WO2018171374A1 - 信道接入的指示方法和设备 - Google Patents

信道接入的指示方法和设备 Download PDF

Info

Publication number
WO2018171374A1
WO2018171374A1 PCT/CN2018/076999 CN2018076999W WO2018171374A1 WO 2018171374 A1 WO2018171374 A1 WO 2018171374A1 CN 2018076999 W CN2018076999 W CN 2018076999W WO 2018171374 A1 WO2018171374 A1 WO 2018171374A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
communication device
channel
synchronization
awake
Prior art date
Application number
PCT/CN2018/076999
Other languages
English (en)
French (fr)
Inventor
淦明
左鑫
杨讯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018171374A1 publication Critical patent/WO2018171374A1/zh
Priority to US16/575,539 priority Critical patent/US11197253B2/en
Priority to US17/529,723 priority patent/US11917565B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/25Monitoring; Testing of receivers taking multiple measurements
    • H04B17/255Monitoring; Testing of receivers taking multiple measurements measuring at different states of transmission, e.g. active or idle; measuring at different measurement rates; measuring with different measurement schedules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/80Actions related to the user profile or the type of traffic
    • H04L47/806Broadcast or multicast traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/20Support for services
    • H04L49/201Multicast operation; Broadcast operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/143Termination or inactivation of sessions, e.g. event-controlled end of session
    • H04L67/145Termination or inactivation of sessions, e.g. event-controlled end of session avoiding end of session, e.g. keep-alive, heartbeats, resumption message or wake-up for inactive or interrupted session
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/02Arrangements for relaying broadcast information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0238Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is an unwanted signal, e.g. interference or idle signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to communication technologies, and in particular, to a method and an apparatus for indicating channel access.
  • a considerable portion of the energy of the receiving device is wasted in the idle listening mode when the station (Station, referred to as STA) does not receive or transmit the message.
  • the listening channel will consume a lot of energy, so the Sleep Schedule is introduced in the communication standard so that the STA can enter the Deep Sleep state when there is no data to transmit and receive, so as to reduce the energy consumption of continuous monitoring.
  • the access point (AP) cannot communicate with the STA. Only when the STA wakes up can the transmission be between the two, which may cause a certain delay.
  • the STA In order to avoid the high latency caused by the dormancy mechanism, the STA usually wakes up according to a certain sleep policy period to check whether there is data to be received, but this reduces the sleep efficiency of the STA.
  • the receiving device includes a new low-power wake-up receiver in addition to the traditional 802.11 main transceiver module.
  • WUR Wike Up Receiver
  • the traditional 802.11 transceiver module is the 802.11 Main Radio (MR) or the main transceiver, as shown in Figure 1.
  • MR 802.11 Main Radio
  • the 802.11MR enters deep sleep, the low-power WUR wakes up. If the AP needs to communicate with the STA with WUR and 802.11MR, the AP first sends a Wake Up Packet (WUP) to the WUR. The WUR is correct.
  • WUP Wake Up Packet
  • the 802.11 MR of the STA After receiving the WUP sent to itself, the 802.11 MR of the STA is woken up, and the AP communicates with the awake 802.11 MR.
  • the 802.11MR communicates with the AP, it goes back to sleep again, and the WUR starts to listen to whether there is a WUP sent to itself to wake up the 802.11MR again.
  • the technology uses a low-power WUR instead of 802.11MR to listen to the channel when the medium is idle, which effectively reduces the waste of energy when the device is listening.
  • the MRs of the above-mentioned stations equipped with wake-up receivers belong to the traditional 802.11 devices, and generally need to meet the energy-saving mechanism specified by the 802.11 protocol.
  • One of them is that the MR of the station needs to wait for the probe delay or wake up a frame carrying the network allocation vector (NAV) field to update the non-target site network allocation vector (NAV) field.
  • Clear Channel Assessment (CCA) the active preemptive channel sends data packets (ie, access channels) to the AP, thereby avoiding direct collision of the channel transmission data when the MR of the station wakes up collides with the ongoing communication between the hidden node and the AP. .
  • the MR of the above station waits for the probe delay time to be too long when accessing the channel after waking up, resulting in a large power consumption of the station.
  • the method and device for indicating channel access provided by the present application are used to solve the technical problem that the MR of the prior art station waits for the probe delay time to be too long when the channel is awake, resulting in a large power consumption of the station.
  • the application provides a method for indicating channel access, including:
  • the first communication device sends, according to the channel synchronization request and the awake time of the second communication device that the first communication device learns according to the preset signaling, to the awake second communication device when the channel is idle.
  • the synchronization frame is used to indicate that the awakened second communication device accesses the channel after receiving the synchronization frame.
  • the second communication device sends a channel synchronization request to the first communication device, to request the first communication device to assist itself to quickly access the channel, and therefore, the first communication device receives the After the channel synchronization request, according to the learned wake-up time of the second communication device, when it is determined that the second communication device wakes up and the channel is idle, the synchronization frame is sent to the second communication device to trigger the second communication device without waiting for the probe.
  • the delay time can access the channel, which greatly shortens the waiting time of the MR of the second communication device, and saves the power consumption overhead caused by the waiting of the second communication device.
  • the awake second communication device is multiple, and the sending the synchronization frame to the awake second communication device when the channel is idle includes:
  • the first communication device transmits a first synchronization frame to a second communication device that is awakened by any one of the plurality of awake second communication devices when the channel is idle, the first synchronization frame carrying the any one of the An identifier of the second communication device that is awake, the first synchronization frame is used to indicate that the second communication device that is awake is accessing the channel after receiving the first synchronization frame and being separated by a first preset duration.
  • the first synchronization frame is any one of a clear sending CTS frame, a request to send an RTS frame, and a trigger frame.
  • the awake second communication device is multiple, and the sending the synchronization frame to the awake second communication device when the channel is idle includes:
  • the first communication device sends a second synchronization frame to the plurality of awake second communication devices when the channel is idle, the second synchronization frame is used to indicate that each of the awake second communication devices receives the After the second synchronization frame is separated by a second preset duration, a backoff procedure is performed to contend for the access channel, and the receiving address of the second synchronization frame is a broadcast address.
  • the receiving address of the second synchronization frame is a broadcast address.
  • the second synchronization frame is any one of a CTS frame, an RTS frame, and a CF-end frame.
  • the CTS frame may carry second indication information, where the second indication information is used to indicate the CTS frame to the awakened second communication device as a synchronization frame.
  • the awake second communication device is multiple, and the sending the synchronization frame to the awake second communication device when the channel is idle includes:
  • the first communication device transmits a third synchronization frame to the plurality of awake second communication devices when the channel is idle, the third synchronization frame carrying a subchannel resource indication and each of each awake second communication device An identifier of the second communication device that is awake, and the receiving address of the third synchronization frame is a broadcast address, where the third synchronization frame is used to indicate that the plurality of awake second communication devices are receiving the third After the synchronization frame is separated by the first preset duration, the channel is simultaneously accessed according to the corresponding subchannel resource indication.
  • the third synchronization frame is any one of a multi-site CTS frame, a multi-site RTS frame, and a trigger frame.
  • the awake second communication device is multiple, and the sending the synchronization frame to the awake second communication device when the channel is idle includes:
  • the first communication device sends a traditional physical layer preamble L-Preamble to the plurality of awake second communication devices when the channel is idle, the L-Preamble carrying the first indication information and the plurality of awakened a check code field or a partial bit of a wake-up frame received by the wake-up receiver of the second communication device for waking up the main transceivers of the plurality of second communication devices, the first indication information being used for the plurality of
  • the waking second communication device indicates that the L-Preamble is a synchronization frame, and the check code field or the partial bits are used to indicate an identifier of the plurality of awake second communication devices;
  • the L-Preamble is configured to instruct the multiple awakened second communication devices to perform a backoff procedure to contend for an access channel after receiving the L-Preamble and spacing the second preset duration.
  • the synchronization frame is a traditional physical layer preamble L-Preamble
  • the L-Preamble carries the first indication information and the awakened a second communication device that wakes up a check code field or a partial bit of the wake-up frame received by the receiver, the first indication information being used to indicate to the second communication device that the L-Preamble is a synchronization frame
  • the check code field or the partial bits are both used to indicate the identity of the awakened second communication device.
  • the synchronization frame is any one of a clear sending CTS frame, a request to send an RTS frame, and a trigger frame, where the synchronization frame carries the second device that is awakened.
  • the identity of the communication device is one.
  • the first communications device receives the channel synchronization request sent by the second communications device, and specifically includes:
  • the first communication device receives an association request frame sent by the second communication device, where the association request frame carries indication information of a channel synchronization request of the second communication device.
  • the first communications device receives the channel synchronization request sent by the second communications device, and specifically includes:
  • the first communication device receives a management frame or a control frame sent by the second communication device, where the management frame or the control frame carries indication information of the channel synchronization request.
  • the scenario is a wake-up of a single device or a scenario of multi-device wake-up
  • the first communication device is in the idle channel.
  • the synchronization frame is sent to the second communication device that is awake in combination with the wake-up time of the second communication device that is known by itself, so as to trigger the second communication device that is awake to access the channel without waiting for the probe delay time, thereby saving the The latency of the MR of the awake second communication device reduces the power consumption of the second communication device.
  • the first communication device sends the first synchronization frame to any one of the plurality of awake second communication devices to trigger the plurality of awake second communication devices without waiting for the probe delay time.
  • the channel can be accessed, which greatly reduces the transmission time of the synchronization frame, and also ensures that a plurality of awake second communication devices can quickly access the channel.
  • the embodiment of the present application provides a channel access indication device, where the device may be the foregoing first communication device, and the first communication device may be The station may also be an AP, and the device has a function of implementing the indication method of the above channel access.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the indicating device for the channel access includes a plurality of functional modules or units, and the method for indicating the access of any one of the foregoing first aspects.
  • the structure of the indication device of the channel access may include a processor, a receiver, and a transmitter (or a transceiver).
  • the processor is configured to support a corresponding function of the apparatus for performing the indication method of any of the above-described first aspects of channel access.
  • the transceiver is configured to support communication between the device and other network devices or terminal devices, and may be, for example, a corresponding radio frequency module or a baseband module.
  • the device can also include a memory for coupling with the processor that retains program instructions and data necessary for the indication means for the channel access to perform the channel access described above.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the pointing device for channel access, which includes a program designed to execute the above first aspect.
  • an embodiment of the present application provides a computer program product, comprising instructions for causing a computer to perform a function performed by a first communication device in the above method when the computer program is executed by a computer.
  • the method and device for indicating channel access sends a channel synchronization request to the first communication device by using the second communication device, to request the first communication device to assist itself in quickly accessing the channel.
  • the first communication device After receiving the channel synchronization request, the first communication device sends a synchronization frame to the second communication device to trigger when the second communication device wakes up and the channel is idle according to the learned wake-up time of the second communication device.
  • the second communication device can access the channel without waiting for the probe delay time, which greatly shortens the waiting time of the MR of the second communication device, and saves power consumption overhead caused by the waiting of the second communication device.
  • FIG. 1 is a schematic structural diagram of a site equipped with a wake-up receiver provided by the present application
  • FIG. 2 is a schematic structural diagram of a WLAN system provided by the present application.
  • FIG. 3 is a schematic diagram of channel access when a hidden station sends data according to the present application
  • FIG. 4 is a schematic diagram of channel access when a hidden station does not send data according to the present application
  • FIG. 5 is a schematic flowchart diagram of an embodiment of a method for indicating channel access provided by the present application
  • FIG. 6 is a schematic diagram of channel access triggered by a synchronization frame provided by the present application.
  • FIG. 7 is a schematic diagram of channel access in a single device wake-up scenario provided by the present application.
  • FIG. 8 is a schematic diagram of channel access in a multi-device wake-up scenario provided by the present application.
  • FIG. 9 is a schematic structural diagram of an apparatus for indicating a channel access according to the present application.
  • FIG. 10 is a schematic structural diagram of an embodiment of a pointing device for channel access provided by the present application.
  • the present application can be applied to a Wireless Local Area Networks (WLAN).
  • WLAN Wireless Local Area Networks
  • IEEE Institute of Electrical and Electronics Engineers 802.11 series.
  • STA station
  • AP access point
  • the AP is an access point for mobile users to enter the wired network. It is mainly deployed in the home, inside the building, and inside the campus. The typical coverage radius is tens of meters to hundreds of meters. Of course, it can also be deployed outdoors.
  • An AP is equivalent to a bridge connecting a wired network and a wireless network. Its main function is to connect the wireless network clients together and then connect the wireless network to the Ethernet.
  • the AP may be a terminal device or a network device with a WiFi (English: Wireless Fidelity) chip.
  • the AP may be a device supporting the 802.11ax system.
  • the AP may be a device supporting multiple WLAN technologies such as 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a. In this embodiment, There is no limit to the type of system supported by the AP.
  • the STA is generally a client device in the WLAN.
  • the STA may be mobile or fixed, and is the most basic component of the wireless local area network.
  • the STA may be a wireless communication chip, a wireless sensor, or a wireless communication terminal.
  • mobile phone supporting WiFi communication function tablet computer supporting WiFi communication function, set-top box supporting WiFi communication function, smart TV supporting WiFi communication function, smart wearable device supporting WiFi communication function, and vehicle communication supporting WiFi communication function Devices and computers that support WiFi communication.
  • FIG. 2 is a schematic structural diagram of a WLAN system provided by the present application.
  • an AP in a WLAN system can interact with multiple STAs (three in the figure as an example), including STA1, STA2, and STA3. .
  • STA1, STA2, and STA3. are examples of STAs.
  • One AP can also exchange information with one or more STA groups, and multiple STAs can also interact with each other.
  • the first communication device and the second communication device involved in the present application may both configure an 802.11 primary radio MR (or a primary transceiver) and a wake-up receiver WUR, or may be a first communication device configured with a primary transceiver.
  • the second communication device configures the primary transceiver and the wake-up receiver.
  • Both the first communication device and the second communication device can refer to the structure shown in FIG. 1.
  • the first communication device in the present application may be an AP or an STA
  • the second communication device may be an STA or an AP.
  • the first communication device is an AP
  • the second communication device is an STA
  • the first communication device is an STA
  • the second communication device is an AP.
  • the following embodiments are described by taking the first communication device as an AP and the second communication device as an STA.
  • the wake of the MR includes the active wake and the passive wake.
  • the present application is directed to the passive wake of the MR.
  • the passive wakeup may specifically be: the AP sends a wakeup frame to at least one STA associated with the AP (Wake Up Packet).
  • WUP wakeup Packet
  • the WUP can be used to indicate that the MR of the at least one station that is awake is awake from the sleep state, such as a reception mode indication, a time indication of being awakened, and the like; and the WUR receives the wake-up frame sent by the AP.
  • the MR of the station is woken up.
  • the MR After the MR of the STA is woken up, the MR sends a PS-Poll frame or an acknowledgement frame to the AP, telling the AP that it has awake, and then the AP replies (ACK) the response or directly transmits the data to the MR of the station.
  • the AP It is also possible to directly send a data frame to the MR of the station after the MR of the station is woken up, without waiting for the MR of the station to send a PS-Poll frame; or, the AP can also send a request to send (RTS) message. Give the MR of the awakened site, and then the site's MR clear to send (CTS) message to the AP.
  • RTS request to send
  • CTS site's MR clear to send
  • the present application is not limited to the fact that the AP sends the WUP to the non-AP STA, or the non-AP STA sends the WUP to the AP.
  • the above-mentioned MR equipped with a wake-up receiver site belongs to a conventional 802.11 device and usually needs to meet the energy saving mechanism stipulated by the 802.11 protocol.
  • One of them is that the station's MR needs to wait for the probe delay or wake up with a frame carrying the network allocation vector (NAV) field to wake up.
  • Clear Channel Assessment (CCA) the active preemption channel sends a data packet (ie, an access channel) to the AP, thereby avoiding the direct preemption of the channel transmission data and the ongoing communication between the hidden node and the AP when the MR of the station wakes up. collision.
  • a data packet ie, an access channel
  • Site 1 and Site 2 are hidden nodes of each other, that is, the packets sent by the other party are not detected.
  • the mechanism is required to wait for the probe delay time when the station wakes up (the station 2 shown in FIG. 3 is to avoid sending with the station 1).
  • the data collides and waits for the probe delay time to send data after waking up. This time is equal to the transmission time and short frame interval of the Physical Layer Convergence Procedure Protocol Data Unit (PPDU).
  • PPDU Physical Layer Convergence Procedure Protocol Data Unit
  • the waiting mechanism of the above-mentioned MR wake-up often has a situation in which when another site's MR wakes up in a waiting state, another hidden site does not actually transmit data with the AP, as shown in FIG.
  • the hidden site of Site 2 ie, Site 1 is not transmitting data.
  • this waiting of Site 2 undoubtedly wastes the energy of Site 2, and the power consumption of Site 2 is large.
  • the power consumption requirements are very strict. It is expected that the button battery can work for more than one year. If the MR of this type of station wakes up, it still blindly waits for the probe delay time. Re-empting the channel to send data will lose its power, which is very unfavorable for energy saving.
  • the method and device for indicating channel access provided by the present application are intended to solve the problem that the MR of the station in the prior art blindly waits for the probe delay time to be too long when the channel is accessed after waking up, resulting in a large power consumption of the station. technical problem.
  • first, second, third, etc. may be used to describe XXX in embodiments of the invention, these XXX should not be limited to these terms. These terms are only used to distinguish XXX from each other.
  • first XXX may also be referred to as a second XXX without departing from the scope of the embodiments of the present invention.
  • second XXX may also be referred to as a first XXX.
  • FIG. 5 is a schematic flowchart diagram of an embodiment of a method for indicating channel access provided by the present application.
  • the embodiment relates to shortening the waiting time after the second communication device wakes up, and the second communication device sends the channel synchronization request to the first communication device, so that the first communication device is combined with the learned second communication device to wake up time. And transmitting a synchronization frame to the second communication device that is awake, thereby enabling the second communication device to determine, according to the synchronization frame, a specific process that can access the channel without waiting for a probe delay time.
  • the method includes the following steps:
  • the first communications device receives a channel synchronization request sent by the second communications device, where the channel synchronization request is used to request the first communications device to send a synchronization frame to the second communications device.
  • the second communication device is configured to wake up the receiver.
  • the second communication device sends a channel synchronization request to the first communication device before the dormant, the channel synchronization request is used to request the first communication device to send the synchronization frame to the second communication device, when After receiving the channel synchronization request, a communication device may reply to the second communication device with a synchronization response frame.
