WO2018171692A1 - 一种资源配置方法及装置、计算机存储介质 - Google Patents

一种资源配置方法及装置、计算机存储介质 Download PDF

Info

Publication number
WO2018171692A1
WO2018171692A1 PCT/CN2018/080093 CN2018080093W WO2018171692A1 WO 2018171692 A1 WO2018171692 A1 WO 2018171692A1 CN 2018080093 W CN2018080093 W CN 2018080093W WO 2018171692 A1 WO2018171692 A1 WO 2018171692A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
signal
configuration
uplink
downlink
Prior art date
Application number
PCT/CN2018/080093
Other languages
English (en)
French (fr)
Inventor
刘锟
戴博
陈宪明
杨维维
方惠英
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018171692A1 publication Critical patent/WO2018171692A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present application relates to the field of vehicle networking technologies, and in particular, to a resource configuration method and apparatus, and a computer storage medium.
  • MTC UE Machine Type Communication
  • M2M Machine to Machine
  • the NB-IoT technology mainly works in the Frequency Division Duplex (FDD) mode.
  • FDD Frequency Division Duplex
  • the embodiment of the present application provides a resource configuration method and device, and a computer storage medium.
  • This application provides:
  • a method of resource configuration including:
  • the second node sends a first signal, the first signal comprising one or more symbol groups
  • the sending, by the second node, the first signal includes: transmitting, in a handover period, at least one symbol group in the first signal on a first resource;
  • the first resource includes at least one of the following:
  • the second type of subframe is the second type of subframe
  • a device for resource allocation comprising:
  • a sending module configured to send a first signal, where the first signal includes one or more symbol groups
  • the transmitting the first signal includes: transmitting, in a handover period, at least one symbol group in the first signal on a first resource;
  • the first resource includes at least one of the following:
  • the second type of subframe is the second type of subframe
  • the first signal is at least one of the following:
  • a device for resource configuration comprising: a processor and a memory, the memory storing computer executable instructions, the computer executable instructions being implemented by the processor to implement the following method:
  • the transmitting includes: transmitting at least one symbol group in the first signal on a first resource in one handover period;
  • the first resource includes at least one of the following:
  • the second type of subframe is the second type of subframe
  • the embodiment of the present application further provides a computer storage medium storing a computer program configured to perform the foregoing resource configuration method.
  • the embodiment of the present application provides a resource configuration method and device, and a computer storage medium, which are applicable to a scenario in which the NB-IoT technology works in the TDD mode, and solves the resource configuration problem of the current NB-IoT technology in the TDD mode.
  • FIG. 2 is a schematic diagram of distribution of an uplink subframe and a downlink subframe in one frame in the embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a symbol group in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a resource allocation structure of four consecutive symbol groups in an embodiment of the present application.
  • 5 is a schematic diagram of symbol group transmission when the CP length is 0.0667 ms in the specific example 1 of the present application;
  • 6 is a schematic diagram of symbol group transmission when the CP length is 0.2667 ms in the specific example 1 of the present application;
  • FIG. 7 is a schematic diagram of distribution of an uplink subframe and a downlink subframe in one frame according to an embodiment of the present application
  • FIG. 10 is a schematic diagram of symbol group transmission according to specific example 4 of the present application.
  • FIG. 11 is a schematic structural diagram of an apparatus for resource allocation in the present application.
  • the present application provides a resource configuration method, which is applicable to an NB-IoT technology, and can enable an NB-IoT technology to work in a TDD mode.
  • the method can be performed by a second node (such as a terminal, etc.), including The following steps:
  • Step 100 The second node acquires configuration information of an uplink subframe and a downlink subframe.
  • Step 101 The second node sends a first signal according to the configuration information, where the first signal includes one or more symbol groups, and the sending includes: sending, in the first signal, the first signal in a handover period. At least one symbol group (Symbol Group, SG);
  • the first resource may include at least one of the following: a first type of subframe, a second type of subframe, and a special subframe.
  • the first signal may be at least one of the following: a scheduling request (SR) signal, a random access signal, and a positioning reference signal.
  • SR scheduling request
  • the first signal may be at least one of the following: a scheduling request (SR) signal, a random access signal, and a positioning reference signal.
  • the switching period is a period from the uplink subframe to the downlink subframe, or a period in which the downlink subframe is switched to the uplink subframe.
  • one of the symbol groups may include one CP and multiple symbols.
  • step 100 is an optional step.
  • the first signal occupies at least one of the following in the special subframe: an uplink pilot time slot, and a protection period.
  • the method before the sending, by the second node, the first signal, the method further includes: selecting, according to an uplink-downlink configuration, a structure of the symbol group, where the structure of the symbol group includes at least one of the following :
  • a cyclic prefix and 5 or 6 symbols with a subcarrier spacing of 15000 Hz;
  • One cyclic prefix and 4 or 5 or 6 symbols with a subcarrier spacing of 7500 Hz.
  • the uplink-downlink configuration includes configuration 0 to configuration 6.
  • the first configuration period is a second configuration period of the N times, wherein the first configuration period is a configuration period of a subframe in which the first signal is sent, and the second configuration period is an uplink-downlink configuration period.
  • N is an integer greater than or equal to 1.
  • the subframe for transmitting the first signal is configured in an nth second configuration period in the first configuration period, where n is an integer greater than or equal to 1 and less than or equal to N.
  • the method further includes: determining configuration information of the uplink subframe and the downlink subframe in the nth second configuration period according to the first uplink-downlink configuration index.
  • the method of the embodiment of the present application further includes: configuring the first uplink-downlink configuration index and the second uplink-downlink configuration index respectively.
  • the subframe for transmitting the first signal is configured in a first configuration period and consecutive R second configuration periods from the S second configuration period; where S is greater than An integer equal to 1 and less than or equal to N; R is an integer greater than or equal to 1 and less than or equal to N.
  • the configuration information of the uplink subframe and the downlink subframe in each of the R second configuration periods is determined according to the first uplink-downlink configuration index.
  • the first uplink-downlink configuration index and the second uplink-downlink configuration index are respectively configured.
  • the subframe for transmitting the first signal is configured in a first configuration period and indicates a second configuration period occupied by a bitmap.
  • the configuration information of the uplink subframe and the downlink subframe in each second configuration period of the second configuration period occupied by the bitmap is determined according to the first uplink-downlink configuration index.
  • the first uplink-downlink configuration index and the second uplink-downlink configuration index are respectively configured.
  • the first uplink-downlink configuration index is an index in the corresponding uplink-downlink configuration table, and the configuration information of the uplink subframe and the downlink subframe in the Y second configuration periods is determined according to the index, where the Y
  • the second configuration period is at least one second configuration period in which the subframe is occupied when the first signal is sent.
  • the second uplink-downlink configuration index is an index in the corresponding uplink-downlink configuration table, and the configuration information of the uplink subframe and the downlink subframe in the second configuration period of the NY is determined according to the index, where the second configuration period of the NY is The Y second configuration periods.
  • the first type of subframe is an uplink subframe indicated by uplink-downlink configuration information
  • the second type of subframe is configured by using uplink-downlink configuration information as a subframe set of a downlink subframe.
  • the first information indicates a downlink subframe for the symbol group transmission.
  • the first information refers to information different from the uplink-downlink configuration information.
  • the first resource meets one of the following conditions: the first type of subframes are consecutive in a time domain; the special subframes and the first type of subframes are consecutive in a time domain; The first type of subframes and the second type of subframes are consecutive in the time domain.
  • the special subframe and the first type of subframe are consecutive in the time domain, the special subframe is preferred, and the first subframe is followed; the first subframe and the second class are When the subframes are consecutive in the time domain, it is preferred that the first type of subframe is first and the second type of subframe is after.
  • the symbol group when the frequency domain subcarrier spacing corresponding to the symbol group is 3750 Hz, the symbol group includes 1 Cyclic Prefix (CP), and 5 or 4 symbols, and the foregoing
  • the first resource when a symbol group in a signal is sent on a first resource in a handover period, the first resource includes at least one of the following:
  • the symbol group when the frequency domain subcarrier spacing corresponding to the symbol group is 3750 Hz, the symbol group includes 1 cyclic prefix and 5 symbols, and the two symbol groups in the first signal
  • the first resource when transmitting on the first resource in a handover period, the first resource includes at least one of the following:
  • the symbol group when the frequency domain subcarrier spacing corresponding to the symbol group is 3750 Hz, the symbol group includes 1 cyclic prefix and 4 symbols, and the two symbol groups in the first signal are
  • the first resource when transmitting on the first resource in a handover period, the first resource includes at least one of the following:
  • the above configuration can be applied to the two symbol group formats.
  • the symbol group when the frequency domain subcarrier spacing corresponding to the symbol group is 15000 Hz, the symbol group includes 1 cyclic prefix, and 5 or 6 symbols, and two of the first signals are
  • the first resource when the symbol group is sent on the first resource in one handover period, the first resource includes at least one of the following:
  • the symbol group when the frequency domain subcarrier spacing corresponding to the symbol group is 15000 Hz, the symbol group includes 1 cyclic prefix, and 5 or 6 symbols, and four of the first signals
  • the first resource when the symbol group is sent on the first resource in one handover period, the first resource includes at least one of the following:
  • the symbol group when the frequency domain subcarrier spacing corresponding to the symbol group is 7500 Hz, the symbol group includes 1 cyclic prefix, and 4 or 5 or 6 symbols, and the first signal is When the two sets of symbols are sent on the first resource in one handover period, the first resource includes at least one of the following:
  • the symbol group when the frequency domain subcarrier spacing corresponding to the symbol group is 7500 Hz, the symbol group includes 1 cyclic prefix, and 4 or 5 or 6 symbols, and the first signal is When the four of the symbol groups are transmitted on the first resource in one handover period, the first resource includes at least one of the following:
  • the first signal occupies at least one of the following: an Uplink Pilot Time Slot (UpPTS) and a Guard Period (GP).
  • UpPTS Uplink Pilot Time Slot
  • GP Guard Period
  • the configuration information of the uplink subframe and the downlink subframe in step 101 defines the ratio of the uplink subframe and the downlink subframe.
  • the configuration information of the uplink subframe and the downlink subframe may be as shown in Table 1 below.
  • the transmission in step 101 may include at least one of the following:
  • Two symbol groups in the first signal are transmitted in subframes 2, 3, and 4;
  • Two symbol groups in the first signal are transmitted in subframes 7, 8, and 9;
  • the two symbol groups in the first signal are sent in subframes 1, 2, 3, and 4, where subframe 1 is a special subframe;
  • subframe 6 is a special subframe
  • One symbol group in the first signal is transmitted in subframes 1, 2, wherein subframe 1 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 6, 7, wherein subframe 6 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 2, 3;
  • One symbol group in the first signal is transmitted in subframes 7, 8.
  • One symbol group in the first signal is transmitted in subframes 3, 4;
  • One symbol group in the first signal is transmitted in subframes 8, 9.
  • the sending in step 101 may include at least one of the following:
  • One symbol group in the first signal is transmitted in subframes 1, 2, wherein subframe 1 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 6, 7, wherein subframe 6 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 2, 3;
  • One symbol group in the first signal is transmitted in subframes 7, 8.
  • the two symbol groups in the first signal are transmitted in the subframes 1, 2, 3, and 4, wherein the subframe 1 is a special subframe, and the subframe 4 is configured by the first node to send the first signal;
  • the two symbol groups in the first signal are transmitted in subframes 6, 7, 8, 9, wherein subframe 6 is a special subframe, and subframe 9 is configured by the first node to transmit the first signal.
  • the sending in step 101 includes at least one of the following:
  • One symbol group in the first signal is transmitted in subframes 1, 2, wherein subframe 1 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 6, 7, wherein subframe 6 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 2, 3, wherein subframe 3 is configured by the first node to transmit the first signal;
  • One symbol group in the first signal is transmitted in subframes 7, 8, wherein the subframe 8 is configured by the first node to transmit the first signal;
  • the two symbol groups in the first signal are transmitted in the subframes 1, 2, 3, and 4, wherein the subframe 1 is a special subframe, and the subframes 3, 4 are configured by the first node to send the first signal;
  • the two symbol groups in the first signal are transmitted in subframes 6, 7, 8, 9, wherein subframe 6 is a special subframe, and subframes 8, 9 are configured by the first node to transmit the first signal.
  • the sending in step 101 may include at least one of the following:
  • Two symbol groups in the first signal are transmitted in subframes 2, 3, and 4;
  • the two symbol groups in the first signal are sent in subframes 1, 2, 3, and 4, where subframe 1 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 1, 2, wherein subframe 1 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 2, 3;
  • One symbol group in the first signal is transmitted in subframes 3, 4.
  • the uplink-downlink configuration is configuration 4
  • the configuration index, the downlink to uplink switching period, and the subframe index number are as follows.
  • the row in which the index 4 is configured in Table 1 may be included in at least one of the following:
  • One symbol group in the first signal is transmitted in subframes 1, 2, wherein subframe 1 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 2, 3;
  • the two symbol groups in the first signal are transmitted in subframes 1, 2, 3, 4, wherein subframe 1 is a special subframe, and subframe 4 is configured by the first node to transmit the first signal.
  • the sending in step 101 may include at least one of the following:
  • One symbol group in the first signal is transmitted in subframes 1, 2, wherein subframe 1 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 2, 3, wherein subframe 3 is configured by the first node to transmit the first signal;
  • the two symbol groups in the first signal are transmitted in subframes 1, 2, 3, 4, wherein subframe 1 is a special subframe, and subframes 3, 4 are configured by the first node to transmit the first signal.
  • the configuration index, the downlink to uplink switching period, and the subframe index number are as follows.
  • the row in which the index 6 is configured in Table 1 may be included in at least one of the following:
  • Two symbol groups in the first signal are transmitted in subframes 2, 3, and 4;
  • Two symbol groups in the first signal are transmitted in subframes 7, 8, 9; wherein subframe 9 is configured by the first node to transmit the first signal;
  • subframe 1 is a special subframe
  • the two symbol groups in the first signal are transmitted in subframes 6, 7, 8, 9; wherein subframe 6 is a special subframe, and subframe 9 is configured by the first node to transmit the first signal;
  • One symbol group in the first signal is transmitted in subframes 1, 2, wherein subframe 1 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 6, 7, wherein subframe 6 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 2, 3;
  • One symbol group in the first signal is transmitted in subframes 7, 8.
  • One symbol group in the first signal is transmitted in subframes 3, 4;
  • One symbol group of the first signal is transmitted in subframes 8, 9, wherein the subframe 9 is configured by the first node to transmit the first signal.
  • the configuration index and the downlink to uplink switching period are configured.
  • the subframe index number is as shown in Table 1, where the index 0 is located, and the sending in step 101 may include at least one of the following:
  • subframe 1 is a special subframe
  • the four symbol groups in the first signal are transmitted in subframes 6, 7, wherein subframe 6 is a special subframe;
  • the eight symbol groups in the first signal are transmitted in subframes 1, 2, 3, and 4, wherein subframe 1 is a special subframe;
  • the eight symbol groups in the first signal are transmitted in subframes 6, 7, 8, 9, wherein subframe 6 is a special subframe.
  • the uplink-downlink configuration is configuration 1
  • the configuration index and the downlink to uplink switching period are configured.
  • the subframe index number is as shown in Table 1, where the index 1 is located, and the sending in step 101 may include at least one of the following:
  • subframe 1 is a special subframe
  • the four symbol groups in the first signal are transmitted in subframes 3, 4, wherein the subframe 4 is configured by the first node to transmit the first signal;
  • the four symbol groups in the first signal are transmitted in subframes 6, 7, wherein subframe 6 is a special subframe;
  • the four symbol groups in the first signal are transmitted in subframes 8, 9, wherein the subframe 9 is configured by the first node to transmit the first signal;
  • the eight symbol groups in the first signal are transmitted in subframes 1, 2, 3, and 4, wherein subframe 1 is a special subframe, and subframe 4 is configured by the first node to send the first signal;
  • the eight symbol groups in the first signal are transmitted in subframes 6, 7, 8, 9, wherein subframe 6 is a special subframe, and subframe 9 is configured by the first node to transmit the first signal.
  • the uplink-downlink configuration is configuration 2
  • the configuration index and the downlink to uplink switching period are configured.
  • the subframe index number is as shown in Table 1, where the index 2 is located, and the sending in step 101 may include at least one of the following:
  • subframe 1 is a special subframe
  • the four symbol groups in the first signal are transmitted in subframes 6, 7, wherein subframe 6 is a special subframe;
  • the four symbol groups in the first signal are transmitted in subframes 7, 8, wherein the subframe 8 is configured by the first node to transmit the first signal;
  • subframes 1, 2, 3, 4 8 symbol groups in the first signal are transmitted in subframes 1, 2, 3, 4, wherein subframe 1 is a special subframe, and subframes 3, 4 are configured by the first node to send the first signal;
  • the eight symbol groups in the first signal are transmitted in subframes 6, 7, 8, 9, wherein subframe 6 is a special subframe, and subframes 8, 9 are configured by the first node to transmit the first signal.
