WO2018171180A1 - Filtre passe-bande basé sur un résonateur en anneau - Google Patents

Filtre passe-bande basé sur un résonateur en anneau Download PDF

Info

Publication number
WO2018171180A1
WO2018171180A1 PCT/CN2017/107193 CN2017107193W WO2018171180A1 WO 2018171180 A1 WO2018171180 A1 WO 2018171180A1 CN 2017107193 W CN2017107193 W CN 2017107193W WO 2018171180 A1 WO2018171180 A1 WO 2018171180A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip line
line
coupled
load
ring resonator
Prior art date
Application number
PCT/CN2017/107193
Other languages
English (en)
Chinese (zh)
Inventor
曲美君
邓力
李书芳
张贯京
葛新科
高伟明
张红治
Original Assignee
深圳市景程信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市景程信息科技有限公司 filed Critical 深圳市景程信息科技有限公司
Publication of WO2018171180A1 publication Critical patent/WO2018171180A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20381Special shape resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators

Definitions

  • the present invention relates to the field of radio frequency microwave communication technologies, and in particular, to a bandpass filter based on a ring resonator.
  • the filter can filter out-of-band noise and improve the sensitivity of the circuit system.
  • a microstrip filter is a device used to separate microwave signals of different frequencies. Its main function is to suppress unwanted signals so that they cannot pass through the filter and only pass the desired signal.
  • the performance of the filter has a large impact on the performance of the circuit system. Due to the diversity of communication bands in modern communication systems, the selectivity of prior art bandpass filters is often insufficient to meet the diversity of communication bands and affect the performance of the entire communication system.
  • An object of the present invention is to provide a band-pass filter based on a ring resonator, which aims to solve the technical problem of low selectivity of the conventional band-pass filter.
  • the present invention provides a band-pass filter based on a ring resonator, comprising a dielectric plate, a ground metal layer disposed on a lower surface of the dielectric plate, and an input end etched on a surface of the dielectric plate, Output terminal, input microstrip line, output microstrip line, first coupling line, second coupling line, ring resonator, first double branch node load, second double branch node load, first double branch impedance matcher And a second double branch impedance matcher, the band pass filter being bilaterally symmetric about the central axis, wherein:
  • one end of the input microstrip line is connected to the input end, and the other end of the input microstrip line is connected to the first double branch impedance matching device;
  • one end of the output microstrip line is connected to the output end, and the other end of the output microstrip line is connected to a second double-branch section impedance matcher;
  • the first coupling line includes a first coupled microstrip line and a second coupled microstrip line, and one of the first coupled microstrip lines The end is orthogonally connected to one end of the second coupled microstrip line to form an L shape;
  • the second coupling line includes a third coupled microstrip line and a fourth coupled microstrip line, and one end of the third coupled microstrip line is orthogonally connected to one end of the fourth coupled microstrip line to form an L shape;
  • the ring resonator is a rectangular resonator composed of four resonant microstrip lines, and the ring resonator is disposed between the second coupled microstrip line and the fourth coupled microstrip line;
  • the first dual branch node load includes a first load microstrip line and a second load microstrip line
  • the second double branch node load includes a third load microstrip line and a fourth load microstrip line
  • the first load One end of the microstrip line is connected to the input end
  • the other end of the first load microstrip line is connected to one end of the second load microstrip line
  • one end of the third load microstrip line is connected to the output end
  • the third load microstrip line is connected The other end is connected to one end of the fourth load microstrip line.
  • the ring resonator comprises a first resonant microstrip line, a second resonant microstrip line, a third resonant microstrip line and a fourth resonant microstrip line, the first resonant microstrip line and the second coupling
  • the spacing between the microstrip lines is equal to the spacing between the third resonant microstrip line and the fourth coupled microstrip line.
  • a spacing between the input microstrip line and the first coupled microstrip line is equal to a spacing between the output microstrip line and the third coupled microstrip line.
  • the first double-branch impedance matching device includes a first impedance matching line and a second impedance matching line
  • the second double-branch impedance matching device includes a third impedance matching line and a fourth impedance matching line.
  • one end of the first impedance matching line is orthogonally connected with one end of the input microstrip line to form an L shape, and the other end of the first impedance matching line is connected to one end of the second impedance matching line;
  • One end of the third impedance matching line is orthogonally connected to one end of the output microstrip line to form an L shape, and the other end of the third impedance matching line is connected to one end of the fourth impedance matching line.
