぞれの波長の出力信号を調整して白バランスを補正することで、実態に即した可視光像を得ることができるものの、カラーフィルタの白バランスが検出できないために、紫外光照射時の蛍光色の色調は別の手段を採用しないと正確な情報が得られない。さらに、赤、緑、青のLEDを同時点灯して白色光源としてカラーフィルタの濃度バランスを補正することを検討したが、赤、緑、青のLEDそれぞれについて、素子毎の温度-出力特性、経時変化の補正、さらにはLED発光の狭い波長域のためのカラーフィルタの透過特性の補正を実施することが煩雑であることが判明した。 For example, when the visible light source, for example, red, green, and blue LEDs are sequentially turned on and the ultraviolet light LED is turned on to detect the fluorescence of the medium as in the prior art, the output signal of each wavelength of the visible light LED is output. By adjusting and correcting the white balance, a visible light image that matches the actual situation can be obtained, but since the white balance of the color filter cannot be detected, another means is required for the color tone of the fluorescent color when irradiated with ultraviolet light. If not adopted, accurate information cannot be obtained. In addition, we examined the simultaneous lighting of red, green, and blue LEDs to correct the color filter density balance as a white light source. For each of the red, green, and blue LEDs, the temperature-output characteristics of each element, time It has been found that it is cumbersome to carry out correction of the change and further correction of the transmission characteristics of the color filter for a narrow wavelength range of LED emission.
 本発明は、上記実情に鑑みてなされたものであり、紫外光照射時の媒体の可視蛍光の色の読み取り精度を簡便かつ正確に検出できる紫外線蛍光色検出装置及び紫外線蛍光色検出方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides an ultraviolet fluorescent color detection device and an ultraviolet fluorescent color detection method capable of easily and accurately detecting the reading accuracy of visible fluorescent color of a medium when irradiated with ultraviolet light. For the purpose.
 本発明者は、上記課題を解決すべく種々検討し、可視光域全てに出力がある白色光源を用い、カラーフィルタ毎の白基準出力を検出し、これによりカラーフィルタ毎の感度補正を実施することで紫外光照射時の媒体の蛍光色を色バランス良く取り出すことを試み、目的を達成できることが判明した。 The present inventor has made various studies to solve the above-described problems, uses a white light source that has an output in the entire visible light range, detects a white reference output for each color filter, and thereby performs sensitivity correction for each color filter. Thus, the fluorescent color of the medium when irradiated with ultraviolet light was tried to be taken out with good color balance, and it was found that the object could be achieved.
 さらに、上記センサにおいて、可視光光源であるRGBなどの可視光単体波長のLED(RGB各色LEDは温度特性や経時変化が異なり、カラーバランスを安定させることが困難であるので)を用いる代わりに、LEDに蛍光体を覆った特定の白色系LEDを用いることで、この光源にて白色媒体を基準として読み出し、各色フィルター毎の出力補正することにより、紫外光照射時の媒体の可視蛍光の色の読み取り精度を簡便かつ正確に検出できることを見出した。 Further, in the above sensor, instead of using a visible light single wavelength LED such as RGB, which is a visible light source (since each RGB color LED has different temperature characteristics and changes over time, it is difficult to stabilize the color balance), By using a specific white LED covered with a phosphor for the LED, the light source reads out the white medium as a reference, and corrects the output for each color filter, so that the visible fluorescent color of the medium when irradiated with ultraviolet light is adjusted. It has been found that the reading accuracy can be detected easily and accurately.
 本発明に係る紫外線蛍光色検出装置は、紫外光源から媒体に紫外光を照射し、媒体から生じる蛍光色発光を受光部で検出する紫外線蛍光色検出装置であって、白色LED光源と、複数の受光素子と、補正処理部とを備える。前記白色LED光源は、蛍光体を蛍光させることにより白色光を発生させる。前記複数の受光素子は、前記受光部に設けられ、少なくとも1色以上の可視光カラーフィルタを透過した光が入射する。前記補正処理部は、前記白色LED光源からの白色光が照射された白基準物からの光が前記可視光カラーフィルタを介して前記複数の受光素子に入射することにより得られる各受光素子からの出力信号に基づいて、前記紫外光源からの紫外光が照射された媒体からの蛍光が前記可視光カラーフィルタを介して前記複数の受光素子に入射することにより得られる各受光素子からの出力信号を補正する。 An ultraviolet fluorescent color detection device according to the present invention is an ultraviolet fluorescent color detection device that irradiates a medium with ultraviolet light from an ultraviolet light source and detects a fluorescent color emission generated from the medium with a light receiving unit, and includes a white LED light source, A light receiving element and a correction processing unit are provided. The white LED light source generates white light by causing a fluorescent material to fluoresce. The plurality of light receiving elements are provided in the light receiving unit, and light which has passed through at least one or more visible light color filters is incident thereon. The correction processing unit receives light from a white reference object irradiated with white light from the white LED light source from each light receiving element obtained by entering the plurality of light receiving elements through the visible light color filter. Based on the output signal, the output signal from each light receiving element obtained by the fluorescence from the medium irradiated with the ultraviolet light from the ultraviolet light source entering the plurality of light receiving elements through the visible light color filter to correct.
 このような構成によれば、蛍光体を蛍光させることにより白色LED光源から白色光を発生させ、その白色光を白基準物に照射することにより、白基準物からの光が可視光カラーフィルタを介して複数の受光素子に入射する。このとき得られる各受光素子からの出力信号を基準画素出力値として用いることにより、紫外光照射時の媒体の可視蛍光の色の読み取り精度を簡便かつ正確に検出できる。 According to such a configuration, white light is generated from the white LED light source by causing the phosphor to fluoresce, and the white reference object is irradiated with the white light so that the light from the white reference object is reflected by the visible light color filter. Through a plurality of light receiving elements. By using the output signals from the respective light receiving elements obtained at this time as reference pixel output values, it is possible to easily and accurately detect the reading accuracy of the visible fluorescent color of the medium when irradiated with ultraviolet light.
 具体的には、有価証券や紙幣などの媒体の鑑別時に、紫外光源から媒体に紫外光を照射し、媒体からの蛍光が可視光カラーフィルタを介して複数の受光素子に入射することにより、各受光素子からの出力信号が得られる。この出力信号に対して、上記基準画素出力値を用いて補正を行うことにより、紫外光照射時の蛍光色のカラーバランスを取ることができるため、所望のカラーバランスが取れた上質な画質を得ることができる。 Specifically, when identifying a medium such as securities or banknotes, each medium is irradiated with ultraviolet light from an ultraviolet light source, and fluorescence from the medium is incident on a plurality of light receiving elements through a visible light color filter. An output signal from the light receiving element is obtained. By correcting the output signal using the reference pixel output value, the color balance of the fluorescent color at the time of ultraviolet light irradiation can be obtained, so that a high-quality image with a desired color balance is obtained. be able to.
 前記紫外光源は、例えば波長400nm以下、特に好ましくは300~400nmの紫外光を照射する。前記紫外光源は、特に組成及び構造に制限はないが、発光効率及び出力が大きく、かつ、阻害要因となる可視光副波長がないことが好ましい。例えば、窒化ガリウムを主体とする半導体系の紫外光LEDを紫外光源として用いることが好ましい。 The ultraviolet light source irradiates, for example, ultraviolet light having a wavelength of 400 nm or less, particularly preferably 300 to 400 nm. The ultraviolet light source is not particularly limited in composition and structure, but it is preferable that the luminous efficiency and output are large, and that there is no visible light subwavelength that becomes an obstacle. For example, it is preferable to use a semiconductor ultraviolet LED mainly composed of gallium nitride as an ultraviolet light source.
 前記白色LED光源の出力が10%から90%に立ち上がるまでの時間、及び、90%から10%に立ち下がるまでの時間のそれぞれが、2μ秒以下であることが好ましい。一般的に、照明用LEDは、通常ペロブスカイト系の蛍光体を用いており、図9に比較例として記載したごとく、この蛍光体は応答速度が遅く、立ち上がり時間Tr2及び立ち下り時間Tf2が1m秒以上の場合があり、事前に応答速度を評価する必要がある。 It is preferable that each of the time until the output of the white LED light source rises from 10% to 90% and the time until it falls from 90% to 10% are 2 μsec or less. In general, the LED for illumination normally uses a perovskite phosphor. As described in FIG. 9 as a comparative example, this phosphor has a slow response speed and has a rise time Tr2 and a fall time Tf2 of 1 ms. There are cases as described above, and it is necessary to evaluate the response speed in advance.
 このような構成によれば、応答性の高い白色LED光源を用いることにより、紫外光照射時に所望のカラーバランスが取れたさらに上質な画質を得ることができる。すなわち、短時間で媒体の識別を行うためには高速での読み取りが必要である上、短時間で多数の波長を切り替えるため、応答性の高い白色LED光源を用いることが好ましい。 According to such a configuration, by using a white LED light source with high responsiveness, it is possible to obtain a higher quality image with a desired color balance when irradiated with ultraviolet light. That is, in order to identify the medium in a short time, it is necessary to read at high speed, and it is preferable to use a white LED light source with high responsiveness in order to switch many wavelengths in a short time.
 例えば、多波長で、媒体の表面と裏面の反射及び透過を1波長あたり100μ秒以下、好ましくは50μ秒以下の読取時間で読み取ることが必要であり、このため、白色LED光源の出力が10%から90%に立ち上がるまでの時間、及び、90%から10%に立ち下がるまでの時間のそれぞれが、2μ秒以下、特に0.5μ秒以下であることが好ましい。
 例えば、LED素子(図示せず)が紫又は青色であり、素子上に蛍光体が覆われた構造を有する。前記蛍光体に黄色発光するYAG:Ce(セリウムドープ酸化イットリウム、アルミニウムガーネット焼結体)を用いれば、応答速度が速い白色LED光源とすることができる。
For example, it is necessary to read the reflection and transmission of the front and back surfaces of the medium at a multi-wavelength with a reading time of 100 μsec or less per wavelength, preferably 50 μsec or less, and the output of the white LED light source is 10%. It is preferable that each of the time from the rise to 90% and the time from the 90% to 10% fall is 2 μsec or less, particularly 0.5 μsec or less.
For example, the LED element (not shown) is purple or blue and has a structure in which a phosphor is covered on the element. If YAG: Ce (cerium-doped yttrium oxide, aluminum garnet sintered body) that emits yellow light is used as the phosphor, a white LED light source with a high response speed can be obtained.
 前記複数の受光素子は、主走査方向に沿って直線状に配列されていてもよい。このような構成によれば、1ラインの観測ライン上において紫外光照射時の媒体の可視蛍光色を高速で検出できる。 The plurality of light receiving elements may be arranged linearly along the main scanning direction. According to such a configuration, the visible fluorescent color of the medium when irradiated with ultraviolet light can be detected at high speed on one observation line.