  • the uplink-downlink configuration is configuration 3
  • the configuration index and the downlink to uplink switching period are configured.
  • the subframe index number is the row where the index 3 is configured in Table 1, and the sending in step 101 may include at least one of the following:
  • the eight symbol groups in the first signal are transmitted in subframes 1, 2, 3, and 4, wherein subframe 1 is a special subframe;
  • subframe 1 is a special subframe
  • the four symbol groups in the first signal are transmitted in subframes 3, 4.
  • the uplink-downlink configuration is configuration 4
  • the configuration index and the downlink to uplink switching period are configured.
  • the subframe index number is the row where the configuration index 4 is located in Table 1, and the sending in step 101 may include at least one of the following:
  • subframe 1 is a special subframe
  • the four symbol groups in the first signal are transmitted in subframes 3, 4, wherein the subframe 4 is configured by the first node to transmit the first signal;
  • the eight symbol groups in the first signal are transmitted in subframes 1, 2, 3, 4, wherein subframe 1 is a special subframe, and subframe 4 is configured by the first node to transmit the first signal.
  • the uplink-downlink configuration is configuration 5
  • the configuration index and the downlink to uplink switching period are configured.
  • the subframe index number is the row where the configuration index 5 is located in Table 1, and the sending in step 101 may include at least one of the following:
  • subframe 1 is a special subframe
  • the eight symbol groups in the first signal are transmitted in subframes 1, 2, 3, 4, wherein subframe 1 is a special subframe, and subframes 3, 4 are configured by the first node to transmit the first signal.
  • the configuration index and the downlink to uplink switching period are configured.
  • the subframe index number is the row where the configuration index 6 is located in Table 1, and the sending in step 101 may include at least one of the following:
  • subframe 1 is a special subframe
  • the four symbol groups in the first signal are transmitted in subframes 6, 7, wherein subframe 6 is a special subframe;
  • the four symbol groups in the first signal are transmitted in subframes 8, 9, wherein the subframe 9 is configured by the first node to transmit the first signal;
  • the eight symbol groups in the first signal are transmitted in subframes 1, 2, 3, and 4, wherein subframe 1 is a special subframe;
  • the eight symbol groups in the first signal are transmitted in subframes 6, 7, 8, 9, wherein subframe 6 is a special subframe, and subframe 9 is configured by the first node to transmit the first signal.
  • the uplink-downlink configuration is configured with 0, the configuration index, the downlink to uplink switching period, and the subframe.
  • the index number is as shown in Table 1.
  • the sending in step 101 may include at least one of the following:
  • Two symbol groups in the first signal are transmitted in subframes 2, 3, and 4;
  • Two symbol groups in the first signal are transmitted in subframes 7, 8, and 9;
  • the two symbol groups in the first signal are sent in subframes 1, 2, and 3, where subframe 1 is a special subframe;
  • subframe 6 Two symbol groups in the first signal are transmitted in subframes 6, 7, 8; wherein subframe 6 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 1, 2, wherein subframe 1 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 6, 7, wherein subframe 6 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 2, 3;
  • One symbol group in the first signal is transmitted in subframes 7, 8.
  • One symbol group in the first signal is transmitted in subframes 3, 4;
  • One symbol group in the first signal is transmitted in subframes 8, 9.
  • the uplink-downlink configuration is configuration 1
  • the configuration index, the downlink to uplink switching period, and the subframe are configured.
  • the index number is as shown in Table 1.
  • the transmission in step 101 may include at least one of the following:
  • One symbol group in the first signal is transmitted in subframes 1, 2, wherein subframe 1 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 6, 7, wherein subframe 6 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 2, 3;
  • One symbol group in the first signal is transmitted in subframes 7, 8.
  • One symbol group in the first signal is transmitted in subframes 3, 4, wherein subframe 4 is configured by the first node to transmit the first signal;
  • One symbol group in the first signal is transmitted in subframes 8, 9, wherein the subframe 9 is configured by the first node to transmit the first signal;
  • the two symbol groups in the first signal are sent in subframes 1, 2, and 3, where subframe 1 is a special subframe;
  • subframe 6 Two symbol groups in the first signal are transmitted in subframes 6, 7, 8, wherein subframe 6 is a special subframe;
  • the two symbol groups in the first signal are transmitted in subframes 7, 8, 9, wherein the subframe 9 is configured by the first node to transmit the first signal.
  • the uplink-downlink configuration is configuration 2
  • the configuration index, the downlink to uplink switching period, and the subframe are configured.
  • the index number is as shown in Table 1.
  • the sending in step 101 may include at least one of the following:
  • One symbol group in the first signal is transmitted in subframes 1, 2, wherein subframe 1 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 6, 7, wherein subframe 6 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 2, 3, wherein subframe 3 is configured by the first node to transmit the first signal;
  • One symbol group in the first signal is transmitted in subframes 7, 8, wherein the subframe 8 is configured by the first node to transmit the first signal;
  • the two symbol groups in the first signal are transmitted in the subframes 1, 2, and 3, wherein the subframe 1 is a special subframe, and the subframe 3 is configured by the first node to send the first signal;
  • the two symbol groups in the first signal are transmitted in subframes 6, 7, 8, wherein subframe 6 is a special subframe, and subframe 8 is configured by the first node to transmit the first signal.
  • the uplink-downlink configuration is configuration 3
  • the configuration index, the downlink to uplink switching period, and the subframe are configured.
  • the index number is as shown in Table 1.
  • the sending in step 101 may include at least one of the following:
  • Two symbol groups in the first signal are transmitted in subframes 2, 3, and 4;
  • the two symbol groups in the first signal are sent in subframes 1, 2, and 3, where subframe 1 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 1, 2, wherein subframe 1 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 2, 3;
  • One symbol group in the first signal is transmitted in subframes 3, 4.
  • the uplink-downlink configuration is configuration 4, the configuration index, the downlink to uplink switching period, and the subframe.
  • the index number is as shown in Table 1.
  • the sending in step 101 may include at least one of the following:
  • One symbol group in the first signal is transmitted in subframes 1, 2, wherein subframe 1 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 2, 3;
  • the two symbol groups in the first signal are transmitted in subframes 1, 2, and 3, wherein subframe 1 is a special subframe.
  • the uplink-downlink configuration is configuration 5
  • the configuration index, the downlink to uplink switching period, and the subframe are configured.
  • the index number is as shown in Table 1.
  • the sending in step 101 may include at least one of the following:
  • One symbol group in the first signal is transmitted in subframes 1, 2, wherein subframe 1 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 2, 3, wherein subframe 3 is configured by the first node to transmit the first signal;
  • the two symbol groups in the first signal are transmitted in subframes 1, 2, 3, wherein subframe 1 is a special subframe, and subframe 3 is configured by the first node to transmit the first signal.
  • the uplink-downlink configuration is configuration 6
  • the configuration index, the downlink to uplink switching period, and the subframe are configured.
  • the index number is as shown in Table 1.
  • the sending in step 101 may include at least one of the following:
  • Two symbol groups in the first signal are transmitted in subframes 2, 3, and 4;
  • Two symbol groups in the first signal are transmitted in subframes 7, 8, 9; wherein subframe 9 is configured by the first node to transmit the first signal;
  • the two symbol groups in the first signal are sent in subframes 1, 2, and 3, where subframe 1 is a special subframe;
  • subframe 6 Two symbol groups in the first signal are transmitted in subframes 6, 7, 8; wherein subframe 6 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 1, 2, wherein subframe 1 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 6, 7, wherein subframe 6 is a special subframe;
  • One symbol group in the first signal is transmitted in subframes 2, 3;
  • One symbol group in the first signal is transmitted in subframes 7, 8.
  • One symbol group in the first signal is transmitted in subframes 3, 4;
  • One symbol group in the first signal is transmitted in subframes 8, 9, wherein the subframe 9 is configured by the first node to transmit the first signal.
  • the transmission in step 101 may include at least one of the following:
  • subframe 1 is a special subframe
  • Two symbol groups in the first signal are transmitted in subframes 2, 3;
  • Two symbol groups in the first signal are transmitted in subframes 3, 4;
  • subframe 6 Two symbol groups in the first signal are transmitted in subframes 6, 7; wherein subframe 6 is a special subframe;
  • Two symbol groups in the first signal are transmitted in subframes 7, 8.
  • subframe 1 is a special subframe
  • subframe 6 is a special subframe
  • the four symbol groups in the first signal are transmitted in subframes 7, 8, and 9.
  • the uplink-downlink configuration is configuration 1
  • the configuration index and the downlink to uplink switch are configured.
  • the period and the subframe index number are as shown in Table 1.
  • the transmission in step 101 may include at least one of the following:
  • subframe 1 is a special subframe
  • Two symbol groups in the first signal are transmitted in subframes 2, 3;
  • subframes 3, 4 Two symbol groups in the first signal are transmitted in subframes 3, 4; wherein subframe 4 is configured by the first node to transmit the first signal;
  • subframe 6 Two symbol groups in the first signal are transmitted in subframes 6, 7, wherein subframe 6 is a special subframe;
  • Two symbol groups in the first signal are transmitted in subframes 7, 8.
  • Two symbol groups in the first signal are transmitted in subframes 8, 9, wherein the subframe 9 is configured by the first node to transmit the first signal;
  • the four symbol groups in the first signal are transmitted in the subframes 1, 2, 3, and 4, wherein the subframe 1 is a special subframe; wherein the subframe 4 is configured by the first node to send the first signal;
  • the four symbol groups in the first signal are transmitted in the subframes 6, 7, 8, and 9, wherein the subframe 6 is a special subframe; wherein the subframe 9 is configured by the first node to send the first signal;
  • subframe 4 symbol groups in the first signal are transmitted in subframes 2, 3, 4; wherein subframe 4 is configured by the first node to transmit the first signal;
  • the four symbol groups in the first signal are transmitted in subframes 7, 8, 9; wherein subframe 9 is configured by the first node to transmit the first signal.
  • the uplink-downlink configuration is configuration 2
  • the configuration index and the downlink to uplink switch are configured.
  • the period and the subframe index number are as shown in Table 1.
  • the transmission in step 101 may include at least one of the following:
  • subframe 1 is a special subframe
  • subframes 2, 3 Two symbol groups in the first signal are transmitted in subframes 2, 3; wherein subframe 3 is configured by the first node to transmit the first signal;
  • subframe 6 Two symbol groups in the first signal are transmitted in subframes 6, 7, wherein subframe 6 is a special subframe;
  • the two symbol groups in the first signal are transmitted in subframes 7, 8, wherein the subframe 8 is configured by the first node to transmit the first signal.
  • the uplink-downlink configuration is configuration 3
  • the configuration index and the downlink to uplink switch are configured.
  • the period and the subframe index number are as shown in Table 1.
  • the transmission in step 101 may include at least one of the following:
  • subframe 1 is a special subframe
  • Two symbol groups in the first signal are transmitted in subframes 2, 3;
  • Two symbol groups in the first signal are transmitted in subframes 3, 4;
  • subframe 1 is a special subframe
  • the four symbol groups in the first signal are transmitted in subframes 2, 3, 4.
  • the uplink-downlink configuration is configuration 4
  • the configuration index and the downlink to uplink switch are configured.
  • the period and the subframe index number are as shown in Table 1.
  • the transmission in step 101 may include at least one of the following:
  • subframe 1 is a special subframe
  • Two symbol groups in the first signal are transmitted in subframes 2, 3;
  • subframes 3, 4 Two symbol groups in the first signal are transmitted in subframes 3, 4; wherein subframe 4 is configured by the first node to transmit the first signal;
  • the four symbol groups in the first signal are transmitted in the subframes 1, 2, 3, and 4, wherein the subframe 1 is a special subframe; wherein the subframe 4 is configured by the first node to send the first signal;
  • the four symbol groups in the first signal are transmitted in subframes 2, 3, 4; wherein subframe 4 is configured by the first node to transmit the first signal.
  • the transmission in step 101 may include at least one of the following:
  • subframe 1 is a special subframe
  • Two symbol groups in the first signal are transmitted in subframes 2, 3; wherein subframe 3 is configured by the first node to transmit the first signal.
  • the uplink-downlink configuration is configuration 6
  • the configuration index and the downlink to uplink switch are configured.
  • the period and the subframe index number are as shown in Table 1.
  • the transmission in step 101 may include at least one of the following:
  • subframe 1 is a special subframe
  • Two symbol groups in the first signal are transmitted in subframes 2, 3;
  • Two symbol groups in the first signal are transmitted in subframes 3, 4;
  • subframe 6 Two symbol groups in the first signal are transmitted in subframes 6, 7, wherein subframe 6 is a special subframe;
  • Two symbol groups in the first signal are transmitted in subframes 7, 8.
  • Two symbol groups in the first signal are transmitted in subframes 8, 9, wherein the subframe 9 is configured by the first node to transmit the first signal;
  • subframe 1 is a special subframe
  • the four symbol groups in the first signal are transmitted in the subframes 6, 7, 8, and 9, wherein the subframe 6 is a special subframe; wherein the subframe 9 is configured by the first node to send the first signal;
  • the four symbol groups in the first signal are transmitted in subframes 7, 8, 9, wherein the subframe 9 is configured by the first node to transmit the first signal.
  • the second node of the application may be a terminal, and the first node may be a base station.
  • the wireless communication system 1 adopts a time division duplex (TDD) working mode, that is, the uplink channel and the downlink channel adopt the same spectrum resource of Time Division Multiplexing (TDM), and the uplink channel is configured in the uplink subframe.
  • TDD time division duplex
  • the downlink channel is configured in a downlink subframe.
  • the wireless communication system 1 can adopt an uplink subframe and an uplink subframe configuration information (Uplink-downlink configuration) as shown in Table 2 below.
  • the time domain of the wireless communication system 1 is composed of a plurality of frames, each frame is composed of 10 subframes, and the subframe index number is 0-9.
  • the time domain of a subframe is 1ms.
  • the downlink to uplink switching period is 5 ms, which means that 10 ms or 1 frame memory has 2 switching from downlink subframe to uplink subframe; the downlink to uplink switching period is 10 ms, which means that 10 ms or 1 frame memory is 1 Switching from the downlink subframe to the uplink subframe.
  • D represents a downlink subframe
  • U represents an uplink subframe
  • S represents a special subframe.
  • the special subframe consists of three parts, a Downlink Pilot Time Slot (DwPTS), a Guard Period (GP), and an Uplink Pilot Time Slot (UpPTS).
  • DwPTS Downlink Pilot Time Slot
  • GP Guard Period
  • UpPTS Uplink Pilot Time Slot
  • the uplink subframe and the downlink subframe distribution in one frame are as shown in FIG. 3, that is, Subframe#0, #5.
  • Subframe#2, #3, #4, #7, #8, #9 are uplink subframes
  • Subframe #1, #6 are special subframes.
  • the wireless communication system 2 employs a Time Division Duplex (TDD) mode of operation and operates in the operating band of the wireless communication system 1, and the band size of the wireless communication system 2 is 180 kHz.
  • the terminal in the wireless communication system 2 transmits a reference signal to the base station, wherein the reference signal occupies one or more Symbol Groups (SGs). Each symbol group occupies the same subcarriers in the frequency domain, and each symbol group includes a Cyclic Prefix (CP) and K symbols in the time domain, as shown in FIG. 2 . Where K is an integer not less than 1?
  • the resource allocation structure of four consecutive symbol groups is as shown in FIG. 4.
  • the 1st symbol group and the 2nd symbol group are assigned adjacent subcarriers
  • the 3rd symbol group and the 4th symbol group are assigned adjacent subcarriers
  • the 2nd symbol group and the 3rd symbol group are separated by FH subcarriers.
  • FH is a configuration parameter used to indicate the interval FH subcarriers.
  • the reference signal may be a random access signal or a positioning reference signal.
  • the reference signal subcarrier spacing ⁇ f 3.75 kHz.
  • the first matching group and the second symbol group in the reference signal are transmitted in the subframes 2, 3, and 4, and the third in the reference signal.
  • the symbol group and the fourth symbol group are transmitted in subframes 7, 8, and 9.
  • the first matching group and the second symbol group in the reference signal are transmitted in subframes 1, 2, 3, and 4, and the third matching group in the reference signal.
  • the fourth symbol group is transmitted in subframes 6, 7, 8, and 9.
  • the configuration information of the uplink subframe and the downlink subframe of the wireless communication system 1 is configuration 1 or configuration 2.
  • the first symbol group in the reference signal may be in Frame N (index number N In the subframes 1, 2 of the frame)
  • the second symbol group in the reference signal can be transmitted in the subframes 6, 7 of the frame N
  • the third symbol group in the reference signal can be in the Frame N+1 Transmitted in subframes 1, 2
  • the second symbol group in the reference signal can be transmitted in subframes 6, 7 of Frame N+1.
  • the configuration information of the uplink subframe and the downlink subframe of the wireless communication system 1 is configuration 3.
  • the first matching group and the second one in the reference signal The symbol group is transmitted in subframes 2, 3, and 4 of Frame N, and the third matching group and the fourth symbol group in the reference signal are transmitted in subframes 2, 3, and 4 of Frame N+1;
  • the first matching group and the second symbol group in the reference signal are transmitted in subframes 1, 2, 3, and 4 of Frame N
  • the third matching group and the fourth symbol in the reference signal The group is transmitted in subframes 1, 2, 3, and 4 of Frame N+1.
  • the configuration information of the uplink subframe and the downlink subframe of the wireless communication system 1 is configuration 4.
  • the first matching group and the second one in the reference signal The symbol group is transmitted in subframes 2, 3, and 4 of Frame N, and the third matching group and the fourth symbol group in the reference signal are transmitted in subframes 2, 3, and 4 of Frame N+1;
  • the first matching group and the second symbol group in the reference signal are transmitted in subframes 1, 2, 3, and 4 of Frame N
  • the third matching group and the fourth symbol in the reference signal The group is transmitted in subframes 1, 2, 3, and 4 of Frame N+1.
  • the subframe 4 is configured by the base station to send the reference signal.
  • the configuration information of the uplink subframe and the downlink subframe of the wireless communication system 1 is configuration 5.
  • the first matching group and the second one in the reference signal The symbol group is transmitted in subframes 2, 3, and 4 of Frame N, and the third matching group and the fourth symbol group in the reference signal are transmitted in subframes 2, 3, and 4 of Frame N+1;
  • the first matching group and the second symbol group in the reference signal are transmitted in subframes 1, 2, 3, and 4 of Frame N
