WO2018171294A1 - 一种混合送风双层光伏幕墙系统及其控制方式 - Google Patents

一种混合送风双层光伏幕墙系统及其控制方式 Download PDF

Info

Publication number
WO2018171294A1
WO2018171294A1 PCT/CN2018/071330 CN2018071330W WO2018171294A1 WO 2018171294 A1 WO2018171294 A1 WO 2018171294A1 CN 2018071330 W CN2018071330 W CN 2018071330W WO 2018171294 A1 WO2018171294 A1 WO 2018171294A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
curtain wall
conditioning system
cavity
air conditioning
Prior art date
Application number
PCT/CN2018/071330
Other languages
English (en)
French (fr)
Inventor
梁若冰
潘强广
张吉礼
李威
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Publication of WO2018171294A1 publication Critical patent/WO2018171294A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • F24F7/013Ventilation with forced flow using wall or window fans, displacing air through the wall or window
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/88Curtain walls

Definitions

  • the invention relates to a double-layer photovoltaic curtain wall building ventilation system and a control method thereof, and belongs to the technical field of HVAC.
  • photovoltaic building integration technology that combines photovoltaic modules with building envelopes is becoming more and more mature.
  • the capacity-type building that uses photovoltaic systems to provide power support for buildings has received extensive attention from the society and has become one of the important directions in the development of building energy efficiency in China.
  • more and more large-scale public buildings have double-glazed curtain walls.
  • the form of enclosures combining photovoltaic modules and glass curtain walls has become a hot spot in architectural design.
  • the technical problem to be solved by the invention is that the double-layer photovoltaic curtain wall cavity overheating problem, and a ventilation control method combining the double-layer photovoltaic curtain wall space unit and the air conditioning system is proposed, so that the double-layer photovoltaic curtain wall system can be operated efficiently, energy-saving and stably.
  • a mixed air supply double-layer photovoltaic curtain wall system comprising a curtain wall space unit 1, a cavity ventilation system 2 and an original air conditioning system 3;
  • the curtain wall space unit 1 comprises glass, a photovoltaic module 4, an electric sunshade louver 5, a junction box 6 and a vent electric louver 7, the glass comprises an outer glass 8 and an inner glass 10; the outer glass 8 and the inner glass 10 enclose a curtain wall Cavity 9;
  • the outer glass 8 is a double-layer glass with a PV module 4 fixed by EVA glue in between;
  • the photovoltaic module 4 is connected in series by a single crystal silicon cell, laid in the lower half of the outer glass 8, with a laying height of 1 m and a partial coverage of 100%; the photovoltaic module 4 is disposed in the cavity 9 of the curtain wall. Junction box 6 is connected;
  • the upper half of the curtain wall cavity 9 is provided with electric sunshade louvers 5, and the position of the electric sunshade louver 5 is 200 mm away from the outer glass 8;
  • An air conditioning system air outlet a11 is arranged at the bottom of the curtain wall cavity 9, and the air conditioning system exhaust air is sent into the curtain wall cavity 9 through the exhaust fan a12 air conditioning system air outlet a11, and a "cold air curtain” is formed on the inner glass surface 10 "Enhanced convective heat transfer between the air and the inner wall while blocking the heat transferred to the inner glass 10, and then sent to the outside through the exhaust fan b13 through the top air duct of the curtain wall cavity 9;
  • the cavity ventilation system 2 has an additional ventilation system on the original air conditioning system 3, which ventilates the curtain wall space unit 1; the cavity ventilation system 2 includes three parts: an outdoor fresh air, an air conditioning system exhaust, and a cavity exhaust.
  • the outdoor fresh air enters the curtain wall cavity 9 through the ventilating electric louver 7 , and the air conditioning system exhausts from the air conditioning system exhaust vent a11 into the curtain wall cavity 9 , and the ventilation amount is controlled by the first electric damper D1 at the bottom of the curtain wall cavity 9;
  • the exhaust air is sent to the outdoor or air conditioning system fresh air inlet by the exhaust fan b13, wherein the second electric air valve D2 controls the air volume discharged to the outdoor, and the third electric air valve D3 controls the air volume entering the fresh air inlet of the air conditioning system;
