WO2018171315A1 - Predicting method for multiaxial creep failure strain of material - Google Patents

Predicting method for multiaxial creep failure strain of material Download PDF

Info

Publication number
WO2018171315A1
WO2018171315A1 PCT/CN2018/072896 CN2018072896W WO2018171315A1 WO 2018171315 A1 WO2018171315 A1 WO 2018171315A1 CN 2018072896 W CN2018072896 W CN 2018072896W WO 2018171315 A1 WO2018171315 A1 WO 2018171315A1
Authority
WO
WIPO (PCT)
Prior art keywords
creep
multiaxial
failure strain
strain
stress
Prior art date
Application number
PCT/CN2018/072896
Other languages
French (fr)
Chinese (zh)
Inventor
张玉财
蒋文春
王传龙
涂善东
王宁
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Publication of WO2018171315A1 publication Critical patent/WO2018171315A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Definitions

  • a multi-axial creep failure strain prediction method for materials belongs to the field of strain prediction technology.
  • strain-based continuous damage mechanics models have received increasing attention.
  • the model based on strain damage is also called the ductility exhaustion model.
  • the conversion relationship between classical uniaxial and multiaxial creep failure strain is the conversion relationship proposed by Cocks-Ashby.
  • the empirical multiaxial creep ductility factor (MCDF) obtained from the conversion relationship is widely used for creep damage and creep life prediction.
  • the multiaxial creep ductility factor can be easily used to simulate creep crack propagation and give acceptable predictions, it lacks the physical meaning and, in some cases, Cocks-Ashby MCDF The prediction of the axial creep failure strain is not reasonable and therefore needs to be improved.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a multi-axial creep failure strain prediction method for material failure prediction which can more accurately predict the multi-axis creep of a material under high temperature conditions.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: the multi-axis creep failure strain prediction method of the material, characterized in that the method comprises the following steps:
  • Step (1) based on the strain damage criterion, obtain a relationship between the material creep rate and the strain rate according to the microscopic hole growth mechanism;
  • Step (2) controlling the hole growth theory by power law creep, obtaining uniaxial and multiaxial stress state parameters
  • Step (3) integrating the microscopic holes to obtain the failure time under the constant load of the material, thereby indicating the creep failure strain under the uniaxial and multiaxial stress, and obtaining the multiaxial creep ductility factor;
  • Step (4) the multi-axis creep ductility factor is fitted to the parameters, and the multi-axial creep failure strain fitting parameters under different stress states are obtained, thereby obtaining a multi-axis creep ductility factor prediction equation;
  • step (5) the finite element software is used to predict the creep failure strain and life of the material under multiaxial stress state.
  • the microscopic pore growth mechanism described in the step (1) is a mechanism for the viscoplastic pore length in the crack tip region.
  • the relationship between the creep rate and the strain rate of the material described in the step (1) is:
  • the axial strain rate of a cylinder containing a hole The radial strain rate of a cylinder containing a hole, The steady-state creep rate when the cylinder does not contain holes.
  • the uniaxial and multiaxial stress state parameters described in step (2) utilize the energy principle and are obtained by the New-Raphson method.
  • the calculation formula of the uniaxial and multiaxial stress state parameters described in the step (2) is:
  • is a multiaxial stress state parameter
  • ⁇ 0 is a uniaxial stress state parameter
  • a and b 0 are material-dependent constants
  • n is a determined material constant
  • ⁇ m / ⁇ eq is a stress triaxiality
  • the formula for calculating the multiaxial creep ductility factor described in the step (3) is as follows:
  • ⁇ f is the creep failure strain under uniaxial stress
  • a and b are material-dependent constants
  • n is the determined material constant
  • ⁇ m / ⁇ eq is the stress triaxiality
  • the creep failure strain fitting parameters a and b under different stress states are obtained by the notch creep test, and the multiaxial creep ductility factor prediction equation described in the step (4) is obtained.
  • the multi-axis creep ductility factor prediction equation described in the step (4) is combined with the creep-damage constitutive equation and embedded into the finite element software by the Fortran language.
  • the present invention has the following beneficial effects:
  • the multiaxial creep failure strain prediction method of the material can define the multiaxial creep ductility factor through the creep failure strain calculation method of the material under multiaxial stress state, and obtain the multiaxial creep ductility factor calculation equation, and then obtain The multiaxial creep failure strain of the material is based on the established multiaxial creep damage constitutive equation.
  • the finite element software is used to predict the creep failure strain of the material under multiaxial stress state, which can more accurately predict the material under high temperature conditions. Failure strain of multiaxial creep.
  • the invention defines the multiaxial creep ductility factor by using the energy principle, and gives corresponding physical meaning to the multiaxial creep ductility factor, and obtains a new multiaxial creep ductility factor prediction.
  • the subroutine is programmed and embedded in the finite element software, so as to more accurately predict the failure strain of the multiaxial creep of the material under high temperature conditions.
  • Figure 1 is a flow chart of a multi-axial creep failure strain prediction method for materials.
  • Fig. 2 is a model diagram of a crack-containing sample subjected to a tensile load.
  • Fig. 3 is a model diagram of a crack tip region of a crack-containing sample.
  • Figure 4 is a diagram of the ideal grain model under multiaxial loading.
  • Figure 5 is an enlarged schematic view of a cylinder containing a hole.
  • Figure 6 is a comparison of the multiaxial creep failure strain and experimental values obtained by different conversion models of 9Cr-1Mo alloy at 600 °C.
  • Figure 7 is a geometrical view of a cylindrical notched tensile specimen.
  • a material multi-axis creep failure strain prediction method is characterized in that the method comprises the following steps:
  • Step (1) based on the strain damage criterion, obtain a relationship between the material creep rate and the strain rate according to the microscopic hole growth mechanism;
  • the microscopic pore growth mechanism considers that the pores are mainly nucleated and grown at the crystal interface (especially at the crystal interface perpendicular to the tensile stress), and the fully grown pores will be polymerized to form micro-cracks of grain size (porous crystals). interface). Finally, the combination of microcracks leads to the expansion of macroscopic creep cracks.
  • the volume change rate of the cylinder is related to f h as follows:
  • V represents the volume of the cylinder
  • V is the steady-state creep rate when there is no hole.
  • the volume change of a cylinder can also be defined by the creep rate:
  • the axial strain rate of a cylinder containing a hole The radial strain rate of a cylinder containing a hole.
  • Step (2) using the energy principle, controlling the hole growth theory by power law creep, and obtaining the uniaxial and multiaxial stress state parameters by the New-Raphson method;
  • the multiaxial stress state parameter ⁇ is defined as:
  • ⁇ 0 is a uniaxial stress state parameter
  • Step (3) integrating the microscopic holes to obtain the failure time under the constant load of the material, thereby indicating the creep failure strain under the uniaxial and multiaxial stress, and obtaining the multiaxial creep ductility factor;
  • f i is the initial hole area fraction
  • f c is the area fraction at which the hole combination occurs
  • t c is the time required from the initial to the hole combination in the multiaxial stress state.
  • Creep failure strain under multiaxial stress Can be obtained by:
  • t c0 is the time required for the merging from the initial to the hole in the uniaxial stress state.
  • a new multiaxial creep ductility factor MCDF can be defined:
  • Equation (15) can be simplified to the following formula:
  • Step (4) the multi-axis creep ductility factor is fitted to the parameters, and the multi-axial creep failure strain fitting parameters under different stress states are obtained, thereby obtaining a multi-axis creep ductility factor prediction equation;
  • a and b are material-dependent constants, and the creep failure strain at different stress triaxial degrees ⁇ m / ⁇ eq can be obtained by the notch creep test, and then fitted by formula (16). Obtain the parameters a and b to obtain a multi-axis creep ductility factor prediction equation.
  • Step (5) using finite element software to predict the creep failure strain and life of the material under multiaxial stress state
  • the Fortran language is used to compile the subroutine and embed into the finite element software ABAQUS to realize the multiaxial stress state of the material. Prediction of creep failure strain and life.
  • Table 3 Contrast data table of different creep damage constitutive models and tensile stresses compared with the creep life prediction values and test values of the specimens under tensile load
  • the multiaxial creep failure strain of 9Cr-1Mo alloy at 600 °C is predicted.
  • Figure 6 shows the comparison of the multi-axial creep failure strain and the experimental values predicted by different models under different stress triaxial degrees.
  • the parameters in the model proposed in the present invention were obtained by fitting experimental data.
  • the conversion model proposed in the present invention effectively avoids the occurrence of stress triaxiality ⁇ m / ⁇ eq >3 in the material. The ratio is too small.
  • Table 1 shows the multi-axis creep failure strain and the experimental value error analysis obtained by using the Cocks and Ashby (CA) model, the Wen and Tu (WT) model, and the transformation model proposed in the present invention.
  • CA Cocks and Ashby
  • WT Wen and Tu
  • Table 1 shows the multi-axis creep failure strain and the experimental value error analysis obtained by using the Cocks and Ashby (CA) model, the Wen and Tu (WT) model, and the transformation model proposed in the present invention.
  • CA Cocks and Ashby
  • WT Wen and Tu
  • the geometry of the notched creep specimen is shown in Fig. 7, and the data of the sensitivity ratio is shown in Table 2.
  • the KR creep damage constitutive model and the WT creep damage constitutive model were used respectively. Under different tensile loads, different notch sensitivity was simulated and predicted than the creep life of the specimen.
  • the comparative data of the test value and the simulated value are shown in Table 3. It can be seen from the table that compared with the experimental creep life, the error of the fitting correction model proposed by the present invention is the smallest, and then the KR creep damage model, and the Wen-Tu creep damage model has the largest error. In addition to the individual data, the error of the proposed model prediction is controlled within the range of 50%.
  • the notch sensitivity ratio of the cylindrical notched tensile specimen was changed.
  • the finite element software ABAQUS was used to simulate the creep life of the cylindrical notched tensile specimen under the tensile load of 130 MPa, 150 MPa, 170 MPa and 210 MPa.
  • the geometry of the notched creep specimen is shown in Fig. 7, and the data of the sensitivity ratio is shown in Table 2.
  • the K-R creep damage constitutive model and the W-T creep damage constitutive model were used respectively. Under different tensile loads, different notch sensitivity was simulated and predicted than the creep life of the specimen.
  • the comparative data of the test value and the simulated value are shown in Table 3.
  • the error of the fitting correction model proposed by the present invention is the smallest, and then the K-R creep damage model, and the Wen-Tu creep damage model has the largest error.
  • the error of the proposed model prediction is controlled within the range of 50%. It is reflected from the results of Tables 1 and 3 that the creep constitutive model proposed by the present invention can reasonably predict the creep and failure behavior of high temperature materials. Therefore, the creep failure strain prediction method proposed by the present invention can accurately calculate the material. Multiaxial creep failure strain and structural life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