  • the channel synchronization request may explicitly request the first communication device to send a synchronization frame, for example, the channel synchronization request directly informs the first communication device that the synchronization frame of the first communication device needs to be acquired, so that the first communication device can assist.
  • the second communication device can quickly access the channel after waking up.
  • the channel synchronization request can also implicitly request the first communication device to send the synchronization frame, for example, the power consumption of the second communication device can be carried in the channel synchronization request.
  • the information is sent to the first communication device.
  • the power consumption requirement of the second communication device is relatively strict.
  • the first communication device is required to send a synchronization frame to assist the second communication device to access the channel without waiting for the probe delay time after the MR wakes up.
  • the form of the channel synchronization request is not limited in this application.
  • the foregoing first communications device receives the channel synchronization request sent by the second communications device, and may have the following implementation manners:
  • the first implementation manner is: the first communication device receives the association request frame sent by the second communication device, where the association request frame carries the indication information of the channel synchronization request of the second communication device.
  • the second communication device sends the association request frame to the first communication device to send the channel synchronization request to the first communication device in the association phase with the first communication device, where the association request frame carries the The indication information of the channel synchronization request of the second communication device.
  • the indication information may be explicit indication information, and may also be implicit power consumption information of the second communication device.
  • the second implementation manner is: the first communication device receives the management frame or the control frame sent by the second communication device.
  • the second communication device may send the management frame to the first communication device when the power of the second communication device is less than the preset power threshold.
  • a control frame where the management frame or the control frame carries the indication information of the channel synchronization request.
  • the indication information may be a synchronization request element in the management frame.
  • the indication information of the channel synchronization request may also be carried in a certain field in the data frame.
  • the first communications device sends, according to the channel synchronization request, the awake time of the second communications device that is learned by the first communications device according to the preset signaling, to the awake second communications device when the channel is idle.
  • the synchronization frame is used to indicate that the awakened second communication device accesses the channel after receiving the synchronization frame.
  • the MR of the second communication device enters a sleep state. If the first communication device needs to communicate with the MR of the second communication device, for example, sending downlink data to the MR of the second communication device, the first time
  • the communication device can wake up the MR of the second communication device by transmitting a wake-up frame (WUP) to the wake-up receiver (WUR) of the second communication device.
  • WUP wake-up frame
  • WUR wake-up receiver
  • the wake-up receiver of the second communication device triggers its main transceiver to wake up.
  • the wake-up time of the wake-up receiver of the second communications device may be carried in the wake-up frame to indicate that the wake-up receiver of the second communications device wakes up at the designated wake-up time.
  • the first communications device may learn the awake time of the second communications device according to the preset signaling.
  • the preset signaling may be the foregoing awake frame, and the second communications device is carried in the awake frame.
  • the wake-up time of the wake-up receiver the first communication device can learn the wake-up time of the second communication device based on the wake-up frame sent by itself to the second communication device, optionally, when the wake-up frame does not carry the second communication.
  • the wake-up time of the wake-up receiver of the device the first communication device can estimate the wake-up time of the second communication device by the sending time of the wake-up frame.
  • the foregoing preset signaling may also be other information, which is not limited herein.
  • the wake-up time of the second communication device may be the designated time of the first communication device, and may also be the estimated wake-up time.
  • the first communication device determines that the second communication device has woken up according to the awake time of the second communication device (the second communication device determined here wakes up not being awake, the second communication device notifies the first communication device, and Is the first communication device estimated or specified), during the period in which the second communication device wakes up, the first communication device detects whether the channel is idle.
  • the first communication device When the first communication device detects that the channel is idle, the first communication device sends a synchronization frame to the second communication device that needs to assist the fast access channel, that is, sends a synchronization to the second communication device that previously sent the channel synchronization request to the first communication device. frame.
  • the second communication device After the second communication device receives the synchronization frame, the second communication device can learn the current channel condition. Therefore, the second communication device accesses the channel under the trigger of the synchronization frame.
  • the access channel may be configured by the second communication device sending a wake-up report frame to the first communication device, where the wake-up report frame may be The acknowledgement frame or the power save poll (Ps-poll) frame may also be a Clear To Send (CTS) frame.
  • CTS Clear To Send
  • the type of the wake-up report frame is not limited in this application.
  • the first communication device may send a response confirmation frame to the second communication device or directly send the downlink data to the second communication device.
  • the second communication device accesses the channel after receiving the synchronization frame, and may be that the second communication device directly accesses the channel after receiving the synchronization frame, or may be that the second communication device receives the synchronization frame and
  • the channel is connected to the channel.
  • the preset duration can be a short interframe space (short interframe space) or a Dstributed Cordination Function Inter-frame Space (DIFS). It can be other durations, as long as the preset duration is less than the probe delay time. For example, as shown in FIG.
  • the AP when the AP learns that the station 2 wakes up, the AP detects that the channel is idle, and the AP can send a synchronization frame to the awakened station 2, and the station 2 receives the synchronization frame, and the SIFS time. Then, it can immediately respond to a Ps-poll frame to tell the AP that the station 2 is awake, and then the AP responds to the confirmation frame or directly sends the downlink data to the station 2.
  • the first communications device determines that the second communications device wakes up according to the learned wake-up time of the second communications device, the first communications device detects that the channel is busy at this time. The first communication device does not perform any operation, and when the channel is idle, and the waking up report frame of the second communication device has not been received yet, the first communication device continues to send the synchronization frame to the second communication device to assist The second communication device quickly accesses the channel.
  • the synchronization frame in the present application may be a frame for quickly accessing a channel for a second communication device that is awake.
  • the synchronization frame may also be awakened for multiple.
  • the second communication device quickly accesses the frame of the channel, which is not limited in this embodiment.
  • the first communications device may also detect, according to the wake-up time of the second communications device that is known by itself, whether the channel is idle during the time period that the second communications device wakes up, and detects that the channel is idle.
  • the synchronization frame is directly sent to the second communication device, that is, optionally, the second communication device may not need to send a channel synchronization request to the first communication device, or the first communication device does not need to wait until the second communication device sends
  • the synchronization frame is sent to the second communication device after the channel synchronization request.
  • the MR of the second communication device of the present application can access the channel after waiting for the probe delay time after receiving the synchronization frame sent by the first communication device after being awake. Therefore, the application is greatly shortened.
  • the waiting time of the MR of the second communication device saves the power consumption overhead caused by the waiting of the second communication device.
  • the method for indicating channel access sends a channel synchronization request to the first communication device by using the second communication device, to request the first communication device to assist himself to quickly access the channel, and therefore, the first communication device receives the channel.
  • the synchronization request according to the learned wake-up time of the second communication device, when it is determined that the second communication device wakes up and the channel is idle, the synchronization frame is sent to the second communication device to trigger the second communication device without waiting for the probe delay time. It is possible to access the channel, which greatly shortens the waiting time of the MR of the second communication device, and saves the power consumption overhead of the second communication device due to the waiting.
  • the synchronization frame may be a legacy physical layer preamble (L-Preamble, referred to as L-Preamble, which carries the first indication information, does not carry any load part, and the synchronization frame includes a traditional For short training fields, traditional long sequence fields, and traditional signaling fields, see the 802.11 traditional physical layer preamble shown in Table 1a.
  • L-Preamble legacy physical layer preamble
  • the synchronization frame includes a traditional For short training fields, traditional long sequence fields, and traditional signaling fields, see the 802.11 traditional physical layer preamble shown in Table 1a.
  • BPSK Binary Phase Shift Keying
  • code For a convolutional code with a rate of 0.5, the L-preamble transmission time is 20 us, and the transmission time is much smaller than the probe delay time.
  • the traditional signaling field in the traditional physical layer preamble includes a 4-bit rate field and 1 bit.
  • the reserved field, the 12-bit length field, the 1-bit check code field, and the 6-bit tail field are
  • the L-Preamble in this embodiment mode carries the first indication information, where the first indication information is used to indicate to the second communication device that the L-Preamble is a synchronization frame, so that the second communication device receives a traditional physical layer.
  • whether the traditional physical layer preamble carries the first indication information may be used to determine whether the traditional physical layer preamble is a synchronization frame.
  • the first indication information may be implemented by using a length field of a traditional physical layer preamble, for example, setting 12 bits of the length field to 0.
  • the first indication information may also pass traditional physics.
  • the reserved bit of the layer preamble is implemented, that is, the reserved bit of the traditional physical layer preamble is set to 1, and the preamble of the traditional physical layer is identified as a synchronization frame.
  • the first indication information may also pass through a traditional physical layer.
  • the rate field of the preamble is implemented, that is, only 8 values in the 4-bit rate field are used in the current protocol. For the eight values, as shown in Table 2 below, this embodiment can set the 4-bit rate field to other.
  • the value distinguishes the traditional physical layer preamble sent to the second communication device as a synchronization frame, for example, the rate field is set to 1111, which is the first indication information.
  • the present embodiment proposes to carry an indirect address that can identify the second communication device in the L-preamble.
  • the information may be: the use rate field carries a check code field or a partial bit of a wake-up frame of the second communication device, such as a Cycle Redundancy Check (CRC) or a frame check. 4-bit bits in the Frame Check Sequence (FCS), such as the lower 4 bits.
  • CRC Cycle Redundancy Check
  • FCS Frame Check Sequence
  • the check code field or the FCS and the wake-up frame are corresponding, the check code field or the frame check sequence field of different wake-up frames is different, and the identifiers of different wake-up frames and different second communication devices are one by one. Correspondingly, therefore, different wake-up second communication devices can be distinguished by different check code fields or different partial bits.
  • the synchronization frame may be a traditional physical layer preamble, and the traditional physical layer preamble carries the first indication information and the check code of the wakeup frame received by the wakeup receiver of the second communication device.
  • a field or a partial bit after the second communication device receives the traditional physical layer preamble, the first physical information preamble may be identified by the first indication information as a synchronization frame sent by the first communication device, and the traditional physical layer preamble is passed
  • the check code field or part of the wake-up frame carried in the frame identifies whether the sync frame is a sync frame sent to itself.
  • the synchronization frame may be another special traditional physical layer preamble, where the synchronization frame includes a traditional short training field, a traditional long sequence field, and a traditional a signaling field and a Binary Phase Shift Keying (BPSK) modulated Orthogonal Frequency Division Multiplexing (OFDM) symbol, where the BPSK modulated OFDM symbol can be the traditional physical layer
  • BPSK modulated OFDM symbol can be the traditional physical layer
  • the repeated traditional signaling field in the preamble is multiplied by a specified random sequence (not all 1s), such as all -1; it may also be a brand new BPSK modulated OFDM symbol, which may carry 24 bits of information ( For example, based on BPSK modulation, a 0.5 code rate convolutional coding), such as a parity bit or a partial bit carrying a wake-up frame and the first indication information described above.
  • the structure of the synchronization frame can be as shown in Table 2a and Table 2b below.
  • the synchronization frame may be a CTS frame, and the frame structure of the CTS frame may be as shown in Table 3 below. If the calculation is performed at the lowest transmission rate, consider the physical layer preamble of the CTS.
  • the code is a traditional physical layer preamble, and the transmission time of the CTS as a synchronous frame transmission is about 40 us, and the transmission time is short, which is smaller than the probe delay time.
  • the CTS frame may not carry the second indication information, as long as the first communication device receives the channel synchronization request of the second communication device, and sends the channel synchronization request according to the channel after the MR of the second communication device wakes up.
  • the CTS frame is the synchronization frame sent by the first communication device.
  • the CTS frame may carry the second indication information, where the second indication information is used to explicitly indicate to the second communication device that is awake that the CTS frame is synchronized. frame.
  • the second indication information may indicate the second indication information by using a certain field (or a certain bit) of the CTS frame.
  • the duration field may be set to 0 (ie, the second indication information) by using a duration field.
  • the awake second communication device can recognize that the CTS frame is a sync frame.
  • the synchronization frame may be an RTS frame, and the frame structure of the RTS frame may be as shown in Table 4 below, where the second indication information may be carried in the RTS frame.
  • the RTS frame is identified as a synchronization frame to the second communication device that is awake.
  • the second indication information may be implemented by the duration field in Table 4 below.
  • the duration field is set to 0
  • the current RTS frame is represented as a synchronization frame. If the calculation is performed at the lowest transmission rate, considering that the physical layer preamble of the RTS is the legacy physical layer preamble, the transmission time of the RTS frame is about 47 us, and the transmission time is less than the probe delay time.
  • the foregoing third possible implementation manner multiplexes the RTS/CTS exchange process, but the condition of using the RTS/CTS at this time is no longer that the length or time of the data packet transmitted later reaches a certain threshold. Instead, the master transceiver of the second communication device that is woken up sends channel synchronization request information to the AP.
  • the synchronization frame may be a Contention Free End (CF-end) frame.
  • CF-end Contention Free End
  • the MR of the second communication device wakes up, if the CF-end frame sent by the first communication device is received, it is determined that the synchronization frame transmitted by the first communication device is received.
  • the BSSID in Table 5 is a Basic Service Set Identifier (BSSID). If the calculation is performed at the lowest transmission rate, considering that the physical layer preamble of the CF-end frame is the legacy physical layer preamble, the transmission time is about 47 us, and the transmission time is less than the probe delay time.
  • the receiving address of the CF-end frame is a broadcast address.
  • the synchronization frame may be a trigger frame in the 802.11ax protocol. If the calculation is performed at the lowest transmission rate, the physical layer preamble of the trigger frame is considered as a traditional physical layer preamble, and the transmission is performed. The time is about 77us, and the transmission time is less than the probe delay time.
  • the frame structure of the trigger frame can be seen in Table 6 below:
  • the wake-up scenario may be divided into a single device wake-up and a multi-device wake-up, wherein the single device wake-up refers to the first communication device selecting to wake up only one MR of the second communication device, and sending the same
  • the wake-up frame of the wake-up receiver of the second communication device carries only the identifier of one second communication device;
  • the multi-device wake-up means that the wake-up frame sent by the first communication device is for the wake-up receiver of the plurality of second communication devices It is a multi-device wake-up frame, and the wake-up frame carries identifiers of multiple second communication devices.
  • the following describes the channel access mode corresponding to the change of the synchronization frame, the transmission mode of the synchronization frame, and the transmission mode of different synchronization frames in combination with different wake-up scenarios.
  • (1) Scenario for single device wakeup In this scenario, the second communication device that is awake is one. Before the MR of the second communication device does not enter sleep, the second communication device sends a channel synchronization request to the first communication device, and at a certain stage, the MR of the second communication device enters a sleep state, and the first communication device passes to the second communication device The wake-up receiver sends a wake-up frame to trigger the wake-up of the MR of the second communication device.
  • the first communication device After receiving the channel synchronization request and knowing that the MR of the second communication device has awake (the wake-up time here is as described above, the first communication device is the time that the first communication device estimates or indicates by itself) Not being notified by the second communication device, the first communication device transmits a synchronization frame to the MR of the single second communication device. After receiving the synchronization frame, the second communication device can access the channel without waiting for the probe delay time.
  • the synchronization frame may be the L-Preamble carrying the first indication information and the check code field of the wake-up frame or a part of the bit, and may also be the CTS frame carrying the second indication information, and the CTS frame.
  • the identifier of the second communication device that is to be awakened may be the RTS frame carrying the second indication information, where the RTS frame carries the identifier of the second communication device that is awake, and may also be the trigger frame, the trigger frame
  • the identifier of the second communication device that is awake is carried, for example, the receiving address of the trigger frame is set to the address of the awake second communication device, and the trigger frame in Table 5 above contains a user information field.
  • the second communication device may respond to the Ack frame to the first communication device by the SIFS duration.
  • FIG. 7 a schematic diagram of channel access for a single device wakeup scenario is shown in FIG. 7.
  • the first communication device After receiving the channel synchronization request and after learning that the MRs of the plurality of second communication devices have awake (the wake-up time here is as described above, the first communication device estimates or indicates by itself) The time is not notified by the second communication device.
  • the first communication device can trigger the MR of the plurality of second communication devices by transmitting the synchronization frame to access the channel without waiting for the probe delay time.
  • the first communication device sends a synchronization frame to the second communication device when the channel is idle, and specifically includes the following five (1), (2), (3), (4), and (5) transmission modes.
  • the specific process is as follows:
  • the first communication device transmits a first synchronization frame to the second communication device that is awake to any of the plurality of awake second communication devices when the channel is idle, the first synchronization frame carrying any of the above An identifier of the second communication device that is awakened, the first synchronization frame is used to indicate that the second communication device that is awake is accessing the channel after receiving the first synchronization frame and spacing the first preset duration.
  • the second communication device that is awake is multiple, and the first communication device may be from any one of the plurality of awake second communication devices (assuming the second communication device).
  • the first synchronization frame is sent to the A device, and the first synchronization frame may carry the identifier of the A device.
  • the identifier may be an identifier of the wakeup receiver of the A device, or may be an association identifier of the A device.
  • the first synchronization frame is used to indicate that the A device accesses the channel after receiving the first synchronization frame sent by the first communication device and is separated by a first preset duration.
  • the first preset duration may be a SIFS duration.
  • the first communication device only needs to send one first synchronization frame to one second communication device that is awake, and does not need to send a corresponding synchronization frame to other second communication devices, so that The transmission time of the synchronization frame can be saved, and the other second communication device does not wait for the probe delay time to access the channel.
  • the reason is that the first communication device has sent the first synchronization frame to the A device, and the other The second communication device can detect that there is already a frame in the transmission, so the other second communication device only needs to wait for its own NAV to be reduced to 0 and then preempt the channel to transmit data, and it does not need to wait for the probe delay time (in the second communication)
