WO2018171142A1 - 液晶光栅、显示装置及其控制方法 - Google Patents

液晶光栅、显示装置及其控制方法 Download PDF

Info

Publication number
WO2018171142A1
WO2018171142A1 PCT/CN2017/102909 CN2017102909W WO2018171142A1 WO 2018171142 A1 WO2018171142 A1 WO 2018171142A1 CN 2017102909 W CN2017102909 W CN 2017102909W WO 2018171142 A1 WO2018171142 A1 WO 2018171142A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
liquid crystal
sub
grating
voltage difference
Prior art date
Application number
PCT/CN2017/102909
Other languages
English (en)
French (fr)
Inventor
王倩
陈小川
赵文卿
王维
高健
孟宪芹
李忠孝
陈祯祐
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/765,635 priority Critical patent/US10627663B2/en
Publication of WO2018171142A1 publication Critical patent/WO2018171142A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1828Diffraction gratings having means for producing variable diffraction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • G02B5/1871Transmissive phase gratings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a liquid crystal grating, a display device, and a control method thereof.
  • Embodiments of the present disclosure provide a liquid crystal grating, a display device, and a control method thereof.
  • a liquid crystal grating including a first substrate; a second substrate disposed opposite to the first substrate; and an electrode layer disposed on the first substrate or the second substrate
  • the electrode layer includes at least two sets of electrodes periodically arranged, each of the two sets of electrodes includes two sub-electrodes disposed in parallel with each other; a liquid crystal layer disposed on the first substrate and the first And a control unit, wherein the control unit is configured to enable the liquid crystal grating to operate in a transparent mode or a grating mode, and when operating in the transparent mode, the control unit causes two sub-groups of each electrode There is no voltage difference between the electrodes and between two adjacent sub-electrodes of different groups; when operating in the grating mode, the control unit causes each There is a voltage difference between the two sub-electrodes of the group electrode and there is no voltage difference between the two adjacent sub-electrodes of the different groups.
  • the voltage difference between the two sub-electrodes of each set of electrodes is the same when the liquid crystal grating is operated in the grating mode.
  • the voltage difference between the two sub-electrodes of each set of electrodes changes at a predetermined frequency when the liquid crystal grating is operated in the grating mode.
  • a voltage difference between two sub-electrodes of each set of electrodes causes a region in which liquid crystal molecules in the liquid crystal layer to rotate is perpendicular to the first
  • the direction of the direction of a substrate or the second substrate is equal to the wavelength of the incident light.
  • a display device comprising a display module and any one of the liquid crystal gratings described in the first aspect of the present disclosure.
  • the display module is a liquid crystal display module
  • the liquid crystal grating is located above the upper polarizer of the liquid crystal display module or between the lower polarizer and the backlight module.
  • a control method of any one of the liquid crystal gratings described in the first aspect of the present disclosure the control unit causing the liquid crystal grating to operate in a transparent mode or a grating mode when operating in a In the transparent mode, there is no voltage difference between the two sub-electrodes of each set of electrodes and between two adjacent sub-electrodes of different groups; when operating in the grating mode, between the two sub-electrodes of each set of electrodes There is no voltage difference between the two sub-electrodes with voltage differences and different sets of adjacent ones.
  • the voltage difference between the two sub-electrodes of each set of electrodes is the same when the liquid crystal grating is operated in the grating mode.
  • the voltage difference between the two sub-electrodes of each set of electrodes changes at a predetermined frequency when the liquid crystal grating is operated in the grating mode.
  • a voltage difference between two sub-electrodes of each set of electrodes causes a region in which liquid crystal molecules in the liquid crystal layer to rotate is perpendicular to the first
  • the extending direction of the direction of the substrate or the second substrate is equal to the wave of the incident light long.
  • a control method of any one of the display devices described in the second aspect of the present disclosure the control unit causing the liquid crystal grating to operate in a transparent mode or a raster mode when operating In the transparent mode, there is no voltage difference between two sub-electrodes of each set of electrodes and between two adjacent sub-electrodes of different groups; when operating in the grating mode, two sub-electrodes of each set of electrodes are made There is no voltage difference between the two sub-electrodes with a voltage difference between them and different groups.
  • the voltage difference between the two sub-electrodes of each set of electrodes is the same when the liquid crystal grating is operated in the grating mode.
  • a voltage difference between two sub-electrodes of each set of electrodes varies at a predetermined frequency.
  • a voltage difference between two sub-electrodes of each set of electrodes causes a region in which liquid crystal molecules in the liquid crystal layer to rotate is perpendicular to the The direction of the direction of the first substrate or the second substrate is equal to the wavelength of the incident light.
  • the preset frequency is more than three times the refresh rate of the display device.
  • Figure 1 schematically shows a diffraction pattern of light
  • FIG. 2A, 2B, 2C schematically illustrate cross-sectional views of an exemplary liquid crystal grating in accordance with an embodiment of the present disclosure
  • 3A, 3B, 3C schematically illustrate cross-sectional views of an exemplary display device in accordance with an embodiment of the present disclosure
  • FIG. 4A, 4B schematically illustrate cross-sectional views of an exemplary display device in accordance with another embodiment of the present disclosure
  • 5A, 5B schematically show a flow chart of a control method for a liquid crystal grating.
  • an element or layer when an element or layer is referred to as being “on” another element or layer, it may be directly on the other element or layer, or an element or layer may be present; likewise, when the element or layer is In another When the element or layer is “lower”, it may be directly under the other element or layer, or there may be at least one intermediate element or layer; when the element or layer is referred to as being "between” It can be a single element or layer between the two elements or two layers, or more than one intermediate element or layer can be present.
  • a privacy film is typically used on mobile display devices based on privacy requirements.
  • the current anti-theft mode is fixed and cannot be switched to the sharing mode. If you want to enlarge the viewing angle, you can only remove the anti-peep film, which leads to inconvenience in use.
  • the liquid crystal grating 20 includes a first substrate 21, a second substrate 22 disposed opposite the first substrate 21, and an electrode layer disposed on the second substrate 22, wherein the electrode layer includes a period Two sets of electrodes 24, each set of electrodes 24 comprising two sub-electrodes arranged in parallel with each other; a liquid crystal layer 23 disposed between the first substrate 21 and the second substrate 22; and a control unit 25 coupled to the electrode layer.
  • the control unit 25 is operative to control the voltage across the sub-electrodes of each set of electrodes 24 such that the liquid crystal grating 20 operates in a transparent mode or a raster mode.
  • the width of the sub-electrodes may range from about 2 nm to 20 nm, alternatively about 5 nm.
  • the width between the two sub-electrodes of each set of electrodes 24 may range from about 20 nm to 100 nm, alternatively about 50 nm.
  • the width between two adjacent sets of sub-electrodes may be in the range of about 100 nm to 200 nm, alternatively about 150 nm.
  • the distance from the lower surface of the first substrate 21 to the upper surface of the second substrate 22 may be in the range of about 1 ⁇ m to 4 ⁇ m, alternatively about 2 ⁇ m.
  • control unit 25 adjusts the voltage across the two sub-electrodes of each set of electrodes 24 such that the voltage across the two sub-electrodes of each set of electrodes 24 is, for example, 0V. Since there is no voltage difference between the sub-electrodes, the liquid crystal molecules in the liquid crystal layer 23 do not rotate. At this time, the liquid crystal grating 20 operates in the transparent mode, and since the diffraction effect does not occur, the optical path of the incident light does not substantially change.
  • control unit 25 can also adjust the voltages on the two sub-electrodes of each set of electrodes 24 to be other voltage values such as 1V or 10V, as long as there is no voltage difference between the two sub-electrodes of each set of electrodes 24
  • Both of the liquid crystal gratings 20 can be operated in a transparent mode.
  • the control unit 25 adjusts the voltages on the two sub-electrodes of each set of electrodes 24 such that the voltages on the two sub-electrodes of each set of electrodes 24 are, for example, 0V and 1V, respectively. There is no voltage difference between the two adjacent sub-electrodes of the different groups. Since the voltage difference between the two sub-electrodes of each set of electrodes 24 is 1 V, the liquid crystal molecules in the corresponding regions above the two sub-electrodes of each set of electrodes 24 are rotated by the electric field, thereby forming a pattern region of the liquid crystal grating 20.
  • the pattern region refers to a region where liquid crystal molecules in the liquid crystal layer 23 are rotated by an electric field. Since the voltage difference between the adjacent two sub-electrodes of the different groups is 0 V, the liquid crystal molecules in the corresponding regions above the two adjacent sub-electrodes of the different groups do not rotate, thereby forming the non-pattern area of the liquid crystal grating 20. It will be appreciated that in embodiments of the present disclosure, the patterned regions and non-patterned regions may result in the presence of optical path differences resulting in diffraction phenomena. At this time, the liquid crystal grating 20 operates in the grating mode.
  • the liquid crystal molecules are periodically rearranged to form a grating structure.
  • the voltage difference between the two sub-electrodes of each set of electrodes 24 is 1 V, such that the thickness of the pattern region is equal to, for example, the wavelength of red light, 650 nm, in the embodiment of the present disclosure, the thickness of the pattern region is It refers to an extent of the pattern region in a direction perpendicular to the first substrate 21 or the second substrate 22.