  • the original air conditioning system 3 includes air conditioning system air supply and air conditioning system exhaust; outdoor fresh air, curtain wall cavity exhaust or original air conditioning system 3 return air through the air conditioning system air handling unit, after reaching the indoor air treatment state , is sent to each air-conditioned room by the blower c14, wherein the outdoor fresh air volume is controlled by the fifth electric air valve D5, the curtain wall cavity exhaust air volume is controlled by the third electric air valve D3, and the original air conditioning system 3 return air volume is sixth.
  • the electric air valve D6 is controlled; the air conditioning system exhausts to the curtain wall cavity 9, as the air conditioning system returns air or directly discharges to the outdoor, wherein the fourth electric air valve D4 controls the discharge to the outdoor air volume.
  • the curtain wall cavity 9 has a width of 600 mm.
  • the outer glass 8 and the inner glass 10 are made of ultra-white tempered glass.
  • Ventilation of the curtain wall cavity can effectively cool the inner wall of the cavity.
  • the cavity exhaust fan of the cavity ventilation system is started, and the exhaust of the air conditioning system is blown out from the air outlet at the bottom of the curtain wall cavity, and a “cold air curtain” is formed on the inner glass wall surface.
  • the electric louver of the curtain wall vent is opened, and the outdoor fresh air enters.
  • the air conditioning system exhausts and the outdoor fresh air form a mixed ventilation, taking away the heat in the cavity and discharging it to the outside.
  • the outdoor air temperature is low, and the cavity can be used to preheat the air.
  • the cavity exhaust fan is stopped, the air conditioning system exhaust fan is started, the outdoor air is warmed up through the curtain wall cavity and then enters the air conditioning system, and the air conditioning system exhausts the air directly to the outside.
  • a mixed air supply double-layer photovoltaic curtain wall system combines air conditioning exhaust air and outdoor fresh air to control the temperature of the curtain wall cavity, which not only avoids the greenhouse effect caused by overheating of the curtain wall cavity in summer, but also effectively utilizes the organized environment.
  • the air conditioning exhaust forms a “cold air curtain” on the glass surface inside the cavity, and the heat insulation amount is transmitted to the room through the inner glass. Reducing the temperature of the cavity by ventilation is beneficial to lowering the surface temperature of the photovoltaic module, thereby improving its photoelectric conversion efficiency.
  • the double-layer photovoltaic curtain wall is composed of photovoltaic modules and electric sunshade louvers.
  • the photovoltaic components not only block the direct influence of solar radiation on the transparent envelope structure, but also have its own power output.
  • the electric sunshade louvers have a certain weakening and delaying effect on the solar radiation, and the visor louver angle can be adjusted through the cavity working condition or the indoor demand.
  • the curtain wall cavity can be used to preheat the fresh air of the air conditioning system to achieve efficient energy utilization.
  • Figure 1 is a schematic diagram of a hybrid air supply double-layer photovoltaic curtain wall system.
  • Figure 2 is a schematic diagram of the control of a mixed air supply double-layer photovoltaic curtain wall system.
  • Figure 3 is a spatial unit diagram of a double-layer photovoltaic curtain wall.
  • Figure 4 is a cross-sectional view of a double-layer photovoltaic curtain wall space unit A-A.
  • a hybrid air supply double-layer photovoltaic curtain wall system includes a curtain wall space unit 1, a cavity ventilation system 2, and an original air conditioning system 3.
  • a mixed air supply double-layer photovoltaic curtain wall system comprises a curtain wall space unit, a cavity ventilation system and an original air conditioning system;
  • the curtain wall space unit 1 comprises glass, a photovoltaic module 4, an electric sunshade louver 5, a junction box 6 and a vent electric louver 7, the curtain wall space unit 1 comprising an outer glass 8 and an inner glass 10, and an outer glass 8 and an inner glass 10 Enclosed curtain wall cavity 9;
  • the outer glass 8 is double-layer glass, with the EVA glue fixed photovoltaic module 4 interposed therebetween;
  • the photovoltaic module 4 is connected in series by the monocrystalline silicon cell, and then connected to the junction box 6;
  • the laying height is 1 m, and the laying portion coverage is 100%.
  • the ventilating electric louver 7 can control the outdoor fresh air to enter the curtain wall cavity 9 according to the demand.
  • the curtain wall cavity 9 has a width of 600 mm, and the upper half of the curtain wall cavity 9 has electric sunshade louvers 5, and the position of the electric sunshade louver 5 is about 200 mm from the outer glass 8.