 本発明に係る紫外線蛍光色検出方法は、紫外光源から媒体に紫外光を照射し、媒体から生じる蛍光色発光を受光部で検出する紫外線蛍光色検出装置を用いた紫外線蛍光色検出方法であって、前記紫外線蛍光色検出装置は、蛍光体を蛍光させることにより白色光を発生させる白色LED光源と、前記受光部に設けられ、少なくとも1色以上の可視光カラーフィルタを透過した光が入射する複数の受光素子とを備える。前記紫外線蛍光色検出方法では、前記白色LED光源からの白色光が照射された白基準物からの光が前記可視光カラーフィルタを介して前記複数の受光素子に入射することにより得られる各受光素子からの出力信号に基づいて、前記紫外光源からの紫外光が照射された媒体からの蛍光が前記可視光カラーフィルタを介して前記複数の受光素子に入射することにより得られる各受光素子からの出力信号を補正する。 An ultraviolet fluorescent color detection method according to the present invention is an ultraviolet fluorescent color detection method using an ultraviolet fluorescent color detection device that irradiates a medium with ultraviolet light from an ultraviolet light source and detects a fluorescent color emission generated from the medium at a light receiving unit. The ultraviolet fluorescent color detecting device includes a white LED light source that generates white light by causing a fluorescent material to fluoresce, and a plurality of light beams that are provided in the light receiving unit and that have passed through at least one or more visible light color filters. Light receiving element. In the ultraviolet fluorescent color detection method, each light receiving element obtained by allowing light from a white reference object irradiated with white light from the white LED light source to enter the plurality of light receiving elements through the visible light color filter Output from each light receiving element obtained by the fluorescence from the medium irradiated with the ultraviolet light from the ultraviolet light source entering the plurality of light receiving elements through the visible light color filter based on the output signal from Correct the signal.
 本発明によれば、蛍光体を蛍光させることにより白色LED光源から白色光を発生させ、その白色光を白基準物に照射することにより得られる各受光素子からの出力信号を基準画素出力値として用いることにより、紫外光照射時の媒体の可視蛍光の色の読み取り精度を簡便かつ正確に検出できる。 According to the present invention, white light is generated from a white LED light source by fluorescing a phosphor, and an output signal from each light receiving element obtained by irradiating the white reference object with the white light is used as a reference pixel output value. By using it, the reading accuracy of the visible fluorescent color of the medium at the time of ultraviolet light irradiation can be detected easily and accurately.
本発明の実施の形態における光ラインセンサユニットの構成を概略的に示す断面図である。It is sectional drawing which shows schematically the structure of the optical line sensor unit in embodiment of this invention. 光ラインセンサユニットの付加的な構成を概略的に示す断面図である。It is sectional drawing which shows schematically the additional structure of an optical line sensor unit. ライン光源の斜視図である。It is a perspective view of a line light source. ライン光源の各構成部材を示す分解斜視図である。It is a disassembled perspective view which shows each structural member of a line light source. ライン光源の側面図である。It is a side view of a line light source. 受光部の素子配列を示す模式図である。It is a schematic diagram which shows the element arrangement | sequence of a light-receiving part. 受光部における受光素子と各色フィルタの配列例を示す図である。It is a figure which shows the example of an array of the light receiving element in a light-receiving part, and each color filter. 補正処理部により補正を行う際の態様について説明するための概略図である。It is the schematic for demonstrating the aspect at the time of correct | amending by a correction process part. 白色LED光源の応答速度の実施例及び比較例を示した図である。It is the figure which showed the Example and comparative example of the response speed of a white LED light source.
 <光ラインセンサユニット>
 図1は、本発明の実施の形態における光ラインセンサユニットの構成を示す概略断面図である。
<Optical line sensor unit>
FIG. 1 is a schematic cross-sectional view showing a configuration of an optical line sensor unit according to an embodiment of the present invention.
 この光ラインセンサユニットは、筐体16と、紙葉類を照明するためのライン光源10と、そのライン光源10から焦点面20に向けて出射され紙葉類で反射した光を導くためのレンズアレイ11と、基板13に実装されレンズアレイ11により導かれた透過光を受光する受光部12とを備えている。紙葉類は焦点面20に沿って一方向x(副走査方向)に搬送される。
 これらの筐体16、ライン光源10、受光部12、レンズアレイ11は、y方向(主走査方向)、すなわち図1における紙面に対して垂直な方向に延びていて、図1はその断面を示している。
The optical line sensor unit includes a housing 16, a line light source 10 for illuminating a paper sheet, and a lens for guiding light emitted from the line light source 10 toward the focal plane 20 and reflected by the paper sheet. An array 11 and a light receiving unit 12 that receives the transmitted light that is mounted on the substrate 13 and guided by the lens array 11 are provided. The paper sheets are conveyed in one direction x (sub-scanning direction) along the focal plane 20.
The casing 16, the line light source 10, the light receiving unit 12, and the lens array 11 extend in the y direction (main scanning direction), that is, in a direction perpendicular to the paper surface in FIG. 1, and FIG. ing.
 ライン光源10は、焦点面20にある紙葉類に向けて光を出射するユニットである。出射される光の種類は可視光、白色光及び紫外光であり、さらに赤外光が出射されることもある。
 この紫外光は波長ピークが300nm~400nmを有するもので、赤外光は波長ピークが1500nmまで有するものである。
 これらの光のうち少なくとも紫外光は、他の光と時間的に重ならないようにして(すなわち時間的にスイッチングされながら)発光される。赤外光は、可視光と時間的に重なって発光されることもあり、時間的に重ならないようにして発光されることもある。
The line light source 10 is a unit that emits light toward a paper sheet on the focal plane 20. The types of emitted light are visible light, white light, and ultraviolet light, and infrared light may be emitted.
The ultraviolet light has a wavelength peak of 300 nm to 400 nm, and the infrared light has a wavelength peak up to 1500 nm.
Among these lights, at least ultraviolet light is emitted so as not to overlap with other light in time (that is, while being temporally switched). Infrared light may be emitted over time with visible light or may be emitted without overlapping over time.
 ライン光源10から出射された光は、保護ガラス14を透過して焦点面20に集光される。保護ガラス14は、必ずしも必要ではなく省略することもできるが、使用中(使用時)のごみ(紙葉類の搬送時に発生する紙粉等のダスト)の飛散や傷つきからライン光源10やレンズアレイ11を保護するために設置することが望ましい。
 保護ガラス14の材質はライン光源10から出射される光を透過させるものであれば良く、例えばアクリル樹脂やシクロオレフィン系樹脂などといった透明の樹脂であってもよい。ただし、本発明の実施の形態では、白板ガラス、ホウケイ酸ガラスなど特に紫外光を透過させるものを使用するのが好ましい。
The light emitted from the line light source 10 passes through the protective glass 14 and is collected on the focal plane 20. The protective glass 14 is not always necessary and may be omitted. However, the line light source 10 and the lens array may be used because dust (dust such as paper dust generated when transporting paper sheets) is scattered or damaged during use (during use). It is desirable to install to protect 11.
The material of the protective glass 14 may be any material as long as it transmits light emitted from the line light source 10, and may be a transparent resin such as an acrylic resin or a cycloolefin resin. However, in the embodiment of the present invention, it is preferable to use a material that transmits ultraviolet light, such as white plate glass or borosilicate glass.
 ライン光源10の底面に対向して、ライン光源10の両端に設置された第2の光源部3、第1の光源部4(図4、図5参照)を固定するための基板5が設置されている。この基板5はフェノール、ガラスエポキシなどで形成された薄い絶縁板であり、その裏面に銅箔からなる配線パターンが形成されている。第2の光源部3、第1の光源部4の端子を基板5の各所に形成された孔に挿入し、基板の裏面において半田などで配線パターンと接合することにより、第2の光源部3及び第1の光源部4を基板5に搭載し固定することができるとともに、所定の駆動電源(図示せず)から基板裏面の配線パターンを通して第2の光源部3及び第1の光源部4に電力を供給してその発光を駆動・制御することができる。 Opposite to the bottom surface of the line light source 10, a substrate 5 for fixing the second light source unit 3 and the first light source unit 4 (see FIGS. 4 and 5) installed at both ends of the line light source 10 is installed. ing. This substrate 5 is a thin insulating plate made of phenol, glass epoxy or the like, and a wiring pattern made of copper foil is formed on the back surface thereof. The terminals of the second light source unit 3 and the first light source unit 4 are inserted into holes formed in various places of the substrate 5 and joined to the wiring pattern with solder or the like on the back surface of the substrate 5 to thereby form the second light source unit 3. The first light source unit 4 can be mounted on and fixed to the substrate 5, and the second light source unit 3 and the first light source unit 4 can be fixed from a predetermined driving power source (not shown) through a wiring pattern on the back surface of the substrate. Electric power can be supplied to drive and control the light emission.
 レンズアレイ11は、紙葉類で反射された光を受光部12に結像する光学素子であり、セルフォックレンズアレイ(登録商標:日本板硝子製)などのロッドレンズアレイを用いることができる。本発明の実施の形態では、レンズアレイ11の倍率は1(正立)に設定されている。
 焦点面20から受光部12までの任意の位置に、受光部12に紫外光が入らないように、紫外光を反射又は吸収することにより遮断する「第3の光学フィルタ」としての紫外光遮断フィルタ膜15を設けることが好ましい。本発明の実施の形態では、レンズアレイ11の表面に紫外光遮断フィルタ膜15を取り付け、紫外光を遮断する機能を持たせている。本明細書で「光を遮断する」とは、光を反射又は吸収して、透過させないことをいう。
The lens array 11 is an optical element that forms an image of the light reflected by the paper sheet on the light receiving unit 12, and a rod lens array such as a SELFOC lens array (registered trademark: manufactured by Nippon Sheet Glass) can be used. In the embodiment of the present invention, the magnification of the lens array 11 is set to 1 (upright).
An ultraviolet light blocking filter as a “third optical filter” that blocks ultraviolet light by reflecting or absorbing ultraviolet light so that ultraviolet light does not enter the light receiving unit 12 at any position from the focal plane 20 to the light receiving unit 12. It is preferable to provide the film 15. In the embodiment of the present invention, an ultraviolet light blocking filter film 15 is attached to the surface of the lens array 11 to have a function of blocking ultraviolet light. As used herein, “blocking light” means reflecting or absorbing light and not transmitting it.
 この紫外光遮断フィルタ膜15は、特に限定されるものではなく、紫外光が、受光部12へ入るのを防止することができれば、材質・構造を問わない。例えば有機系の紫外光吸収剤を透明フィルムに混入あるいはコーティングした紫外光吸収フィルム、ガラス表面に酸化チタン、酸化珪素など透過率や屈折率の異なる金属酸化物もしくは誘電体の薄膜を多層蒸着することで得られる干渉フィルタ(バンドパスフィルタ)などが好ましい。 The ultraviolet light blocking filter film 15 is not particularly limited, and any material and structure can be used as long as ultraviolet light can be prevented from entering the light receiving unit 12. For example, an ultraviolet light absorbing film in which an organic ultraviolet light absorber is mixed or coated on a transparent film, and a thin film of metal oxide or dielectric material having different transmittance and refractive index such as titanium oxide and silicon oxide is deposited on the glass surface in multiple layers. The interference filter (bandpass filter) obtained by (1) is preferable.
 なお、紫外光遮断フィルタ膜15はレンズアレイ11の出射面に取り付けていたが、レンズアレイ11の入射面又は中間部に取り付けてもよく、保護ガラス14の内面に直接蒸着又は塗布して用いてもよい。要するに、紙葉類で反射された紫外光が、受光部12へ入るのを防止することができればよい。
 受光部12は基板13に実装され、反射光を受けて光電変換により電気出力として画像を読み取る受光素子を含んで構成されている。受光素子の材質・構造は特に規定されるものではなく、アモルファスシリコン、結晶シリコン、CdS、CdSeなどを用いたフォトダイオードやフォトトランジスタを配置したものであってもよい。またCCD(Charge Coupled Device)リニアイメージセンサであってもよい。さらに受光部12として、フォトダイオードやフォトトランジスタ、駆動回路及び増幅回路を一体としたIC(Integrated Circuit)を複数個並べた、いわゆるマルチチップ方式のリニアイメージセンサを用いることもできる。また、必要に応じて基板13上に駆動回路、増幅回路などの電気回路、あるいは信号を外部に取り出すためのコネクタなどを実装することもできる。さらに基板13上にA/Dコンバータ、各種補正回路、画像処理回路、ラインメモリ、I/O制御回路などを同時に実装してデジタル信号として外部に取り出すこともできる。
Although the ultraviolet light blocking filter film 15 is attached to the exit surface of the lens array 11, it may be attached to the entrance surface or intermediate portion of the lens array 11, and is used by directly depositing or coating on the inner surface of the protective glass 14. Also good. In short, it is only necessary to prevent the ultraviolet light reflected by the paper sheets from entering the light receiving unit 12.