  • the width of the strip line and the fourth coupled microstrip line is Cw ⁇ ⁇ . ⁇ ⁇
  • a spacing between the first resonant microstrip line and the second coupled microstrip line, and a spacing between the third resonant microstrip line and the fourth coupled microstrip line 0.48 ⁇ ,
  • the dielectric plate is a PCB having a thickness of 0.762 mm and a relative dielectric constant of 3.66.
  • the band-pass filter based on the ring resonator of the present invention is bilaterally symmetric about the central axis ab of the band pass filter, wherein the middlemost four microstrip lines can form a ring resonator And loading a double-branch node load at the input terminal P1 and the output terminal P2 respectively, which can provide a good band pass matching effect in the working frequency band of the band pass filter of the present invention.
  • the band-pass filter based on the ring resonator of the present invention can have a good suppression effect on the out-of-band signal, has high selectivity to the pass band signal, introduces less noise, and avoids interference to the RF front end.
  • FIG. 1 is a schematic plan view showing a preferred embodiment of a band pass filter based on a ring resonator of the present invention.
  • FIG. 2 is a schematic view showing the structure of a preferred embodiment of a band-pass filter based on a ring resonator of the present invention.
  • FIG. 3 is a schematic diagram of S-parameter results of a band-pass filter based on a ring resonator of the present invention simulated by electromagnetic simulation software. [0025] FIG.
  • FIG. 1 is a plan view showing a planar structure of a preferred embodiment of a band-pass filter based on a ring resonator of the present invention.
  • the band pass filter includes a dielectric plate 1, an input terminal P1 etched on the upper surface of the dielectric plate 1, an output terminal P2, an input microstrip line 11, an output microstrip line 12, and a first coupling line. 13.
  • the dielectric plate 1 is a PCB board, and the specific plate type is Roger RO4350B, wherein the relative dielectric constant is 3.66, and the plate thickness is 0.762 mm.
  • the ground metal layer is a copper-clad metal layer laid on the lower surface of the dielectric plate 1.
  • One end of the input microstrip line 11 is connected to the input end P1, and the other end of the input microstrip line 11 is connected to the first double branch impedance matching device 18; one end of the output microstrip line 12 is connected to the output end P2, The other end of the output microstrip line 12 is connected to the second double branch impedance matcher 19.
  • the first dual branch impedance matcher 18 includes a first impedance matching line 181 and a second impedance matching line 182, and the second double branch impedance matching unit 18 includes a third impedance matching line 191 and a fourth impedance matching line 192.
  • One end of the first impedance matching line 181 is orthogonally connected to one end of the input microstrip line 11 to form an L shape, that is, the first impedance matching line 181 and the input microstrip line 11 are perpendicularly connected to each other, and the other end of the first impedance matching line 181 is connected.
  • One end of the third impedance matching line 1 91 is orthogonally connected to one end of the output microstrip line 12 to form an L shape, that is, the third impedance matching line 191 and the output microstrip line 12 are perpendicularly connected to each other, and the other end of the third impedance matching line 191 is connected.
  • the first coupling line 13 includes a first coupled microstrip line 131 and a second coupled microstrip line 132. One end of the first coupled microstrip line 131 is orthogonally connected to one end of the second coupled microstrip line 132.
  • the L-shape that is, the first coupled microstrip line 131 and the second coupled microstrip line 132 are perpendicularly connected to each other.
  • the second coupling line 14 includes a third coupled microstrip line 141 and a fourth coupled microstrip line 142. One end of the third coupled microstrip line 141 is orthogonally connected to one end of the fourth coupled microstrip line 142 to form an L shape.
  • the third coupled microstrip line 141 and the fourth coupled microstrip line 142 are perpendicularly connected to each other.
  • the input microstrip line 11 is spaced apart from the first coupled microstrip line 131
  • the output microstrip line 12 is spaced apart from the third coupled microstrip line 141.
  • the input microstrip line 11 and the first coupled microstrip line are spaced apart.
  • the spacing between 131 is equal to the spacing between the output microstrip line 12 and the third coupled microstrip line 141.
  • the ring resonator 15 is disposed between the second coupled microstrip line 132 and the fourth coupled microstrip line 142, and the ring resonator 15 is formed by a rectangle of four resonant microstrip lines, that is, the first resonant microstrip line 151.
  • a rectangular resonator composed of a second resonant microstrip line 152, a third resonant microstrip line 153, and a fourth resonant microstrip line 154.
  • the first resonant microstrip line 151 of the ring resonator 15 is spaced apart from the second coupled microstrip line 132, and the third resonant microstrip line 153 of the ring resonator 15 is spaced apart from the fourth coupled microstrip line 142.
  • the spacing between the first resonant microstrip line 151 and the second coupled microstrip line 132 is equal to the spacing between the third resonant microstrip line 153 and the fourth coupled microstrip line 142.
