WO2018169331A1 - Antibacterial food packaging material containing metal nanoparticle and production method therefor - Google Patents

Antibacterial food packaging material containing metal nanoparticle and production method therefor Download PDF

Info

Publication number
WO2018169331A1
WO2018169331A1 PCT/KR2018/003060 KR2018003060W WO2018169331A1 WO 2018169331 A1 WO2018169331 A1 WO 2018169331A1 KR 2018003060 W KR2018003060 W KR 2018003060W WO 2018169331 A1 WO2018169331 A1 WO 2018169331A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
packaging material
food packaging
metal
antimicrobial
Prior art date
Application number
PCT/KR2018/003060
Other languages
French (fr)
Korean (ko)
Inventor
황혜진
고석근
윤지성
Original Assignee
주식회사 아이큐브글로벌
신지영
황혜진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이큐브글로벌, 신지영, 황혜진 filed Critical 주식회사 아이큐브글로벌
Publication of WO2018169331A1 publication Critical patent/WO2018169331A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/60In a particular environment
    • B32B2309/68Vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging

Definitions

  • the present invention relates to a method for producing an antimicrobial food packaging material containing metal nanoparticles and an antimicrobial food packaging material prepared therefrom.
  • metal nanoparticles such as copper, brass, bronze, silver, and zinc are uniformly dispersed in a thin polymer film and laminated with a polymer film having excellent thermal and mechanical properties.
  • Antimicrobial food packaging material is uniformly dispersed in a thin polymer film and laminated with a polymer film having excellent thermal and mechanical properties.
  • Food packaging materials are intended to maintain the freshness of foods (may be referred to as "food"), such as meat, fish, vegetables, fruits, processed foods for a certain time, and to prevent contamination from various harmful external environments.
  • food may be referred to as "food”
  • the freshness of the food decreases with time, and the corruption of the food cannot be avoided due to the growth of mold and bacteria. Due to the increase in the number of single households and the development of eating culture, there is an increasing need to store food for a long time, which causes a large amount of food to be destroyed and disposed of.
  • Korean Unexamined Patent Publication No. 2002-0090657 discloses a method of adding a metal powder to a high temperature molten polymer to make a master chip and using the same for injection molding. Another method is to prepare an antimicrobial packaging material using various kinds of organic preservatives or gas additives such as chlorine diside, ethanol, sulfur dioxide, triclosan and wasabi extract.
  • the conventional method of adding a metal mineral to the polymer has a disadvantage in that the manufacturing process is complicated, the manufacturing cost increases, agglomeration of metal particles, etc., reduces the quality uniformity of the packaging material and impairs the reproducibility of the process.
  • a packaging material containing an organic preservative there is a problem that the high temperature stability is deteriorated and the efficacy of the organic preservative is destroyed when processing a film using a polymer.
  • Korean Patent Laid-Open No. 2002-0090657 discloses a metal vapor condensation method in which a metal vapor is made at a high temperature by using an expensive organometallic compound and ejected at a low temperature to condense it. It introduces. There is a method of making a film by adding the metal powder thus prepared to a certain amount of hot melted polymer.
  • the metal nanoparticles produced by the metal vapor condensation method are relatively coarse at 100 nm in size.
  • the present invention to achieve the above object
  • (D) provides a method for producing an antimicrobial food packaging material comprising the step of laminating the metal nanoparticle-containing polymer film and the polymer member.
  • the present invention is characterized in that the polymer chip in which the metal nanoparticles are deposited on the surface is manufactured by a vacuum deposition method in a vacuum deposition tank.
  • the vacuum evaporation method is characterized in that the metal vapor particles are generated to be attached directly to the polymer chip while stirring the polymer chip in the vacuum deposition tank provided with a metal deposition source and a stirring tank containing the polymer chip.
  • the present invention provides an antimicrobial food packaging material prepared by the above method.
  • the antimicrobial food packaging material manufacturing method of the present invention has an effect of easily manufacturing a food packaging material having both antimicrobial properties and heat resistance by a simple process of laminating a metal nanoparticle-containing film and a polymer member having heat resistance. Using a polymer chip on which metal nanoparticles are deposited, there is an effect that an antimicrobial food packaging material can be manufactured directly in an existing process system. According to the present invention, since the metal nanoparticles are directly attached to the polymer chip in the manufacturing process, there is no need for a separate dispersion process and a dispersant to disperse the metal nanoparticles.