  • the device is a site.
  • the site has two situations: from sleep to wakeup.
  • One is that the site's MR wakes up and does not hear the channel has a frame being transmitted. Therefore, it must wait for the probe delay time to preempt the channel to send data. If the site's MR wakes up and hears that there is a frame in the transmission, then the station only needs to wait for its NAV to be reduced to 0, then access the channel), and no The first communication device transmits a synchronization frame again, thus reducing the time synchronization frame transmission, also ensures that the other second communication apparatus can quickly access channel.
  • the first synchronization frame may be any one of the CTS frame, the RTS frame, and the trigger frame
  • the identifier of the second communication device that can be awake may be carried in the CTS frame or the RTS frame or the trigger frame.
  • the receiving address of the trigger frame is set to the address of the awakened second communication device, and the trigger frame in Table 5 above contains a user information field.
  • the identifier of the second communication device carried by the second communication device is an identifier of the explicit second communication device, for example, the identifier or association of the wake-up receiver of the second communication device.
  • the identity ie it can explicitly indicate which second communication device is connected to the channel, to speed up the assistance channel synchronization.
  • the first communication device sends a second synchronization frame to the plurality of awake second communication devices when the channel is idle, the second synchronization frame is used to indicate that each awake second communication device is receiving After the second synchronization frame is separated by a second preset duration, a backoff procedure is performed to contend for the access channel, and the receiving address of the second synchronization frame is a broadcast address.
  • the second communication device that is awake is multiple, and the first communication device sends a second synchronization frame to the plurality of awake second communication devices, where the receiving address of the second synchronization frame is broadcast.
  • An address therefore, each second communication device that is awake can receive the second synchronization frame, and receives the second synchronization frame and is separated by a second preset duration (the channel is idle during the second preset duration)
  • the backoff procedure is then performed to contend for the access channel.
  • the second preset duration may be a DIFS duration, and may of course be other durations. It should be noted that the identifier of the second communication device that is awake is not carried in the second synchronization frame.
  • the second synchronization frame may be any one of a CTS frame, an RTS frame, and a CF-end frame.
  • the received addresses of the CTS frame and the RTS frame are broadcast addresses, and the received address of the CF-end frame is also a broadcast address.
  • the first communication device sends a third synchronization frame to the plurality of awake second communication devices when the channel is idle, the third synchronization frame carrying a subchannel resource indication of each awake second communication device And an identifier of each awake second communication device, and the receiving address of the third synchronization frame is a broadcast address, the third synchronization frame is used to indicate that the plurality of awake second communication devices are receiving the After the third synchronization frame is separated by the first preset duration, the channel is simultaneously accessed according to the corresponding subchannel resource indication.
  • the second communication device that is awake is multiple, and the first communication device sends a third synchronization frame to the plurality of awake second communication devices, where the receiving address of the third synchronization frame is broadcast.
  • An address therefore, each of the awakened second communication devices can receive the third synchronization frame, and additionally, the third synchronization frame carries a subchannel resource indication and each of each awakened second communication device.
  • the identifier of the awakened second communication device and therefore, after each of the awake second communication devices receives the third synchronization frame, combined with the subchannel resource indication corresponding to the third synchronization frame, corresponding to The access channel on the subchannel resource, that is, in the implementation manner, after receiving the third synchronization frame and spacing the first preset duration, the plurality of awake second communication devices can simultaneously perform uplink multi-use transmission to simultaneously access Channels, such as Orthogonal Frequency Duplex Multiple Access (OFDMA) transmission or multi-user Multiple Input Multiple In (Multiple Users Multiple In Put Multiple Output
  • the third synchronization frame may be a multi-site CTS frame, a multi-site RTS frame, or a trigger frame.
  • the receiving addresses of the multi-site CTS frame, the multi-site RTS frame and the trigger frame are broadcast addresses, and the multi-site CTS frame
  • the multi-site RTS frame and the trigger frame each carry an identifier of each awake second communication device and a subchannel resource indication of each awake second communication device.
  • the trigger frame includes a plurality of user information fields, and the plurality of awake second communication devices simultaneously perform OFDMA or Mu-MIMO according to the subchannel resource indication of the trigger frame.
  • the transmission wakes up the report frame.
  • multiple awake second communication devices can be scheduled at the same time, which improves the efficiency of accessing channels by multiple awake second communication devices.
  • the first communication device sends an L-Preamble to the plurality of awake second communication devices when the channel is idle, the L-Preamble carrying the first indication information and the plurality of awake second communication devices a check code field or a partial bit of the wake-up frame received by the wake-up receiver for waking up the main transceivers of the plurality of second communication devices, the first indication information being used for the second plurality of awakened
  • the communication device indicates that the L-Preamble is a synchronization frame, and the check code field or part of the bit is used to indicate an identifier of the plurality of awake second communication devices; the L-Preamble is used to indicate the multiple The awakened second communication device performs a backoff procedure to contend for the access channel after receiving the L-Preamble and spacing for a second preset duration.
  • the synchronization frame is an L-Preamble carrying the first indication information and a check code field or a partial bit of the wake-up frame, where the wake-up frame is a master for waking up multiple second communication devices.
  • a wake-up frame of the transceiver where the first indication information is used to indicate to the plurality of awake second communication devices that the L-Preamble is a synchronization frame, and a check code field or a partial bit of the wake-up frame is used to indicate the multiple The identity of the second communication device that wakes up.
  • the first communication device When transmitting the L-Preamble, the first communication device sends an L-Preamble to the plurality of awake second communication devices, and the plurality of awake second communication devices receive the L-Preamble and are separated by the second pre- After the duration is set, the backoff process is performed to compete for the access channel.
  • the second preset duration is the DIFS duration, and of course, other durations. If the channel is idle within the second preset time period, the plurality of awake second communication devices perform a backoff procedure to contend for the access channel, for example, sending a wake-up report frame to the first communication device, and the like.
  • the schematic diagram of the second communication device accessing the channel that is awake may be as shown in FIG. 8.
  • the first communication device may send a synchronization frame to the plurality of awake second communication devices one by one when the channel is idle, and the synchronization frame sent to each awake second communication device carries the corresponding awakened first
  • the identifier of the second communication device and the first indication information is a simple example to briefly introduce the "send one by one" process:
  • the wake-up frame sent by the AP includes the identifiers of the four sites, and the site identifiers in the wake-up frames are sequentially identified as the A-site identifiers.
  • the identification of Site B, the identification of Site C, and the identification of Site D that is, A is the first rank site, and B, C, and D are the sites of the second, third, and fourth ranks respectively;
  • A, B, and C are stations with channel synchronization requirements (that is, the three stations A, B, and C send channel synchronization requests to the AP when the MR is not sleeping, requesting the AP to assist itself to quickly access the channel without waiting for the probe delay. Time)
  • D is the site without channel synchronization requirements.
  • the AP first sends the first synchronization frame to the station A (or any designated station), and then the station A returns the wake-up report frame to the AP after receiving the synchronization frame and spacing the SIFS time. Then, the AP continues to send the synchronization frame to the site B. The site B receives the synchronization frame and returns the wake-up report frame to the AP after the interval of the SIFS interval. Then, the AP sends the synchronization frame to the site C, and the site C receives the synchronization frame and intervals the SIFS. After the duration, return to the AP to wake up to report the frame.
  • the site D since the site D does not send a channel synchronization request to the AP, the AP does not need to send a synchronization frame to the site D, and the site D needs to wait for the probe delay time to preempt the channel to send the wakeup report frame.
  • the synchronization frame may be any one of an L-Preamble, a CTS frame, an RTS frame, and a trigger frame.
  • the scenario is a wake-up of a single device or a scenario of multi-device wake-up
  • the first communication device is in the idle channel.
  • the synchronization frame is sent to the second communication device that is awake in combination with the wake-up time of the second communication device that is known by itself, so as to trigger the second communication device that is awake to access the channel without waiting for the probe delay time, thereby saving the The latency of the MR of the awake second communication device reduces the power consumption of the second communication device.
  • the first communication device sends the first synchronization frame to any one of the plurality of awake second communication devices to trigger the plurality of awake second communication devices without waiting for the probe delay time.
  • the channel can be accessed, which greatly reduces the transmission time of the synchronization frame, and also ensures that a plurality of awake second communication devices can quickly access the channel.
  • FIG. 9 is a schematic structural diagram of an apparatus for indicating a channel access according to the present application.
  • the indication device of the channel access may be integrated in the first communication device of the foregoing method embodiment, and may also be the first communication device, and the indication device may be implemented by software, hardware or a combination of software and hardware.
  • the apparatus includes: a receiving module 11, a processing module 12, and a transmitting module 13.
  • the receiving module 11 is configured to receive a channel synchronization request sent by the second communications device, where the channel synchronization request is used to request the first communications device to send a synchronization frame to the second communications device, where the second communications device Configuring a wake-up receiver;
  • the processing module 12 is configured to, according to the channel synchronization request and the awake time of the second communication device that is learned by the first communications device according to the preset signaling, instructing the sending module 13 to be
  • the waking second communication device sends the synchronization frame, where the synchronization frame is used to indicate that the awake second communication device accesses the channel after receiving the synchronization frame.
  • the sending module 13 is specifically configured to: when the channel is idle, to wake up to any one of the plurality of awake second communication devices
  • the communication device sends a first synchronization frame, the first synchronization frame carrying an identifier of the any one of the awakened second communication devices, the first synchronization frame being used to indicate the second communication device that is awake And accessing the channel after receiving the first synchronization frame and spacing the first preset duration.
  • the first synchronization frame is any one of a clear transmission CTS frame, a request to send an RTS frame, and a trigger frame.
  • the sending module 13 is specifically configured to send, when the channel is idle, a second synchronization frame to the multiple awake second communication devices, where
  • the second synchronization frame is configured to indicate that each second communication device that is awake performs a backoff procedure to compete for an access channel after receiving the second synchronization frame and is separated by a second preset duration, and the second synchronization frame is received.
  • the address is a broadcast address.
  • the second synchronization frame is any one of a CTS frame, an RTS frame, and a CF-end frame.
  • the CTS frame may carry the second indication information, where the second indication information is used to indicate the CTS frame to the awakened second communication device as a synchronization frame.
  • the awake second communication device is multiple, and the sending module 13 is configured to send a third synchronization frame to the plurality of awake second communication devices when the channel is idle.
  • the third synchronization frame carries a subchannel resource indication of each awake second communication device and an identifier of each awake second communication device, and the receiving address of the third synchronization frame is a broadcast address, the third synchronization The frame is configured to indicate that the plurality of awake second communication devices, after receiving the third synchronization frame and spacing the first preset duration, indicate that the channel is simultaneously accessed according to the corresponding subchannel resource indication.
  • the third synchronization frame is any one of a multi-site CTS frame, a multi-site RTS frame, and a trigger frame.
  • the awake second communication device is multiple
  • the sending module 13 is configured to send a traditional physical layer preamble L-Preamble to the plurality of awake second communication devices when the channel is idle.
  • the L-Preamble carries the first indication information and a check code of the wake-up frame received by the wake-up receiver of the plurality of awake second communication devices for waking up the main transceivers of the plurality of second communication devices a field or a partial bit
  • the first indication information is used to indicate to the plurality of awake second communication devices that the L-Preamble is a synchronization frame
  • the check code field or the partial bits are used to indicate An identifier of the plurality of awake second communication devices
  • the L-Preamble is configured to instruct the multiple awake second communication devices to perform after receiving the L-Preamble and spacing the second preset duration The backoff process competes for access to the channel.
  • the synchronization frame is a traditional physical layer preamble L-Preamble
  • the L-Preamble carries the first indication information and the awakened second communication.
  • a check code field or a partial bit of the wake-up frame received by the device where the first indication information is used to indicate to the second communications device that the L-Preamble is a synchronization frame, and the check code field Or the partial bits are used to indicate the identity of the awakened second communication device.
  • the synchronization frame is any one of a clear sending CTS frame, a request to send an RTS frame, and a trigger frame, where the synchronization frame carries the awakened first The identity of the second communication device.
  • the first preset duration is an SIFS period.
  • the second preset duration is a DIFS period.
  • the receiving module 11 is configured to receive an association request frame sent by the second communications device, where the association request frame carries indication information of a channel synchronization request of the second communications device.
  • the receiving module 11 is configured to receive a management frame or a control frame that is sent by the second communications device, where the management frame or the control frame carries the indication information of the channel synchronization request.
  • the apparatus for indicating the channel access provided by the present application may perform the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of an embodiment of a pointing device for a channel access according to the present application.
  • the pointing device for the channel access may be the first communications device in the foregoing method embodiment.
  • the first communication device includes a receiver 20, a memory 21, a processor 22, a transmitter 23, and at least one communication bus 24.
  • Communication bus 24 is used to implement a communication connection between the components.
  • the memory 21 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various programs may be stored for performing various processing functions and implementing the method steps of the present embodiment.
  • the receiver 20 is configured to receive a channel synchronization request sent by the second communications device, where the channel synchronization request is used to request the first communications device to send synchronization to the second communications device.
  • a frame the second communication device configured to wake up the receiver;
  • the processor 22 is configured to indicate, according to the channel synchronization request and the awake time of the second communication device that is learned by the first communications device according to the preset signaling, that the transmitter 23 is The waking second communication device sends the synchronization frame, where the synchronization frame is used to indicate that the awake second communication device accesses the channel after receiving the synchronization frame.
  • the transmitter 23 is specifically configured to be used to wake up to any one of the plurality of awake second communication devices when the channel is idle.
  • the communication device sends a first synchronization frame, the first synchronization frame carrying an identifier of the any one of the awakened second communication devices, the first synchronization frame being used to indicate the second communication device that is awake And accessing the channel after receiving the first synchronization frame and spacing the first preset duration.
  • the first synchronization frame is any one of a clear transmission CTS frame, a request to send an RTS frame, and a trigger frame.
  • the transmitter 23 is specifically configured to send, when the channel is idle, a second synchronization frame to the multiple awake second communication devices, where
  • the second synchronization frame is configured to indicate that each second communication device that is awake performs a backoff procedure to compete for an access channel after receiving the second synchronization frame and is separated by a second preset duration, and the second synchronization frame is received.
  • the address is a broadcast address.
  • the second synchronization frame is any one of a CTS frame, an RTS frame, and a CF-end frame.
  • the CTS frame may carry the second indication information, where the second indication information is used to indicate the CTS frame to the awakened second communication device as a synchronization frame.
  • the second communication device that is awake is multiple, and the transmitter 23 is configured to send, when the channel is idle, a third synchronization frame to the multiple awake second communication devices, where the The third synchronization frame carries a subchannel resource indication of each awake second communication device and an identifier of each awake second communication device, and the receiving address of the third synchronization frame is a broadcast address, the third synchronization The frame is configured to indicate that the plurality of awake second communication devices, after receiving the third synchronization frame and spacing the first preset duration, indicate that the channel is simultaneously accessed according to the corresponding subchannel resource indication.
  • the third synchronization frame is any one of a multi-site CTS frame, a multi-site RTS frame, and a trigger frame.
  • the awake second communication device is multiple, and the transmitter 23 is configured to send a traditional physical layer preamble L-Preamble to the plurality of awake second communication devices when the channel is idle.
  • the L-Preamble carries the first indication information and a check code of the wake-up frame received by the wake-up receiver of the plurality of awake second communication devices for waking up the main transceivers of the plurality of second communication devices a field or a partial bit, the first indication information is used to indicate to the plurality of awake second communication devices that the L-Preamble is a synchronization frame, and the check code field or the partial bits are used to indicate An identifier of the plurality of awake second communication devices; the L-Preamble is configured to instruct the multiple awake second communication devices to perform after receiving the L-Preamble and spacing the second preset duration The backoff process competes for access to the channel.
  • the synchronization frame is a traditional physical layer preamble L-Preamble
  • the L-Preamble carries the first indication information and the awakened second communication.
  • a check code field or a partial bit of the wake-up frame received by the device where the first indication information is used to indicate to the second communications device that the L-Preamble is a synchronization frame, and the check code field Or the partial bits are used to indicate the identity of the awakened second communication device.
  • the synchronization frame is any one of a clear sending CTS frame, a request to send an RTS frame, and a trigger frame, where the synchronization frame carries the awakened first The identity of the second communication device.
  • the first preset duration is an SIFS period.
  • the second preset duration is a DIFS period.
  • the receiver 20 is configured to receive an association request frame sent by the second communications device, where the association request frame carries indication information of a channel synchronization request of the second communications device.
  • the receiver 20 is configured to receive a management frame or a control frame that is sent by the second communications device, where the management frame or the control frame carries the indication information of the channel synchronization request.
  • the apparatus for the channel access provided by the present application may perform the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • the steps of the method or algorithm described in connection with the disclosure of the present application may be implemented in a hardware manner, or may be implemented by a processor executing a software instruction, or may be implemented by a computer program product.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment. Of course, the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.
  • the disclosed systems, devices, and methods may be implemented in other manners without departing from the scope of the present application.
  • the embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not executed.
  • the units described as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. .
  • Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the described systems, devices, and methods, and the schematic diagrams of various embodiments may be combined or integrated with other systems, modules, techniques or methods without departing from the scope of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electronic, mechanical or other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信道接入的指示方法和设备。该方法包括:第一通信设备接收第二通信设备发送的信道同步请求,所述信道同步请求用于请求所述第一通信设备向所述第二通信设备发送同步帧,所述第二通信设备配置唤醒接收机;所述第一通信设备根据所述信道同步请求和所述第一通信设备根据预设信令所获知的第二通信设备的被唤醒时间,在信道空闲时向被唤醒的第二通信设备发送所述同步帧,所述同步帧用于指示所述被唤醒的第二通信设备在接收到所述同步帧后接入信道。本申请提供的方法,第二通信设备在被唤醒时无需等待probe delay时间就可以接入信道,其大大缩短了第二通信设备的主收发机的等待时间,节省了第二通信设备因等待导致的功耗开销。