  • the first dual branch circuit load 16 includes a first load microstrip line 161 and a second load microstrip line 162, and the second double branch circuit load 17 includes a third load microstrip line 171 and a fourth load microstrip Line 172.
  • One end of the first load microstrip line 161 is connected to the input terminal P1, and the other end of the first load microstrip line 161 is connected to one end of the second load microstrip line 162.
  • One end of the third load microstrip line 171 is connected to the output terminal P2, and the other end of the third load microstrip line 171 is connected to one end of the fourth load microstrip line 172.
  • connection of the first load microstrip line 161 to the input terminal P1 does not overlap with the connection of the input microstrip line 11 to the input terminal P1, such that the first coupled microstrip line 131 is spaced from the first load microstrip line 161 There is a gap to prevent mutual interference of signal energy between the two.
  • the junction of the third load microstrip line 171 connected to the output terminal P2 and the output microstrip line 12 connected to the output terminal P1 do not overlap, such that the third coupled microstrip line 141 is spaced from the third load microstrip line 171 There is a gap to prevent mutual interference of signal energy between the two.
  • a spacing between the first coupled microstrip line 131 and the first load microstrip line 161 is equal to a spacing between the third coupled microstrip line 141 and the third loaded microstrip line 171, the spacing Preferably, it is 2 mm to 5 mm to avoid mutual interference of signal energy between the two.
  • the band-pass filter based on the ring resonator of the present invention is bilaterally symmetrical with respect to the central axis ab of the band pass filter.
  • the band-resonator-based band-pass filter of the present invention is compared with the existing band-pass filter, wherein the middlemost four microstrip lines can form a ring resonator, and one of the input terminal P1 and the output terminal P2 are respectively loaded.
  • the double-branch node load can provide a good band pass matching effect in the operating band of the band pass filter of the present invention.
  • the band pass filter designed by the above structure can have a good suppression effect on the out-of-band signal, has high selectivity to the passband signal, introduces less noise, and avoids interference to the RF front end.
  • FIG. 2 is a structural rule of a preferred embodiment of a bandpass filter based on a ring resonator of the present invention.
  • the invention etches the input terminal PI on the upper surface of the dielectric plate 1, the output terminal P2, the input microstrip line 11, the output microstrip line 12, the first coupling line 13, the second coupling line 14, the ring resonator 15, the first
  • the double branch node load 16, the second double branch node load 17, the first double branch impedance matcher 18 and the second double branch impedance matcher 19 are all metal copper sheets, and the input microstrip line and output micro are involved in the present invention.
  • the strip line, the load microstrip line, the coupled microstrip line, and the resonant microstrip line are all metal strip microstrip lines with a strip structure, just to distinguish each microstrip line by a different name.
  • the present invention is exemplified by an operating band in the range of 1.82 GHz to 2.19 GHz, and the length and width of the structural dimensions of the preferred embodiment of the bandpass filter based on the ring resonator of the present invention are illustrated by way of specific embodiments.
  • FIG. 3 is a schematic diagram showing the result of simulating the S-parameter of the band-pass filter based on the ring resonator of the present invention through electromagnetic simulation software.
  • bandpass filters allow signals from different frequency bands to enter the system, filtering out-of-band signals or noise.
  • the reflection coefficient (IS11I) of the band pass filter of the present invention is below -10 dB in the range of 1.82 GHz to 2.19 GHz, indicating that the band pass filter can operate from 1.82 GHz to 2.19 GHz. , can achieve 18.5% relative bandwidth.
  • the band pass filter of the present invention has a transmission characteristic (IS21I) of -33 dB, and at 2.7 GHz, IS21 ⁇ reaches -72 dB, so the band pass filter of the present invention has high selectivity. It can be seen that the band-pass filter based on the ring resonator of the invention can have a good suppression effect on the out-of-band signal, has high selectivity to the passband signal, introduces less noise, and avoids interference to the RF front end, so Improve the performance of microwave circuits.
  • IS21I transmission characteristic
  • the band-pass filter based on the ring resonator of the present invention is bilaterally symmetric with respect to the central axis ab of the band pass filter, wherein the middlemost four microstrip lines can form a ring resonator And loading a double-branch node load at the input terminal P1 and the output terminal P2 respectively, which can provide a good band pass matching effect in the working frequency band of the band pass filter of the present invention.
  • the band-pass filter based on the ring resonator of the present invention can have a good suppression effect on the out-of-band signal, has high selectivity to the pass band signal, introduces less noise, and avoids interference to the RF front end.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