The light receiving unit 12 is mounted on a substrate 13 and includes a light receiving element that receives reflected light and reads an image as an electrical output by photoelectric conversion. The material and structure of the light receiving element are not particularly defined, and a photodiode or a phototransistor using amorphous silicon, crystalline silicon, CdS, CdSe, or the like may be disposed. Moreover, a CCD (Charge Coupled Device) linear image sensor may be used. Further, as the light receiving unit 12, a so-called multichip linear image sensor in which a plurality of ICs (Integrated Circuits) in which a photodiode, a phototransistor, a drive circuit, and an amplifier circuit are integrated can be used. Further, if necessary, an electric circuit such as a drive circuit or an amplifier circuit or a connector for taking out a signal to the outside can be mounted on the substrate 13. Further, an A / D converter, various correction circuits, an image processing circuit, a line memory, an I / O control circuit, and the like can be simultaneously mounted on the substrate 13 and taken out as a digital signal.
 なお、前述した光ラインセンサユニットは、ライン光源10から紙葉類に向けて出射され紙葉類で反射した光を受光する反射型の光ラインセンサユニットであったが、図2に示すように、焦点面20を基準にして、ライン光源10を受光部12と反対の位置に置いて、ライン光源10から紙葉類に向けて出射され紙葉類を透過した光を受光する、透過型の光ラインセンサユニットであってもよい。この場合、ライン光源10の位置が焦点面20の下側になるところが図1の配置と異なるのみで、ライン光源10自体の構造は、今まで説明したものと異なるところはない。また反射型の光ラインセンサユニットと透過型の光ラインセンサユニットを両方含んでいてもよい。 The optical line sensor unit described above is a reflective optical line sensor unit that receives light emitted from the line light source 10 toward the paper sheet and reflected by the paper sheet, but as shown in FIG. The transmissive type light source 10 receives the light emitted from the line light source 10 toward the paper sheet and transmitted through the paper sheet, with the line light source 10 placed at a position opposite to the light receiving unit 12 with respect to the focal plane 20. It may be an optical line sensor unit. In this case, the position of the line light source 10 is located below the focal plane 20 only in the arrangement of FIG. 1, and the structure of the line light source 10 itself is not different from that described so far. Further, both a reflection type optical line sensor unit and a transmission type optical line sensor unit may be included.
 <ライン光源>
 図3は、図1に示される光ラインセンサユニットにおけるライン光源10の外観を概略的に示す斜視図である。図4はライン光源10の各構成部材の分解斜視図、図5はライン光源10の側面図である。なお図5ではカバー部材2の図示は省略している。
 ライン光源10は、長手方向Lに沿って延びる透明な導光体1と、長手方向Lの一方の端面付近に設けられた第2の光源部3と、長手方向Lの他方の端面付近に設けられた第1の光源部4と、導光体1の各側面(底側面1a及び左右側面1b,1c)を保持するためのカバー部材2と、底側面1aと左右側面1bとの間に斜めに形成された光拡散パターン形成面1gに形成され、第2の光源部3及び第1の光源部4から導光体1の端面1e,1fに入射され導光体1の中を進む光を拡散・屈折させて、導光体1の光出射側面1dから出射させるための光拡散パターンPとを有している。また好ましくは、導光体1の端面1e,1fにそれぞれ形成された第2の光学フィルタ6、第1の光学フィルタ7を有している。
<Line light source>
FIG. 3 is a perspective view schematically showing an appearance of the line light source 10 in the optical line sensor unit shown in FIG. FIG. 4 is an exploded perspective view of each component of the line light source 10, and FIG. 5 is a side view of the line light source 10. In FIG. 5, the cover member 2 is not shown.
The line light source 10 is provided near the transparent light guide 1 extending along the longitudinal direction L, the second light source unit 3 provided near one end face in the longitudinal direction L, and the other end face in the longitudinal direction L. Between the first light source unit 4 and the cover member 2 for holding the side surfaces (the bottom side surface 1a and the left and right side surfaces 1b and 1c) of the light guide 1, and the bottom side surface 1a and the left and right side surfaces 1b. Formed on the light diffusion pattern forming surface 1g formed on the first light source unit 3 and the first light source unit 4 and incident on the end surfaces 1e and 1f of the light guide 1 and traveling through the light guide 1. It has a light diffusion pattern P that is diffused and refracted to be emitted from the light emission side surface 1 d of the light guide 1. In addition, preferably, it has a second optical filter 6 and a first optical filter 7 formed on the end faces 1e and 1f of the light guide 1, respectively.
 導光体1は、アクリル樹脂などの光透過性の高い樹脂、あるいは光学ガラスで形成してもよいが、本発明の実施の形態では、紫外光を発光する第1の光源部4を用いるので、導光体1の材料として、紫外光に対する減衰が比較的少ないフッ素系樹脂あるいはシクロオレフィン系樹脂が好ましい(特許文献2参照)。
 導光体1は、細長い柱状であり、その長手方向Lに直交する断面は、長手方向Lのどの切り口においても、実質的に同じ形状、同じ寸法をしている。また導光体1のプロポーション、すなわち導光体1の長手方向Lの長さと、その長手方向Lに直交する断面の高さHとの比率は10よりも大きく、好ましくは30よりも大きい。例えば導光体1の長さが200mmであれば、その長手方向Lに直交する断面の高さHは5mm程度である。
The light guide 1 may be formed of a highly light-transmitting resin such as acrylic resin or optical glass, but in the embodiment of the present invention, the first light source unit 4 that emits ultraviolet light is used. As the material of the light guide 1, a fluorine-based resin or a cycloolefin-based resin that has relatively little attenuation with respect to ultraviolet light is preferable (see Patent Document 2).
The light guide 1 has an elongated columnar shape, and a cross section perpendicular to the longitudinal direction L has substantially the same shape and the same dimensions at any cut end in the longitudinal direction L. The ratio of the proportion of the light guide 1, that is, the length in the longitudinal direction L of the light guide 1 and the height H of the cross section perpendicular to the longitudinal direction L is greater than 10, preferably greater than 30. For example, if the length of the light guide 1 is 200 mm, the height H of the cross section orthogonal to the longitudinal direction L is about 5 mm.
 導光体1の側面は、光拡散パターン形成面1g(図4において導光体1の斜めカット面に相当)、底側面1a、左右側面1b,1c、光出射側面1d(図4において導光体1の上面に相当)の5つの側面からなる。底側面1a、左右側面1b,1cは平面形状であり、光出射側面1dはレンズの集光効果を持たせるために外向きに滑らかな凸の曲線状に形成されている。しかし光出射側面1dは必ずしも凸状に形成されていなくてもよく、平面形状であってもよい。この場合、光出射側面1dに対向するように、導光体1から出射した光を集光するレンズを配置するとよい。 The side surfaces of the light guide 1 are a light diffusion pattern forming surface 1g (corresponding to an oblique cut surface of the light guide 1 in FIG. 4), a bottom side surface 1a, left and right side surfaces 1b and 1c, and a light emitting side surface 1d (light guide in FIG. 4). (Corresponding to the upper surface of the body 1). The bottom side surface 1a and the left and right side surfaces 1b and 1c have a planar shape, and the light emitting side surface 1d is formed in a smooth convex curve outwardly so as to have a condensing effect of the lens. However, the light emission side surface 1d is not necessarily formed in a convex shape, and may be a planar shape. In this case, a lens for condensing the light emitted from the light guide 1 may be disposed so as to face the light emission side surface 1d.
 光拡散パターン形成面1g上の光拡散パターンPは、一定の幅を維持して、導光体1の長手方向Lに沿って一直線状に延びている。この光拡散パターンPの長手方向Lに沿った寸法は、イメージセンサの読取長(つまり受光部12の読取領域の幅)よりも長くなるように形成されている。
 この光拡散パターンPは、導光体1の光拡散パターン形成面1gに彫刻された複数のV字状の溝により構成されている。この複数のV字状の溝の各々は、導光体1の長手方向Lに直交する方向に延びるよう形成されており、互いに同じ長さを有している。複数のV字状の溝は、断面が例えば二等辺三角形状を有していてもよい。
The light diffusion pattern P on the light diffusion pattern forming surface 1g extends in a straight line along the longitudinal direction L of the light guide 1 while maintaining a certain width. The dimension of the light diffusion pattern P along the longitudinal direction L is formed to be longer than the reading length of the image sensor (that is, the width of the reading area of the light receiving unit 12).
The light diffusion pattern P is constituted by a plurality of V-shaped grooves engraved on the light diffusion pattern forming surface 1 g of the light guide 1. Each of the plurality of V-shaped grooves is formed to extend in a direction orthogonal to the longitudinal direction L of the light guide 1 and has the same length. The plurality of V-shaped grooves may have, for example, an isosceles triangle shape in cross section.
 この光拡散パターンPにより、導光体1の端面1e,1fから入射され、導光体1の内部を長手方向Lに伝搬する光を屈折・拡散させ、長手方向Lに沿ってほぼ一様の明るさで光出射側面1dから照射することができる。これにより、導光体1の長手方向Lの全体において紙葉類に照射される光をほぼ一定とすることができ、照度むらを無くすことができる。 By this light diffusion pattern P, light that is incident from the end faces 1e and 1f of the light guide 1 and propagates in the light guide 1 in the longitudinal direction L is refracted and diffused, and is substantially uniform along the longitudinal direction L. It can irradiate from the light emission side surface 1d with brightness. Thereby, the light irradiated to paper sheets can be made substantially constant in the entire longitudinal direction L of the light guide 1, and unevenness in illuminance can be eliminated.
 なお、光拡散パターンPの溝のV字形状は一例であり、照度むらが顕著にならない限り、V字形に代えてU字形にするなど任意に変更することができる。光拡散パターンPの幅も一定の幅を維持する必要はなく、導光体1の長手方向Lに沿って幅が変化するものであってもよい。溝の深さや溝の開口幅についても、適宜変更することができる。
 カバー部材2は、導光体1の長手方向Lに沿った細長い形状であり、導光体1の底側面1a及び左右側面1b,1cを覆うことができるように、導光体1の光拡散パターン形成面1gに対向する底面2a、導光体1の右側面1bに対向する右側面2b、及び導光体1の左側面に対向する左側面2cを有している。これらの3つの側面はそれぞれ平面をなしており、これらの3つの内面で断面がほぼU字状の凹部を形成するので、導光体1をこの凹部の中に挿入することができる。この覆った状態で、カバー部材2の底面2aが導光体1の底側面1aに密着し、カバー部材2の右側面2bが導光体1の右側面1bに密着し、左側面2cが導光体1の左側面1cに密着する。このため、カバー部材2で導光体1を保護することができる。
Note that the V-shape of the groove of the light diffusion pattern P is an example, and can be arbitrarily changed, for example, a U-shape instead of a V-shape, as long as the illuminance unevenness is not significant. The width of the light diffusion pattern P need not be maintained at a constant width, and the width may change along the longitudinal direction L of the light guide 1. The depth of the groove and the opening width of the groove can also be changed as appropriate.