A predicting method for the multiaxial creep failure strain of a material, relating to the technical field of strain prediction. The method is characterized by comprising the following steps: step (1), acquiring the relation between the creep rate and strain rate of a material; step (2), obtaining uniaxial and multiaxial stress state parameters according to the theory of controlling void growth by power-law creep; step (3), indicating a creep failure strain under the actions of uniaxial and multiaxial stresses and obtaining a multiaxial creep ductility factor; step (4), obtaining multiaxial creep failure strain fitting parameters under different stress states so as to obtain a multiaxial creep ductility factor prediction equation; and step (5), predicting the creep failure strain and the life of the material under a multiaxial stress state by using a finite element software. The predicting method for the multiaxial creep failure strain of a material can more accurately predict the multiaxial creep failure strain of the material under a high temperature state by using a creep failure strain calculation method of the material under the multiaxial stress state.

Description

一种材料多轴蠕变失效应变预测方法Multiaxial creep failure strain prediction method for materials 技术领域Technical field
一种材料多轴蠕变失效应变预测方法,属于应变预测技术领域。A multi-axial creep failure strain prediction method for materials belongs to the field of strain prediction technology.
背景技术Background technique
在核电、石油化工和航空航天等领域中,许多结构部件如换热器等长期在高温高压下工作,整个结构处于复杂的多轴应力状态,蠕变及其引起的损伤是结构的主要失效方式之一。多轴应力状态下的蠕变-损伤失效研究是结构完整性评定中最为重要的环节之一,因此对多轴应力状态下材料的蠕变-损伤进行研究,对高温高压工作条件下部件的寿命预测具有积极的意义。In the fields of nuclear power, petrochemicals and aerospace, many structural components such as heat exchangers work under high temperature and high pressure for a long time, and the whole structure is in a complex multiaxial stress state. Creep and damage caused by it are the main failure modes of the structure. one. The study of creep-damage failure under multiaxial stress is one of the most important aspects in structural integrity assessment. Therefore, the creep-damage of materials under multiaxial stress state is studied, and the life of components under high temperature and high pressure working conditions is studied. Forecasting has a positive meaning.
针对模型参数繁冗的问题,基于应变的连续损伤力学模型日渐得到人们的重视。基于应变损伤的模型又称延性耗竭模型,认为局部蠕变应变累积达到蠕变延性(蠕变失效应变)值时,材料将完全损伤,出现裂纹直至失效。多轴蠕变失效应变的测试较为困难,成本也较高,其值通常利用单轴蠕变失效应变转换而来。经典的单轴与多轴蠕变失效应变的转化关系是Cocks-Ashby提出的转换关系。根据转换关系获得的经验多轴蠕变延性因子(MCDF)被广泛的应用于蠕变损伤和蠕变寿命的预测。虽然多轴蠕变延性因子可以很容易地被用来模拟蠕变裂纹扩展并给出可接受的预测结果,但它缺乏应有的物理意义,并且在某些情况下,Cocks-Ashby MCDF对多轴蠕变失效应变的预测并不合理,因而亟需改进。For the problem of cumbersome model parameters, strain-based continuous damage mechanics models have received increasing attention. The model based on strain damage is also called the ductility exhaustion model. When the local creep strain accumulation reaches the creep ductility (creep failure strain) value, the material will be completely damaged, and cracks will appear until failure. Multi-axis creep failure strain testing is more difficult and costly, and its value is usually converted by uniaxial creep failure strain. The conversion relationship between classical uniaxial and multiaxial creep failure strain is the conversion relationship proposed by Cocks-Ashby. The empirical multiaxial creep ductility factor (MCDF) obtained from the conversion relationship is widely used for creep damage and creep life prediction. Although the multiaxial creep ductility factor can be easily used to simulate creep crack propagation and give acceptable predictions, it lacks the physical meaning and, in some cases, Cocks-Ashby MCDF The prediction of the axial creep failure strain is not reasonable and therefore needs to be improved.
发明内容Summary of the invention
本发明要解决的技术问题是:克服现有技术的不足,提供一种能更准确的预测材料在高温状态下的多轴蠕变的失效应变的材料多轴蠕变失效应变预测方法。The technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a multi-axial creep failure strain prediction method for material failure prediction which can more accurately predict the multi-axis creep of a material under high temperature conditions.
本发明解决其技术问题所采用的技术方案是:该材料多轴蠕变失效应变预测方法,其特征在于:包括如下步骤:The technical solution adopted by the present invention to solve the technical problem thereof is: the multi-axis creep failure strain prediction method of the material, characterized in that the method comprises the following steps:
步骤(1),基于应变损伤准则,根据微观孔洞长大机制,获得材料蠕变速率和应变速率之间的关系;Step (1), based on the strain damage criterion, obtain a relationship between the material creep rate and the strain rate according to the microscopic hole growth mechanism;
步骤(2),由幂律蠕变控制孔洞长大理论,获得单轴及多轴应力状态参数;Step (2), controlling the hole growth theory by power law creep, obtaining uniaxial and multiaxial stress state parameters;
步骤(3),对微观孔洞进行积分获得材料恒载下的失效时间,进而表示单轴及多轴应力作用下的蠕变失效应变,并获得多轴蠕变延性因子;Step (3), integrating the microscopic holes to obtain the failure time under the constant load of the material, thereby indicating the creep failure strain under the uniaxial and multiaxial stress, and obtaining the multiaxial creep ductility factor;
步骤(4),对多轴蠕变延性因子进行参数拟合,获得不同应力状态下的多轴蠕变失效应变拟合参数,从而得到多轴蠕变延性因子预测方程;Step (4), the multi-axis creep ductility factor is fitted to the parameters, and the multi-axial creep failure strain fitting parameters under different stress states are obtained, thereby obtaining a multi-axis creep ductility factor prediction equation;
步骤(5),利用有限元软件预测材料在多轴应力状态下的蠕变失效应变及其寿命。In step (5), the finite element software is used to predict the creep failure strain and life of the material under multiaxial stress state.
优选的,步骤(1)中所述的微观孔洞长大机制在裂尖区域为粘塑性孔洞长的机制。Preferably, the microscopic pore growth mechanism described in the step (1) is a mechanism for the viscoplastic pore length in the crack tip region.