Description

信道接入的指示方法和设备
本申请要求于2017年3月23日提交中国专利局、申请号为201710179619.7、申请名称为“信道接入的指示方法和设备的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种信道接入的指示方法和设备。
背景技术
在无线保真(Wireless-Fidelity,简称WiFi)网络中,接收端设备相当一部分能量浪费在无接收信号时的监听(idle listening),即当站点(Station,简称STA)没有消息收发时,若持续监听信道将会消耗大量的能量,因此通信标准中引入了休眠机制(Sleep Schedule)使得STA在无数据收发时可以进入深度休眠(Deep Sleep)状态,以减少持续监听的能耗。但是当STA处于深度休眠时,接入点(Access Point,简称AP)无法与STA通信,只有等到STA苏醒后两者之间才能进行传输,这可能会导致一定的时延(latency)。为了避免休眠机制导致的高时延,STA通常会遵循一定的休眠策略周期醒来检查有无数据需要接收,然而这又降低了STA的休眠效率。
因此,除了上述优化休眠策略外,减少设备idle listening的能量浪费的另一条技术途径是使用WUR,其核心思想是:接收端设备除包含传统802.11主收发模块外,新增低功耗唤醒接收机(Wake up Receiver,简称WUR)部分,该传统的802.11收发模块即为802.11主无线电(Main Radio,简称MR)或者主收发机,如图1所示。当802.11MR进入深度休眠后,低功耗的WUR苏醒开始工作,如果AP需要与带有WUR和802.11MR的STA进行通信,AP首先给WUR发送唤醒帧(Wake Up Packet,简称WUP),WUR正确收到发给自己的WUP后唤醒该STA的802.11MR,AP则与苏醒的802.11MR进行通信。当802.11MR与AP通信完成后重新进入休眠,同时WUR又开始侦听是否有发送给自己的WUP,以便再次唤醒802.11MR。该技术采用了低功耗的WUR代替802.11MR在媒介空闲时侦听信道,有效降低了设备在监听时能量的浪费。
上述配备唤醒接收机的站点的MR属于传统的802.11设备,通常来说需满足802.11协议规定的节能机制。其中一条是,站点的MR醒来时需要等待探测等待时延时间(probe delay)或者侦听一个携带用于更新非目标站点网络分配向量(Network allocation vector,NAV)字段的帧,才能开始执行空闲信道评估(Clear Channel Assessment,CCA),主动抢占信道向AP发送数据包(即接入信道),从而避免该站点的MR醒来时直接抢占信道发送数据与隐藏节点和AP正在进行的通信发生碰撞。
但是,上述站点的MR在醒来后接入信道时等待probe delay时间过长,导致站点的功耗较大。
发明内容
本申请提供的信道接入的指示方法和设备,用以解决现有技术种站点的MR在醒来后接入信道时等待probe delay时间过长,导致站点的功耗较大的技术问题。
第一方面,本申请提供一种信道接入的指示方法,包括:
第一通信设备接收第二通信设备发送的信道同步请求,所述信道同步请求用于请求所述第一通信设备向所述第二通信设备发送同步帧;所述第二通信设备配置唤醒接收机;
所述第一通信设备根据所述信道同步请求和所述第一通信设备根据预设信令所获知的第二通信设备的被唤醒时间,在信道空闲时向被唤醒的第二通信设备发送所述同步帧,所述同步帧用于指示所述被唤醒的第二通信设备在接收到所述同步帧后接入信道。
上述第一方面提供的信道接入的指示方法,通过第二通信设备向第一通信设备发送信道同步请求,以请求第一通信设备协助自己快速接入信道,因此,第一通信设备在接收到该信道同步请求后,根据所获知的第二通信设备的被唤醒时间,在确定第二通信设备醒来、且信道空闲时向第二通信设备发送同步帧,以触发第二通信设备无需等待probe delay时间就可以接入信道,其大大缩短了第二通信设备的MR的等待时间,节省了第二通信设备因等待导致的功耗开销。
在一种可能的设计中,所述被唤醒的第二通信设备为多个,所述在信道空闲时向被唤醒的第二通信设备发送所述同步帧,具体包括:
所述第一通信设备在信道空闲时向多个被唤醒的第二通信设备中的任一个被唤醒的第二通信设备发送一个第一同步帧,所述第一同步帧携带所述任一个被唤醒的第二通信设备的标识,所述第一同步帧用于指示所述任一个被唤醒的第二通信设备在接收到所述第一同步帧并间隔第一预设时长后接入信道。可选的,所述第一同步帧为清除发送CTS帧、请求发送RTS帧、触发帧中的任一种。
在一种可能的设计中,所述被唤醒的第二通信设备为多个,所述在信道空闲时向被唤醒的第二通信设备发送所述同步帧,具体包括:
所述第一通信设备在信道空闲时向多个被唤醒的第二通信设备发送一个第二同步帧,所述第二同步帧用于指示每个被唤醒的第二通信设备在接收到所述第二同步帧并间隔第二预设时长后执行退避过程以竞争接入信道,所述第二同步帧的接收地址为广播地址。所述第二同步帧的接收地址为广播地址。可选的,所述第二同步帧为CTS帧、RTS帧和CF-end帧中的任一种。
结合上述两种可能的设计,所述CTS帧可以携带第二指示信息,所述第二指示信息用于向所述被唤醒的第二通信设备指示所述CTS帧为同步帧。
在一种可能的设计中,所述被唤醒的第二通信设备为多个,所述在信道空闲时向被唤醒的第二通信设备发送所述同步帧,具体包括:
所述第一通信设备在信道空闲时向多个被唤醒的第二通信设备发送一个第三同步帧,所述第三同步帧携带每个被唤醒的第二通信设备的子信道资源指示和每个被唤醒的第二通信设备的标识,且所述第三同步帧的接收地址为广播地址,所述第三同步帧用于指示多个被唤醒的第二通信设备在接收到所述第三同步帧并间隔第一预设时长后,根据各自对应的子信道资源指示同时接入信道。可选的,所述第三同步帧为多站点CTS帧、多站点RTS帧和触发帧中的任一种
在一种可能的设计中,所述被唤醒的第二通信设备为多个,所述在信道空闲时向被唤醒的第二通信设备发送所述同步帧,具体包括:
所述第一通信设备在信道空闲时向多个被唤醒的第二通信设备发送一个传统的物理层前导码L-Preamble,所述L-Preamble携带第一指示信息和所述多个被唤醒的第二通信设备的唤醒接收机接收到的用于唤醒多个第二通信设备的主收发机的唤醒帧的校验码字段或部分比特,所述第一指示信息用于向所述多个被唤醒的第二通信设备指示所述L-Preamble为同步帧,所述校验码字段或者所述部分比特均用于指示所述多个被唤醒的第二通信设备的标识;
所述L-Preamble用于指示所述多个被唤醒的第二通信设备在接收到所述L-Preamble并间隔第二预 设时长后执行退避过程以竞争接入信道。
在一种可能的设计中,若所述被唤醒的第二通信设备为一个,所述同步帧为传统物理层前导码L-Preamble,所述L-Preamble携带第一指示信息和所述被唤醒的第二通信设备的唤醒接收机接收到的唤醒帧的校验码字段或者部分比特,所述第一指示信息用于向所述第二通信设备指示所述L-Preamble为同步帧,所述校验码字段或者所述部分比特均用于指示所述被唤醒的第二通信设备的标识。
可选的,若上述被唤醒的第二通信设备为一个,所述同步帧为清除发送CTS帧、请求发送RTS帧、触发帧中的任一个,所述同步帧携带所述被唤醒的第二通信设备的标识。
在一种可能的设计中,所述第一通信设备接收第二通信设备发送的信道同步请求,具体包括:
所述第一通信设备接收所述第二通信设备发送的关联请求帧,所述关联请求帧中携带所述第二通信设备的信道同步请求的指示信息。
在一种可能的设计中,所述第一通信设备接收第二通信设备发送的信道同步请求,具体包括:
所述第一通信设备接收所述第二通信设备发送的管理帧或者控制帧,所述管理帧或者控制帧中携带信道同步请求的指示信息。
综上所述,无论是针对单设备唤醒的场景,还是多设备唤醒的场景,只要第二通信设备在未休眠之前向第一通信设备发送了信道同步请求,第一通信设备在信道空闲时,就会结合自身所获知的第二通信设备的被唤醒时间向被唤醒的第二通信设备发送同步帧,以触发被唤醒的第二通信设备无需等待probe delay时间就可以接入信道,节省了被唤醒的第二通信设备的MR的等待时间,降低了第二通信设备的功耗。并且,上述第一通信设备通过向多个被唤醒的第二通信设备中的任一个第二通信设备发送第一同步帧,以触发多个被唤醒的第二通信设备均无需等待probe delay时间就可以接入信道,其大大减少了同步帧的传输时间,也保证了多个被唤醒的第二通信设备能够快速接入信道。
第二方面,为了实现上述第一方面的信道接入的指示方法,本申请实施例提供了一种信道接入的指示设备,该设备可以为上述第一通信设备,该第一通信设备可以是站点,还可以是AP,该设备具有实现上述信道接入的指示方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在第二方面的一种可能的实现方式中,该信道接入的指示设备包括多个功能模块或单元,用于实现上述第一方面中的任一种信道接入的指示方法。
在第二方面的另一种可能的实现方式中,该信道接入的指示设备的结构中可以包括处理器、接收器和发送器(或者收发器)。所述处理器被配置为支持该设备执行上述第一方面中任一种信道接入的指示方法中相应的功能。所述收发器用于支持该设备与其他网络设备或者终端设备之间的通信,例如可以为相应的射频模块或者基带模块。该设备中还可以包括存储器,所述存储器用于与处理器耦合,其保存该信道接入的指示设备执行上述信道接入的指示方法必要的程序指令和数据。
第三方面,本申请实施例提供了一种计算机存储介质,用于储存为上述信道接入的指示设备所用的计算机软件指令,其包含用于执行上述第一方面所设计的程序。
第四方面,本申请实施例提供一种计算机程序产品,其包含指令,当所述计算机程序被计算机所执行时,该指令使得计算机执行上述方法中第一通信设备所执行的功能。
相较于现有技术,本申请提供的信道接入的指示方法和设备,通过第二通信设备向第一通信设备发送信道同步请求,以请求第一通信设备协助自己快速接入信道,因此,第一通信设备在接收到该信道同步请求后,根据所获知的第二通信设备的被唤醒时间,在确定第二通信设备醒来、且信道空闲时向第二通信设备发送同步帧,以触发第二通信设备无需等待probe delay时间就可以接入信道,其大大缩短了 第二通信设备的MR的等待时间,节省了第二通信设备因等待导致的功耗开销。
附图说明
图1为本申请提供的配备唤醒接收机的站点的结构示意图;
图2为本申请提供的WLAN系统的结构示意图;
图3为本申请提供的隐藏站点发送数据时的信道接入示意图;
图4为本申请提供的隐藏站点未发送数据时的信道接入示意图;
图5为本申请提供的信道接入的指示方法实施例的流程示意图;
图6为本申请提供的同步帧触发的信道接入示意图;
图7为本申请提供的单设备唤醒场景下的信道接入示意图;
图8为本申请提供的多设备唤醒场景下的信道接入示意图;
图9为本申请提供的信道接入的指示装置实施例的结构示意图;
图10为本申请提供的信道接入的指示设备实施例的结构示意图。
具体实施方式
本申请可以应用于无线局域网络(Wireless Local Area Networks,简称WLAN),目前WLAN采用的标准为电气和电子工程师协会(Institute of Electrical and Electronics Engineers,简称IEEE)802.11系列。其中,站点(Station,简称STA)和接入点(Access Point,简称AP)是WLAN的基本组成单元。
其中,AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体地,AP可以是带有WiFi(英文:Wireless Fidelity,中文:无线保真)芯片的终端设备或者网络设备。可选地,AP可以为支持802.11ax制式的设备,进一步可选地,该AP可以为支持802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式的设备,本实施例中对AP所支持的制式类型并不做限定。
STA在WLAN中一般为客户端设备。STA可以是移动的,也可以是固定的,是无线局域网的最基本组成单元,该STA可以是无线通讯芯片、无线传感器或无线通信终端。例如:支持WiFi通讯功能的移动电话、支持WiFi通讯功能的平板电脑、支持WiFi通讯功能的机顶盒、支持WiFi通讯功能的智能电视、支持WiFi通讯功能的智能可穿戴设备、支持WiFi通讯功能的车载通信设备和支持WiFi通讯功能的计算机。
图2为本申请提供的WLAN系统的结构示意图,如图2所示,WLAN系统中1个AP可以与多个STA(图中以3个为例)进行信息交互,其中包括STA1、STA2和STA3。当然,也并不局限于此,1个AP还可以与一个或多个STA组进行信息交互,多个STA之间也可以进行交互。
需要说明的是,本申请所涉及的第一通信设备和第二通信设备可以均配置802.11主无线电MR(或者主收发机)和唤醒接收机WUR,也可以是第一通信设备配置主收发机,第二通信设备配置主收发机和唤醒接收机。第一通信设备和第二通信设备均可以参见图1所示的结构。本申请中的第一通信设备可以是AP,也可以是STA,第二通信设备可以是STA,也可以是AP。当第一通信设备为AP时,第二通信设备为STA,当第一通信设备为STA时,第二通信设备为AP。下述实施例均以第一通信设备为 AP、第二通信设备为STA为例来说明。