  • the third matching group and the fourth symbol in the reference signal The group is transmitted in subframes 1, 2, 3, and 4 of Frame N+1.
  • the subframes 3 and 4 are configured by the base station to transmit the reference signal.
  • the configuration information of the uplink subframe and the downlink subframe of the wireless communication system 1 is configuration 6.
  • the first matching group and the second one in the reference signal The symbol group is transmitted in subframes 2, 3, and 4, and the third coincidence group and the fourth symbol group in the reference signal are transmitted in subframes 7, 8, and 9;
  • the reference signal is The first matching group and the second symbol group are transmitted in subframes 1, 2, 3, and 4, and the third matching group and the fourth symbol group in the reference signal are in subframes 6, 7, 8, and 9. Medium transmission; wherein the subframe 9 is configured by the base station to transmit the reference signal.
  • the wireless communication system 1 adopts the working mode of the TDD, that is, the uplink channel and the downlink channel adopt the same spectrum resource of Time Division Multiplexing (TDM), the uplink channel is configured in the uplink subframe, and the downlink channel is configured in the downlink subframe.
  • TDM Time Division Multiplexing
  • the wireless communication system 1 passes the configuration information of the uplink subframe and the downlink subframe shown in Table 1 above.
  • the time domain of the wireless communication system 1 is composed of multiple frames, each frame is composed of 10 subframes, and the subframe index number is 0-9.
  • the time range of a sub-frame is 1 ms; the switching period from the downlink to the uplink is 5 ms, that is, the switching from the downlink subframe to the uplink subframe is performed twice in 10 ms or 1 frame; the switching period from downlink to uplink is 10 ms. That is, it means that 10ms or 1 frame has one switching from the downlink subframe to the uplink subframe; D represents the downlink subframe, U represents the uplink subframe, and S represents the special subframe.
  • the special subframe consists of three parts, a downlink pilot time slot, a guard period, and an uplink pilot time slot.
  • the uplink subframe and the downlink subframe distribution in one frame are as shown in FIG. 7, that is, Subframe#0, #4. #5, #9 is a downlink subframe, Subframe#2, #3, #7, #8 are uplink subframes, and Subframe#1, #6 are special subframes.
  • the wireless communication system 2 employs an operational mode of TDD and operates in the operating frequency band of the wireless communication system 1, and the frequency band resource size of the wireless communication system 2 is 180 kHz.
  • the terminal in the wireless communication system 2 transmits a reference signal to the base station, wherein the reference signal occupies one or more symbol groups. Each symbol group occupies the same subcarriers in the frequency domain, and each symbol group includes a cyclic prefix and K symbols in the time domain, as shown in FIG.
  • FIG. 4 a schematic diagram of resource allocation structure of four consecutive symbol groups is shown in FIG. 4.
  • the first symbol group and the second symbol group are assigned adjacent subcarriers, and the third symbol group is allocated.
  • the adjacent subcarriers are allocated with the 4th symbol group, and the FH subcarriers are separated by the 2nd symbol group and the subcarriers allocated by the 3rd symbol group.
  • the reference signal may be a random access signal or a positioning reference signal.
  • the reference signal subcarrier spacing ⁇ f 3.75 kHz.
  • the symbol group supports two formats.
  • the first symbol group and the second symbol group in the reference signal are transmitted in subframes 1, 2, and 3, and the third symbol group and the fourth symbol in the reference signal.
  • the group is sent in subframes 6, 7, 8.
  • the first and second symbol groups in the reference signal are in subframes 1, 2, and 3.
  • the third and fourth symbol groups in the reference signal are transmitted in subframes 6, 7, and 8.
  • the first and second symbol groups in the reference signal are in subframes 1, 2, and 3.
  • the third and fourth symbol groups in the reference signal are transmitted in subframes 6, 7, and 8.
  • the subframes 3 and 8 are configured by the base station to transmit the reference signal.
  • the first and second symbol groups in the reference signal are in subframes 1 and 2 of Frame N.
  • the third and fourth symbol groups in the reference signal are transmitted in subframes 1, 2, and 3 of Frame N+1.
  • the first and second symbol groups in the reference signal are in subframes 1, 2, and 3 of Frame N.
  • the 3rd and 4th symbol groups in the reference signal are transmitted in the subframes 1, 2, and 3 of Frame N+1.
  • the subframe 3 is configured by the base station to send the reference signal.
  • the first and second symbol groups in the reference signal are in the subframes 1, 2, and 3. Transmit, the third and fourth symbol groups in the reference signal are transmitted in subframes 6, 7, and 8.
  • the wireless communication system 1 adopts the working mode of the TDD, that is, the uplink channel and the downlink channel adopt the same spectrum resource of Time Division Multiplexing (TDM), the uplink channel is configured in the uplink subframe, and the downlink channel is configured in the downlink subframe.
  • TDM Time Division Multiplexing
  • the wireless communication system 1 can adopt the configuration information of the uplink subframe and the downlink subframe shown in Table 1.
  • the time domain of the wireless communication system 1 is composed of multiple frames, each frame is composed of 10 subframes, and the subframe index number is 0-9.
  • the time range of a sub-frame is 1 ms; the switching period from the downlink to the uplink is 5 ms, that is, the switching from the downlink subframe to the uplink subframe is performed twice in 10 ms or 1 frame; the switching period from downlink to uplink is 10 ms. That is, it means that 10ms or 1 frame has one switching from the downlink subframe to the uplink subframe; D represents the downlink subframe, U represents the uplink subframe, and S represents the special subframe.
  • the special subframe consists of three parts, a downlink pilot time slot, a guard period, and an uplink pilot time slot.
  • the uplink subframe and the downlink subframe distribution in one frame are as shown in FIG. 7, that is, Subframe#0, #4. #5, #9 is a downlink subframe, Subframe#2, #3, #7, #8 are uplink subframes, and Subframe#1, #6 are special subframes.
  • the wireless communication system 2 employs a Time Division Duplex (TDD) mode of operation and operates in the operating band of the wireless communication system 1, and the band size of the wireless communication system 2 is 180 kHz.
  • the terminal in the wireless communication system 2 transmits a reference signal to the base station, wherein the reference signal occupies one or more symbol groups. Each symbol group occupies the same subcarriers in the frequency domain, and each symbol group is composed of a Cyclic Prefix (CP) and K symbols in the time domain, as shown in FIG.
  • CP Cyclic Prefix
  • the resource allocation structure of four consecutive symbol groups is as shown in FIG. 4.
  • the first symbol group and the second symbol group are assigned adjacent subcarriers
  • the third symbol group and The 4th symbol group allocates adjacent subcarriers
  • the 2nd symbol group and the 3rd symbol group allocated subcarriers are spaced apart by FH subcarriers.
  • the reference signal may be a random access signal or a positioning reference signal.
  • the reference signal subcarrier spacing ⁇ f 15 kHz.
  • the 1-4th symbol group in the reference signal is transmitted in the subframes 1, 2, as shown in FIG.
  • the configuration information of the uplink subframe and the downlink subframe of the wireless communication system 1 is 0, 2, 3, 4, 5, 6, the 1-4th symbol group in the reference signal is sent in the subframes 1, 2 .
  • the wireless communication system 1 adopts a time division duplex (TDD) working mode, that is, the uplink channel and the downlink channel adopt the same spectrum resource of Time Division Multiplexing (TDM), and the uplink channel is configured in the uplink subframe.
  • TDD time division duplex
  • the downlink channel is configured in a downlink subframe.
  • the wireless communication system 1 can adopt the configuration information of the uplink subframe and the downlink subframe shown in Table 1.
  • the time domain of the wireless communication system 1 is composed of multiple frames, each frame is composed of 10 subframes, and the subframe index number is 0-9.
  • the time range of a sub-frame is 1 ms; the switching period from the downlink to the uplink is 5 ms, that is, the switching from the downlink subframe to the uplink subframe is performed twice in 10 ms or 1 frame; the switching period from downlink to uplink is 10 ms. That is, it means that 10ms or 1 frame has one switching from the downlink subframe to the uplink subframe; D represents the downlink subframe, U represents the uplink subframe, and S represents the special subframe.
  • the special subframe consists of three parts, a downlink pilot time slot, a guard period, and an uplink pilot time slot.
  • the uplink subframe and the downlink subframe distribution in one frame are as shown in FIG. 7, that is, Subframe#0, #4. #5, #9 is a downlink subframe, Subframe#2, #3, #7, #8 are downlink subframes, and Subframe#1, #6 are special subframes.
  • the wireless communication system 2 employs an operational mode of TDD and operates in the operating frequency band of the wireless communication system 1, and the frequency band resource size of the wireless communication system 2 is 180 kHz.
  • the terminal in the wireless communication system 2 transmits a reference signal to the base station, wherein the reference signal occupies one or more symbol groups. Each symbol group occupies the same subcarriers in the frequency domain, and each symbol group includes a cyclic prefix and K symbols in the time domain, as shown in FIG.
  • the resource allocation structure of four consecutive symbol groups is as shown in FIG. 4.
  • the first symbol group and the second symbol group are assigned adjacent subcarriers
  • the third symbol group and The 4th symbol group allocates adjacent subcarriers
  • the 2nd symbol group and the 3rd symbol group allocated subcarriers are separated by FH subcarriers.
  • the reference signal may be a random access signal or a positioning reference signal.
  • the reference signal subcarrier spacing ⁇ f 15 kHz.
  • the 1-4th symbol group in the reference signal is transmitted in the subframes 2, 3, as shown in FIG.
  • the configuration information of the uplink subframe and the downlink subframe of the wireless communication system 1 is the configuration 0, 3, 4, 6, the 1-4th symbol group in the reference signal is transmitted in the subframes 2, 3.
  • the configuration information of the uplink subframe and the downlink subframe of the wireless communication system 1 is the configuration 2, 5 the 1-4th symbol group in the reference signal is transmitted in the subframes 2, 3; wherein the subframe 3 is configured by the base station
  • the configuration is configured to send the reference signal.
  • the wireless communication system 1 adopts the working mode of the TDD, that is, the uplink channel and the downlink channel adopt the same spectrum resource of Time Division Multiplexing (TDM), the uplink channel is configured in the uplink subframe, and the downlink channel is configured in the downlink subframe.
  • TDM Time Division Multiplexing
  • the wireless communication system 1 can adopt the configuration information of the uplink subframe and the downlink subframe shown in Table 1.
  • the time domain of the wireless communication system 1 is composed of multiple frames, each frame is composed of 10 subframes, and the subframe index number is 0-9.
  • the time range of a sub-frame is 1 ms; the switching period from the downlink to the uplink is 5 ms, that is, the switching from the downlink subframe to the uplink subframe is performed twice in 10 ms or 1 frame; the switching period from downlink to uplink is 10 ms. That is, it means that 10ms or 1 frame has one switching from the downlink subframe to the uplink subframe; D represents the downlink subframe, U represents the uplink subframe, and S represents the special subframe.
  • the special subframe consists of three parts, a downlink pilot time slot, a guard period, and an uplink pilot time slot.
  • the uplink subframe and the downlink subframe distribution in one frame are as shown in FIG. 7, that is, Subframe#0, #4. #5, #9 is a downlink subframe, Subframe#2, #3, #7, #8 are uplink subframes, and Subframe#1, #6 are special subframes.
  • the wireless communication system 2 employs an operational mode of TDD and operates in the operating frequency band of the wireless communication system 1, and the frequency band resource size of the wireless communication system 2 is 180 kHz.
  • the terminal in the wireless communication system 2 transmits a reference signal to the base station, wherein the reference signal occupies one or more symbol groups. Each symbol group occupies the same subcarriers in the frequency domain, and each symbol group is composed of a Cyclic Prefix (CP) and K symbols in the time domain, as shown in FIG.
  • CP Cyclic Prefix
  • the resource allocation structure of four consecutive symbol groups is as shown in FIG. 4.
  • the first symbol group and the second symbol group are assigned adjacent subcarriers
  • the third symbol group and The 4th symbol group allocates adjacent subcarriers
  • the 2nd symbol group and the 3rd symbol group allocated subcarriers are spaced apart by FH subcarriers.
  • the reference signal may be a random access signal or a positioning reference signal.
  • the reference signal subcarrier spacing ⁇ f 7.5 kHz.
  • the first matching group and the second symbol group in the reference signal are transmitted in the subframes 2 and 3
  • the third matching group and the fourth symbol group in the reference signal are in the subframes 7 and 8. Sent in.
  • the present application further provides a device for resource allocation, which is applicable to a second node (eg, a terminal), and the device may include:
  • the sending module 11 is configured to send a first signal, where the first signal includes one or more symbol groups;
  • the transmitting the first signal includes: transmitting, in a handover period, at least one symbol group in the first signal on a first resource;
  • the first resource includes at least one of the following:
  • the second type of subframe is the second type of subframe
  • the first resource includes at least one of the following: a first type of subframe, a second type of subframe, and a special subframe.
  • the first signal is at least one of the following: an SR signal; a random access signal; and a positioning reference signal.
  • the foregoing apparatus may further include: an obtaining module 10 configured to acquire configuration information of an uplink subframe and a downlink subframe.
  • the configuration information of the uplink subframe and the downlink subframe may be as shown in Table 1 above.
  • the sending module 11 may be specifically configured to send the first signal according to the configuration information acquired by the obtaining module 10.
  • the first type of subframe is an uplink subframe indicated by the uplink-downlink configuration information
  • the second type of subframe is configured by the first information indicating that the uplink-downlink configuration information is the subframe set of the downlink subframe.
  • the first resource satisfies one of the following conditions: the first type of subframe is continuous in a time domain; the special subframe and the first type of subframe are consecutive in a time domain; The subframe and the second type of subframe are consecutive in the time domain.
  • the first signal occupies at least one of the following: an uplink pilot time slot and a protection period in the special subframe.
  • the foregoing apparatus further includes: a configuration module 12 configured to select a structure of the symbol group according to an uplink-downlink configuration, where the structure of the symbol group includes at least one of the following:
  • a cyclic prefix and 5 or 6 symbols with a subcarrier spacing of 15000 Hz;
  • One cyclic prefix and 4 or 5 or 6 symbols with a subcarrier spacing of 7500 Hz.
  • the sending module 11 is further configured to configure a second configuration period in which the first configuration period is N times, where the first configuration period is a configuration period of a subframe in which the first signal is sent;
  • the second configuration period is a configuration period of the uplink-downlink configuration;
  • N is an integer greater than or equal to 1.
  • the sending module 11 is further configured to configure the subframe for sending the first signal in an nth second configuration period in the first configuration period, where n is An integer greater than or equal to 1 and less than or equal to N.
  • the sending module 11 is configured to determine, according to the first uplink-downlink configuration index, a subframe in which the first signal is sent in the nth second configuration period.
  • the configuration module 12 is further configured to separately configure the first uplink-downlink configuration index and the second uplink-downlink configuration index.
  • the sending module 11 is further configured to: configure the subframe in which the first signal is sent to be in a first configuration period, and consecutively R from a second second configuration period. a second configuration period; where S is an integer greater than or equal to 1 and less than or equal to N; R is an integer greater than or equal to 1 and less than or equal to N.
  • the sending module 11 is further configured to determine, according to the first uplink-downlink configuration index, a subframe in which the first signal is sent in each of the R second configuration periods.
  • the configuration module 12 is further configured to separately configure the first uplink-downlink configuration index and the second uplink-downlink configuration index.
  • the sending module 11 is further configured to configure the subframe in which the first signal is sent in a first configuration period and indicate a second configuration period occupied by a bitmap.
  • the sending module may be further configured to determine, according to the first uplink-downlink configuration index, a subframe in which the first signal is sent in each second configuration period of the second configuration period occupied by the bitmap indication.
  • the configuration module 12 is further configured to separately configure the first uplink-downlink configuration index and the second uplink-downlink configuration index.
  • the present application further provides another resource configuration apparatus, including: a processor and a memory, where the resource configured device is applied to a second node (eg, a terminal), the memory stores computer executable instructions, The computer executable instructions are implemented by the processor to implement the following methods:
  • the transmitting includes: transmitting at least one symbol group in the first signal on a first resource in one handover period;
  • the first resource includes at least one of the following:
  • the second type of subframe is the second type of subframe
  • the embodiment of the present application further provides a computer readable storage medium storing computer executable instructions, the method for implementing the resource configuration when the computer executable instructions are executed.
  • the foregoing storage medium may include, but not limited to, a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • mobile hard disk a magnetic disk
  • magnetic disk a magnetic disk
  • optical disk a variety of media that can store program code.
  • the processor executes the method steps of the above embodiments in accordance with program code already stored in the storage medium.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • This application is not limited to any specific combination of hardware and software.
  • an embodiment of the present invention further provides a computer storage medium, where a computer program is stored, and the computer program is configured to perform resource configuration method according to an embodiment of the present invention.
  • the second node sends the first signal, where the first signal includes one or more symbol groups; and the sending, by the second node, the first signal includes: sending on the first resource in one handover period At least one symbol group of the first signal; wherein the first resource comprises at least one of: a first type of subframe; a second type of subframe; a special subframe.
  • the technical solution of the embodiment of the present application is applicable to a scenario in which the NB-IoT technology works in the TDD mode, and solves the resource configuration problem of the current NB-IoT technology in the TDD mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公布了一种资源配置的方法及装置、计算机存储介质,所述方法可以包括:第二节点发送第一信号,所述第一信号包含一个或多个符号组;所述发送包括:一个切换周期内在第一资源上发送所述第一信号中的至少一个符号组;其中,所述第一资源包括以下至少之一:第一类子帧;第二类子帧;特殊子帧。