The cover member 2 has an elongated shape along the longitudinal direction L of the light guide 1, and the light diffusion of the light guide 1 so that the bottom side surface 1a and the left and right side surfaces 1b and 1c of the light guide 1 can be covered. It has a bottom surface 2a facing the pattern forming surface 1g, a right side surface 2b facing the right side surface 1b of the light guide 1, and a left side surface 2c facing the left side surface of the light guide 1. These three side surfaces each form a flat surface, and a concave portion having a substantially U-shaped cross section is formed by these three inner surfaces, so that the light guide 1 can be inserted into the concave portion. In this covered state, the bottom surface 2a of the cover member 2 is in close contact with the bottom side surface 1a of the light guide 1, the right side surface 2b of the cover member 2 is in close contact with the right side surface 1b of the light guide 1, and the left side surface 2c is guided. The light body 1 is in close contact with the left side surface 1c. For this reason, the light guide 1 can be protected by the cover member 2.
 なお、カバー部材2は透明なカバーに限定されず、半透明、又は不透明なものであってもよい。例えばカバー部材2は、導光体1の光出射側面以外の側面より漏れ出す光を再び導光体1内に反射させるために、反射率の高い白色樹脂の成形品、又はその白色樹脂を塗布した樹脂の成形品であってもよい。または、カバー部材2をステンレスやアルミニウムなどの金属体で形成してもよい。 The cover member 2 is not limited to a transparent cover, and may be translucent or opaque. For example, the cover member 2 is coated with a white resin molded product having a high reflectance or the white resin so that light leaking from the side surface other than the light emitting side surface of the light guide 1 is reflected again into the light guide 1. It may be a molded product of the prepared resin. Or you may form the cover member 2 with metal bodies, such as stainless steel and aluminum.
 第2の光源部3は可視光、又は可視から赤外にわたる波長の光を発光する光源3aと、白色光を発光する光源3bとを含む。光源3aは、例えば近赤外、赤、緑、青の各波長の光を発する複数のLED(Light Emitting Diode)を有する。光源3bは、蛍光体を蛍光させることにより白色光を発生させる白色LED光源であり、例えば青色又は紫色のLEDで蛍光体を蛍光させて白色光を発生させる白色LED光源や、紫外域LEDで蛍光体を蛍光させて白色光を発生させる白色LED光源などが用いられる。蛍光体は、LED素子上にコーティング又は封止剤に混入され、LEDからの光に蛍光体の発光を付加させることにより、可視光域全てに出力がある白色LED光源となる。 The second light source unit 3 includes a light source 3a that emits visible light or light having a wavelength ranging from visible to infrared, and a light source 3b that emits white light. The light source 3a has, for example, a plurality of LEDs (Light Emitting す る Diode) that emit light of each wavelength of near infrared, red, green, and blue. The light source 3b is a white LED light source that generates white light by fluorescing the phosphor. For example, a white LED light source that generates white light by fluorescing the phosphor with a blue or purple LED, or a fluorescent light with an ultraviolet LED. A white LED light source that fluoresces the body to generate white light is used. The phosphor is mixed with a coating or sealing agent on the LED element, and becomes a white LED light source having an output in the entire visible light range by adding the light emission of the phosphor to the light from the LED.
 白色LED光源としての光源3bは、応答性が高いことが好ましく、図9に実施例として記載したごとく、例えば出力(相対発光強度)が10%から90%に立ち上がるまでの応答時間(立ち上がり時間Tr1)、及び、90%から10%に立ち下がるまでの応答時間(立ち下がり時間Tf1)が、2μ秒以下、特に好ましくは0.5μ秒以下である。蛍光体を蛍光させて白色光を発生させる白色LED光源は、蛍光体を使用していることに起因して応答性が阻害されているため、特定の蛍光体を採用することが好ましい。例えば、光源3bのLED素子(図示せず)が紫又は青色であり、素子上に蛍光体が覆われた構造を有する。前記蛍光体に黄色発光するYAG:Ce(セリウムドープ酸化イットリウム、アルミニウムガーネット焼結体)を用いれば、応答速度が速い白色LED光源とすることができる。 The light source 3b as the white LED light source preferably has high responsiveness. As described in the embodiment in FIG. 9, for example, the response time (rise time Tr1) until the output (relative light emission intensity) rises from 10% to 90%. ), And the response time (fall time Tf1) until it falls from 90% to 10% is 2 μsec or less, particularly preferably 0.5 μsec or less. A white LED light source that fluoresces a fluorescent material to generate white light has a hindered response due to the use of the fluorescent material, and therefore it is preferable to employ a specific fluorescent material. For example, the LED element (not shown) of the light source 3b is purple or blue, and the phosphor is covered on the element. If YAG: Ce (cerium-doped yttrium oxide, aluminum garnet sintered body) that emits yellow light is used as the phosphor, a white LED light source with a high response speed can be obtained.
 第1の光源部4は、導光体1に対して紫外光を発光する紫外光源であり、300nm~400nmの紫外光LED光源等が使用可能である。好ましくは330nm~380nmの範囲にピーク発光波長を有する紫外発光ダイオードが用いられる。 The first light source unit 4 is an ultraviolet light source that emits ultraviolet light to the light guide 1, and an ultraviolet LED light source of 300 nm to 400 nm or the like can be used. An ultraviolet light emitting diode having a peak emission wavelength in the range of 330 nm to 380 nm is preferably used.
 第2の光源部3と第1の光源部4には、基板5に実装されるための端子31が形成されていて、この端子31を基板5に差込み、半田付けなどで接合することにより、それぞれ駆動電源(図示せず)に電気的に接続される。駆動電源は、第2の光源部3に電圧を印加する電極端子と第1の光源部4に電圧を印加する電極端子とを選択することにより、第2の光源部3及び第1の光源部4を同時に、若しくは時間的に切り替えて発光させることができる回路構成となっている。また第2の光源部3に内蔵された複数のLEDのうち任意のLEDを選択して同時に、若しくは時間的に切り替えて発光させることもできる。 In the second light source unit 3 and the first light source unit 4, a terminal 31 for mounting on the substrate 5 is formed. By inserting the terminal 31 into the substrate 5 and joining by soldering or the like, Each is electrically connected to a drive power supply (not shown). The drive power supply selects the electrode terminal that applies a voltage to the second light source unit 3 and the electrode terminal that applies a voltage to the first light source unit 4, so that the second light source unit 3 and the first light source unit are selected. 4 has a circuit configuration capable of emitting light by switching simultaneously or temporally. It is also possible to select any LED from among the plurality of LEDs built in the second light source unit 3 and to emit light by switching simultaneously or temporally.
 以上の構成により、コンパクトな構成で、第2の光源部3(光源3a)が設置される端面1eから可視光又は可視光から赤外光までを含む波長範囲の光を導光体1に入射することができ、第1の光源部4が設置される端面1fから紫外光を導光体1に入射することができる。これにより、前記第1の光源部4から発光される光、又は前記第2の光源部3から発光される光を、前記導光体1の光出射側面1dから出射することができる。また、光源3aが設置される側と同じ端面1eから、光源3bにより白色光を導光体1に入射し、導光体1の光出射側面1dから出射することができる。 With the above configuration, light in a wavelength range including visible light or visible light to infrared light is incident on the light guide 1 from the end face 1e where the second light source unit 3 (light source 3a) is installed in a compact configuration. The ultraviolet light can be incident on the light guide 1 from the end face 1f where the first light source unit 4 is installed. Thereby, the light emitted from the first light source unit 4 or the light emitted from the second light source unit 3 can be emitted from the light emitting side surface 1 d of the light guide 1. Further, white light can be incident on the light guide 1 by the light source 3b from the same end surface 1e on the side where the light source 3a is installed, and can be emitted from the light emission side surface 1d of the light guide 1.
 好ましくは、導光体1の第2の光源部3が設置される端面1eには、420nm以上の赤外光及び可視光を透過させ、400nm未満の紫外光を反射又は吸収することにより遮断する第2の光学フィルタ6が設けられている。また導光体1の第1の光源部4が設置される端面1fには、400nm未満の紫外光を透過させ、420nm以上の赤外光及び可視光を反射又は吸収することにより遮断する第1の光学フィルタ7が設けられている。 Preferably, the end surface 1e on which the second light source unit 3 of the light guide 1 is installed transmits infrared light and visible light of 420 nm or more, and cuts off by reflecting or absorbing ultraviolet light of less than 400 nm. A second optical filter 6 is provided. In addition, the end face 1f of the light guide 1 on which the first light source unit 4 is installed transmits the ultraviolet light of less than 400 nm, and cuts off by reflecting or absorbing the infrared light and visible light of 420 nm or more. The optical filter 7 is provided.
 第2の光学フィルタ6、第1の光学フィルタ7は、特に限定するものではなく、目的とする波長域を遮断するものであれば材質・構造を問わない。例えば反射させる光学フィルタであれば、ガラス表面に透過率や屈折率の異なる金属酸化物もしくは誘電体の薄膜を多層蒸着することで得られる干渉フィルタ(バンドパスフィルタ)が好ましい。
 反射させる干渉フィルタとしては、例えば、酸化珪素と五酸化タンタルなどを採用し、それぞれの透過率や屈折率及び膜厚を調整して多層蒸着することにより所望のバンドパスフィルタ特性を確保することで得られる。なお、当然ながら通常の光学関連産業用に従来から生産されているバンドパスフィルタで、要求性能を満足するものであれば、採用に際して特に制限はない。
The second optical filter 6 and the first optical filter 7 are not particularly limited, and any material and structure can be used as long as they block the target wavelength range. For example, in the case of an optical filter to be reflected, an interference filter (bandpass filter) obtained by multilayer deposition of metal oxide or dielectric thin films having different transmittances and refractive indexes on the glass surface is preferable.
As an interference filter to be reflected, for example, silicon oxide and tantalum pentoxide are adopted, and by adjusting the transmittance, refractive index, and film thickness of each layer, multilayer deposition is performed to secure desired bandpass filter characteristics. can get. Needless to say, there is no particular limitation on the use of the bandpass filter that has been conventionally produced for the normal optical related industry as long as it satisfies the required performance.
 第2の光学フィルタ6、第1の光学フィルタ7に干渉フィルタを用いる場合、前記干渉フィルタのみでは目的とする透過域を調整出来ない場合は、さらにその上に金属又はその酸化物、窒化物、フッ化物の薄膜を用いたフィルムを重ねることで所望の波長特性を確保することが可能である。
 第2の光学フィルタ6が紫外光を吸収する光学フィルタであれば、有機系の紫外光吸収剤を透明フィルムに混入あるいはコーティングした紫外光吸収フィルムであってもよい。また、干渉フィルタで、例えば、酸化珪素と酸化チタンなどを採用し、それぞれの透過率や屈折率及び膜厚を調整して多層蒸着することにより紫外光を反射、吸収両機能により遮断することで所望波長特性を確保してもよい。
When an interference filter is used for the second optical filter 6 and the first optical filter 7, if the target transmission range cannot be adjusted only by the interference filter, a metal or oxide thereof, nitride, It is possible to ensure desired wavelength characteristics by stacking films using fluoride thin films.
If the second optical filter 6 is an optical filter that absorbs ultraviolet light, an ultraviolet light absorbing film obtained by mixing or coating an organic ultraviolet light absorbent in a transparent film may be used. In addition, the interference filter employs, for example, silicon oxide and titanium oxide, and adjusts the transmittance, refractive index, and film thickness of each layer to deposit multiple layers, thereby blocking ultraviolet light by both reflecting and absorbing functions. Desired wavelength characteristics may be secured.