一般的,MR的苏醒包括主动苏醒和被动苏醒,本申请针对的是MR的被动苏醒,该被动苏醒的过程具体可以为:AP向关联于该AP的至少一个站点STA发送唤醒帧(Wake Up Packet,简称WUP),该WUP可以用于指示被唤醒的至少一个站点的MR从休眠状态被唤醒后的接收参数,比如接收模式指示、被唤醒的时间指示等等;WUR接收到AP发送的唤醒帧(WUP)之后对该站点的MR进行唤醒。当STA的MR被唤醒后,MR发送PS-Poll帧或者确认帧给AP,告诉AP自己已醒来,然后AP回确认(ACK)响应或者直接传送数据给该站点的MR,可选的,AP也可以直接在站点的MR被唤醒后,直接发送数据帧给该站点的MR,而无需等候该站点的MR发送PS-Poll帧;或者,AP也可以发送请求发送(request to send,RTS)消息给被唤醒的站点的MR,然后站点的MR清除发送(clear to send,CTS)消息给AP。另外,本申请不限制是AP发送WUP给非AP站点(non-AP STA),也可以是non-AP STA发送WUP给AP。
上述配备唤醒接收机的站点的MR属于传统的802.11设备,通常需满足802.11协议规定的节能机制。其中一条是,站点的MR醒来时需要等待探测等待时延时间(probe delay)或者侦听一个携带用于更新非目标站点网络分配向量(Network allocation vector,NAV)字段的的帧,才能开始执行空闲信道评估(Clear Channel Assessment,CCA),主动抢占信道向AP发送数据包(即接入信道),从而避免该站点的MR醒来时直接抢占信道发送数据与隐藏节点和AP正在进行的通信发生碰撞。举例来说,如图3所示,站点1和站点2互为隐藏节点,即侦听不到对方发送的数据包。站点2的MR醒来时如果在探测等待时延内发送数据给AP,此时站点2发送的数据将会干扰AP接收站点1的数据。如果站点1和站点2不是互为隐藏节点的话,站点2的MR若侦听到站点1正在发送数据,则不会去抢占信道发送数据,也就不会发生前述提到的碰撞。因此该机制在该情况下为了避免站点醒来发送的数据与隐藏节点的通信发生碰撞,规定站点醒来时需等待probe delay时间(图3中示出的是站点2为了避免和站点1发送的数据发生碰撞,在醒来后等待probe delay时间才发送数据的情况),该时间等于最长物理层汇聚过程协议数据单元(Physical Layer Convergence Procedure Protocol Data Unite,PPDU)传输时间、短帧间隔(Short Interframe Space,SIFS)以及确认帧(Ack)的传输时间之和。
但是,上述MR醒来的等待机制,经常会存在一种情况,即在一个站点的MR醒来处于等待状态时,另一个隐藏的站点实际上并未与AP进行数据传输,参见图4所示,站点2的隐藏站点(即站点1)没在发送数据,此时站点2的这种等待无疑大大浪费了站点2的能量,站点2的功耗较大。而对于配备纽扣电池的站点(例如配备纽扣电池的传感器),其对功耗要求非常严格,期望该纽扣电池能工作1年以上,如果该类站点的MR醒来后,仍盲目等待probe delay时间再抢占信道发送数据将损耗其电量,非常不利于节能。
因此,本申请提供的信道接入的指示方法和设备,旨在解决现有技术中站点的MR在醒来后接入信道时,盲目等待probe delay时间过长,导致站点的功耗较大的技术问题。
应当理解,尽管在本发明实施例中可能采用术语第一、第二、第三等来描述XXX,但这些XXX不应限于这些术语。这些术语仅用来将XXX彼此区分开。例如,在不脱离本发明实施例范围的情况下,第一XXX也可以被称为第二XXX,类似地,第二XXX也可以被称为第一XXX。
下面以具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图5为本申请提供的信道接入的指示方法实施例的流程示意图。本实施例涉及的是为了缩短第二通信设备醒来后等待的时间,第二通信设备通过向第一通信设备发送信道同步请求,使得第一通信设备结 合所获知的第二通信设备被唤醒时间,向被唤醒的第二通信设备发送同步帧,进而使得第二通信设备能够根据该同步帧确定无需等待probe delay时间就可以接入信道的具体过程。如图5所示,该方法包括如下步骤:
S101:第一通信设备接收第二通信设备发送的信道同步请求,所述信道同步请求用于请求所述第一通信设备向所述第二通信设备发送同步帧。
其中,所述第二通信设备配置唤醒接收机。
具体的,第二通信设备为了节省功耗,其在未休眠之前向第一通信设备发送一信道同步请求,该信道同步请求用于请求第一通信设备向第二通信设备发送同步帧,当第一通信设备收到该信道同步请求后,可以向第二通信设备回复同步响应帧。需要说明的是,该信道同步请求可以显式的请求第一通信设备发送同步帧,例如该信道同步请求直接告知第一通信设备需要获取第一通信设备的同步帧,使得第一通信设备能够协助第二通信设备在唤醒后快速接入信道,可选的,该信道同步请求还可以是隐式的请求第一通信设备发送同步帧,例如可以在信道同步请求中携带第二通信设备的功耗信息,告知第一通信设备第二通信设备的功耗要求比较严格,需要第一通信设备发送同步帧,以协助第二通信设备在MR唤醒后无需等待probe delay时间就可以接入信道。本申请对信道同步请求的形式并不做限定。
可选的,上述第一通信设备接收第二通信设备发送的信道同步请求,可以有以下几种实现方式:
第一种实现方式:第一通信设备接收第二通信设备发送的关联请求帧,该关联请求帧中携带了第二通信设备的信道同步请求的指示信息。
该实现方式中,第二通信设备在与第一通信设备的关联阶段,通过向第一通信设备发送关联请求帧,以将信道同步请求发送给第一通信设备,该关联请求帧中携带了第二通信设备的信道同步请求的指示信息。可选的,该指示信息可以是显式的指示信息,还可以是隐式的第二通信设备的功耗信息。
第二种实现方式:第一通信设备接收第二通信设备发送的管理帧或者控制帧,可选的,第二通信设备可以在自身的电量小于预设电量阈值时向第一通信设备发送管理帧或者控制帧,该管理帧或者控制帧中携带信道同步请求的指示信息,可选的,若第一通信设备发送的是管理帧,则指示信息可以为管理帧中的同步请求元素。可选的,还可以在数据帧中的某个字段中携带该信道同步请求的指示信息。
S102:第一通信设备根据所述信道同步请求和所述第一通信设备根据预设信令所获知的第二通信设备的被唤醒时间,在信道空闲时向被唤醒的第二通信设备发送所述同步帧,所述同步帧用于指示所述被唤醒的第二通信设备在接收到所述同步帧后接入信道。
具体的,在某个阶段,第二通信设备的MR进入休眠状态,若第一通信设备需要和第二通信设备的MR进行通信,例如发送下行数据给第二通信设备的MR,此时第一通信设备可以通过向第二通信设备的唤醒接收机(WUR)发送唤醒帧(WUP)来唤醒第二通信设备的MR。第二通信设备的唤醒接收机接收到该唤醒帧后,触发其主收发机醒来。可选的,该唤醒帧中可以携带第二通信设备的唤醒接收机的醒来时刻,以指示第二通信设备的唤醒接收机在指定的醒来时刻醒来。
本申请中,第一通信设备可以根据预设信令获知第二通信设备的被唤醒时间,可选的,该预设信令可以是上述唤醒帧,当上述唤醒帧中携带了第二通信设备的唤醒接收机的醒来时刻时,第一通信设备可以基于自己发送给第二通信设备的唤醒帧获知第二通信设备的被唤醒时间,可选的,当上述唤醒帧中未携带第二通信设备的唤醒接收机的醒来时刻,第一通信设备可以通过该唤醒帧的发送时刻预估出第二通信设备的被唤醒时间。可选的,上述预设信令还可以为其他信息,本申请实施例在此并不做限定。也就是说,上述第二通信设备的醒来时刻可以是第一通信设备的指定的时刻,还可以是预估的醒来时间。当第一通信设备根据第二通信设备的被唤醒时间确定第二通信设备已经醒来之后(这里确定的第二通信设 备醒来不是被唤醒的第二通信设备告知给第一通信设备的,而是第一通信设备预估的或者指定的),在第二通信设备醒来的这一段时间内,第一通信设备检测信道是否空闲。
当第一通信设备检测到信道空闲时,第一通信设备向需要协助快速接入信道的第二通信设备发送同步帧,即向之前发送信道同步请求给第一通信设备的第二通信设备发送同步帧。当第二通信设备接收到该同步帧后,第二通信设备可以获知当前信道状况,。因此第二通信设备在该同步帧的触发下接入信道,可选的,该接入信道的方式可以是第二通信设备向第一通信设备发送醒来汇报帧,该醒来汇报帧可以是确认帧或者节能轮询(Power save poll,简称Ps-poll)帧,还可以是清除发送(Clear To Send,CTS)帧,本申请对醒来汇报帧的类型并不做限定。当第一通信设备接收到第二通信设备发送的醒来汇报帧之后,第一通信设备可以向第二通信设备发送响应确认帧或者直接发送下行数据第二通信设备。
可选的,本申请中,第二通信设备在接收到同步帧后接入信道,可以是第二通信设备接收到同步帧后直接接入信道,还可以是第二通信设备接收到同步帧并间隔预设时长后再接入信道,该预设时长可以是短帧间隔(Short interframe space,简称时长),还可以是分布协调帧间隔(Dstributed Cordination Function Inter-frame Space,简称DIFS),当然还可以是其他的时长,只要该预设时长小于probe delay时间即可。例如,可以参见图6所示,当AP获知站点2醒来时,AP检测到信道空闲,此时AP可以发送一个同步帧给被唤醒的站点2,站点2收到该同步帧,隔SIFS时间,则可以立即响应一个Ps-poll帧来告诉AP该站点2已醒,然后AP响应确认帧或者直接发送下行数据给该站点2。
可选的,若第一通信设备根据所获知的第二通信设备的被唤醒时间确定第二通信设备醒来的这一段时间内,第一通信设备如果检测到此时信道处于忙状态时,则第一通信设备不做任何操作,等到信道空闲时,并且此时还没收到第二通信设备的醒来汇报帧时,第一通信设备此时则继续向第二通信设备发送同步帧,以协助第二通信设备快速接入信道。
可选的,本申请中的同步帧,可以是针对一个被唤醒的第二通信设备快速接入信道的帧,例如,参见图6所示的例子,该同步帧也可以是针对多个被唤醒的第二通信设备快速接入信道的帧,本实施例对此并不做限定。
可选的,本实施例中,第一通信设备也可以根据自身所获知的第二通信设备的被唤醒时间,在第二通信设备醒来的这一段时间内检测信道是否空闲,并在检测到信道空闲时直接向第二通信设备发送同步帧,也就是说,可选的,第二通信设备可以无需向第一通信设备发送信道同步请求,或者第一通信设备无需等到第二通信设备发送了信道同步请求后才向第二通信设备发送同步帧。
由上述描述可知,本申请第二通信设备的MR在被唤醒后,无需等待probe delay时间,而是在接收到第一通信设备发送的同步帧之后就可以接入信道,因此,本申请大大缩短了第二通信设备的MR的等待时间,节省了第二通信设备因等待导致的功耗开销。
本申请提供的信道接入的指示方法,通过第二通信设备向第一通信设备发送信道同步请求,以请求第一通信设备协助自己快速接入信道,因此,第一通信设备在接收到该信道同步请求后,根据所获知的第二通信设备的被唤醒时间,在确定第二通信设备醒来、且信道空闲时向第二通信设备发送同步帧,以触发第二通信设备无需等待probe delay时间就可以接入信道,其大大缩短了第二通信设备的MR的等待时间,节省了第二通信设备因等待导致的功耗开销。
结合上述实施例的描述,下述几种可能的实施方式,从具体的帧结构介绍上述同步帧的具体实现方式,过程如下:
作为本申请实施例的第一种可能的实施方式,上述同步帧可以是携带第一指示信息的传统物理层前导码(Legacy Preamble,简称L-Preamble,不携带任何负载部分,该同步帧包括传统短训练字段、传统 长序列字段以及传统信令字段,参见表1a所示的802.11传统物理层前导码。如果以最低传输速率,即二进制相移键控调制(Binary Phase Shift Keying,BPSK),码率为0.5的卷积码计算,则该L-preamble传输时间为20us,该传输时间远远小于probe delay时间。其中,传统物理层前导码中传统信令字段包括4比特的速率字段、1比特的保留字段、12比特的长度字段、1比特的校验码字段以及6比特的尾部字段,如表1所示:
表1
速率 保留 长度 校验码 尾部
表1a
Figure PCTCN2018076999-appb-000001
表1b
Figure PCTCN2018076999-appb-000002
本实施例方式中的L-Preamble中携带了第一指示信息,该第一指示信息用于向第二通信设备指示该L-Preamble为同步帧,这样第二通信设备在接收到一个传统物理层前导码之后,就可以根据该传统物理层前导码中是否携带第一指示信息,来确定该传统物理层前导码是否为同步帧。可选的,该第一指示信息可以通过传统物理层前导码的长度字段实现,例如,将该长度字段的12个比特均设置为0,可选的,该第一指示信息还可以通过传统物理层前导码的保留比特来实现,即将传统物理层前导码的保留比特设置为1,即可标识该传统物理层前导码为同步帧,可选的,该第一指示信息还可以通过传统物理层前导码的速率字段实现,即目前协议中只使用了4比特速率字段中的8个值,这8个值可以参见下述表2所示,本实施方式可以通过将4比特速率字段设置为其他值来区分发送给第二通信设备的传统物理层前导码是同步帧,例如将速率字段设置为1111,该1111即为第一指示信息。
表2
Figure PCTCN2018076999-appb-000003