优选的,步骤(1)中所述的材料蠕变速率和应变速率之间的关系为:Preferably, the relationship between the creep rate and the strain rate of the material described in the step (1) is:
Figure PCTCN2018072896-appb-000001
Figure PCTCN2018072896-appb-000001
其中,
Figure PCTCN2018072896-appb-000002
为包含一个孔洞的圆柱体的轴向应变速率,
Figure PCTCN2018072896-appb-000003
为包含一个孔洞的圆柱体的径向应变速率,
Figure PCTCN2018072896-appb-000004
为圆柱体不包含孔洞时的稳态蠕变速率。
among them,
Figure PCTCN2018072896-appb-000002
The axial strain rate of a cylinder containing a hole,
Figure PCTCN2018072896-appb-000003
The radial strain rate of a cylinder containing a hole,
Figure PCTCN2018072896-appb-000004
The steady-state creep rate when the cylinder does not contain holes.
优选的,步骤(2)中所述的单轴及多轴应力状态参数利用能量原理,并通过New-Raphson方法获得。Preferably, the uniaxial and multiaxial stress state parameters described in step (2) utilize the energy principle and are obtained by the New-Raphson method.
优选的,步骤(2)中所述的单轴及多轴应力状态参数的计算公式为:Preferably, the calculation formula of the uniaxial and multiaxial stress state parameters described in the step (2) is:
Figure PCTCN2018072896-appb-000005
Figure PCTCN2018072896-appb-000005
Figure PCTCN2018072896-appb-000006
Figure PCTCN2018072896-appb-000006
其中,α为多轴应力状态参数,α 0为单轴应力状态参数,a与b 0为与材料相关的常数,n为确定的材料常数,σ meq为应力三轴度。 Where α is a multiaxial stress state parameter, α 0 is a uniaxial stress state parameter, a and b 0 are material-dependent constants, n is a determined material constant, and σ meq is a stress triaxiality.
优选的,步骤(3)中所述的多轴蠕变延性因子的计算公式如下:Preferably, the formula for calculating the multiaxial creep ductility factor described in the step (3) is as follows:
Figure PCTCN2018072896-appb-000007
Figure PCTCN2018072896-appb-000007
其中,ε f为单轴应力作用下的蠕变失效应变,
Figure PCTCN2018072896-appb-000008
为多轴应力作用下的蠕变失效应变,a和b均为与材料相关的常数,n为确定的材料常数,σ meq为应力三轴度。
Where ε f is the creep failure strain under uniaxial stress,
Figure PCTCN2018072896-appb-000008
For creep failure strain under multiaxial stress, both a and b are material-dependent constants, n is the determined material constant, and σ meq is the stress triaxiality.
优选的,利用缺口蠕变试验获得不同应力状态下的蠕变失效应变拟合参数a和b,进而得到步骤(4)中所述的多轴蠕变延性因子预测方程。Preferably, the creep failure strain fitting parameters a and b under different stress states are obtained by the notch creep test, and the multiaxial creep ductility factor prediction equation described in the step (4) is obtained.
优选的,步骤(4)中所述的多轴蠕变延性因子预测方程结合蠕变-损伤本构方程,并通过Fortran语言嵌入到有限元软件中。Preferably, the multi-axis creep ductility factor prediction equation described in the step (4) is combined with the creep-damage constitutive equation and embedded into the finite element software by the Fortran language.
与现有技术相比,本发明所具有的有益效果是:Compared with the prior art, the present invention has the following beneficial effects:
1、本材料多轴蠕变失效应变预测方法能够通过材料在多轴应力状态下的蠕变失效应变计算方法,定义多轴蠕变延性因子,获得多轴蠕变延性因子计算方程,进而可获得材料的多轴蠕变失效应变,根据建立的多轴蠕变损伤本构方程,利用有限元软件预测材料在多轴应力状态下的蠕变失效应变,能更准确地预测材料在高温状态下的多轴蠕变的失效应变。1. The multiaxial creep failure strain prediction method of the material can define the multiaxial creep ductility factor through the creep failure strain calculation method of the material under multiaxial stress state, and obtain the multiaxial creep ductility factor calculation equation, and then obtain The multiaxial creep failure strain of the material is based on the established multiaxial creep damage constitutive equation. The finite element software is used to predict the creep failure strain of the material under multiaxial stress state, which can more accurately predict the material under high temperature conditions. Failure strain of multiaxial creep.
2、本发明根据幂率蠕变控制孔洞长大理论,利用能量原理,定义多轴蠕变延性因子,为多轴蠕变延性因子赋予相应的物理意义,获得新的多轴蠕变延性因子预测公式,并利用Fortran语言,根据建立的多轴蠕变损伤本构方程编制子程序并嵌入到有限元软件中,从而能更准确地预测材料在高温状态下的多轴蠕变的失效应变。2. According to the theory of power rate creep control hole growth, the invention defines the multiaxial creep ductility factor by using the energy principle, and gives corresponding physical meaning to the multiaxial creep ductility factor, and obtains a new multiaxial creep ductility factor prediction. Formula, and using Fortran language, according to the established multi-axis creep damage constitutive equation, the subroutine is programmed and embedded in the finite element software, so as to more accurately predict the failure strain of the multiaxial creep of the material under high temperature conditions.
附图说明DRAWINGS
图1为材料多轴蠕变失效应变预测方法的流程图。Figure 1 is a flow chart of a multi-axial creep failure strain prediction method for materials.
图2为受拉伸载荷作用的含裂纹试样模型图。Fig. 2 is a model diagram of a crack-containing sample subjected to a tensile load.
图3为含裂纹试样裂尖区域模型图。Fig. 3 is a model diagram of a crack tip region of a crack-containing sample.
图4为多轴载荷作用下的理想晶粒模型图。Figure 4 is a diagram of the ideal grain model under multiaxial loading.
图5为包含一个孔洞的圆柱体的放大示意图。Figure 5 is an enlarged schematic view of a cylinder containing a hole.
图6为600℃下,9Cr-1Mo合金不同转化模型获得的多轴蠕变失效应变与试验值比较图。Figure 6 is a comparison of the multiaxial creep failure strain and experimental values obtained by different conversion models of 9Cr-1Mo alloy at 600 °C.
图7为圆柱缺口拉伸试样的几何尺寸图。Figure 7 is a geometrical view of a cylindrical notched tensile specimen.
具体实施方式detailed description
图1~7是本发明的最佳实施例,下面结合附图1~7对本发明做进一步说明。1 to 7 are preferred embodiments of the present invention, and the present invention will be further described below with reference to Figs.
如图1所示,一种材料多轴蠕变失效应变预测方法,其特征在于:包括如下步骤:As shown in FIG. 1 , a material multi-axis creep failure strain prediction method is characterized in that the method comprises the following steps:
步骤(1),基于应变损伤准则,根据微观孔洞长大机制,获得材料蠕变速率和应变速率之间的关系;Step (1), based on the strain damage criterion, obtain a relationship between the material creep rate and the strain rate according to the microscopic hole growth mechanism;
微观孔洞长大机制认为孔洞主要在晶界面上(尤其是与拉应力垂直的晶界面上)形核和长大,充分长大的孔洞将聚合进而形成晶粒尺寸大小的微裂纹(孔化晶界面)。最后,微裂纹合并导致宏观蠕变裂纹的扩展。The microscopic pore growth mechanism considers that the pores are mainly nucleated and grown at the crystal interface (especially at the crystal interface perpendicular to the tensile stress), and the fully grown pores will be polymerized to form micro-cracks of grain size (porous crystals). interface). Finally, the combination of microcracks leads to the expansion of macroscopic creep cracks.
尽管空位凝聚,晶界滑移及位错堆积通常被认为是空洞形核的可能驱动力,但孔洞形核背后的真正机制还不清晰。所以本实施例中将主要考虑晶界上孔洞长大与合并的过程。Despite the vacancy condensation, grain boundary slip and dislocation accumulation are generally considered to be possible driving forces for void nucleation, but the real mechanism behind the pore nucleation is still unclear. Therefore, in this embodiment, the process of growing and merging the holes on the grain boundaries will be mainly considered.
孔洞长大的机制也有许多种。其中,粘塑性孔洞长大,扩散控制孔洞长大和受约束扩散孔洞长大是三种被广泛接受的孔洞长大模型。而具体哪一种机制起关键作用则取决于材料性能、温度和应力水平等。例如,在高应变速率和高应力下,孔洞的长大更倾向于受周边晶粒的蠕变或塑性变形控制;而在低应力水平下,晶界上的空位扩散则可能是主要原因。如图2~3所示,在裂尖附近的区域,由于宏观裂纹的存在,局部应力和应变总体上保持在一个很高的水平。因此,粘塑性孔洞长大机制将在裂尖区域起到主导作用。There are also many kinds of mechanisms for the growth of holes. Among them, the growth of viscoplastic pores, the diffusion control pore growth and the constrained diffusion pore growth are three widely accepted pore growth models. Which specific mechanism plays a key role depends on material properties, temperature and stress levels. For example, at high strain rates and high stresses, the growth of pores is more inclined to be controlled by creep or plastic deformation of surrounding grains; at low stress levels, vacancy diffusion at grain boundaries may be the main reason. As shown in Figures 2 to 3, in the vicinity of the crack tip, the local stress and strain are generally maintained at a high level due to the presence of macroscopic cracks. Therefore, the viscoplastic pore growth mechanism will play a leading role in the crack tip region.
如图4所示:在多轴载荷作用下的理想晶粒模型的晶界上一系列孔洞。若以下假设成立,孔洞的长大可以通过包含孔洞的板层的体积变化来度量:As shown in Figure 4: a series of holes in the grain boundary of an ideal grain model under multiaxial loading. If the following assumptions hold, the growth of the hole can be measured by the volume change of the ply containing the hole:
(i)蠕变变形中材料不可压缩,且其总体积保持不变;(i) the material in the creep deformation is incompressible and its total volume remains the same;
(ii)球形孔洞只改变体积而不改变形状;(ii) the spherical hole only changes volume without changing shape;
(iii)包含孔洞的板层的宽度要远大于其厚度;(iii) the width of the ply containing the holes is much larger than its thickness;
(iv)晶界滑移使得两边的晶粒刚性位移和板层体积变化相适应;(iv) grain boundary slip so that the grain stiffness displacement on both sides and the plate volume change are adapted;
(v)静水压力对于无孔洞时的蠕变变形没有影响;(v) Hydrostatic pressure has no effect on creep deformation in the absence of holes;
(vi)晶界孔洞长大仅受幂律蠕变控制。(vi) Grain boundary pore growth is only controlled by power law creep.
图5所示:包含一个孔洞的圆柱体的d为晶粒尺寸,r h为孔洞的半径,2h为孔洞间的距离,w是进入边界计算的距离,σ a是轴向应力,T是附加的三轴应力。那么,晶界上孔洞的面积分数可表示为: Figure 5: The cylinder of a hole containing a hole is the grain size, r h is the radius of the hole, 2h is the distance between the holes, w is the distance calculated into the boundary, σ a is the axial stress, and T is the additional Triaxial stress. Then, the area fraction of the hole in the grain boundary can be expressed as:
Figure PCTCN2018072896-appb-000009
Figure PCTCN2018072896-appb-000009
单轴应力作用下,圆柱体的体积变化率与f h的关联如下: Under the uniaxial stress, the volume change rate of the cylinder is related to f h as follows:
Figure PCTCN2018072896-appb-000010
Figure PCTCN2018072896-appb-000010
其中,V代表圆柱体的体积,
Figure PCTCN2018072896-appb-000011
是不含孔洞时的稳态蠕变速率。另一方面,圆柱体的体积变化还可以由蠕变速率来定义:
Where V represents the volume of the cylinder,
Figure PCTCN2018072896-appb-000011
It is the steady-state creep rate when there is no hole. On the other hand, the volume change of a cylinder can also be defined by the creep rate:
Figure PCTCN2018072896-appb-000012
Figure PCTCN2018072896-appb-000012
其中,
Figure PCTCN2018072896-appb-000013
为包含一个孔洞的圆柱体的轴向应变速率,
Figure PCTCN2018072896-appb-000014
为包含一个孔洞的圆柱体的径向应变速率。
among them,
Figure PCTCN2018072896-appb-000013
The axial strain rate of a cylinder containing a hole,
Figure PCTCN2018072896-appb-000014
The radial strain rate of a cylinder containing a hole.
步骤(2),利用能量原理,由幂律蠕变控制孔洞长大理论,通过New-Raphson方法,获得单轴及多轴应力状态参数;Step (2), using the energy principle, controlling the hole growth theory by power law creep, and obtaining the uniaxial and multiaxial stress state parameters by the New-Raphson method;
利用能量原理,Cocks和Ashby给出了多轴应力状态下
Figure PCTCN2018072896-appb-000015
的上边界具有如下形式:
Using the energy principle, Cocks and Ashby give the multiaxial stress state.
Figure PCTCN2018072896-appb-000015
The upper boundary has the following form:
Figure PCTCN2018072896-appb-000016
Figure PCTCN2018072896-appb-000016
式中G的定义为:The definition of G is:
Figure PCTCN2018072896-appb-000017
Figure PCTCN2018072896-appb-000017
其中,f w=r 2/w 2,T/σ a=σ meq-1/3,且σ meq为应力三轴度,n为确定的材料常数。 Where f w =r 2 /w 2 , T/σ ameq -1/3, and σ meq is the stress triaxiality, and n is the determined material constant.
合并式(2)、式(3)和式(4),可以得到描述幂律蠕变控制孔洞长大速率的复杂数学表达式:By combining equations (2), (3), and (4), a complex mathematical expression describing the rate of growth of power-law creep control holes can be obtained:
Figure PCTCN2018072896-appb-000018
Figure PCTCN2018072896-appb-000018
应当注意的是,从式(6)中无法直接获得孔洞长大速率df h/dt和应力三轴度σ meq之间的关系,为了使结果更方便实用,Cocks和Ashby给出了一个拟合的半经验公式,如下所示: It should be noted that the relationship between the hole growth rate df h /dt and the stress triaxiality σ meq cannot be directly obtained from the equation (6). In order to make the result more convenient and practical, Cocks and Ashby give A fitted semi-empirical formula, as follows:
Figure PCTCN2018072896-appb-000019
Figure PCTCN2018072896-appb-000019
其中,多轴应力状态参数α定义为:Among them, the multiaxial stress state parameter α is defined as:
Figure PCTCN2018072896-appb-000020
Figure PCTCN2018072896-appb-000020
然而,公式(8)在材料处于压缩状态,即应力三轴度σ meq≤0时,多轴应力状态参数α为负值或出现数值奇异现象,这显然与实际情况不符。此外,α随应力三轴度σ meq的增加而逐渐减小,当σ meq>3时,α近乎为0,这与实际观察到的空洞变化理论不相符。为了解决此问题,本发明中提出了另外一种近似公式,如下式所示: However, in the formula (8), when the material is in a compressed state, that is, the stress triaxiality σ meq ≤ 0, the multiaxial stress state parameter α is a negative value or a numerical singular phenomenon occurs, which is obviously inconsistent with the actual situation. In addition, α decreases with increasing stress triaxiality σ meq . When σ meq >3, α is almost 0, which is inconsistent with the actual observed cavity variation theory. In order to solve this problem, another approximate formula is proposed in the present invention, as shown in the following formula:
Figure PCTCN2018072896-appb-000021
Figure PCTCN2018072896-appb-000021
其中,a与b 0为与材料相关的常数,在简单拉伸的情况下,即σ meq=1/3时,a=1,b 0=0,式(9)退化为下式: Where a and b 0 are material-dependent constants. In the case of simple stretching, ie σ meq =1/3, a=1, b 0 =0, and equation (9) degenerates into the following formula :
Figure PCTCN2018072896-appb-000022
Figure PCTCN2018072896-appb-000022
其中,α 0为单轴应力状态参数。 Where α 0 is a uniaxial stress state parameter.
步骤(3),对微观孔洞进行积分获得材料恒载下的失效时间,进而表示单轴及多轴应力作用下的蠕变失效应变,并获得多轴蠕变延性因子;Step (3), integrating the microscopic holes to obtain the failure time under the constant load of the material, thereby indicating the creep failure strain under the uniaxial and multiaxial stress, and obtaining the multiaxial creep ductility factor;
为了获得多轴加载情况下的蠕变失效应变,将式(7)在如下所示的上下限进行积分:In order to obtain the creep failure strain under multiaxial loading, the equation (7) is integrated at the upper and lower limits shown below:
Figure PCTCN2018072896-appb-000023
Figure PCTCN2018072896-appb-000023
其中,f i为初始孔洞面积分数,f c为孔洞合并发生时的面积分数,t c为多轴应力状态下从初始到孔洞合并发生所需的时间。恒载荷下积分所得结果便是失效时间: Where f i is the initial hole area fraction, f c is the area fraction at which the hole combination occurs, and t c is the time required from the initial to the hole combination in the multiaxial stress state. The result of the integral under constant load is the expiration time:
Figure PCTCN2018072896-appb-000024
Figure PCTCN2018072896-appb-000024
多轴应力作用下的蠕变失效应变
Figure PCTCN2018072896-appb-000025
可通过下式得到:
Creep failure strain under multiaxial stress
Figure PCTCN2018072896-appb-000025
Can be obtained by:
Figure PCTCN2018072896-appb-000026
Figure PCTCN2018072896-appb-000026
用同样的方法可以得到单轴应力状态下的蠕变失效应变ε fIn the same way, the creep failure strain ε f under uniaxial stress can be obtained:
Figure PCTCN2018072896-appb-000027
Figure PCTCN2018072896-appb-000027
其中,t c0为单轴应力状态下从初始到孔洞合并发生所需的时间。 Where t c0 is the time required for the merging from the initial to the hole in the uniaxial stress state.
可定义新的多轴蠕变延性因子MCDF:A new multiaxial creep ductility factor MCDF can be defined:
Figure PCTCN2018072896-appb-000028
Figure PCTCN2018072896-appb-000028
对于具体的材料,在某一应力状态下,n为确定的材料常数,因而公式(15)可以简化为下式:For a specific material, n is a certain material constant under a certain stress state, and thus equation (15) can be simplified to the following formula:
Figure PCTCN2018072896-appb-000029
Figure PCTCN2018072896-appb-000029
其中,b为与材料相关的常数。Where b is a constant associated with the material.
步骤(4),对多轴蠕变延性因子进行参数拟合,获得不同应力状态下的多轴蠕变失效应变拟合参数,从而得到多轴蠕变延性因子预测方程;Step (4), the multi-axis creep ductility factor is fitted to the parameters, and the multi-axial creep failure strain fitting parameters under different stress states are obtained, thereby obtaining a multi-axis creep ductility factor prediction equation;
对公式(16)中的参数进行拟合:Fit the parameters in equation (16):
公式(16)中,a和b均为与材料有关的常数,可通过缺口蠕变试验获得不同应力三轴度σ meq下的蠕变失效应变,然后利用公式(16)进行拟合,获得参数a和b,从而得到多轴蠕变延性因子预测方程。 In formula (16), a and b are material-dependent constants, and the creep failure strain at different stress triaxial degrees σ meq can be obtained by the notch creep test, and then fitted by formula (16). Obtain the parameters a and b to obtain a multi-axis creep ductility factor prediction equation.
步骤(5),利用有限元软件预测材料在多轴应力状态下的蠕变失效应变及其寿命;Step (5), using finite element software to predict the creep failure strain and life of the material under multiaxial stress state;
根据步骤(4)中建立的多轴蠕变延性因子预测方程,结合蠕变-损伤本构方程,利用Fortran语言,编制子程序并嵌入到有限元软件ABAQUS中,从而实现材料在多轴应力状态下的蠕变失效应变及寿命的预测。According to the multi-axis creep ductility factor prediction equation established in step (4), combined with the creep-damage constitutive equation, the Fortran language is used to compile the subroutine and embed into the finite element software ABAQUS to realize the multiaxial stress state of the material. Prediction of creep failure strain and life.
表1 不同转化模型获得的多轴蠕变失效应变与试验值误差分析Table 1 Error analysis of multi-axial creep failure strain and test value obtained by different transformation models
Figure PCTCN2018072896-appb-000030
Figure PCTCN2018072896-appb-000030
表2 圆柱缺口拉伸试样缺口敏度比的数据变化表Table 2 Data change table of notch sensitivity ratio of cylindrical notched tensile specimen
Figure PCTCN2018072896-appb-000031
Figure PCTCN2018072896-appb-000031
表3 不同蠕变损伤本构模型及拉伸载荷下,各缺口敏度比试样的蠕变寿命预测值及试验值的对比数据表Table 3 Contrast data table of different creep damage constitutive models and tensile stresses compared with the creep life prediction values and test values of the specimens under tensile load
Figure PCTCN2018072896-appb-000032
Figure PCTCN2018072896-appb-000032
预测9Cr-1Mo合金在600℃下的多轴蠕变失效应变。图6所示为在不同的应力三轴度下不同模型预测的多轴蠕变失效应变与试验值的比较曲线。本发明中所提的模型中的参数通过试验数据拟合获得,拟合过程中蠕变指数n=8.55,单轴蠕变失效应变ε f=0.24,获得的材料常数a=0.9574,b=0.0426。从图3中可以看出,本发明中提出的转化模型有效的避 免了因材料中应力三轴度σ meq>3时出现的