 また第1の光学フィルタ7が可視光、赤外光を吸収する光学フィルタであれば、紫外光を通過させ可視光、赤外光をカットする物質をフィルムの中に添加してもよい。
 なお、第2の光学フィルタ6、第1の光学フィルタ7の導光体1への設置方法は任意であり、導光体1の端面1e,1fに塗布又は蒸着により被覆してもよい。またフィルム状もしくは板状の第2の光学フィルタ6、第1の光学フィルタ7を用意し、導光体1の端面1e,1fに密着させて、もしくは端面1e,1fから一定の距離をおいて取り付けてもよい。
 また、第2の光学フィルタ6、第1の光学フィルタ7を導光体1の端面1e,1fに設けるのではなく、第2の光源部3、第1の光源部4に設けることも可能である。この場合、各光源部3,4に光学フィルタ6,7を塗布又は蒸着により被覆してもよいし、フィルム状もしくは板状の光学フィルタ6,7を用意し、各光源部3,4に密着させて取り付けてもよい。あるいは、第2の光源部3の封止剤に、可視光、又は可視光から赤外光までを含む波長範囲の光を透過させ、紫外光を遮断する物質を添加することにより、第2の光学フィルタ6を構成してもよい。同様に、第1の光源部4の封止剤に、紫外光を透過させ、可視光、又は可視光から赤外光までを含む波長範囲の光を遮断する物質を添加することにより、第1の光学フィルタ7を構成してもよい。
If the first optical filter 7 is an optical filter that absorbs visible light and infrared light, a substance that transmits ultraviolet light and cuts visible light and infrared light may be added to the film.
In addition, the installation method to the light guide 1 of the 2nd optical filter 6 and the 1st optical filter 7 is arbitrary, and you may coat | cover the end surfaces 1e and 1f of the light guide 1 by application | coating or vapor deposition. Also, a film-like or plate-like second optical filter 6 and a first optical filter 7 are prepared and are brought into close contact with the end faces 1e and 1f of the light guide 1 or at a certain distance from the end faces 1e and 1f. It may be attached.
Further, the second optical filter 6 and the first optical filter 7 may be provided on the second light source unit 3 and the first light source unit 4 instead of being provided on the end faces 1 e and 1 f of the light guide 1. is there. In this case, the light filters 3 and 4 may be coated with the optical filters 6 and 7 by coating or vapor deposition, or the film-like or plate-like optical filters 6 and 7 are prepared and are in close contact with the light sources 3 and 4. It may be attached. Alternatively, by adding visible light or light in a wavelength range including visible light to infrared light to the sealant of the second light source unit 3 and adding a substance that blocks ultraviolet light, The optical filter 6 may be configured. Similarly, the first light source unit 4 may be sealed by adding a material that transmits ultraviolet light and blocks visible light or light in a wavelength range including visible light to infrared light. The optical filter 7 may be configured.
 第1の光学フィルタ7が、紫外光を透過させ、赤外光及び可視光を反射又は吸収する光学フィルタであれば、次のような利点がある。第1の光源部4が酸化アルミニウム・セラミックス焼結体など、紫外光が当たった時に波長690nm付近の蛍光を発する実装基体を採用している場合を想定する。紫外光が第1の光源部4から照射されるときに、その照射光が第1の光源部4の実装基体に当たり690nm付近の蛍光が二次照射されて導光体1の中に入ることを防止する必要がある。そこで、第1の光学フィルタ7を、赤外光及び可視光を反射又は吸収するように設計することにより、二次照射された蛍光が導光体1の中に入らないようにすれば、導光体1の光出射側面1dからの不要な蛍光の出射を防止することができ、紙葉類の紫外蛍光のコントラストを良くすることができる。なお、紫外光が蛍光するものは酸化アルミニウム・セラミックス焼結体だけでなく、封止樹脂が蛍光する場合についても同様に二次照射を防ぐことができる。 If the first optical filter 7 is an optical filter that transmits ultraviolet light and reflects or absorbs infrared light and visible light, the following advantages are obtained. Assume that the first light source unit 4 employs a mounting substrate that emits fluorescence having a wavelength of about 690 nm when irradiated with ultraviolet light, such as an aluminum oxide / ceramic sintered body. When ultraviolet light is irradiated from the first light source unit 4, the irradiation light hits the mounting substrate of the first light source unit 4, and fluorescence around 690 nm is secondarily irradiated and enters the light guide 1. There is a need to prevent. Therefore, the first optical filter 7 is designed so as to reflect or absorb infrared light and visible light so that the secondary irradiated fluorescence does not enter the light guide 1. Unnecessary fluorescence emission from the light emission side surface 1d of the light body 1 can be prevented, and the contrast of the ultraviolet fluorescence of the paper sheet can be improved. In addition, not only the aluminum oxide / ceramic sintered body that fluoresces ultraviolet light but also the case where the sealing resin fluoresces can prevent secondary irradiation.
 第2の光学フィルタ6が、赤外光及び可視光を透過させ、紫外光を反射又は吸収する光学フィルタであれば、次のような利点がある。第2の光源部3が酸化アルミニウム・セラミックス焼結体など、紫外光が当たった時に波長690nm付近の蛍光を発する実装基体を採用している場合を想定する。第1の光源部4から照射された紫外光が導光体1の端面1eを通過して第2の光源部3に当たると、690nm付近の蛍光が第2の光源部3から二次照射されて導光体1の中に入って来るので、これを防止する必要がある。そこで、第2の光学フィルタ6を、紫外光を反射又は吸収するように設計することにより、紫外光が導光体1の端面1eから外に出ないようにすれば第2の光源部3に当たることがない。したがって、導光体1の光出射側面1dからの不要な蛍光の出射を防止することができる。その結果、紙葉類の紫外蛍光のコントラストを良くすることができる。 If the second optical filter 6 is an optical filter that transmits infrared light and visible light and reflects or absorbs ultraviolet light, the following advantages are obtained. Assume that the second light source unit 3 employs a mounting substrate that emits fluorescence having a wavelength of about 690 nm when irradiated with ultraviolet light, such as an aluminum oxide / ceramic sintered body. When the ultraviolet light emitted from the first light source unit 4 passes through the end face 1e of the light guide 1 and hits the second light source unit 3, fluorescence near 690 nm is secondarily irradiated from the second light source unit 3. Since it enters the light guide 1, it is necessary to prevent this. Therefore, if the second optical filter 6 is designed so as to reflect or absorb ultraviolet light so that the ultraviolet light does not come out of the end face 1e of the light guide 1, it will hit the second light source unit 3. There is nothing. Therefore, unnecessary fluorescence emission from the light emission side surface 1d of the light guide 1 can be prevented. As a result, the contrast of the ultraviolet fluorescence of the paper sheet can be improved.
 本発明の実施の形態では、第2の光学フィルタ6が赤外光及び可視光を透過させ、紫外光を反射する光学フィルタの方が好ましく、次のような利点がある。第1の光源部4から導光体1に入射され第2の光学フィルタ6で反射し導光体1に戻る紫外光の光量が増加するので、結果として、導光体1の光出射側面1dからの紫外光の出射光量が増大するという効果が得られる。この場合、第2の光学フィルタ6は第2の光源部3から照射される赤外光及び可視光を透過させるので、第2の光源部3からの赤外光及び可視光が導光体1に入るのを妨げることもない。 In the embodiment of the present invention, the second optical filter 6 is preferably an optical filter that transmits infrared light and visible light and reflects ultraviolet light, and has the following advantages. Since the amount of ultraviolet light that enters the light guide 1 from the first light source unit 4 and is reflected by the second optical filter 6 and returns to the light guide 1 increases, as a result, the light emission side surface 1d of the light guide 1 is increased. The effect that the emitted light quantity of the ultraviolet light from the light increases is obtained. In this case, since the second optical filter 6 transmits infrared light and visible light emitted from the second light source unit 3, the infrared light and visible light from the second light source unit 3 are guided by the light guide 1. There is no hindrance to entering.
 また第1の光学フィルタ7が紫外光を透過させ、可視光、赤外光を反射する光学フィルタであれば、第2の光源部3から照射され、導光体1に入射され第1の光学フィルタ7で反射し導光体1に戻る可視光、赤外光の光量が増加するので、結果として、導光体1の光出射側面1dからの可視光、赤外光の出射光量が増大するという効果が得られる。また第1の光学フィルタ7は第1の光源部4から照射される紫外光を透過させるので、導光体1の光出射側面1dからの紫外光の出射も可能になる。 Further, if the first optical filter 7 is an optical filter that transmits ultraviolet light and reflects visible light and infrared light, the first optical filter 7 is irradiated from the second light source unit 3 and is incident on the light guide 1 to be incident on the first optical filter. The amount of visible light and infrared light reflected by the filter 7 and returning to the light guide 1 increases, and as a result, the amount of visible light and infrared light emitted from the light exit side surface 1d of the light guide 1 increases. The effect is obtained. In addition, since the first optical filter 7 transmits the ultraviolet light emitted from the first light source unit 4, the ultraviolet light can be emitted from the light emitting side surface 1 d of the light guide 1.
 第1の光源部4から発光される紫外光は、第1の光学フィルタ7を介して導光体1に入射し、光拡散パターン形成面1gにより拡散・屈折して、光出射側面1dから焦点面20にある紙葉類(媒体)に照射される。これにより、紙葉類から蛍光が生じ、その蛍光色発光が受光部12で検出されることにより、紫外光を用いた紙葉類の識別を行うことができる。
 第2の光源部3の光源3aから発光される可視光又は可視光から赤外光までを含む波長範囲の光は、第2の光学フィルタ6を介して導光体1に入射し、光拡散パターン形成面1gにより拡散・屈折して、光出射側面1dから焦点面20にある紙葉類(媒体)に照射される。これにより、可視光又は赤外光を用いた紙葉類の識別を行うことができる。
The ultraviolet light emitted from the first light source unit 4 is incident on the light guide 1 through the first optical filter 7, diffused and refracted by the light diffusion pattern forming surface 1g, and focused from the light emitting side surface 1d. The sheet (medium) on the surface 20 is irradiated. Thereby, fluorescence is generated from the paper sheet, and the fluorescent color emission is detected by the light receiving unit 12, whereby the paper sheet using ultraviolet light can be identified.
Visible light emitted from the light source 3a of the second light source unit 3 or light in a wavelength range including visible light to infrared light is incident on the light guide 1 via the second optical filter 6 and diffuses light. The light is diffused and refracted by the pattern forming surface 1g, and is irradiated onto the paper sheet (medium) on the focal plane 20 from the light emitting side surface 1d. Thereby, the paper sheet can be identified using visible light or infrared light.
 <受光部>
 図6は、受光部12の素子配列を示す模式図である。受光部12は、y方向に直線状に並べられた複数の受光素子(それぞれフォトダイオード、フォトトランジスタなどで構成される)と信号処理部21とドライバ22とを一体化させたセンサICチップを配列し、各受光素子をカラーフィルタで覆い、これを基板上に実装したものである。ドライバ22は受光素子を駆動するためのバイアス電流を作成し供給する回路部分であり、信号処理部21は受光素子の光検出信号を読み取り処理する回路部分である。受光素子の種類は、限定されないが、例えばシリコンPNダイオード若しくはPINダイオードが用いられる。
<Light receiver>
FIG. 6 is a schematic diagram showing an element arrangement of the light receiving unit 12. The light receiving unit 12 includes a plurality of light receiving elements (each composed of a photodiode, a phototransistor, etc.) arranged linearly in the y direction, and a sensor IC chip in which the signal processing unit 21 and the driver 22 are integrated. Each light receiving element is covered with a color filter and mounted on a substrate. The driver 22 is a circuit part that generates and supplies a bias current for driving the light receiving element, and the signal processing unit 21 is a circuit part that reads and processes a light detection signal of the light receiving element. Although the kind of light receiving element is not limited, for example, a silicon PN diode or a PIN diode is used.
