WO2018173143A1 - Treatment device for natural gas - Google Patents

Treatment device for natural gas Download PDF

Info

Publication number
WO2018173143A1
WO2018173143A1 PCT/JP2017/011404 JP2017011404W WO2018173143A1 WO 2018173143 A1 WO2018173143 A1 WO 2018173143A1 JP 2017011404 W JP2017011404 W JP 2017011404W WO 2018173143 A1 WO2018173143 A1 WO 2018173143A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
methanation
hydrogen
natural gas
gas
Prior art date
Application number
PCT/JP2017/011404
Other languages
French (fr)
Japanese (ja)
Inventor
恵里 杉
嘉之 渡邉
近松 伸康
Original Assignee
日揮株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮株式会社 filed Critical 日揮株式会社
Priority to PCT/JP2017/011404 priority Critical patent/WO2018173143A1/en
Priority to JP2019506788A priority patent/JP6740458B2/en
Priority to AU2017404979A priority patent/AU2017404979B2/en
Publication of WO2018173143A1 publication Critical patent/WO2018173143A1/en

Links

Images

Definitions

  • the present invention relates to the technical field of methanating carbon dioxide in natural gas using hydrogen.
  • Natural gas is often produced in a state containing carbon dioxide in addition to the main component methane, and carbon dioxide is removed to obtain product gas as a raw material for pipeline gas (city gas) and liquefied natural gas.
  • product gas a raw material for pipeline gas (city gas) and liquefied natural gas.
  • AGRU Acid Gas Removal Unit
  • Patent Document 1 hydrogen obtained by supplying natural gas to a hydrogen separation reactor is reacted with carbon dioxide in natural gas in the presence of a catalyst in a methanation reactor to produce methane. And reducing carbon dioxide in natural gas.
  • Patent Document 2 hydrogen from a hydrogen gas supply line is mixed with a raw material gas containing carbon dioxide, the mixed gas is supplied to the first reactor, and then hydrogen from the hydrogen gas supply line is supplied to the mixed gas.
  • a technique is described in which the mixed gas is supplied to the second reactor, the mixed gas is further supplied to the third reactor for adjusting the composition of the product gas, and the carbon dioxide in the raw material gas is changed to methane. Has been.
  • Patent Documents 1 and 2 describe a technique for extending the service life of the methanation catalyst by extremely reducing the allowable content of sulfur contained in natural gas, and a device for reducing the amount of methanation catalyst used. It has not been.
  • former stage of a reactor is excluded.
  • the present invention provides a natural gas processing apparatus capable of simplifying equipment for methanating carbon dioxide in natural gas, extending the life of the methanation catalyst, and reducing the amount used. It is in.
  • the natural gas processing apparatus of the present invention comprises: A pre-stage reactor for supplying natural gas, which is a raw material gas, and hydrogen, and reacting carbon dioxide and hydrogen in the natural gas to produce methane, A post-reactor for adjusting the hydrogen concentration by reacting hydrogen and carbon dioxide remaining in the product gas discharged from the pre-reactor; A catalyst layer of a methanation catalyst provided in each of the former reactor and the latter reactor; A catalyst layer of a hydrogenation catalyst provided on the upstream side of the preceding reactor and having methanation catalysis together with main hydrogenation catalysis that hydrogenates organic sulfur in natural gas to hydrogen sulfide; And an adsorbent layer of an adsorbent disposed on the downstream side of the catalyst layer of the hydrogenation catalyst and adsorbing hydrogen sulfide.
  • COS carbonyl sulfide
  • the natural gas processing apparatus comprises a hydrogenation reactor 1, an adsorptive desulfurization reactor 2 for adsorbing hydrogen sulfide, and a pre-stage reactor.
  • latter stage reactor 5 which is a methanation reactor are arrange
  • Each of the reactors 1 to 5 is configured as an adiabatic reactor.
  • a natural gas flow path connected to the upstream side of the hydrogenation reactor 1 is referred to as a “source gas supply path”, and a gas flow path from the hydrogenation reactor 1 to the subsequent reactor 5 is illustrated.
  • the “gas flow path” and the flow path of the gas taken out from the post-reactor 5 are called “product gas outflow paths”, respectively.
  • the source gas supply path 101 is connected to the tower top of the hydrogenation reactor 1 via a heater 102, and a pretreatment hydrogen supply path 200 is connected to the upstream side of the heater 102.
  • the AGRU (103) indicated by the dotted line will be described later.
  • the tower bottom portion of the upstream reactor and the tower top portion of the downstream side of the two reactors adjacent to each other are respectively the gas flow paths. 10, 20, 30, 40.
  • a catalyst layer 11 of a hydrogenation catalyst for converting organic sulfur contained in natural gas into hydrogen sulfide is disposed.
  • the hydrogenation catalyst includes, for example, an inorganic oxide support containing aluminum, a first metal component selected from molybdenum and tungsten, and a second metal component selected from cobalt, nickel and chromium. In this example, the metal Used in a sulfurized state.
  • the hydrogenation catalyst also has methanation catalysis as well as main hydrogenation catalysis that converts organic sulfur in natural gas into hydrogen sulfide.
  • an adsorbent layer 21 for adsorbent for adsorbing hydrogen sulfide is disposed.
  • the adsorbent for example, zinc oxide particles can be used.
  • a carrier made of an inorganic oxide such as alumina or silica and a metal such as iron or copper may be supported.
  • a cooler 22 is provided in the gas flow path 20 for supplying the gas flowing out from the adsorptive desulfurization reactor 2 to the first methanation reactor 3.
  • the cooler 22 is necessary, but the first methanation reactor
  • the inlet temperature of each of the first-stage methanation reactor (first methanation reactor 3, second methanation reactor 4) and second-stage methanation reactor 5 is, for example, 200 to 300 ° C.
  • the temperature in the adsorptive desulfurization reactor 2 is 300 to 350 ° C.
  • the inlet temperature of the first methanation reactor 3 is 250 ° C. and the temperature in the adsorptive desulfurization reactor 2 is 300 ° C., the gas flowing out from the adsorptive desulfurization reactor 2 is cooled by the cooler 22. ing.
  • a first hydrogen supply path 201 and a steam supply path 203 are connected between the cooler 22 in the gas flow path 20 and the top of the first methanation reactor 3.
  • a catalyst layer 31 of a methanation catalyst is disposed in the first methanation reactor 3.
  • a particulate catalyst containing nickel as a main component for example, 40 to 60 mass% with respect to the whole catalyst
  • a catalyst in which ruthenium is supported on an inorganic oxide such as alumina or silica can also be used.
  • catalyst layers 41 and 51 using the same methanation catalyst are arranged inside each of the second methanation reactor 4 and the post-stage methanation reactor 5.
  • the gas flow path 30 for supplying the gas flowing out from the first methanation reactor 3 to the second methanation reactor 4 is provided with a cooler 32, and the second side is located downstream of the cooler 32.
  • the hydrogen supply path 202 is connected.
  • a cooler 42 is also provided in the gas flow path 40 for supplying the gas flowing out from the second methanation reactor 4 to the subsequent methanation reactor 5.
  • a methanation reaction occurs in which carbon dioxide (carbon dioxide gas) and hydrogen (hydrogen gas) react to generate methane, Since this reaction is an exothermic reaction, each outlet temperature becomes higher than each inlet temperature of the methanation reactors 3 and 4.
  • the pretreatment hydrogen supply path 200, the first hydrogen supply path 201, and the second hydrogen supply path 202 described above are connected to, for example, a common hydrogen supply source, and flow rate adjusting valves V0, V1, and V2, respectively. Is provided. Further, the water vapor supply path 203 is provided with a valve V3 for flow rate adjustment.
  • the post-stage methanation reactor 5 is provided for reacting excess hydrogen contained in the gas with carbon dioxide so that the hydrogen concentration in the product gas after the treatment falls within a preset concentration range.
  • One end side of the product gas outflow passage 50 is connected to the tower bottom of the rear stage methanation reactor 5, and the other end side of the product gas outflow passage 50 is connected to the gas-liquid separation drum 53 via the cooler 52. .
  • the gas-liquid separation drum 53 flows out from the post-stage methanation reactor 5, separates and removes moisture (drainage) from the cooled product gas, and the product gas from which the moisture has been separated is taken out as, for example, a product gas.
  • natural gas which is a raw material gas
  • natural gas which is a raw material gas
  • the heated mixed gas is supplied into the hydrogenation reactor 1, and the hydrogenation reaction mainly occurs. That is, the organic sulfur contained in the natural gas is changed to hydrogen sulfide by the hydrogenation catalyst constituting the catalyst layer 11.
  • the hydrogenation catalyst has methanation catalysis in addition to hydrogenation catalysis, so that the methanation reaction also proceeds in the hydrogenation reactor 1 and carbon dioxide in the natural gas. Part of the carbon reacts with hydrogen to produce methane.
  • the temperature of the gas on the outlet side of the hydrogenation reactor 1 is, for example, 10 ° C. to 100 ° C. higher than the temperature of the gas on the inlet side.
  • the amount of hydrogen supplied to the hydrogenation reactor 1 is not less than an amount sufficient for hydrogenation of organic sulfur (for example, 1 to 2 mol (mol)%) and, for example, 10 mol% in consideration of the heat resistant temperature of the hydrogenation catalyst.
  • the gas flowing out of the hydrogenation reactor 1 is sent into the adsorptive desulfurization reactor 2, and hydrogen sulfide in the gas is adsorbed by the adsorbent constituting the adsorbent layer 21 to perform desulfurization.
  • an AGRU Active Gas Removal Unit
  • the AGRU (103) supplies natural gas from the bottom side of the amine contact tower to flow out from the top of the tower, and supplies an amine liquid from the top side of the amine contact tower to make countercurrent contact with the natural gas. It is configured. When the natural gas comes into contact with the amine liquid, hydrogen sulfide in the natural gas is removed.
  • a methanation reaction occurs in which carbon dioxide and hydrogen react with each other in the catalyst layer 31 of the methanation catalyst to generate methane.
  • the flow rate of hydrogen supplied from the first hydrogen supply channel 201 is the same as that of the methanation catalyst and methanation reaction when the methanation reaction occurs with the hydrogen remaining in the gas flowing out from the adsorptive desulfurization reactor 2.
  • the temperature on the outlet side of the first methanation reactor 3 is adjusted to be 540 ° C. or less, for example.
  • the supply amount of water vapor is such that the molar ratio of water vapor to the total of carbon dioxide and hydrogen is 0.6 [mol concentration of water vapor / mol concentration of carbon dioxide + mol of hydrogen at the inlet of the first methanation reactor 3. Density)]. Note that water vapor is not necessarily supplied and may not be used.
  • the gas flowing out from the first methanation reactor 3 is cooled to, for example, 250 ° C. by the cooler 32 and sent to the second methanation reactor 4.
  • the temperature on the outlet side of the second methanation reactor 4 is adjusted so that the hydrogen concentration becomes a value corresponding to the concentration of carbon dioxide remaining in the gas.
  • hydrogen is replenished and supplied from the second hydrogen supply path 202 to the second methanation reactor 4 via the gas flow path 30 so that the temperature is 540 ° C. or lower.
  • a methanation reaction occurs in the catalyst layer 41, and the gas in which the concentration of carbon dioxide is reduced is cooled to, for example, 250 ° C. by the cooler 42 and sent to the subsequent reactor 5.
  • the methanation reaction further proceeds in the catalyst layer 51 of the methanation catalyst of the rear reactor 5.
  • Carbon dioxide and hydrogen are reduced, and the hydrogen concentration in the product gas is adjusted to an allowable concentration, for example, 3 mol% or less.
