WO2018170679A1 - Electrode active material, a process for preparing said electrode active material, and a cathode and a battery containing said electrode active material - Google Patents

Electrode active material, a process for preparing said electrode active material, and a cathode and a battery containing said electrode active material Download PDF

Info

Publication number
WO2018170679A1
WO2018170679A1 PCT/CN2017/077300 CN2017077300W WO2018170679A1 WO 2018170679 A1 WO2018170679 A1 WO 2018170679A1 CN 2017077300 W CN2017077300 W CN 2017077300W WO 2018170679 A1 WO2018170679 A1 WO 2018170679A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
lithium metal
lithium
metal oxide
Prior art date
Application number
PCT/CN2017/077300
Other languages
French (fr)
Inventor
Nahong ZHAO
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201780088749.8A priority Critical patent/CN110447127A/en
Priority to PCT/CN2017/077300 priority patent/WO2018170679A1/en
Publication of WO2018170679A1 publication Critical patent/WO2018170679A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode active material, which contains a granular lithium metal oxide, wherein the granular lithium metal oxide is coated with a polyacrylonitrile coating layer, and sulfur is loaded in the polyacrylonitrile coating layer.
  • the present invention further relates to a process for preparing said electrode active material, to a cathode containing said electrode active material, and to a battery containing said cathode.
  • the overall performance of current lithium ion batteries are mainly decided by the internal materials and their structures, especially by the cathodes, such as exhibiting lower specific capacities compared with graphite anode, such as instable cathode/electrolyte interface.
  • the cost of cathode material dominates 30%of the total value.
  • spinel LiMn 2 O 4 As for spinel LiMn 2 O 4 , it is low cost and capable of fast charge-discharge, but its capacity is low, only 120 mAh/g or so. Besides, the poor interface compatibility in between LiMn 2 O 4 material and liquid carbonate-based electrolyte causes severe side reactions and synchronizes with intrinsic John-Teller effect, thus results in material dissolution and poor cycling stability, especially at high temperature.
  • Lithium-rich lithium-nickel-cobalt-manganese-oxide (High-Energy NCM cathode material, HE-NCM) has high capacity, about 250 mAh/g, but exists similar problem during charge and discharge. Besides, interface problem also improves the oxygen losing and synchronize the intrinsic structure change from layer structure to spinel structure, which causes voltage decay and energy loss.
  • Lithium-nickel-cobalt-aluminum-oxide (NCA cathode material) is superior regarding to its cyclability and capacity (about 190 mAh/g or so) , but the poor stability at high temperature brings obvious safety defect to the battery.
  • the current carbonate-based electrolyte will start to break down chemically once it comes in contact with the lithium metal oxide, no matter the electrochemical process starts or not, which leads to complex problems and a poor cycling performance.
  • the discomposition reaction can be accelerated at a high temperature.
  • the performances of the cathode and the instable cathode/electrolyte interface are still the limitations for their further development in terms of low capacity, high cost, and instable cycling performance at a high temperature.
  • the object of the present invention is to provide an electrode active material with a low cost, a high capacity, a good stability and a good cycling performance especially at high temperature.
  • Said object can be achieved by an electrode active material, which contains a granular lithium metal oxide, wherein the granular lithium metal oxide is coated with a polyacrylonitrile coating layer, and sulfur is loaded in the polyacrylonitrile coating layer.
  • Said object can be achieved by a process for preparing the electrode active material according to the present invention, said process including the following steps:
  • a cathode for lithium ion batteries or lithium-sulfur batteries which contains the electrode active material according to the present invention.
  • a battery which contains the cathode according to the present invention.
  • Figure 1 is a schematic diagram of the electrode active material according to the present invention.
  • the present invention relates to an electrode active material, which contains a granular lithium metal oxide, wherein the granular lithium metal oxide is coated with a polyacrylonitrile coating layer, and sulfur is loaded in the polyacrylonitrile coating layer.
  • Figure 1 is a schematic diagram of the electrode active material according to the present invention, which contains a granular lithium metal oxide 1 as the core, wherein the granular lithium metal oxide 1 is coated with a polyacrylonitrile coating layer 2 as the shell, and sulfur is loaded in the polyacrylonitrile coating layer 2.
  • the interface property of the granular lithium metal oxides can be greatly improved by the specific core-shell structure as shown in Figure 1.
  • the granular lithium metal oxide has an average diameter of 100 nm –20 ⁇ m, preferably 500 nm –10 ⁇ m.
  • the polyacrylonitrile coating layer has a thickness of 10 nm –500 nm, preferably 10 nm –200 nm.
  • the sulfur load amount in the polyacrylonitrile coating layer 2 can be 2 –20 wt. %, preferably 5 –10 wt. %, based on the total weight of the electrode active material.