为了进一步区分该同步帧是发送给哪个第二通信设备,目前协议中的传统物理层前导码不携带接收地址,因此本实施方式提出在L-preamble携带间接的能够标识第二通信设备的间接地址信息,该间接的地址信息具体可以是:使用速率字段携带一个第二通信设备的唤醒帧的校验码字段或者部分比特,比如循环冗码校验字段(Cycle Redundancy Check,简称CRC)或者帧校验序列字段(Frame Check Sequence,简称FCS)中的4位比特,比如低4位。由于校验码字段或者FCS和唤醒帧是对应的,不同的唤醒帧的校验码字段或者帧校验序列字段是不同的,而不同的唤醒帧和不同的第二通信设备的标识是一一对应的,因此,可以通过校验码字段的不同或者部分比特的不同来区分不同的被唤醒的第二通信设备。
综上所述,本实施方式中,同步帧可以是传统物理层前导码,该传统物理层前导码携带上述第一指示信息和第二通信设备的唤醒接收机接收到的唤醒帧的校验码字段或者部分比特,当第二通信设备接收到传统物理层前导码之后,可以通过第一指示信息识别该传统物理层前导码为第一通信设备发送得同步帧,并且通过该传统物理层前导码中携带的唤醒帧的校验码字段或者部分比特,识别出该同步帧是否是发送给自己的同步帧。
可选的,在一种可选的方式中,上述同步帧还可以为另一个特殊的传统物理层前导码,该同步帧包括即该同步帧中包括传统短训练字段、传统长序列字段、传统信令字段以及一个二进制相移键控(Binary Phase Shift Keying,简称BPSK)调制的正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)符号,该BPSK调制的OFDM符号可以为该传统物理层前导码中的重复的传统信令字段乘以指定的随机序列(不为全1),比如为全-1;也可以为一个全新的BPSK调制的OFDM符号,该OFDM符号可以携带24比特信息(例如,基于BPSK调制,0.5码率的卷积编码),比如携带唤醒帧的校验比特或部分比特和上述第一指示信息。可选的,该同步帧的结构可以与参见下述表2a和表2b所示。
表2a
Figure PCTCN2018076999-appb-000004
表2b
Figure PCTCN2018076999-appb-000005
作为本申请实施例的第二种可能的实施方式,上述同步帧可以是CTS帧,该CTS帧的帧结构可以参见下述表3所示,如果以最低传输速率计算,考虑CTS的物理层前导码为传统物理层前导码,该CTS作为同步帧传输的传输时间则约为40us,传输时间短,小于probe delay时间。
表3
Figure PCTCN2018076999-appb-000006
可选的,该CTS帧可以不携带第二指示信息,只要是第一通信设备在接收到第二通信设备的信道同步请求,并在第二通信设备的MR醒来之后根据该信道同步请求发送的CTS帧即就是第一通信设备发送的同步帧,可选的,该CTS帧可以携带第二指示信息,该第二指示信息用于明确向被唤醒的第二通信设备指示该CTS帧为同步帧。该第二指示信息可以通过CTS帧的某个字段(或者某个比特)来指示该第二指示信息,例如,可以通过时长字段,将该时长字段设置为0(即第二指示信息),被唤醒的第二通信设备就可以识别该CTS帧是同步帧。
作为本申请实施例的第三种可能的实施方式,上述同步帧可以是RTS帧,该RTS帧的帧结构可以参见下述表4所示,该RTS帧中可以携带第二指示信息,用于向被唤醒的第二通信设备标识该RTS帧为同步帧。例如,第二指示信息可以通过下述表4中的时长字段来实现,当该时长字段设置为0时,表征当前的RTS帧为同步帧。如果以最低传输速率计算,考虑RTS的物理层前导码为传统物理层前导码,该RTS帧的传输时间则约为47us,该传输时间小于probe delay时间。
表4
Figure PCTCN2018076999-appb-000007
需要说明的是,上述第三种可能的实施方式,其复用了RTS/CTS交换流程,但是此时使用RTS/CTS的条件不再是后面传输的数据包的长度或时间达到某个门限,而是被唤醒的第二通信设备的主收发机与向AP发了信道同步请求信息。
作为本申请实施例的第四种可能的实施方式,上述同步帧可以为免竞争结束(Contention Free End,简称CF-end)帧。当第二通信设备的MR醒来之后,如果接收到第一通信设备发送的CF-end帧,则确定接收到了第一通信设备发送的同步帧。该CF-end帧的帧结构可以参见下述表5所示,其中,表5中的BSSID为基本服务集标识(Basic Service Set Identifier,简称BSSID)。如果以最低传输速率计算,考虑CF-end帧的物理层前导码为传统物理层前导码,传输时间则约为47us,该传输时间小于probe delay时间。该CF-end帧的接收地址为广播地址。
表5
Figure PCTCN2018076999-appb-000008
作为本申请实施例的第五种可能的实施方式,上述同步帧可以是802.11ax协议中的触发帧,如果以最低传输速率计算,考虑触发帧的物理层前导码为传统物理层前导码,传输时间则约为77us,该传输时间小于probe delay时间。该触发帧的帧结构可以参见下述表6所示:
表6
Figure PCTCN2018076999-appb-000009
上述几种可能的实施方式介绍了同步帧的具体实现方式,需要说明的是,上述同步帧的几种具体实现方式随着唤醒场景的不同会有一些改变,且不同的唤醒场景下,第一通信设备发送同步帧的方式可以不同。在实际的唤醒第二通信设备的MR时,唤醒场景可以分为单设备唤醒和多设备唤醒,其中,单设备唤醒指的是第一通信设备选择只唤醒一个第二通信设备的MR,其发送给第二通信设备的唤醒接收机的唤醒帧中仅携带一个第二通信设备的标识;多设备唤醒指的是第一通信设备发送的唤醒帧是针对多个第二通信设备的唤醒接收机的,其为多设备唤醒帧,该唤醒帧中携带多个第二通信设备的标识。下述结合不同的唤醒场景对同步帧的一些改变、同步帧的发送方式、不同的同步帧的发送方式对应的信道接入方式进行介绍。
(一)针对单设备唤醒的场景:该场景中,被唤醒的第二通信设备为一个。第二通信设备的MR未进入休眠之前,第二通信设备向第一通信设备发送信道同步请求,在某个阶段,第二通信设备的MR进入休眠状态,第一通信设备通过向第二通信设备的唤醒接收机发送唤醒帧以触发唤醒第二通信设备的MR。第一通信设备在接收到信道同步请求之后且在获知了第二通信设备的MR已经醒来时(这里的醒来时刻如前所述,是第一通信设备自己所预估或者自己指示的时间,并不是第二通信设备告知的),第一通信设备向单个第二通信设备的MR发送同步帧。第二通信设备接收到该同步帧后可以不用等待probe delay时间就可以接入信道。
在该场景下,该同步帧可以是上述携带第一指示信息和该唤醒帧的校验码字段或者其部分比特的L-Preamble,还可以是上述携带第二指示信息的CTS帧,该CTS帧中携带被唤醒的第二通信设备的标识,还可以是上述携带第二指示信息的RTS帧,该RTS帧中携带被唤醒的第二通信设备的标识,还可以是上述触发帧,该触发帧中携带被唤醒的第二通信设备的标识,例如,该触发帧的接收地址设置为该被唤醒的第二通信设备的地址,上述表5中的触发帧含有一个用户信息字段。当第二通信设备接收到该同步帧后,可以隔SIFS时长向第一通信设备响应Ack帧。
可选的,针对单设备唤醒场景的信道接入示意图,可以参见图7所示。
(二)针对多设备唤醒的场景:该场景中,被唤醒的第二通信设备为多个。多个第二通信设备的MR未进入休眠之前,每个第二通信设备均向第一通信设备发送信道同步请求,在某个阶段,这些第二通信设备的MR进入休眠状态,第一通信设备通过向这些第二通信设备的唤醒接收机发送多设备唤醒帧以触发唤醒多个第二通信设备的MR,该多设备唤醒帧中携带多个第二通信设备的标识。第一通信设备在接收到信道同步请求之后且在获知了多个第二通信设备的MR已经醒来时(这里的醒来时刻如前所述,是第一通信设备自己所预估或者自己指示的时间,并不是第二通信设备告知的),第一通信设备通过发送同步帧以触发多个第二通信设备的MR可以不用等待probe delay时间就可以接入信道。
在该场景下,第一通信设备在信道空闲时向第二通信设备发送同步帧,具体可以包括下述(1)、(2)、(3)、(4)、(5)五种发送方式,具体过程如下:
(1):第一通信设备在信道空闲时向多个被唤醒的第二通信设备中的任一个被唤醒的第二通信设 备发送一个第一同步帧,所述第一同步帧携带上述任一个被唤醒的第二通信设备的标识,该第一同步帧用于指示所述任一个被唤醒的第二通信设备在接收到所述第一同步帧并间隔第一预设时长后接入信道。
具体的,本实现方式中,被唤醒的第二通信设备为多个,第一通信设备可以从这多个被唤醒的第二通信设备中的任一个第二通信设备(假设该第二通信设备为A设备)发送第一同步帧,该第一同步帧可以携带A设备的标识,可选的,该标识可以是A设备的唤醒接收机的标识,还可以是A设备的关联标识。该第一同步帧用于指示A设备在接收到第一通信设备发送的第一同步帧并间隔第一预设时长后接入信道。可选的,该第一预设时长可以为SIFS时长。需要说明的是,本实施方式中,第一通信设备仅需要向一个被唤醒的第二通信设备发送一个第一同步帧即可,无需向其他的第二通信设备发送对应的同步帧,这样不仅可以节省同步帧的传输时间,也不会导致其他的第二通信设备等待probe delay时间才能接入信道,这是因为:第一通信设备已经给A设备发送了第一同步帧,此时其他第二通信设备可以侦听到信道中已经有帧在传输,因此其他第二通信设备仅需要等待自己的NAV减为0之后再抢占信道发送数据即可,其无需等待probe delay时间(以第二通信设备是站点为例,站点从睡眠到苏醒有两种情况:一种是站点的MR醒来没有侦听到信道有正在传输的帧,因此要等待probe delay时间再抢占信道发送数据,另一种是站点的MR醒来侦听到信道中有帧在传输,则此时站点仅需等待自己的NAV减为0之后,再接入信道),也无需第一通信设备再发送同步帧,因此减少了同步帧的传输时间,也保证了其他第二通信设备能够快速接入信道。
可选的,该第一同步帧可以是上述CTS帧、RTS帧、触发帧中的任一种,该CTS帧或者RTS帧或者触发帧中均可以携带任一个被唤醒的第二通信设备的标识,例如,该触发帧的接收地址设置为该被唤醒的第二通信设备的地址,上述表5中的触发帧含有一个用户信息字段。需要说明的是,无论是CTS帧、RTS帧还是触发帧,其携带的第二通信设备的标识均是显式的第二通信设备的标识,例如第二通信设备的唤醒接收机的标识或者关联标识,即其可以明确指示哪一个第二通信设备接入信道,来加速协助信道同步。
(2):第一通信设备在信道空闲时向多个被唤醒的第二通信设备发送一个第二同步帧,所述第二同步帧用于指示每个被唤醒的第二通信设备在接收到所述第二同步帧并间隔第二预设时长后执行退避过程以竞争接入信道,所述第二同步帧的接收地址为广播地址。
具体的,本实现方式中,被唤醒的第二通信设备为多个,第一通信设备向多个被唤醒的第二通信设备发送一个第二同步帧,该第二同步帧的接收地址为广播地址,因此,每个被唤醒的第二通信设备均可以接收到该第二同步帧,并在接收到该第二同步帧并间隔第二预设时长(该第二预设时长内信道空闲)后执行退避过程以竞争接入信道。该第二预设时长可以为DIFS时长,当然还可以为其他的时长。需要说明的是,该第二同步帧中不携带每个被唤醒的第二通信设备的标识。
可选的,该第二同步帧可以是CTS帧、RTS帧和CF-end帧中的任一种。对于CTS帧和RTS帧,与单设备唤醒中的CTS帧和RTS帧不同的是,该CTS帧和RTS帧的接收地址均为广播地址,该CF-end帧的接收地址也为广播地址。
(3):第一通信设备在信道空闲时向多个被唤醒的第二通信设备发送一个第三同步帧,所述第三同步帧携带每个被唤醒的第二通信设备的子信道资源指示和每个被唤醒的第二通信设备的标识,且所述第三同步帧的接收地址为广播地址,所述第三同步帧用于指示多个被唤醒的第二通信设备在接收到所述第三同步帧并间隔第一预设时长后,根据各自对应的子信道资源指示同时接入信道。
具体的,本实现方式中,被唤醒的第二通信设备为多个,第一通信设备向多个被唤醒的第二通信设备发送一个第三同步帧,该第三同步帧的接收地址为广播地址,因此,每个被唤醒的第二通信设备均可 以接收到该第三同步帧,另外,该第三同步帧中携带了每个被唤醒的第二通信设备的子信道资源指示和每个被唤醒的第二通信设备的标识,因此,当每个被唤醒的第二通信设备接收到该第三同步帧之后,结合该第三同步帧中自己所对应的子信道资源指示,在对应的子信道资源上接入信道,即本实现方式中,多个被唤醒的第二通信设备在接收到第三同步帧并间隔第一预设时长后,可以同时进行上行多用传输,以同时接入信道,比如进行正交频分正交多址接入(Orthogonal Frequency Duplex Multiple Access,简称OFDMA)传输或多用户多输入多输出(Multiple Users Multiple Input Multiple Output,简称MU-MIMO)传输。这里的第一预设时长可以是SIFS时间,还可以是其他小于probe delay时间的时长。
可选的,该第三同步帧可以是多站点CTS帧、还可以是多站点RTS帧,还可以是触发帧。与上述(1)和(2)中的CTS帧、RTS帧或者触发帧不同的是,该多站点CTS帧、多站点RTS帧和触发帧的接收地址均为广播地址,且该多站点CTS帧、多站点RTS帧和触发帧中均携带每个被唤醒的第二通信设备的标识以及每个被唤醒的第二通信设备的子信道资源指示。以触发帧为例,结合上述表5的触发帧的结构,该触发帧含有多个用户信息字段,多个被唤醒的第二通信设备按照触发帧的子信道资源指示同时以OFDMA或者Mu-MIMO传输醒来汇报帧。