  • an air conditioning system air outlet a11 At the bottom of the curtain wall cavity 9 is an air conditioning system air outlet a11, and the air conditioning system exhaust air can be sent into the curtain wall cavity 9 through the exhaust fan a12, and a "cold air curtain" is formed on the inner glass surface 10 to enhance the convective heat transfer between the air and the inner wall. The heat transferred to the inner glass 10 is blocked, and then sent to the outside through the exhaust fan b13 through the top air duct of the curtain wall cavity 9.
  • the outer glass 8 and the inner glass 10 are made of ultra-white tempered glass
  • the cavity ventilation system 2 is a ventilation system added to the original air conditioning system 3, and the function is to ventilate the curtain wall space unit 1 to achieve the effect of cooling the cavity environment in summer or preheating the outdoor air in winter.
  • the cavity ventilation system 2 is composed of an outdoor fresh air, an air conditioning system exhaust, and a cavity exhaust.
  • the outdoor fresh air enters the curtain wall cavity 9 through the ventilating electric louver 7;
  • the air conditioning system exhausts from the air conditioning system exhaust vent a11 into the curtain wall cavity 9, in the hot summer, the air conditioning system exhaust air temperature is lower than the outdoor temperature, can be used as cold
  • the source cools the cavity; the cavity exhaust is sent to the outdoor or air conditioning system fresh air inlet by the exhaust fan b13.
  • the original air conditioning system 3 includes an air conditioning system air supply and an air conditioning system exhaust.
  • the air from the outdoor fresh air or curtain wall cavity passes through the air treatment unit of the air conditioning system, and after reaching the indoor air treatment state, it is sent to each air-conditioned room by the blower c14.
  • Air conditioning system exhaust can be sent to the curtain wall cavity 9, as the air conditioning system return air or directly discharged to the outside.
  • the outdoor temperature is high.
  • the temperature of the curtain wall cavity 9 is likely to rise, thereby increasing the energy consumption of the air conditioning system and reducing the photoelectric conversion efficiency of the photovoltaic system. Therefore, how to cool the curtain wall cavity 9 becomes the key to solve the optimal operation of the system under the summer working conditions, and the ventilation of the curtain wall cavity 9 can effectively cool the inner wall of the cavity.
  • the exhaust fan a12 and the exhaust fan b13 of the cavity ventilation system 2 are activated, the first electric air valve D1, the second electric air valve D2 are opened, the third electric air valve D3 is closed, and the air conditioning system exhausts from the bottom of the curtain wall cavity.
  • the air outlet venting opening a11 is blown out, and a "cold air curtain" is formed on the inner wall 10 wall surface.
  • the curtain wall vent electric louver 7 is opened, and the outdoor fresh air enters the curtain wall cavity.
  • the air conditioning system exhausts and the outdoor fresh air form a mixed ventilation, taking away the heat in the cavity and discharging it to the outside.
  • the outdoor air temperature is low, and the "greenhouse" formed in the cavity of the curtain wall can be used to preheat the air.
  • the exhaust fan a12 and the exhaust fan b13 are stopped, the ventilating electric louver 7 is opened, the first electric damper D1 and the second electric damper D2 are closed, the third electric damper D3 is opened, the exhaust fan d15 is activated, and the fourth electric motor is activated.
  • the air valve D4 is opened, the outdoor air is preheated through the curtain wall cavity 9 and then enters the air conditioning system, and the air conditioning system exhausts the air directly to the outside.
  • the utility model relates to a mixed air supply double-layer photovoltaic curtain wall system, which solves the problem of overheating of the double-glazed curtain wall building curtain wall cavity, and effectively utilizes the organized air conditioning exhaust as a cold source, and organically combines the original air conditioning system with the cavity exhaust system Formed a system that can control, optimize and save energy.
  • the present invention combines a photovoltaic module with a curtain wall building to realize a practical application of a productive building.
  • the electrical energy generated by the PV modules can be used by the building itself or it can be connected to the grid.
  • the overheating problem of the curtain wall cavity is solved, which not only avoids the influence of the cavity greenhouse effect on the indoor comfort, reduces the building cooling load, but also reduces the surface temperature of the photovoltaic module and improves its photoelectric conversion efficiency.