Description

一种资源配置方法及装置、计算机存储介质
相关申请的交叉引用
本申请基于申请号为201710184209.1、申请日为2017年03月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及车联网技术领域,具体涉及一种资源配置方法及装置、计算机存储介质。
背景技术
机器类型通信(Machine Type Communication,MTC)用户终端(User Equipment,UE)(以下简称为MTC UE),又称机器到机器(Machine to Machine,M2M)用户终端,是现阶段物联网的主要应用形式。在3GPP技术报告TR45.820中公开了几种适用于蜂窝级物联网的技术,其中,基于蜂窝的窄带物联网(Narrow Band Internet of Things,NB-IoT)技术最为引人注目。
目前,NB-IoT技术主要工作在频分双工(Frequency Division Duplex,FDD)模式,对于TDD模式下NB-IOT技术的资源配置,目前还未提出有效的解决方案。
发明内容
为了解决上述技术问题,本申请实施例提供了一种资源配置方法及装置、计算机存储介质。
本申请提供了:
一种资源配置的方法,包括:
第二节点发送第一信号,所述第一信号包含一个或多个符号组;
所述第二节点发送第一信号包括:一个切换周期内在第一资源上发送所述第一信号中的至少一个符号组;
其中,所述第一资源包括以下至少之一:
第一类子帧;
第二类子帧;
特殊子帧。
一种资源分配的装置,包括:
发送模块,配置为发送第一信号,所述第一信号包含一个或多个符号组;
所述发送第一信号包括:一个切换周期内在第一资源上发送所述第一信号中的至少一个符号组;
其中,所述第一资源包括以下至少之一:
第一类子帧;
第二类子帧;
特殊子帧。
其中,所述第一信号为以下至少之一:
调度请求SR信号;
随机接入信号;
定位参考信号。
一种资源配置的装置,包括:处理器和存储器,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
发送第一信号,所述第一信号包含一个或多个符号组;
所述发送包括:一个切换周期内在第一资源上发送所述第一信号中的至少一个符号组;
其中,所述第一资源包括以下至少之一:
第一类子帧;
第二类子帧;
特殊子帧。
本申请实施例还提供一种计算机存储介质,该计算机存储介质存储有计算机程序,该计算机程序配置为执行上述资源配置的方法。
本申请实施例提供了一种资源配置的方法及装置、计算机存储介质,适用于NB-IoT技术工作在TDD模式下的场景,解决了目前NB-IoT技术在TDD模式下的资源配置问题。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本申请资源配置的方法流程图;
图2为本申请实施例中1个帧中上行子帧和下行子帧的分布示意图;
图3为本申请实施例中的符号组结构示意图;
图4为本申请实施例中连续4个符号组的资源分配结构示意图;
图5为本申请具体实例1中CP长度为0.0667ms时的符号组发送示意 图;
图6为本申请具体实例1中CP长度为0.2667ms时的符号组发送示意图;
图7为本申请实施例中1个帧中上行子帧和下行子帧的分布示意图;
图8为本申请具体实例2的符号组发送示意图;
图9为本申请具体实例3的符号组发送示意图;
图10为本申请具体实例4的符号组发送示意图;
图11为本申请中资源配置的装置结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
如图1所示,本申请提供一种资源配置的方法,适用于NB-IoT技术,能够使得NB-IoT技术工作在TDD模式下,该方法可以通过第二节点(如终端等)执行,包括如下步骤:
步骤100,第二节点获取上行子帧和下行子帧的配置信息;
步骤101,第二节点根据所述配置信息,发送第一信号,所述第一信号包含一个或多个符号组,所述发送包括:一个切换周期内在第一资源上发送所述第一信号中的至少一个符号组(Symbol Group,SG);
其中,所述第一资源可以包括以下至少之一:第一类子帧;第二类子帧;特殊子帧。
其中,所述第一信号可以为以下至少之一:调度请求(Scheduling  Request,SR)信号、随机接入信号、定位参考信号。
其中,所述切换周期为从上行子帧切换到下行子帧的周期、或下行子帧切换到上行子帧的周期。实际应用中,一个所述符号组可以包含一个CP以及多个符号。
其中,步骤100为可选步骤。
其中,所述第一信号在所述特殊子帧中占用以下至少之一:上行导频时隙、保护周期。
本申请中,所述第二节点发送第一信号之前,还可以包括:根据上行-下行配置(Uplink-downlink configuration)选择所述符号组的结构,其中所述符号组的结构包含以下至少之一:
一个循环前缀和5个符号,且子载波间隔为3750Hz;
一个循环前缀、以及5个或6个符号且子载波间隔为15000Hz;
一个循环前缀、以及4个符号且子载波间隔为3750Hz;
一个循环前缀、以及4或5或6个符号且子载波间隔为7500Hz。
其中,上行-下行配置包括配置0~配置6。
其中,第一配置周期为N倍的第二配置周期,其中,所述第一配置周期为发送所述第一信号的子帧的配置周期;所述第二配置周期为上行-下行配置周期;N为大于等于1的整数。
一种实现方式中,所述发送所述第一信号的子帧配置在所述第一配置周期内的第n个第二配置周期内,其中,n为大于等于1且小于等于N的整数。其中,所述第二节点发送第一信号之前,还包括:根据第一上行-下行配置索引确定所述第n个第二配置周期内上行子帧和下行子帧的配置信息。在一实施方式中,本申请实施例的方法还包括:分别配置所述第一上行-下行配置索引与第二上行-下行配置索引。
另一种实现方式中,所述发送所述第一信号的子帧配置在第一配置周 期内且从第S个第二配置周期开始的连续R个第二配置周期中;其中,S为大于等于1且小于等于N的整数;R为大于等于1且小于等于N的整数。其中,根据第一上行-下行配置索引确定所述R个第二配置周期中每个第二配置周期内上行子帧和下行子帧的配置信息。其中,分别配置所述第一上行-下行配置索引与第二上行-下行配置索引。
再一种实现方式中,所述发送所述第一信号的子帧配置在第一配置周期内且通过位图(bitmap)指示占用的第二配置周期。其中,可以根据所述第一上行-下行配置索引确定通过bitmap指示占用的第二配置周期中每个第二配置周期内上行子帧和下行子帧的配置信息。这里,分别配置所述第一上行-下行配置索引与第二上行-下行配置索引。
本申请中,第一上行-下行配置索引是对应上行-下行配置表中的一个索引,根据这个索引确定Y个第二配置周期内上行子帧和下行子帧的配置信息,所述Y个第二配置周期为所述第一信号发送时占用子帧所处的至少一个第二配置周期。第二上行-下行配置索引是对应上行-下行配置表中的一个索引,根据这个索引确定N-Y个第二配置周期内上行子帧和下行子帧的配置信息,所述N-Y个第二配置周期为所述Y个第二配置周期。在一种实现方式中,所述第一类子帧为上行-下行配置信息指示的上行子帧;所述第二类子帧为上行-下行配置信息指示为下行子帧的子帧集合中通过第一信息指示用于所述符号组传输的下行子帧。这里,第一信息是指不同于上行-下行配置信息的信息。
在一种实现方式中,所述第一资源满足如下条件之一:所述第一类子帧在时域上连续;所述特殊子帧和所述第一类子帧在时域上连续;所述第一类子帧和所述第二类子帧在时域上连续。其中,所述特殊子帧和所述第一类子帧在时域上连续时,优选特殊子帧在前、第一类子帧在后;所述第一类子帧和所述第二类子帧在时域上连续时,优选第一类子帧在前、第二 类子帧在后。
在一种实现方式中,当所述符号组对应的频域子载波间隔为3750Hz,所述符号组包括1个循环前缀(Cyclic Prefix,CP)、以及5个或4个符号,且所述第一信号中的1个符号组在一个切换周期内的第一资源上发送时,所述第一资源包括以下至少之一:
1个特殊子帧,1个第一类子帧;
2个第一类子帧;
1个第一类子帧,1个第二类子帧。
在一种实现方式中,当所述符号组对应的频域子载波间隔为3750Hz,所述符号组包括1个循环前缀和5个符号,且所述第一信号中的两个所述符号组在一个切换周期内的第一资源上发送时,所述第一资源包括以下至少之一:
1个特殊子帧,3个第一类子帧;
1个特殊子帧,2个第一类子帧,1个第二类子帧;
1个特殊子帧,1个第一类子帧,2个第二类子帧;
3个第一类子帧,1个第二类子帧;
2个第一类子帧,2个第二类子帧;
1个第一类子帧,3个第二类子帧;
1个特殊子帧,2个第一类子帧;
1个特殊子帧,1个第一类子帧,1个第二类子帧;
2个第一类子帧,1个第二类子帧;
1个第一类子帧,2个第二类子帧。
实际应用中,当符号组支持2种CP长度时,长CP为266.7微秒、短CP长度为66.7us,那么,配置“1个特殊子帧,3个第一类子帧;1个特殊子帧,2个第一类子帧,1个第二类子帧;1个特殊子帧,1个第一类子帧, 2个第二类子帧;3个第一类子帧,1个第二类子帧;2个第一类子帧,2个第二类子帧;1个第一类子帧,3个第二类子帧;”优选针对长CP的符号组格式,配置“1个特殊子帧,2个第一类子帧;1个特殊子帧,1个第一类子帧,1个第二类子帧;2个第一类子帧,1个第二类子帧;1个第一类子帧,2个第二类子帧”优选针对短CP的符号组格式。
在一种实现方式中,当所述符号组对应的频域子载波间隔为3750Hz,所述符号组包括1个循环前缀和4个符号,且所述第一信号中两个所述符号组在一个切换周期内的第一资源上发送时,所述第一资源包括以下至少之一:
1个特殊子帧,2个第一类子帧;
1个特殊子帧,1个第一类子帧,1个第二类子帧;
2个第一类子帧,1个第二类子帧;
1个第一类子帧,2个第二类子帧。
实际应用中,当符号组支持2种CP长度时,长CP为266.7微秒,短CP长度为66.7us,那么,上述配置均可适用于这两种符号组格式。
在一种实现方式中,当符号组对应的频域子载波间隔为15000Hz,所述符号组包括1个循环前缀、以及5个或6个符号,且所述第一信号中的两个所述符号组在一个切换周期内的第一资源上发送时,所述第一资源包括以下至少之一:
1个特殊子帧,
1个第一类子帧;
1个第二类子帧。
在一种实现方式中,当所述符号组对应的频域子载波间隔为15000Hz,所述符号组包括1个循环前缀、以及5个或6个符号,且所述第一信号中的四个所述符号组在一个切换周期内的第一资源上发送时,所述第一资源 包括以下至少之一:
1个特殊子帧,1个第一类子帧;
1个第一类子帧,1个第二类子帧。
在一种实现方式中,当所述符号组对应的频域子载波间隔为7500Hz,所述符号组包括1个循环前缀、以及4个或5个或6个符号,且所述第一信号中的两个所述符号组在一个切换周期内的第一资源上发送时,所述第一资源包括以下至少之一:
1个特殊子帧,1个第一类子帧;
1个第一类子帧,1个第二类子帧。
在一种实现方式中,当所述符号组对应的频域子载波间隔为7500Hz,所述符号组包括1个循环前缀、以及4个或5个或6个符号,且所述第一信号中的四个所述符号组在一个切换周期内的第一资源上发送时,所述第一资源包括以下至少之一:
1个特殊子帧,2个第一类子帧;
1个特殊子帧,1个第一类子帧,1个第二类子帧;
3个第一类子帧;
2个第一类子帧,1个第二类子帧;
1个第一类子帧,2个第二类子帧;
1个特殊子帧,3个第一类子帧;
1个特殊子帧,2个第一类子帧,1个第二类子帧;
1个特殊子帧,1个第一类子帧,2个第二类子帧;
3个第一类子帧,1个第二类子帧;
2个第一类子帧,2个第二类子帧;
1个第一类子帧,3个第二类子帧。
本申请中,所述第一信号在所述特殊子帧中占用以下至少之一:上行 导频时隙(Uplink Pilot Time Slot,UpPTS)、保护周期(Guard Period,GP)。
本申请中,步骤101中的上行子帧和下行子帧的配置信息定义了上行子帧和下行子帧的配比。例如,该上行子帧和下行子帧的配置信息可以为如下表1所示。
Figure PCTCN2018080093-appb-000001
表1
在一种实现方式中,当所述符号组包含一个CP和5个符号且子载波间隔为3750Hz时,上行-下行配置(Uplink-downlink configuration)为配置0时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引0所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的2个符号组在子帧2、3、4中发送;
第一信号中的2个符号组在子帧7、8、9中发送;
第一信号中的2个符号组在子帧1、2、3、4中发送,其中,子帧1为特殊子帧;
第一信号中的2个符号组在子帧6、7、8、9中发送;其中,子帧6为特殊子帧;
第一信号中的1个符号组在子帧1、2中发送,其中,子帧1为特殊子 帧;
第一信号中的1个符号组在子帧6、7中发送,其中,子帧6为特殊子帧;
第一信号中的1个符号组在子帧2、3中发送;
第一信号中的1个符号组在子帧7、8中发送;
第一信号中的1个符号组在子帧3、4中发送;
第一信号中的1个符号组在子帧8、9中发送。
在一种实现方式中,所述符号组包含一个CP和5个符号且子载波间隔为3750Hz时,上行-下行配置为配置1时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引1所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的1个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的1个符号组在子帧6、7中发送,其中,子帧6为特殊子帧;
第一信号中的1个符号组在子帧2、3中发送;
第一信号中的1个符号组在子帧7、8中发送;
第一信号中的2个符号组在子帧1、2、3、4中发送,其中,子帧1为特殊子帧,子帧4由第一节点配置用于发送第一信号;
第一信号中的2个符号组在子帧6、7、8、9中发送,其中,子帧6为特殊子帧,子帧9由第一节点配置用于发送第一信号。
在一种实现方式中,所述符号组包含一个循环前缀和5个符号且子载波间隔为3750Hz时,上行-下行配置为配置2时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引2所在的行,步骤101中的发送包括以下至少之一:
第一信号中的1个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的1个符号组在子帧6、7中发送,其中,子帧6为特殊子帧;
第一信号中的1个符号组在子帧2、3中发送,其中,子帧3由第一节点配置用于发送第一信号;
第一信号中的1个符号组在子帧7、8中发送,其中,子帧8由第一节点配置用于发送第一信号;
第一信号中的2个符号组在子帧1、2、3、4中发送,其中,子帧1为特殊子帧,子帧3、4由第一节点配置用于发送第一信号;
第一信号中的2个符号组在子帧6、7、8、9中发送,其中,子帧6为特殊子帧,子帧8、9由第一节点配置用于发送第一信号。
在一种实现方式中,所述符号组包含一个CP和5个符号且子载波间隔为3750Hz时,上行-下行配置为配置3时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引3所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的2个符号组在子帧2、3、4中发送;