 紙葉類がx方向(副走査方向)に移動する間に、一列に並べられた受光素子を露光することによって、紙葉類の面上にy方向(主走査方向)に沿った所定幅の観測ラインを設定することができる。紙葉類のライン情報を読み取る露光時間(光学読取時間という)は、光源の強度、センサの波長感度などに応じて任意に設定できる。例えば紙葉類のx方向の移動速度はATMや紙幣処理機などでは1500~2000mm/秒であり、光学読取時間として0.5~1.0ミリ秒を採用すれば、観測ラインのx方向の幅は0.75~2mmとなる。 While the paper sheet moves in the x direction (sub-scanning direction), by exposing the light receiving elements arranged in a line, a predetermined width along the y direction (main scanning direction) is formed on the surface of the paper sheet. An observation line can be set. The exposure time for reading the line information of the paper sheet (referred to as optical reading time) can be arbitrarily set according to the intensity of the light source, the wavelength sensitivity of the sensor, and the like. For example, the moving speed of paper sheets in the x direction is 1500 to 2000 mm / sec in ATMs and banknote processors, and if the optical reading time is 0.5 to 1.0 ms, the x direction of the observation line The width is 0.75 to 2 mm.
 本発明の実施の形態では、図6に示すように、受光部12の一画素(画素とは、画像データを読み取り処理する空間的単位を言う)あたり複数、例えば4つの受光素子が直線状に並んで構成されている。図6では、4つの受光素子のうち、1番目の受光素子が赤い(R)カラーフィルタで覆われ、2番目の受光素子が緑の(G)カラーフィルタで覆われ、3番目の受光素子が青い(B)カラーフィルタで覆われている。そして、4番目の受光素子は透明(W)フィルタで覆われているか、若しくは各色フィルタで覆われていない。なお前記カラーフィルタ(R,G,B)は通常、300~400nmの紫外光に対しては不透明であり、波長800nm以上の赤外光に対しては透過性を有する。
 このように、受光部12には、各画素に対応付けて可視光カラーフィルタ(R,G,B)が設けられ、このカラーフィルタを透過した光が各受光素子に入射する。ただし、カラーフィルタは、各画素につき3色に限らず、1色以上のカラーフィルタが設けられていればよい。
 なお、図6では1素子のみが同一色のカラーフィルタで覆われていたが、2つ以上の受光素子が同一色のカラーフィルタで覆われていてもよい。
In the embodiment of the present invention, as shown in FIG. 6, a plurality of, for example, four light receiving elements are linearly arranged per one pixel of the light receiving unit 12 (a pixel means a spatial unit for reading and processing image data). They are arranged side by side. In FIG. 6, among the four light receiving elements, the first light receiving element is covered with a red (R) color filter, the second light receiving element is covered with a green (G) color filter, and the third light receiving element is It is covered with a blue (B) color filter. The fourth light receiving element is covered with a transparent (W) filter or not covered with each color filter. The color filters (R, G, B) are usually opaque to 300 to 400 nm ultraviolet light and transparent to infrared light having a wavelength of 800 nm or more.
As described above, the light receiving unit 12 is provided with the visible light color filters (R, G, B) in association with the respective pixels, and light transmitted through the color filters is incident on the light receiving elements. However, the color filter is not limited to three colors for each pixel, and one or more color filters may be provided.
In FIG. 6, only one element is covered with the same color filter, but two or more light receiving elements may be covered with the same color filter.
 透明(W)フィルタは、いかなる着色もない「透明な」フィルタである。例えば全てのカラーフィルタの光透過率を加算した光透過率を持つことが望ましい。例えばRフィルタの光透過帯域と、Gフィルタの光透過帯域と、Bフィルタの光透過帯域とをつないで包絡線を作ったときの、この包絡線と同様の光透過率を持つことが望ましい。このような「透明フィルタ」を形成する膜の材料は、有機材料では透明なアクリル樹脂、シクロオレフィン系樹脂、シリコーン樹脂、フッ素系樹脂の中から選ばれ、また無機系では窒化シリコン膜、酸化シリコン膜の中から選ばれる。 The transparent (W) filter is a “transparent” filter without any coloring. For example, it is desirable to have a light transmittance obtained by adding the light transmittances of all the color filters. For example, it is desirable to have the same light transmittance as this envelope when an envelope is formed by connecting the light transmission band of the R filter, the light transmission band of the G filter, and the light transmission band of the B filter. The material of the film that forms such a “transparent filter” is selected from transparent acrylic resin, cycloolefin resin, silicone resin, and fluorine resin for organic materials, and silicon nitride film and silicon oxide for inorganic materials. Selected from among membranes.
 これらの各色フィルタ材料は、300~400nmの紫外光に対しても透明である。これらの光学フィルタ材料は、波長800nm以上の赤外光に対しても透過性を有する。
 なお、有機材料においては、液晶用途に用いられる紫外光吸収剤を含んだ透明材料は、紫外光に対して透明でないので、採用することは好ましくない。
 このように、受光部12は、一画素に複数の受光素子とそれらを覆う各色のカラーフィルタが搭載されているため、光源の波長を切り替えないで、それぞれが所望の波長領域の光を単独で照射できる複数の発光素子を同時に点灯させて、紙葉類の色情報を1本の観測ラインで一度に出力することが可能となる。
Each of these color filter materials is transparent to ultraviolet light of 300 to 400 nm. These optical filter materials are transparent to infrared light having a wavelength of 800 nm or more.
In addition, in an organic material, since the transparent material containing the ultraviolet light absorber used for a liquid crystal use is not transparent with respect to ultraviolet light, it is not preferable to employ | adopt.
As described above, since the light receiving unit 12 is provided with a plurality of light receiving elements and color filters covering each color in one pixel, each of the light receiving units 12 independently emits light in a desired wavelength region without switching the wavelength of the light source. It is possible to simultaneously turn on a plurality of light emitting elements that can be irradiated and to output color information of paper sheets at one observation line.
 このような構成の受光部12の光検出信号は、各受光素子の光検出信号を同時に取得した信号であり、これらは信号処理部21に入力される。信号処理部21は、受光部12のR,G,Bの各カラーフィルタを透過した受光素子の信号強度に基づいて、紙葉類の色情報を判別するとともに、透明(W)フィルタを透過し、若しくは、前記各色フィルタを透過しない信号強度に基づいて、当該画素に入ってくる全体光量を算出する。これにより、全体光量を分母(リファレンス)とした、各色信号の正確な光量に基づく画像データを得ることができる。 The light detection signal of the light receiving unit 12 having such a configuration is a signal obtained by simultaneously acquiring the light detection signals of the respective light receiving elements, and these are input to the signal processing unit 21. The signal processing unit 21 determines the color information of the paper sheet based on the signal intensity of the light receiving element that has passed through the R, G, and B color filters of the light receiving unit 12, and transmits the transparent (W) filter. Alternatively, the total amount of light entering the pixel is calculated based on the signal intensity that does not pass through the color filters. Thereby, image data based on the accurate light amount of each color signal can be obtained with the total light amount as the denominator (reference).
 信号処理部21からの信号は、制御部100に入力される。制御部100は、例えばCPU(Central Processing Unit)を含む構成であり、CPUがプログラムを実行することにより、判定部101及び補正処理部102などとして機能する。
 判定部101は、受光素子で読み取った紙葉類の画像データを、それぞれ例えばマスタデータと比較して真偽、金種及び汚損等を判別する。補正処理部102は、信号処理部21から入力される信号を補正することにより、補正された画像データを生成する。判定部101は、補正処理部102により補正された画像データに基づいて判定を行う。
A signal from the signal processing unit 21 is input to the control unit 100. The control unit 100 includes a CPU (Central Processing Unit), for example, and functions as the determination unit 101 and the correction processing unit 102 when the CPU executes a program.
The determination unit 101 determines authenticity, denomination, contamination, and the like by comparing the image data of the paper sheet read by the light receiving element with, for example, master data. The correction processing unit 102 generates corrected image data by correcting the signal input from the signal processing unit 21. The determination unit 101 performs determination based on the image data corrected by the correction processing unit 102.
 ただし、受光部12の素子配列は前記の形態に限定されるものではない。例えば、受光部12の受光素子は図7(a)に示したように、RGBWRGBW・・・というように一列に配列されているとは限らず、二列以上に配列されたものであってもよい。図7(b)は、前記受光素子が一画素あたり2×2に配列されたものであり、2列のうち1つの列(例えば下の列)の一隅に、透明(W)フィルタ又は各色フィルタ無の第二の受光素子が配列されている例を示す。図7(c)は前記受光素子が一画素あたり4列に配列されたものであり、それらの4列のうち最も1つの列(例えば下の列)に、透明(W)フィルタ又は各色フィルタ無の第二の受光素子が配列されている例を示す。これらの場合でも、一画素内において、透明(W)フィルタを通して又は各色フィルタ無の受光素子で検出された光信号を記録するとともに、各カラーフィルタ(R,G,B)を透過した各受光素子の信号強度を検出することができる。
 また、透明(W)フィルタの代わりに、緑(G)のカラーフィルタを設けることにより、RGBGRGBG・・・というような配列にしてもよい。このように、各画素に設けられるカラーフィルタの種類及び数は任意であり、各画素に少なくとも1色以上の可視光カラーフィルタが設けられていればよい。
However, the element arrangement of the light receiving unit 12 is not limited to the above-described form. For example, as shown in FIG. 7A, the light receiving elements of the light receiving unit 12 are not necessarily arranged in a row such as RGBWRGBW... Good. FIG. 7B is a diagram in which the light receiving elements are arranged 2 × 2 per pixel, and a transparent (W) filter or each color filter is provided at one corner of the two columns (for example, the lower column). An example in which a blank second light receiving element is arranged is shown. In FIG. 7C, the light receiving elements are arranged in four rows per pixel, and the transparent (W) filter or each color filter is not provided in the first row (for example, the lower row) among the four rows. An example in which the second light receiving elements are arranged is shown. Even in these cases, each light receiving element that records the optical signal detected through the transparent (W) filter or by the light receiving element without each color filter and transmits each color filter (R, G, B) within one pixel. Can be detected.
Further, instead of the transparent (W) filter, a green (G) color filter may be provided to arrange RGBGRGBG. As described above, the type and number of color filters provided in each pixel are arbitrary, and it is sufficient that at least one visible color filter is provided in each pixel.
 <補正処理>
 図8は、補正処理部102により補正を行う際の態様について説明するための概略図である。本発明の実施の形態では、第2の光源部3の光源3bから発光される白色光を用いて補正を行うことにより、紫外光照射時の蛍光色のカラーバランスを取ることができるようになっている。
<Correction process>
FIG. 8 is a schematic diagram for explaining an aspect when correction is performed by the correction processing unit 102. In the embodiment of the present invention, by performing correction using white light emitted from the light source 3b of the second light source unit 3, it is possible to achieve a color balance of the fluorescent color during ultraviolet light irradiation. ing.
 具体的には、焦点面20に沿ってx方向に白基準物200を搬送する。白基準物200は、例えば反射率の高い白色のシートからなる。白基準物200の搬送時には、第2の光源部3の光源3bから白色光が発光され、その白色光が導光体1の光出射側面1dから出射して白基準物200に照射される。白色光が照射された白基準物200からの反射光は、レンズアレイ11を透過して受光部12に入射し、受光部12の各カラーフィルタを介して複数の受光素子で受光される。これにより、各受光素子からの出力信号の信号強度が検出される。
 このようにして白色光から得られた各画素におけるRGB各色に対応する信号強度の値が、各画素において最も小さい値で除算されることにより、RGB各色の規格化出力の比(Rn:Gn:Bn)が基準画素出力値として画素ごとに算出される。
Specifically, the white reference object 200 is conveyed in the x direction along the focal plane 20. The white reference object 200 is made of, for example, a white sheet having a high reflectance. When the white reference object 200 is transported, white light is emitted from the light source 3 b of the second light source unit 3, and the white light is emitted from the light emission side surface 1 d of the light guide 1 to be irradiated on the white reference object 200. The reflected light from the white reference object 200 irradiated with white light passes through the lens array 11 and enters the light receiving unit 12, and is received by a plurality of light receiving elements through the color filters of the light receiving unit 12. Thereby, the signal intensity of the output signal from each light receiving element is detected.