Abstract

一种混合送风双层光伏幕墙系统,包括幕墙空间单元(1)、空腔通风系统(2)和原有空调系统(3)。外侧玻璃下半部分设置光伏组件(4)不仅隔断了太阳辐射对透明围护结构的直接影响,其自身又有电能输出;幕墙空腔(9)上半部分设有电动遮阳百叶(5),对太阳辐射有一定削弱和延迟作用,同时可以自动调节遮阳百叶(5)角度。空腔通风系统(2)是在原有空调系统(3)上增加的通风系统(2),空腔通风系统(2)和原有空调系统(3)有机地结合,可实现不同的通风策略。还公开了一种混合送风双层光伏幕墙系统的控制方法。

Description

一种混合送风双层光伏幕墙系统及其控制方式 技术领域
本发明涉及一种双层光伏幕墙建筑通风系统及其控制方式,属于暖通空调技术领域。
背景技术
随着光伏产业的快速发展,将光伏组件与建筑围护结构相结合的光伏建筑一体化技术越来越成熟。利用光伏系统为建筑提供电力支持的产能型建筑更受到了社会的广泛关注,并已经成为了我国建筑节能领域发展的重要方向之一。近年来,越来越多的大型公共建筑外立面采用双层玻璃幕墙,与此同时,将光伏组件与玻璃幕墙相结合的围护结构形式也成为了建筑设计的热点。但是,实际应用效果表明,在炎热夏季且通风效果不佳时,极易导致内层玻璃表面温度过高,进而增加幕墙建筑空调系统的能耗、降低光伏系统的光电转换效率。因此,发明一种适合于双层光伏幕墙建筑的空调系统,通过控制幕墙空腔通风,有效地降低空腔内层玻璃表面温度,“拦截”通过内层玻璃传入室内的热量,同时利用光伏组件吸收太阳辐射并输出电能,对双层光伏幕墙系统节能、高效运行具有较大实用价值。
技术问题
本发明所要解决的技术问题是双层光伏幕墙空腔过热问题,提出一种双层光伏幕墙空间单元与空调系统结合的通风控制方法,使得双层光伏幕墙系统得以高效、节能、稳定地运行。
技术解决方案
本发明的技术方案:
一种混合送风双层光伏幕墙系统,包括幕墙空间单元1、空腔通风系统2和原有空调系统3;
所述的幕墙空间单元1包括玻璃、光伏组件4、电动遮阳百叶5、接线盒6和通风口电动百叶7,玻璃包括外侧玻璃8和内侧玻璃10;外侧玻璃8和内侧玻璃10围成幕墙空腔9;
所述的外侧玻璃8为双层玻璃,中间夹有由EVA胶固定的光伏组件4;
所述的光伏组件4由单晶硅电池片串接,铺设在外侧玻璃8的下半部分,铺设高度为1m且铺设部分覆盖率为100%;光伏组件4与设置在幕墙空腔9内的接线盒6连接;
在所述的光伏组件4的下方,即外侧玻璃8底部,设有室外新风进风口,室外新风进风口处装有通风口电动百叶7,通风口电动百叶7根据需求控制室外新风进入幕墙空腔9;
所述的幕墙空腔9内上半部设有电动遮阳百叶5,电动遮阳百叶5的位置在距离外侧玻璃8的200mm处;
在所述的幕墙空腔9底部设有空调系统排风口a11,空调系统排风通过排风机a12空调系统排风口a11送入幕墙空腔9内,并在内侧玻璃10表面形成“冷风幕”,增强空气与内壁的对流换热同时阻隔传到内侧玻璃10的热量,然后通过幕墙空腔9顶部风管由排风机b13送到室外;
所述的空腔通风系统2在原有空调系统3上增加的通风系统,其为幕墙空间单元1通风;空腔通风系统2包括室外新风、空调系统排风和空腔排风三部分,其中,室外新风通过通风口电动百叶7进入幕墙空腔9,空调系统排风由空调系统排风口a11进入幕墙空腔9,其通风量由幕墙空腔9底部的第一电动风阀D1控制;空腔排风由排风机b13送往室外或空调系统新风入口,其中,第二电动风阀D2控制排到室外的风量,第三电动风阀D3控制进入空调系统新风入口的风量;