  • the product gas flowing out from the rear reactor 5 is cooled to a temperature below the temperature at which water is condensed by the cooler 52, for example, 50 ° C., and then the gas and water are separated by the gas-liquid separation drum 53 as a gas-liquid separation unit, Product gas is obtained.
  • the pressure in each reactor 1 to 5 is set to 1 MPa to 8 MPa, for example.
  • the number of stages of the preceding reactor is determined according to the concentration of carbon dioxide in the natural gas. If steam is used as described above, the number of the first-stage reactors is 1 if the concentration of carbon dioxide is 25 mol% or less, 2 if the concentration is 40 mol% or less, and 3 if the concentration is 70 mol% or less. Is done.
  • the natural gas used as the raw material gas has a carbon dioxide concentration of 3 mol% or more. Can do.
  • methanation is performed using a gas other than carbon dioxide in natural gas as a diluent gas, and the reactor for methanation is divided into a plurality of stages, for example, two stages of methanation reactors 3 and 4. Since hydrogen is supplied to each, the number of reactors for methanation can be reduced, and the apparatus can be simplified. And since the sulfur concentration in natural gas is reduced to 0.1 ppm or less using the hydrogenation catalyst and the adsorbent of hydrogen sulfide on the upstream side of the methanation reactors 3 and 4, the methanation catalyst The service life can be extended. In addition, since a hydrogenation catalyst is used, a methanation reaction occurs in addition to the hydrogenation reaction, and therefore the amount of methanation catalyst used in the methanation reactors 3 and 4 can be suppressed.
  • the waste water separated by the gas-liquid separation drum 53 is used as a cooling medium for the coolers 22, 32, 42, and 52 as shown in FIG. 2, and water vapor obtained by vaporization by the heat of the methanation reaction is used. It supplies to the 1st methanation reactor 3 from the water vapor
  • the booster compressor 301 is supplied to a steam turbine 302 that drives it.
  • the waste water separated by the gas-liquid separation drum 53 is electrolyzed by an electrolysis device, and the obtained hydrogen is supplied into the treatment system via the hydrogen supply paths 200, 201, 202 described above.
  • FIG. 5 is a graph showing the relationship between the carbon dioxide concentration in natural gas and the carbonyl sulfide concentration after the hydrogenation reaction.
  • the sulfur in the natural gas is 1 ppm and the carbon dioxide concentration in the natural gas is 64 mol%, the amount of carbonyl sulfide produced is as very small as 0.095 ppm as shown by.
  • carbonyl sulfide is adsorbed on the upstream side of the first methanation reactor 3, for example, between the adsorptive desulfurization reactor 2 and the first methanation reactor 3.
  • a carbonyl sulfide adsorption reactor 6, which is a carbonyl sulfide removal portion, in which an adsorption layer 61 made of an adsorbent is disposed is provided.
  • Reference numeral 60 denotes a gas flow path.
  • carbonyl sulfide adsorbent for example, an adsorbent in which copper is supported on a support made of an inorganic oxide such as alumina or silica, or a copper-based adsorbent such as a copper oxide granular or molded body can be used.
  • the adsorptive desulfurization reactor 2 and the carbonyl sulfide adsorption reactor 6 instead of providing the adsorptive desulfurization reactor 2 and the carbonyl sulfide adsorption reactor 6 separately, as the adsorptive desulfurization agent used in the adsorptive desulfurization reactor 2, only a copper-based adsorbent is used and hydrogen sulfide is used. And carbonyl sulfide may be adsorbed on the adsorbent.
  • the cost of the copper-based adsorbent is expensive, from the viewpoint of cost, the configuration shown in FIG. 6 is adopted, and the adsorptive desulfurization reactor 2 has an adsorption made of a zinc-based adsorbent, for example, zinc oxide.
  • a copper-based adsorbent for the carbonyl sulfide adsorption reactor 6, and in this case, the amount of copper-based adsorbent used can be suppressed.
  • a zinc-based adsorbent and a copper-based adsorbent may be arranged in this order from the upstream side in the adsorptive desulfurization reactor 2.
  • a carbonyl sulfide adsorbent may be provided on the upper part of the catalyst layer 31 in the first methanation reactor 3.
  • FIG. 7 shows a modification of the second embodiment.
  • a hydrolysis reactor for hydrolyzing and removing carbonyl sulfide instead of adsorbing carbonyl sulfide with an adsorbent. 7 is provided on the upstream side of the first methanation reactor 3, for example, between the hydrogenation reactor 1 and the adsorptive desulfurization reactor 2, and steam is supplied to the hydrolysis reactor 7 through the steam supply path 204.
  • carrier of an alumina or a titanium oxide can be used, for example.
  • a cooler 72 is provided on the upstream side of the hydrolysis reactor 7, and a heater is provided on the downstream side. 73 is provided.
  • Reference numeral 70 denotes a gas flow path. According to the second embodiment, since the carbonyl sulfide by-produced by the hydrogenation catalyst is removed, poisoning of the methanation catalyst can be suppressed.
  • Example 1 is an example in which natural gas containing 40 mol% carbon dioxide and 1 ppm sulfur is processed according to the first embodiment to obtain a product gas having a carbon dioxide concentration of 2 mol%.
  • FIG. 8 is an explanatory diagram showing a processing mode (concentration of component in gas, temperature, etc.) in the first embodiment. Hydrogen was mixed with the raw material natural gas so as to be 10 mol% hydrogen at the inlet of the hydrogenation reactor 1, heated to 250 ° C. by the heater 102, and supplied to the hydrogenation reactor 1.
  • the gas that has passed through the adsorptive desulfurization reactor 2 is cooled so that the inlet temperature of the first methanation reactor 3 is 250 ° C., and hydrogen in an amount such that the outlet temperature of the first methanation reactor 3 becomes 540 ° C. And steam were mixed and supplied to the first methanation reactor 3.
  • the supply amount (mixing amount) of water vapor was set to an amount such that the molar ratio of water vapor to the total of carbon dioxide and hydrogen at the inlet of the first methanation reactor 3 was 0.6.
  • the gas that has passed through the first methanation reactor 3 is cooled so that the inlet temperature of the second methanation reactor 4 is 250 ° C., and an amount of hydrogen that can adjust the carbon dioxide concentration of the product gas to 2 mol% is mixed. And supplied to the second methanation reactor 4.
  • the outlet temperature of the second methanation reactor 4 rises to 464 ° C. due to the methanation reaction, and the gas flowing out of the second methanation reactor 4 becomes 250 ° C. at the inlet temperature of the post-stage methanation reactor 5.
  • the product was supplied to the latter-stage methanation reactor 5. In the latter stage methanation reactor 5, the remaining hydrogen and carbon dioxide reacted, and the outlet temperature rose to 304 ° C.
  • Example 2 natural gas containing 40 mol% carbon dioxide and 10 ppm sulfur is processed using the carbonyl sulfide adsorption reactor 6 in the second embodiment to obtain a product gas having a carbon dioxide concentration of 2 mol%.
  • FIG. 9 is an explanatory diagram illustrating a processing mode according to the second embodiment. Hydrogen was mixed with the raw material natural gas so as to be 10 mol% hydrogen at the inlet of the hydrogenation reactor 1, heated to 250 ° C. by the heater 102, and supplied to the hydrogenation reactor 1. As a result of the methanation reaction occurring in the hydrogenation reactor 1, the outlet temperature of the hydrogenation reactor 1 rose to 340 ° C, and the carbon dioxide concentration became 35 mol%.
  • Example 3 In Example 3, natural gas containing 40 mol% carbon dioxide and 10 ppm sulfur was treated using the carbonyl sulfide hydrolysis reactor 7 in the second embodiment, and a product gas having a carbon dioxide concentration of 2 mol% was obtained.
  • FIG. 10 is an explanatory diagram illustrating a mode of processing in the second embodiment. Hydrogen was mixed with the raw material natural gas so that the hydrogen concentration became 10 mol% at the inlet of the hydrogenation reactor 1, heated to 250 ° C. by the heater 102, and supplied to the hydrogenation reactor 1. As a result of the methanation reaction occurring in the hydrogenation reactor 1, the outlet temperature of the hydrogenation reactor 1 rose to 340 ° C, and the carbon dioxide concentration became 35 mol%.
  • the gas flowing out from the hydrolysis reactor 7 was heated to 350 ° C. by the heater 73 and supplied to the adsorptive desulfurization reactor 2. Hydrogen sulfide was adsorbed and removed, and the sulfur concentration at the outlet of the adsorptive desulfurization reactor 2 became 0.1 ppm or less.
  • the processing downstream of the adsorptive desulfurization reactor 2 is the same as in the first embodiment.
  • Comparative Example 1 In Comparative Example 1, the same raw material natural gas containing 40 mol% carbon dioxide and 1 ppm sulfur as in Example 1 was applied without using the hydrogenation reactor 1 and the adsorptive desulfurization reactor 2, and the carbon dioxide concentration was 2 mol%. This is an example of obtaining the product gas.
  • FIG. 11 is an explanatory diagram showing a processing mode in Comparative Example 1 using an apparatus in which the hydrogenation reactor 1 and the adsorptive desulfurization reactor 2 are removed from the configuration shown in FIG.
  • a gas containing carbon dioxide at a high concentration is supplied to the methanation reaction section, so that heat is generated due to the methanation reaction, and the outlet temperature of the second methanation reactor 4 is 487 ° C.
  • the outlet temperature of the methanation reactor 5 was 316 ° C.
  • the methanation reaction which is an equilibrium reaction, is inhibited by the temperature rise, and in order to obtain a product gas having a carbon dioxide concentration of 2 mol%, it is necessary to supply excess hydrogen, and the hydrogen concentration of the product gas is higher than that in Example 1. It became 4 mol%.
  • the methanation catalyst was deactivated by sulfur, and it was necessary to replace it every several months.
  • Comparative Example 2 In Comparative Example 1, instead of adding a methanation reactor, an example in which the hydrogen concentration equivalent to that in Example 1 is achieved by diluting the raw natural gas with water vapor is referred to as Comparative Example 2.
  • FIG. 12 is an explanatory diagram showing a mode of processing in Comparative Example 2.
  • raw material natural gas is mixed with water vapor in an amount such that the molar ratio of water vapor to the total of carbon dioxide and hydrogen is 0.76 higher than in Example 1, and the gas to be treated is diluted.
  • a hydrogen concentration of 2.9 mol% in the product gas could be achieved.
  • Comparative Example 2 required more water vapor than Example 1.
  • the methanation catalyst was deactivated by sulfur, and it was necessary to replace it every several months.
  • a methanation reaction occurs in addition to the hydrogenation reaction, and a reduction in the amount of methanation catalyst used in the methanation reactor can be expected. Also, since a carbonyl sulfide is by-produced by using a hydrogenation catalyst, it is effective to provide a carbonyl sulfide removal part.

Abstract

[Problem] To simplify equipment for converting carbon dioxide contained in natural gas into methane, to prolong the life of a methane formation catalyst, and to reduce the use amount thereof. [Solution] Reactors are installed in the following order from the upstream side: a hydrogenation reactor 1 in which a layer 11 of a hydrogenation catalyst has been disposed; an adsorptive desulfurization reactor 2 in which an adsorbent layer 21 for adsorbing hydrogen sulfide has been disposed; and methane formation reactors 3, 4, and 5 in which methane-formation catalyst layers 31, 41, and 51 have been disposed respectively. Hydrogen gas is mixed with natural gas, and the mixed gas is heated and fed to the hydrogenation reactor 1. Thus, the organic sulfur compounds contained in the natural gas are hydrogenated by means of the hydrogenation catalyst to become hydrogen sulfide, and a methane formation reaction takes place. In the methane formation reactors 3 and 4, hydrogen is fed to the desulfurized natural gas to cause a methane formation reaction. Furthermore, in the succeeding-stage reactor 5, the hydrogen concentration in the gas is regulated. Since hydrogenation and methane formation are conducted as pretreatments, the sulfur concentration can be kept extremely low and the amount of the methane formation catalyst to be used can be reduced.