In this way, the value of the signal intensity corresponding to each RGB color in each pixel obtained from white light is divided by the smallest value in each pixel, whereby the ratio of the normalized output of each RGB color (Rn: Gn: Bn) is calculated for each pixel as a reference pixel output value.
 その後、焦点面20に沿ってx方向に紙葉類(媒体)を搬送する。紙葉類の搬送時には、第1の光源部4から紫外光が発光され、その紫外光が導光体1の光出射側面1dから出射して紙葉類に照射される。紫外光が照射された紙葉類からは蛍光が生じ、その蛍光がレンズアレイ11を透過して受光部12に入射し、受光部12の各カラーフィルタを介して複数の受光素子で受光される。これにより、各受光素子からの出力信号の信号強度Rf,Gf,Bfが検出される。
 このようにして蛍光から得られた各画素におけるRGB各色に対応する信号強度の値Rf,Gf,Bfが、各画素において予め算出されたRGB各色の規格化出力の比(Rn:Gn:Bn)でそれぞれ除算されることにより、補正後の信号強度の値Rfc,Gfc,Bfcが画素ごとに算出される。
Thereafter, the paper sheet (medium) is conveyed in the x direction along the focal plane 20. When the paper sheet is conveyed, ultraviolet light is emitted from the first light source unit 4, and the ultraviolet light is emitted from the light emitting side surface 1 d of the light guide 1 to be irradiated on the paper sheet. Fluorescence is generated from the paper sheet irradiated with ultraviolet light, and the fluorescence passes through the lens array 11 and enters the light receiving unit 12, and is received by a plurality of light receiving elements through each color filter of the light receiving unit 12. . Thereby, the signal strengths Rf, Gf, Bf of the output signals from the respective light receiving elements are detected.
In this way, the signal intensity values Rf, Gf, Bf corresponding to the RGB colors in each pixel obtained from the fluorescence are the ratios (Rn: Gn: Bn) of the normalized output of each RGB color calculated in advance in each pixel. Are respectively calculated to calculate corrected signal intensity values Rfc, Gfc, and Bfc for each pixel.
 すなわち、各画素における赤色(R)に対応する補正後の信号強度の値Rfcは下記式(1)により算出され、各画素における緑色(G)に対応する補正後の信号強度の値Gfcは下記式(2)により算出され、各画素における青色(B)に対応する補正後の信号強度の値Bfcは下記式(3)により算出される。
 Rfc=Rf/Rn ・・・(1)
 Gfc=Gf/Gn ・・・(2)
 Bfc=Bf/Bn ・・・(3)
That is, the corrected signal intensity value Rfc corresponding to red (R) in each pixel is calculated by the following equation (1), and the corrected signal intensity value Gfc corresponding to green (G) in each pixel is The corrected signal intensity value Bfc corresponding to the blue color (B) in each pixel is calculated by the following equation (3).
Rfc = Rf / Rn (1)
Gfc = Gf / Gn (2)
Bfc = Bf / Bn (3)
 <作用効果>
 本発明の実施の形態では、本発明の白色LED光源(第2の光源部3の光源3b)即ち、励起光源を、紫、青のLED上を蛍光体で覆い、LED素子の発光と蛍光体の蛍光を合成した白色光を白基準物200に照射することにより、白基準物200からの光が可視光カラーフィルタを介して複数の受光素子に入射する。このとき得られる各受光素子からの出力信号を基準画素出力値Rn,Gn,Bnとして用いることにより、紫外光照射時の紙葉類の可視蛍光の色の読み取り精度を簡便かつ正確に検出できる。
<Effect>
In the embodiment of the present invention, the white LED light source (the light source 3b of the second light source unit 3) of the present invention, that is, the excitation light source is covered with a phosphor on purple and blue LEDs, and the light emission of the LED element and the phosphor By irradiating the white reference object 200 with white light obtained by synthesizing the fluorescence, light from the white reference object 200 enters the plurality of light receiving elements via the visible light color filter. By using the output signals from the respective light receiving elements obtained at this time as the reference pixel output values Rn, Gn, Bn, it is possible to easily and accurately detect the reading accuracy of the visible fluorescent color of the paper sheet when irradiated with ultraviolet light.
 具体的には、有価証券や紙幣などの紙葉類(媒体)の鑑別時に、紫外光源(第1の光源部4)から紙葉類に紫外光を照射し、紙葉類からの蛍光が可視光カラーフィルタを介して複数の受光素子に入射することにより、各受光素子からの出力信号Rf,Gf,Bfが得られる。この出力信号Rf,Gf,Bfに対して、基準画素出力値Rn,Gn,Bnを用いて上記式(1)~(3)により補正が行われる。これにより、紫外光照射時の蛍光色のカラーバランスを取ることができるため、所望のカラーバランスが取れた上質な画質を得ることができる。 Specifically, when distinguishing paper sheets (medium) such as securities and banknotes, the ultraviolet light source (first light source unit 4) irradiates the paper sheets with ultraviolet light, and the fluorescence from the paper sheets is visible. By entering the light receiving elements through the optical color filter, output signals Rf, Gf, and Bf from the respective light receiving elements are obtained. The output signals Rf, Gf, Bf are corrected by the above formulas (1) to (3) using the reference pixel output values Rn, Gn, Bn. Thereby, since the color balance of the fluorescent color at the time of ultraviolet light irradiation can be taken, the quality image with the desired color balance can be obtained.
 特に、上記実施の形態のように、立ち上がり時間及び立ち下がり時間が短く応答性の高い白色LED光源(第2の光源部3の光源3b)を用いることにより、紫外光照射時に所望のカラーバランスが取れたさらに上質な画質を得ることができる。すなわち、短時間で紙葉類の識別を行うためには高速での読み取り(例えば1ラインの読み取り速度が100μ秒以下)が必要である上、短時間で多数の波長を切り替えるため、応答性の高い白色LED光源を用いることが好ましい。 In particular, as in the above-described embodiment, by using a white LED light source (light source 3b of the second light source unit 3) that has a short rise time and a short fall time and high responsiveness, a desired color balance can be obtained during ultraviolet light irradiation. A higher quality image can be obtained. That is, in order to identify paper sheets in a short time, high-speed reading (for example, the reading speed of one line is 100 μsec or less) is required, and a large number of wavelengths are switched in a short time. It is preferable to use a high white LED light source.
 さらに、本発明の実施の形態では、受光部12において複数の受光素子がy方向(主走査方向)に沿って直線状に配列されている。これにより、1ラインの観測ライン上において紫外光照射時の紙葉類の可視蛍光色を高速で検出できる。 Furthermore, in the embodiment of the present invention, in the light receiving unit 12, a plurality of light receiving elements are arranged linearly along the y direction (main scanning direction). Thereby, the visible fluorescent color of the paper sheet at the time of ultraviolet light irradiation can be detected at high speed on one observation line.
 <変形例>
 以上で、本発明の実施の形態を説明したが、本発明の実施は、以上の形態に限定されるものではない。例えば本発明では、第2の光源部3の光源3aは可視光、又は可視から赤外にわたる波長の光を発光する光源であったが、可視光のみを発光する光源であってもよい。第2の光源部3の光源3aを省略し、白色LED光源としての光源3bのみを設けてもよい。また、光拡散パターンPの形成面を、導光体1の光出射側面1dを除く任意の面に配置することができる。例えば光拡散パターンを底側面1aに形成して、これを光拡散パターンPの形成面としてもよい(この場合底側面1aと左右側面1bとの間に斜めに面を形成する必要はない)。
<Modification>
Although the embodiments of the present invention have been described above, the embodiments of the present invention are not limited to the above embodiments. For example, in the present invention, the light source 3a of the second light source unit 3 is a light source that emits visible light or light having a wavelength ranging from visible to infrared, but may be a light source that emits only visible light. The light source 3a of the second light source unit 3 may be omitted, and only the light source 3b as a white LED light source may be provided. Moreover, the formation surface of the light diffusion pattern P can be disposed on any surface other than the light emission side surface 1 d of the light guide 1. For example, a light diffusion pattern may be formed on the bottom side surface 1a, and this may be used as a surface on which the light diffusion pattern P is formed (in this case, it is not necessary to form a diagonal surface between the bottom side surface 1a and the left and right side surfaces 1b).
 補正処理では、第1の光源部4からの紫外光が照射された紙葉類からの蛍光が受光部12に入射することにより得られる各受光素子からの出力信号ではなく、第2の光源部3の光源3aからの可視光、又は可視から赤外にわたる波長の光が照射された紙葉類からの光が受光部12に入射することにより得られる各受光素子からの出力信号が、基準画素出力値Rn,Gn,Bnを用いて補正されてもよい。 In the correction process, the second light source unit is not an output signal from each light receiving element obtained by the fluorescence from the paper sheet irradiated with ultraviolet light from the first light source unit 4 entering the light receiving unit 12. The output signal from each light receiving element obtained when the light from the paper sheet irradiated with the visible light from the light source 3a of 3 or the light having the wavelength ranging from visible to infrared is incident on the light receiving unit 12 is a reference pixel. Correction may be performed using the output values Rn, Gn, and Bn.
 ライン光源10は、導光体1に対して長手方向Lの一方又は両方の端面から光を入射させ、光拡散パターンPで光を拡散・屈折させるような構成に限らず、導光体1の底側面1a側から光出射側面1dを介して焦点面20に光を直接照射するような構成(いわゆる直下型)であってもよい。これにより、安価で出力が比較的小さいLEDを光源として用いた場合であっても、直下型に配列することによって所望の光量を確保することができる。このような直下型の構成の場合、導光体1を省略することも可能である。 The line light source 10 is not limited to the configuration in which light is incident on the light guide 1 from one or both end faces in the longitudinal direction L, and the light is diffused and refracted by the light diffusion pattern P. A configuration in which light is directly irradiated onto the focal plane 20 from the bottom side surface 1a side through the light emission side surface 1d (so-called direct type) may be used. Thereby, even if it is a case where cheap LED with comparatively small output is used as a light source, a desired light quantity can be ensured by arranging in a direct type. In the case of such a direct type configuration, the light guide 1 can be omitted.
 また、観測ラインは1ラインに限られるものではなく、それぞれy方向(主走査方向)に沿って延びる複数の観測ラインが、x方向(副走査方向)に並べて設定されていてもよい。この場合、x方向の同一列の画素における出力信号の平均値を算出し、その平均値を用いて補正処理が行われてもよい。 Further, the observation line is not limited to one line, and a plurality of observation lines extending along the y direction (main scanning direction) may be set side by side in the x direction (sub scanning direction). In this case, an average value of output signals in pixels in the same column in the x direction may be calculated, and correction processing may be performed using the average value.