La présente invention concerne un filtre passe-bande basé sur un résonateur en anneau. Le filtre passe-bande comprend : une plaque diélectrique ; une couche de métal de base disposée sur la surface inférieure de la plaque diélectrique ; et une extrémité d'entrée, une extrémité de sortie, une ligne microruban d'entrée, une ligne microruban de sortie, une première ligne de couplage, une seconde ligne de couplage, un résonateur en anneau, une première charge ouverte à deux bouts, une seconde charge ouverte à deux bouts, un premier adaptateur d'impédance à deux bouts, et un second adaptateur d'impédance à deux bouts qui sont formés sur la surface supérieure de la plaque diélectrique au moyen d'une gravure. Le filtre passe-bande est symétrique autour d'un axe central. Selon la présente invention, le filtre passe-bande est symétrique autour d'un axe central ; un résonateur en anneau est formé par les quatre lignes microruban centrales, et une charge ouverte à deux bouts est chargée séparément au niveau de l'extrémité d'entrée et de l'extrémité de sortie, afin de créer un bon effet d'adaptation passe-bande pour le filtre passe-bande à l'intérieur d'une bande de travail, appliquer un bon effet inhibiteur sur des signaux hors bande, obtenir une sélectivité élevée sur des signaux de bande passante, faire moins de bruit, et éviter une interférence avec un frontal radiofréquence.
PCT/CN2017/107193 2017-03-18 2017-10-21 Filtre passe-bande basé sur un résonateur en anneau WO2018171180A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710162774.8 2017-03-18
CN201710162774.8A CN107026303B (zh) 2017-03-18 2017-03-18 基于环形谐振器的带通滤波器