Description

天然ガスの処理装置Natural gas processing equipment
 本発明は、天然ガス中の二酸化炭素を水素を用いてメタン化する技術分野に関する。 The present invention relates to the technical field of methanating carbon dioxide in natural gas using hydrogen.
 天然ガスは主成分のメタンに加えて、多くの場合二酸化炭素を含んだ状態で産出され、パイプラインガス(都市ガス)や液化天然ガス向けの原料としての製品ガスを得るために二酸化炭素を除去する必要がある。一般に天然ガス中の二酸化炭素は、主にアミンを用いたAGRU(Acid Gas Removal Unit)により分離除去され、大気に放出されているが、二酸化炭素は地球温暖化に及ぼす影響が最も大きな温室効果ガスであることから排出量削減が求められている。 Natural gas is often produced in a state containing carbon dioxide in addition to the main component methane, and carbon dioxide is removed to obtain product gas as a raw material for pipeline gas (city gas) and liquefied natural gas. There is a need to. Generally, carbon dioxide in natural gas is separated and removed mainly by AGRU (Acid Gas Removal Unit) using amines and released into the atmosphere, but carbon dioxide has the greatest impact on global warming. Therefore, emission reduction is required.
 一方、採算性の面から優先的に開発されてきた二酸化炭素含有量の少ない優良ガス田は枯渇に向かっており、今後はより高濃度の二酸化炭素を含む天然ガス井の開発が必要となる。このため天然ガス中の二酸化炭素の有効利用の一つとしてメタン化を行うことが考えられるが、AGRUなどの二酸化炭素分離装置により分離された高濃度二酸化炭素を原料とした場合、メタン化反応熱により反応器の急激な温度上昇が引き起こされる。また温度上昇は平衡反応であるメタン化の進行に対して不利になる。 On the other hand, excellent gas fields with low carbon dioxide content, which have been preferentially developed from the viewpoint of profitability, are heading for depletion, and in the future, it will be necessary to develop natural gas wells containing higher concentrations of carbon dioxide. For this reason, it is conceivable to perform methanation as one of the effective uses of carbon dioxide in natural gas. However, when high-concentration carbon dioxide separated by a carbon dioxide separator such as AGRU is used as a raw material, the heat of methanation reaction Causes a rapid temperature rise in the reactor. Also, the temperature rise is disadvantageous for the progress of methanation, which is an equilibrium reaction.
 反応器の温度上昇を抑えるためには、一般に反応器を分割して反応器間に冷却器を配置する手法、反応により生成した製品ガスを反応器の入り口に戻す(リサイクル)手法、水蒸気を希釈剤として原料ガスに添加する手法などが採用される。しかしながらこれらの手法では、反応器の数が多くなる、多量の製品ガスのリサイクルが必要となる、あるいは多量の水蒸気を原料ガスに同伴させる必要がある、といった課題がある。 In order to suppress the temperature rise of the reactor, in general, a method of dividing the reactor and arranging a cooler between the reactors, a method of returning the product gas generated by the reaction to the inlet of the reactor (recycling), diluting water vapor A method of adding to the source gas as an agent is employed. However, these methods have a problem that the number of reactors increases, a large amount of product gas needs to be recycled, or a large amount of water vapor needs to be entrained in the raw material gas.
 特許文献1には、天然ガスを水素分離反応器に供給して得られた水素と、天然ガス中の二酸化炭素と、をメタン化反応器内にて触媒の存在下で反応させてメタンを生成し、天然ガス中の二酸化炭素を低減することが記載されている。 
 また特許文献2には、二酸化炭素を含有する原料ガスに水素ガス供給ラインからの水素を混合してその混合ガスを第1反応器に供給し、次いで混合ガスに水素ガス供給ラインからの水素を混合してその混合ガスを第2反応器に供給し、更に混合ガスを、生成ガスの組成を調整するための第3反応器に供給し、原料ガス中の二酸化炭素をメタンに変える技術が記載されている。
In Patent Document 1, hydrogen obtained by supplying natural gas to a hydrogen separation reactor is reacted with carbon dioxide in natural gas in the presence of a catalyst in a methanation reactor to produce methane. And reducing carbon dioxide in natural gas.
In Patent Document 2, hydrogen from a hydrogen gas supply line is mixed with a raw material gas containing carbon dioxide, the mixed gas is supplied to the first reactor, and then hydrogen from the hydrogen gas supply line is supplied to the mixed gas. A technique is described in which the mixed gas is supplied to the second reactor, the mixed gas is further supplied to the third reactor for adjusting the composition of the product gas, and the carbon dioxide in the raw material gas is changed to methane. Has been.
 特許文献1、2には、天然ガスに含まれる硫黄の含有許容量を極めて低くすることによりメタン化触媒の使用寿命の長期化を図ること、及びメタン化触媒の使用量を抑える工夫に関しては記載されていない。なお、特許文献2の段落0037の第5行以降の記載からすれば、反応器の前段で前処理用の水素を使用していることは排除されている。 Patent Documents 1 and 2 describe a technique for extending the service life of the methanation catalyst by extremely reducing the allowable content of sulfur contained in natural gas, and a device for reducing the amount of methanation catalyst used. It has not been. In addition, according to the description after the 5th line of Paragraph 0037 of patent document 2, using the hydrogen for pretreatment in the front | former stage of a reactor is excluded.
米国特許6,419,888号US Pat. No. 6,419,888 特開2013-136538号JP 2013-136538 A
 本発明は、天然ガス中の二酸化炭素をメタン化するにあたって設備の簡素化を図ると共に、メタン化触媒の長寿命化及び使用量の低減化を図ることができる天然ガスの処理装置を提供することにある。 The present invention provides a natural gas processing apparatus capable of simplifying equipment for methanating carbon dioxide in natural gas, extending the life of the methanation catalyst, and reducing the amount used. It is in.
 本発明の天然ガスの処理装置は、
 原料ガスである天然ガスと水素とが供給され、天然ガス中の二酸化炭素と水素とを反応させてメタンを生成するための前段反応器と、
 前記前段反応器から排出された生成ガス中に残っている水素と二酸化炭素とを反応させることにより水素濃度を調整するための後段反応器と、
 前記前段反応器内及び後段反応器内の各々に設けられたメタン化触媒の触媒層と、
 前記前段反応器よりも上流側に設けられ、天然ガス中の有機硫黄を水素化して硫化水素に変える主たる水素化触媒作用と共にメタン化の触媒作用を有する水素化触媒の触媒層と、
 前記前段反応器よりも上流側に位置しかつ水素化触媒の触媒層よりも下流側に配置され、硫化水素を吸着するための吸着剤の吸着剤層と、を備えたことを特徴とする。
The natural gas processing apparatus of the present invention comprises:
A pre-stage reactor for supplying natural gas, which is a raw material gas, and hydrogen, and reacting carbon dioxide and hydrogen in the natural gas to produce methane,
A post-reactor for adjusting the hydrogen concentration by reacting hydrogen and carbon dioxide remaining in the product gas discharged from the pre-reactor;
A catalyst layer of a methanation catalyst provided in each of the former reactor and the latter reactor;
A catalyst layer of a hydrogenation catalyst provided on the upstream side of the preceding reactor and having methanation catalysis together with main hydrogenation catalysis that hydrogenates organic sulfur in natural gas to hydrogen sulfide;
And an adsorbent layer of an adsorbent disposed on the downstream side of the catalyst layer of the hydrogenation catalyst and adsorbing hydrogen sulfide.
 本発明は、天然ガス中の二酸化炭素をメタン化するにあたって、天然ガスを原料ガスとして反応器に供給しているため、天然ガス中の二酸化炭素以外の成分をメタン化反応の希釈剤として使用できる。このためメタン化反応の温度上昇が抑えられるので設備の簡素化を図ることができる。またメタン化反応器の上流側にて、天然ガス中の有機硫黄を硫化水素に変えて吸着剤で吸着除去していることから、メタン化触媒の使用寿命の長期化を図れると共に、水素化触媒によりメタン化が進行することから、後段のメタン化触媒の使用量の低減化を図ることができる。 In the present invention, when methanating carbon dioxide in natural gas, since natural gas is supplied to the reactor as a raw material gas, components other than carbon dioxide in natural gas can be used as a diluent for methanation reaction. . For this reason, since the temperature rise of the methanation reaction can be suppressed, the equipment can be simplified. Also, since the organic sulfur in natural gas is changed to hydrogen sulfide and adsorbed and removed at the upstream side of the methanation reactor, the service life of the methanation catalyst can be extended and the hydrogenation catalyst can be extended. Since the methanation proceeds by this, the amount of the methanation catalyst in the latter stage can be reduced.
本発明の天然ガスの処理装置の第1の実施形態を示す構成図である。It is a block diagram which shows 1st Embodiment of the processing apparatus of the natural gas of this invention. 第1の実施形態にて得られる排水の有効利用を図るための装置構成の一例を示す構成図である。It is a block diagram which shows an example of the apparatus structure for aiming at the effective utilization of the waste_water | drain obtained in 1st Embodiment. 第1の実施形態にて得られる排水の有効利用を図るための装置構成の他の例を示す構成図である。It is a block diagram which shows the other example of the apparatus structure for aiming at the effective utilization of the waste_water | drain obtained in 1st Embodiment. 第1の実施形態の応用例を示す説明図である。It is explanatory drawing which shows the application example of 1st Embodiment. 天然ガス中の二酸化炭素の濃度と水素化反応後のCOS(硫化カルボニル)の濃度との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of the carbon dioxide in natural gas, and the density | concentration of COS (carbonyl sulfide) after hydrogenation reaction. 本発明の天然ガスの処理装置の第2の実施形態を示す構成図である。It is a block diagram which shows 2nd Embodiment of the processing apparatus of the natural gas of this invention. 本発明の天然ガスの処理装置の第2の実施形態の変形例を示す構成図である。It is a block diagram which shows the modification of 2nd Embodiment of the processing apparatus of the natural gas of this invention. 本発明の第1の実施形態に対応する実施例1の態様を示す説明図である。It is explanatory drawing which shows the aspect of Example 1 corresponding to the 1st Embodiment of this invention. 本発明の第2の実施形態に対応する実施例2の態様を示す説明図である。It is explanatory drawing which shows the aspect of Example 2 corresponding to the 2nd Embodiment of this invention. 本発明の第2の実施形態の変形例に対応する実施例3の態様を示す説明図である。It is explanatory drawing which shows the aspect of Example 3 corresponding to the modification of the 2nd Embodiment of this invention. 本発明と比較するための比較例1の態様を示す説明図である。It is explanatory drawing which shows the aspect of the comparative example 1 for comparing with this invention. 本発明と比較するための比較例2の態様を示す説明図である。It is explanatory drawing which shows the aspect of the comparative example 2 for comparing with this invention.
 [第1の実施形態] 
 本発明の第1の実施形態に係る天然ガスの処理装置は、図1に示すように、水素化反応器1と、硫化水素を吸着するための吸着脱硫反応器2と、各々前段反応器を構成する第1のメタン化反応器3及び第2のメタン化反応器4と、メタン化反応器である後段反応器5と、がこの順に上流側から配置されている。各反応器1~5は、断熱反応器として構成されている。以下の説明では便宜上、水素化反応器1の上流側に接続される天然ガスの流路を「原料ガス供給路」、水素化反応器1から後段反応器5に至るまでのガスの流路を「ガス流路」、後段反応器5から取り出されるガスの流路を「生成ガス流出路」と夫々呼ぶこととする。
[First Embodiment]