  • the specific value of the voltage difference depends on various factors such as the liquid crystal material used, etc., and thus the values of the voltage differences specifically recited in the embodiments of the present disclosure are only for explaining the purpose of the embodiments of the present disclosure, and There is no limitation to the embodiments of the present disclosure. According to an embodiment of the present disclosure, the voltage difference between the two sub-electrodes may not change with time, such that the thickness of the pattern region does not change with time.
  • the voltage difference between the two sub-electrodes of each set of electrodes may be the same such that the thickness of the pattern regions between the two sub-electrodes are the same.
  • the control unit 25 adjusts the voltages on the two sub-electrodes of each set of electrodes 24 such that the voltages on the two sub-electrodes of each set of electrodes 24 are, for example, 0V and 0.6V, respectively. And there is no voltage difference between the two adjacent sub-electrodes of different groups.
  • the voltage difference between the two sub-electrodes is reduced, which causes the thickness of the pattern region to be reduced, for example, equal to the wavelength of green light of 550 nm.
  • the voltage difference across the two sub-electrodes may not change over time such that the thickness of the pattern region does not change over time.
  • the voltage difference between the two sub-electrodes of each set of electrodes 24 can also be adjusted by the control unit 25 such that the voltage difference changes within a preset range at a preset frequency, for example, 180 Hz, to dynamically adjust the pattern.
  • a preset frequency for example, 180 Hz
  • the electrode layer may also be disposed on the first substrate 21.
  • the number of the electrodes 24 in the electrode layer is not limited to two, and may be plural. The larger the number of electrodes, the better the diffraction effect of the liquid crystal grating.
  • the materials of the first substrate 21 and the second substrate 22 may include glass or any other transparent material.
  • the sub-electrodes of each set of electrodes 24 may be transparent conductive materials, and the transparent conductive materials may be selected from the group consisting of zinc oxide, indium tin oxide, indium zinc oxide, indium tin zinc oxide, aluminum tin oxide, aluminum zinc oxide, cadmium. At least one of indium oxide, cadmium zinc oxide, gallium zinc oxide or tin oxyfluoride.
  • the liquid crystal grating can be switched between the transparent mode and the grating mode by adjusting the voltage difference of the sub-electrodes of each group of electrodes by the control unit.
  • the thickness of the pattern area can be dynamically adjusted by adjusting the magnitude of the voltage difference at a preset frequency.
  • different thicknesses of the pattern regions may correspond to light of different wavelengths to eliminate zero-order diffraction of light of different wavelengths, and thus the energy may be distributed within a larger viewing angle range.
  • Figure 1 schematically shows a diffraction pattern of light.
  • d is the grating constant
  • i is the entrance of the incident light Angle of incidence
  • is the exit angle of the exiting light
  • n is the refractive index of the material of the grating itself
  • h the thickness of the grating
  • m is an integer
  • is the wavelength of the incident light.
  • the incident angle of the incident light is the same as the exit angle of the outgoing light. Since the optical path difference is an odd multiple of a half wavelength, the phase is cancelled. That is to say, the zero-order diffraction is cancelled, and the ⁇ 1 order diffraction is enhanced, which increases the exit angle of the outgoing light.
  • the display device 30 may include a display module 31 and a liquid crystal grating 20 according to the above-described embodiment of the present disclosure over the upper polarizer of the display module 31.
  • the display module 31 may be a liquid crystal display module.
  • control unit 25 adjusts the voltage across the two sub-electrodes of each set of electrodes 24 such that the voltage values on the two sub-electrodes of each set of electrodes 24 are, for example, 0V.
  • the structure and function of the liquid crystal grating shown in Fig. 2A are the same, and since there is no voltage difference between the sub-electrodes, the liquid crystal molecules in the liquid crystal layer 23 do not rotate, and the liquid crystal grating 20 operates in the transparent mode.
  • the incident light 35 from the display module 31 having an incident angle of, for example, 0° passes through the liquid crystal grating 20 operating in the transparent mode, the incident light 35 is not diffracted.
  • the exit angle of the outgoing light 36 is the same as the incident angle of the incident light 35 by 0°.
  • the human eye 33 can see the outgoing light 36 from the display module 31, but the human eye 32 and the human eye 34 that are offset from the display device 30 cannot see the outgoing light 36 from the display module 31, that is, the liquid crystal grating 20 cannot increase the viewing angle of the display device. . That is to say, if the display device 30 is operated in the anti-spy mode at this time, it is still in the anti-spy mode.
  • the incident light may be visible light of any wavelength, and the incident angle of the incident light is not limited to 0°, and may be incident light of other angles.
  • the exit angle of the incident light does not change, or only a small change that does not cause a significant change in the viewing angle occurs.
  • control unit 25 can also adjust the electricity on the two sub-electrodes of each set of electrodes 24.
  • the voltage is, for example, other voltage values such as 1 V or 10 V, as long as a voltage value having no voltage difference between the two sub-electrodes of each group of electrodes 24 can be made.
  • the control unit 25 adjusts the voltages on the two sub-electrodes of each set of electrodes 24 such that the voltages on the two sub-electrodes of each set of electrodes 24 are, for example, 0V and 1V, respectively. There is no voltage difference between the two adjacent sub-electrodes of the different groups.
  • the structure and function of the liquid crystal grating shown in Fig. 2B are the same, and the liquid crystal grating 20 is operated in the grating mode at this time.
  • the voltage difference between the two sub-electrodes of each set of electrodes 24 is 1 V, such that the thickness of the pattern region is equal to, for example, the wavelength of red light, 650 nm.
  • the incident light 35 from the display module 31 is red light and the incident angle is 0°
  • the incident light 35 passes through the liquid crystal grating 20 operating in the grating mode, due to the adjacent two groups of different groups.
  • the width between the sub-electrodes is very small, smaller than the wavelength of the incident light 35, so that the incident light 35 is diffracted.
  • the zero-order diffraction of the incident light 35 is destructive, and the ⁇ 1 order diffraction is enhanced.
  • the outgoing light 36 from the display module 31 can be seen by the human eyes 32, 33 and 34.
  • the liquid crystal grating 20 when the liquid crystal grating 20 is operated in the grating mode, the liquid crystal grating 20 can increase the exit angle of the outgoing light 36, so that the human eye 32 and the human eye 34 which are deviated from the display device 30 can be seen.
  • Light 36 That is, if the display device 30 is operated in the anti-spy mode at this time, it is switched to the sharing mode. In this embodiment, the voltage difference across the two sub-electrodes may not change over time such that the thickness of the pattern region does not change over time.
  • the voltage difference between the two sub-electrodes of each set of electrodes may be the same such that the thickness of the pattern regions between the two sub-electrodes are the same.
  • the incident light may be visible light of any wavelength, and the incident angle of the incident light is not limited to 0°, and may be incident light of other angles.
  • the voltage on the sub-electrodes is adjusted by the control unit such that the thickness of the pattern region is equal to the wavelength of the incident light.
  • the incident light passes through the liquid crystal grating operating in the grating mode, the zero-order diffraction of the incident light is canceled, and the ⁇ 1 order diffraction enhancement enhances the exit angle of the outgoing light, thereby increasing the viewing angle of the display device, thereby making the display
  • the device switches from anti-peep mode to shared mode.
  • the control unit 25 adjusts each set of electrodes 24
  • the voltage across the two sub-electrodes is such that the voltages on the two sub-electrodes of each set of electrodes 24 are, for example, 0V and 1V, respectively, and there is no voltage difference between the adjacent two sub-electrodes of the different sets.
  • the structure and function of the liquid crystal grating shown in Fig. 2B are the same, and the liquid crystal grating 20 is operated in the grating mode at this time.
  • the voltage difference between the two sub-electrodes of each set of electrodes 24 is 1 V, such that the thickness of the pattern region is equal to, for example, the wavelength of red light, 650 nm.
  • the incident light from the display module 31 has both the red light 35 and the green light 36, and the incident angle is 0°, the incident light passes through the liquid crystal grating 20 operating in the grating mode, due to different The width between the adjacent two sub-electrodes of the group is very small, smaller than the wavelength of the incident light, so that both the incident light red light 35 and the green light 36 are diffracted.
  • the diffraction formula of the grating since the thickness of the pattern region is equal to the wavelength of the red light, the zero-order diffraction of the red light 35 is destructive, the ⁇ 1 order diffraction is enhanced, and the zero-order diffraction of the green light 36 is not completely cancelled. This allows the human eye 33 to see green light of stronger light intensity, and the human eyes 32 and 34 can see red light of stronger light intensity.
  • the liquid crystal grating 20 when the liquid crystal grating 20 is operated in the grating mode, even if the incident light is two-color light, the liquid crystal grating 20 can increase the exit angle of the incident light so that the human eye 32 deviates from the display device 30.
  • the human eye 34 can see the outgoing light 37. That is, if the display device 30 is operated in the anti-spy mode at this time, it is switched to the sharing mode.
  • the voltage difference between the two sub-electrodes may not change with time, such that the thickness of the pattern region does not change with time.
  • the incident light is not limited to two-color light, and may be three-color light or complex color light or the like.
  • the incident angle of the incident light is not limited to 0°, and may be incident light of other angles.