所述的原有空调系统3包括空调系统送风和空调系统排风;室外新风、幕墙空腔的排风或原有空调系统3回风经过空调系统的空气处理机组,达到室内空气处理状态后,由送风机c14送至每个空调房间,其中,室外新风量由第五电动风阀D5控制,幕墙空腔排风量由第三电动风阀D3控制,原有空调系统3回风量由第六电动风阀D6控制;空调系统排风送往幕墙空腔9、作为空调系统回风或直接排到室外,其中第四电动风阀D4控制排到室外风量。
所述的幕墙空腔9宽度为600mm。
所述的外侧玻璃8和内侧玻璃10的材质为超白钢化玻璃。
通过将空腔通风系统和原有空调系统结合,可在不同工况下实现不同的通风策略,特别是对于充分利用空调排风作为冷源冷却幕墙空腔、冬季新风预热有很大的实际意义。具体控制策略如下:
夏季工况条件下,室外温度较高,在通风不佳的情况下,易导致幕墙空腔温度升高,进而增加空调系统能耗以及降低光伏系统的光电转化效率。因此,如何冷却幕墙空腔成为解决夏季工况条件下系统优化运行的关键,对幕墙空腔进行通风可有效地冷却空腔内壁。具体地,空腔通风系统的空腔排风机启动,空调系统排风从幕墙空腔底部风口吹出,在内侧玻璃壁面形成“冷风幕”,与此同时,幕墙通风口电动百叶打开,室外新风进入幕墙空腔。空调系统排风和室外新风形成混合通风,带走空腔内热量后排到室外。
冬季工况条件下,室外空气温度较低,可利用空腔预热空气。具体地,空腔排风机停机,空调系统排风机启动,室外空气经过幕墙空腔预热后再进入空调系统,空调系统排风直接排到室外。
有益效果
1.一种混合送风双层光伏幕墙系统通过结合空调排风以及室外新风控制幕墙空腔温度,不仅避免夏季幕墙空腔过热造成的温室效应对室内环境的影响,同时有效地利用了有组织空调排风作为冷源,在空腔内侧玻璃表面形成“冷风幕”,阻隔热量通过内侧玻璃传到室内。通过通风降低空腔温度,有利于降低光伏组件表面温度,从而提高其光电转化效率。
2.双层光伏幕墙由光伏组件和电动遮阳百叶组成,光伏组件不仅隔断了太阳辐射对透明围护结构的直接影响,其自身又有电能输出。电动遮阳百叶对太阳辐射有一定削弱和延迟作用,同时可以通过空腔工况或室内需求调节遮阳百叶角度。
3.冬季工况下,可利用幕墙空腔预热空调系统新风,实现能源高效利用。
附图说明
图1为一种混合送风双层光伏幕墙系统原理图。
图2为一种混合送风双层光伏幕墙系统控制原理图。
图3为双层光伏幕墙空间单元图。
图4为双层光伏幕墙空间单元A-A剖面图。
图中:1幕墙空间单元;2空腔通风系统;3原有空调系统;4光伏组件;
5电动遮阳百叶;6接线盒;7通风口电动百叶;8外侧玻璃;9幕墙空腔;
10内侧玻璃;11空调系统排风口a;12排风机a;13排风机b;
14送风机c;15排风机d;D1第一电动风阀;D2第二电动风阀;
D3第三电动风阀;D4第四电动风阀; D5第五电动风阀;
D6第六电动风阀。
本发明的实施方式
以下结合技术方案和附图,进一步说明本发明的具体实施方式。
如图1、图2所示,一种混合送风双层光伏幕墙系统包括幕墙空间单元1、空腔通风系统2和原有空调系统3。
一种混合送风双层光伏幕墙系统包括幕墙空间单元、空腔通风系统和原有空调系统;