  • the granular lithium metal oxide can be made from one or more lithium metal oxides.
  • the lithium metal oxides can be binary, ternary or quaternary lithium metal oxides, for example selected from the group consisting of lithium nickel oxide, lithium cobalt oxide, lithium manganese oxide, lithium nickel cobalt oxide, and lithium nickel cobalt manganese oxide.
  • the specific examples of the granular lithium metal oxides can be spinel LiMn 2 O 4 (lithium manganese oxide or lithium manganate) , HE-NCM (High Energy Lithium Nickel Cobalt Manganese Oxide) and NCA (Lithium Nickel Cobalt Aluminum Oxide) .
  • the present invention relates to a process for preparing the electrode active material according to the present invention, said process including the following steps:
  • the granular lithium metal oxide precursor can be prepared by co-precipitation or sol-gel method from a lithium salt and one or more transition metal salts, wherein the transition metal can be selected from the group consisting of nickel, cobalt, and manganese.
  • the granular lithium metal oxides can be prepared from the granular lithium metal oxide precursors by sintering at a high temperature.
  • the granular lithium metal oxide can be made from one or more lithium metal oxides.
  • the lithium metal oxides can be binary, ternary or quaternary lithium metal oxides, for example selected from the group consisting of lithium nickel oxide, lithium cobalt oxide, lithium manganese oxide, lithium nickel cobalt oxide, and lithium nickel cobalt manganese oxide.
  • the specific examples of the granular lithium metal oxides can be spinel LiMn 2 O 4 , HE-NCM and NCA.
  • the granular lithium metal oxide precursor or the granular lithium metal oxide can be dispersed into a polyacrylonitrile solution, for example by vigorous stirring or sonication.
  • concentration of the polyacrylonitrile solution is not particularly limited, for example 3 –20 wt. %, preferably 5 –15 wt. %, more preferably 6 –10 wt. %, and can be determined according to the desired thickness of the polyacrylonitrile coating layer.
  • the solvent for said polyacrylonitrile solution or dispersion is not particularly limited, for example DMF, TMF, THF, or NMP.
  • the molecular weight (Mn) of the polyacrylonitrile used here is not particularly limited, and can be for example 50,000 –800,000 g/mol, preferably 100,000 –500,000 g/mol.
  • the granular lithium metal oxide precursor or the granular lithium metal oxide can be coated with a polyacrylonitrile coating layer 2 after the solvent has been evaporated.
  • the way of evaporating the solvent is not particularly limited here.
  • the solvent can be evaporated under stirring, preferably at an elevated temperature, for example about 50 °C, in an oven.
  • the product of step 3) can be annealed in the presence of sulfur in the presence of sulfur at a temperature of 280 –450 °C for 1 –4 hours.
  • the product of step 3) can be sealed in an autoclave under an inert atmosphere, for example nitrogen or argon, and heated in the presence of sulfur at a temperature of 280 –450 °C, preferably 300 –420 °C, more preferably 350 –400 °C, with a fast heating speed.
  • sulfur in step 4) can be loaded in the polyacrylonitrile coating layer 2 at an amount of 2 –20 wt. %, preferably 5 –10 wt. %, based on the total weight of the electrode active material.
  • the electrode active material according to the present invention can be mixed with carbon black and poly- (vinyl difluoride) (PVDF) and pasted on an Al foil.
  • PVDF poly- (vinyl difluoride)
  • Lithium foil can be used as the counter electrode, and assembled with a separator and carbonate electrolyte consisted of LiPF 6 salt and ethylene carbonate solvent.
  • the granular lithium metal oxides can be completely blocked or encapsulated by the polyacrylonitrile coating layer 2 (SPAN, sulfur/polyacrylonitrile) , which is loaded with sulfur, and left no direct contact with the liquid electrolyte, so as to inhibit both the metal dissolution and the electrolyte decomposition reaction usually.
  • SPAN polyacrylonitrile coating layer 2
  • sulfur loaded in the polyacrylonitrile coating layer is reactive to lithium ions and also acts as the cathode active material.
  • the cost of sulfur is expected to be much lower than the metal oxide cathode active material in the long term.
  • the core-shell cathode active material with a SPAN coating layer according to the present invention shows a better material compatibility and a better electrochemical stability with the electrolyte, and thus prominent electrochemical performances and a higher energy density can be achieved as well.
  • the cathode active material with a SPAN coating layer according to the present invention is suitable to encounter with the lithiated anode or the anode containing lithium, and that the amount of lithium in the anode can be calculated in view of the proportion of SPAN in the cathode.
  • the present invention relates to a cathode for lithium ion batteries or lithium-sulfur batteries, which contains the electrode active material according to the present invention.
  • the present invention relates to a battery, which contains the cathode according to the present invention.
  • the battery can be a lithium ion battery or a lithium-sulfur battery.
  • Electrodes active material include, but are not limited to, high-energy-density lithium ion batteries with acceptable high power density for energy storage applications, such as power tools, photovoltaic cells and electric vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