Figure PCTCN2018072896-appb-000033
比值过小的问题。表1所示为利用Cocks and Ashby(C-A)模型、Wen and Tu(W-T)模型以及本发明中提出的转化模型获得的多轴蠕变失效应变与试验值得误差分析。从表1中可以看出,本发明中提出的模型获得多轴蠕变失效应变的误差最小。从图6及表1中的数据表明了本发明中提出的计算多轴蠕变失效应变的合理性和可靠性。改变圆柱缺口拉伸试样的缺口敏度比,利用有限元软件ABAQUS模拟预测在拉伸载荷为130MPa、150MPa、170MPa、210MPa四种情况下,圆柱缺口拉伸试样的蠕变寿命。缺口蠕变试样的几何形状如图7所示,敏度比的数据变化如表2所示。计算过程中分别采用K-R蠕变损伤本构模型、W-T蠕变损伤本构模型,对不同拉伸载荷下,不同缺口敏度比试样的蠕变寿命进行模拟预测。试验值及模拟值的对比数据如表3所示。从表中可以看出,与试验蠕变寿命对比,本发明提出的拟合修正模型估计的误差是最小的,然后是K-R蠕变损伤模型,Wen-Tu蠕变损伤模型计算结果误差最大。除了个别数据外,所提出的模型预测的误差控制在50%的范围内。从表1和表3的结果反映,本发明所提出的蠕变本构模型可以合理地预测高温材料的蠕变和失效行为,因此,本发明提出的蠕变失效应变预测方法可以准确计算材料的多轴蠕变失效应变及结构的寿命。
The multiaxial creep failure strain of 9Cr-1Mo alloy at 600 °C is predicted. Figure 6 shows the comparison of the multi-axial creep failure strain and the experimental values predicted by different models under different stress triaxial degrees. The parameters in the model proposed in the present invention were obtained by fitting experimental data. The creep index n=8.55 during the fitting process, the uniaxial creep failure strain ε f =0.24, and the obtained material constant a=0.9574, b=0.0426 . As can be seen from FIG. 3, the conversion model proposed in the present invention effectively avoids the occurrence of stress triaxiality σ meq >3 in the material.
Figure PCTCN2018072896-appb-000033
The ratio is too small. Table 1 shows the multi-axis creep failure strain and the experimental value error analysis obtained by using the Cocks and Ashby (CA) model, the Wen and Tu (WT) model, and the transformation model proposed in the present invention. As can be seen from Table 1, the model proposed in the present invention minimizes the error of multiaxial creep failure strain. The data from Fig. 6 and Table 1 demonstrate the rationality and reliability of calculating the multiaxial creep failure strain proposed in the present invention. The notch sensitivity ratio of the cylindrical notched tensile specimen was changed. The finite element software ABAQUS was used to simulate the creep life of the cylindrical notched tensile specimen under the tensile load of 130 MPa, 150 MPa, 170 MPa and 210 MPa. The geometry of the notched creep specimen is shown in Fig. 7, and the data of the sensitivity ratio is shown in Table 2. In the calculation process, the KR creep damage constitutive model and the WT creep damage constitutive model were used respectively. Under different tensile loads, different notch sensitivity was simulated and predicted than the creep life of the specimen. The comparative data of the test value and the simulated value are shown in Table 3. It can be seen from the table that compared with the experimental creep life, the error of the fitting correction model proposed by the present invention is the smallest, and then the KR creep damage model, and the Wen-Tu creep damage model has the largest error. In addition to the individual data, the error of the proposed model prediction is controlled within the range of 50%. It is reflected from the results of Tables 1 and 3 that the creep constitutive model proposed by the present invention can reasonably predict the creep and failure behavior of high temperature materials. Therefore, the creep failure strain prediction method proposed by the present invention can accurately calculate the material. Multiaxial creep failure strain and structural life.
改变圆柱缺口拉伸试样的缺口敏度比,利用有限元软件ABAQUS模拟预测在拉伸载荷为130MPa、150MPa、170MPa、210MPa四种情况下,圆柱缺口拉伸试样的蠕变寿命。缺口蠕变试样的几何形状如图7所示,敏度比的数据变化如表2所示。计算过程中分别采用K-R蠕变损伤本构模型、W-T蠕变损伤本构模型,对不同拉伸载荷下,不同缺口敏度比试样的蠕变寿命进行模拟预测。试验值及模拟值的对比数据如表3所示。从表中可以看出,与试验蠕变寿命对比,本发明提出的拟合修正模型估计的误差是最小的,然后是K-R蠕变损伤模型,Wen-Tu蠕变损伤模型计算结果误差最大。除了个别数据外,所提出的模型预测的误差控制在50%的范围内。从表1和表3的结果反映,本发明所提出的蠕变本构模型可以合理地预测高温材料的蠕变和失效行为,因此,本发明提出的蠕变失效应变预测方法可以准确计算材料的 多轴蠕变失效应变及结构的寿命。The notch sensitivity ratio of the cylindrical notched tensile specimen was changed. The finite element software ABAQUS was used to simulate the creep life of the cylindrical notched tensile specimen under the tensile load of 130 MPa, 150 MPa, 170 MPa and 210 MPa. The geometry of the notched creep specimen is shown in Fig. 7, and the data of the sensitivity ratio is shown in Table 2. In the calculation process, the K-R creep damage constitutive model and the W-T creep damage constitutive model were used respectively. Under different tensile loads, different notch sensitivity was simulated and predicted than the creep life of the specimen. The comparative data of the test value and the simulated value are shown in Table 3. It can be seen from the table that compared with the experimental creep life, the error of the fitting correction model proposed by the present invention is the smallest, and then the K-R creep damage model, and the Wen-Tu creep damage model has the largest error. In addition to the individual data, the error of the proposed model prediction is controlled within the range of 50%. It is reflected from the results of Tables 1 and 3 that the creep constitutive model proposed by the present invention can reasonably predict the creep and failure behavior of high temperature materials. Therefore, the creep failure strain prediction method proposed by the present invention can accurately calculate the material. Multiaxial creep failure strain and structural life.
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Any person skilled in the art may use the above-disclosed technical contents to change or modify the equivalent equivalent. Example. However, any simple modifications, equivalent changes and modifications made to the above embodiments in accordance with the technical spirit of the present invention are still within the scope of protection of the technical solutions of the present invention.