As shown in FIG. 1, the natural gas processing apparatus according to the first embodiment of the present invention comprises a hydrogenation reactor 1, an adsorptive desulfurization reactor 2 for adsorbing hydrogen sulfide, and a pre-stage reactor. The 1st methanation reactor 3 and the 2nd methanation reactor 4 which comprise, and the back | latter stage reactor 5 which is a methanation reactor are arrange | positioned from the upstream in this order. Each of the reactors 1 to 5 is configured as an adiabatic reactor. In the following description, for convenience, a natural gas flow path connected to the upstream side of the hydrogenation reactor 1 is referred to as a “source gas supply path”, and a gas flow path from the hydrogenation reactor 1 to the subsequent reactor 5 is illustrated. The “gas flow path” and the flow path of the gas taken out from the post-reactor 5 are called “product gas outflow paths”, respectively.
 原料ガス供給路101は、加熱器102を介して水素化反応器1の塔頂部に接続され、加熱器102の上流側には、前処理用の水素供給路200が接続されている。点線で示すAGRU(103)については後述する。 
 各反応器1~5の並びにおいて、ガスの流路について見たときに互に隣接する2つの反応器のうち上流側の反応器の塔底部と下流側の塔頂部とは、夫々ガス流路10、20、30、40により接続されている。
The source gas supply path 101 is connected to the tower top of the hydrogenation reactor 1 via a heater 102, and a pretreatment hydrogen supply path 200 is connected to the upstream side of the heater 102. The AGRU (103) indicated by the dotted line will be described later.
In the arrangement of the reactors 1 to 5, when the gas flow path is viewed, the tower bottom portion of the upstream reactor and the tower top portion of the downstream side of the two reactors adjacent to each other are respectively the gas flow paths. 10, 20, 30, 40.
 水素化反応器1内には、天然ガス中に含まれる有機硫黄を硫化水素に変えるための水素化触媒の触媒層11が配置されている。水素化触媒は例えばアルミニウムを含む無機酸化物担体と、モリブデン及びタングステンから選ばれる第1の金属成分と、コバルト、ニッケル及びクロムから選ばれる第2の金属成分と、を含み、この例では前記金属成分を硫化した状態で使用される。また水素化触媒は、天然ガス中の有機硫黄を水素化して硫化水素に変える主たる水素化触媒作用と共にメタン化の触媒作用も有している。 In the hydrogenation reactor 1, a catalyst layer 11 of a hydrogenation catalyst for converting organic sulfur contained in natural gas into hydrogen sulfide is disposed. The hydrogenation catalyst includes, for example, an inorganic oxide support containing aluminum, a first metal component selected from molybdenum and tungsten, and a second metal component selected from cobalt, nickel and chromium. In this example, the metal Used in a sulfurized state. The hydrogenation catalyst also has methanation catalysis as well as main hydrogenation catalysis that converts organic sulfur in natural gas into hydrogen sulfide.
 吸着脱硫反応器2内には、硫化水素を吸着するための吸着剤の吸着剤層21が配置されている。吸着剤としては例えば酸化亜鉛の粒状体を用いることができる。また吸着剤としては、アルミナやシリカなどの無機酸化物からなる担体に鉄や銅などの金属を担持させたものであってもよい。 In the adsorptive desulfurization reactor 2, an adsorbent layer 21 for adsorbent for adsorbing hydrogen sulfide is disposed. As the adsorbent, for example, zinc oxide particles can be used. Further, as the adsorbent, a carrier made of an inorganic oxide such as alumina or silica and a metal such as iron or copper may be supported.
 吸着脱硫反応器2から流出したガスを第1のメタン化反応器3に供給するためのガス流路20には、冷却器22が設けられている。吸着脱硫反応器2の出口温度よりも第1のメタン化反応器3の入口温度が低い運転条件で装置を運転する場合には、冷却器22が必要であるが、第1のメタン化反応器3の入口温度が吸着脱硫反応器2の出口温度と同じになる運転条件で装置を運転する場合には、冷却器22は必要ない。 
 運転条件の一例を挙げると、前段メタン化反応器(第1のメタン化反応器3、第2のメタン化反応器4)及び後段メタン化反応器5の各々の入口温度は例えば200~300℃であり、吸着脱硫反応器2内の温度は300~350℃である。この例では、第1のメタン化反応器3の入口温度が250℃、吸着脱硫反応器2内の温度が300℃としているため、吸着脱硫反応器2から流出したガスを冷却器22により冷却している。
A cooler 22 is provided in the gas flow path 20 for supplying the gas flowing out from the adsorptive desulfurization reactor 2 to the first methanation reactor 3. When the apparatus is operated under an operating condition in which the inlet temperature of the first methanation reactor 3 is lower than the outlet temperature of the adsorptive desulfurization reactor 2, the cooler 22 is necessary, but the first methanation reactor When the apparatus is operated under an operating condition in which the inlet temperature of 3 is the same as the outlet temperature of the adsorptive desulfurization reactor 2, the cooler 22 is not necessary.
As an example of operating conditions, the inlet temperature of each of the first-stage methanation reactor (first methanation reactor 3, second methanation reactor 4) and second-stage methanation reactor 5 is, for example, 200 to 300 ° C. The temperature in the adsorptive desulfurization reactor 2 is 300 to 350 ° C. In this example, since the inlet temperature of the first methanation reactor 3 is 250 ° C. and the temperature in the adsorptive desulfurization reactor 2 is 300 ° C., the gas flowing out from the adsorptive desulfurization reactor 2 is cooled by the cooler 22. ing.
 ガス流路20における冷却器22と第1のメタン化反応器3の塔頂部との間には、第1の水素供給路201及び水蒸気供給路203が接続されている。第1のメタン化反応器3内には、メタン化触媒の触媒層31が配置されている。メタン化触媒としては、ニッケルを主成分(触媒全体に対して例えば40~60質量%)とした粒子状の触媒を用いることができる。またメタン化触媒としては、ルテニウムをアルミナやシリカなどの無機酸化物に担持してなる触媒を用いることもできる。 
 第2のメタン化反応器4及び後段メタン化反応器5の各々の内部にも、同様のメタン化触媒を用いた触媒層41、51が配置されている。
A first hydrogen supply path 201 and a steam supply path 203 are connected between the cooler 22 in the gas flow path 20 and the top of the first methanation reactor 3. A catalyst layer 31 of a methanation catalyst is disposed in the first methanation reactor 3. As the methanation catalyst, a particulate catalyst containing nickel as a main component (for example, 40 to 60 mass% with respect to the whole catalyst) can be used. As the methanation catalyst, a catalyst in which ruthenium is supported on an inorganic oxide such as alumina or silica can also be used.
Inside each of the second methanation reactor 4 and the post-stage methanation reactor 5, catalyst layers 41 and 51 using the same methanation catalyst are arranged.
 第1のメタン化反応器3から流出したガスを第2のメタン化反応器4に供給するためのガス流路30には、冷却器32が設けられ、冷却器32の下流側には第2の水素供給路202が接続されている。また第2のメタン化反応器4から流出したガスを後段メタン化反応器5に供給するためのガス流路40にも冷却器42が設けられている。第1のメタン化反応器3及び第2のメタン化反応器4内においては、二酸化炭素(二酸化炭素ガス)と水素(水素ガス)とが反応してメタンが生成されるメタン化反応が起こり、この反応は発熱反応であることから、メタン化反応器3、4の各入口温度よりも各出口温度が高くなる。このためこれら冷却器32(42)によりメタン化反応器3、4の各々から流出したガスを冷却するようにしている。 
 既述の前処理用の水素供給路200、第1の水素供給路201及び第2の水素供給路202は、例えば共通の水素供給源に接続され、夫々流量調整用のバルブV0、V1及びV2が設けられている。また水蒸気供給路203は、流量調整用のバルブV3が設けられている。
The gas flow path 30 for supplying the gas flowing out from the first methanation reactor 3 to the second methanation reactor 4 is provided with a cooler 32, and the second side is located downstream of the cooler 32. The hydrogen supply path 202 is connected. A cooler 42 is also provided in the gas flow path 40 for supplying the gas flowing out from the second methanation reactor 4 to the subsequent methanation reactor 5. In the first methanation reactor 3 and the second methanation reactor 4, a methanation reaction occurs in which carbon dioxide (carbon dioxide gas) and hydrogen (hydrogen gas) react to generate methane, Since this reaction is an exothermic reaction, each outlet temperature becomes higher than each inlet temperature of the methanation reactors 3 and 4. Therefore, the gas flowing out from each of the methanation reactors 3 and 4 is cooled by these coolers 32 (42).
The pretreatment hydrogen supply path 200, the first hydrogen supply path 201, and the second hydrogen supply path 202 described above are connected to, for example, a common hydrogen supply source, and flow rate adjusting valves V0, V1, and V2, respectively. Is provided. Further, the water vapor supply path 203 is provided with a valve V3 for flow rate adjustment.
 後段メタン化反応器5は、ガス中に含まれる過剰な水素を二酸化炭素と反応させて処理後の生成ガス中の水素濃度が予め設定した濃度範囲に収まるようにするために設けられている。後段メタン化反応器5の塔底部には、生成ガス流出路50の一端側が接続され、生成ガス流出路50の他端側は、冷却器52を介して気液分離ドラム53に接続されている。気液分離ドラム53は、後段メタン化反応器5から流出し、冷却された生成ガスから水分(排水)を分離除去し、水分が分離された生成ガスが例えば製品ガスとして取り出される。 The post-stage methanation reactor 5 is provided for reacting excess hydrogen contained in the gas with carbon dioxide so that the hydrogen concentration in the product gas after the treatment falls within a preset concentration range. One end side of the product gas outflow passage 50 is connected to the tower bottom of the rear stage methanation reactor 5, and the other end side of the product gas outflow passage 50 is connected to the gas-liquid separation drum 53 via the cooler 52. . The gas-liquid separation drum 53 flows out from the post-stage methanation reactor 5, separates and removes moisture (drainage) from the cooled product gas, and the product gas from which the moisture has been separated is taken out as, for example, a product gas.
 次に第1の実施形態の作用について説明する。先ず、原料ガスである天然ガスが原料ガス供給路101を通って、前処理用の水素供給路200から送られる前処理用の水素ガスと混合され、加熱器102にて例えば250℃~350℃に加熱される。加熱された混合ガスは水素化反応器1内に供給され、水素化反応が主として起こる。即ち天然ガス中に含まれる有機硫黄が、触媒層11を構成する水素化触媒により硫化水素に変わる。水素化触媒は、既述のように水素化の触媒作用に加えてメタン化の触媒作用も備えていることから、水素化反応器1内にてメタン化反応も進行し、天然ガス中の二酸化炭素の一部が水素と反応してメタンが生成される。 Next, the operation of the first embodiment will be described. First, natural gas, which is a raw material gas, is mixed with the pretreatment hydrogen gas sent from the pretreatment hydrogen supply passage 200 through the raw material gas supply passage 101, and is heated at, for example, 250 ° C. to 350 ° C. in the heater 102. To be heated. The heated mixed gas is supplied into the hydrogenation reactor 1, and the hydrogenation reaction mainly occurs. That is, the organic sulfur contained in the natural gas is changed to hydrogen sulfide by the hydrogenation catalyst constituting the catalyst layer 11. As described above, the hydrogenation catalyst has methanation catalysis in addition to hydrogenation catalysis, so that the methanation reaction also proceeds in the hydrogenation reactor 1 and carbon dioxide in the natural gas. Part of the carbon reacts with hydrogen to produce methane.
 発熱反応であるメタン化反応が起こることから、水素化反応器1の出口側のガスの温度は入口側のガスの温度よりも例えば10℃~100℃高くなる。水素化反応器1に供給する水素の量は有機硫黄の水素化に十分な量(例えば1~2mol(モル)%)以上であり、かつ、水素化触媒の耐熱温度を考慮して例えば10mol%以下とする。水素化反応器1から流出したガスは吸着脱硫反応器2内に送られ、吸着剤層21を構成する吸着剤にガス中の硫化水素が吸着されて脱硫が行われる。これにより、吸着脱硫反応器2から流出したガス中の硫黄濃度は、0.1ppm以下となる。なお本願明細書中の濃度単位「ppm」は、mol濃度を表している。 
 吸着脱硫反応器2における吸着剤の負荷を下げるために、天然ガス中の硫黄濃度が高い場合には、図1に点線で示すように原料ガス供給路101にAGRU(Acid Gas Removal Unit)(103)を用いてもよい。AGRU(103)は、例えばアミン接触塔の底部側から天然ガスを供給して塔頂部から流出させると共に、アミンの液体をアミン接触塔の上部側から供給して天然ガスと向流接触させるように構成されている。天然ガスがアミンの液体と接触することにより、天然ガス中の硫化水素が除去される。