  • the voltage difference between the sub-electrodes is adjusted by the control unit such that the thickness of the pattern area is equal to the wavelength of the incident light of a certain color. And since the voltage values on the two sub-electrodes do not change with time, the liquid crystal grating can only be destructed for the zero-order diffraction of the light of the color, and the zero-order diffraction of the light of the other colors is not completely cancelled.
  • FIG. 4A, 4B schematically illustrate cross-sectional views of an exemplary display device 40 in accordance with another embodiment of the present disclosure.
  • the structure and function of the display device shown in FIG. 3C are similar, and the description will not be repeated here.
  • the voltage difference between the two sub-electrodes of each set of electrodes 24 is adjusted by the control unit 25 such that the voltage difference is, for example, three times (180 Hz) the refresh rate of the display device at a predetermined frequency, for example 0.6.
  • V and 1V are changed to dynamically adjust the thickness of the pattern area degree.
  • at a certain timing as shown in FIG.
  • the control unit 25 adjusts the voltages on the two sub-electrodes of each set of electrodes 24 such that the voltages on the two sub-electrodes of each set of electrodes 24 are respectively There is no voltage difference between 0V and 1V, and between two adjacent sub-electrodes of different groups.
  • the zero-order diffraction of the incident light red light 35 is destructive, the ⁇ 1 order diffraction is enhanced, and the zero-order diffraction of the incident light green light 36 is not completely cancelled. This allows the human eye 33 to see green light of stronger light intensity, and the human eyes 32 and 34 can see red light of stronger light intensity.
  • the control unit 25 adjusts the voltages on the two sub-electrodes of each set of electrodes 24 such that the voltages on the two sub-electrodes of each set of electrodes 24 are, for example, 0 V and 0.6 V, respectively, and different groups. There is no voltage difference between the two adjacent sub-electrodes.
  • the thickness of the pattern region is equal to, for example, the wavelength of the green light 36, the zero-order diffraction of the incident light green light 36 is destructive, the ⁇ 1 order diffraction enhancement, and the zero-order diffraction of the incident light red light 35 Diffraction is not completely eliminated.
  • the human eye 33 This allows the human eye 33 to see red light of stronger intensity, and the human eyes 32 and 34 can see green light of stronger light intensity. And because of the persistence of the human eye, the human eyes 32, 33, 34 can simultaneously see the red and green light of the strong light intensity for a certain period of time, eliminating the problem that the display device 40 will appear chromatic aberration when viewed at different positions. .
  • the incident light is not limited to two-color light, and may be three-color light or complex color light or the like.
  • the incident angle of the incident light is not limited to 0°, and may be incident light of other angles.
  • the voltage difference on the sub-electrode is changed at a preset frequency, for example, three times (180 Hz) of the refresh rate of the display device, so that the human eye can feel a better color effect at different positions.
  • the display module includes, but is not limited to, a liquid crystal display module, and may also be an OLED display module.
  • the liquid crystal grating can increase the viewing angle of the display device and switch the display device from the anti-spy mode to the sharing mode.
  • the liquid crystal grating may also be located between the lower polarizer and the backlight module. Since the backlight module is limited by small angle light, the liquid crystal grating may increase the backlight module. The angle at which the light is emitted.
  • liquid crystal grating is switched between a transparent mode and a grating mode by adjusting a voltage on the electrode.
  • 5A, 5B schematically show a flow chart of a control method for a liquid crystal grating.
  • the control method of the liquid crystal grating may include: S501 adjusting, by the control unit, no voltage difference between two sub-electrodes of each group of electrodes and between two adjacent sub-electrodes of different groups
  • the liquid crystal grating is operated in a transparent mode.
  • the control method provided by this embodiment is used in the liquid crystal grating shown in FIG. 2A described in the foregoing embodiment, and its structure, function and/or advantages are the same as those of the liquid crystal grating in the foregoing embodiment. No longer detailed.
  • the control method of the liquid crystal grating may include the following steps: S502 adjusts, by the control unit, a voltage difference between two sub-electrodes of each group of electrodes and two adjacent sub-electrodes of different groups There is no voltage difference between them so that a pattern region is formed only in a portion of the liquid crystal layer corresponding to each set of electrodes, so that the liquid crystal grating operates in a grating mode; S503 adjusts a voltage difference between two sub-electrodes of each group of electrodes to make a pattern region The thickness is equal to the wavelength of the incident light; S504 adjusts the voltage difference between the two sub-electrodes of each set of electrodes to be the same such that the thickness of the pattern regions between the two sub-electrodes are the same.
  • the voltages on the two sub-electrodes of each set of electrodes can be adjusted by the control unit such that the voltages on the two sub-electrodes of each set of electrodes are, for example, 0 V and 1 V, respectively, such that the thickness of the pattern region is equal to, for example, The wavelength of red light is 650 nm.
  • the control method provided by this embodiment is used in the liquid crystal grating shown in FIG. 2B described in the foregoing embodiment, and its structure, function and/or advantages are the same as those of the liquid crystal grating in the foregoing embodiment. No longer detailed.
  • a control method of a liquid crystal grating further includes: adjusting, by a control unit, a voltage difference between two sub-electrodes of each group of electrodes such that the voltage difference changes at a preset frequency to dynamically adjust a pattern region thickness of.
  • different thicknesses of the pattern regions may correspond to light of different wavelengths to eliminate zero-order diffraction of light of different wavelengths, and thus the energy may be distributed within a larger viewing angle range.
  • a control method for the aforementioned display device is also provided.
  • the liquid crystal grating is switched between the transparent mode and the raster mode by adjusting the voltage on the electrodes.
  • Applying a liquid crystal grating to a display device when the liquid crystal grating operates in a raster mode, it can be increased The viewing angle of the device.
  • the magnitude of the voltage difference across the electrodes zero-order diffraction of light of different wavelengths can be eliminated, and the energy can be distributed over a wide range of viewing angles, that is, the liquid crystal grating can increase the viewing angle of the display device. That is, if the display device operates in the anti-spy mode at this time, it is switched to the sharing mode.
  • control method of the display device may include adjusting, by the control unit, no voltage difference between the two sub-electrodes of each group of electrodes and between two adjacent sub-electrodes of different groups, so that the liquid crystal grating operates in a transparent mode .
  • the control method provided by this embodiment is used in the display device illustrated in FIG. 3A described in the foregoing embodiments, and its structure, function and/or advantages are the same as those of the display device in the foregoing embodiment, where No longer detailed.
  • control method of the display device may include the steps of: adjusting, by the control unit, a voltage difference between two sub-electrodes of each group of electrodes and having no voltage difference between two adjacent sub-electrodes of different groups, To form a pattern region only in a portion of the liquid crystal layer corresponding to each set of electrodes, such that the liquid crystal grating operates in a grating mode; adjusting a voltage difference between two sub-electrodes of each set of electrodes such that the thickness of the pattern region is equal to the incident light of a certain color The wavelength is adjusted; the voltage difference between the two sub-electrodes of each set of electrodes is the same, so that the thickness of the pattern regions between the two sub-electrodes is the same.
  • the voltages on the two sub-electrodes of each set of electrodes can be adjusted by the control unit such that the voltages on the two sub-electrodes of each set of electrodes are, for example, 0 V and 1 V, respectively, such that the thickness of the pattern region is equal to, for example, The wavelength of red light is 650 nm.
  • the control method provided by this embodiment is used in the display device illustrated in FIG. 3B described in the foregoing embodiment, and its structure, function and/or advantages are the same as those of the display device in the foregoing embodiment, where No longer detailed.
  • a control method of a display device further includes: adjusting, by a control unit, a voltage difference between two sub-electrodes of each group of electrodes such that the voltage difference changes at a preset frequency to dynamically adjust a pattern region thickness of.
  • the voltage difference between the two sub-electrodes of each set of electrodes 24 is adjusted by the control unit such that the voltage difference is, for example, three times (180 Hz) the refresh rate of the display device, for example at 0.6 V and 1V changes.
  • the control method provided by this embodiment is used in the display device shown in FIG. 4 described in the foregoing embodiment, The structure, function and/or advantages are the same as those of the display device in the previous embodiments, and will not be described in detail herein.
  • control unit described herein may be implemented as a combination of a processor and a memory, where the processor executes programs stored in the memory to implement the functions of the respective control unit.
  • the control units described herein may also be implemented in a fully hardware implementation, including application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), and the like.
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶光栅(20)、显示装置及它们的控制方法。液晶光栅(20)包括第一基板(21);第二基板(22),与第一基板(21)相对设置;电极层,设置于第一基板(21)或第二基板(22)上,其中,电极层包括周期性排列的至少两组电极(24),两组电极(24)中的每组电极(24)包括彼此平行设置的两个子电极;液晶层(23),设置于第一基板(21)和第二基板(22)之间;以及控制单元(25),其中,控制单元(25)被配置为能够使得液晶光栅(20)操作于透明模式或光栅模式,当操作于透明模式时,控制单元(25)使每组电极(24)的两个子电极之间以及不同组的邻近的两个子电极之间不具有电压差;当操作于光栅模式时,控制单元(25)使每组电极(24)的两个子电极之间具有电压差以及不同组的邻近的两个子电极之间不具有电压差。能够增加显示装置的视角,以及消除不同波长的光的零级衍射。