An electrode active material, which contains a granular lithium metal oxide(1), wherein the granular lithium metal oxide(1) is coated with a polyacrylonitrile coating layer(2), and sulfur is loaded in the polyacrylonitrile coating layer(2). Provided is a process for preparing said electrode active material, a cathode containing said electrode active material, and a battery containing said cathode.

Description

ELECTRODE ACTIVE MATERIAL, A PROCESS FOR PREPARING SAID ELECTRODE ACTIVE MATERIAL, AND A CATHODE AND A BATTERY CONTAINING SAID ELECTRODE ACTIVE MATERIAL Technical Field
The present invention relates to an electrode active material, which contains a granular lithium metal oxide, wherein the granular lithium metal oxide is coated with a polyacrylonitrile coating layer, and sulfur is loaded in the polyacrylonitrile coating layer. The present invention further relates to a process for preparing said electrode active material, to a cathode containing said electrode active material, and to a battery containing said cathode.
Background Art
The overall performance of current lithium ion batteries are mainly decided by the internal materials and their structures, especially by the cathodes, such as exhibiting lower specific capacities compared with graphite anode, such as instable cathode/electrolyte interface. Besides, among all components including cathode, anode, separator, electrolyte and battery housing, the cost of cathode material dominates 30%of the total value.
As for spinel LiMn2O4, it is low cost and capable of fast charge-discharge, but its capacity is low, only 120 mAh/g or so. Besides, the poor interface compatibility in between LiMn2O4 material and liquid carbonate-based electrolyte causes severe side reactions and synchronizes with intrinsic John-Teller effect, thus results in material dissolution and poor cycling stability, especially at high temperature.
Lithium-rich lithium-nickel-cobalt-manganese-oxide (High-Energy NCM cathode material, HE-NCM) has high capacity, about 250 mAh/g, but exists similar problem during charge and discharge. Besides, interface problem also improves the oxygen losing and synchronize the intrinsic structure change from layer structure to spinel structure, which causes voltage decay and energy loss.
Lithium-nickel-cobalt-aluminum-oxide (NCA cathode material) is superior regarding to its cyclability and capacity (about 190 mAh/g or so) , but the poor stability at high temperature brings obvious safety defect to the battery.
Besides, the current carbonate-based electrolyte will start to break down chemically once it comes in contact with the lithium metal oxide, no matter the electrochemical process starts or not, which leads to complex problems and a poor cycling performance. The discomposition reaction can be accelerated at a high temperature. Overall, the performances of the cathode and the instable cathode/electrolyte interface are still the limitations for their further development in terms of low capacity, high cost, and instable cycling performance at a high temperature.
Summary of Invention
The object of the present invention is to provide an electrode active material with a low cost, a high capacity, a good stability and a good cycling performance especially at high temperature.
Said object, according to one aspect, can be achieved by an electrode active material, which contains a granular lithium metal oxide, wherein the granular lithium metal oxide is coated with a polyacrylonitrile coating layer, and sulfur is loaded in the polyacrylonitrile coating layer.
Said object, according to another aspect, can be achieved by a process for preparing the electrode active material according to the present invention, said process including the following steps:
1) preparing one or more granular lithium metal oxide precursors or one or more granular lithium metal oxides;
2) dispersing the granular lithium metal oxide precursor or the granular lithium metal oxide in a polyacrylonitrile solution;
3) evaporating the solvent of the polyacrylonitrile solution;
4) annealing the product of 3) in the presence of sulfur at a temperature of 280 –450 ℃. According to another aspect of the present invention, a cathode for lithium ion batteries or lithium-sulfur batteries is provided, which contains the electrode active material according to the present invention.
According to another aspect of the present invention, a battery is provided, which contains the cathode according to the present invention.