Since the methanation reaction which is an exothermic reaction occurs, the temperature of the gas on the outlet side of the hydrogenation reactor 1 is, for example, 10 ° C. to 100 ° C. higher than the temperature of the gas on the inlet side. The amount of hydrogen supplied to the hydrogenation reactor 1 is not less than an amount sufficient for hydrogenation of organic sulfur (for example, 1 to 2 mol (mol)%) and, for example, 10 mol% in consideration of the heat resistant temperature of the hydrogenation catalyst. The following. The gas flowing out of the hydrogenation reactor 1 is sent into the adsorptive desulfurization reactor 2, and hydrogen sulfide in the gas is adsorbed by the adsorbent constituting the adsorbent layer 21 to perform desulfurization. Thereby, the sulfur concentration in the gas flowing out from the adsorptive desulfurization reactor 2 becomes 0.1 ppm or less. The concentration unit “ppm” in the present specification represents the mol concentration.
In order to reduce the load of the adsorbent in the adsorptive desulfurization reactor 2, when the sulfur concentration in the natural gas is high, an AGRU (Acid Gas Removal Unit) (103 is provided in the raw material gas supply path 101 as indicated by a dotted line in FIG. ) May be used. For example, the AGRU (103) supplies natural gas from the bottom side of the amine contact tower to flow out from the top of the tower, and supplies an amine liquid from the top side of the amine contact tower to make countercurrent contact with the natural gas. It is configured. When the natural gas comes into contact with the amine liquid, hydrogen sulfide in the natural gas is removed.
 主として脱硫が行われ、副次的にメタン化が進行した、いわば前処理が行われたガスは、吸着脱硫反応器2から流出した後、冷却器22により例えば250℃まで冷却され、水素及び水蒸気と混合されて第1のメタン化反応器3に送られる。第1のメタン化反応器3では、メタン化触媒の触媒層31にて二酸化炭素と水素とが反応してメタンが生成されるメタン化反応が起こる。第1の水素供給路201から供給される水素の流量は、吸着脱硫反応器2から流出したガス中に残っている水素と加わってメタン化反応が起こったときに、メタン化触媒ならびにメタン化反応器材の耐熱温度を考慮し、第1のメタン化反応器3の出口側の温度が例えば540℃以下となるように調節される。 The gas that has been mainly desulfurized and that has undergone secondary methanation, that is, pretreated, flows out of the adsorption desulfurization reactor 2 and is then cooled to, for example, 250 ° C. by the cooler 22 to generate hydrogen and water vapor. And sent to the first methanation reactor 3. In the first methanation reactor 3, a methanation reaction occurs in which carbon dioxide and hydrogen react with each other in the catalyst layer 31 of the methanation catalyst to generate methane. The flow rate of hydrogen supplied from the first hydrogen supply channel 201 is the same as that of the methanation catalyst and methanation reaction when the methanation reaction occurs with the hydrogen remaining in the gas flowing out from the adsorptive desulfurization reactor 2. In consideration of the heat-resistant temperature of the equipment, the temperature on the outlet side of the first methanation reactor 3 is adjusted to be 540 ° C. or less, for example.
 水蒸気は、メタン化触媒のコーキングによる活性劣化を防止するために供給されるが、各メタン化反応器3、4及び5における温度を更に抑制する役割りも有する。水蒸気の供給量は、第1のメタン化反応器3の入り口において、二酸化炭素及び水素の合計に対する水蒸気のmol比が例えば0.6[水蒸気のmol濃度/(二酸化炭素のmol濃度+水素のmol濃度)]となるように設定される。なお、水蒸気は、必ず供給しなければならないというものではなく、使用しなくてもよい。 Steam is supplied to prevent activity degradation due to coking of the methanation catalyst, but also has a role of further suppressing the temperature in each of the methanation reactors 3, 4 and 5. The supply amount of water vapor is such that the molar ratio of water vapor to the total of carbon dioxide and hydrogen is 0.6 [mol concentration of water vapor / mol concentration of carbon dioxide + mol of hydrogen at the inlet of the first methanation reactor 3. Density)]. Note that water vapor is not necessarily supplied and may not be used.
 第1のメタン化反応器3から流出したガスは、冷却器32により例えば250℃まで冷却され、第2のメタン化反応器4に送られる。そして第2のメタン化反応器4内にて、水素濃度がガス中に残っている二酸化炭素の濃度に応じた値となるように、また第2のメタン化反応器4の出口側の温度が例えば540℃以下となるように、第2の水素供給路202から水素がガス流路30を介して第2のメタン化反応器4に補充供給される。そして触媒層41にてメタン化反応が起こり、二酸化炭素の濃度が低減されたガスが冷却器42により例えば250℃まで冷却され、後段反応器5に送られる。 The gas flowing out from the first methanation reactor 3 is cooled to, for example, 250 ° C. by the cooler 32 and sent to the second methanation reactor 4. In the second methanation reactor 4, the temperature on the outlet side of the second methanation reactor 4 is adjusted so that the hydrogen concentration becomes a value corresponding to the concentration of carbon dioxide remaining in the gas. For example, hydrogen is replenished and supplied from the second hydrogen supply path 202 to the second methanation reactor 4 via the gas flow path 30 so that the temperature is 540 ° C. or lower. Then, a methanation reaction occurs in the catalyst layer 41, and the gas in which the concentration of carbon dioxide is reduced is cooled to, for example, 250 ° C. by the cooler 42 and sent to the subsequent reactor 5.
 第2のメタン化反応器4内にて昇温したガスが冷却されて後段反応器5に供給されることから、後段反応器5のメタン化触媒の触媒層51にて更にメタン化反応が進行し、二酸化炭素及び水素が減少し、製品ガス中の水素濃度が許容濃度例えば3mol%以下に調整される。後段反応器5から流出した生成ガスは冷却器52により水が凝縮する温度以下、例えば50℃まで冷却され、次いで気液分離部である気液分離ドラム53にてガスと水とが分離され、製品ガスが得られる。 
 以上において、各反応器1~5内の圧力は、例えば1MPa~8MPaに設定される。また前段反応器(上述の例では第1のメタン化反応器3及び第2のメタン化反応器4)の段数は、天然ガス中の二酸化炭素の濃度に応じて決定される。上述のように水蒸気を用いるとすると、前段反応器の数は、二酸化炭素の濃度が25mol%以下であれば1基、40mol%以下であれば2基、70mol%以下であれば3基が使用される。
Since the gas heated in the second methanation reactor 4 is cooled and supplied to the rear reactor 5, the methanation reaction further proceeds in the catalyst layer 51 of the methanation catalyst of the rear reactor 5. Carbon dioxide and hydrogen are reduced, and the hydrogen concentration in the product gas is adjusted to an allowable concentration, for example, 3 mol% or less. The product gas flowing out from the rear reactor 5 is cooled to a temperature below the temperature at which water is condensed by the cooler 52, for example, 50 ° C., and then the gas and water are separated by the gas-liquid separation drum 53 as a gas-liquid separation unit, Product gas is obtained.
In the above, the pressure in each reactor 1 to 5 is set to 1 MPa to 8 MPa, for example. Further, the number of stages of the preceding reactor (the first methanation reactor 3 and the second methanation reactor 4 in the above example) is determined according to the concentration of carbon dioxide in the natural gas. If steam is used as described above, the number of the first-stage reactors is 1 if the concentration of carbon dioxide is 25 mol% or less, 2 if the concentration is 40 mol% or less, and 3 if the concentration is 70 mol% or less. Is done.
 二酸化炭素の濃度が高い天然ガスを用いる場合であって、メタン化反応器の数を抑えるためには、水素化反応器1よりも上流側にて天然ガス中の二酸化炭素の一部を除去するためのユニットを設ければよい。また天然ガス中の二酸化炭素の濃度が3mol%よりも低い場合には、そのままパイプラインガスとして利用できることから、原料ガスとして使用される天然ガスは、二酸化炭素の濃度が3mol%以上であるということができる。 In the case of using natural gas having a high carbon dioxide concentration, in order to reduce the number of methanation reactors, a part of carbon dioxide in the natural gas is removed upstream of the hydrogenation reactor 1. A unit for this purpose may be provided. In addition, when the concentration of carbon dioxide in the natural gas is lower than 3 mol%, it can be used as it is as a pipeline gas. Therefore, the natural gas used as the raw material gas has a carbon dioxide concentration of 3 mol% or more. Can do.
 上述実施の形態によれば、天然ガス中の二酸化炭素以外のガスを希釈ガスとしてメタン化を行い、メタン化を行う反応器を、複数段例えば2段のメタン化反応器3、4に分けて夫々に水素を供給していることから、メタン化を行うための反応器の数を抑えることができ、装置の簡素化が図れる。そして、メタン化反応器3、4の上流側にて、水素化触媒、硫化水素の吸着剤を用いて天然ガス中の硫黄濃度を0.1ppm以下にまで低減しているため、メタン化触媒の使用寿命を長くすることができる。また水素化触媒を用いていることから、ここで水素化反応に加えてメタン化反応も起こり、このためメタン化反応器3、4におけるメタン化触媒の使用量を抑えることができる。 According to the embodiment described above, methanation is performed using a gas other than carbon dioxide in natural gas as a diluent gas, and the reactor for methanation is divided into a plurality of stages, for example, two stages of methanation reactors 3 and 4. Since hydrogen is supplied to each, the number of reactors for methanation can be reduced, and the apparatus can be simplified. And since the sulfur concentration in natural gas is reduced to 0.1 ppm or less using the hydrogenation catalyst and the adsorbent of hydrogen sulfide on the upstream side of the methanation reactors 3 and 4, the methanation catalyst The service life can be extended. In addition, since a hydrogenation catalyst is used, a methanation reaction occurs in addition to the hydrogenation reaction, and therefore the amount of methanation catalyst used in the methanation reactors 3 and 4 can be suppressed.
 ここで上述の天然ガスの処理装置あるいは当該処理装置を含むシステムにおいて、エネルギーあるいはガスの有効利用を図るための構成例について列挙しておく。 
 気液分離ドラム53にて分離された排水を、図2に示すように冷却器22、32、42、52の冷却媒体として使用し、メタン化反応の熱により気化して得られた水蒸気を、既述の水蒸気供給路203から第1のメタン化反応器3に供給する。 
 同様にしてメタン化反応の熱により気化して得られた水蒸気を、図3に示すように既述の各水素供給路200、201、202の合流部位よりも上流側の水素供給路300に設けられた昇圧コンプレッサー301を駆動する蒸気タービン302に供給する。 
 気液分離ドラム53にて分離された排水を、電解装置にて電解し、得られた水素を、既述の各水素供給路200、201、202を介して処理系内に供給する。
Here, in the above-described natural gas processing apparatus or a system including the processing apparatus, examples of configurations for effectively using energy or gas are listed.
The waste water separated by the gas-liquid separation drum 53 is used as a cooling medium for the coolers 22, 32, 42, and 52 as shown in FIG. 2, and water vapor obtained by vaporization by the heat of the methanation reaction is used. It supplies to the 1st methanation reactor 3 from the water vapor | steam supply path 203 as stated above.
Similarly, the water vapor obtained by vaporization by the heat of the methanation reaction is provided in the hydrogen supply passage 300 upstream of the joining portions of the hydrogen supply passages 200, 201, 202 described above as shown in FIG. The booster compressor 301 is supplied to a steam turbine 302 that drives it.