Description

液晶光栅、显示装置及其控制方法
本申请要求于2017年3月20日递交的中国专利申请第201710165167.7号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及显示技术领域,尤其涉及一种液晶光栅、显示装置及其控制方法。
背景技术
如今电子设备的种类越来越多,比如台式电脑、笔记本电脑、手机、电子书阅读器等。然而,电子设备在为人们提供诸多便捷的同时,也可能会带来个人信息被泄露的问题。举例来说,用户经常会在公共场合使用上述电子设备,通常电子设备的显示屏具有比较大的可视视角,这对于个人信息安全的保密是不利的。
发明内容
本公开实施例提供了一种液晶光栅、显示装置及其控制方法。
在本公开的第一方面中,提供一种液晶光栅,包括第一基板;第二基板,与所述第一基板相对设置;电极层,设置于所述第一基板或所述第二基板上,其中,所述电极层包括周期性排列的至少两组电极,所述两组电极中的每组电极包括彼此平行设置的两个子电极;液晶层,设置于所述第一基板和所述第二基板之间;以及控制单元,其中,所述控制单元被配置为能够使得液晶光栅操作于透明模式或光栅模式,当操作于所述透明模式时,所述控制单元使每组电极的两个子电极之间以及不同组的邻近的两个子电极之间不具有电压差;当操作于所述光栅模式时,所述控制单元使每 组电极的两个子电极之间具有电压差以及不同组的邻近的两个子电极之间不具有电压差。
在一个实施例中,当液晶光栅操作于所述光栅模式时,所述每组电极的两个子电极之间的电压差是相同的。
在一个实施例中,当液晶光栅操作于所述光栅模式时,所述每组电极的两个子电极之间的电压差以预设频率变化。
在一个实施例中,当液晶光栅当操作于所述光栅模式时,所述每组电极的两个子电极之间的电压差使所述液晶层中的液晶分子发生旋转的区域沿垂直于所述第一基板或所述第二基板的方向的延伸范围等于入射光的波长。
在本公开的第二方面中,提供一种显示装置,包括显示模组和在本公开的第一方面中描述的任意一种液晶光栅。
在一个实施例中,所述显示模组为液晶显示模组,所述液晶光栅位于所述液晶显示模组的上偏光片之上或位于下偏光片和背光模组之间。
在本公开的第三方面中,提供一种在本公开的第一方面中描述的任意一种液晶光栅的控制方法,所述控制单元使得液晶光栅操作于透明模式或光栅模式,当操作于所述透明模式时,使每组电极的两个子电极之间以及不同组的邻近的两个子电极之间不具有电压差;当操作于所述光栅模式时,使每组电极的两个子电极之间具有电压差以及不同组的邻近的两个子电极之间不具有电压差。
在一个实施例中,当液晶光栅操作于所述光栅模式时,所述每组电极的两个子电极之间的电压差是相同的。
在一个实施例中,当液晶光栅操作于所述光栅模式时,所述每组电极的两个子电极之间的电压差以预设频率变化。
在一个实施例中,当液晶光栅操作于所述光栅模式时,所述每组电极的两个子电极之间的电压差使所述液晶层中的液晶分子发生旋转的区域沿垂直于所述第一基板或所述第二基板的方向的延伸范围等于入射光的波 长。
在本公开的第四方面中,提供一种在本公开的第二方面中描述的任意一种显示装置的控制方法,所述控制单元使得所述液晶光栅操作于透明模式或光栅模式,当操作于所述透明模式时,使每组电极的两个子电极之间以及不同组的邻近的两个子电极之间不具有电压差;当操作于所述光栅模式时,使每组电极的两个子电极之间具有电压差以及不同组的邻近的两个子电极之间不具有电压差。
在一个实施例中,当所述液晶光栅操作于所述光栅模式时,所述每组电极的两个子电极之间的电压差是相同的。
在一个实施例中,当所述液晶光栅操作于所述光栅模式时,所述每组电极的两个子电极之间的电压差以预设频率变化。
在一个实施例中,当所述液晶光栅操作于所述光栅模式时,所述每组电极的两个子电极之间的电压差使所述液晶层中的液晶分子发生旋转的区域沿垂直于所述第一基板或所述第二基板的方向的延伸范围等于入射光的波长。
在一个实施例中,所述预设频率是所述显示装置刷新频率的3倍以上。
适应性的进一步的方面和范围从本文中提供的描述变得明显。应当理解,本申请的各个方面可以单独或者与一个或多个其它方面组合实施。还应当理解,本文中的描述和特定实施例旨在说明的目的,并不旨在限制本申请的范围。
附图说明
本文中描述的附图用于仅对所选择的实施例的说明的目的,并不是所有可能的实施方式,并且不旨在限制本申请的范围,其中:
图1示意性示出了光的衍射图;
图2A、2B、2C示意性示出了根据本公开的实施例的示例性液晶光栅的截面图;
图3A、3B、3C示意性示出了根据本公开的实施例的示例性显示装置的截面图;
图4A、4B示意性示出了根据本公开的另一个实施例的示例性显示装置的截面图;
图5A、5B示意性示出了用于液晶光栅的控制方法的流程图。
具体实施方式
首先需要说明的是,除非上下文中另外明确地指出,否则在本文和所附权利要求中所使用的词语的单数形式包括复数,反之亦然。因而,当提及单数时,通常包括相应术语的复数。相似地,措辞“包含”和“包括”将解释为包含在内而不是独占性地。同样地,术语“包括”和“或”应当解释为包括在内的,除非本文中明确禁止这样的解释。在本文中使用术语“示例”之处,特别是当其位于一组术语之后时,所述“示例”仅仅是示例性的和阐述性的,且不应当被认为是独占性的或广泛性的。
此外,在附图中,为了清楚起见夸大了各层的厚度及区域。应当理解的是,术语“纵向”、“径向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开实施例和简化描述,而不是指示或暗示所指的组件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。术语“第一”、“第二”、“第三”等仅用于描述的目的,而不能理解为指示或暗示相对重要性及形成顺序。
在本公开的描述中,术语“上”、“之上”、“下”、“之下”、“之间”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,当元件或层被称为在另一元件或层“上”时,它可以直接在该另一元件或层上,或者可以存在中间的元件或层;同样,当元件或层被称为在另一 元件或层“下”时,它可以直接在该另一元件或层下,或者可以存在至少一个中间的元件或层;当元件或层被称为在两元件或两层“之间”时,其可以为该两元件或两层之间的唯一的元件或层,或者可以存在一个以上的中间元件或层。
值得注意的是,以下附图和示例并不意味着限制本公开的范围。在使用已知的组件(或方法或过程)可以部分或全部实现本公开实施例的特定元件的情况下,将仅描述对理解本公开实施例所需要的这种已知组件(或方法或过程)的那些部分,并且这种已知组件的其它部分的详细描述将被省略以便不会混淆本公开。进一步地,各种实施例通过说明的方式包含与在此涉及的组件等同的现在和未来已知的等同物。
基于私密性的要求,通常在移动显示装置上使用防窥膜。然而,目前的防窥模式都是固定的,不能切换到共享模式。如要扩大视角只能拆除防窥膜,导致使用上的不便。
现将参照附图更全面地描述示例性的实施例。
图2A、2B、2C示意性示出了根据本公开的实施例的示例性液晶光栅20的截面图。如图2A、2B、2C所示,液晶光栅20包括第一基板21;与第一基板21相对设置的第二基板22;设置于第二基板22上的电极层,其中,该电极层包括周期性排列的两组电极24,每组电极24包括彼此平行设置的两个子电极;设置于第一基板21和第二基板22之间的液晶层23;以及与电极层耦合的控制单元25。控制单元25用于控制每组电极24的子电极上的电压,使得液晶光栅20操作于透明模式或光栅模式。
在一个示例实施例中,子电极的宽度可在大约2nm~20nm范围内,可选地为大约5nm。每组电极24的两个子电极之间的宽度可在大约20nm~100nm范围内,可选地为大约50nm。不同组的邻近的两个子电极之间的宽度可在大约100nm~200nm范围内,可选地为大约150nm。第一基板21的下表面到第二基板22的上表面的距离可在大约1μm~4μm范围内,可选地为大约2μm。
在一个示例实施例中,如图2A所示,控制单元25调整每组电极24的两个子电极上的电压,使每组电极24的两个子电极上的电压均为例如0V。由于子电极之间没有电压差,液晶层23中的液晶分子不发生旋转。此时液晶光栅20操作于透明模式,由于没有出现衍射效应,入射光的光路基本上不发生变化。
应当理解,控制单元25还可以调整每组电极24的两个子电极上的电压均为例如1V或10V等其它电压值,只要能够使每组电极24的两个子电极之间没有电压差的电压值都可以使得液晶光栅20操作于透明模式。
在另一个示例实施例中,如图2B所示,控制单元25调整每组电极24的两个子电极上的电压,使每组电极24的两个子电极上的电压分别为例如0V和1V,以及不同组的邻近的两个子电极之间不具有电压差。由于每组电极24的两个子电极之间的电压差为1V,因此在每组电极24的两个子电极上方所对应区域的液晶分子在电场的作用下发生旋转,从而形成液晶光栅20的图案区,在本公开的实施例中图案区是指液晶层23中的液晶分子在电场的作用下发生旋转的区域。由于不同组的邻近的两个子电极之间的电压差为0V,因此在不同组的邻近的两个子电极上方所对应区域的液晶分子不发生旋转,从而形成液晶光栅20的非图案区。可以理解,在本公开的实施例中,图案区和非图案区可导致光程差的存在,从而产生衍射现象。此时,液晶光栅20操作于光栅模式。由于电极24是周期性排列的,因此液晶分子周期性地重新排列,从而形成光栅结构。在该实施例中,每组电极24的两个子电极之间的电压差为1V,该电压差使得图案区的厚度等于例如红光的波长650nm,在本公开的实施例中图案区的厚度是指图案区沿垂直于第一基板21或第二基板22的方向的延伸范围。可以理解,电压差的具体值取决于各种因素,例如,使用的液晶材料等,因此在本公开的实施例中所具体列举的电压差的值仅用于解释本公开实施例的目的,而非对本公开实施例的限制。根据本公开的一个实施例,两个子电极之间的电压差可以不随时间变化,这样使得该图案区的厚度不随时间变化。
在一个示例实施例中,每组电极的两个子电极之间的电压差可以是相同的,使得两个子电极之间的图案区的厚度均相同。
在又一个示例实施例中,如图2C所示,控制单元25调整每组电极24的两个子电极上的电压,使每组电极24的两个子电极上的电压分别为例如0V和0.6V,以及不同组的邻近的两个子电极之间不具有电压差。与图2B中所示的实施例相比,两个子电极之间的电压差减小,该电压差使得图案区的厚度减小,该厚度例如等于绿光的波长550nm。根据本公开的一个实施例,两个子电极上的电压差可以不随时间变化,这样使得该图案区的厚度不随时间变化。
在一个示例实施例中,通过控制单元25还可以调整每组电极24的两个子电极之间的电压差,使得该电压差以预设频率例如180Hz在预设范围内变化,以动态地调整图案区的厚度。
应当理解,电极层还可以设置在第一基板21上。电极层中的电极24的数目不限于两个,还可以是多个。电极的数量越大,液晶光栅的衍射效果越好。
需要说明的是,第一基板21、第二基板22的材料可包括玻璃或任何其它透明材料。每组电极24的子电极可均为透明导电物,透明导电物可选自氧化锌、铟锡氧化物、铟锌氧化物、铟锡锌氧化物、铝锡氧化物、铝锌氧化物、镉铟氧化物、镉锌氧化物、镓锌氧化物或锡氟氧化物中的至少一种。
如上所述,通过控制单元调整每组电极的子电极的电压差,可使液晶光栅在透明模式和光栅模式之间进行切换。以预设的频率调整电压差的大小,可以动态地调整图案区的厚度。将该液晶光栅应用于显示装置时,图案区的不同厚度可以对应于不同波长的光,以消除不同波长的光的零级衍射,进而可以将能量分布在较大的可视角度范围内。
图1示意性示出了光的衍射图。现将参考图1来说明衍射公式d*sini+(n-1)*h±d*sinθ=(2m+1)*λ/2。其中d为光栅常数;i为入射光的入 射角;θ是出射光的出射角,n是光栅本身材料的折射率;h是光栅厚度;m取整数;λ是入射光的波长。当n=1.5,m=0,h=λ时,则sini=sinθ。此时入射光的入射角和出射光的出射角相同。由于光程差是半波长的奇数倍,相位是被相消。也就是说,零级衍射相消,±1级衍射增强,增大了出射光的出射角度。
图3A、3B、3C示意性示出了根据本公开的实施例的示例性显示装置30的截面图。在一个示例实施例中,如图3A、3B、3C所示,显示装置30可包括显示模组31以及位于显示模组31的上偏光片之上的根据本公开的上述实施例的液晶光栅20。根据本公开的实施例,显示模组31可以为液晶显示模组。
在一个示例实施例中,如图3A所示,控制单元25调整每组电极24的两个子电极上的电压,使每组电极24的两个子电极上的电压值均为例如0V。和图2A示出的液晶光栅的结构和功能相同,由于子电极之间没有电压差,液晶层23中的液晶分子不发生旋转,此时液晶光栅20操作于透明模式。
根据本公开的一个实施例,当来自显示模组31的入射角度为例如0°的入射光35经过操作于透明模式的液晶光栅20后,入射光35不发生衍射。出射光36的出射角与入射光35的入射角相同均为0°。人眼33能够看见来自显示模组31的出射光36,但是偏离显示装置30的人眼32和人眼34不能看见来自显示模组31的出射光36,即液晶光栅20不能增加显示装置的视角。也就是说,如果此时显示装置30操作于防窥模式,则仍为防窥模式。
应当理解,入射光可以为任意波长的可见光,入射光的入射角度不限于0°,还可以是其它角度的入射光。当入射光经过操作于透明模式的液晶光栅后,入射光的出射角度均不发生改变,或仅仅发生不会造成视角显著变化的小的改变。
可以理解,控制单元25还可以调整每组电极24的两个子电极上的电 压均为例如1V或10V等其它电压值,只要能够使每组电极24的两个子电极之间没有电压差的电压值都可以。
在另一个示例实施例中,如图3B所示,控制单元25调整每组电极24的两个子电极上的电压,使每组电极24的两个子电极上的电压分别为例如0V和1V,以及不同组的邻近的两个子电极之间不具有电压差。和图2B示出的液晶光栅的结构和功能相同,此时液晶光栅20操作于光栅模式。在该实施例中,每组电极24的两个子电极之间的电压差为1V,该电压差使得图案区的厚度等于例如红光的波长650nm。根据本公开的一个实施例,当来自显示模组31的入射光35为红光,入射角度为0°时,入射光35经过操作于光栅模式的液晶光栅20后,由于不同组的邻近的两个子电极之间的宽度非常小,小于入射光35的波长,使得入射光35发生衍射。根据光栅的衍射公式,入射光35的零级衍射是相消的,±1级衍射增强。人眼32、33和34均可以看见来自显示模组31的出射光36。与图3A所示的显示装置相比,当液晶光栅20操作于光栅模式时,液晶光栅20能够增大出射光36的出射角度,使得偏离显示装置30的人眼32和人眼34能够看见出射光36。也就是说,如果此时显示装置30操作于防窥模式,则被切换为共享模式。在该实施例中,两个子电极上的电压差可以不随时间变化,这样使得该图案区的厚度不随时间变化。
在一个示例实施例中,每组电极的两个子电极之间的电压差可以是相同的,使得两个子电极之间的图案区的厚度均相同。
应当理解,入射光可以为任意波长的可见光,入射光的入射角度不限于0°,还可以是其它角度的入射光。
如上所述,通过控制单元调整子电极上的电压,使得图案区的厚度等于入射光的波长。当入射光经过操作于光栅模式的液晶光栅后,入射光的零级衍射是相消的,±1级衍射增强,增大了出射光的出射角度,进而增大了显示装置的视角,使得显示装置从防窥模式切换到共享模式。
在又一个示例实施例中,如图3C所示,控制单元25调整每组电极24 的两个子电极上的电压,使每组电极24的两个子电极上的电压分别为例如0V和1V,以及不同组的邻近的两个子电极之间不具有电压差。和图2B示出的液晶光栅的结构和功能相同,此时液晶光栅20操作于光栅模式。在该实施例中,每组电极24的两个子电极之间的电压差为1V,该电压差使得图案区的厚度等于例如红光的波长650nm。根据本公开的一个实施例,当来自显示模组31的入射光同时具有红光35和绿光36,入射角度均为0°时,入射光经过操作于光栅模式的液晶光栅20后,由于不同组的邻近的两个子电极之间的宽度非常小,小于入射光的波长,使得入射光红光35和绿光36均发生衍射。根据光栅的衍射公式,由于图案区的厚度等于红光的波长,因此红光35的零级衍射是相消的,±1级衍射增强,绿光36的零级衍射不完全相消。这使得人眼33可以看见较强光强的绿光,人眼32和34能够看见较强光强的红光。与图3A所示的显示装置相比,当液晶光栅20操作于光栅模式时,即使入射光为双色光,液晶光栅20也可以增大入射光的出射角度,使得偏离显示装置30的人眼32和人眼34能够看见出射光37。也就是说,如果此时显示装置30操作于防窥模式,则被切换为共享模式。在该实施例中,两个子电极之间的电压差可以不随时间变化,这样使得该图案区的厚度不随时间变化。