Claims (8)

  1. 一种材料多轴蠕变失效应变预测方法,其特征在于:包括如下步骤:A multi-axis creep failure strain prediction method for a material, comprising: the following steps:
    步骤(1),基于应变损伤准则,根据微观孔洞长大机制,获得材料蠕变速率和应变速率之间的关系;Step (1), based on the strain damage criterion, obtain a relationship between the material creep rate and the strain rate according to the microscopic hole growth mechanism;
    步骤(2),由幂律蠕变控制孔洞长大理论,获得单轴及多轴应力状态参数;Step (2), controlling the hole growth theory by power law creep, obtaining uniaxial and multiaxial stress state parameters;
    步骤(3),对微观孔洞进行积分获得材料恒载下的失效时间,进而表示单轴及多轴应力作用下的蠕变失效应变,并获得多轴蠕变延性因子;Step (3), integrating the microscopic holes to obtain the failure time under the constant load of the material, thereby indicating the creep failure strain under the uniaxial and multiaxial stress, and obtaining the multiaxial creep ductility factor;
    步骤(4),对多轴蠕变延性因子进行参数拟合,获得不同应力状态下的多轴蠕变失效应变拟合参数,从而得到多轴蠕变延性因子预测方程;Step (4), the multi-axis creep ductility factor is fitted to the parameters, and the multi-axial creep failure strain fitting parameters under different stress states are obtained, thereby obtaining a multi-axis creep ductility factor prediction equation;
    步骤(5),利用有限元软件预测材料在多轴应力状态下的蠕变失效应变及其寿命。In step (5), the finite element software is used to predict the creep failure strain and life of the material under multiaxial stress state.
  2. 根据权利要求1所述的材料多轴蠕变失效应变预测方法,其特征在于:步骤(1)中所述的微观孔洞长大机制在裂尖区域为粘塑性孔洞长的机制。The multiaxial creep failure strain prediction method according to claim 1, wherein the microscopic hole growth mechanism described in the step (1) is a mechanism of a viscoplastic pore length in the crack tip region.
  3. 根据权利要求1所述的材料多轴蠕变失效应变预测方法,其特征在于:步骤(1)中所述的材料蠕变速率和应变速率之间的关系为:The multiaxial creep failure strain prediction method according to claim 1, wherein the relationship between the material creep rate and the strain rate in the step (1) is:
    Figure PCTCN2018072896-appb-100001
    Figure PCTCN2018072896-appb-100001
    其中,
    Figure PCTCN2018072896-appb-100002
    为包含一个孔洞的圆柱体的轴向应变速率,
    Figure PCTCN2018072896-appb-100003
    为包含一个孔洞的圆柱体的径向应变速率,
    Figure PCTCN2018072896-appb-100004
    为圆柱体不包含孔洞时的稳态蠕变速率。
    among them,
    Figure PCTCN2018072896-appb-100002
    The axial strain rate of a cylinder containing a hole,
    Figure PCTCN2018072896-appb-100003
    The radial strain rate of a cylinder containing a hole,
    Figure PCTCN2018072896-appb-100004
    The steady-state creep rate when the cylinder does not contain holes.
  4. 根据权利要求1所述的材料多轴蠕变失效应变预测方法,其特征在于:步骤(2)中所述的单轴及多轴应力状态参数利用能量原理,并通过New-Raphson方法获得。The multiaxial creep failure strain prediction method according to claim 1, wherein the uniaxial and multiaxial stress state parameters described in the step (2) are obtained by using the energy principle and by the New-Raphson method.
  5. 根据权利要求1所述的材料多轴蠕变失效应变预测方法,其特征在于:步骤(2)中所述的单轴及多轴应力状态参数的计算公式为:The multiaxial creep failure strain prediction method according to claim 1, wherein the calculation formula of the uniaxial and multiaxial stress state parameters in the step (2) is:
    Figure PCTCN2018072896-appb-100005
    Figure PCTCN2018072896-appb-100005
    Figure PCTCN2018072896-appb-100006
    Figure PCTCN2018072896-appb-100006
    其中,α为多轴应力状态参数,α 0为单轴应力状态参数,a与b 0为与材料相关的常数,n为确定的材料常数,σ meq为应力三轴度。 Where α is a multiaxial stress state parameter, α 0 is a uniaxial stress state parameter, a and b 0 are material-dependent constants, n is a determined material constant, and σ meq is a stress triaxiality.
  6. 根据权利要求1所述的材料多轴蠕变失效应变预测方法,其特征在于:步骤(3)中所述的多轴蠕变延性因子的计算公式如下:The multiaxial creep failure strain prediction method according to claim 1, wherein the calculation formula of the multiaxial creep ductility factor in the step (3) is as follows:
    Figure PCTCN2018072896-appb-100007
    Figure PCTCN2018072896-appb-100007
    其中,ε f为单轴应力作用下的蠕变失效应变,
    Figure PCTCN2018072896-appb-100008
    为多轴应力作用下的蠕变失效应变,a和b均为与材料相关的常数,n为确定的材料常数,σ meq为应力三轴度。
    Where ε f is the creep failure strain under uniaxial stress,
    Figure PCTCN2018072896-appb-100008
    For creep failure strain under multiaxial stress, both a and b are material-dependent constants, n is the determined material constant, and σ meq is the stress triaxiality.
  7. 根据权利要求6所述的材料多轴蠕变失效应变预测方法,其特征在于:利用缺口蠕变试验获得不同应力状态下的蠕变失效应变拟合参数a和b,进而得到步骤(4)中所述的多轴蠕变延性因子预测方程。The multi-axis creep failure strain prediction method according to claim 6, wherein the creep failure strain fitting parameters a and b under different stress states are obtained by using a notch creep test, and then the step (4) is obtained. The multiaxial creep ductility factor prediction equation.
  8. 根据权利要求1所述的材料多轴蠕变失效应变预测方法,其特征在于:步骤(4)中所述的多轴蠕变延性因子预测方程结合蠕变-损伤本构方程,并通过Fortran语言嵌入到有限元软件中。The multiaxial creep failure strain prediction method according to claim 1, wherein the multiaxial creep ductility factor prediction equation described in the step (4) is combined with the creep-damage constitutive equation and passed the Fortran language. Embedded in finite element software.
PCT/CN2018/072896 2017-03-21 2018-01-16 Predicting method for multiaxial creep failure strain of material WO2018171315A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710169462.X 2017-03-21
CN201710169462.XA CN106934168B (en) 2017-03-21 2017-03-21 A kind of material multi-axial creep failure strain prediction technique