The waste water separated by the gas-liquid separation drum 53 is electrolyzed by an electrolysis device, and the obtained hydrogen is supplied into the treatment system via the hydrogen supply paths 200, 201, 202 described above.
 図4に示すように、上述の天然ガスの処理装置の後段にLNG(Liquefied Natural Gas)製造設備400を配置して構成したシステムにおいて、気液分離ドラム53にて分離された排水あるいは他の水供給源から供給された水をメタン化反応の熱により気化して水蒸気を得、この水蒸気をLNG製造設備400内のAGRUの放散塔リボイラーの熱源とする。また図4に示すように、LNG製造設備400内のAGRUより回収された二酸化炭素を第1のメタン化反応器3の上流側に戻してリサイクルすることにより、二酸化炭素の排出を抑制すると共に製品ガスの生産量を増加させる。 As shown in FIG. 4, in a system in which an LNG (Liquefied Natural Gas) manufacturing facility 400 is arranged at the subsequent stage of the above-described natural gas processing apparatus, waste water or other water separated by the gas-liquid separation drum 53 Water supplied from the supply source is vaporized by the heat of the methanation reaction to obtain water vapor, and this water vapor is used as a heat source for the AGRU diffusion tower reboiler in the LNG production facility 400. Further, as shown in FIG. 4, the carbon dioxide recovered from the AGRU in the LNG manufacturing facility 400 is recycled back to the upstream side of the first methanation reactor 3, thereby suppressing the emission of carbon dioxide and the product. Increase gas production.
 [第2の実施形態] 
 二酸化炭素と硫黄とを含む天然ガスを水素化触媒に供給すると、硫化カルボニルが副生成物として生成することから、本発明の第2の実施形態に係る天然ガスの処理装置は、硫化カルボニル(COS)に対する対策を施した構成が採用されている。図5は、天然ガス中の二酸化炭素濃度と水素化反応後の硫化カルボニル濃度との関係を示すグラフである。天然ガス中の硫黄が1ppm、天然ガス中の二酸化炭素濃度が64mol%の場合には、硫化カルボニルの生成量は▲により示すように0.095ppmと極めて微量である。一方、天然ガス中の硫黄が10ppmの場合には、△により示すように、天然ガス中の二酸化炭素濃度が数%であっても、硫化カルボニルの生成量は0.1ppmを越えてしまい、二酸化炭素濃度が高くなるにつれて概ね比例して増加し、メタン化触媒の使用寿命が被毒により短くなってしまう。従って、硫黄濃度が高い天然ガスを原料ガスとして使用し、水素化反応器1の上流側にAGRU103を設けない場合には、硫化カルボニルの生成量がかなり多くなると予測できる。
[Second Embodiment]
When natural gas containing carbon dioxide and sulfur is supplied to the hydrogenation catalyst, carbonyl sulfide is generated as a by-product. Therefore, the natural gas processing apparatus according to the second embodiment of the present invention uses carbonyl sulfide (COS). ) Has been adopted. FIG. 5 is a graph showing the relationship between the carbon dioxide concentration in natural gas and the carbonyl sulfide concentration after the hydrogenation reaction. When the sulfur in the natural gas is 1 ppm and the carbon dioxide concentration in the natural gas is 64 mol%, the amount of carbonyl sulfide produced is as very small as 0.095 ppm as shown by. On the other hand, when the sulfur in the natural gas is 10 ppm, as shown by Δ, the amount of carbonyl sulfide produced exceeds 0.1 ppm even if the carbon dioxide concentration in the natural gas is several percent, As the carbon concentration increases, it increases approximately proportionally, and the service life of the methanation catalyst is shortened by poisoning. Therefore, when natural gas having a high sulfur concentration is used as the raw material gas and the AGRU 103 is not provided on the upstream side of the hydrogenation reactor 1, it can be predicted that the amount of carbonyl sulfide produced will be considerably increased.
 そこで第2の実施形態では、図6に示すように、第1メタン化反応器3の上流側、例えば吸着脱硫反応器2と第1のメタン化反応器3との間に、硫化カルボニルを吸着する吸着剤からなる吸着層61が配置された硫化カルボニルの除去部である硫化カルボニル吸着反応器6を設けている。60はガス流路である。硫化カルボニルの吸着剤としては、例えばアルミナやシリカなどの無機酸化物からなる担体に銅を担持した吸着剤、あるいは酸化銅の粒状体あるいは成型体などの銅系のものを用いることができる。 Therefore, in the second embodiment, as shown in FIG. 6, carbonyl sulfide is adsorbed on the upstream side of the first methanation reactor 3, for example, between the adsorptive desulfurization reactor 2 and the first methanation reactor 3. A carbonyl sulfide adsorption reactor 6, which is a carbonyl sulfide removal portion, in which an adsorption layer 61 made of an adsorbent is disposed is provided. Reference numeral 60 denotes a gas flow path. As the carbonyl sulfide adsorbent, for example, an adsorbent in which copper is supported on a support made of an inorganic oxide such as alumina or silica, or a copper-based adsorbent such as a copper oxide granular or molded body can be used.
 また吸着脱硫反応器2と硫化カルボニル吸着反応器6とを別々に設けることに代えて、吸着脱硫反応器2に使用されている吸着脱硫剤として、銅系の吸着剤のみを使用し、硫化水素と硫化カルボニルとを当該吸着剤に吸着させるようにしてもよい。しかし銅系の吸着剤のコストが高額であることから、コストの観点からは、図6に示した構成を採用し、吸着脱硫反応器2には亜鉛系の吸着剤、例えば酸化亜鉛からなる吸着剤を用いると共に、硫化カルボニル吸着反応器6には、例えば銅系の吸着剤を用いることが有利であり、この場合銅系の吸着剤の使用量が抑えられる。また硫化カルボニル吸着反応器6を設けることに代えて、吸着脱硫反応器2内に、亜鉛系の吸着剤と銅系の吸着剤とを上流側からこの順に配置するようにしてもよい。
 更にまた図6に示した構成に代えて、硫化カルボニルの吸着剤を第1のメタン化反応器3内における触媒層31の上部に設けるようにしてもよい。
Further, instead of providing the adsorptive desulfurization reactor 2 and the carbonyl sulfide adsorption reactor 6 separately, as the adsorptive desulfurization agent used in the adsorptive desulfurization reactor 2, only a copper-based adsorbent is used and hydrogen sulfide is used. And carbonyl sulfide may be adsorbed on the adsorbent. However, since the cost of the copper-based adsorbent is expensive, from the viewpoint of cost, the configuration shown in FIG. 6 is adopted, and the adsorptive desulfurization reactor 2 has an adsorption made of a zinc-based adsorbent, for example, zinc oxide. It is advantageous to use, for example, a copper-based adsorbent for the carbonyl sulfide adsorption reactor 6, and in this case, the amount of copper-based adsorbent used can be suppressed. Instead of providing the carbonyl sulfide adsorption reactor 6, a zinc-based adsorbent and a copper-based adsorbent may be arranged in this order from the upstream side in the adsorptive desulfurization reactor 2.
Further, in place of the configuration shown in FIG. 6, a carbonyl sulfide adsorbent may be provided on the upper part of the catalyst layer 31 in the first methanation reactor 3.
 図7は、第2の実施形態の変形例を示しており、この例においては、硫化カルボニルを吸着剤により吸着することに代えて、硫化カルボニルを加水分解して除去するための加水分解反応器7を第1のメタン化反応器3の上流側、例えば水素化反応器1と吸着脱硫反応器2との間に設け、水蒸気供給路204により加水分解反応器7に水蒸気を供給するようにしている。加水分解反応器7内に設けられる触媒層71を構成する触媒としては、例えばアルミナや酸化チタンの担体にクロムなどを担持させたものを用いることができる。加水分解反応器7の運転温度は水素化反応器1及び吸着脱硫反応器2の各々の運転温度よりも低いため、加水分解反応器7の上流側に冷却器72を設け、下流側に加熱器73を設けている。70はガス流路である。 
 第2の実施形態によれば、水素化触媒にて副生成した硫化カルボニルを除去しているため、メタン化触媒の被毒が抑えられる。
FIG. 7 shows a modification of the second embodiment. In this example, a hydrolysis reactor for hydrolyzing and removing carbonyl sulfide instead of adsorbing carbonyl sulfide with an adsorbent. 7 is provided on the upstream side of the first methanation reactor 3, for example, between the hydrogenation reactor 1 and the adsorptive desulfurization reactor 2, and steam is supplied to the hydrolysis reactor 7 through the steam supply path 204. Yes. As a catalyst which comprises the catalyst layer 71 provided in the hydrolysis reactor 7, what carried | supported chromium etc. on the support | carrier of an alumina or a titanium oxide can be used, for example. Since the operating temperature of the hydrolysis reactor 7 is lower than the operating temperature of each of the hydrogenation reactor 1 and the adsorptive desulfurization reactor 2, a cooler 72 is provided on the upstream side of the hydrolysis reactor 7, and a heater is provided on the downstream side. 73 is provided. Reference numeral 70 denotes a gas flow path.
According to the second embodiment, since the carbonyl sulfide by-produced by the hydrogenation catalyst is removed, poisoning of the methanation catalyst can be suppressed.
 以下にシミュレーションにより天然ガスを処理した例(実施例及び比較例)について記載する。 
 [実施例1] 
 実施例1は、二酸化炭素を40mol%、硫黄を1ppm含有する天然ガスを第1の実施形態により処理して、二酸化炭素濃度が2mol%の製品ガスを得る例である。図8は、実施例1における処理の態様(ガス中の成分の濃度、温度等)を示す説明図である。 
 原料天然ガスに水素化反応器1の入口において10mol% 水素となるように水素を混合し、加熱器102により250℃まで加熱し、水素化反応器1に供給した。水素化反応器1においてメタン化反応が起こることで水素化反応器1の出口温度は340℃まで上昇し、二酸化炭素濃度は35mol%となった。 
 水素化反応器1の出口において硫黄は硫化水素の形態であり、吸着脱硫反応器2で吸着除去され、吸着脱硫反応器2の出口での硫黄濃度は0.1ppm以下であることが確認された。これにより下流のメタン化触媒は2~4年使用することができる。
Examples (Examples and Comparative Examples) in which natural gas is processed by simulation will be described below.
[Example 1]
Example 1 is an example in which natural gas containing 40 mol% carbon dioxide and 1 ppm sulfur is processed according to the first embodiment to obtain a product gas having a carbon dioxide concentration of 2 mol%. FIG. 8 is an explanatory diagram showing a processing mode (concentration of component in gas, temperature, etc.) in the first embodiment.
Hydrogen was mixed with the raw material natural gas so as to be 10 mol% hydrogen at the inlet of the hydrogenation reactor 1, heated to 250 ° C. by the heater 102, and supplied to the hydrogenation reactor 1. As a result of the methanation reaction occurring in the hydrogenation reactor 1, the outlet temperature of the hydrogenation reactor 1 rose to 340 ° C, and the carbon dioxide concentration became 35 mol%.
Sulfur in the form of hydrogen sulfide at the outlet of the hydrogenation reactor 1 was adsorbed and removed by the adsorptive desulfurization reactor 2, and the sulfur concentration at the outlet of the adsorptive desulfurization reactor 2 was confirmed to be 0.1 ppm or less. . This allows downstream methanation catalysts to be used for 2-4 years.
 吸着脱硫反応器2を経たガスを第1のメタン化反応器3の入口温度が250℃となるように冷却し、第1のメタン化反応器3の出口温度が540℃となる量の水素と、水蒸気と、を混合し、第1のメタン化反応器3に供給した。水蒸気の供給量(混合量)は、第1のメタン化反応器3の入口において二酸化炭素及び水素の合計に対する水蒸気のmol比が0.6となる量に設定した。 
 第1のメタン化反応器3を経たガスを第2のメタン化反応器4の入口温度が250℃となるように冷却し、製品ガスの二酸化炭素濃度を2mol%に調整できる量の水素を混合し、第2のメタン化反応器4に供給した。第2のメタン化反応器4の出口温度はメタン化反応により464℃に上昇し、第2のメタン化反応器4から流出したガスを、後段メタン化反応器5の入口温度が250℃になるように冷却した後、後段メタン化反応器5に供給した。 
 後段メタン化反応器5では、残存する水素と二酸化炭素が反応し、出口温度は304℃に上昇した。後段メタン化反応器5から流出したガスを冷却器502により50℃まで冷却した後、気液分離ドラム53により水を分離し、二酸化炭素濃度2mol%、水素濃度3mol%の製品ガスを得ることができた。
The gas that has passed through the adsorptive desulfurization reactor 2 is cooled so that the inlet temperature of the first methanation reactor 3 is 250 ° C., and hydrogen in an amount such that the outlet temperature of the first methanation reactor 3 becomes 540 ° C. And steam were mixed and supplied to the first methanation reactor 3. The supply amount (mixing amount) of water vapor was set to an amount such that the molar ratio of water vapor to the total of carbon dioxide and hydrogen at the inlet of the first methanation reactor 3 was 0.6.
The gas that has passed through the first methanation reactor 3 is cooled so that the inlet temperature of the second methanation reactor 4 is 250 ° C., and an amount of hydrogen that can adjust the carbon dioxide concentration of the product gas to 2 mol% is mixed. And supplied to the second methanation reactor 4. The outlet temperature of the second methanation reactor 4 rises to 464 ° C. due to the methanation reaction, and the gas flowing out of the second methanation reactor 4 becomes 250 ° C. at the inlet temperature of the post-stage methanation reactor 5. After cooling as described above, the product was supplied to the latter-stage methanation reactor 5.
In the latter stage methanation reactor 5, the remaining hydrogen and carbon dioxide reacted, and the outlet temperature rose to 304 ° C. After the gas flowing out from the latter-stage methanation reactor 5 is cooled to 50 ° C. by the cooler 502, water is separated by the gas-liquid separation drum 53 to obtain a product gas having a carbon dioxide concentration of 2 mol% and a hydrogen concentration of 3 mol%. did it.
 [実施例2] 
 実施例2は、二酸化炭素を40mol%、硫黄を10ppm含有する天然ガスを、第2の実施形態における硫化カルボニル吸着反応器6を用いて処理して、二酸化炭素濃度が2mol%の製品ガスを得る例である。図9は、実施例2における処理の態様を示す説明図である。 
 原料天然ガスに水素化反応器1の入口において10mol% 水素となるように水素を混合し、加熱器102により250℃まで加熱し、水素化反応器1に供給した。水素化反応器1においてメタン化反応が起こることで水素化反応器1の出口温度は340℃まで上昇し、二酸化炭素濃度は35mol%となった。水素化反応器1の出口において、硫黄は硫化水素の形態に加え、副生成された硫化カルボニルとしてガス中に含まれており、当該ガス中の硫化カルボニルの濃度は0.7ppmであった。 
 吸着脱硫反応器2により硫化水素は吸着除去されるが、吸着脱硫反応器2の出口からは、吸着されなかった硫化カルボニルが流出した。吸着脱硫反応器2から流出したガスを下流の硫化カルボニル吸着反応器6に供給することで、硫化カルボニル吸着反応器6の出口の硫黄濃度は0.1ppm以下となった。 
 硫化カルボニル吸着反応器6よりも下流側の処理については、実施例1と同一である。
[Example 2]
In Example 2, natural gas containing 40 mol% carbon dioxide and 10 ppm sulfur is processed using the carbonyl sulfide adsorption reactor 6 in the second embodiment to obtain a product gas having a carbon dioxide concentration of 2 mol%. It is an example. FIG. 9 is an explanatory diagram illustrating a processing mode according to the second embodiment.
Hydrogen was mixed with the raw material natural gas so as to be 10 mol% hydrogen at the inlet of the hydrogenation reactor 1, heated to 250 ° C. by the heater 102, and supplied to the hydrogenation reactor 1. As a result of the methanation reaction occurring in the hydrogenation reactor 1, the outlet temperature of the hydrogenation reactor 1 rose to 340 ° C, and the carbon dioxide concentration became 35 mol%. At the outlet of the hydrogenation reactor 1, sulfur was contained in the gas as carbonyl sulfide by-produced in addition to the form of hydrogen sulfide, and the concentration of carbonyl sulfide in the gas was 0.7 ppm.
Hydrogen sulfide was adsorbed and removed by the adsorptive desulfurization reactor 2, but carbonyl sulfide that was not adsorbed flowed out from the outlet of the adsorptive desulfurization reactor 2. By supplying the gas flowing out from the adsorption desulfurization reactor 2 to the downstream carbonyl sulfide adsorption reactor 6, the sulfur concentration at the outlet of the carbonyl sulfide adsorption reactor 6 became 0.1 ppm or less.
The processing downstream of the carbonyl sulfide adsorption reactor 6 is the same as in the first embodiment.
 [実施例3] 
 実施例3は、二酸化炭素を40mol%、硫黄を10ppm含有する天然ガスを、第2の実施形態における硫化カルボニルの加水分解反応器7を用いて処理して、二酸化炭素濃度が2mol%の製品ガスを得る例である。図10は、実施例2における処理の態様を示す説明図である。 
 原料天然ガスに水素化反応器1の入口において水素濃度が10mol%となるように水素を混合し、加熱器102により250℃まで加熱し、水素化反応器1に供給した。水素化反応器1においてメタン化反応が起こることで水素化反応器1の出口温度は340℃まで上昇し、二酸化炭素濃度は35mol%となった。
[Example 3]
In Example 3, natural gas containing 40 mol% carbon dioxide and 10 ppm sulfur was treated using the carbonyl sulfide hydrolysis reactor 7 in the second embodiment, and a product gas having a carbon dioxide concentration of 2 mol% was obtained. This is an example. FIG. 10 is an explanatory diagram illustrating a mode of processing in the second embodiment.
Hydrogen was mixed with the raw material natural gas so that the hydrogen concentration became 10 mol% at the inlet of the hydrogenation reactor 1, heated to 250 ° C. by the heater 102, and supplied to the hydrogenation reactor 1. As a result of the methanation reaction occurring in the hydrogenation reactor 1, the outlet temperature of the hydrogenation reactor 1 rose to 340 ° C, and the carbon dioxide concentration became 35 mol%.
 水素化反応器1の出口において、硫黄は硫化水素の形態に加え、副生成された硫化カルボニルとしてガス中に含まれており、当該ガス中の硫化カルボニルの濃度は0.7ppmであった。 
 水素化反応器1から流出したガスを冷却器72により、加水分解反応器7の入口温度が150℃となるように冷却した後、水蒸気濃度が5mol%となるように水蒸気を混合し、加水分解反応器7に供給した。硫化カルボニルが加水分解(硫化水素に転換)されることで、加水分解反応器7の出口の硫化カルボニル濃度は0.1ppm以下となった。 
 加水分解反応器7から流出したガスを加熱器73により350℃まで加熱し、吸着脱硫反応器2に供給した。硫化水素は吸着除去され、吸着脱硫反応器2の出口での硫黄濃度は0.1ppm以下となった。 
 吸着脱硫反応器2よりも下流側の処理については、実施例1と同一である。
At the outlet of the hydrogenation reactor 1, sulfur was contained in the gas as carbonyl sulfide by-produced in addition to the form of hydrogen sulfide, and the concentration of carbonyl sulfide in the gas was 0.7 ppm.
After the gas flowing out of the hydrogenation reactor 1 is cooled by the cooler 72 so that the inlet temperature of the hydrolysis reactor 7 becomes 150 ° C., water vapor is mixed so that the water vapor concentration becomes 5 mol%, and hydrolysis is performed. Feeded to reactor 7. As the carbonyl sulfide was hydrolyzed (converted to hydrogen sulfide), the carbonyl sulfide concentration at the outlet of the hydrolysis reactor 7 became 0.1 ppm or less.
The gas flowing out from the hydrolysis reactor 7 was heated to 350 ° C. by the heater 73 and supplied to the adsorptive desulfurization reactor 2. Hydrogen sulfide was adsorbed and removed, and the sulfur concentration at the outlet of the adsorptive desulfurization reactor 2 became 0.1 ppm or less.
The processing downstream of the adsorptive desulfurization reactor 2 is the same as in the first embodiment.
 [比較例1] 
 比較例1は、二酸化炭素を40mol%、硫黄を1ppm含有する実施例1と同一の原料天然ガスを、水素化反応器1ならびに吸着脱硫反応器2を適用することなく、二酸化炭素濃度が2mol%の製品ガスを得る例である。図11は、図1に示す構成から水素化反応器1ならびに吸着脱硫反応器2を除いた装置を用いた、比較例1における処理の態様を示す説明図である。 
 実施例1に比較して高濃度に二酸化炭素を含むガスがメタン化反応部に供給されることからメタン化反応による発熱が多く、第2のメタン化反応器4の出口温度は487℃、後段メタン化反応器5の出口温度は316℃となった。 
 温度上昇により平衡反応であるメタン化反応が阻害され、二酸化炭素濃度が2mol%の製品ガスを得るために、過剰に水素を供給することが必要となり、製品ガスの水素濃度は実施例1より高い4mol%となった。実施例1の製品ガスの水素濃度を達成するためには第3のメタン化反応器の追加が必要であった。 
 また、原料天然ガスが脱硫されていないため、メタン化触媒は硫黄により失活し、数か月ごとの交換が必要となった。
[Comparative Example 1]
In Comparative Example 1, the same raw material natural gas containing 40 mol% carbon dioxide and 1 ppm sulfur as in Example 1 was applied without using the hydrogenation reactor 1 and the adsorptive desulfurization reactor 2, and the carbon dioxide concentration was 2 mol%. This is an example of obtaining the product gas. FIG. 11 is an explanatory diagram showing a processing mode in Comparative Example 1 using an apparatus in which the hydrogenation reactor 1 and the adsorptive desulfurization reactor 2 are removed from the configuration shown in FIG.
Compared with Example 1, a gas containing carbon dioxide at a high concentration is supplied to the methanation reaction section, so that heat is generated due to the methanation reaction, and the outlet temperature of the second methanation reactor 4 is 487 ° C. The outlet temperature of the methanation reactor 5 was 316 ° C.
The methanation reaction, which is an equilibrium reaction, is inhibited by the temperature rise, and in order to obtain a product gas having a carbon dioxide concentration of 2 mol%, it is necessary to supply excess hydrogen, and the hydrogen concentration of the product gas is higher than that in Example 1. It became 4 mol%. In order to achieve the hydrogen concentration of the product gas of Example 1, it was necessary to add a third methanation reactor.
In addition, since the raw natural gas was not desulfurized, the methanation catalyst was deactivated by sulfur, and it was necessary to replace it every several months.
 [比較例2] 
 比較例1において、メタン化反応器を追加することに代えて、水蒸気により原料天然ガスを希釈することで実施例1と同等の水素濃度を達成する例を比較例2とする。図12は、比較例2における処理の態様を示す説明図である。 
 第1のメタン化反応器3の入口において、原料天然ガスに二酸化炭素及び水素の合計に対する水蒸気のmol比が実施例1より高い0.76となる量の水蒸気を混合し、被処理ガスを希釈することで、製品ガスの水素濃度2.9mol%を達成できた。 
 比較例2では実施例1よりも多くの水蒸気が必要であった。また、原料天然ガスが脱硫されていないため、メタン化触媒は硫黄により失活し、数か月ごとの交換が必要となった。
[Comparative Example 2]
In Comparative Example 1, instead of adding a methanation reactor, an example in which the hydrogen concentration equivalent to that in Example 1 is achieved by diluting the raw natural gas with water vapor is referred to as Comparative Example 2. FIG. 12 is an explanatory diagram showing a mode of processing in Comparative Example 2.
At the inlet of the first methanation reactor 3, raw material natural gas is mixed with water vapor in an amount such that the molar ratio of water vapor to the total of carbon dioxide and hydrogen is 0.76 higher than in Example 1, and the gas to be treated is diluted. As a result, a hydrogen concentration of 2.9 mol% in the product gas could be achieved.
Comparative Example 2 required more water vapor than Example 1. In addition, since the raw natural gas was not desulfurized, the methanation catalyst was deactivated by sulfur, and it was necessary to replace it every several months.
 [実施例及び比較例の評価] 
 実施例及び比較例からわかるように、メタン化反応器3の上流側にて、水素化触媒の触媒層11を配置した水素化反応器1を用いることで、高濃度の二酸化炭素を含む天然ガスを原料とする場合には、水素化反応器1を用いない場合と比較して、メタン化反応器の設置段数を減らすことができ、また水蒸気の使用量も抑えることができる。背景技術の項目にて述べたように、今後は高濃度の二酸化炭素を含む天然ガス井の開発が必要となることから、本発明は極めて有用な技術であることが理解される。そして水素化触媒を用いることにより、水素化反応に加えてメタン化反応も起こり、メタン化反応器おけるメタン化触媒の使用量の低減化を期待できる。また水素化触媒を用いることにより硫化カルボニルが副生成することから、硫化カルボニルの除去部を設けることは有効である。