Brief Description of Drawings
Each aspect of the present invention will be illustrated in more detail in conjunction with the accompanying drawings, wherein :
Figure 1 is a schematic diagram of the electrode active material according to the present invention.
Detailed Description of Preferred Embodiments
All publications, patent applications, patents and other references mentioned herein, if not otherwise indicated, are explicitly incorporated by reference herein in their entirety for all purposes as if fully set forth.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control.
When an amount, concentration, or other value or parameter is given as either a range, preferred range or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range  limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range.
The present invention, according to one aspect, relates to an electrode active material, which contains a granular lithium metal oxide, wherein the granular lithium metal oxide is coated with a polyacrylonitrile coating layer, and sulfur is loaded in the polyacrylonitrile coating layer.
Figure 1 is a schematic diagram of the electrode active material according to the present invention, which contains a granular lithium metal oxide 1 as the core, wherein the granular lithium metal oxide 1 is coated with a polyacrylonitrile coating layer 2 as the shell, and sulfur is loaded in the polyacrylonitrile coating layer 2. The interface property of the granular lithium metal oxides can be greatly improved by the specific core-shell structure as shown in Figure 1.
In accordance with an embodiment of the electrode active material according to the present invention, the granular lithium metal oxide has an average diameter of 100 nm –20 μm, preferably 500 nm –10 μm.
In accordance with another embodiment of the electrode active material according to the present invention, the polyacrylonitrile coating layer has a thickness of 10 nm –500 nm, preferably 10 nm –200 nm.
In accordance with another embodiment of the electrode active material according to the present invention, the sulfur load amount in the polyacrylonitrile coating layer 2 can be 2 –20 wt. %, preferably 5 –10 wt. %, based on the total weight of the electrode active material.
In accordance with another embodiment of the electrode active material according to the present invention, the granular lithium metal oxide can be made from one or more lithium metal oxides. The lithium metal oxides can be binary, ternary or quaternary lithium metal oxides, for example selected from the group consisting of lithium nickel oxide, lithium cobalt oxide, lithium manganese oxide, lithium nickel cobalt oxide, and lithium nickel cobalt manganese oxide. The specific examples of the granular lithium metal oxides can be spinel LiMn2O4 (lithium manganese oxide or lithium manganate) , HE-NCM (High Energy Lithium Nickel Cobalt Manganese Oxide) and NCA (Lithium Nickel Cobalt Aluminum Oxide) .
The present invention, according to another aspect, relates to a process for preparing the electrode active material according to the present invention, said process including the following steps:
1) preparing one or more granular lithium metal oxide precursors or one or more granular lithium metal oxides;
2) dispersing the granular lithium metal oxide precursor or the granular lithium metal oxide into a polyacrylonitrile solution;
3) evaporating the solvent of the polyacrylonitrile solution;
4) annealing the product of 3) in the presence of sulfur at a temperature of 280 –450 ℃.
1) Preparation of granular lithium metal oxide precursors or granular lithium metal oxides In accordance with an embodiment of the process according to the present invention, the granular lithium metal oxide precursor can be prepared by co-precipitation or sol-gel method from a lithium salt and one or more transition metal salts, wherein the transition metal can be selected from the group consisting of nickel, cobalt, and manganese. The granular lithium metal oxides can be prepared from the granular lithium metal oxide precursors by sintering at a high temperature.
The granular lithium metal oxide can be made from one or more lithium metal oxides. The lithium metal oxides can be binary, ternary or quaternary lithium metal oxides, for example selected from the group consisting of lithium nickel oxide, lithium cobalt oxide, lithium manganese oxide, lithium nickel cobalt oxide, and lithium nickel cobalt manganese oxide. The specific examples of the granular lithium metal oxides can be spinel LiMn2O4, HE-NCM and NCA.