应当理解,入射光不限于双色光,还可以是三色光或复色光等。入射光的入射角度不限于0°,还可以是其它角度的入射光。通过控制单元调整子电极之间的电压差,使得图案区的厚度等于某一颜色的入射光的波长。并且由于两个子电极上的电压值不随时间变化,因此液晶光栅只能针对该颜色的光的零级衍射是相消的,其它颜色的光的零级衍射并不完全相消。
图4A、4B示意性示出了根据本公开的另一个实施例的示例性显示装置40的截面图。和图3C示出的显示装置的结构和功能类似,在此不再重复描述。在一个示例实施例中,通过控制单元25调整每组电极24的两个子电极之间的电压差,使得该电压差以预设频率例如是显示装置刷新频率的3倍(180Hz),在例如0.6V和1V进行变化,以动态地调整图案区的厚 度。并且,不同组的邻近的两个子电极之间不具有电压差。根据本公开的一个实施例,在某一时刻,如图4A所示,控制单元25调整每组电极24的两个子电极上的电压,使每组电极24的两个子电极上的电压分别为例如0V和1V,以及不同组的邻近的两个子电极之间不具有电压差。和图3C所示的显示装置的实施例的功能相同,入射光红光35的零级衍射是相消的,±1级衍射增强,入射光绿光36的零级衍射不完全相消。这使得人眼33可以看见较强光强的绿光,人眼32和34能够看见较强光强的红光。在0.0056s后,如图4B所示,控制单元25调整每组电极24的两个子电极上的电压,使每组电极24的两个子电极上的电压分别为例如0V和0.6V,以及不同组的邻近的两个子电极之间不具有电压差。根据本公开的一个实施例,由于图案区的厚度等于例如绿光36的波长,因此入射光绿光36的零级衍射是相消的,±1级衍射增强,入射光红光35的零级衍射不完全相消。这使得人眼33可以看见较强光强的红光,人眼32和34能够看见较强光强的绿光。并且由于人眼的视觉暂留现象,人眼32、33、34在一定时间内能够同时看到较强光强的红光和绿光,消除了在不同位置观看显示装置40会出现色差的问题。
应当理解,入射光不限于双色光,还可以是三色光或复色光等。入射光的入射角度不限于0°,还可以是其它角度的入射光。当入射光为三色光时,子电极上的电压差以预设频率例如是显示装置刷新频率的3倍(180Hz)进行变化,使得人眼在不同位置均能够感受更好的色彩效果。
应当理解,显示模组包括但不限于液晶显示模组,还可以是OLED显示模组。当显示模组具有防窥膜,液晶光栅可以增大显示装置的视角,并将显示装置从防窥模式切换为共享模式。对于液晶显示模组,根据本公开的示例性实施例,液晶光栅还可以位于下偏光片和背光模组之间,由于背光模组是小角度光的限制,液晶光栅可以增大背光模组的出射光的角度。
根据本公开的又一实施例,还提供一种用于前述液晶光栅的控制方法,通过调整电极上的电压,使液晶光栅在透明模式和光栅模式之间进行切换。
图5A、5B示意性示出用于液晶光栅的控制方法的流程图。
在一个示例实施例中,如图5A所示,液晶光栅的控制方法可以包括:S501通过控制单元调整每组电极的两个子电极之间以及不同组的邻近的两个子电极之间不具有电压差,使得液晶光栅操作于透明模式。该实施例提供的控制方法用于前述实施例描述的图2A示出的液晶光栅,其结构、功能和/或优点与前述实施例中的液晶光栅的结构、功能和/或优点相同,在此不再详述。
在另一个示例实施例中,如图5B所示,液晶光栅的控制方法可以包括以下步骤:S502通过控制单元调整每组电极的两个子电极之间具有电压差以及不同组的邻近的两个子电极之间不具有电压差,以便仅在液晶层的对应于每组电极的部分中形成图案区,使得液晶光栅操作于光栅模式;S503调整每组电极的两个子电极之间的电压差使图案区的厚度等于入射光的波长;S504调整每组电极的两个子电极之间的电压差是相同的,使得两个子电极之间的图案区的厚度均相同。在具体实施例中,可以通过控制单元调整每组电极的两个子电极上的电压,使每组电极的两个子电极上的电压分别为例如0V和1V,该电压差使得图案区的厚度等于例如红光的波长650nm。该实施例提供的控制方法用于前述实施例描述的图2B示出的液晶光栅,其结构、功能和/或优点与前述实施例中的液晶光栅的结构、功能和/或优点相同,在此不再详述。
根据本公开的一个实施例,液晶光栅的控制方法进一步包括:通过控制单元调整每组电极的两个子电极之间的电压差,使得该电压差以预设频率进行变化,以动态地调整图案区的厚度。将该液晶光栅应用于显示装置时,图案区的不同厚度可以对应于不同波长的光,以消除不同波长的光的零级衍射,进而可以将能量分布在较大的可视角度范围内。
根据本公开的又一实施例,还提供用于前述显示装置的控制方法。通过调整电极上的电压,使液晶光栅在透明模式和光栅模式之间进行切换。将液晶光栅应用于显示装置,当液晶光栅操作于光栅模式时,能够增加显 示装置的视角。通过调整电极上的电压差的大小,可以消除不同波长的光的零级衍射,进而可以将能量分布在较大的可视角度范围内,即液晶光栅能够增加显示装置的视角。也就是说,如果此时显示装置操作于防窥模式,则被切换为共享模式。
在一个示例实施例中,显示装置的控制方法可以包括通过控制单元调整每组电极的两个子电极之间以及不同组的邻近的两个子电极之间不具有电压差,使得液晶光栅操作于透明模式。该实施例提供的控制方法用于前述实施例描述的图3A示出的显示装置,其结构、功能和/或优点与前述实施例中的显示装置的结构、功能和/或优点相同,在此不再详述。
在另一个示例实施例中,显示装置的控制方法可以包括以下步骤:通过控制单元调整每组电极的两个子电极之间具有电压差以及不同组的邻近的两个子电极之间不具有电压差,以便仅在液晶层的对应于每组电极的部分中形成图案区,使得液晶光栅操作于光栅模式;调整每组电极的两个子电极之间的电压差使图案区的厚度等于某一颜色的入射光的波长;调整每组电极的两个子电极之间的电压差是相同的,使得两个子电极之间的图案区的厚度均相同。在具体实施例中,可以通过控制单元调整每组电极的两个子电极上的电压,使每组电极的两个子电极上的电压分别为例如0V和1V,该电压差使得图案区的厚度等于例如红光的波长650nm。该实施例提供的控制方法用于前述实施例描述的图3B示出的显示装置,其结构、功能和/或优点与前述实施例中的显示装置的结构、功能和/或优点相同,在此不再详述。
根据本公开的一个实施例,显示装置的控制方法进一步包括:通过控制单元调整每组电极的两个子电极之间的电压差,使得该电压差以预设频率进行变化,以动态地调整图案区的厚度。在具体实施例中,通过控制单元调整每组电极24的两个子电极之间的电压差,使得该电压差以预设频率例如是显示装置刷新频率的3倍(180Hz),在例如0.6V和1V进行变化。该实施例提供的控制方法用于前述实施例描述的图4示出的显示装置,其 结构、功能和/或优点与前述实施例中的显示装置的结构、功能和/或优点相同,在此不再详述。
本公开中描绘的流程图仅仅是一个例子。在不脱离本公开精神的情况下,可以存在该流程图或其中描述的步骤的很多变型。例如,所述步骤可以以不同的顺序进行,或者可以添加、删除或者修改步骤。
本文中描述的控制单元可以实现为处理器和存储器的组合,其中处理器执行存储器中存储的程序以实现相应的控制单元的功能。本文中描述的控制单元也可以完全的硬件实施方式实现,包括专用集成电路(ASIC)、现场可编程门阵列(FPGA)等。
以上为了说明和描述的目的提供了实施例的前述描述。其并不旨在是穷举的或者限制本申请。特定实施例的各个元件或特征通常不限于特定的实施例,但是,在合适的情况下,这些元件和特征是可互换的并且可用在所选择的实施例中,即使没有具体示出或描述。同样也可以以许多方式来改变。这种改变不能被认为脱离了本申请,并且所有这些修改都包含在本申请的范围内。