幕墙空间单元1包括玻璃、光伏组件4、电动遮阳百叶5、接线盒6和通风口电动百叶7,幕墙空间单元1结构上包括外侧玻璃8和内侧玻璃10、以及由外侧玻璃8和内侧玻璃10围成的幕墙空腔9;外侧玻璃8为双层玻璃,其中间夹有EVA胶固定的光伏组件4;光伏组件4由单晶硅电池片串接,然后连接至接线盒6;
铺设在外侧玻璃8的下半部分,铺设高度为1m,且铺设部分覆盖率为100%。
光伏组件4的下方,即外侧玻璃8底部,设有室外新风进风口,并装有通风口电动百叶7。通风口电动百叶7可根据需求控制室外新风进入幕墙空腔9。
所述的幕墙空腔9宽度为600mm,幕墙空腔9内上半部分有电动遮阳百叶5,电动遮阳百叶5的位置在距离外侧玻璃8大约200mm。
幕墙空腔9底部有空调系统排风口a11,空调系统排风可以通过排风机a12送入幕墙空腔9,并在内侧玻璃10表面形成“冷风幕”,增强空气与内壁的对流换热同时阻隔传到内侧玻璃10的热量,然后通过幕墙空腔9顶部风管由排风机b13送到室外。
所述的外侧玻璃8和内侧玻璃10的材质为超白钢化玻璃;
所述的空腔通风系统2是在原有空调系统3上增加的通风系统,其作用是为幕墙空间单元1通风,达到夏季冷却空腔环境或冬季预热室外空气的效果。空腔通风系统2由室外新风、空调系统排风和空腔排风组成。其中,室外新风通过通风口电动百叶7进入幕墙空腔9;空调系统排风由空调系统排风口a11进入幕墙空腔9,在炎热夏季,空调系统排风温度低于室外温度,可作为冷源来冷却空腔;空腔排风由排风机b13送往室外或空调系统新风入口。
所述的原有空调系统3包括空调系统送风和空调系统排风。室外新风或幕墙空腔的排风经过空调系统的空气处理机组,达到室内空气处理状态后,由送风机c14送至每个空调房间。空调系统排风可送往幕墙空腔9、作为空调系统回风或者直接排到室外。
通过将空腔通风系统2和原有空调系统3结合,可在不同工况下实现不同的通风方式,特别是对于充分利用空调系统排风作为冷源冷却幕墙空腔和冬季新风预热有很大的实际意义。
具体控制方式如下:
夏季工况条件下,室外温度较高,在通风不佳的情况下,易导致幕墙空腔9温度升高,进而增加空调系统能耗以及降低光伏系统的光电转化效率。因此,如何冷却幕墙空腔9成为解决夏季工况条件下系统优化运行的关键,对幕墙空腔9进行通风可有效地冷却空腔内壁。具体地,空腔通风系统2的排风机a12、排风机b13启动,第一电动风阀D1、第二电动风阀D2打开、第三电动风阀D3关闭,空调系统排风从幕墙空腔底部空调系统排风口a11吹出,在内侧玻璃10壁面形成“冷风幕”,与此同时,幕墙通风口电动百叶7打开,室外新风进入幕墙空腔。空调系统排风和室外新风形成混合通风,带走空腔内热量后排到室外。
冬季工况条件下,室外空气温度较低,可利用幕墙空腔内形成的“温室”预热空气。具体地,排风机a12、排风机b13停机,通风口电动百叶7打开,第一电动风阀D1、第二电动风阀D2关闭,第三电动风阀D3打开,排风机d15启动,第四电动风阀D4打开,室外空气经过幕墙空腔9预热后再进入空调系统,空调系统排风直接排到室外。
一种混合送风双层光伏幕墙系统解决了双层玻璃幕墙建筑幕墙空腔过热问题,并有效地利用有组织空调排风作为冷源,将原有空调系统与空腔排风系统有机地结合,形成了一套运行可控、优化、节能的系统。同时,本发明将光伏组件与幕墙建筑相结合,实现一种产能型建筑的实际应用。光伏组件产生的电能可供建筑本身使用,也可以并网。幕墙空腔过热问题得以解决,不仅避免了空腔温室效应对室内舒适度的影响,降低建筑冷负荷,同时降低了光伏组件表面温度,提高其光电转化效率。