1   導光体
2   カバー部材
3   第2の光源部
3a  光源
3b  光源(白色LED光源)
4   第1の光源部
6   第2の光学フィルタ
7   第1の光学フィルタ
10  ライン光源
11  レンズアレイ
12  受光部
20  焦点面
100 制御部
101 判定部
102 補正処理部
200 白基準物
DESCRIPTION OF SYMBOLS 1 Light guide 2 Cover member 3 2nd light source part 3a Light source 3b Light source (white LED light source)
4 First light source unit 6 Second optical filter 7 First optical filter 10 Line light source 11 Lens array 12 Light receiving unit 20 Focal plane 100 Control unit 101 Determination unit 102 Correction processing unit 200 White reference object

Claims (6)

  1.  紫外光源から媒体に紫外光を照射し、媒体から生じる蛍光色発光を受光部で検出する紫外線蛍光色検出装置であって、
     蛍光体を蛍光させることにより白色光を発生させる白色LED光源と、
     前記受光部に設けられ、少なくとも1色以上の可視光カラーフィルタを透過した光が入射する複数の受光素子と、
     前記白色LED光源からの白色光が照射された白基準物からの光が前記可視光カラーフィルタを介して前記複数の受光素子に入射することにより得られる各受光素子からの出力信号に基づいて、前記紫外光源からの紫外光が照射された媒体からの蛍光が前記可視光カラーフィルタを介して前記複数の受光素子に入射することにより得られる各受光素子からの出力信号を補正する補正処理部とを備えることを特徴とする紫外線蛍光色検出装置。
    An ultraviolet fluorescent color detection device that irradiates a medium with ultraviolet light from an ultraviolet light source and detects a fluorescent color emission generated from the medium by a light receiving unit,
    A white LED light source that generates white light by fluorescing the phosphor;
    A plurality of light receiving elements that are provided in the light receiving unit and receive light that has passed through at least one visible color filter;
    Based on an output signal from each light receiving element obtained when light from a white reference object irradiated with white light from the white LED light source enters the plurality of light receiving elements via the visible light color filter, A correction processing unit that corrects an output signal from each light receiving element obtained by the fluorescence from the medium irradiated with the ultraviolet light from the ultraviolet light source entering the plurality of light receiving elements through the visible light color filter; An ultraviolet fluorescent color detection device comprising:
  2.  前記白色LED光源の出力が10%から90%に立ち上がるまでの時間、及び、90%から10%に立ち下がるまでの時間のそれぞれが、2μ秒以下であることを特徴とする請求項1に記載の紫外線蛍光色検出装置。 The time until the output of the white LED light source rises from 10% to 90% and the time until the output falls from 90% to 10% are 2 μsec or less, respectively. UV fluorescent color detection device.
  3.  前記複数の受光素子は、主走査方向に沿って直線状に配列されていることを特徴とする請求項1又は2に記載の紫外線蛍光色検出装置。 3. The ultraviolet fluorescent color detection apparatus according to claim 1, wherein the plurality of light receiving elements are arranged linearly along a main scanning direction.
  4.  紫外光源から媒体に紫外光を照射し、媒体から生じる蛍光色発光を受光部で検出する紫外線蛍光色検出装置を用いた紫外線蛍光色検出方法であって、
     前記紫外線蛍光色検出装置は、
     蛍光体を蛍光させることにより白色光を発生させる白色LED光源と、
     前記受光部に設けられ、少なくとも1色以上の可視光カラーフィルタを透過した光が入射する複数の受光素子とを備え、
     前記白色LED光源からの白色光が照射された白基準物からの光が前記可視光カラーフィルタを介して前記複数の受光素子に入射することにより得られる各受光素子からの出力信号に基づいて、前記紫外光源からの紫外光が照射された媒体からの蛍光が前記可視光カラーフィルタを介して前記複数の受光素子に入射することにより得られる各受光素子からの出力信号を補正することを特徴とする紫外線蛍光色検出方法。
    An ultraviolet fluorescent color detection method using an ultraviolet fluorescent color detection device that irradiates a medium with ultraviolet light from an ultraviolet light source and detects a fluorescent color emission generated from the medium at a light receiving unit,
    The ultraviolet fluorescent color detection device is:
    A white LED light source that generates white light by fluorescing the phosphor;
    A plurality of light receiving elements that are provided in the light receiving unit and receive light transmitted through at least one visible light color filter;
    Based on an output signal from each light receiving element obtained when light from a white reference object irradiated with white light from the white LED light source enters the plurality of light receiving elements via the visible light color filter, Correcting the output signal from each light receiving element obtained by the fluorescence from the medium irradiated with ultraviolet light from the ultraviolet light source entering the plurality of light receiving elements via the visible light color filter, UV fluorescent color detection method.
  5.  前記白色LED光源の出力が10%から90%に立ち上がるまでの時間、及び、90%から10%に立ち下がるまでの時間のそれぞれが、2μ秒以下であることを特徴とする請求項4に記載の紫外線蛍光色検出方法。 The time until the output of the white LED light source rises from 10% to 90% and the time until the output falls from 90% to 10% are each 2 μsec or less. UV fluorescent color detection method.
  6.  前記複数の受光素子は、主走査方向に沿って直線状に配列されていることを特徴とする請求項4又は5に記載の紫外線蛍光色検出方法。 6. The ultraviolet fluorescent color detection method according to claim 4, wherein the plurality of light receiving elements are arranged linearly along the main scanning direction.
PCT/JP2017/011802 2017-03-23 2017-03-23 Ultraviolet fluorescent color detection device and ultraviolet fluorescent color detection method WO2018173210A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780000961.4A CN109155091B (en) 2017-03-23 2017-03-23 Ultraviolet fluorescent color detection device and ultraviolet fluorescent color detection method
PCT/JP2017/011802 WO2018173210A1 (en) 2017-03-23 2017-03-23 Ultraviolet fluorescent color detection device and ultraviolet fluorescent color detection method
EP17754594.4A EP3474242B1 (en) 2017-03-23 2017-03-23 Ultraviolet fluorescent color detection device and ultraviolet fluorescent color detection method
KR1020177026092A KR101825339B1 (en) 2017-03-23 2017-03-23 Ultraviolet fluorescent color detecting device and ultraviolet fluorescent color detecting method
JP2017528591A JP6235765B1 (en) 2017-03-23 2017-03-23 Ultraviolet fluorescent color detection device and ultraviolet fluorescent color detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/011802 WO2018173210A1 (en) 2017-03-23 2017-03-23 Ultraviolet fluorescent color detection device and ultraviolet fluorescent color detection method

Publications (1)

Publication Number Publication Date
WO2018173210A1 true WO2018173210A1 (en) 2018-09-27

Family

ID=60417497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011802 WO2018173210A1 (en) 2017-03-23 2017-03-23 Ultraviolet fluorescent color detection device and ultraviolet fluorescent color detection method

Country Status (5)

Country Link
EP (1) EP3474242B1 (en)
JP (1) JP6235765B1 (en)
KR (1) KR101825339B1 (en)
CN (1) CN109155091B (en)
WO (1) WO2018173210A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7041539B2 (en) 2018-02-09 2022-03-24 株式会社ヴィーネックス The light receiving output correction method and light receiving output correction system of the optical line sensor unit, and the optical line sensor unit used for this.
JP7217668B2 (en) * 2019-05-27 2023-02-03 株式会社日立ハイテク Light source and biochemical analyzer
CN110161228A (en) * 2019-06-19 2019-08-23 上海菲伽生物科技有限公司 Continuous ultraviolet excitation fluorescence spectrum colour filter method immunologic detection method
CN112903642B (en) * 2021-01-20 2022-06-10 井冈山大学 Method for quantitatively analyzing photosynthetic heterogeneity of plant leaves
JP2022129805A (en) * 2021-02-25 2022-09-06 グローリー株式会社 Paper sheet identification apparatus and paper sheet identification method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229722A (en) 2000-02-18 2001-08-24 Kanegafuchi Chem Ind Co Ltd Uv line light source unit
JP2006039996A (en) 2004-07-28 2006-02-09 Kaneka Corp Recognition device for paper sheet
JP2008187531A (en) * 2007-01-30 2008-08-14 Kyocera Mita Corp Image reader and image forming apparatus
JP2016009445A (en) * 2014-06-26 2016-01-18 株式会社ヴィーネックス Optical line sensor device
JP2016015031A (en) * 2014-07-02 2016-01-28 株式会社ヴィーネックス Optical line sensor device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH690471A5 (en) * 1988-04-18 2000-09-15 Mars Inc Means for detecting the authenticity of documents.
JP4305193B2 (en) * 2004-01-23 2009-07-29 富士ゼロックス株式会社 Image reading device
JP2010101835A (en) 2008-10-27 2010-05-06 Toshiba Corp Fluorescence reference member and fluorescence sensing device equipped with the same
JP5367509B2 (en) 2009-08-27 2013-12-11 株式会社東芝 Photodetection device and paper sheet processing apparatus provided with the photodetection device
JP4851580B2 (en) * 2009-11-20 2012-01-11 シャープ株式会社 Image reading apparatus, image data output processing apparatus including the same, and image reading method
JP5073776B2 (en) * 2010-04-26 2012-11-14 シャープ株式会社 Image reading apparatus, image data output processing apparatus, and image reading method
CN103384899B (en) * 2011-03-31 2015-07-29 富士通先端科技株式会社 Line sensor unit, automatic trading apparatus
JP2013078102A (en) * 2011-06-17 2013-04-25 Rohm Co Ltd Image sensor module
JP5536150B2 (en) * 2011-08-09 2014-07-02 キヤノン・コンポーネンツ株式会社 Image sensor unit and image reading apparatus
JP6315759B2 (en) * 2013-10-11 2018-04-25 シャープ株式会社 Fluorescence detection device and vacuum cleaner
JP6633268B2 (en) 2014-09-03 2020-01-22 グローリー株式会社 Sensor module and paper sheet processing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229722A (en) 2000-02-18 2001-08-24 Kanegafuchi Chem Ind Co Ltd Uv line light source unit
JP2006039996A (en) 2004-07-28 2006-02-09 Kaneka Corp Recognition device for paper sheet
JP2008187531A (en) * 2007-01-30 2008-08-14 Kyocera Mita Corp Image reader and image forming apparatus
JP2016009445A (en) * 2014-06-26 2016-01-18 株式会社ヴィーネックス Optical line sensor device
JP2016015031A (en) * 2014-07-02 2016-01-28 株式会社ヴィーネックス Optical line sensor device

Also Published As

Publication number Publication date
CN109155091A (en) 2019-01-04
JP6235765B1 (en) 2017-11-22
CN109155091B (en) 2021-08-10
KR101825339B1 (en) 2018-02-02
EP3474242A1 (en) 2019-04-24
EP3474242A4 (en) 2019-04-24
EP3474242B1 (en) 2020-11-04
JPWO2018173210A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JP6235765B1 (en) Ultraviolet fluorescent color detection device and ultraviolet fluorescent color detection method
JP5030530B2 (en) Light emitting element array and paper sheet recognition device
JP6246351B2 (en) Line light source and optical line sensor unit
JP5537473B2 (en) Optical line sensor device and method for identifying valuable paper
JP2016005093A (en) Image sensor unit
JP6867270B2 (en) Optical line sensor unit
JP6207359B2 (en) Illumination device, image sensor unit, and paper sheet identification device
JP6463912B2 (en) Line light source and image sensor unit
CN112313932B (en) Optical line sensor unit
JP7041485B2 (en) Line light source and optical line sensor unit equipped with this
JP4638192B2 (en) Line light source and contact image sensor using the same
JP7041539B2 (en) The light receiving output correction method and light receiving output correction system of the optical line sensor unit, and the optical line sensor unit used for this.
JP7265370B2 (en) line lighting source
JP2014197005A (en) Optical line sensor apparatus and discrimination method of securities
JP2009124720A (en) Line light source and contact type image sensor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017528591

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2017754594

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020177026092

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17754594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE