WO2018171795A1 - On-demand system information request message - Google Patents

On-demand system information request message Download PDF

Info

Publication number
WO2018171795A1
WO2018171795A1 PCT/CN2018/080413 CN2018080413W WO2018171795A1 WO 2018171795 A1 WO2018171795 A1 WO 2018171795A1 CN 2018080413 W CN2018080413 W CN 2018080413W WO 2018171795 A1 WO2018171795 A1 WO 2018171795A1
Authority
WO
WIPO (PCT)
Prior art keywords
demand
information
request
msg3
preamble
Prior art date
Application number
PCT/CN2018/080413
Other languages
French (fr)
Inventor
Guan-Yu Lin
Chia-Chun Hsu
Original Assignee
Mediatek Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Inc. filed Critical Mediatek Inc.
Priority to CN201880000934.1A priority Critical patent/CN108966692B/en
Publication of WO2018171795A1 publication Critical patent/WO2018171795A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/022Selective call receivers
    • H04W88/023Selective call receivers with message or information receiving capability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0836Random access procedures, e.g. with 4-step access with 2-step access

Definitions

  • the disclosed embodiments relate generally to wireless communication, and, more particularly, to on-demand system request message.
  • SI system information
  • UE use equipment
  • the gNB provides on-demand SI when required.
  • the gNB could proactively provide on-demand SI for some UEs in need.
  • the gNB could reactively transmit on-demand SI when the gNB detects UEs’request on certain on-demand OSI.
  • the objective to have on-demand SI delivery is to enhance legacy approach to SI delivery.
  • system information is always broadcasted periodically.
  • Periodically broadcasted system information causes periodic inter-cell interference, and thus limits the density of cell deployment.
  • periodic broadcast reduces radio resource utilization since the gNB always broadcasts all system information even if there is no UE in the cell or even if some system information is not needed by any UE in the cell.
  • periodically broadcasted system information is not good to discontinuous transmission (DTX) since the gNB always needs to do periodic broadcast. It is, therefore, desired to deliver on-demand OSI only when they are needed by some UEs to reduce unnecessary SI transmission.
  • DTX discontinuous transmission
  • Improvements and enhancements are required for on-demand system information delivery.
  • the RACH procedure is used for one-demand SI information updates through unicast.
  • the UE performs a RACH procedure by sending a Msg1 with a preamble and receiving a Msg2 as the RA response.
  • the UE sends an embedded SI request message in Msg3 requesting one or more on-demand SI.
  • the SI request message includes a UE ID.
  • the UE receives the SI response message which is embedded in Msg4.
  • the UE ID in the SI request is determined based on a UE state.
  • the UE ID is a MAC control element (CE) for cell network temporary identifier (C-RNTI) when the UE state is radio resource control (RRC) connected, and the UE ID is a resumeID when the UE state is inactive, and the UE ID is SAE temporary mobile subscriber identifier (S-TMSI) or randomValue when the UE state is idle.
  • the SI response and the information of the requested SI are included in the Msg4.
  • Msg4 only includes the SI response.
  • a unicasted message, which is transmitted separately from Msg4 includes the update SI information of the requested SI.
  • one or more assistant information is included in Msg3.
  • the assistant information includes UE mobility information and UE SI version number.
  • the preamble of Msg1 is associated with one or more assistant information.
  • the SI broadcast is used upon the failure of the SI Request message in Msg3.
  • the preamble of the Msg1 is associated with a group X of SIB.
  • the UE sends a Msg3 with the embedded SI request requesting a subset of SIB in group X.
  • the UE monitors and receives updated SI information of the whole group X through a broadcast channel.
  • Figure 1 is a schematic system diagram illustrating an exemplary on-demand SI delivery in accordance with embodiments of the current invention.
  • Figure 2 illustrates an exemplary diagram of using the RACH procedure for on-demand SI unicast in accordance with embodiments of the current invention.
  • Figure 3 illustrates an exemplary diagram for a Msg3 based SI request unicast procedure in accordance to embodiments of the current invention.
  • Figure 4A illustrates an exemplary diagram of UE SI version number being included in the SI request message in accordance with embodiments of the current invention.
  • Figure 4B illustrates an exemplary diagram of UE mobility information being included in the SI request message in accordance with embodiments of the current invention.
  • Figure 5 illustrates an exemplary diagram of SI request includes the UE ID with the UE-specific SI response in accordance with embodiments of the current invention.
  • Figure 6 illustrates exemplary diagrams of the preamble associates with one or more assistant information in accordance with embodiments of the current invention.
  • Figure 7 illustrates exemplary diagrams of the preamble associates with one or more SI group in accordance with embodiments of the current invention.
  • Figure 8 illustrates an exemplary diagram of the two-step RACH procedure for the SI request with the preamble associated with one or more SIB requested.
  • Figure 9 illustrates an exemplary diagram of the two-step RACH procedure for the SI request with the SI request message embedded in Msg1.
  • Figure 10A illustrates an exemplary diagram of the SI broadcast procedure upon detecting failure of Msg3 in accordance with embodiments of the current invention.
  • Figure 10B illustrates an exemplary diagram of the SI broadcast procedure upon sending Msg3 in accordance with embodiments of the current invention.
  • Figure 10C illustrates an exemplary diagram of SI broadcast if the Msg2 indicates no Msg3 needed in accordance with embodiments of the current invention.
  • Figure 11A illustrates exemplary diagrams of determining a failure of Msg3 transmission by the MAC layer in accordance with embodiments of the current invention.
  • Figure 11B illustrates exemplary diagrams of determining a failure of Msg3 transmission by the RRC layer in accordance with embodiments of the current invention.
  • Figure 12 illustrates an exemplary flow chart of the SI request message for SI unicast procedure using the RACH procedure in accordance with embodiments of the current invention.
  • Figure 13 illustrates an exemplary flow chart of the SI broadcast procedure upon detecting failure of Msg3 in accordance with embodiments of the current invention.
  • FIG. 1 is a schematic system diagram illustrating an exemplary on-demand SI delivery in accordance with embodiments of the current invention.
  • Wireless communication system 100 includes one or more fixed base infrastructure units forming a network distributed over a geographical region.
  • the base unit may also be referred to as an access point, an access terminal, a base station, a Node-B, an eNode-B (eNB) , a gNB, or by other terminology used in the art.
  • the one or more base stations 101 and 102 serve severalremote units /user equipment (UEs) 103 and 104 within a serving area, for example, a cell, or within a cell sector.
  • UEs user equipment
  • one or more base stations are communicably coupled to a controller forming an access network that is communicably coupled to one or more core networks.
  • the disclosure is not intended to be limited to any particular wireless communication system.
  • serving base stations 101 and 102 transmit downlink communication signals 112 and 113 to UEs or mobile stations in the time and/or frequency domain.
  • UEs or mobile stations 103 and 104 communicate with one or more base stations 101 and 102 via uplink communication signals 111 and 114.
  • UE or the mobile station may also be referred to as a mobile phone, laptop, and mobile workstation and so on.
  • the wireless communication system 100 is an OFDM/OFDMA system comprising a base station gNB 101gNB 102 and a plurality of UE 103 and UE 104.
  • each UE gets a downlink assignment, e.g., a set of radio resources in a physical downlink shared channel (PDSCH) .
  • PDSCH physical downlink shared channel
  • the UE gets a grant from the gNB that assigns a physical uplink shared channel (PUSCH) consisting of a set of uplink radio resources.
  • PUSCH physical uplink shared channel
  • system information is updated on a per modification period basis. The system information broadcasted in the same modification period is the same.
  • the network changes one or more system information, it first notifies the UEs about this change. The notification may be done throughout a modification period. The UE expects to receive the updated system information in the start of the next modification period.
  • the feature of on-demand SI acquisition is supported.
  • Figure 1 further illustrates simplified block diagrams 130 and 150 for UE 103 and gNB 101, respectively.
  • UE 103 has an antenna 135, which transmits and receives radio signals.
  • a RF transceiver module 133 coupled with the antenna, receives RF signals from antenna 135, converts them to baseband signals and sends them to processor 132.
  • RF transceiver 133 also converts received baseband signals from processor 132, converts them to RF signals, and sends out to antenna 135.
  • Processor 132 processes the received baseband signals and invokes different functional modules to perform features in UE103.
  • Memory 131 stores program instructions and data 134 to control the operations of UE 103.
  • a RACH procedure circuit 141 sends a Msg1 with a preamble and receives a Msg2 as a random access response.
  • An SI transmitter 142 sends an SI request message requesting one or more other on-demand SI, embedded in a first RACH procedure message selecting from a first RACH message group comprising Msg1 and Msg3, wherein the RACH message includes a UE identification (ID) of the UE.
  • An SI receiver 143 receives an SI response embedded in a second RACH procedure message selecting from a second RACH message comprising Msg2 and Msg4 from the network.
  • gNB 101 has an antenna 155, which transmits and receives radio signals.
  • a RF transceiver module 153 coupled with the antenna, receives RF signals from antenna 155, converts them to baseband signals, and sends them to processor 152.
  • RF transceiver 153 also converts received baseband signals from processor 152, converts them to RF signals, and sends out to antenna 155.
  • Processor 152 processes the received baseband signals and invokes different functional modules to perform features in gNB 101.
  • Memory 151 stores program instructions and data 154 to control the operations of gNB 101.
  • gNB 101 also includes function modules that carry out different tasks in accordance with embodiments of the current invention.
  • a system information manager 156 performs functions to support on-demand system information delivery functions.
  • the delivery method of the SI is indicated to the UE either in the MSI or in the SI change notification.
  • the UE obtains SI based on the delivery method indicated in the MSI or the SI change notification message.
  • an indicator is included in the MSI to indicate whether the SI is delivered by broadcast or unicast.
  • the broadcast delivery can be either a periodical broadcast or an on-demand broadcast. If the UE detects that the one or more SI is delivered by unicast, the UE sends SI request for the SI. Otherwise, if the UE detects that the SI is delivered by broadcast, it will look for the broadcast window to acquire the SI update.
  • SI 191 includes a MSI 192 and one or more OSI 193.
  • MSI 192 are delivered by periodic broadcast.
  • Some of OSI are configured to be delivered using periodic broadcast, some of the OSI are configured to be delivered using on-demand broadcast, and some of the OSI are configured to be delivered using on-demand unicast.
  • SI response mode indicates how network responds to SI request.
  • the UE sends SI request.
  • the network may provide SI with broadcast, in which case, the network changes the deliver mode from on-demand unicast to on-demand broadcast. Alternatively, the network unicasts the on-demand SI.
  • FIG. 2 illustrates an exemplary diagram of using the RACH procedure for on-demand SI unicast in accordance with embodiments of the current invention.
  • a UE 201 communicates with a gNB 202 in a wireless network.
  • the UE performs a SI unicast update using the random access channel (RACH) procedure.
  • RACH random access channel
  • UE 201 sends Msg1 with a preamble.
  • gNB 202 sends Msg2 as a response to Msg1.
  • UE 201 sends Msg3 with the resource granted in Msg2.
  • gNB 202 send Msg4 as an ACK to the Msg3.
  • Msg3 and Msg4 are used for SI unicast procedure.
  • Msg3 embeds a SI request message.
  • Msg3 also includes the UE ID of UE 201.
  • SI response message is embedded in Msg4.
  • two-spec RACH procedure is used for SI unicast update.
  • Msg1 is used to serve as the SI request.
  • the SI request message 221 is embedded in Msg1 with the preamble.
  • Msg2 responds with embedded SI response.
  • both the SI response and the content of the requested SI are included in Msg2 together.
  • the SI unicast uses the RACH procedure with either a four-step procedure or a two-step procedure as illustrated above.
  • the SI request message 221 includes an UE ID, and optionally includes SI types /groups requested, the UE mobility information, and the UE SI version number.
  • the SI response 222 embedded with the RACH message either Msg2 or Msg4, includes the SI information of the requested on-demand SIs.
  • the SI response 222 embedded with Msg4 does not include the SI information of the requested on-demand SIs.
  • a unicast message 223 with the SI information of the requested on-demand SIs is received following Msg4.
  • Figure 3 illustrates an exemplary diagram for a Msg3 based SI request unicast procedure in accordance to embodiments of the current invention.
  • the SI information is embedded in Msg4.
  • the SI information is unicasted to the UE separately from Msg4.
  • a UE 201 communicates with gNB 202 in a wireless network.
  • a procedure 310 illustrates the SI information delivered in a separate unicast message.
  • UE 201 sends Msg1 with the preamble.
  • gNB 202 sends Msg2 as the RA response to UE 201.
  • UE 201 sends Msg3 after receiving Msg2.
  • the SI request embeds in the Msg3.
  • gNB 202 sends the Msg4 with SI response embedded.
  • the requested SI information is unicasted to UE 201.
  • a procedure 320 illustrates an exemplary flow chart of the SI information embedded in Msg4. Similar to procedure 310, UE 201 and gNB 202 exchanges Msg1 and Msg2 for RACH procedure.
  • UE 201 sends the SI request in Msg3 to gNB 202.
  • gNB 202 sends Msg4 to UE 201. Msg4 embeds the SI response and the requested SI information.
  • the Msg3 with SI request includes an UE ID of UE 201.
  • UE 201 supplies different UE ID based the UE state.
  • the UE ID in Msg3 is the MAC control element (CE) for cell radio network temporary identifier (C-RNTI) , which is the same as the UE ID for the RACH procedure as defined in LTE.
  • C-RNTI cell radio network temporary identifier
  • the UE ID is set to the resumeID, which is included the RRC SI request message.
  • the UE ID can be set to system architecture evolution (SAE) temporary mobile subscriber identifier (S-TMSI) .
  • SAE system architecture evolution
  • gNB 202 in response to the Msg3 with SI request, gNB 202 sends a UE-specific SI response in Msg4. If MAC CE for C-RNTI is included in Msg3, physical downlink control channel (PDCCH) for Msg4 is addressed to the C-RNTI. Otherwise, PDCCH in Msg4 is addressed to the temporary C-RNTI as provided in Msg2 and use connection resolution MAC CE in Msg4 to identify the UE in the idle state or the RRC inactive state.
  • PDCCH physical downlink control channel
  • one or more assistant information is included in the RACH messages together with the SI request.
  • Figures 4A and Figures 4B illustrates exemplary embodiments of assistant information for the on-demand SI information delivery.
  • the assistant information can be sent alone with the SI request or more than one assistant information can be combined and sent with the SI request message.
  • FIG. 4A illustrates an exemplary diagram of UE SI version number being included in the SI request message in accordance with embodiments of the current invention.
  • UE 201 communicates with gNB 202 in the wireless network.
  • UE 201 sends Msg1 with the preamble to gNB 202.
  • gNB 202 replies with Msg2 to UE 201 as the RA response.
  • UE 201 sends Msg3 embedded with SI request to gNB 202.
  • the SI request message also includes assistant information, such as the UE stored SI version number, such as a value tag and/or a system information area ID.
  • the UE SI version number is stored in UE 201 and identifies the current SIB types and status of the on-demand SI. Other type of information, which identifies the status of UE on-demand SI can be used as the assistant information.
  • gNB 202 replies with Msg4 embedded with SI response.
  • the network can do optimization.
  • the network provides the delta update based on the current stored version of UE 201.
  • the network compares the current SI status with the SI status stored in UE 201 and only includes the SI information that has been changed in the SI update message.
  • the network may provide additional version that is not currently stored in UE 201 but may be needed soon.
  • gNB 202 sends Msg4 with the SI response to UE 201.
  • the updated SI information may be included together with SI response.
  • the updated SI information may be unicasted to UE 202 in a separate message following Msg4.
  • Figure 4B illustrates an exemplary diagram of UE mobility information being included in the SI request message in accordance with embodiments of the current invention.
  • UE 201 sends Msg1 with the preamble to gNB 202.
  • gNB 202 replies with Msg2 to UE 201 as the RA response.
  • UE 201 sends Msg3 embedded with SI request to gNB 202.
  • the SI request message also includes assistant information, such as UE mobility information.
  • the UE mobility information is the UE mobility status as specified in the LTE specification. The network upon receiving the UE mobility information, can optimize the SI delivery.
  • the network can selectively provide UE with the system information applied by one or more neighboring cells in the SI update.
  • the UE can acquire possible handover candidate neighboring cell SI information before it camps on the neighboring cells and thus reduces SI acquisition time during handover.
  • gNB 202 sends Msg4 with the SI response to UE 201.
  • the updated SI information may be included together with SI response.
  • the updated SI information may be unicasted to UE 202 in a separate message following Msg4.
  • FIG. 5 illustrates an exemplary diagram of SI request includes the UE ID with the UE-specific SI response in accordance with embodiments of the current invention.
  • UE 201 communicates with gNB 202.
  • UE 201 sends Msg1 with the preamble to gNB 202.
  • gNB 202 replies with Msg2 to UE 201 as the RA response.
  • UE 201 sends Msg3 embedded with SI request to gNB 202.
  • MAC CE for C-RNTI is explicitly included in the SI request message.
  • the Msg4 has two options.
  • Msg4 524 includes no physical downlink shared channel (PDSCH) content for MAC PDU.
  • PDSCH physical downlink shared channel
  • Msg4 524 address C-RNTI as the acknowledge of Msg3 reception.
  • Msg4 534 includes a MAC CE for SI request confirmation, which also serves as the ACK for the reception of Msg3.
  • gNB 202 sends Msg4 with the UE-specific SI response to UE 201.
  • the assistant information illustrated above can be sent in Msg1 with association of the preamble.
  • the preamble in Msg1 can be associated with other information, such the one or more SI groups requested for the SI delivery procedure.
  • Figure 6 illustrates exemplary diagrams of the preamble associates with one or more assistant information in accordance with embodiments of the current invention.
  • UE 201 communicates with gNB 202.
  • UE 201 sends Msg1 with the preamble to gNB 202.
  • the preamble is specifically selected to indicate one or more assistant information for the SI update procedure.
  • the assistant information may include the UE mobility information and the UE SI version number.
  • One or more preamble is predefined to be associated with the assistant information. Other assistant information may also be included by assigning the preamble to the specified assistant information.
  • gNB 202 replies with Msg2 to UE 201 as the RA response.
  • UE 201 sends Msg3 embedded with SI request to gNB 202.
  • gNB 202 sends Msg4 with SI response to UE 201.
  • the network optimize the SI update message based on the preamble, which carries one or more assistant information.
  • Figure 7 illustrates exemplary diagrams of the preamble associates with one or more SI group in accordance with embodiments of the current invention.
  • the preamble in Msg1 is set to be associated with one or more SI groups.
  • the SI request in Msg3 may further specify a subset of the SI groups requested.
  • the Msg3 is decoded successfully by the network and the SI update includes the SI groups specified in Msg3.
  • procedure 720 when the network fails to decode the Msg3, all the SI groups indicated by the preamble in Msg1 is sent by the network.
  • UE 201 communicates with gNB 202.
  • UE 201 sends Msg1 with the preamble to gNB 202.
  • the preamble in Msg1 is predefined and selected to indicate a SI group to be updated.
  • the preamble in Msg1 is associated with SI groups ⁇ 1, 2, 3 ⁇ .
  • gNB 202 replies with Msg2 to UE 201 as the RA response.
  • UE 201 sends Msg3 embedded with SI request to gNB 202.
  • the SI request in Msg3 specifies a subset of SI groups as indicated by the preamble.
  • the SI request may indicate that SI groups ⁇ 1, 3 ⁇ are requested.
  • the SI request may indicate the full set of SI group indicated by the preamble is requested.
  • Msg3 is successfully decoded by the network.
  • gNB 202 at step 714 sends Msg4 with SI response.
  • the SI update message includes the SI groups as specified by the SI request in Msg3, such as SI group ⁇ 1, 3 ⁇ .
  • the network fails to decode Msg3 successfully.
  • the network may decide to terminate Msg3 retransmission and sends all SIB associated with the preamble.
  • gNB 202, at step 724 sends MSg4 with SI response, which may include the SI update for the SI group indicated by the preamble, such as SI groups ⁇ 1, 2, 3 ⁇ .
  • two-step RACH procedure is sued for the SI request and SI delivery procedure.
  • the preamble in Msg1 is associated with one or more SI groups to serve as a SI request.
  • the SI request message is embedded in Msg1 for the two-step SI delivery.
  • Figure 8 illustrates an exemplary diagram of the two-step RACH procedure for the SI request with the preamble associated with one or more SIB requested.
  • a simplified SI request procedure is used with the RACH preamble associated with one or more SIB types or groups.
  • the network upon receiving Msg1 with the predefined preamble, send the requested SI in Msg2.
  • the Msg2 is not limited to the format of Msg2 as defined in the legacy RACH procedure.
  • the Msg2 includes information of all SIB types and groups associated with the preamble.
  • UE 201 communicates with gNB 202.
  • UE 201 sends Msg1 with the preamble to gNB 202.
  • the preamble in Msg1 is predefined and selected to indicate one more SIB types /groups for the SI update.
  • the network Upon decoding the predefined preamble, the network sends the information of all the SIB types/groups associated with the preamble.
  • gNB 202 sends Msg2 to UE 201.
  • Msg2 includes the SI response and all the SI information of the SIB types/groups associated with the preamble.
  • the Msg2 is not limited to the legacy RACH message format.
  • Figure 9 illustrates an exemplary diagram of the two-step RACH procedure for the SI request with the SI request message embedded in Msg1.
  • UE 201 communicates with gNB 202.
  • UE 201 sends Msg1 with the preamble to gNB 202.
  • Msg1 includes the SI request message for the one-demand SI update.
  • the SI request message includes the UE ID.
  • the UE ID can be the MAC CE for the connected state UE, or the resume ID for the inactive state UE, or the S-TMSI for the idle state UE.
  • the SI request message may also include assistant information for the SI update procedure.
  • the SI request message may include the UE mobility information.
  • the SI request message may also include the stored UE SI version number.
  • the network may optimize the SI update based on the assistant information.
  • the SI delta information may be sent in the SI response based on the UE SI version number.
  • one or more selected neighboring cells’S I information may be included in the SI response.
  • gNB 202 sends the SI response with information of all the SIB types /groups requested in the SI request.
  • SI broadcast is used when RACH collision causes the failure to decode Msg3.
  • the UE upon detecting one or more triggering conditions, such a maximum number of Msg3 retransmission is reached or a predefined Msg3 timer expires, stops Msg3 retransmission.
  • the UE monitors an SI broadcast to obtain the requested SI update.
  • FIG. 10A illustrates an exemplary diagram of the SI broadcast procedure upon detecting failure of Msg3 in accordance with embodiments of the current invention.
  • UE 1001 communicates with gNB 1002.
  • UE 1001 sends Msg1 with the preamble to gNB 1002.
  • the preamble in Msg1 is predefined and selected to indicate a group X of SIB to be updated.
  • gNB 1002 replies with Msg2 to UE 1001 as the RA response.
  • UE 1001 sends Msg3 embedded with SI request to gNB 1002.
  • the SI request in Msg3 specifies a subset of SIB as indicated by the preamble.
  • the SI request may indicate the full set of SI group indicated by the preamble is requested.
  • the network may not be able to decode Msg3 successfully due to RACH collision or other channel conditions. If the network fails to decode Msg3 and the timer for Msg3 expired, or the maximum number of retry is reached for Msg3, gNB 1002 will not expect more Msg3 from UE 1001. gNB 1002 will not allocate further resource for Msg3 retransmission.
  • gNB 1002, at step 1015 broadcasts information of all SIBs in group X as indicated by the preamble.
  • UE 1001 stops retransmission of Msg3 for SI request.
  • UE 1001 monitors an SI broadcast channel and receives the SI update by the SI broadcast.
  • FIG. 10B illustrates an exemplary diagram of the SI broadcast procedure upon sending Msg3 in accordance with embodiments of the current invention.
  • UE start to monitors an SI broadcast channel upon the first Msg3 transmission.
  • network can determine to broadcast all the SIBs in group X when network wants, and there is no need for the UE and the network to maintain or configure timer or maximum number of Msg3 transmission for SI request.
  • UE 1001 communicates with gNB 1002.
  • UE 1001 sends Msg1 with the preamble to gNB 1002.
  • the preamble in Msg1 is predefined and selected to indicate a group X of SIB to be updated.
  • gNB 1002 replies with Msg2 to UE 1001 as the RA response.
  • UE 1001 sends Msg3.
  • UE 1001 starts to monitor the SI broadcast channel.
  • gNB 1002 sends SI broadcast message for all the SI in Group X as indicated by the preamble in Msg1.
  • Figure 10C illustrates an exemplary diagram of SI broadcast if the Msg2 indicates no Msg3 needed in accordance with embodiments of the current invention.
  • the network indicates in Msg2 whether UE needs to send Msg3. If the indication is yes, UE send Msg3 to indicate the subset of SIBs in group X to be requested; otherwise, UE considers its SI request successful, and monitor broadcast channel to receive the requested SIBs in group X. After sending Msg 2 to the UE, network broadcast all SIBs in group X.
  • UE 1001 communicates with gNB 1002.
  • UE 1001 sends Msg1 with the preamble to gNB 1002.
  • the preamble in Msg1 is predefined and selected to indicate a group X of SIB to be updated.
  • gNB 1002 replies with Msg2 to UE 1001 as the RA response.
  • Msg2 includes a broadcast indicator, which indicates whether a Msg3 is needed for the SI update.
  • UE 1001 decodes Msg2 and determines whether Msg3 is needed based on the broadcast indicator. If step 1034 determines no, UE 1001 starts to monitor a broadcast channel.
  • FIG. 11A illustrates exemplary diagrams of determining a failure of Msg3 transmission by the MAC layer in accordance with embodiments of the current invention.
  • a MAC layer 1101 communicates with one of its upper layers, RRC layer 1102.
  • a RACH procedure 1111 starts when receiving an upper layer message 1121.
  • a timer 1131 for SI request starts upon receiving upper layer message or indication 1121.
  • RACH 1111 also passing message blocks to upper layer 1102 through communication 1122.
  • MAC layer 1101 determines whether the SI request is successful.
  • MAC layer 1101 indicates the reception of an ACK at 1122 if RACH procedure 1111 is successful.
  • MAC layer 1101 stops the RACH procedure and determines that the RACH procedure is failed. However, MAC layer still indicates successful SI request to RRC layer because network will broadcast all SIBs in group X after failed Msg3 transmission, and thus all the requested SIBs in group X will anyway be broadcast. MAC layer can indicate successful SI request to RRC layer after successful Msg3 transmission, e.g., upon successful reception of Msg2, upon failed Msg3 transmission, or upon successful or unsuccessful RACH procedure completion.
  • FIG. 11B illustrates exemplary diagrams of determining a failure of Msg3 transmission by the RRC layer in accordance with embodiments of the current invention.
  • a MAC layer 1101 communicates with one of its upper layers, RRC layer 1102.
  • a RACH procedure 1191 starts when receiving an upper layer message or indication 1181.
  • a timer 1131 for SI request starts upon receiving upper layer message or indication 1181.
  • RACH 1191 at step 1182, delivers the decoded MAC PDU to RRC layer 1102 if the RACH procedure is successful.
  • a RRC layer procedure 1192 checks the Msg4 contents and determines if the SI request is successful. If the previous Msg4 is received but not all the required SI is to be broadcasted determined by the RRC layer, RRC layer considers the SI request failed.
  • a new RACH procedure 1193 for SI request is initialized for the missing SI.
  • FIG. 12 illustrates an exemplary flow chart of the SI request message for SI unicast procedure using the RACH procedure in accordance with embodiments of the current invention.
  • the UE performs a RACH procedure by in a wireless network, wherein a Msg1 with a preamble is sent by the UE and a Msg2 is subsequently received from the wireless network as a random access response.
  • the UE sends a Msg3 with an embedded system information (SI) request by the UE to the network requesting one or more other on-demand SI, wherein the Msg3 includes a UE ID of the UE.
  • the UE receives a Msg4 with an embedded SI response by the UE from the network.
  • SI system information
  • Figure 13 illustrates an exemplary flow chart of the SI broadcast procedure upon detecting failure of Msg3 in accordance with embodiments of the current invention.
  • the UE performs a RACH procedure in a wireless network, wherein a Msg1 with a preamble is sent by the UE and a Msg2 is subsequently received from the wireless network as a random access response, and wherein the preamble is associated with a group X of one-demand system information block (SIB) .
  • SIB system information block
  • the UE sends a Msg3 with an embedded SI request by the UE to the network requesting a subset of the group X of on-demand SIB, wherein the Msg3 includes a UE ID of the UE.
  • the UE monitors a SI broadcast channel and receiving information of the group X of on-demand SIB through the SI broadcast channel upon determining a failure of ACK to the SI request.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Apparatus and methods are provided for on-demand SI request procedure. In one novel aspect, the RACH procedure is used for one-demand SI information updates through unicast. In one embodiment, the UE sends an embedded SI request message in Msg3 requesting one or more on-demand SI including a UE ID. The SI response and the information of the requested SI are included in the Msg4 or in a separate unicasted message. In another embodiment, one or more assistant information is included in Msg3 or are associated with the preamble in Msg1. In another novel aspect, the preamble of the Msg1 is associated with a group X of SIB. Upon detecting the failure of transmission of the SI request, the UE monitors and receives updated SI information of the whole group X through a broadcast channel.