Claims (4)

  1. 一种混合送风双层光伏幕墙系统,其特征在于,所述的混合送风双层光伏幕墙系统包括幕墙空间单元(1)、空腔通风系统(2)和原有空调系统(3);
    所述的幕墙空间单元(1)包括玻璃、光伏组件(4)、电动遮阳百叶(5)、接线盒(6)和通风口电动百叶(7),玻璃包括外侧玻璃(8)和内侧玻璃(10);外侧玻璃(8)和内侧玻璃(10)围成幕墙空腔(9);
    所述的外侧玻璃(8)为双层玻璃,中间夹有由EVA胶固定的光伏组件(4);
    所述的光伏组件(4)由单晶硅电池片串接,铺设在外侧玻璃(8)的下半部分,铺设高度为1m且铺设部分覆盖率为100%;光伏组件(4)与设置在幕墙空腔(9)内的接线盒(6)连接;
    在所述的光伏组件(4)的下方,即外侧玻璃(8)底部,设有室外新风进风口,室外新风进风口处装有通风口电动百叶(7),通风口电动百叶(7)根据需求控制室外新风进入幕墙空腔(9);
    所述的幕墙空腔(9)内上半部设有电动遮阳百叶(5),电动遮阳百叶(5)的位置在距离外侧玻璃(8)的200mm处;
    在所述的幕墙空腔(9)底部设有空调系统排风口a(11),空调系统排风通过排风机a(12)经空调系统排风口a(11)送入幕墙空腔(9)内,并在内侧玻璃(10)表面形成“冷风幕”,增强空气与内壁的对流换热同时阻隔传到内侧玻璃(10)的热量,然后通过幕墙空腔(9)顶部风管由排风机b(13)送到室外;
    所述的空腔通风系统(2)在原有空调系统(3)上增加的通风系统,其为幕墙空间单元(1)通风;空腔通风系统(2)包括室外新风、空调系统排风和空腔排风三部分,其中,室外新风通过通风口电动百叶(7)进入幕墙空腔(9),空调系统排风由空调系统排风口a(11)进入幕墙空腔(9),其通风量由空腔底部的第一电动风阀(D1)控制;空腔排风由排风机b(13)送往室外或空调系统新风入口,其中,第二电动风阀(D2)控制排到室外的风量,第三电动风阀(D3)控制进入空调系统新风入口的风量;
    所述的原有空调系统(3)包括空调系统送风和空调系统排风;室外新风、幕墙空腔的排风或原有空调系统(3)回风经过空调系统的空气处理机组,达到室内空气处理状态后,由送风机c(14)送至每个空调房间,其中,室外新风量由第五电动风阀(D5)控制,幕墙空腔排风量由第三电动风阀(D3)控制,原有空调系统(3)回风量由第六电动风阀(D6)控制;空调系统排风送往幕墙空腔(9)、作为空调系统回风或直接排到室外,其中第四电动风阀(D4)控制排到室外风量。
  2. 根据权利要求1所述的混合送风双层光伏幕墙系统,其特征在于,所述的幕墙空腔(9)宽度为600mm。
  3. 根据权利要求1或2所述的混合送风双层光伏幕墙系统,其特征在于,所述的外侧玻璃(8)和内侧玻璃(10)的材质为超白钢化玻璃。
  4. 一种混合送风双层光伏幕墙系统的控制方式,其特征在于,步骤如下:
    夏季工况条件下:空腔通风系统(2)的排风机a(12)和排风机b(13)启动,第一电动风阀(D1)、第二电动风阀(D2)打开、第三电动风阀(D3)关闭,空调系统排风从幕墙空腔(9)底部空调系统排风口a(11)吹出,在内侧玻璃(10)壁面形成“冷风幕”,与此同时,通风口电动百叶(7)打开,室外新风进入幕墙空腔(9);
    冬季工况条件下:排风机a(12)、排风机b(13)停机,通风口电动百叶(7)打开,第一电动风阀(D1)、第二电动风阀(D2)关闭,第三电动风阀(D3)打开,排风机d(15)启动,第四电动风阀电动风阀(D4)打开,室外空气经过幕墙空腔(9)预热后再进入空调系统,空调系统排风直接排到室外。
PCT/CN2018/071330 2017-03-22 2018-01-04 一种混合送风双层光伏幕墙系统及其控制方式 WO2018171294A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710172577.4A CN106839242A (zh) 2017-03-22 2017-03-22 一种混合送风双层光伏幕墙系统及其控制方式
CN201710172577.4 2017-03-22

Publications (1)

Publication Number Publication Date
WO2018171294A1 true WO2018171294A1 (zh) 2018-09-27

Family

ID=59130061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071330 WO2018171294A1 (zh) 2017-03-22 2018-01-04 一种混合送风双层光伏幕墙系统及其控制方式

Country Status (2)

Country Link
CN (1) CN106839242A (zh)
WO (1) WO2018171294A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106839242A (zh) * 2017-03-22 2017-06-13 大连理工大学 一种混合送风双层光伏幕墙系统及其控制方式
PL234665B1 (pl) * 2018-04-12 2020-03-31 Politechnika Rzeszowska Im Ignacego Lukasiewicza Przegroda kolektorowo-akumulacyjna transparentna dla budownictwa
CN113107115B (zh) * 2021-03-18 2022-07-22 中国石油大学(华东) 一种静电除尘双层皮通风幕墙