2) Dispersing into a polyacrylonitrile solution
The granular lithium metal oxide precursor or the granular lithium metal oxide can be dispersed into a polyacrylonitrile solution, for example by vigorous stirring or sonication. The concentration of the polyacrylonitrile solution is not particularly limited, for example 3 –20 wt. %, preferably 5 –15 wt. %, more preferably 6 –10 wt. %, and can be determined according to the desired thickness of the polyacrylonitrile coating layer. The solvent for said polyacrylonitrile solution or dispersion is not particularly limited, for example DMF, TMF, THF, or NMP. The molecular weight (Mn) of the polyacrylonitrile used here is not particularly limited, and can be for example 50,000 –800,000 g/mol, preferably 100,000 –500,000 g/mol.
3) Evaporating the solvent
The granular lithium metal oxide precursor or the granular lithium metal oxide can be coated with a polyacrylonitrile coating layer 2 after the solvent has been evaporated. The way of evaporating the solvent is not particularly limited here. For example, the solvent can be evaporated under stirring, preferably at an elevated temperature, for example about 50 ℃, in an oven.
4) Annealing
The product of step 3) can be annealed in the presence of sulfur in the presence of sulfur at a temperature of 280 –450 ℃ for 1 –4 hours. In particular the product of step 3) can be sealed in an autoclave under an inert atmosphere, for example nitrogen or argon, and heated in the presence of sulfur at a temperature of 280 –450 ℃, preferably 300 –420 ℃, more preferably 350 –400 ℃, with a fast heating speed.
In accordance with another embodiment of the process according to the present invention, in step 4) , sulfur can be loaded in the polyacrylonitrile coating layer 2 at an amount of 2 –20 wt. %, preferably 5 –10 wt. %, based on the total weight of the electrode active material.
Preparation of working electrode
The electrode active material according to the present invention can be mixed with carbon black and poly- (vinyl difluoride) (PVDF) and pasted on an Al foil. Lithium foil can be used as the counter electrode, and assembled with a separator and carbonate electrolyte consisted of LiPF6 salt and ethylene carbonate solvent.
The granular lithium metal oxides can be completely blocked or encapsulated by the polyacrylonitrile coating layer 2 (SPAN, sulfur/polyacrylonitrile) , which is loaded with sulfur, and left no direct contact with the liquid electrolyte, so as to inhibit both the metal dissolution and the electrolyte decomposition reaction usually.
On the other hand, sulfur loaded in the polyacrylonitrile coating layer (SPAN) is reactive to lithium ions and also acts as the cathode active material. The cost of sulfur is expected to be much lower than the metal oxide cathode active material in the long term.
The core-shell cathode active material with a SPAN coating layer according to the present invention shows a better material compatibility and a better electrochemical stability with the electrolyte, and thus prominent electrochemical performances and a higher energy density can be achieved as well.
It should be noted that the cathode active material with a SPAN coating layer according to the present invention is suitable to encounter with the lithiated anode or the anode containing lithium, and that the amount of lithium in the anode can be calculated in view of the proportion of SPAN in the cathode.
The present invention, according to another aspect, relates to a cathode for lithium ion batteries or lithium-sulfur batteries, which contains the electrode active material according to the present invention.
The present invention, according to further aspect, relates to a battery, which contains the cathode according to the present invention. Preferably the battery can be a lithium ion battery or a lithium-sulfur battery.
Potential applications of the electrode active material according to the present invention include, but are not limited to, high-energy-density lithium ion batteries with acceptable high power density for energy storage applications, such as power tools, photovoltaic cells and electric vehicles.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. The attached claims and their equivalents are intended to cover all the modifications, substitutions and changes as would fall within the scope and spirit of the invention.

Claims (10)

  1. An electrode active material, characterized in that the electrode active material contains a granular lithium metal oxide (1) , the granular lithium metal oxide (1) is coated with a polyacrylonitrile coating layer (2) , and sulfur is loaded in the polyacrylonitrile coating layer (2) .
  2. The electrode active material of claim 1, characterized in that the granular lithium metal oxide (1) has an average diameter of 100 nm–20 μm, preferably 500 nm–10 μm.
  3. The electrode active material of claim 1 or 2, characterized in that the polyacrylonitrile coating layer (2) has a thickness of 10 nm–500 nm, preferably 10 nm–200 nm.
  4. The electrode active material of any one of claims 1 to 3, characterized in that the sulfur load amount in the polyacrylonitrile coating layer (2) is 2–20 wt. %, preferably 5–10 wt. %, based on the total weight of the electrode active material.
  5. The electrode active material of any one of claims 1 to 4, characterized in that the granular lithium metal oxide (1) is made from one or more lithium metal oxides, which are selected from the group consisting of lithium nickel oxide, lithium cobalt oxide, lithium manganese oxide, lithium nickel cobalt oxide, and lithium nickel cobalt manganese oxide.
  6. A process for preparing the electrode active material of any one of claims 1 to 5, said process including the following steps:
    1) preparing one or more granular lithium metal oxide precursors or one or more granular lithium metal oxides;
    2) dispersing the granular lithium metal oxide precursor or the granular lithium metal oxide in a polyacrylonitrile solution;
    3) evaporating the solvent of the polyacrylonitrile solution;
    4) annealing the product of 3) in the presence of sulfur at a temperature of 280–450℃.
  7. The process of claim 6, characterized in that the granular lithium metal oxide precursor is prepared by co-precipitation or sol-gel method from a lithium salt and one or more transition metal salts, which are selected from the group consisting of nickel, cobalt, and manganese.
  8. The process of claim 6 or 7, characterized in that in step 4) , sulfur is loaded in the polyacrylonitrile coating layer (2) at an amount of 2–20 wt. %, preferably 5–10 wt. %, based on the total weight of the electrode active material.
  9. A cathode for lithium ion batteries or lithium-sulfur batteries, characterized in that the cathode contains the electrode active material of any one of claims 1 to 5 or the electrode active material prepared by the process of any one of claims 6 to 8.
  10. A battery, characterized in that the battery contains the cathode of claim 9.
PCT/CN2017/077300 2017-03-20 2017-03-20 Electrode active material, a process for preparing said electrode active material, and a cathode and a battery containing said electrode active material WO2018170679A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780088749.8A CN110447127A (en) 2017-03-20 2017-03-20 Electrode active material, the method for preparing the electrode active material and the Anode and battery comprising the electrode active material
PCT/CN2017/077300 WO2018170679A1 (en) 2017-03-20 2017-03-20 Electrode active material, a process for preparing said electrode active material, and a cathode and a battery containing said electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/077300 WO2018170679A1 (en) 2017-03-20 2017-03-20 Electrode active material, a process for preparing said electrode active material, and a cathode and a battery containing said electrode active material

Publications (1)

Publication Number Publication Date
WO2018170679A1 true WO2018170679A1 (en) 2018-09-27

Family

ID=63583987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077300 WO2018170679A1 (en) 2017-03-20 2017-03-20 Electrode active material, a process for preparing said electrode active material, and a cathode and a battery containing said electrode active material

Country Status (2)

Country Link
CN (1) CN110447127A (en)
WO (1) WO2018170679A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160465A (en) * 2022-07-13 2022-10-11 长治医学院 Preparation method and application of high-sulfur-loading high-conductivity sulfurized polyacrylonitrile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI724715B (en) 2019-12-27 2021-04-11 財團法人工業技術研究院 Ion-conducting material, core-shell structure containing the same, electrode prepared by the core-shell structure and metal-ion battery empolying the electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110136017A1 (en) * 2008-08-01 2011-06-09 Seeo, Inc High capacity anodes
US20120015249A1 (en) * 2009-03-17 2012-01-19 Nippon Chemical Industrial Co., Ltd. Lithium phosphorus complex oxide-carbon composite, method for producing same, positive electrode active material for lithium secondary battery, and lithium secondary battery
CN103688395A (en) * 2011-07-29 2014-03-26 三洋电机株式会社 Active substance for nonaqueous electrolyte secondary cell, method for producing same, and negative electrode using active substance
US20160093879A1 (en) * 2014-09-26 2016-03-31 Samsung Electronics Co., Ltd. Negative active material, lithium battery including the negative active material, and method of preparing the negative active material
WO2016123396A1 (en) * 2015-01-30 2016-08-04 Sillion, Inc. Ionic liquid-enabled high-energy li-ion batteries

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100846578B1 (en) * 2002-06-01 2008-07-16 삼성에스디아이 주식회사 Lithium batteries
CN101145611B (en) * 2007-10-16 2010-06-02 深圳市贝特瑞新能源材料股份有限公司 Lithium ion cell anode material lithium vanadium phosphate preparation method
JP5534227B2 (en) * 2008-10-17 2014-06-25 独立行政法人産業技術総合研究所 Sulfur-modified polyacrylonitrile, method for producing the same, and use thereof
CN102820454B (en) * 2011-06-11 2016-05-18 苏州宝时得电动工具有限公司 Electrode composite material and preparation method thereof, positive pole, there is this anodal battery
CN104538606B (en) * 2014-12-19 2017-04-05 江苏华东锂电技术研究院有限公司 Sulfur-based composite anode material and preparation method thereof
CN104538602B (en) * 2015-01-16 2017-02-22 中国计量学院 Preparation device and production method for sulfur electrode material
CN106159318A (en) * 2015-04-07 2016-11-23 中国科学院上海硅酸盐研究所 Novel slice type solid-state serondary lithium battery that garnet-type solid electrolyte supports and preparation method thereof
CN106299264A (en) * 2015-06-05 2017-01-04 惠州市豪鹏科技有限公司 A kind of positive electrode active materials and preparation method thereof, positive plate and lithium ion battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110136017A1 (en) * 2008-08-01 2011-06-09 Seeo, Inc High capacity anodes
US20120015249A1 (en) * 2009-03-17 2012-01-19 Nippon Chemical Industrial Co., Ltd. Lithium phosphorus complex oxide-carbon composite, method for producing same, positive electrode active material for lithium secondary battery, and lithium secondary battery
CN103688395A (en) * 2011-07-29 2014-03-26 三洋电机株式会社 Active substance for nonaqueous electrolyte secondary cell, method for producing same, and negative electrode using active substance
US20160093879A1 (en) * 2014-09-26 2016-03-31 Samsung Electronics Co., Ltd. Negative active material, lithium battery including the negative active material, and method of preparing the negative active material
WO2016123396A1 (en) * 2015-01-30 2016-08-04 Sillion, Inc. Ionic liquid-enabled high-energy li-ion batteries

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160465A (en) * 2022-07-13 2022-10-11 长治医学院 Preparation method and application of high-sulfur-loading high-conductivity sulfurized polyacrylonitrile

Also Published As

Publication number Publication date
CN110447127A (en) 2019-11-12

Similar Documents

Publication Publication Date Title
US10686212B2 (en) Coated cathode active material for a battery cell
US5759719A (en) Electrode material for lithium intercalation electrochemical cells
CN110379984A (en) Partition for lithium metal base battery group
KR20130098372A (en) Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
EP2553753A2 (en) High voltage battery formation protocols and control of charging and discharging for desirable long term cyycling performance
KR20130108620A (en) Lithium ion batteries with supplemental lithium
CA2522107A1 (en) Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same
US20130108913A1 (en) Electrochemical lithium accumulator with a bipolar architecture comprising a specific electrolyte additive
KR102539669B1 (en) Lithium secondary battery
WO2017073056A1 (en) Method of passive voltage control in a sodium-ion battery
KR20160001651A (en) Lithium secondary battery
JP2009026514A (en) Nonaqueous electrolyte secondary battery
KR102531346B1 (en) Anodeless lithium secondary battery and preparing method thereof
WO2018170679A1 (en) Electrode active material, a process for preparing said electrode active material, and a cathode and a battery containing said electrode active material
WO1997050136A1 (en) Lithium manganese oxide cathodes with high capacity and stability
KR20240001928A (en) Lithium secondary battery
KR101667967B1 (en) Cathode slurry for electrochemical device, cathode manufactured using the slurry, and a method of making the cathode
KR102446269B1 (en) Lithium secondary battery
US9172089B2 (en) Anode active material, method of preparing the same, anode including the anode active material, and lithium battery including the anode
KR101783316B1 (en) Positive electrode active material for rechargable lithium battery and rechargable lithium battery including the same
KR101777399B1 (en) Method for manufacturing positive electrode active material for rechargable lithium battery
JP3394020B2 (en) Lithium ion secondary battery
US20210234149A1 (en) Lithium cells and methods of making and use thereof
CN114586194B (en) Lithium ion battery and method for manufacturing lithium ion battery
CN114556617B (en) Lithium ion battery and method for manufacturing lithium ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901840

Country of ref document: EP

Kind code of ref document: A1