Description

ON-DEMAND SYSTEM INFORMATION REQUEST MESSAGE
CROSS REFERENCE TO RELATED APPLICATIONS
This application claims priority under 35 U.S.C. §119 from U.S. Provisional Application Number 62/475,990 entitled “Design of On-demand System Information Request Message” filed on March 24, 2017, and U.S. Patent Application Number 15/933,374, filed on March 23, 2018, the subject matters of which are incorporated herein by reference.
TECHNICAL FIELD
The disclosed embodiments relate generally to wireless communication, and, more particularly, to on-demand system request message.
BACKGROUND
In the legacy Long Term Evolution (LTE) mobile telecommunication systems procedure for system information (SI) change notification and system information broadcast schemes have been well designed for use equipment (UE) to be informed of system information change and update UE stored system information. However, in the 5G system information is classified into two categories, the minimum SI (MSI) and other SI (OSI) . The former is the most essential system information, such as the system information related to cell access, while the latter is the SI which is not included in minimum SI. Some of OSI may be periodically broadcasted the same way as in the LTE, and some of OSI may be delivered on demand, which is called the on-demand OSI. The on-demand OSI is not periodically broadcasted by the 5G base station called the gNB. Instead, the gNB provides on-demand SI when required. The gNB could proactively provide on-demand SI for some UEs in need. The gNB could reactively transmit on-demand SI when the gNB detects UEs’request on certain on-demand OSI.
The objective to have on-demand SI delivery is to enhance legacy approach to SI delivery. In the legacy LTE, system information is always broadcasted periodically. Periodically broadcasted system information causes periodic inter-cell interference, and thus limits the density of cell deployment. In addition, periodic broadcast reduces radio resource utilization since the gNB always broadcasts all system information even if there is no UE in the cell or even if some system information is not needed by any UE in the cell. Furthermore, periodically broadcasted system information is not good to discontinuous transmission (DTX) since the gNB always needs to do periodic broadcast. It is,  therefore, desired to deliver on-demand OSI only when they are needed by some UEs to reduce unnecessary SI transmission.
Improvements and enhancements are required for on-demand system information delivery.
SUMMARY
Apparatus and methods are provided for on-demand system information (SI) request procedure. In one novel aspect, the RACH procedure is used for one-demand SI information updates through unicast. In one embodiment, the UE performs a RACH procedure by sending a Msg1 with a preamble and receiving a Msg2 as the RA response. The UE sends an embedded SI request message in Msg3 requesting one or more on-demand SI. The SI request message includes a UE ID. The UE receives the SI response message which is embedded in Msg4. In one embodiment, the UE ID in the SI request is determined based on a UE state. The UE ID is a MAC control element (CE) for cell network temporary identifier (C-RNTI) when the UE state is radio resource control (RRC) connected, and the UE ID is a resumeID when the UE state is inactive, and the UE ID is SAE temporary mobile subscriber identifier (S-TMSI) or randomValue when the UE state is idle. In one embodiment, the SI response and the information of the requested SI are included in the Msg4. In another embodiment, Msg4 only includes the SI response. A unicasted message, which is transmitted separately from Msg4 includes the update SI information of the requested SI. In another embodiment, one or more assistant information is included in Msg3. The assistant information includes UE mobility information and UE SI version number. In yet another embodiment, the preamble of Msg1 is associated with one or more assistant information.
In another novel aspect, the SI broadcast is used upon the failure of the SI Request message in Msg3. In one embodiment, the preamble of the Msg1 is associated with a group X of SIB. The UE sends a Msg3 with the embedded SI request requesting a subset of SIB in group X. Upon detecting the failure of transmission of Msg3, the UE monitors and receives updated SI information of the whole group X through a broadcast channel.
This summary does not purport to define the invention. The invention is defined by the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, where like numerals indicate like components, illustrate embodiments of the invention.
Figure 1 is a schematic system diagram illustrating an exemplary on-demand SI delivery in accordance with embodiments of the current invention.
Figure 2 illustrates an exemplary diagram of using the RACH procedure for on-demand SI unicast in accordance with embodiments of the current invention.
Figure 3 illustrates an exemplary diagram for a Msg3 based SI request unicast procedure in accordance to embodiments of the current invention.
Figure 4A illustrates an exemplary diagram of UE SI version number being included in the SI request message in accordance with embodiments of the current invention.
Figure 4B illustrates an exemplary diagram of UE mobility information being included in the SI request message in accordance with embodiments of the current invention.
Figure 5 illustrates an exemplary diagram of SI request includes the UE ID with the UE-specific SI response in accordance with embodiments of the current invention.
Figure 6 illustrates exemplary diagrams of the preamble associates with one or more assistant information in accordance with embodiments of the current invention.
Figure 7 illustrates exemplary diagrams of the preamble associates with one or more SI group in accordance with embodiments of the current invention.
Figure 8 illustrates an exemplary diagram of the two-step RACH procedure for the SI request with the preamble associated with one or more SIB requested.
Figure 9 illustrates an exemplary diagram of the two-step RACH procedure for the SI request with the SI request message embedded in Msg1.
Figure 10A illustrates an exemplary diagram of the SI broadcast procedure upon detecting failure of Msg3 in accordance with embodiments of the current invention.
Figure 10B illustrates an exemplary diagram of the SI broadcast procedure upon sending Msg3 in accordance with embodiments of the current invention.
Figure 10C illustrates an exemplary diagram of SI broadcast if the Msg2 indicates no Msg3 needed in accordance with embodiments of the current invention.
Figure 11A illustrates exemplary diagrams of determining a failure of Msg3 transmission by the MAC layer in accordance with embodiments of the current invention.
Figure 11B illustrates exemplary diagrams of determining a failure of Msg3 transmission by the RRC layer in accordance with embodiments of the current invention.
Figure 12 illustrates an exemplary flow chart of the SI request message for SI unicast procedure using the RACH procedure in accordance with embodiments of the current invention.
Figure 13 illustrates an exemplary flow chart of the SI broadcast procedure upon detecting failure of Msg3 in accordance with embodiments of the current invention.
DETAILED DESCRIPTION
Reference will now be made in detail to some embodiments of the invention, examples of which are illustrated in the accompanying drawings.
Figure 1 is a schematic system diagram illustrating an exemplary on-demand SI delivery in accordance with embodiments of the current invention. Wireless communication system 100 includes one or more fixed base infrastructure units forming a network distributed over a geographical region. The base unit may also be referred to as an access point, an access terminal, a base station, a Node-B, an eNode-B (eNB) , a gNB, or by other terminology used in the art. In Figure 1, the one or  more base stations  101 and 102 serve severalremote units /user equipment (UEs) 103 and 104 within a serving area, for example, a cell, or within a cell sector. In some systems, one or more base stations are communicably coupled to a controller forming an access network that is communicably coupled to one or more core networks. The disclosure, however, is not intended to be limited to any particular wireless communication system.
Generally, serving  base stations  101 and 102 transmit downlink communication signals 112 and 113 to UEs or mobile stations in the time and/or frequency domain. UEs or  mobile stations  103 and 104 communicate with one or  more base stations  101 and 102 via uplink communication signals 111 and 114. UE or the mobile station may also be referred to as a mobile phone, laptop, and mobile workstation and so on. In Figure1, the wireless communication system 100 is an OFDM/OFDMA system comprising a base station gNB 101gNB 102 and a plurality of UE 103 and UE 104. When there is a downlink packet to be sent from the gNB to the UE, each UE gets a downlink assignment, e.g., a set of radio resources in a physical downlink shared channel (PDSCH) . When a UE needs to send a packet to gNB in the uplink, the UE gets a grant from the gNB that assigns a physical uplink shared channel (PUSCH) consisting of a set of uplink radio resources. In LTE, system information is updated on a per modification period basis. The system information broadcasted in the same modification period is the same. When the network changes one or more system information, it first notifies the UEs about this change. The notification may be done throughout a modification period. The UE expects to receive the updated system information in the start of the next modification period. In the 5G network, the feature of on-demand SI acquisition is supported.
Figure 1 further illustrates simplified block diagrams 130 and 150 for UE 103 and gNB 101, respectively. UE 103 has an antenna 135, which transmits and receives radio signals. A RF transceiver module 133, coupled with the antenna, receives RF signals from antenna 135, converts them to baseband signals and sends them to processor 132. RF transceiver 133 also converts received baseband signals from processor 132, converts them to RF signals, and sends out to antenna 135. Processor 132 processes the received baseband signals and invokes different functional modules to perform features in UE103. Memory 131 stores program instructions and data 134 to control the operations of UE 103.
UE 103 also includes multiple function modules that carry out different tasks in accordance with embodiments of the current invention. A RACH procedure circuit 141 sends a Msg1 with a preamble and receives a Msg2 as a random access response. An SI transmitter 142 sends an SI request message requesting one or more other on-demand SI, embedded in a first RACH procedure message selecting from a first RACH message group comprising Msg1 and Msg3, wherein the RACH message includes a UE identification (ID) of the UE. An SI receiver 143 receives an SI response embedded in a second RACH procedure message selecting from a second RACH message comprising Msg2 and Msg4 from the network.
Also shown in Figure 1 is exemplary block diagram for gNB 101. gNB 101 has an antenna 155, which transmits and receives radio signals. A RF transceiver module 153, coupled with the antenna, receives RF signals from antenna 155, converts them to baseband signals, and sends them to processor 152. RF transceiver 153 also converts received baseband signals from processor 152, converts them to RF signals, and sends out to antenna 155. Processor 152 processes the received baseband signals and invokes different functional modules to perform features in gNB 101. Memory 151 stores program instructions and data 154 to control the operations of gNB 101. gNB 101 also includes function modules that carry out different tasks in accordance with embodiments of the current invention. A system information manager 156 performs functions to support on-demand system information delivery functions.
In one novel aspect, the delivery method of the SI is indicated to the UE either in the MSI or in the SI change notification. The UE obtains SI based on the delivery method indicated in the MSI or the SI change notification message. In one embodiment, an indicator is included in the MSI to indicate whether the SI is delivered by broadcast or unicast. The broadcast delivery can be either a periodical broadcast or an on-demand broadcast. If the UE detects that the one or more SI is delivered by unicast, the UE sends SI request for the SI. Otherwise, if the UE detects that the SI is delivered by broadcast, it will look for the broadcast window to acquire the SI update.
Figure 1 illustrates a system information delivery mode 181 and response mode 182. SI 191 includes a MSI 192 and one or more OSI 193. There are three types of SI delivery method, the periodic broadcast 197, on-demand broadcast 198 and on-demand unicast 199. In the 5G network, MSI 192 are delivered by periodic broadcast. Some of OSI are configured to be delivered using periodic broadcast, some of the OSI are configured to be delivered using on-demand broadcast, and some of the OSI are configured to be delivered using on-demand unicast. SI response mode indicates how network responds to SI request. When another SI is on-demand unicast, the UE sends SI request. Upon receiving the SI request, the network may provide SI with broadcast, in which case, the network changes the deliver mode from on-demand unicast to on-demand broadcast. Alternatively, the network unicasts the on-demand SI.
Figure 2 illustrates an exemplary diagram of using the RACH procedure for on-demand SI unicast in accordance with embodiments of the current invention. A UE 201 communicates with a gNB 202 in a wireless network. In one novel aspect, the UE performs a SI unicast update using the random access channel (RACH) procedure. In a RACH procedure, at step 211, UE 201 sends Msg1 with a preamble. At step 212, gNB 202 sends Msg2 as a response to Msg1. At step 213, UE 201 sends Msg3 with the resource granted in Msg2. At step 214, gNB 202 send Msg4 as an ACK to the Msg3. In one embodiment, Msg3 and Msg4 are used for SI unicast procedure. In one embodiment, Msg3 embeds a SI request message. Msg3 also includes the UE ID of UE 201. SI response message is embedded in Msg4. In another embodiment, two-spec RACH procedure is used for SI unicast update. In one embodiment, Msg1 is used to serve as the SI request. In one embodiment, the SI request message 221 is embedded in Msg1 with the preamble. Msg2 responds with embedded SI response. In another embodiment, both the SI response and the content of the requested SI are included in Msg2 together. The SI unicast uses the RACH procedure with either a four-step procedure or a two-step procedure as illustrated above. In both of the four-step and two-step procedures, the SI request message 221 includes an UE ID, and optionally includes SI types /groups requested, the UE mobility information, and the UE SI version number. In one embodiment, the SI response 222 embedded with the RACH message, either Msg2 or Msg4, includes the SI information of the requested on-demand SIs. In another embodiment, the SI response 222 embedded with Msg4, does not include the SI information of the requested on-demand SIs. A unicast message 223 with the SI information of the requested on-demand SIs is received following Msg4.
MSG3 BASED SI REQUEST FOR UNICAST
Figure 3 illustrates an exemplary diagram for a Msg3 based SI request unicast procedure in accordance to embodiments of the current invention. In one embodiment, the SI information is embedded in Msg4. In another embodiment, the SI information is unicasted to the UE separately from Msg4. A UE 201 communicates with gNB 202 in a wireless network. A procedure 310 illustrates the SI information delivered in a separate unicast message. At step 311, UE 201 sends Msg1 with the preamble. At step 312, gNB 202 sends Msg2 as the RA response to UE 201. At step 313, UE 201 sends Msg3 after receiving Msg2. The SI request embeds in the Msg3. At step 314, gNB 202 sends the Msg4 with SI response embedded. At step 315, the requested SI information is unicasted to UE 201. A procedure 320 illustrates an exemplary flow chart of the SI information embedded in Msg4. Similar to procedure 310, UE 201 and gNB 202 exchanges Msg1 and Msg2 for RACH procedure. At step 323, UE 201 sends the SI request in Msg3 to gNB 202. At step 324, gNB 202 sends Msg4 to UE 201. Msg4 embeds the SI response and the requested SI information. In both procedure 310 and procedure 320, the Msg3 with SI request includes an UE ID of UE 201. In one embodiment, UE 201 supplies different UE ID based the UE state. When UE 201 is in the UE connected state, the UE ID in Msg3 is the MAC control element (CE) for cell radio network temporary identifier (C-RNTI) , which is the same as the UE ID for the RACH procedure as defined in LTE. When UE 201 is in the inactive state, the UE ID is set to the resumeID, which is included the RRC SI request message. When UE 201 is in the idle state, the UE ID can be set to system architecture evolution (SAE) temporary mobile subscriber identifier (S-TMSI) . In one embodiment, in response to the Msg3 with SI request, gNB 202 sends a UE-specific SI response in Msg4. If MAC CE for C-RNTI is included in Msg3, physical downlink control channel (PDCCH) for Msg4 is addressed to the C-RNTI. Otherwise, PDCCH in Msg4 is addressed to the temporary C-RNTI as provided in Msg2 and use connection resolution MAC CE in Msg4 to identify the UE in the idle state or the RRC inactive state.
In one embodiment, one or more assistant information is included in the RACH messages together with the SI request. Figures 4A and Figures 4B illustrates exemplary embodiments of assistant information for the on-demand SI information delivery. The assistant information can be sent alone with the SI request or more than one assistant information can be combined and sent with the SI request message.
Figure 4A illustrates an exemplary diagram of UE SI version number being included in the SI request message in accordance with embodiments of the current invention. UE 201 communicates with gNB 202 in the wireless network. At step 411, UE 201 sends Msg1 with the preamble to gNB 202. At step 412, gNB 202 replies with Msg2 to UE 201 as the RA response. At step 413, UE 201 sends Msg3 embedded with SI request to gNB 202. In one embodiment, the SI request message also  includes assistant information, such as the UE stored SI version number, such as a value tag and/or a system information area ID. The UE SI version number is stored in UE 201 and identifies the current SIB types and status of the on-demand SI. Other type of information, which identifies the status of UE on-demand SI can be used as the assistant information. At step 414, gNB 202 replies with Msg4 embedded with SI response. With the status of UE stored system information, the network can do optimization. In one embodiment, the network provides the delta update based on the current stored version of UE 201. The network compares the current SI status with the SI status stored in UE 201 and only includes the SI information that has been changed in the SI update message. In another embodiment, based on the received UE SI version number, the network may provide additional version that is not currently stored in UE 201 but may be needed soon. At step 414, gNB 202 sends Msg4 with the SI response to UE 201. The updated SI information may be included together with SI response. In another embodiment, the updated SI information may be unicasted to UE 202 in a separate message following Msg4.
Figure 4B illustrates an exemplary diagram of UE mobility information being included in the SI request message in accordance with embodiments of the current invention. At step 421, UE 201 sends Msg1 with the preamble to gNB 202. At step 422, gNB 202 replies with Msg2 to UE 201 as the RA response. At step 423, UE 201 sends Msg3 embedded with SI request to gNB 202. In one embodiment, the SI request message also includes assistant information, such as UE mobility information. In one embodiment, the UE mobility information is the UE mobility status as specified in the LTE specification. The network upon receiving the UE mobility information, can optimize the SI delivery. In one embodiment, based on the UE mobility status, the network can selectively provide UE with the system information applied by one or more neighboring cells in the SI update. The UE can acquire possible handover candidate neighboring cell SI information before it camps on the neighboring cells and thus reduces SI acquisition time during handover. At step 424, gNB 202 sends Msg4 with the SI response to UE 201. The updated SI information may be included together with SI response. In another embodiment, the updated SI information may be unicasted to UE 202 in a separate message following Msg4.
Figure 5 illustrates an exemplary diagram of SI request includes the UE ID with the UE-specific SI response in accordance with embodiments of the current invention. UE 201 communicates with gNB 202. At step 511, UE 201 sends Msg1 with the preamble to gNB 202. At step 512, gNB 202 replies with Msg2 to UE 201 as the RA response. At step 513, UE 201 sends Msg3 embedded with SI request to gNB 202. In one embodiment, MAC CE for C-RNTI is explicitly included in the SI request message. In response, the Msg4 has two options. In the first embodiment, Msg4 524 includes no  physical downlink shared channel (PDSCH) content for MAC PDU. PDCCH of Msg4 524 address C-RNTI as the acknowledge of Msg3 reception. In another embodiment, Msg4 534 includes a MAC CE for SI request confirmation, which also serves as the ACK for the reception of Msg3. At step 514, gNB 202 sends Msg4 with the UE-specific SI response to UE 201.
In one embodiment, the assistant information illustrated above can be sent in Msg1 with association of the preamble. In other embodiments, the preamble in Msg1 can be associated with other information, such the one or more SI groups requested for the SI delivery procedure.
Figure 6 illustrates exemplary diagrams of the preamble associates with one or more assistant information in accordance with embodiments of the current invention. UE 201 communicates with gNB 202. At step 611, UE 201 sends Msg1 with the preamble to gNB 202. In one embodiment, the preamble is specifically selected to indicate one or more assistant information for the SI update procedure. The assistant information may include the UE mobility information and the UE SI version number. One or more preamble is predefined to be associated with the assistant information. Other assistant information may also be included by assigning the preamble to the specified assistant information. At step 612, gNB 202 replies with Msg2 to UE 201 as the RA response. At step 613, UE 201 sends Msg3 embedded with SI request to gNB 202. At step 614, gNB 202 sends Msg4 with SI response to UE 201. In one embodiment, the network optimize the SI update message based on the preamble, which carries one or more assistant information.
Figure 7 illustrates exemplary diagrams of the preamble associates with one or more SI group in accordance with embodiments of the current invention. In one embodiment, the preamble in Msg1 is set to be associated with one or more SI groups. The SI request in Msg3 may further specify a subset of the SI groups requested. In one embodiment, as illustrated by procedure 710, the Msg3 is decoded successfully by the network and the SI update includes the SI groups specified in Msg3. In another embodiment, as illustrated by procedure 720, when the network fails to decode the Msg3, all the SI groups indicated by the preamble in Msg1 is sent by the network.
UE 201 communicates with gNB 202. At step 711, UE 201 sends Msg1 with the preamble to gNB 202. The preamble in Msg1 is predefined and selected to indicate a SI group to be updated. For example, the preamble in Msg1 is associated with SI groups {1, 2, 3} . At step 712, gNB 202 replies with Msg2 to UE 201 as the RA response. At step 713, UE 201 sends Msg3 embedded with SI request to gNB 202. The SI request in Msg3 specifies a subset of SI groups as indicated by the preamble. For example, the SI request may indicate that SI groups {1, 3} are requested. In one embodiment, the SI request may indicate the full set of SI group indicated by the preamble is requested. In one scenario, Msg3 is successfully decoded by the network. gNB 202 at step 714 sends Msg4 with SI response. The  SI update message includes the SI groups as specified by the SI request in Msg3, such as SI group {1, 3} . In another scenario, if RACH collision occurs, the network fails to decode Msg3 successfully. The network may decide to terminate Msg3 retransmission and sends all SIB associated with the preamble. gNB 202, at step 724 sends MSg4 with SI response, which may include the SI update for the SI group indicated by the preamble, such as SI groups {1, 2, 3} .
TWO-STEP RACH PROCEDURE FOR SI REQUEST
In one novel aspect, two-step RACH procedure is sued for the SI request and SI delivery procedure. In one embodiment, the preamble in Msg1 is associated with one or more SI groups to serve as a SI request. In another embodiment, the SI request message is embedded in Msg1 for the two-step SI delivery.
Figure 8 illustrates an exemplary diagram of the two-step RACH procedure for the SI request with the preamble associated with one or more SIB requested. In one embodiment, a simplified SI request procedure is used with the RACH preamble associated with one or more SIB types or groups. The network upon receiving Msg1 with the predefined preamble, send the requested SI in Msg2. The Msg2 is not limited to the format of Msg2 as defined in the legacy RACH procedure. The Msg2 includes information of all SIB types and groups associated with the preamble. UE 201 communicates with gNB 202. At step 811, UE 201 sends Msg1 with the preamble to gNB 202. The preamble in Msg1 is predefined and selected to indicate one more SIB types /groups for the SI update. Upon decoding the predefined preamble, the network sends the information of all the SIB types/groups associated with the preamble. At step 812, gNB 202 sends Msg2 to UE 201. Msg2 includes the SI response and all the SI information of the SIB types/groups associated with the preamble. The Msg2 is not limited to the legacy RACH message format.
Figure 9 illustrates an exemplary diagram of the two-step RACH procedure for the SI request with the SI request message embedded in Msg1. UE 201 communicates with gNB 202. At step 911, UE 201 sends Msg1 with the preamble to gNB 202. Msg1 includes the SI request message for the one-demand SI update. The SI request message includes the UE ID. The UE ID can be the MAC CE for the connected state UE, or the resume ID for the inactive state UE, or the S-TMSI for the idle state UE. In one embodiment, the SI request message may also include assistant information for the SI update procedure. For example, the SI request message may include the UE mobility information. The SI request message may also include the stored UE SI version number. As described for the Msg3-based SI update procedure above, the network may optimize the SI update based on the assistant information. For example, the SI delta information may be sent in the SI response based on the UE SI  version number. Based on the UE mobility information, one or more selected neighboring cells’S I information may be included in the SI response. At step 912, gNB 202 sends the SI response with information of all the SIB types /groups requested in the SI request.
SI BROADCAST
In one novel aspect, SI broadcast is used when RACH collision causes the failure to decode Msg3. The UE upon detecting one or more triggering conditions, such a maximum number of Msg3 retransmission is reached or a predefined Msg3 timer expires, stops Msg3 retransmission. The UE monitors an SI broadcast to obtain the requested SI update.
Figure 10A illustrates an exemplary diagram of the SI broadcast procedure upon detecting failure of Msg3 in accordance with embodiments of the current invention. UE 1001 communicates with gNB 1002. At step 1011, UE 1001 sends Msg1 with the preamble to gNB 1002. The preamble in Msg1 is predefined and selected to indicate a group X of SIB to be updated. At step 1012, gNB 1002 replies with Msg2 to UE 1001 as the RA response. At step 1013, UE 1001 sends Msg3 embedded with SI request to gNB 1002. The SI request in Msg3 specifies a subset of SIB as indicated by the preamble. In one embodiment, the SI request may indicate the full set of SI group indicated by the preamble is requested. The network may not be able to decode Msg3 successfully due to RACH collision or other channel conditions. If the network fails to decode Msg3 and the timer for Msg3 expired, or the maximum number of retry is reached for Msg3, gNB 1002 will not expect more Msg3 from UE 1001. gNB 1002 will not allocate further resource for Msg3 retransmission. gNB 1002, at step 1015 broadcasts information of all SIBs in group X as indicated by the preamble. Upon detecting failure to receive ACK for the Msg3 transmission and retransmission, UE 1001 stops retransmission of Msg3 for SI request. UE 1001 monitors an SI broadcast channel and receives the SI update by the SI broadcast.
Figure 10B illustrates an exemplary diagram of the SI broadcast procedure upon sending Msg3 in accordance with embodiments of the current invention. In another embodiment, UE start to monitors an SI broadcast channel upon the first Msg3 transmission. In this way, network can determine to broadcast all the SIBs in group X when network wants, and there is no need for the UE and the network to maintain or configure timer or maximum number of Msg3 transmission for SI request. UE 1001 communicates with gNB 1002. At step 1021, UE 1001 sends Msg1 with the preamble to gNB 1002. The preamble in Msg1 is predefined and selected to indicate a group X of SIB to be updated. At step 1022, gNB 1002 replies with Msg2 to UE 1001 as the RA response. At step 1023, UE 1001 sends Msg3. Upon sending the Msg3, UE 1001 starts to monitor the SI broadcast channel. At step 1025, gNB 1002 sends SI broadcast message for all the SI in Group X as indicated by the preamble in Msg1.
Figure 10C illustrates an exemplary diagram of SI broadcast if the Msg2 indicates no Msg3 needed in accordance with embodiments of the current invention. In another embodiment, the network indicates in Msg2 whether UE needs to send Msg3. If the indication is yes, UE send Msg3 to indicate the subset of SIBs in group X to be requested; otherwise, UE considers its SI request successful, and monitor broadcast channel to receive the requested SIBs in group X. After sending Msg 2 to the UE, network broadcast all SIBs in group X. UE 1001 communicates with gNB 1002. At step 1031, UE 1001 sends Msg1 with the preamble to gNB 1002. The preamble in Msg1 is predefined and selected to indicate a group X of SIB to be updated. At step 1032, gNB 1002 replies with Msg2 to UE 1001 as the RA response. Msg2 includes a broadcast indicator, which indicates whether a Msg3 is needed for the SI update. At step 1034, UE 1001 decodes Msg2 and determines whether Msg3 is needed based on the broadcast indicator. If step 1034 determines no, UE 1001 starts to monitor a broadcast channel. gNB 1002, at step 1035, broadcast the SI information for the SIs in group X as indicated by the preamble in Msg1. If step 1034 determines yes, at step 1036, UE 1001 sends Msg3 with a subset of group X.
Figure 11A illustrates exemplary diagrams of determining a failure of Msg3 transmission by the MAC layer in accordance with embodiments of the current invention. A MAC layer 1101 communicates with one of its upper layers, RRC layer 1102. A RACH procedure 1111 starts when receiving an upper layer message 1121. A timer 1131 for SI request starts upon receiving upper layer message or indication 1121. RACH 1111 also passing message blocks to upper layer 1102 through communication 1122. MAC layer 1101 determines whether the SI request is successful. MAC layer 1101 indicates the reception of an ACK at 1122 if RACH procedure 1111 is successful. If the timer for SI request transmission in Msg3 expires or if the maximum number of Msg3 transmission is for SI request reached without receiving an ACK, MAC layer 1101 stops the RACH procedure and determines that the RACH procedure is failed. However, MAC layer still indicates successful SI request to RRC layer because network will broadcast all SIBs in group X after failed Msg3 transmission, and thus all the requested SIBs in group X will anyway be broadcast. MAC layer can indicate successful SI request to RRC layer after successful Msg3 transmission, e.g., upon successful reception of Msg2, upon failed Msg3 transmission, or upon successful or unsuccessful RACH procedure completion.
Figure 11B illustrates exemplary diagrams of determining a failure of Msg3 transmission by the RRC layer in accordance with embodiments of the current invention. A MAC layer 1101 communicates with one of its upper layers, RRC layer 1102. A RACH procedure 1191 starts when receiving an upper layer message or indication 1181. A timer 1131 for SI request starts upon receiving upper layer message or indication 1181. RACH 1191, at step 1182, delivers the decoded MAC PDU to  RRC layer 1102 if the RACH procedure is successful. A RRC layer procedure 1192 checks the Msg4 contents and determines if the SI request is successful. If the previous Msg4 is received but not all the required SI is to be broadcasted determined by the RRC layer, RRC layer considers the SI request failed. A new RACH procedure 1193 for SI request is initialized for the missing SI.
Figure 12 illustrates an exemplary flow chart of the SI request message for SI unicast procedure using the RACH procedure in accordance with embodiments of the current invention. At step 1201, the UE performs a RACH procedure by in a wireless network, wherein a Msg1 with a preamble is sent by the UE and a Msg2 is subsequently received from the wireless network as a random access response. At step 1202, the UE sends a Msg3 with an embedded system information (SI) request by the UE to the network requesting one or more other on-demand SI, wherein the Msg3 includes a UE ID of the UE. At step 1203, the UE receives a Msg4 with an embedded SI response by the UE from the network.
Figure 13 illustrates an exemplary flow chart of the SI broadcast procedure upon detecting failure of Msg3 in accordance with embodiments of the current invention. At step 1301, the UE performs a RACH procedure in a wireless network, wherein a Msg1 with a preamble is sent by the UE and a Msg2 is subsequently received from the wireless network as a random access response, and wherein the preamble is associated with a group X of one-demand system information block (SIB) . At step 1302, the UE sends a Msg3 with an embedded SI request by the UE to the network requesting a subset of the group X of on-demand SIB, wherein the Msg3 includes a UE ID of the UE. At step 1303, the UE monitors a SI broadcast channel and receiving information of the group X of on-demand SIB through the SI broadcast channel upon determining a failure of ACK to the SI request.
Although the present invention has been described in connection with certain specific embodiments for instructional purposes, the present invention is not limited thereto. Accordingly, various modifications, adaptations, and combinations of various features of the described embodiments can be practiced without departing from the scope of the invention as set forth in the claims.

Claims (24)

  1. A method comprising:
    performing a random access channel (RACH) procedure by a user equipment (UE) in a wireless network, wherein a Msg1 with a preamble is sent by the UE and a Msg2 is subsequently received from the wireless network as a random access response;
    sending a Msg3 with an embedded system information (SI) request by the UE to the net work requesting one or more other on-demand SI, wherein the Msg3 includes a UE identification (ID) of the UE; and
    receiving a Msg4 with an embedded SI response by the UE from the network.
  2. The method of claim 1, wherein the UE ID in the SI request is determined based on a UE state, wherein the UE ID is a MAC control element (CE) for cell network temporary identifier (C-RNTI) when the UE state is radio resource control (RRC) connected, and the UE ID is a resume ID when the UE state is inactive, and the UE ID is SAE temporary mobile subscriber identifier (S-TMSI) or randomValue when the UE state is idle.
  3. The method of claim 1, wherein the Msg4 further includes the one or more requested on-demand SI.
  4. The method of claim 1, further comprising: receiving an unicasted message following the SI response by the UE from the network, wherein information of the one or more on-demand SI requested are included.
  5. The method of claim 1, wherein Msg3 further includes UE mobility information.
  6. The method of claim 5, wherein the SI response includes one or more SI versions of one or more neighboring cells based on the UE mobility information.
  7. The method of claim 1, wherein Msg3 further includes a stored SI version number of the UE.
  8. The method of claim 7, wherein the UE receives one or more optimized update comprising: delta information of one or more on-demand SI based on the stored SI version number, and additional on-demand SI information not yet stored in the UE.
  9. The method of claim 1, wherein the preamble is associated with one or more assistant information comprising: a set of on-demand SI types requested, a UE mobility information, and a UE stored SI version number.
  10. The method of claim 9, wherein the preamble is associated with a set of on-demand SI types requested, and wherein the SI request further specifies a subset of on-demand SI types associated with the preamble, wherein information of the subset of on-demand SI is received if the network decodes the  SI request correctly; otherwise, information of the set of on-demand SI types associated with the preamble is received.
  11. A method comprising:
    performing a random access channel (RACH) procedure by a user equipment (UE) in a wireless network, wherein a Msg1 with a preamble is sent by the UE and a Msg2 is subsequently received from the wireless network as a random access response, and wherein the preamble is associated with a group X of one-demand system information block (SIB) ;
    sending a Msg3 with an embedded system information (SI) request by the UE to the network requesting a subset of the group X of on-demand SIB, wherein the Msg3 includes a UE identification (ID) of the UE; and
    monitoring a SI broadcast channel and receiving information of the group X of on-demand SIB through the SI broadcast channel upon determining a failure of ACK to the SI request.
  12. The method of claim 11, wherein the failure of ACK to the SI request is determined based on one or more triggering conditions comprising: no ACK message is received before a timer expired, and a maximum number of Msg3 retransmission is reached.
  13. The method of claim 12, wherein an ACK to the SI request is determined at the MAC layer, wherein the MAC layer indicate a reception of an ACK to the SI request to an upper layer if the RACH procedure is successful.
  14. The method of 12, wherein an ACK to the SI request is determined at the radio resource control (RRC) layer.
  15. An apparatus, comprising:
    a transceiver that transmits and receives radio frequency (RF) signals from one or more base stations (BS) in wireless network;
    a random access channel (RACH) procedure circuit that sendsa Msg1 with a preamble and receives a Msg2 as a random access response;
    a system information (SI) transmitter that sends a Msg3 withanSI request message requesting one or more other on-demand SI, wherein the RACH message includes a UE identification (ID) of the UE; and
    an SI receiver that receives a Msg4 with an SI response embedded from the network.
  16. The apparatus of claim 15, wherein the UE ID in the SI request is determined based on a UE state, wherein the UE ID is a MAC control element (CE) for cell network temporary identifier (C-RNTI) when the UE state is radio resource control (RRC) connected, and the UE ID is a resumeID  when the UE state is inactive, and the UE ID is SAE temporary mobile subscriber identifier (S-TMSI) or random Value when the UE state is idle.
  17. The apparatus of claim 16, wherein the Msg4 further includes information of the one or more requested on-demand SI.
  18. The apparatus of claim 16, the SI receiver further receives an unicasted message following the SI response from the network, wherein information of the one or more on-demand SI requested are included.
  19. The apparatus of claim 16, wherein the Msg3 further includes UE mobility information.
  20. The apparatus of claim 19, wherein the SI response includes one or more SI versions of one or more neighboring cells based on the UE mobility information.
  21. The apparatus of claim 16, wherein the Msg3further includes a stored SI version number of the UE.
  22. The apparatus of claim 21, wherein the UE receives one or more optimized update comprising: delta information of one or more on-demand SI based on the stored SI version number, and additional on-demand SI information not yet stored in the UE.
  23. The apparatus of claim 16, wherein the preamble is associated with one or more assistant information comprising: a set of on-demand SI types requested, a UE mobility information, and a UE stored SI version number.
  24. The apparatus of claim 23, wherein the preamble is associated with a set of on-demand SI types requested, and wherein the SI request further specifies a subset of on-demand SI types associated with the preamble, wherein information of the subset of on-demand SI is received if the network decodes the SI request correctly; otherwise, information of the set of on-demand SI types associated with the preamble is received.
PCT/CN2018/080413 2017-03-24 2018-03-26 On-demand system information request message WO2018171795A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880000934.1A CN108966692B (en) 2017-03-24 2018-03-26 Apparatus and method for on-demand system information request process

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762475990P 2017-03-24 2017-03-24
US62/475,990 2017-03-24
US15/933,374 2018-03-23
US15/933,374 US10757738B2 (en) 2017-03-24 2018-03-23 On-demand system information request message

Publications (1)

Publication Number Publication Date
WO2018171795A1 true WO2018171795A1 (en) 2018-09-27

Family

ID=63583198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080413 WO2018171795A1 (en) 2017-03-24 2018-03-26 On-demand system information request message