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187488A (zh) * 2007-09-28 2008-05-28 周嘉陵 一种双层玻璃幕墙的通风技术和方法及构造
CN201687352U (zh) * 2010-04-21 2010-12-29 沙崇跃 一种节能窗
CN103821268A (zh) * 2014-02-14 2014-05-28 广东金刚幕墙工程有限公司 一种构件式双层幕墙
CN203846650U (zh) * 2014-04-13 2014-09-24 深圳市奇信建设集团股份有限公司 具有智能换气功能的节能幕墙
CN104453039A (zh) * 2014-12-09 2015-03-25 中国计量学院 一种三层玻璃结构的复合式温控幕墙及其控温方法
CN205448122U (zh) * 2016-03-24 2016-08-10 太原理工大学 联合空调系统的通风光伏窗
CN105952039A (zh) * 2016-06-06 2016-09-21 冯刚克 平板光伏电池板保温集热幕墙与屋面及通风空调系统
CN106284770A (zh) * 2016-08-09 2017-01-04 金粤幕墙装饰工程有限公司 一体化雨感应智能恒温生态幕墙系统及控温方法
CN106839242A (zh) * 2017-03-22 2017-06-13 大连理工大学 一种混合送风双层光伏幕墙系统及其控制方式
CN206556185U (zh) * 2017-03-22 2017-10-13 大连理工大学 一种混合送风双层光伏幕墙系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH570590A5 (zh) * 1974-06-12 1975-12-15 Wild Ernst
CN201296986Y (zh) * 2008-09-28 2009-08-26 广州市设计院 智能型内呼吸双道玻璃幕墙
CN201952950U (zh) * 2011-03-02 2011-08-31 东北石油大学 一种通风换气幕墙结构
CN203947635U (zh) * 2014-06-20 2014-11-19 北京江河幕墙系统工程有限公司 新型植物遮阳内呼吸双层玻璃幕墙
CN105841282A (zh) * 2016-05-24 2016-08-10 郭毅义 一种浓差补偿新风系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187488A (zh) * 2007-09-28 2008-05-28 周嘉陵 一种双层玻璃幕墙的通风技术和方法及构造
CN201687352U (zh) * 2010-04-21 2010-12-29 沙崇跃 一种节能窗
CN103821268A (zh) * 2014-02-14 2014-05-28 广东金刚幕墙工程有限公司 一种构件式双层幕墙
CN203846650U (zh) * 2014-04-13 2014-09-24 深圳市奇信建设集团股份有限公司 具有智能换气功能的节能幕墙
CN104453039A (zh) * 2014-12-09 2015-03-25 中国计量学院 一种三层玻璃结构的复合式温控幕墙及其控温方法
CN205448122U (zh) * 2016-03-24 2016-08-10 太原理工大学 联合空调系统的通风光伏窗
CN105952039A (zh) * 2016-06-06 2016-09-21 冯刚克 平板光伏电池板保温集热幕墙与屋面及通风空调系统
CN106284770A (zh) * 2016-08-09 2017-01-04 金粤幕墙装饰工程有限公司 一体化雨感应智能恒温生态幕墙系统及控温方法
CN106839242A (zh) * 2017-03-22 2017-06-13 大连理工大学 一种混合送风双层光伏幕墙系统及其控制方式
CN206556185U (zh) * 2017-03-22 2017-10-13 大连理工大学 一种混合送风双层光伏幕墙系统

Also Published As

Publication number Publication date
CN106839242A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
Zhang et al. A critical review of combined natural ventilation techniques in sustainable buildings
CN103925635B (zh) 一种全天候太阳能供能系统
CN205137762U (zh) 一种低能耗建筑新风系统
WO2018171294A1 (zh) 一种混合送风双层光伏幕墙系统及其控制方式
CN201411800Y (zh) 一种节能太阳能墙体
CN207702633U (zh) 一种适用于宿舍楼的机械通风空调装置
CN108375149A (zh) 一种太阳能光伏空调墙
CN105020770B (zh) 一种新型太阳能储热供暖系统装置及方法
CN110260434A (zh) 一种基于太阳能与余热回收的屋顶式空调系统
CN106522424A (zh) 一种开启可控型光伏通风遮阳系统
CN202658915U (zh) 自采暖太阳能单体建筑
CN101893298A (zh) 具有内空气水循环被动式冷却的空调方法及其装置
CN210482640U (zh) 一种多工况节能墙体
CN1226499C (zh) 夹层通风墙体
CN206556185U (zh) 一种混合送风双层光伏幕墙系统
CN210288762U (zh) 利用自然能源的模块化动态建筑表皮
CN208042405U (zh) 一种太阳能光伏空调墙
CN101382014B (zh) 一种室内太阳能辅助通风采暖系统
CN106801484A (zh) 一种全自动光伏百叶呼吸玻璃幕墙
CN105649198A (zh) 一种建筑节能光伏系统
CN204960177U (zh) 一种开启可控型光伏通风遮阳系统
CN202993424U (zh) 与窗户相结合卧式机组排热空调装置
CN216475766U (zh) 一种多功能太阳能幕墙系统
CN114562764A (zh) 一种建筑烟囱效应自然通风强化系统及方法
CN201865547U (zh) 被动式冷却集成装置和蒸发制冷被动式冷却集成装置及其空调装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770835

Country of ref document: EP

Kind code of ref document: A1