Publications (1)

Publication Number Publication Date
WO2018171180A1 true WO2018171180A1 (fr) 2018-09-27

Family

ID=59525691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107193 WO2018171180A1 (fr) 2017-03-18 2017-10-21 Filtre passe-bande basé sur un résonateur en anneau

Country Status (2)

Country Link
CN (1) CN107026303B (fr)
WO (1) WO2018171180A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425377A (zh) * 2022-09-29 2022-12-02 河南科技大学 一种基于方环加载的双通带平衡滤波器
CN115425376A (zh) * 2022-09-29 2022-12-02 河南科技大学 一种基于枝节加载的双通带滤波器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206602160U (zh) * 2017-03-18 2017-10-31 深圳市景程信息科技有限公司 基于环形谐振器和双枝节开路负载的带通滤波器
CN107026303B (zh) * 2017-03-18 2019-03-26 深圳市景程信息科技有限公司 基于环形谐振器的带通滤波器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320826A (zh) * 2008-07-16 2008-12-10 电子科技大学 一体式微带天线滤波器耦合结构
CN104377409A (zh) * 2014-11-06 2015-02-25 中国电子科技集团公司第二十八研究所 基于耦合型环形谐振器的小型化差分带通滤波器
CN105720334A (zh) * 2016-02-29 2016-06-29 电子科技大学 一种基于多枝节加载环形谐振器的带通滤波器
CN106299560A (zh) * 2016-08-22 2017-01-04 淮阴工学院 一种高选择性宽带功分滤波器
CN107026303A (zh) * 2017-03-18 2017-08-08 深圳市景程信息科技有限公司 基于环形谐振器的带通滤波器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200933971A (en) * 2008-01-25 2009-08-01 Univ Nat Taiwan Filter device with transmission zero
CN105990632B (zh) * 2015-01-28 2019-03-08 青岛海尔电子有限公司 一种三通带滤波器
CN206602160U (zh) * 2017-03-18 2017-10-31 深圳市景程信息科技有限公司 基于环形谐振器和双枝节开路负载的带通滤波器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320826A (zh) * 2008-07-16 2008-12-10 电子科技大学 一体式微带天线滤波器耦合结构
CN104377409A (zh) * 2014-11-06 2015-02-25 中国电子科技集团公司第二十八研究所 基于耦合型环形谐振器的小型化差分带通滤波器
CN105720334A (zh) * 2016-02-29 2016-06-29 电子科技大学 一种基于多枝节加载环形谐振器的带通滤波器
CN106299560A (zh) * 2016-08-22 2017-01-04 淮阴工学院 一种高选择性宽带功分滤波器
CN107026303A (zh) * 2017-03-18 2017-08-08 深圳市景程信息科技有限公司 基于环形谐振器的带通滤波器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425377A (zh) * 2022-09-29 2022-12-02 河南科技大学 一种基于方环加载的双通带平衡滤波器
CN115425376A (zh) * 2022-09-29 2022-12-02 河南科技大学 一种基于枝节加载的双通带滤波器
CN115425377B (zh) * 2022-09-29 2023-09-08 河南科技大学 一种基于环形谐振器加载的双通带平衡滤波器
CN115425376B (zh) * 2022-09-29 2023-09-08 河南科技大学 一种基于枝节加载的双通带滤波器

Also Published As

Publication number Publication date
CN107026303B (zh) 2019-03-26
CN107026303A (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
WO2018171180A1 (fr) Filtre passe-bande basé sur un résonateur en anneau
CN109755702B (zh) 一种四频差分带通滤波器
CN106935948A (zh) 一种功分滤波器
WO2018171230A1 (fr) Filtre passe-bande basé sur un résonateur en anneau et des charges ouvertes à deux bouts
WO2018233227A1 (fr) Filtre passe-bande à bande large chargé avec une ligne microruban couplée à trois branches
CN112909461B (zh) 一种互补双工结构全频段吸收双频带通滤波器
WO2018188292A1 (fr) Filtre passe-bande à large bande ayant une fonction de suppression hors bande à large bande
US11158924B2 (en) LTCC wide stopband filtering balun based on discriminating coupling
KR101714483B1 (ko) 공진 소자 및 이를 포함하는 필터
WO2018171179A1 (fr) Filtre passe-bande à deux bandes doté d'une sélectivité élevée
US9437914B2 (en) Power processing circuit and multiplex amplification circuit
US10673111B2 (en) Filtering unit and filter
CN107275742A (zh) 基于谐振环的功分滤波器
WO2018171231A1 (fr) Filtre passe-bande à deux bandes basé sur des charges ouvertes et des charges de court-circuit
CN110931923A (zh) 基于多宽带电桥和带通滤波器的微带连续通带宽带双工器
KR20210021736A (ko) 전송영점을 갖는 로우 패스 필터
CN112133992B (zh) 一种具有高度带外抑制和全频带吸收功能的滤波功分器
CN209981435U (zh) 一种wlan频段的微带带通滤波器
WO2012146102A1 (fr) Filtre à élimination de bande et station de base
US8253515B2 (en) Band-pass filter
US9419324B2 (en) Delay line having plural open stubs and complementary slots arranged to have parallel portions and non-parallel portions
JP2013005121A (ja) 高周波フィルタ
CN113381144B (zh) 一种基于等边三角形贴片的高性能平衡带通滤波器
CN116565490A (zh) 一种具有宽带差模和共模无反射特性的差分到差分滤波器
WO2018233230A1 (fr) Filtre passe-bande large bande à largeur de bande relative élargie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902036

Country of ref document: EP

Kind code of ref document: A1