Claims (15)

  1. 一种液晶光栅,其中,包括:
    第一基板;
    第二基板,与所述第一基板相对设置;
    电极层,设置于所述第一基板或所述第二基板上,其中,所述电极层包括周期性排列的至少两组电极,所述两组电极中的每组电极包括彼此平行设置的两个子电极;
    液晶层,设置于所述第一基板和所述第二基板之间;以及
    控制单元,其中,所述控制单元被配置为能够使得液晶光栅操作于透明模式或光栅模式,当操作于所述透明模式时,所述控制单元使每组电极的两个子电极之间以及不同组的邻近的两个子电极之间不具有电压差;当操作于所述光栅模式时,所述控制单元使每组电极的两个子电极之间具有电压差以及不同组的邻近的两个子电极之间不具有电压差。
  2. 根据权利要求1所述的液晶光栅,其中,当所述液晶光栅操作于所述光栅模式时,所述每组电极的两个子电极之间的电压差是相同的。
  3. 根据权利要求2所述的液晶光栅,其中,当所述液晶光栅操作于所述光栅模式时,所述每组电极的两个子电极之间的电压差以预设频率变化。
  4. 根据权利要求2所述的液晶光栅,其中,当所述液晶光栅操作于所述光栅模式时,所述每组电极的两个子电极之间的电压差使所述液晶层中的液晶分子发生旋转的区域沿垂直于所述第一基板或所述第二基板的方向的延伸范围等于入射光的波长。
  5. 一种显示装置,其中,包括显示模组和根据权利要求1-5中任一项所述的液晶光栅。
  6. 根据权利要求5所述的显示装置,其中,所述显示模组为液晶显示模组,所述液晶光栅位于所述液晶显示模组的上偏光片之上或位于下偏光片和背光模组之间。
  7. 一种根据权利要求1-4中任一项所述的液晶光栅的控制方法,其中, 所述控制单元使得液晶光栅操作于透明模式或光栅模式,当操作于所述透明模式时,使每组电极的两个子电极之间以及不同组的邻近的两个子电极之间不具有电压差;当操作于所述光栅模式时,使每组电极的两个子电极之间具有电压差以及不同组的邻近的两个子电极之间不具有电压差。
  8. 根据权利要求7所述的控制方法,其中,当所述液晶光栅操作于所述光栅模式时,所述每组电极的两个子电极之间的电压差是相同的。
  9. 根据权利要求8所述的控制方法,其中,当所述液晶光栅操作于所述光栅模式时,所述每组电极的两个子电极之间的电压差以预设频率变化。
  10. 根据权利要求8所述的控制方法,其中,当所述液晶光栅操作于所述光栅模式时,所述每组电极的两个子电极之间的电压差使所述液晶层中的液晶分子发生旋转的区域沿垂直于所述第一基板或所述第二基板的方向的延伸范围等于入射光的波长。
  11. 一种根据权利要求5或6所述的显示装置的控制方法,其中,所述控制单元使得所述液晶光栅操作于透明模式或光栅模式,当操作于所述透明模式时,使每组电极的两个子电极之间以及不同组的邻近的两个子电极之间不具有电压差;当操作于所述光栅模式时,使每组电极的两个子电极之间具有电压差以及不同组的邻近的两个子电极之间不具有电压差。
  12. 根据权利要求11所述的控制方法,其中,当所述液晶光栅操作于所述光栅模式时,所述每组电极的两个子电极之间的电压差是相同的。
  13. 根据权利要求12所述的控制方法,其中,当所述液晶光栅操作于所述光栅模式时,所述每组电极的两个子电极之间的电压差以预设频率变化。
  14. 根据权利要求11所述的控制方法,其中,当所述液晶光栅操作于所述光栅模式时,所述每组电极的两个子电极之间的电压差使所述液晶层中的液晶分子发生旋转的区域沿垂直于所述第一基板或所述第二基板的方向的延伸范围等于入射光的波长。
  15. 根据权利要求13所述的控制方法,其中,所述预设频率是所述显 示装置刷新频率的3倍以上。
PCT/CN2017/102909 2017-03-20 2017-09-22 液晶光栅、显示装置及其控制方法 WO2018171142A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/765,635 US10627663B2 (en) 2017-03-20 2017-09-22 Liquid crystal grating, display device and methods for controlling thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710165167.7 2017-03-20
CN201710165167.7A CN106707578B (zh) 2017-03-20 2017-03-20 液晶光栅、显示装置及其控制方法

Publications (1)