第一信号中的2个符号组在子帧1、2、3、4中发送,其中,子帧1为特殊子帧;
第一信号中的1个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的1个符号组在子帧2、3中发送;
第一信号中的1个符号组在子帧3、4中发送。
在一种实现方式中,所述符号组包含一个CP和5个符号且子载波间隔为3750Hz时,上行-下行配置为配置4时,配置索引、下行到上行的切换 周期以及子帧索引号如表1中配置索引4所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的1个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的1个符号组在子帧2、3中发送;
第一信号中的2个符号组在子帧1、2、3、4中发送,其中,子帧1为特殊子帧,子帧4由第一节点配置用于发送所述第一信号。
在一种实现方式中,所述符号组包含一个CP和5个符号且子载波间隔为3750Hz时,上行-下行配置为配置5时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引5所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的1个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的1个符号组在子帧2、3中发送,其中,子帧3由第一节点配置用于发送第一信号;
第一信号中的2个符号组在子帧1、2、3、4中发送,其中,子帧1为特殊子帧,子帧3、4由第一节点配置用于发送第一信号。
在一种实现方式中,所述符号组包含一个CP和5个符号且子载波间隔为3750Hz时,上行-下行配置为配置6时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引6所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的2个符号组在子帧2、3、4中发送;
第一信号中的2个符号组在子帧7、8、9中发送;其中,子帧9由第一节点配置用于发送第一信号;
第一信号中的2个符号组在子帧1、2、3、4中发送,其中,子帧1为 特殊子帧;
第一信号中的2个符号组在子帧6、7、8、9中发送;其中,子帧6为特殊子帧,子帧9由第一节点配置用于发送第一信号;
第一信号中的1个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的1个符号组在子帧6、7中发送,其中,子帧6为特殊子帧;
第一信号中的1个符号组在子帧2、3中发送;
第一信号中的1个符号组在子帧7、8中发送;
第一信号中的1个符号组在子帧3、4中发送;
第一信号中的1个符号组在子帧8、9中发送,其中,子帧9由第一节点配置用于发送所述第一信号。
在一种实现方式中,当所述符号组包含一个循环前缀、以及5个或6个符号且子载波间隔为15000Hz时,上行-下行配置为配置0时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引0所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的4个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的4个符号组在子帧2、3中发送;
第一信号中的4个符号组在子帧3、4中发送;
第一信号中的4个符号组在子帧6、7中发送,其中,子帧6为特殊子帧;
第一信号中的4个符号组在子帧7、8中发送;
第一信号中的4个符号组在子帧8、9中发送;
第一信号中的8个符号组在子帧1、2、3、4中发送,其中,子帧1为 特殊子帧;
第一信号中的8个符号组在子帧6、7、8、9中发送,其中,子帧6为特殊子帧。
在一种实现方式中,当所述符号组包含一个循环前缀、以及5个或6个符号且子载波间隔为15000Hz时,上行-下行配置为配置1时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引1所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的4个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的4个符号组在子帧2、3中发送;
第一信号中的4个符号组在子帧3、4中发送,其中,子帧4由第一节点配置用于发送第一信号;
第一信号中的4个符号组在子帧6、7中发送,其中,子帧6为特殊子帧;
第一信号中的4个符号组在子帧7、8中发送;
第一信号中的4个符号组在子帧8、9中发送,其中,子帧9由第一节点配置用于发送第一信号;
第一信号中的8个符号组在子帧1、2、3、4中发送,其中,子帧1为特殊子帧,子帧4由第一节点配置用于发送第一信号;
第一信号中的8个符号组在子帧6、7、8、9中发送,其中,子帧6为特殊子帧,子帧9由第一节点配置用于发送第一信号。
在一种实现方式中,当所述符号组包含一个循环前缀、以及5个或6个符号且子载波间隔为15000Hz时,上行-下行配置为配置2时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引2所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的4个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的4个符号组在子帧6、7中发送,其中,子帧6为特殊子帧;
第一信号中的4个符号组在子帧2、3中发送,其中,子帧3由第一节点配置用于发送第一信号;
第一信号中的4个符号组在子帧7、8中发送,其中,子帧8由第一节点配置用于发送第一信号;
第一信号中的8个符号组在子帧1、2、3、4中发送,其中,子帧1为特殊子帧,子帧3、4由第一节点配置用于发送第一信号;
第一信号中的8个符号组在子帧6、7、8、9中发送,其中,子帧6为特殊子帧,子帧8、9由第一节点配置用于发送第一信号。
在一种实现方式中,当所述符号组包含一个循环前缀、以及5个或6个符号且子载波间隔为15000Hz时,上行-下行配置为配置3时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引3所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的8个符号组在子帧1、2、3、4中发送,其中,子帧1为特殊子帧;
第一信号中的4个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的4个符号组在子帧2、3中发送;
第一信号中的4个符号组在子帧3、4中发送。
在一种实现方式中,当所述符号组包含一个循环前缀、以及5个或6个符号且子载波间隔为15000Hz时,上行-下行配置为配置4时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引4所在的行,步 骤101中的发送可以包括以下至少之一:
第一信号中的4个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的4个符号组在子帧2、3中发送;
第一信号中的4个符号组在子帧3、4中发送,其中,子帧4由第一节点配置用于发送第一信号;
第一信号中的8个符号组在子帧1、2、3、4中发送,其中,子帧1为特殊子帧,子帧4由第一节点配置用于发送第一信号。
在一种实现方式中,当所述符号组包含一个循环前缀、以及5个或6个符号且子载波间隔为15000Hz时,上行-下行配置为配置5时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引5所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的4个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的4个符号组在子帧2、3中发送,其中,子帧3由第一节点配置用于发送第一信号;
第一信号中的8个符号组在子帧1、2、3、4中发送,其中,子帧1为特殊子帧,子帧3、4由第一节点配置用于发送第一信号。
在一种实现方式中,当所述符号组包含一个循环前缀、以及5个或6个符号且子载波间隔为15000Hz时,上行-下行配置为配置6时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引6所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的4个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的4个符号组在子帧2、3中发送;
第一信号中的4个符号组在子帧3、4中发送;
第一信号中的4个符号组在子帧6、7中发送,其中,子帧6为特殊子帧;
第一信号中的4个符号组在子帧7、8中发送;
第一信号中的4个符号组在子帧8、9中发送;其中,子帧9由第一节点配置用于发送第一信号;
第一信号中的8个符号组在子帧1、2、3、4中发送,其中,子帧1为特殊子帧;
第一信号中的8个符号组在子帧6、7、8、9中发送,其中,子帧6为特殊子帧,子帧9由第一节点配置用于发送第一信号。
在一种实现方式中,当所述符号组包含一个循环前缀、以及4个符号且子载波间隔为3750Hz时,上行-下行配置为配置0时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引0所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的2个符号组在子帧2、3、4中发送;
第一信号中的2个符号组在子帧7、8、9中发送;
第一信号中的2个符号组在子帧1、2、3中发送,其中,子帧1为特殊子帧;
第一信号中的2个符号组在子帧6、7、8中发送;其中,子帧6为特殊子帧;
第一信号中的1个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的1个符号组在子帧6、7中发送,其中,子帧6为特殊子帧;
第一信号中的1个符号组在子帧2、3中发送;
第一信号中的1个符号组在子帧7、8中发送;
第一信号中的1个符号组在子帧3、4中发送;
第一信号中的1个符号组在子帧8、9中发送。
在一种实现方式中,当所述符号组包含一个循环前缀、以及4个符号且子载波间隔为3750Hz时,上行-下行配置为配置1时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引1所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的1个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的1个符号组在子帧6、7中发送,其中,子帧6为特殊子帧;
第一信号中的1个符号组在子帧2、3中发送;
第一信号中的1个符号组在子帧7、8中发送;
第一信号中的1个符号组在子帧3、4中发送,其中,子帧4由第一节点配置用于发送第一信号;
第一信号中的1个符号组在子帧8、9中发送,其中,子帧9由第一节点配置用于发送第一信号;
第一信号中的2个符号组在子帧1、2、3中发送,其中,子帧1为特殊子帧;
第一信号中的2个符号组在子帧6、7、8中发送,其中,子帧6为特殊子帧;
第一信号中的2个符号组在子帧2、3、4中发送,其中,子帧4由第一节点配置用于发送第一信号;
第一信号中的2个符号组在子帧7、8、9中发送,其中,子帧9由第一节点配置用于发送第一信号。
在一种实现方式中,当所述符号组包含一个循环前缀、以及4个符号且子载波间隔为3750Hz时,上行-下行配置为配置2时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引2所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的1个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的1个符号组在子帧6、7中发送,其中,子帧6为特殊子帧;
第一信号中的1个符号组在子帧2、3中发送,其中,子帧3由第一节点配置用于发送第一信号;
第一信号中的1个符号组在子帧7、8中发送,其中,子帧8由第一节点配置用于发送第一信号;
第一信号中的2个符号组在子帧1、2、3中发送,其中,子帧1为特殊子帧,子帧3由第一节点配置用于发送第一信号;
第一信号中的2个符号组在子帧6、7、8中发送,其中,子帧6为特殊子帧,子帧8由第一节点配置用于发送第一信号。
在一种实现方式中,当所述符号组包含一个循环前缀、以及4个符号且子载波间隔为3750Hz时,上行-下行配置为配置3时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引3所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的2个符号组在子帧2、3、4中发送;
第一信号中的2个符号组在子帧1、2、3中发送,其中,子帧1为特殊子帧;
第一信号中的1个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的1个符号组在子帧2、3中发送;
第一信号中的1个符号组在子帧3、4中发送。
在一种实现方式中,当所述符号组包含一个循环前缀、以及4个符号且子载波间隔为3750Hz时,上行-下行配置为配置4时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引4所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的1个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的1个符号组在子帧2、3中发送;
第一信号中的2个符号组在子帧1、2、3中发送,其中,子帧1为特殊子帧。
在一种实现方式中,当所述符号组包含一个循环前缀、以及4个符号且子载波间隔为3750Hz时,上行-下行配置为配置5时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引5所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的1个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的1个符号组在子帧2、3中发送,其中,子帧3由第一节点配置用于发送第一信号;
第一信号中的2个符号组在子帧1、2、3中发送,其中,子帧1为特殊子帧,子帧3由第一节点配置用于发送第一信号。
在一种实现方式中,当所述符号组包含一个循环前缀、以及4个符号且子载波间隔为3750Hz时,上行-下行配置为配置6时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引6所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的2个符号组在子帧2、3、4中发送;
第一信号中的2个符号组在子帧7、8、9中发送;其中,子帧9由第一节点配置用于发送第一信号;
第一信号中的2个符号组在子帧1、2、3中发送,其中,子帧1为特殊子帧;