Country Status (4)

Country Link
US (1) US10757738B2 (en)
CN (1) CN108966692B (en)
TW (1) TWI666948B (en)
WO (1) WO2018171795A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565745A (en) * 2018-11-01 2019-04-02 北京小米移动软件有限公司 Handle method, apparatus, terminal and the storage medium of SI request
CN115694752A (en) * 2021-07-28 2023-02-03 大唐移动通信设备有限公司 Information sending method, processing method, terminal, network device and storage medium

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10764929B2 (en) * 2017-01-26 2020-09-01 Lg Electronics Inc. Method and apparatus for requesting system information
WO2018172446A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) On-demand system information requests and transmissions
US12317273B2 (en) * 2017-03-31 2025-05-27 Qualcomm Incorporated Reliable delivery of system information
US20180324677A1 (en) 2017-05-05 2018-11-08 Motorola Mobility Llc Method and apparatus for sending and receiving information on a wireless network
WO2018208209A1 (en) * 2017-05-12 2018-11-15 Telefonaktiebolaget Lm Ericsson (Publ) Selective system information densification technical field
KR102734594B1 (en) 2017-06-14 2024-11-27 모토로라 모빌리티 엘엘씨 Performing contention resolution for system information requests
CN112399607B (en) * 2017-06-14 2024-03-29 维沃移动通信有限公司 System information transmission method, terminal and network equipment
CN109309964B (en) * 2017-07-28 2022-04-05 华为技术有限公司 A communication method, related equipment and system
US11102710B2 (en) * 2017-10-05 2021-08-24 Sony Corporation Base stations and user equipments configured to handle on-demand system information in 5G NR
CN109699088B (en) * 2017-10-24 2020-10-27 华硕电脑股份有限公司 Method and apparatus for system information request based on MSG3 in wireless communication system
US11357051B2 (en) * 2017-12-21 2022-06-07 Samsung Electronics Co., Ltd. System and method of handling bandwidth part inactivity timer
US10784945B2 (en) * 2018-02-15 2020-09-22 Nokia Technologies Oy Robust system information delivery on subset of beams
US11284437B2 (en) 2018-02-23 2022-03-22 Apple Inc. On-demand system information request procedures for new radio (NR)
US11330509B2 (en) * 2018-03-16 2022-05-10 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for stopping system information request, user equipment and base station
US11452030B2 (en) * 2018-03-26 2022-09-20 Beijing Xiaomi Mobile Software Co., Ltd. Information recording method and information recording device
WO2019215859A1 (en) * 2018-05-09 2019-11-14 株式会社Nttドコモ User device
KR20200050355A (en) * 2018-10-31 2020-05-11 아서스테크 컴퓨터 인코포레이션 Method and apparatus for transmission using preconfigured uplink resources in a wireless communication system
WO2020119714A1 (en) * 2018-12-11 2020-06-18 Mediatek Singapore Pte. Ltd. Resource configuration for msga in two-step rach procedure in mobile communications
EP3683999A1 (en) * 2019-01-17 2020-07-22 Panasonic Intellectual Property Corporation of America User equipment and system performing transmission and reception operations on system information
WO2021029810A1 (en) * 2019-08-09 2021-02-18 Telefonaktiebolaget Lm Ericsson (Publ) Methods and procedures for enhanced on-demand delivery of positioning assistance data
EP4018761A4 (en) 2019-09-29 2023-04-19 Apple Inc. Retransmission of msgb in two-step random access procedure
CN110602799B (en) * 2019-09-30 2021-10-29 北京紫光展锐通信技术有限公司 Information processing method, network element equipment, terminal and storage medium
WO2021134162A1 (en) * 2019-12-30 2021-07-08 Mediatek Singapore Pte. Ltd. Methods and apparatus of system information delivery for sidelink relay
US11558797B2 (en) * 2020-05-29 2023-01-17 At&T Intellectual Property I, L.P. Flexible 5G services control through an enhanced network feature support
BR112023000698A2 (en) * 2020-07-23 2023-02-07 Apple Inc SYSTEMS AND METHODS FOR PROVIDING SYSTEM INFORMATION VIA EU-TO-NETWORK RETRANSMISSION
CN113453363B (en) * 2021-06-28 2022-07-05 中信科移动通信技术股份有限公司 Method and system for reducing continuous online of wireless signals
CN114679796A (en) * 2022-03-09 2022-06-28 南京大鱼半导体有限公司 Method, device, electronic device and storage medium for establishing communication link
WO2025129706A1 (en) * 2023-12-22 2025-06-26 北京小米移动软件有限公司 Information transmission method and apparatus, and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090196244A1 (en) * 2008-01-22 2009-08-06 Lg Electronics Inc. Method for encoding data unit by using a plurality of crc algorithms
CN101945479A (en) * 2008-01-07 2011-01-12 三星电子株式会社 Device and methods for transmitting random access preamble signal

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8295243B2 (en) * 2006-08-21 2012-10-23 Qualcomm Incorporated Method and apparatus for random access in an orthogonal multiple-access communication system
KR20090053946A (en) * 2006-09-15 2009-05-28 인터디지탈 테크날러지 코포레이션 Method and apparatus for dynamic update of random access parameters
CN106877990B (en) * 2011-02-10 2020-04-28 三菱电机株式会社 Communication Systems
KR101810121B1 (en) * 2011-05-27 2017-12-18 애플 인크. Apparatus and method for performing random access in wireless communication system
EP2830385A4 (en) * 2012-03-19 2015-03-25 Fujitsu Ltd COMMUNICATION SYSTEM, COMMUNICATION METHOD, MOBILE COMMUNICATION TERMINAL, AND BASE STATION
US20140177591A1 (en) * 2012-12-21 2014-06-26 Qualcomm Incorporated Systems and methods for reduced latency circuit switched fallback
US10477513B2 (en) * 2016-04-25 2019-11-12 Qualcomm Incorporated Cooperative group broadcasting of on-demand system information
WO2017197063A1 (en) * 2016-05-11 2017-11-16 Idac Holdings, Inc. Distributed control in wireless systems
BR112018077365A2 (en) * 2016-06-30 2019-07-16 Beijing Xiaomi Mobile Software Co Ltd method and apparatus for transmitting system information
US10028129B2 (en) * 2016-09-26 2018-07-17 Qualcomm Incorporated Techniques for mobility mode selection in uplink-based and downlink-based mobility
WO2018066934A2 (en) * 2016-10-07 2018-04-12 Samsung Electronics Co., Ltd. Method and apparatus for enhanced contention based random access procedure
US10009768B2 (en) * 2016-11-03 2018-06-26 Blackberry Limited Requesting system information
WO2018084669A1 (en) * 2016-11-04 2018-05-11 Samsung Electronics Co., Ltd. Method and user equipment for provisioning minimum system information in wireless communication system
US20180167918A1 (en) * 2016-12-13 2018-06-14 Sharp Laboratories Of America, Inc. Wireless telecommunications methods and apparatus comprising advance notification of change of system information
US20180220288A1 (en) * 2017-02-02 2018-08-02 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving system information

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945479A (en) * 2008-01-07 2011-01-12 三星电子株式会社 Device and methods for transmitting random access preamble signal
US20090196244A1 (en) * 2008-01-22 2009-08-06 Lg Electronics Inc. Method for encoding data unit by using a plurality of crc algorithms

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565745A (en) * 2018-11-01 2019-04-02 北京小米移动软件有限公司 Handle method, apparatus, terminal and the storage medium of SI request
WO2020087471A1 (en) * 2018-11-01 2020-05-07 北京小米移动软件有限公司 Method and apparatus for processing si request, terminal and storage medium
CN109565745B (en) * 2018-11-01 2021-10-01 北京小米移动软件有限公司 Method, device, terminal and storage medium for processing SI request
US11910296B2 (en) 2018-11-01 2024-02-20 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for processing SI request, terminal and storage medium
CN115694752A (en) * 2021-07-28 2023-02-03 大唐移动通信设备有限公司 Information sending method, processing method, terminal, network device and storage medium

Also Published As

Publication number Publication date
TW201841516A (en) 2018-11-16
CN108966692B (en) 2023-05-02
CN108966692A (en) 2018-12-07
TWI666948B (en) 2019-07-21
US10757738B2 (en) 2020-08-25
US20180279377A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
US10757738B2 (en) On-demand system information request message
US10798642B2 (en) On-demand system information delivery procedure
EP4164298B1 (en) System information acquisition
US10674380B2 (en) On-demand system information for wireless terminal in connected state
US10492108B2 (en) Device and method of handling transferring of a state
US8787956B2 (en) Timing adjustment method, user equipment, base station, and mobile communication system
JP2020528711A (en) How to perform a random access procedure and its equipment
CN113315603B (en) Base station, user equipment and method for executing same
JP2022141785A (en) Use of wait period to obtain on-demand system information for wireless networks
WO2021159466A1 (en) Methods and apparatus of group scheduling for nr multicast service
KR20130121982A (en) Method for reduced-overhead short message transmission
WO2020164816A1 (en) Telecommunications apparatus and methods
JP2018538741A (en) Random access of single frequency network
CN109587766B (en) On-demand system information request response and receiving method and device, and base station
US12075415B2 (en) Sidelink aided scalable initial access for massive IIoT support
CN105992191B (en) Uplink data receiving control, receiving and sending method and device
US12324020B2 (en) Method and apparatus for data transmission
JP2023506685A (en) Random access problem reporting method, terminal device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770676

Country of ref document: EP

Kind code of ref document: A1