Publications (1)

Publication Number Publication Date
WO2018171315A1 true WO2018171315A1 (en) 2018-09-27

Family

ID=59432943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072896 WO2018171315A1 (en) 2017-03-21 2018-01-16 Predicting method for multiaxial creep failure strain of material

Country Status (2)

Country Link
CN (1) CN106934168B (en)
WO (1) WO2018171315A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887725A (en) * 2019-12-06 2020-03-17 北京建筑大学 Method for judging damage position of historic building wood beam based on strain energy

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106934168B (en) * 2017-03-21 2018-08-28 中国石油大学(华东) A kind of material multi-axial creep failure strain prediction technique
CN109933816B (en) * 2017-12-15 2022-10-21 天津大学 Creep induction period prediction method for coupling residual stress and constraint effect under elastic transient creep condition
CN109933815B (en) * 2017-12-15 2022-12-02 天津大学 Creep induction period prediction method for coupling residual stress and constraint effect under steady-state creep condition
CN109933822B (en) * 2017-12-15 2022-11-04 天津大学 Creep induction period prediction method considering load-independent constraint parameters under plastic transient creep condition
CN108827769B (en) * 2018-04-10 2019-10-29 中国矿业大学 A kind of prediction technique of building film material nonlinear mechanics character
CN110411863B (en) * 2018-04-26 2022-02-11 天津大学 High-temperature creep life prediction method based on creep ductility
CN109142083B (en) * 2018-09-05 2020-04-24 南京航空航天大学 Creep damage calculation method under variable load process
CN111062107B (en) * 2018-10-15 2022-08-16 天津大学 Fitting method of nanoindentation power law model by introducing parameters of grain boundary strengthening and dislocation strengthening
CN109885874B (en) * 2019-01-11 2022-12-23 华东理工大学 ABAQUS-based multi-axial creep fatigue prediction method
CN112485113B (en) * 2020-11-17 2023-04-21 核工业西南物理研究院 Method and device for testing tensile property of material of small-size sample

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104156577A (en) * 2014-07-31 2014-11-19 广东电网公司电力科学研究院 Service life evaluation method of ultra-supercritical boiler special steel pipe welding connector
CN106202913A (en) * 2016-07-07 2016-12-07 华东理工大学 The creep fatigue assessment of impairments method of time correlation
CN106934168A (en) * 2017-03-21 2017-07-07 中国石油大学(华东) A kind of material multi-axial creep failure strain Forecasting Methodology

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103761365B (en) * 2013-12-28 2015-05-20 合肥通用机械研究院 High-temperature pressure vessel creep fatigue strength design method based on service life
CN103926152B (en) * 2014-04-09 2016-08-24 北京工业大学 A kind of high temperature multiaxis spectrum is low all creep-fatigue lifetime estimation methods under carrying
CN106484936B (en) * 2015-09-02 2019-09-17 中国航发商用航空发动机有限责任公司 A kind of appraisal procedure and device of the creep fatigue life for the high-temperature component considering stress relaxation effect

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104156577A (en) * 2014-07-31 2014-11-19 广东电网公司电力科学研究院 Service life evaluation method of ultra-supercritical boiler special steel pipe welding connector
CN106202913A (en) * 2016-07-07 2016-12-07 华东理工大学 The creep fatigue assessment of impairments method of time correlation
CN106934168A (en) * 2017-03-21 2017-07-07 中国石油大学(华东) A kind of material multi-axial creep failure strain Forecasting Methodology

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEN, JIANFENG: "Strain-based Damage Mechanics Model and its Application to Numerical Simulations of Creep Crack Growth", DOCTORAL DISSERTATION OF EAST CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY, no. 9, 15 September 2014 (2014-09-15) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887725A (en) * 2019-12-06 2020-03-17 北京建筑大学 Method for judging damage position of historic building wood beam based on strain energy
CN110887725B (en) * 2019-12-06 2022-03-25 北京建筑大学 Method for judging damage position of historic building wood beam based on strain energy

Also Published As

Publication number Publication date
CN106934168A (en) 2017-07-07
CN106934168B (en) 2018-08-28

Similar Documents

Publication Publication Date Title
WO2018171315A1 (en) Predicting method for multiaxial creep failure strain of material
Tekoğlu et al. On localization and void coalescence as a precursor to ductile fracture
Seifert et al. Mechanism-based thermomechanical fatigue life prediction of cast iron. Part I: Models
WO2021098169A1 (en) Method for predicting fatigue life of geometrically discontinuous structure
Tekoglu et al. A criterion for the onset of void coalescence under combined tension and shear
CN105930553A (en) Method for predicting tensile strength of nickel-base superalloy gap
CN104316388A (en) A fatigue lifetime measuring method for anisotropic material structural parts
CN109598079B (en) Cylinder head partition fatigue life prediction method
Srivastava et al. Porosity evolution in a creeping single crystal
Venkataramani et al. Crystal plasticity based FE model for understanding microstructural effects on creep and dwell fatigue in Ti-6242
CN110032795B (en) Method for predicting thermal fatigue crack initiation life of nickel-based single crystal alloy
CN110411850A (en) A kind of appraisal procedure of high-temperature alloy turbine blade service condition
CN112417583B (en) Quantitative prediction method for loose defect of large complex thin-wall high-temperature alloy casting
Newman Jr et al. Fatigue-life prediction method based on small-crack theory in an engine material
Kashef et al. Fracture mechanics of stainless steel foams
Pei et al. Study on oxidation-creep behavior of a Ni-based single crystal superalloy based on crystal plasticity theory
CN110008620A (en) A kind of method of α-Fe strain rate sensitivity coefficient under analysis dynamic load conditions
Tang et al. Low cycle fatigue modeling for nickel-based single crystal superalloy
Ignaszak et al. Problem of Acceptability of Internal Porosity in Semi-Finished Cast Product as New Trend" Tolerance of Damage" Present in Modern Design Office
Stewart et al. Characterization of the Creep Deformation and Rupture Behavior of DS GTD-111 Using the Kachanov–Rabotnov Constitutive Model
Dumoulin et al. A multiscale approach for coupled phenomena in fcc materials at high temperatures
WO2021068148A1 (en) Creep strength analysis and assessment method, and computer device
Jaglinski et al. Creep behavior of Al-Si die-cast alloys
Dong et al. Crack initiation life model for compression-compression low cycle fatigue based on damage mechanics
CN108254538A (en) A kind of difference curing condition is sowed concrete creep behavior evaluation apparatus and method for

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770535

Country of ref document: EP

Kind code of ref document: A1