第一信号中的2个符号组在子帧6、7、8中发送;其中,子帧6为特殊子帧;
第一信号中的1个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的1个符号组在子帧6、7中发送,其中,子帧6为特殊子帧;
第一信号中的1个符号组在子帧2、3中发送;
第一信号中的1个符号组在子帧7、8中发送;
第一信号中的1个符号组在子帧3、4中发送;
第一信号中的1个符号组在子帧8、9中发送,其中,子帧9由第一节点配置用于发送第一信号。
在一种实现方式中,当所述符号组包含一个循环前缀、以及4或5或6个符号且子载波间隔为7500Hz时,上行-下行配置为配置0时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引0所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的2个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的2个符号组在子帧2、3中发送;
第一信号中的2个符号组在子帧3、4中发送;
第一信号中的2个符号组在子帧6、7中发送;其中,子帧6为特殊子 帧;
第一信号中的2个符号组在子帧7、8中发送;
第一信号中的2个符号组在子帧8、9中发送;
第一信号中的4个符号组在子帧1、2、3、4中发送,其中,子帧1为特殊子帧;
第一信号中的4个符号组在子帧6、7、8、9中发送,其中,子帧6为特殊子帧;
第一信号中的4个符号组在子帧2、3、4中发送;
第一信号中的4个符号组在子帧7、8、9中发送。
在一种实现方式中,当所述符号组包含一个循环前缀、以及4或5或6个符号且子载波间隔为7500Hz时,上行-下行配置为配置1时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引1所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的2个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的2个符号组在子帧2、3中发送;
第一信号中的2个符号组在子帧3、4中发送;其中,子帧4由第一节点配置用于发送第一信号;
第一信号中的2个符号组在子帧6、7中发送;其中,子帧6为特殊子帧;
第一信号中的2个符号组在子帧7、8中发送;
第一信号中的2个符号组在子帧8、9中发送;其中,子帧9由第一节点配置用于发送第一信号;
第一信号中的4个符号组在子帧1、2、3、4中发送,其中,子帧1为特殊子帧;其中,子帧4由第一节点配置用于发送第一信号;
第一信号中的4个符号组在子帧6、7、8、9中发送,其中,子帧6为特殊子帧;其中,子帧9由第一节点配置用于发送第一信号;
第一信号中的4个符号组在子帧2、3、4中发送;其中,子帧4由第一节点配置用于发送第一信号;
第一信号中的4个符号组在子帧7、8、9中发送;其中,子帧9由第一节点配置用于发送第一信号。
在一种实现方式中,当所述符号组包含一个循环前缀、以及4或5或6个符号且子载波间隔为7500Hz时,上行-下行配置为配置2时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引2所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的2个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的2个符号组在子帧2、3中发送;其中,子帧3由第一节点配置用于发送第一信号;
第一信号中的2个符号组在子帧6、7中发送;其中,子帧6为特殊子帧;
第一信号中的2个符号组在子帧7、8中发送;其中,子帧8由第一节点配置用于发送第一信号。
在一种实现方式中,当所述符号组包含一个循环前缀、以及4或5或6个符号且子载波间隔为7500Hz时,上行-下行配置为配置3时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引3所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的2个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的2个符号组在子帧2、3中发送;
第一信号中的2个符号组在子帧3、4中发送;
第一信号中的4个符号组在子帧1、2、3、4中发送,其中,子帧1为特殊子帧;
第一信号中的4个符号组在子帧2、3、4中发送。
在一种实现方式中,当所述符号组包含一个循环前缀、以及4或5或6个符号且子载波间隔为7500Hz时,上行-下行配置为配置4时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引4所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的2个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的2个符号组在子帧2、3中发送;
第一信号中的2个符号组在子帧3、4中发送;其中,子帧4由第一节点配置用于发送第一信号;
第一信号中的4个符号组在子帧1、2、3、4中发送,其中,子帧1为特殊子帧;其中,子帧4由第一节点配置用于发送第一信号;
第一信号中的4个符号组在子帧2、3、4中发送;其中,子帧4由第一节点配置用于发送第一信号。
在一种实现方式中,当所述符号组包含一个循环前缀、以及4或5或6个符号且子载波间隔为7500Hz时,上行-下行配置为配置5时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引5所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的2个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的2个符号组在子帧2、3中发送;其中,子帧3由第一节点配置用于发送所述第一信号。
在一种实现方式中,当所述符号组包含一个循环前缀、以及4或5或6个符号且子载波间隔为7500Hz时,上行-下行配置为配置6时,配置索引、下行到上行的切换周期以及子帧索引号如表1中配置索引6所在的行,步骤101中的发送可以包括以下至少之一:
第一信号中的2个符号组在子帧1、2中发送,其中,子帧1为特殊子帧;
第一信号中的2个符号组在子帧2、3中发送;
第一信号中的2个符号组在子帧3、4中发送;
第一信号中的2个符号组在子帧6、7中发送;其中,子帧6为特殊子帧;
第一信号中的2个符号组在子帧7、8中发送;
第一信号中的2个符号组在子帧8、9中发送;其中,子帧9由第一节点配置用于发送第一信号;
第一信号中的4个符号组在子帧1、2、3、4中发送,其中,子帧1为特殊子帧;
第一信号中的4个符号组在子帧6、7、8、9中发送,其中,子帧6为特殊子帧;其中,子帧9由第一节点配置用于发送第一信号;
第一信号中的4个符号组在子帧2、3、4中发送;
第一信号中的4个符号组在子帧7、8、9中发送,其中,子帧9由第一节点配置用于发送所述第一信号。
实际应用中,本申请的第二节点可以是终端,第一节点可以是基站。
具体实例1(3.75kHz,5Symbols)
无线通信系统1采用时分双工(Time Division Duplex,TDD)的工作模式,即上行信道和下行信道采用时分复用(Time Division Multiplexing,TDM)相同的频谱资源,上行信道配置在上行子帧中,下行信道配置在下 行子帧中。无线通信系统1可以采用如下表2示出的上行子帧和下行子帧的配置信息(Uplink-downlink configuration)。
Figure PCTCN2018080093-appb-000002
表2
其中,无线通信系统1的时域由多个帧(Frame)组成,每个帧由10个子帧(Subframe)组成,子帧索引号为0~9。一个subframe的时域长度为1ms。下行到上行的切换周期为5ms,即表示10ms或1个Frame内存在2次从下行子帧到上行子帧的切换;下行到上行的切换周期为10ms,即表示10ms或1个Frame内存在1次从下行子帧到上行子帧的切换。D表示下行子帧,U表示上行子帧,S表示特殊子帧。特殊子帧由3部分构成,下行导频时隙(Downlink Pilot Time Slot,DwPTS)、保护周期(Guard Period,GP)、上行导频时隙(Uplink Pilot Time Slot,UpPTS)。
本实施例中,无线通信系统1的上行子帧和下行子帧的配置信息为配置0,则1个Frame中上行子帧和下行子帧分布如图3所示,即Subframe#0,#5为下行子帧,Subframe#2,#3,#4,#7,#8,#9为上行子帧,Subframe#1,#6为特殊子帧。
无线通信系统2采用时分双工(Time Division Duplex,TDD)的工作 模式,且工作在无线通信系统1的工作频带中,无线通信系统2的频带资源大小为180kHz。无线通信系统2中的终端发送参考信号到基站,其中,参考信号占用一个或多个符号组(Symbol Group,SG)。每个符号组在频域上占用的子载波相同,每个符号组在时域上包含有一个循环前缀(Cyclic Prefix,CP)和K个符号(symbol),如图2所示。其中,K为不小于1的整数?
本实施例中,连续4个符号组的资源分配结构如图4所示。4个符号组中,第1个符号组和第2个符号组分配相邻的子载波,第3个符号组和第4个符号组分配相邻的子载波,第2个符号组和第3个符号组分配的子载波之间间隔FH个子载波。FH为配置参数,用来表示间隔FH个子载波。
本实施例中,所述参考信号可以为随机接入信号或定位参考信号。
本实施例中,参考信号子载波间隔Δf=3.75kHz。每个符号组在时域上包含一个循环前缀和5(K=5)个符号(symbol),其中,一个符号的长度为
Figure PCTCN2018080093-appb-000003
这里,Ts为时域采样间隔,本实施例中Ts=32.55ns。符号组支持两种格式,其中,一种格式对应的CP长度为8192×Ts=0.2667ms,另一种格式对应的CP长度为2048×Ts=0.0667ms。
本实施例中,当CP长度为0.2667ms时,每个符号组的长度为0.2667+0.2667×5=1.6ms。
本实施例中,当CP长度为0.0667ms时,每个符号组的长度为0.0667+0.2667×5=1.4ms。
如图5所示,本实施例中,CP长度为0.0667ms时,参考信号中的第1个符合组和第2个符号组在子帧2、3、4中发送,参考信号中的第3个符号组和第4个符号组在子帧7、8、9中发送。
如图6所示,CP长度为0.2667ms时,参考信号中的第1个符合组和第2个符号组在子帧1、2、3、4中发送,参考信号中的第3个符合组和第4 个符号组在子帧6、7、8、9中发送。
在一种实现方式中,无线通信系统1的上行子帧和下行子帧的配置信息为配置1或配置2,此时,参考信号中的第1个符号组可以在Frame N(索引号为N的帧)的子帧1、2中发送,参考信号中的第2个符号组可以在Frame N的子帧6、7中发送,参考信号中的第3个符号组可以在Frame N+1的子帧1、2中发送,参考信号中的第2个符号组可以在Frame N+1的子帧6、7中发送。
在一种实现方式中,无线通信系统1的上行子帧和下行子帧的配置信息为配置3,此时:在CP长度为0.0667ms时,参考信号中的第1个符合组和第2个符号组在Frame N的子帧2、3、4中发送,参考信号中的第3个符合组和第4个符号组在Frame N+1的子帧2、3、4中发送;在CP长度为0.2667ms时,参考信号中的第1个符合组和第2个符号组在Frame N的子帧1、2、3、4中发送,参考信号中的第3个符合组和第4个符号组在Frame N+1的子帧1、2、3、4中发送。
在一种实现方式中,无线通信系统1的上行子帧和下行子帧的配置信息为配置4,此时:在CP长度为0.0667ms时,参考信号中的第1个符合组和第2个符号组在Frame N的子帧2、3、4中发送,参考信号中的第3个符合组和第4个符号组在Frame N+1的子帧2、3、4中发送;在CP长度为0.2667ms时,参考信号中的第1个符合组和第2个符号组在Frame N的子帧1、2、3、4中发送,参考信号中的第3个符合组和第4个符号组在Frame N+1的子帧1、2、3、4中发送。其中,子帧4由基站配置用于发送所述参考信号。
在一种实现方式中,无线通信系统1的上行子帧和下行子帧的配置信息为配置5,此时:在CP长度为0.0667ms时,参考信号中的第1个符合组和第2个符号组在Frame N的子帧2、3、4中发送,参考信号中的第3个 符合组和第4个符号组在Frame N+1的子帧2、3、4中发送;在CP长度为0.2667ms时,参考信号中的第1个符合组和第2个符号组在Frame N的子帧1、2、3、4中发送,参考信号中的第3个符合组和第4个符号组在Frame N+1的子帧1、2、3、4中发送。其中,子帧3、4由基站配置用于发送所述参考信号。
在一种实现方式中,无线通信系统1的上行子帧和下行子帧的配置信息为配置6,此时:在CP长度为0.0667ms时,参考信号中的第1个符合组和第2个符号组在子帧2、3、4中发送,参考信号中的第3个符合组和第4个符号组在子帧7、8、9中发送;在CP长度为0.2667ms时,参考信号中的第1个符合组和第2个符号组在子帧1、2、3、4中发送,参考信号中的第3个符合组和第4个符号组在子帧6、7、8、9中发送;其中,子帧9由基站配置用于发送所述参考信号。
具体实例2(3.75kHz,4Symbols)
无线通信系统1采用TDD的工作模式,即上行信道和下行信道采用时分复用(Time Division Multiplexing,TDM)相同的频谱资源,上行信道配置在上行子帧中,下行信道配置在下行子帧中。无线通信系统1通过上述表1所示的上行子帧和下行子帧的配置信息。
其中,无线通信系统1的时域由多个帧组成,每个帧由10个子帧组成,子帧索引号为0~9。一个子帧的时域长度为1ms;下行到上行的切换周期为5ms,即表示10ms或1个Frame内存在2次从下行子帧到上行子帧的切换;下行到上行的切换周期为10ms,即表示10ms或1个Frame内存在1次从下行子帧到上行子帧的切换;D表示下行子帧,U表示上行子帧,S表示特殊子帧。特殊子帧由3部分构成,下行导频时隙、保护周期、上行导频时隙。
本实施例中,无线通信系统1的上行子帧和下行子帧的配置信息为配 置1,则1个Frame中上行子帧和下行子帧分布如图7所示,即Subframe#0,#4,#5,#9为下行子帧,Subframe#2,#3,#7,#8为上行子帧,Subframe#1,#6为特殊子帧。
无线通信系统2采用TDD的工作模式,且工作在无线通信系统1的工作频带中,无线通信系统2的频带资源大小为180kHz。无线通信系统2中的终端发送参考信号到基站,其中,参考信号占用一个或多个符号组。每个符号组在频域上占用的子载波相同,每个符号组在时域上包含一个循环前缀和K个符号,如图3所示。
本实施例中,连续4个符号组的资源分配结构示意图如图4所示,4个符号组中,第1个符号组和第2个符号组分配相邻的子载波,第3个符号组和第4个符号组分配相邻的子载波,第2个符号组和第3个符号组分配的子载波之间间隔FH个子载波。
实际应用中,所述参考信号可以为随机接入信号或定位参考信号。