Publication Number Publication Date
WO2018171142A1 true WO2018171142A1 (zh) 2018-09-27

Family

ID=58886847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102909 WO2018171142A1 (zh) 2017-03-20 2017-09-22 液晶光栅、显示装置及其控制方法

Country Status (3)

Country Link
US (1) US10627663B2 (zh)
CN (1) CN106707578B (zh)
WO (1) WO2018171142A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707578B (zh) * 2017-03-20 2020-02-28 京东方科技集团股份有限公司 液晶光栅、显示装置及其控制方法
CN107490901B (zh) * 2017-09-29 2020-04-28 京东方科技集团股份有限公司 双视显示面板和显示装置
CN109143635A (zh) * 2018-10-25 2019-01-04 京东方科技集团股份有限公司 显示装置和显示方法
CN109239996B (zh) * 2018-11-23 2022-04-29 京东方科技集团股份有限公司 一种显示装置及显示方法
CN109683388B (zh) * 2019-03-11 2020-11-10 京东方科技集团股份有限公司 透明液晶显示面板及其驱动方法,以及包括它的透明液晶显示器
CN110376804B (zh) * 2019-06-27 2022-08-02 上海天马微电子有限公司 显示面板及其驱动方法和显示装置
CN110471210B (zh) * 2019-08-22 2022-06-10 京东方科技集团股份有限公司 彩膜基板、显示面板及显示装置
CN113075793B (zh) * 2021-04-06 2023-06-02 业成科技(成都)有限公司 显示装置及其操作方法
US20230185145A1 (en) * 2021-12-14 2023-06-15 Wuhan China Star Optoelectronics Technology Co., Ltd. Display device
CN114236897B (zh) * 2021-12-14 2022-10-04 武汉华星光电技术有限公司 显示装置
CN114360465B (zh) * 2021-12-27 2023-05-26 厦门天马微电子有限公司 一种液晶显示装置及液晶显示装置的驱动方法
WO2023159596A1 (zh) * 2022-02-28 2023-08-31 京东方科技集团股份有限公司 调光面板及显示装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1391662A (zh) * 1999-11-19 2003-01-15 康宁股份有限公司 建立在横向场上的液晶光栅
JP2009192558A (ja) * 2008-02-12 2009-08-27 Brother Ind Ltd 画像表示装置
CN101675379A (zh) * 2007-04-17 2010-03-17 皇家飞利浦电子股份有限公司 光束成形设备
CN102231020A (zh) * 2011-07-06 2011-11-02 上海理工大学 一种新型立体显示器系统
US20120105750A1 (en) * 2010-10-29 2012-05-03 Yoon Il-Yong Image display device using diffractive device
CN102893615A (zh) * 2010-05-21 2013-01-23 皇家飞利浦电子股份有限公司 可切换的单视图-多视图模式显示设备
CN103278958A (zh) * 2013-05-31 2013-09-04 易志根 一种液晶光栅及具有该液晶光栅的显示系统
WO2014037036A1 (en) * 2012-09-05 2014-03-13 Seereal Technologies S.A. Controllable diffraction device for a light modulator device
CN104035229A (zh) * 2014-06-03 2014-09-10 东南大学 液晶光栅及其制造方法
CN105447420A (zh) * 2014-08-13 2016-03-30 联想(北京)有限公司 控制方法、显示装置及电子设备
CN106019649A (zh) * 2016-06-03 2016-10-12 京东方科技集团股份有限公司 一种显示面板、显示装置及显示方法
CN106125361A (zh) * 2016-08-05 2016-11-16 京东方科技集团股份有限公司 一种显示面板及其驱动方法和显示装置
CN106324897A (zh) * 2016-10-28 2017-01-11 京东方科技集团股份有限公司 显示面板和显示装置
CN106575007A (zh) * 2014-07-31 2017-04-19 北卡罗莱纳州立大学 布拉格液晶偏振光栅
CN106707578A (zh) * 2017-03-20 2017-05-24 京东方科技集团股份有限公司 液晶光栅、显示装置及其控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9946134B2 (en) * 2012-08-24 2018-04-17 Lumentum Operations Llc Variable optical retarder
CN103676286A (zh) * 2012-08-31 2014-03-26 京东方科技集团股份有限公司 一种液晶光栅面板、立体显示装置及显示方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1391662A (zh) * 1999-11-19 2003-01-15 康宁股份有限公司 建立在横向场上的液晶光栅
CN101675379A (zh) * 2007-04-17 2010-03-17 皇家飞利浦电子股份有限公司 光束成形设备
JP2009192558A (ja) * 2008-02-12 2009-08-27 Brother Ind Ltd 画像表示装置
CN102893615A (zh) * 2010-05-21 2013-01-23 皇家飞利浦电子股份有限公司 可切换的单视图-多视图模式显示设备
US20120105750A1 (en) * 2010-10-29 2012-05-03 Yoon Il-Yong Image display device using diffractive device
CN102231020A (zh) * 2011-07-06 2011-11-02 上海理工大学 一种新型立体显示器系统
WO2014037036A1 (en) * 2012-09-05 2014-03-13 Seereal Technologies S.A. Controllable diffraction device for a light modulator device
CN103278958A (zh) * 2013-05-31 2013-09-04 易志根 一种液晶光栅及具有该液晶光栅的显示系统
CN104035229A (zh) * 2014-06-03 2014-09-10 东南大学 液晶光栅及其制造方法
CN106575007A (zh) * 2014-07-31 2017-04-19 北卡罗莱纳州立大学 布拉格液晶偏振光栅
CN105447420A (zh) * 2014-08-13 2016-03-30 联想(北京)有限公司 控制方法、显示装置及电子设备
CN106019649A (zh) * 2016-06-03 2016-10-12 京东方科技集团股份有限公司 一种显示面板、显示装置及显示方法
CN106125361A (zh) * 2016-08-05 2016-11-16 京东方科技集团股份有限公司 一种显示面板及其驱动方法和显示装置
CN106324897A (zh) * 2016-10-28 2017-01-11 京东方科技集团股份有限公司 显示面板和显示装置
CN106707578A (zh) * 2017-03-20 2017-05-24 京东方科技集团股份有限公司 液晶光栅、显示装置及其控制方法

Also Published As

Publication number Publication date
CN106707578A (zh) 2017-05-24
US20190018278A1 (en) 2019-01-17
US10627663B2 (en) 2020-04-21
CN106707578B (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
WO2018171142A1 (zh) 液晶光栅、显示装置及其控制方法
US10216017B2 (en) Liquid crystal display panel
US11092828B2 (en) Anti-peep display, liquid crystal display device and anti-peep component
US8803793B2 (en) Electro phoretic display and driving method thereof
US9606392B2 (en) Display panel and liquid crystal display including the same
CN109564366B (zh) 用于切换显示面板可视角度的防窥设备、显示设备、操作显示设备的方法和制造防窥设备的方法
US20060290651A1 (en) Electrooptic/micromechanical display with discretely controllable bistable transflector
CN106855675B (zh) 防窥装置和防窥显示设备
WO2018098782A1 (zh) 视角可切换的液晶显示装置及视角切换方法
WO2017152521A1 (zh) 显示装置
US20150146125A1 (en) Liquid crystal display panel, liquid crystal display apparatus, and thin film transistor array substrate
CN111830756B (zh) 液晶镜片以及液晶眼镜
CN108897151A (zh) 视角可切换的液晶显示装置
WO2015062310A1 (zh) 一种液晶显示面板、显示装置及其驱动方法
JP7148324B2 (ja) 光線方向制御装置及び光線方向制御素子の駆動方法
WO2015109432A1 (zh) 阵列基板及其制备方法、显示装置
TWI345653B (en) Liquid crystal display device and display method of same
WO2018223734A1 (zh) 显示面板及其显示方法、显示装置
JP2011169982A (ja) 液晶表示装置
TWI502242B (zh) 透鏡結構
WO2013031361A1 (ja) 液晶表示パネルおよび液晶表示装置
WO2016031638A1 (ja) 液晶表示装置
JP2007133013A (ja) 粒子移動型表示装置
JP4385908B2 (ja) 液晶表示装置、液晶表示装置の駆動方法および電子機器
JP2009069366A (ja) 表示装置とその製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901929

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.03.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17901929

Country of ref document: EP

Kind code of ref document: A1