本实现方式中的第三同步帧,可以同时调度多个被唤醒的第二通信设备,提高了多个被唤醒的第二通信设备接入信道的效率。
(4):第一通信设备在信道空闲时向多个被唤醒的第二通信设备发送一个L-Preamble,所述L-Preamble携带第一指示信息和所述多个被唤醒的第二通信设备的唤醒接收机接收到的用于唤醒多个第二通信设备的主收发机的唤醒帧的校验码字段或者部分比特,所述第一指示信息用于向所述多个被唤醒的第二通信设备指示所述L-Preamble为同步帧,所述校验码字段或者部分比特用于指示所述多个被唤醒的第二通信设备的标识;所述L-Preamble用于指示所述多个被唤醒的第二通信设备在接收到所述L-Preamble并间隔第二预设时长后执行退避过程以竞争接入信道。
具体的,本实现方式中,该同步帧为上述携带第一指示信息和唤醒帧的校验码字段或者部分比特的L-Preamble,这里的唤醒帧为用于唤醒多个第二通信设备的主收发机的唤醒帧,第一指示信息用于向上述多个被唤醒的第二通信设备指示该L-Preamble为同步帧,该唤醒帧的校验码字段或者部分比特用于指示上述多个被唤醒的第二通信设备的标识。第一通信设备在发送该L-Preamble时,即向多个被唤醒的第二通信设备发送一个L-Preamble,多个被唤醒的第二通信设备在接收到该L-Preamble并间隔第二预设时长后执行退避过程以竞争接入信道。该第二预设时长为DIFS时长,当然,还可以是其他的时长。如果第二预设时长内信道空闲,则多个被唤醒的第二通信设备执行退避过程,以竞争接入抢信道,例如向第一通信设备发送醒来汇报帧等。
可选的,针对多设备唤醒的场景,且同步帧为上述(2)(3)的实现方式时,被唤醒的第二通信设备接入信道的示意图可以参见图8所示。
(5)第一通信设备在信道空闲时可以逐个向多个被唤醒的第二通信设备发送同步帧,发送给每个被唤醒的第二通信设备的同步帧中均携带对应的被唤醒的第二通信设备的标识以及第一指示信息。这里以一个简单的例子来简单的介绍“逐个发送”的过程:
假设共有A、B、C、D个站点,在AP进行多站点唤醒时,其发送的唤醒帧中包括这四个站点的标识,假设唤醒帧中的站点标识按照顺序依次为A站点的标识、B站点的标识C站点的标识、D站点的标识,即A是第一顺位站点,B、C、D分别为第二顺位、第三顺位、第四顺位的站点;另外,假设A、B、C为有信道同步需求的站点(即A、B、C三个站点在MR未休眠时均向AP发送了信道同步请求,请求AP协助自己快速接入信道,而无需等待probe delay时间),D为没有信道同步需求的站点。
在具体发送时,AP先给站点A(或者指定的任一个站点)发送第一个同步帧,然后站点A在接收到同步帧并间隔SIFS时间后向AP返回醒来汇报帧。接着,AP再继续给站点B发送同步帧,站点B接收到同步帧并间隔SIFS时长后向AP返回醒来汇报帧;然后,AP给站点C发送同步帧,站点C接收到同步帧并间隔SIFS时长后向AP返回醒来汇报帧。另外,由于站点D没有向AP发送信道同步请求,因此AP无需给站点D发同步帧,站点D需要等待probe delay时间后抢占信道发送醒来汇报帧。
在第一通信设备逐个发送同步帧的情况下,该同步帧可以是L-Preamble、CTS帧、RTS帧、触发帧中的任一个。
综上所述,无论是针对单设备唤醒的场景,还是多设备唤醒的场景,只要第二通信设备在未休眠之前向第一通信设备发送了信道同步请求,第一通信设备在信道空闲时,就会结合自身所获知的第二通信设备的被唤醒时间向被唤醒的第二通信设备发送同步帧,以触发被唤醒的第二通信设备无需等待probe delay时间就可以接入信道,节省了被唤醒的第二通信设备的MR的等待时间,降低了第二通信设备的功耗。并且,上述第一通信设备通过向多个被唤醒的第二通信设备中的任一个第二通信设备发送第一同步帧,以触发多个被唤醒的第二通信设备均无需等待probe delay时间就可以接入信道,其大大减少了同步帧的传输时间,也保证了多个被唤醒的第二通信设备能够快速接入信道。
图9为本申请提供的信道接入的指示装置实施例的结构示意图。该信道接入的指示装置可以集成在上述方法实施例的第一通信设备中,还可以是第一通信设备,该指示装置可以通过软件、硬件或者软硬件结合的方式实现。如图9所示,该装置包括:接收模块11、处理模块12和发送模块13。
所述接收模块11,用于接收第二通信设备发送的信道同步请求,所述信道同步请求用于请求所述第一通信设备向所述第二通信设备发送同步帧,所述第二通信设备配置唤醒接收机;
所述处理模块12,用于根据所述信道同步请求和所述第一通信设备根据预设信令所获知的第二通信设备的被唤醒时间,指示所述发送模块13在信道空闲时向被唤醒的第二通信设备发送所述同步帧,所述同步帧用于指示所述被唤醒的第二通信设备在接收到所述同步帧后接入信道。
可选的,若所述被唤醒的第二通信设备为多个,所述发送模块13,具体用于在信道空闲时向多个被唤醒的第二通信设备中的任一个被唤醒的第二通信设备发送一个第一同步帧,所述第一同步帧携带所述任一个被唤醒的第二通信设备的标识,所述第一同步帧用于指示所述任一个被唤醒的第二通信设备在接收到所述第一同步帧并间隔第一预设时长后接入信道。所述第一同步帧为清除发送CTS帧、请求发送RTS帧、触发帧中的任一种。
可选的,若所述被唤醒的第二通信设备为多个,所述发送模块13,具体用于在信道空闲时向多个被唤醒的第二通信设备发送一个第二同步帧,所述第二同步帧用于指示每个被唤醒的第二通信设备在接收到所述第二同步帧并间隔第二预设时长后执行退避过程以竞争接入信道,所述第二同步帧的接收地址为广播地址。所述第二同步帧为CTS帧、RTS帧和CF-end帧中的任一种。
结合上述两种可选的方式,所述CTS帧可以携带第二指示信息,所述第二指示信息用于向所述被唤醒的第二通信设备指示所述CTS帧为同步帧。
可选的,所述被唤醒的第二通信设备为多个,所述发送模块13,具体用于在信道空闲时向多个被唤醒的第二通信设备发送一个第三同步帧,所述第三同步帧携带每个被唤醒的第二通信设备的子信道资源指示和每个被唤醒的第二通信设备的标识,且所述第三同步帧的接收地址为广播地址,所述第三同步帧用于指示多个被唤醒的第二通信设备在接收到所述第三同步帧并间隔第一预设时长后,根据各自对应的子信道资源指示同时接入信道。所述第三同步帧为多站点CTS帧、多站点RTS帧和触发帧中的任一种。
可选的,所述被唤醒的第二通信设备为多个,所述发送模块13,用于在信道空闲时向多个被唤醒的第二通信设备发送一个传统的物理层前导码L-Preamble,所述L-Preamble携带第一指示信息和所述多个被唤醒的第二通信设备的唤醒接收机接收到的用于唤醒多个第二通信设备的主收发机的唤醒帧的校验码字段或部分比特,所述第一指示信息用于向所述多个被唤醒的第二通信设备指示所述L-Preamble为同步帧,所述校验码字段或者所述部分比特均用于指示所述多个被唤醒的第二通信设备的标识;所述L-Preamble用于指示所述多个被唤醒的第二通信设备在接收到所述L-Preamble并间隔第二预设时长后执行退避过程以竞争接入信道。
可选的,若所述被唤醒的第二通信设备为一个,所述同步帧为传统物理层前导码L-Preamble,所述L-Preamble携带第一指示信息和所述被唤醒的第二通信设备的唤醒接收机接收到的唤醒帧的校验码字段或者部分比特,所述第一指示信息用于向所述第二通信设备指示所述L-Preamble为同步帧,所述校验码字段或者所述部分比特均用于指示所述被唤醒的第二通信设备的标识。
可选的,若所述被唤醒的第二通信设备为一个,所述同步帧为清除发送CTS帧、请求发送RTS帧、触发帧中的任一个,所述同步帧携带所述被唤醒的第二通信设备的标识。
可选的,所述第一预设时长为SIFS时间段。
可选的,所述第二预设时长为DIFS时间段。
可选的,所述接收模块11,具体用于接收所述第二通信设备发送的关联请求帧,所述关联请求帧中携带所述第二通信设备的信道同步请求的指示信息。
可选的,所述接收模块11,具体用于接收所述第二通信设备发送的管理帧或者控制帧,所述管理帧或者控制帧中携带信道同步请求的指示信息。
本申请提供的信道接入的指示装置,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图10为本申请提供的信道接入的指示设备实施例的结构示意图,该信道接入的指示设备可以为上述方法实施例中的第一通信设备。如图10所示,该第一通信设备包括:接收器20、存储器21、处理器22、发送器23和至少一个通信总线24。通信总线24用于实现元件之间的通信连接。存储器21可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,存储器21中可以存储各种程序,用于完成各种处理功能以及实现本实施例的方法步骤。
具体的,本实施例中,所述接收器20,用于接收第二通信设备发送的信道同步请求,所述信道同步请求用于请求所述第一通信设备向所述第二通信设备发送同步帧,所述第二通信设备配置唤醒接收机;
所述处理器22,用于根据所述信道同步请求和所述第一通信设备根据预设信令所获知的第二通信设备的被唤醒时间,指示所述发送器23在信道空闲时向被唤醒的第二通信设备发送所述同步帧,所述同步帧用于指示所述被唤醒的第二通信设备在接收到所述同步帧后接入信道。
可选的,若所述被唤醒的第二通信设备为多个,所述发送器23,具体用于在信道空闲时向多个被唤醒的第二通信设备中的任一个被唤醒的第二通信设备发送一个第一同步帧,所述第一同步帧携带所述任一个被唤醒的第二通信设备的标识,所述第一同步帧用于指示所述任一个被唤醒的第二通信设备在接收到所述第一同步帧并间隔第一预设时长后接入信道。所述第一同步帧为清除发送CTS帧、请求发送RTS帧、触发帧中的任一种。
可选的,若所述被唤醒的第二通信设备为多个,所述发送器23,具体用于在信道空闲时向多个被唤醒的第二通信设备发送一个第二同步帧,所述第二同步帧用于指示每个被唤醒的第二通信设备在接收到所述第二同步帧并间隔第二预设时长后执行退避过程以竞争接入信道,所述第二同步帧的接收地址为 广播地址。所述第二同步帧为CTS帧、RTS帧和CF-end帧中的任一种。
结合上述两种可选的方式,所述CTS帧可以携带第二指示信息,所述第二指示信息用于向所述被唤醒的第二通信设备指示所述CTS帧为同步帧。
可选的,所述被唤醒的第二通信设备为多个,所述发送器23,具体用于在信道空闲时向多个被唤醒的第二通信设备发送一个第三同步帧,所述第三同步帧携带每个被唤醒的第二通信设备的子信道资源指示和每个被唤醒的第二通信设备的标识,且所述第三同步帧的接收地址为广播地址,所述第三同步帧用于指示多个被唤醒的第二通信设备在接收到所述第三同步帧并间隔第一预设时长后,根据各自对应的子信道资源指示同时接入信道。所述第三同步帧为多站点CTS帧、多站点RTS帧和触发帧中的任一种。
可选的,所述被唤醒的第二通信设备为多个,所述发送器23,用于在信道空闲时向多个被唤醒的第二通信设备发送一个传统的物理层前导码L-Preamble,所述L-Preamble携带第一指示信息和所述多个被唤醒的第二通信设备的唤醒接收机接收到的用于唤醒多个第二通信设备的主收发机的唤醒帧的校验码字段或部分比特,所述第一指示信息用于向所述多个被唤醒的第二通信设备指示所述L-Preamble为同步帧,所述校验码字段或者所述部分比特均用于指示所述多个被唤醒的第二通信设备的标识;所述L-Preamble用于指示所述多个被唤醒的第二通信设备在接收到所述L-Preamble并间隔第二预设时长后执行退避过程以竞争接入信道。
可选的,若所述被唤醒的第二通信设备为一个,所述同步帧为传统物理层前导码L-Preamble,所述L-Preamble携带第一指示信息和所述被唤醒的第二通信设备的唤醒接收机接收到的唤醒帧的校验码字段或者部分比特,所述第一指示信息用于向所述第二通信设备指示所述L-Preamble为同步帧,所述校验码字段或者所述部分比特均用于指示所述被唤醒的第二通信设备的标识。
可选的,若所述被唤醒的第二通信设备为一个,所述同步帧为清除发送CTS帧、请求发送RTS帧、触发帧中的任一个,所述同步帧携带所述被唤醒的第二通信设备的标识。
可选的,所述第一预设时长为SIFS时间段。
可选的,所述第二预设时长为DIFS时间段。
可选的,所述接收器20,具体用于接收所述第二通信设备发送的关联请求帧,所述关联请求帧中携带所述第二通信设备的信道同步请求的指示信息。
可选的,所述接收器20,具体用于接收所述第二通信设备发送的管理帧或者控制帧,所述管理帧或者控制帧中携带信道同步请求的指示信息。
本申请提供的信道接入的指示设备,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现,也可以通过计算机程序产品实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信 介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,在没有超过本申请的范围内,可以通过其他的方式实现。例如,以上所描述的实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,所描述系统、设备和方法以及不同实施例的示意图,在不超出本申请的范围内,可以与其它系统,模块,技术或方法结合或集成。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电子、机械或其它的形式。