本实施例中,参考信号子载波间隔Δf=3.75kHz。每个符号组在时域上包含一个循环前缀和4(K=4)个符号,1个符号的长度可以为
Figure PCTCN2018080093-appb-000004
其中,Ts为时域采样间隔,本实施例中Ts=32.55ns。符号组支持2种格式,一种格式对应的CP长度为8192×Ts=0.2667ms,另一种格式对应的CP长度为2048×Ts=0.0667ms。当CP长度为0.2667ms时,每个符号组长度为0.2667+0.2667×4=1.3335ms;当CP长度为0.0667ms时,每个符号组长度为0.0667+0.2667×4=1.1335ms。
如图8所示,本实施例中参考信号中的第1个符号组和第2个符号组在子帧1、2、3中发送,参考信号中的第3个符号组和第4个符号组在子帧6、7、8中发送。
在一种实现方式中,当无线通信系统1的上行子帧和下行子帧的配置信息为配置0时,参考信号中的第1个、第2个符号组在子帧1、2、3中 发送,参考信号中的第3个、第4个符号组在子帧6、7、8中发送。
在一种实现方式中,当无线通信系统1的上行子帧和下行子帧的配置信息为配置2时,参考信号中的第1个、第2个符号组在子帧1、2、3中发送,参考信号中的第3个、第4个符号组在子帧6、7、8中发送。其中,子帧3、8由基站配置用于发送所述参考信号。
在一种实现方式中,当无线通信系统1的上行子帧和下行子帧的配置信息为配置3或4时:参考信号中的第1、2个符号组在Frame N的子帧1、2、3中发送,参考信号中的第3、4个符号组在Frame N+1的子帧1、2、3中发送。
在一种实现方式中,当无线通信系统1的上行子帧和下行子帧的配置信息为配置5时:参考信号中的第1、2个符号组在Frame N的子帧1、2、3中发送,参考信号中的第3、4个符号组在Frame N+1的子帧1、2、3中发送。其中,子帧3由基站配置用于发送所述参考信号。
在一种实现方式中,当无线通信系统1的上行子帧和下行子帧的配置信息为配置6时,参考信号中的第1个、第2个符号组在子帧1、2、3中发送,参考信号中的第3个、第4个符号组在子帧6、7、8中发送。
具体实例3(15kHz,5或6Symbols)
无线通信系统1采用TDD的工作模式,即上行信道和下行信道采用时分复用(Time Division Multiplexing,TDM)相同的频谱资源,上行信道配置在上行子帧中,下行信道配置在下行子帧中。无线通信系统1可以采用表1示出的上行子帧和下行子帧的配置信息。
其中,无线通信系统1的时域由多个帧组成,每个帧由10个子帧组成,子帧索引号为0~9。一个子帧的时域长度为1ms;下行到上行的切换周期为5ms,即表示10ms或1个Frame内存在2次从下行子帧到上行子帧的切换;下行到上行的切换周期为10ms,即表示10ms或1个Frame内存在1次从 下行子帧到上行子帧的切换;D表示下行子帧,U表示上行子帧,S表示特殊子帧。特殊子帧由3部分构成,下行导频时隙、保护周期、上行导频时隙。
本实施例中,无线通信系统1的上行子帧和下行子帧的配置信息为配置1,则1个Frame中上行子帧和下行子帧分布如图7所示,即Subframe#0,#4,#5,#9为下行子帧,Subframe#2,#3,#7,#8为上行子帧,Subframe#1,#6为特殊子帧。
无线通信系统2采用时分双工(Time Division Duplex,TDD)的工作模式,且工作在无线通信系统1的工作频带中,无线通信系统2的频带资源大小为180kHz。无线通信系统2中的终端发送参考信号到基站,其中,参考信号占用一个或多个符号组(symbol group)。每个符号组在频域上占用的子载波相同,每个符号组在时域上由一个循环前缀(Cyclic Prefix,CP)和K个符号(symbol)构成,如图3所示。
本实施例中,连续4个符号组的资源分配结构如图4所示,4个符号组中,第1个符号组和第2个符号组分配相邻的子载波,第3个符号组和第4个符号组分配相邻的子载波,第2个符号组和第3个符号组分配的子载波之间间隔FH个子载波。
实际应用中,所述参考信号可以为随机接入信号或定位参考信号。
本实施例中,参考信号子载波间隔Δf=15kHz。每个符号组在时域上由一个循环前缀(Cyclic Prefix,CP)和5(K=5)个符号(symbol)构成,1个符号长度
Figure PCTCN2018080093-appb-000005
其中,Ts为时域采样间隔,本实施例中Ts=32.55ns,CP长度为2048×Ts=0.0667ms,每个符号组长度为0.0667+0.0667×5=0.4ms。
本实施例中,参考信号中的第1-4个符号组在子帧1、2中发送,如图9所示。当无线通信系统1的上行子帧和下行子帧的配置信息为配置0,2, 3,4,5,6时,参考信号中的第1-4个符号组在子帧1、2中发送。
具体实例4(15kHz,6Symbols)
无线通信系统1采用时分双工(Time Division Duplex,TDD)的工作模式,即上行信道和下行信道采用时分复用(Time Division Multiplexing,TDM)相同的频谱资源,上行信道配置在上行子帧中,下行信道配置在下行子帧中。无线通信系统1可以采用表1示出的上行子帧和下行子帧的配置信息。
其中,无线通信系统1的时域由多个帧组成,每个帧由10个子帧组成,子帧索引号为0~9。一个子帧的时域长度为1ms;下行到上行的切换周期为5ms,即表示10ms或1个Frame内存在2次从下行子帧到上行子帧的切换;下行到上行的切换周期为10ms,即表示10ms或1个Frame内存在1次从下行子帧到上行子帧的切换;D表示下行子帧,U表示上行子帧,S表示特殊子帧。特殊子帧由3部分构成,下行导频时隙、保护周期、上行导频时隙。
本实施例中,无线通信系统1的上行子帧和下行子帧的配置信息为配置1,则1个Frame中上行子帧和下行子帧分布如图7所示,即Subframe#0,#4,#5,#9为下行子帧,Subframe#2,#3,#7,#8为下行子帧,Subframe#1,#6为特殊子帧。
无线通信系统2采用TDD的工作模式,且工作在无线通信系统1的工作频带中,无线通信系统2的频带资源大小为180kHz。无线通信系统2中的终端发送参考信号到基站,其中,参考信号占用一个或多个符号组。每个符号组在频域上占用的子载波相同,每个符号组在时域上包括一个循环前缀和K个符号,如图3所示。
本实施例中,连续4个符号组的资源分配结构如图4所示,4个符号组中,第1个符号组和第2个符号组分配相邻的子载波,第3个符号组和第4 个符号组分配相邻的子载波,第2个符号组和第3个符号组分配的子载波之间间隔FH个子载波。
本实施例中,所述参考信号可以为随机接入信号或定位参考信号。
本实施例中,参考信号子载波间隔Δf=15kHz。每个符号组在时域上由一个循环前缀(Cyclic Prefix,CP)和6(K=6)个符号(symbol)构成,1个符号长度
Figure PCTCN2018080093-appb-000006
其中,Ts为时域采样间隔,本实施例中Ts=32.55ns,CP长度为2048×Ts=0.0667ms,每个符号组长度为0.0667+0.0667×6=0.4669ms。
本实施例中,参考信号中的第1-4个符号组在子帧2、3中发送,如图10所示。当无线通信系统1的上行子帧和下行子帧的配置信息为配置0,3,4,6时,参考信号中的第1-4个符号组在子帧2、3中发送。当无线通信系统1的上行子帧和下行子帧的配置信息为配置2,5时,参考信号中的第1-4个符号组在子帧2、3中发送;其中,子帧3由基站配置用于发送所述参考信号。
具体实例5(7.5kHz,4或5或6个Symbols)
无线通信系统1采用TDD的工作模式,即上行信道和下行信道采用时分复用(Time Division Multiplexing,TDM)相同的频谱资源,上行信道配置在上行子帧中,下行信道配置在下行子帧中。无线通信系统1可以采用表1示出的上行子帧和下行子帧的配置信息。
其中,无线通信系统1的时域由多个帧组成,每个帧由10个子帧组成,子帧索引号为0~9。一个子帧的时域长度为1ms;下行到上行的切换周期为5ms,即表示10ms或1个Frame内存在2次从下行子帧到上行子帧的切换;下行到上行的切换周期为10ms,即表示10ms或1个Frame内存在1次从下行子帧到上行子帧的切换;D表示下行子帧,U表示上行子帧,S表示特殊子帧。特殊子帧由3部分构成,下行导频时隙、保护周期、上行导频时 隙。
本实施例中,无线通信系统1的上行子帧和下行子帧的配置信息为配置1,则1个Frame中上行子帧和下行子帧分布如图7所示,即Subframe#0,#4,#5,#9为下行子帧,Subframe#2,#3,#7,#8为上行子帧,Subframe#1,#6为特殊子帧。
无线通信系统2采用TDD的工作模式,且工作在无线通信系统1的工作频带中,无线通信系统2的频带资源大小为180kHz。无线通信系统2中的终端发送参考信号到基站,其中,参考信号占用一个或多个符号组(symbol group)。每个符号组在频域上占用的子载波相同,每个符号组在时域上由一个循环前缀(Cyclic Prefix,CP)和K个符号(symbol)构成,如图3所示。
本实施例中,连续4个符号组的资源分配结构如图4所示,4个符号组中,第1个符号组和第2个符号组分配相邻的子载波,第3个符号组和第4个符号组分配相邻的子载波,第2个符号组和第3个符号组分配的子载波之间间隔FH个子载波。
本实施例中,所述参考信号可以为随机接入信号或定位参考信号。
本实施例中,参考信号子载波间隔Δf=7.5kHz。每个符号组在时域上由一个循环前缀(Cyclic Prefix,CP)和5(K=5)个符号(symbol)构成,1个符号长度
Figure PCTCN2018080093-appb-000007
其中,Ts为时域采样间隔,本实施例中Ts=32.55ns,CP长度为2048×Ts=0.0667ms时,每个符号组长度为0.0667+0.1334×5=0.7337ms;CP长度为4096×Ts=0.1334ms时,每个符号组长度为0.1334+0.1334×5=0.8004ms。
本实施例中,参考信号中的第1个符合组和第2个符号组在子帧2、3中发送,参考信号中的第3个符合组和第4个符号组在子帧7、8中发送。
如图11所示,本申请还提供了一种资源分配的装置,可应用于第二节点(如,终端),该装置可以包括:
发送模块11,配置为发送第一信号,所述第一信号包含一个或多个符号组;
所述发送第一信号包括:一个切换周期内在第一资源上发送所述第一信号中的至少一个符号组;
其中,所述第一资源包括以下至少之一:
第一类子帧;
第二类子帧;
特殊子帧;
其中,所述第一资源包括以下至少之一:第一类子帧;第二类子帧;特殊子帧。
所述第一信号为以下至少之一:SR信号;随机接入信号;定位参考信号。
如图11所示,上述装置还可以包括:获取模块10,配置为获取上行子帧和下行子帧的配置信息。例如,该上行子帧和下行子帧的配置信息可以如上文中表1所示。这里,所述发送模块11可具体用于根据获取模块10获取的配置信息发送所述第一信号。
其中,所述第一类子帧为上行-下行配置信息指示的上行子帧;所述第二类子帧为上行-下行配置信息指示为下行子帧的子帧集合中通过第一信息指示用于所述符号组传输的下行子帧。
其中,所述第一资源满足如下条件之一:所述第一类子帧在时域上连续;所述特殊子帧和所述第一类子帧在时域上连续;所述第一类子帧和所述第二类子帧在时域上连续。
其中,所述第一信号在所述特殊子帧中占用以下至少之一:上行导频 时隙、保护周期。
其中,如图11所示,上述装置还包括:配置模块12,配置为根据上行-下行配置选择所述符号组的结构,其中所述符号组的结构包含以下至少之一:
一个循环前缀和5个符号,且子载波间隔为3750Hz;
一个循环前缀、以及5个或6个符号且子载波间隔为15000Hz;
一个循环前缀、以及4个符号且子载波间隔为3750Hz;
一个循环前缀、以及4或5或6个符号且子载波间隔为7500Hz。
其中,所述发送模块11,还可用于配置第一配置周期为N倍的第二配置周期,其中,所述第一配置周期为发送所述第一信号的子帧的配置周期;所述第二配置周期为上行-下行配置的配置周期;N为大于等于1的整数。
一种实现方式中,所述发送模块11,还可用于将所述发送所述第一信号的子帧配置在所述第一配置周期内的第n个第二配置周期内,其中,n为大于等于1且小于等于N的整数。其中,所述发送模块11,可用于根据第一上行-下行配置索引确定所述第n个第二配置周期内发送所述第一信号的子帧。所述配置模块12,还可用于分别配置所述第一上行-下行配置索引与第二上行-下行配置索引。
另一种实现方式中,所述发送模块11,还可用于将所述发送所述第一信号的子帧配置在第一配置周期内且从第S个第二配置周期开始的连续R个第二配置周期;其中,S为大于等于1且小于等于N的整数;R为大于等于1且小于等于N的整数。其中,所述发送模块11,还配置为根据第一上行-下行配置索引确定所述R个第二配置周期中每个第二配置周期内发送所述第一信号的子帧。其中,配置模块12还可以用于分别配置所述第一上行-下行配置索引与第二上行-下行配置索引。
在一种实现方式中,所述发送模块11,还可用于将所述发送所述第一 信号的子帧配置在第一配置周期内且通过bitmap指示占用的第二配置周期。其中,所述发送模块,还可用于根据所述第一上行-下行配置索引确定通过bitmap指示占用的第二配置周期中每个第二配置周期内发送所述第一信号的子帧。所述配置模块12,还可用于分别配置所述第一上行-下行配置索引与第二上行-下行配置索引。
此外,本申请还提供另一种资源配置的装置,包括:处理器和存储器,所述资源配置的装置应用于第二节点(例如,终端),所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
发送第一信号,所述第一信号包含一个或多个符号组;
所述发送包括:一个切换周期内在第一资源上发送所述第一信号中的至少一个符号组;
其中,所述第一资源包括以下至少之一:
第一类子帧;
第二类子帧;
特殊子帧。
需要说明的是,上述两种资源配置的装置均可实现本申请上文中方法的所有细节以及所有具体实例,不再赘述。
此外,本申请实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述资源配置的方法。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例的方法步骤。
本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本申请不限制于任何特定形式的硬件和软件的结合。
相应地,本发明实施例还提供一种计算机存储介质,其中存储有计算机程序,该计算机程序配置为执行本发明实施例的资源配置的方法
以上显示和描述了本申请的基本原理和主要特征和本申请的优点。本申请不受上述实施例的限制,上述实施例和说明书中描述的只是说明本申请的原理,在不脱离本申请精神和范围的前提下,本申请还会有各种变化和改进,这些变化和改进都落入要求保护的本申请范围内。
工业实用性
本申请实施例的技术方案中,第二节点发送第一信号,所述第一信号包含一个或多个符号组;所述第二节点发送第一信号包括:一个切换周期内在第一资源上发送所述第一信号中的至少一个符号组;其中,所述第一资源包括以下至少之一:第一类子帧;第二类子帧;特殊子帧。本申请实施例的技术方案适用于NB-IoT技术工作在TDD模式下的场景,解决了目前NB-IoT技术在TDD模式下的资源配置问题。