 
[Evaluation of Examples and Comparative Examples]
As can be seen from the examples and comparative examples, by using the hydrogenation reactor 1 in which the catalyst layer 11 of the hydrogenation catalyst is arranged on the upstream side of the methanation reactor 3, natural gas containing high-concentration carbon dioxide is used. As a raw material, compared with the case where the hydrogenation reactor 1 is not used, the number of installation stages of the methanation reactor can be reduced, and the amount of steam used can also be suppressed. As described in the section of the background art, since it will be necessary to develop a natural gas well containing carbon dioxide at a high concentration in the future, it is understood that the present invention is a very useful technique. By using a hydrogenation catalyst, a methanation reaction occurs in addition to the hydrogenation reaction, and a reduction in the amount of methanation catalyst used in the methanation reactor can be expected. Also, since a carbonyl sulfide is by-produced by using a hydrogenation catalyst, it is effective to provide a carbonyl sulfide removal part.

Claims (5)

  1.  原料ガスである天然ガスと水素とが供給され、天然ガス中の二酸化炭素と水素とを反応させてメタンを生成するための前段反応器と、
     前記前段反応器から排出された生成ガス中に残っている水素と二酸化炭素とを反応させることにより水素濃度を調整するための後段反応器と、
     前記前段反応器内及び後段反応器内の各々に設けられたメタン化触媒の触媒層と、
     前記前段反応器よりも上流側に設けられ、天然ガス中の有機硫黄を水素化して硫化水素に変える主たる水素化触媒作用と共にメタン化の触媒作用を有する水素化触媒の触媒層と、
     前記前段反応器よりも上流側に位置しかつ水素化触媒の触媒層よりも下流側に配置され、硫化水素を吸着するための吸着剤の吸着剤層と、を備えたことを特徴とする天然ガスの処理装置。
    A pre-stage reactor for supplying natural gas, which is a raw material gas, and hydrogen, and reacting carbon dioxide and hydrogen in the natural gas to produce methane,
    A post-reactor for adjusting the hydrogen concentration by reacting hydrogen and carbon dioxide remaining in the product gas discharged from the pre-reactor;
    A catalyst layer of a methanation catalyst provided in each of the former reactor and the latter reactor;
    A catalyst layer of a hydrogenation catalyst provided on the upstream side of the preceding reactor and having methanation catalysis together with main hydrogenation catalysis that hydrogenates organic sulfur in natural gas to hydrogen sulfide;
    An adsorbent layer of an adsorbent for adsorbing hydrogen sulfide, disposed on the upstream side of the preceding reactor and disposed on the downstream side of the catalyst layer of the hydrogenation catalyst. Gas processing equipment.
  2.  前記前段反応器は、第1のメタン化反応器と、前記第1のメタン化反応器の下流側に設けられた第2のメタン化反応器と、を含み、
     前記第1のメタン化反応器の入口側に水素を供給する第1の水素供給路と、前記第2のメタン化反応器の入口側に水素を供給する第2の水素供給路と、を備えたことを特徴とする請求項1記載の天然ガスの処理装置。
    The pre-stage reactor includes a first methanation reactor and a second methanation reactor provided on the downstream side of the first methanation reactor,
    A first hydrogen supply path for supplying hydrogen to the inlet side of the first methanation reactor; and a second hydrogen supply path for supplying hydrogen to the inlet side of the second methanation reactor. The natural gas processing apparatus according to claim 1, wherein:
  3.  前記水素化触媒の触媒層及び前記吸着剤層は、前記前段反応器の上流側に設けられた前処理用の反応器内に配置され、
     前記前処理用の反応器の入口側に水素を供給する前処理用の水素供給路を備えたことを特徴とする請求項1記載の天然ガスの処理装置。
    The catalyst layer of the hydrogenation catalyst and the adsorbent layer are disposed in a pretreatment reactor provided on the upstream side of the preceding reactor,
    2. The natural gas processing apparatus according to claim 1, further comprising a pretreatment hydrogen supply passage for supplying hydrogen to an inlet side of the pretreatment reactor.
  4.  前記前処理用の反応器は、前記水素化触媒の触媒層が配置された水素化反応器と、前記水素化反応器の下流側に設けられ、前記吸着剤層が配置された吸着脱硫反応器と、を含むことを特徴とする請求項1記載の天然ガスの処理装置。 The pretreatment reactor includes a hydrogenation reactor in which a catalyst layer of the hydrogenation catalyst is disposed, and an adsorptive desulfurization reactor in which the adsorbent layer is disposed on the downstream side of the hydrogenation reactor. The natural gas processing apparatus according to claim 1, comprising:
  5.  前記水素化触媒の触媒層にて副生成された硫化カルボニルを除去するための硫化カルボニルの除去部を、前記メタン化触媒の触媒層よりも上流側に設けたことを特徴とする請求項1記載の天然ガスの処理装置。

     
    The carbonyl sulfide removal portion for removing carbonyl sulfide by-produced in the catalyst layer of the hydrogenation catalyst is provided upstream of the catalyst layer of the methanation catalyst. Natural gas processing equipment.

PCT/JP2017/011404 2017-03-22 2017-03-22 Treatment device for natural gas WO2018173143A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/011404 WO2018173143A1 (en) 2017-03-22 2017-03-22 Treatment device for natural gas
JP2019506788A JP6740458B2 (en) 2017-03-22 2017-03-22 Natural gas processing equipment
AU2017404979A AU2017404979B2 (en) 2017-03-22 2017-03-22 Treatment device for natural gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/011404 WO2018173143A1 (en) 2017-03-22 2017-03-22 Treatment device for natural gas

Publications (1)

Publication Number Publication Date
WO2018173143A1 true WO2018173143A1 (en) 2018-09-27

Family

ID=63586293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011404 WO2018173143A1 (en) 2017-03-22 2017-03-22 Treatment device for natural gas

Country Status (3)

Country Link
JP (1) JP6740458B2 (en)
AU (1) AU2017404979B2 (en)
WO (1) WO2018173143A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110295071A (en) * 2019-06-21 2019-10-01 浙江臻泰能源科技有限公司 The bio-natural gas preparation facilities and method of joint Methane decarbonization purification technique and hydrogenation of carbon dioxide methanation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505880A (en) * 1982-05-25 1985-03-19 Institut Francais Du Petrole Process for the hydrodesulfurization and deoxygenation of a gas containing oxygen and organic sulfur compounds
US6419888B1 (en) * 2000-06-02 2002-07-16 Softrock Geological Services, Inc. In-situ removal of carbon dioxide from natural gas
US20140005284A1 (en) * 2012-06-27 2014-01-02 Chevron U.S.A., Inc. Carbon oxides removal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505880A (en) * 1982-05-25 1985-03-19 Institut Francais Du Petrole Process for the hydrodesulfurization and deoxygenation of a gas containing oxygen and organic sulfur compounds
US6419888B1 (en) * 2000-06-02 2002-07-16 Softrock Geological Services, Inc. In-situ removal of carbon dioxide from natural gas
US20140005284A1 (en) * 2012-06-27 2014-01-02 Chevron U.S.A., Inc. Carbon oxides removal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110295071A (en) * 2019-06-21 2019-10-01 浙江臻泰能源科技有限公司 The bio-natural gas preparation facilities and method of joint Methane decarbonization purification technique and hydrogenation of carbon dioxide methanation

Also Published As

Publication number Publication date
JP6740458B2 (en) 2020-08-12
AU2017404979B2 (en) 2022-05-19
JPWO2018173143A1 (en) 2020-01-23
AU2017404979A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
EP2196448B1 (en) Method of coproducing methanol and ammonia
US9701600B2 (en) Plant for the production of methanol from synthesis gas rich in inerts
RU2729077C2 (en) New method of producing methanol from low-quality synthetic gas
EA024553B1 (en) Co-production of methanol and urea
RU2558579C2 (en) Producing standard-quality synthesis gas for ammonia synthesis with cryogenic purification
KR101838094B1 (en) Process for improving the hydrogen content of a systhesis gas
US8975303B2 (en) Synthesis gas methanation process and apparatus
JP5220755B2 (en) Bubble column type hydrocarbon synthesis reactor and hydrocarbon synthesis reaction system equipped with the same
EA021500B1 (en) Co-production of methanol and ammonia
JP2009179591A (en) Method for producing methanol
BR112019018362A2 (en) ammonia process using advanced displacement process
RU2425089C2 (en) Fuel oil synthesis system
WO2018173143A1 (en) Treatment device for natural gas
CN106315510A (en) Coke oven gas hydrogen production technology
RU2680047C1 (en) Process for producing ammonia synthesis gas
CN103946151B (en) For increasing the method for the hydrogen richness of synthetic gas
AU2017416235A1 (en) Module for natural gas liquefier device, and natural gas liquefier device
US10196348B2 (en) Method for revamping a urea production complex
JP2022533692A (en) Furnaces and processes for syngas production
RU2776173C1 (en) Method for producing liquid hydrocarbons using the fischer-tropsch process integrated in petroleum refining plants
JP2022075138A (en) Method for producing fuel gas
EP4116281A1 (en) Method for producing fuel gas
JP2021138912A (en) Method for manufacturing fuel gas
CN116020373A (en) Methanol synthesis device and synthesis method
AU2012101392A4 (en) System and method for syngas processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506788

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017404979

Country of ref document: AU

Date of ref document: 20170322

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902208

Country of ref document: EP

Kind code of ref document: A1