Claims (30)

  1. 一种信道接入的指示方法,其特征在于,包括:
    第一通信设备接收第二通信设备发送的信道同步请求,所述信道同步请求用于请求所述第一通信设备向所述第二通信设备发送同步帧;所述第二通信设备配置唤醒接收机;
    所述第一通信设备根据所述信道同步请求和所述第一通信设备根据预设信令所获知的第二通信设备的被唤醒时间,在信道空闲时向被唤醒的第二通信设备发送所述同步帧,所述同步帧用于指示所述被唤醒的第二通信设备在接收到所述同步帧后接入信道。
  2. 根据权利要求1所述的方法,其特征在于,所述被唤醒的第二通信设备为多个,所述在信道空闲时向被唤醒的第二通信设备发送所述同步帧,具体包括:
    所述第一通信设备在信道空闲时向多个被唤醒的第二通信设备中的任一个被唤醒的第二通信设备发送一个第一同步帧,所述第一同步帧携带所述任一个被唤醒的第二通信设备的标识,所述第一同步帧用于指示所述任一个被唤醒的第二通信设备在接收到所述第一同步帧并间隔第一预设时长后接入信道。
  3. 根据权利要求1所述的方法,其特征在于,所述被唤醒的第二通信设备为多个,所述在信道空闲时向被唤醒的第二通信设备发送所述同步帧,具体包括:
    所述第一通信设备在信道空闲时向多个被唤醒的第二通信设备发送一个第二同步帧,所述第二同步帧用于指示每个被唤醒的第二通信设备在接收到所述第二同步帧并间隔第二预设时长后执行退避过程以竞争接入信道,所述第二同步帧的接收地址为广播地址。
  4. 根据权利要求1所述的方法,其特征在于,所述被唤醒的第二通信设备为多个,所述在信道空闲时向被唤醒的第二通信设备发送所述同步帧,具体包括:
    所述第一通信设备在信道空闲时向多个被唤醒的第二通信设备发送一个第三同步帧,所述第三同步帧携带每个被唤醒的第二通信设备的子信道资源指示和每个被唤醒的第二通信设备的标识,且所述第三同步帧的接收地址为广播地址,所述第三同步帧用于指示多个被唤醒的第二通信设备在接收到所述第三同步帧并间隔第一预设时长后,根据各自对应的子信道资源指示同时接入信道。
  5. 根据权利要求1所述的方法,其特征在于,所述被唤醒的第二通信设备为多个,所述在信道空闲时向被唤醒的第二通信设备发送所述同步帧,具体包括:
    所述第一通信设备在信道空闲时向多个被唤醒的第二通信设备发送一个传统的物理层前导码L-Preamble,所述L-Preamble携带第一指示信息和所述多个被唤醒的第二通信设备的唤醒接收机接收到的用于唤醒多个第二通信设备的主收发机的唤醒帧的校验码字段或部分比特,所述第一指示信息用于向所述多个被唤醒的第二通信设备指示所述L-Preamble为同步帧,所述校验码字段或者所述部分比特均用于指示所述多个被唤醒的第二通信设备的标识;
    所述L-Preamble用于指示所述多个被唤醒的第二通信设备在接收到所述L-Preamble并间隔第二预设时长后执行退避过程以竞争接入信道。
  6. 根据权利要求1所述的方法,其特征在于,所述被唤醒的第二通信设备为一个,所述同步帧为传统物理层前导码L-Preamble,所述L-Preamble携带第一指示信息和所述被唤醒的第二通信设备的唤醒接收机接收到的唤醒帧的校验码字段或者部分比特,所述第一指示信息用于向所述第二通信设备指示所述L-Preamble为同步帧,所述校验码字段或者所述部分比特均用于指示所述被唤醒的第二通信设备的标识。
  7. 根据权利要求1所述的方法,其特征在于,所述被唤醒的第二通信设备为一个,所述同步帧为 清除发送CTS帧、请求发送RTS帧、触发帧中的任一个,所述同步帧携带所述被唤醒的第二通信设备的标识。
  8. 根据权利要求2所述的方法,其特征在于,所述第一同步帧为清除发送CTS帧、请求发送RTS帧、触发帧中的任一种。
  9. 根据权利要求3所述的方法,其特征在于,所述第二同步帧为CTS帧、RTS帧和CF-end帧中的任一种。
  10. 根据权利要求4所述的方法,其特征在于,所述第三同步帧为多站点CTS帧、多站点RTS帧和触发帧中的任一种。
  11. 根据权利要求8或9所述的方法,其特征在于,所述CTS帧携带第二指示信息,所述第二指示信息用于向所述被唤醒的第二通信设备指示所述CTS帧为同步帧。
  12. 根据权利要求2或4所述的方法,其特征在于,所述第一预设时长为SIFS时间段。
  13. 根据权利要求3或5所述的方法,其特征在于,所述第二预设时长为DIFS时间段。
  14. 根据权利要求1所述的方法,其特征在于,所述第一通信设备接收第二通信设备发送的信道同步请求,具体包括:
    所述第一通信设备接收所述第二通信设备发送的关联请求帧,所述关联请求帧中携带所述第二通信设备的信道同步请求的指示信息。
  15. 根据权利要求1所述的方法,其特征在于,所述第一通信设备接收第二通信设备发送的信道同步请求,具体包括:
    所述第一通信设备接收所述第二通信设备发送的管理帧或者控制帧,所述管理帧或者控制帧中携带信道同步请求的指示信息。
  16. 一种信道接入的指示设备,其特征在于,所述设备为第一通信设备,包括:接收器、处理器和发送器;
    所述接收器,用于接收第二通信设备发送的信道同步请求,所述信道同步请求用于请求所述第一通信设备向所述第二通信设备发送同步帧;所述第二通信设备配置唤醒接收机;
    所述处理器,用于根据所述信道同步请求和所述第一通信设备根据预设信令所获知的第二通信设备的被唤醒时间,指示所述发送器在信道空闲时向被唤醒的第二通信设备发送所述同步帧,所述同步帧用于指示所述被唤醒的第二通信设备在接收到所述同步帧后接入信道。
  17. 根据权利要求16所述的设备,其特征在于,所述被唤醒的第二通信设备为多个,所述发送器,具体用于在信道空闲时向多个被唤醒的第二通信设备中的任一个被唤醒的第二通信设备发送一个第一同步帧,所述第一同步帧携带所述任一个被唤醒的第二通信设备的标识,所述第一同步帧用于指示所述任一个被唤醒的第二通信设备在接收到所述第一同步帧并间隔第一预设时长后接入信道。
  18. 根据权利要求16所述的设备,其特征在于,所述被唤醒的第二通信设备为多个,
    所述发送器,具体用于在信道空闲时向多个被唤醒的第二通信设备发送一个第二同步帧,所述第二同步帧用于指示每个被唤醒的第二通信设备在接收到所述第二同步帧并间隔第二预设时长后执行退避过程以竞争接入信道,所述第二同步帧的接收地址为广播地址。
  19. 根据权利要求16所述的设备,其特征在于,所述被唤醒的第二通信设备为多个,
    所述发送器器,具体用于在信道空闲时向多个被唤醒的第二通信设备发送一个第三同步帧,所述第三同步帧携带每个被唤醒的第二通信设备的子信道资源指示和每个被唤醒的第二通信设备的标识,且所述第三同步帧的接收地址为广播地址,所述第三同步帧用于指示多个被唤醒的第二通信设备在接收到所 述第三同步帧并间隔第一预设时长后,根据各自对应的子信道资源指示同时接入信道。
  20. 根据权利要求16所述的设备,其特征在于,所述被唤醒的第二通信设备为多个,
    所述发送器,用于在信道空闲时向多个被唤醒的第二通信设备发送一个传统的物理层前导码L-Preamble,所述L-Preamble携带第一指示信息和所述多个被唤醒的第二通信设备的唤醒接收机接收到的用于唤醒多个第二通信设备的主收发机的唤醒帧的校验码字段或部分比特,所述第一指示信息用于向所述多个被唤醒的第二通信设备指示所述L-Preamble为同步帧,所述校验码字段或者所述部分比特均用于指示所述多个被唤醒的第二通信设备的标识;
    所述L-Preamble用于指示所述多个被唤醒的第二通信设备在接收到所述L-Preamble并间隔第二预设时长后执行退避过程以竞争接入信道。
  21. 根据权利要求16所述的设备,其特征在于,若所述被唤醒的第二通信设备为一个,
    所述同步帧为传统物理层前导码L-Preamble,所述L-Preamble携带第一指示信息和所述被唤醒的第二通信设备的唤醒接收机接收到的唤醒帧的校验码字段或者部分比特,所述第一指示信息用于向所述第二通信设备指示所述L-Preamble为同步帧,所述校验码字段或者所述部分比特均用于指示所述被唤醒的第二通信设备的标识。
  22. 根据权利要求16所述的设备,其特征在于,若所述被唤醒的第二通信设备为一个,所述同步帧为清除发送CTS帧、请求发送RTS帧、触发帧中的任一个,所述同步帧携带所述被唤醒的第二通信设备的标识。
  23. 根据权利要求17所述的设备,其特征在于,所述第一同步帧为清除发送CTS帧、请求发送RTS帧、触发帧中的任一种。
  24. 根据权利要求18所述的设备,其特征在于,所述第二同步帧为CTS帧、RTS帧和CF-end帧中的任一种。
  25. 根据权利要求19所述的设备,其特征在于,所述第三同步帧为多站点CTS帧、多站点RTS帧和触发帧中的任一种。
  26. 根据权利要求23或者24所述的设备,其特征在于,所述CTS帧携带第二指示信息,所述第二指示信息用于向所述被唤醒的第二通信设备指示所述CTS帧为同步帧。
  27. 根据权利要求17或者19所述的设备,其特征在于,所述第一预设时长为SIFS时间段。
  28. 根据权利要求18或者20所述的设备,其特征在于,所述第二预设时长为DIFS时间段。
  29. 根据权利要求16所述的设备,其特征在于,所述接收器,具体用于接收所述第二通信设备发送的关联请求帧,所述关联请求帧中携带所述第二通信设备的信道同步请求的指示信息。
  30. 根据权利要求16所述的设备,其特征在于,所述接收器,具体用于接收所述第二通信设备发送的管理帧或者控制帧,所述管理帧或者控制帧中携带信道同步请求的指示信息。
PCT/CN2018/076999 2017-03-23 2018-02-23 信道接入的指示方法和设备 WO2018171374A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/575,539 US11197253B2 (en) 2017-03-23 2019-09-19 Channel access indication method and device to avoid unnecessary probe delay
US17/529,723 US11917565B2 (en) 2017-03-23 2021-11-18 Channel access indication method and device using first and second synchronization frames

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710179619.7 2017-03-23
CN201710179619.7A CN108633099B (zh) 2017-03-23 2017-03-23 信道接入的指示方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/575,539 Continuation US11197253B2 (en) 2017-03-23 2019-09-19 Channel access indication method and device to avoid unnecessary probe delay

Publications (1)

Publication Number Publication Date
WO2018171374A1 true WO2018171374A1 (zh) 2018-09-27

Family

ID=63586261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076999 WO2018171374A1 (zh) 2017-03-23 2018-02-23 信道接入的指示方法和设备

Country Status (3)

Country Link
US (2) US11197253B2 (zh)
CN (1) CN108633099B (zh)
WO (1) WO2018171374A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108633099B (zh) * 2017-03-23 2022-03-11 华为技术有限公司 信道接入的指示方法和设备
US11812438B2 (en) * 2019-03-05 2023-11-07 Apple Inc. Specifying a transmission-time limit for uplink multi-user communication
US20220201610A1 (en) * 2019-03-27 2022-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Use of Wake-Up Receiver with Bluetooth Low Energy
DE102020002636A1 (de) * 2020-05-02 2021-11-04 Diehl Metering Systems Gmbh Verfahren zur Synchronisierung von Frame-Counter und Anordnung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080075026A1 (en) * 2006-09-25 2008-03-27 Samsung Electronics Co., Ltd Method for controlling sleep-mode operation in a communication system
CN103391364A (zh) * 2013-07-12 2013-11-13 天脉聚源(北京)传媒科技有限公司 作为遥控终端的智能终端与被控终端同步的方法及装置
CN104756560A (zh) * 2012-10-24 2015-07-01 高通股份有限公司 具有常规ps模式且无ulp的近乎无源接收机(ap不知道该接收机/电路模式)
CN105813077A (zh) * 2016-04-14 2016-07-27 天津大学 基于802.11ah减少开销降低终端功耗的通信方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7706822B2 (en) * 2005-08-24 2010-04-27 Motorola, Inc. Timing synchronization and beacon generation for mesh points operating in a wireless mesh network
WO2013119095A1 (ko) * 2012-02-10 2013-08-15 엘지전자 주식회사 무선랜 시스템에서 채널 액세스 방법 및 장치
US9426832B2 (en) * 2012-04-24 2016-08-23 Intel Corporation Methods and arrangements to coordinate communications in a wireless network
US20150351125A1 (en) * 2012-07-02 2015-12-03 Electronics And Telecommunications Research Institute Apparatus and method for allocating resource
US9807804B2 (en) * 2012-07-05 2017-10-31 Electronics And Telecommunications Research Institute Apparatus and method for controlling slot usage
US9241307B2 (en) * 2012-10-24 2016-01-19 Qualcomm Incorporated Method and apparatus using an ultra low power signal with scheduled power save modes
US9344980B2 (en) * 2013-04-26 2016-05-17 Futurewei Technologies, Inc. Systems and methods for efficient channel synchronization
EP2995133B1 (en) * 2013-05-06 2018-09-05 Intel IP Corporation Access network discovery and selection
WO2016129824A1 (ko) * 2015-02-11 2016-08-18 엘지전자 주식회사 무선랜에서 mu 전송을 위한 매체 보호 방법 및 장치
CN107770851B (zh) * 2016-08-16 2020-11-06 华为技术有限公司 一种唤醒无线设备的方法和装置
US9974035B2 (en) * 2016-10-12 2018-05-15 Landis+Gyr Innovations, Inc. Synchronization between low energy end point devices and parent devices in a time slotted channel hopping network
CN108633099B (zh) * 2017-03-23 2022-03-11 华为技术有限公司 信道接入的指示方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080075026A1 (en) * 2006-09-25 2008-03-27 Samsung Electronics Co., Ltd Method for controlling sleep-mode operation in a communication system
CN104756560A (zh) * 2012-10-24 2015-07-01 高通股份有限公司 具有常规ps模式且无ulp的近乎无源接收机(ap不知道该接收机/电路模式)
CN103391364A (zh) * 2013-07-12 2013-11-13 天脉聚源(北京)传媒科技有限公司 作为遥控终端的智能终端与被控终端同步的方法及装置
CN105813077A (zh) * 2016-04-14 2016-07-27 天津大学 基于802.11ah减少开销降低终端功耗的通信方法

Also Published As

Publication number Publication date
US11197253B2 (en) 2021-12-07
CN108633099A (zh) 2018-10-09
US11917565B2 (en) 2024-02-27
CN108633099B (zh) 2022-03-11
US20200015179A1 (en) 2020-01-09
US20220141781A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
US9877284B2 (en) Method of communication based on power save mode in wireless local area network and apparatus for the same
WO2018157786A1 (zh) 下行业务数据的指示方法和设备
WO2018077186A1 (zh) 一种数据通信方法及装置
WO2017124850A1 (zh) 协商目标唤醒时间的方法、接入点和站点
RU2606511C1 (ru) Способ передачи/приема информации, связанной с идентификатором ассоциации, в системе беспроводной связи и соответствующее устройство
CN109863811A (zh) 操作无线lan中的支持低功率模式的通信节点的方法
US9161305B2 (en) Method for power save mode operation in wireless local area network and apparatus for the same
WO2016188313A1 (en) Method and system for transmitting data among peer stations in decentralized manner with high channel efficiency
JP6391104B2 (ja) OFDMAのPS−Poll送信のためのシステムおよび方法
US20130250832A1 (en) Method for managing power save mode in wireless lan system, and device for supporting same
WO2018068716A1 (zh) 传输唤醒帧的方法和设备
WO2018040817A1 (zh) 一种无线局域网中唤醒帧的传输方法及装置
US11917565B2 (en) Channel access indication method and device using first and second synchronization frames
US20150023236A1 (en) Method by which stations operating in power save mode in wireless lan systems transmit and receive frames, and apparatus for supporting same
CN108616968B (zh) 传输帧的方法和设备
US10050746B2 (en) System and method for orthogonal frequency division multiple access power-saving poll transmission
US20200015165A1 (en) Method and apparatus for low power communication in communication system
US9357489B2 (en) Method for power save mode operation in wireless local area network and apparatus for the same
WO2018099315A1 (zh) 一种站点关联方法及装置
WO2017143849A1 (zh) 一种休眠控制方法及相关设备
WO2018090895A1 (zh) 唤醒帧发送方法、节点醒来后发送第一帧的方法、装置及设备
US10524286B2 (en) Power saving using integrated CF-End indication
KR101597479B1 (ko) 무선랜 시스템에서 파워 세이브 모드로 동작하는 스테이션에 의한 프레임 송수신 방법 및 이를 지원하는 장치
WO2018171409A1 (zh) 站点唤醒方法及目标站点
WO2017049955A1 (zh) 端到端通信站点发现方法、站点及接入点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772574

Country of ref document: EP

Kind code of ref document: A1