Claims (34)

  1. 一种资源配置的方法,包括:
    第二节点发送第一信号,所述第一信号包含一个或多个符号组;
    所述第二节点发送第一信号包括:一个切换周期内在第一资源上发送所述第一信号中的至少一个符号组;
    其中,所述第一资源包括以下至少之一:
    第一类子帧;
    第二类子帧;
    特殊子帧。
  2. 根据权利要求1所述的方法,其中,所述第一信号为以下至少之一:
    调度请求SR信号;
    随机接入信号;
    定位参考信号。
  3. 根据权利要求1所述的方法,其中,
    所述第一类子帧为上行-下行配置信息指示的上行子帧;
    所述第二类子帧为上行-下行配置信息指示为下行子帧的子帧集合中,并通过第一信息指示用于所述符号组传输的下行子帧。
  4. 根据权利要求1所述的方法,其中,所述第一资源满足如下条件至少之一:
    所述第一类子帧在时域上连续;
    所述特殊子帧和所述第一类子帧在时域上连续;
    所述第一类子帧和所述第二类子帧在时域上连续。
  5. 根据权利要求1所述的方法,其中,
    所述第一信号在所述特殊子帧中占用以下至少之一:上行导频时隙、 保护周期。
  6. 根据权利要求1所述的方法,其中,所述第二节点发送第一信号之前,还包括:根据上行-下行配置选择所述符号组的结构,其中所述符号组的结构包含以下至少之一:
    一个循环前缀和5个符号,且子载波间隔为3750Hz;
    一个循环前缀、以及5个或6个符号且子载波间隔为15000Hz;
    一个循环前缀、以及4个符号且子载波间隔为3750Hz;
    一个循环前缀、以及4或5或6个符号且子载波间隔为7500Hz。
  7. 根据权利要求1所述的方法,其中,第一配置周期为N倍的第二配置周期,其中,所述第一配置周期为发送所述第一信号的子帧的配置周期;所述第二配置周期为上行-下行配置周期;N为大于等于1的整数。
  8. 根据权利要求7所述的方法,其中,所述发送所述第一信号的子帧配置在所述第一配置周期内的第n个第二配置周期内,其中,n为大于等于1且小于等于N的整数。
  9. 根据权利要求8所述的方法,其中,所述第二节点发送第一信号之前,还包括:根据第一上行-下行配置索引确定所述第n个第二配置周期内上行子帧和下行子帧的配置信息。
  10. 根据权利要求9所述的方法,其中,还包括:
    分别配置所述第一上行-下行配置索引与第二上行-下行配置索引。
  11. 根据权利要求7所述的方法,其中,
    所述发送所述第一信号的子帧配置在第一配置周期内且从第S个第二配置周期开始的连续R个第二配置周期中;其中,S为大于等于1且小于等于N的整数;R为大于等于1且小于等于N的整数。
  12. 根据权利要求11所述的方法,其中,根据第一上行-下行配置索引确定所述R个第二配置周期中每个第二配置周期内上行子帧和下行子 帧的配置信息。
  13. 根据权利要求12所述的方法,其中,还包括:分别配置所述第一上行-下行配置索引与第二上行-下行配置索引。
  14. 根据权利要求7所述的方法,其中,所述发送所述第一信号的子帧配置在第一配置周期内且通过位图bitmap指示占用的第二配置周期。
  15. 根据权利要求14所述的方法,其中,根据所述第一上行-下行配置索引确定通过bitmap指示占用的第二配置周期中每个第二配置周期内上行子帧和下行子帧的配置信息。
  16. 根据权利要求15所述的方法,其中,还包括:
    分别配置所述第一上行-下行配置索引与第二上行-下行配置索引。
  17. 一种资源分配的装置,包括:
    发送模块,配置为发送第一信号,所述第一信号包含一个或多个符号组;
    所述发送第一信号包括:一个切换周期内在第一资源上发送所述第一信号中的至少一个符号组;
    其中,所述第一资源包括以下至少之一:
    第一类子帧;
    第二类子帧;
    特殊子帧。
  18. 根据权利要求17的装置,其中,所述第一信号为以下至少之一:
    调度请求SR信号;
    随机接入信号;
    定位参考信号。
  19. 根据权利要求17所述的装置,其中,
    所述第一类子帧为上行-下行配置信息指示的上行子帧;
    所述第二类子帧为上行-下行配置信息指示为下行子帧的子帧集合中通过第一信息指示用于所述符号组传输的下行子帧。
  20. 根据权利要求17所述的装置,其中,所述第一资源满足如下条件之一:
    所述第一类子帧在时域上连续;
    所述特殊子帧和所述第一类子帧在时域上连续;
    所述第一类子帧和所述第二类子帧在时域上连续。
  21. 根据权利要求17所述的装置,其中,
    所述第一信号在所述特殊子帧中占用以下至少之一:上行导频时隙、保护周期。
  22. 根据权利要求17所述的装置,其中,还包括:
    配置模块,配置为根据上行-下行配置选择所述符号组的结构,其中所述符号组的结构包含以下至少之一:
    一个循环前缀和5个符号,且子载波间隔为3750Hz;
    一个循环前缀、以及5个或6个符号且子载波间隔为15000Hz;
    一个循环前缀、以及4个符号且子载波间隔为3750Hz;
    一个循环前缀、以及4或5或6个符号且子载波间隔为7500Hz。
  23. 根据权利要求17所述的装置,其中,
    所述发送模块,还配置为配置第一配置周期为N倍的第二配置周期,其中,所述第一配置周期为发送所述第一信号的子帧的配置周期;所述第二配置周期为上行-下行配置的配置周期;N为大于等于1的整数。
  24. 根据权利要求23所述的装置,其中,所述发送模块,还配置为将所述发送所述第一信号的子帧配置在所述第一配置周期内的第n个第二配置周期内,其中,n为大于等于1且小于等于N的整数。
  25. 根据权利要求24所述的装置,其中,
    所述发送模块,还配置为根据第一上行-下行配置索引确定所述第n个第二配置周期内发送所述第一信号的子帧。
  26. 根据权利要求25所述的装置,其中,所述配置模块,还配置为分别配置所述第一上行-下行配置索引与第二上行-下行配置索引。
  27. 根据权利要求23所述的装置,其中,
    所述发送模块,还配置为将所述发送所述第一信号的子帧配置在第一配置周期内且从第S个第二配置周期开始的连续R个第二配置周期;其中,S为大于等于1且小于等于N的整数;R为大于等于1且小于等于N的整数。
  28. 根据权利要求27所述的装置,其中,所述发送模块,还配置为根据第一上行-下行配置索引确定所述R个第二配置周期中每个第二配置周期内发送所述第一信号的子帧。
  29. 根据权利要求28所述的装置,其中,所述配置模块,还配置为分别配置所述第一上行-下行配置索引与第二上行-下行配置索引。
  30. 根据权利要求23所述的装置,其中,所述发送模块,还配置为将所述发送所述第一信号的子帧配置在第一配置周期内且通过位图bitmap指示占用的第二配置周期。
  31. 根据权利要求30所述的装置,其中,所述发送模块,还配置为根据所述第一上行-下行配置索引确定通过bitmap指示占用的第二配置周期中每个第二配置周期内发送所述第一信号的子帧。
  32. 根据权利要求31所述的装置,其中,所述配置模块,还配置为分别配置所述第一上行-下行配置索引与第二上行-下行配置索引。
  33. 一种资源配置的装置,包括:处理器和存储器,其中,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执 行时实现如下方法:
    发送第一信号,所述第一信号包含一个或多个符号组;
    所述发送包括:一个切换周期内在第一资源上发送所述第一信号中的至少一个符号组;
    其中,所述第一资源包括以下至少之一:
    第一类子帧;
    第二类子帧;
    特殊子帧。
  34. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行权利要求1-16任一项所述的资源配置的方法。
PCT/CN2018/080093 2017-03-24 2018-03-22 一种资源配置方法及装置、计算机存储介质 WO2018171692A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184209.1 2017-03-24
CN201710184209.1A CN108632790B (zh) 2017-03-24 2017-03-24 一种资源配置方法及装置

Publications (1)

Publication Number Publication Date
WO2018171692A1 true WO2018171692A1 (zh) 2018-09-27

Family

ID=63584977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080093 WO2018171692A1 (zh) 2017-03-24 2018-03-22 一种资源配置方法及装置、计算机存储介质

Country Status (2)

Country Link
CN (1) CN108632790B (zh)
WO (1) WO2018171692A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113708911B (zh) * 2018-05-10 2023-04-07 中兴通讯股份有限公司 信号的发送方法及装置、存储介质、电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104168097A (zh) * 2014-05-07 2014-11-26 清华大学 宽带无线接入系统及其信号传输和个人媒体服务业务方法
CN105357162A (zh) * 2014-08-22 2016-02-24 中兴通讯股份有限公司 一种信号处理方法、基站和终端
WO2016154877A1 (en) * 2015-03-31 2016-10-06 Nec Corporation Method and apparatus for data transmission in a wireless communication system
WO2016200229A1 (en) * 2015-06-11 2016-12-15 Lg Electronics Inc. Method and apparatus for supporting time division duplex for celluar internet-of-things in wireless communication system
CN106453181A (zh) * 2015-08-07 2017-02-22 中兴通讯股份有限公司 一种信息处理方法、装置及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640905B (zh) * 2008-07-31 2012-07-25 电信科学技术研究院 一种上行调度请求的配置方法
CN102271016B (zh) * 2010-06-07 2015-09-23 上海无线通信研究中心 一种新型TDD HARQ UL Un子帧的配置方法
CN103024905B (zh) * 2011-01-07 2015-09-16 华为技术有限公司 一种子帧配比方法与装置
CN103944665B (zh) * 2013-01-18 2018-08-21 中兴通讯股份有限公司 上行解调参考信号的发送方法、装置和系统
CN104349476B (zh) * 2013-08-09 2019-09-24 中兴通讯股份有限公司 随机接入信道资源配置方法和系统
US10015790B2 (en) * 2014-04-25 2018-07-03 Lg Electronics Inc. Method and device for transmitting/receiving radio signal in wireless communication system
CN105099642B (zh) * 2014-05-19 2019-06-07 中兴通讯股份有限公司 一种数据传输方法、装置及计算机存储介质
US10231215B2 (en) * 2014-08-07 2019-03-12 Lg Electronics Inc. Multi-user transmission method in wireless communication system and device therefor
CN106162921A (zh) * 2015-04-10 2016-11-23 中兴通讯股份有限公司 一种随机接入的方法、节点以及系统
KR102262300B1 (ko) * 2015-06-17 2021-06-08 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 협대역을 이용한 신호 전송을 위한 송수신 방법 및 장치
US9980279B2 (en) * 2015-07-24 2018-05-22 Taiwan Semiconductor Manufacturing Company, Ltd. Dynamic time division duplex mechanism for small cell network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104168097A (zh) * 2014-05-07 2014-11-26 清华大学 宽带无线接入系统及其信号传输和个人媒体服务业务方法
CN105357162A (zh) * 2014-08-22 2016-02-24 中兴通讯股份有限公司 一种信号处理方法、基站和终端
WO2016154877A1 (en) * 2015-03-31 2016-10-06 Nec Corporation Method and apparatus for data transmission in a wireless communication system
WO2016200229A1 (en) * 2015-06-11 2016-12-15 Lg Electronics Inc. Method and apparatus for supporting time division duplex for celluar internet-of-things in wireless communication system
CN106453181A (zh) * 2015-08-07 2017-02-22 中兴通讯股份有限公司 一种信息处理方法、装置及系统

Also Published As

Publication number Publication date
CN108632790A (zh) 2018-10-09
CN108632790B (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
US11882547B2 (en) Method and apparatus of operation considering bandwidth part in next generation wireless communication system
JP5508284B2 (ja) 下り回線パイロット・タイム・スロットにおける物理下り回線制御チャンネルの信号送信方法
CN107070596B (zh) 信息发送方法及装置
AU2020260378B2 (en) Resource indication method and related device and system
CN104202740B (zh) 通信数据发送方法、装置及用户设备
KR101452489B1 (ko) 무선 통신 시스템에서 데이터 수신 방법
JP6577577B2 (ja) 非権限周波数帯でのデータ伝送方法、データ受信方法及び装置
KR20220075385A (ko) 제2단계 sci의 송수신 방법 및 장치, 저장 매체, 송신 ue 및 수신 ue
KR101520708B1 (ko) 다중반송파 무선통신시스템에서 하향링크 제어정보를 송수신하는 방법 및 장치
KR20190132347A (ko) 데이터 채널을 송수신하는 방법 및 이를 위한 장치
RU2013140766A (ru) Вставка виртуальной несущей в обычную хост-несущую ofdm в системе связи
JP2015518679A (ja) 無線通信システムにおける搬送波集成方法及び装置
KR20150092136A (ko) 감소된 대역폭 단말기들에의 제어 정보의 전송
KR102395680B1 (ko) 상향링크 전송 방법 및 장치
CN107295651B (zh) 物理上行共享信道的发送方法及装置
CN109196941A (zh) 基于无线网络的通信方法、终端设备和网络设备
CN102395204B (zh) 移动通信中扩展物理层控制信道资源数量的方法和系统
KR101542407B1 (ko) 셀룰라 시스템에서 공용 사용자 기기 id를 할당하는 방법 및 그 장치
CN110636622A (zh) 一种无线通信中的方法和装置
CN115603885A (zh) 用于子帧布置的装置和方法
US20180083749A1 (en) Method for allocating resources for supporting plurality of wireless communication modes in wireless communication system, and device for same
WO2017133418A1 (zh) 一种上行传输方法及装置
CN112106414A (zh) 寻呼时机开始确定
CN104009827A (zh) 一种用户设备专用解调参考信号的传输方法及设备
WO2014190792A1 (zh) 灵活子帧的处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771531

Country of ref document: EP

Kind code of ref document: A1