  • the metal nanoparticles attached to the polymer chip have a fine size of 10 nm and exhibit high antibacterial activity.
  • the present invention has the advantage of reducing the raw material cost of the material can be reduced by the metal used in the production of the packaging material by manufacturing a food packaging material in a manner of laminating with a general film after producing a thin film having antimicrobial properties. Antibacterial acts only on the surface of the packaging material in contact with the food, while the other surface is made of a member having heat resistance, thereby ensuring a thermal stability and providing a food packaging material capable of printing.
  • Figure 1 is a schematic diagram of a method for producing antimicrobial food packaging material of the present invention.
  • FIG. 2 is a schematic diagram of a vacuum deposition apparatus for manufacturing a polymer chip on which metal nanoparticles are deposited.
  • FIG. 3 is a photograph of a PP chip on which silver nanoparticles of the present invention are deposited.
  • FIG. 4 is a photograph of a PP chip on which copper nanoparticles of the present invention are deposited.
  • Figure 6 is an antimicrobial film photo made of a general film injection machine using the LLDPE chip deposited copper nanoparticles of the present invention.
  • Figure 7 is a photograph of the antimicrobial film made of a general film injection machine using the PP chip deposited copper nanoparticles of the present invention.
  • FIG. 8 is a photograph of an antimicrobial food packaging material made by laminating a LLDPE film and a PET film containing copper nanoparticles.
  • FIG. 9 is a photograph of a film appearance after heating water using a microwave oven after putting water in an antimicrobial food packaging material made by laminating a LLDPE film and a PET film including copper nanoparticles.
  • FIG. 10 is a photograph of the appearance after storage of one day after microwave treatment after putting 100 °C water in the antimicrobial food packaging material made by laminating a LLDPE film and a PET film containing copper nanoparticles.
  • FIG. 11 is a photograph of the antimicrobial test results for staphylococcus aureus of the antimicrobial food packaging material produced according to the present invention.
  • FIG. 13 is a photograph after 10 days of storing white rice in a general packaging material (left) and LLDPE packaging material (right) to which copper nanoparticles prepared according to the present invention are added.
  • FIG. 14 is a photograph after 10 days of storing apples in a general packaging material (left) and LLDPE packaging material (right) to which copper nanoparticles prepared according to the present invention are added.
  • 15 is a photograph after 10 days after storing the tofu in a general packaging material (left) and LLDPE packaging material (right) to which copper nanoparticles prepared according to the present invention are added.
  • Figure 16 is a copper-added LLDPE packaging material prepared according to the present invention after heating the water in a microwave oven after the addition of banana ((a): initial photo) and the photograph observed after heating to 60 °C in a heating oven (( b)) and after removing it from the bag ((c)).
  • FIG. 17 is 100 ° C. water in a copper-added LLDPE packaging material prepared according to the present invention and stored for one day after microwave treatment, when banana is added ((a): initial photograph) and after heating to 60 ° C. in a heating oven. ((b)) Observed photographs and photographs taken out of the bag ((c)).
  • the present invention is a.
  • (D) provides a method for producing an antimicrobial food packaging material comprising the step of laminating the metal nanoparticle-containing polymer film and the polymer member.
  • the present invention is to produce an antimicrobial food packaging material by laminating a polymer film containing metal nanoparticles having antimicrobial and sterilizing ability and a polymer member having heat resistance used as a conventional food packaging material. While the process for preparing the antimicrobial food packaging material of the present invention is simple compared to the prior art, the prepared food packaging material has the advantages of having both antimicrobial and bactericidal effects useful for preservation of food and thermal stability of existing packaging materials.
  • the polymer chip in which the metal nanoparticles are deposited on the surface of the step (a) is preferably manufactured by a method in which the metal nanoparticles are vacuum deposited on the surface of the carrier using the polymer chip as a carrier in a vacuum deposition tank.
  • Vacuum deposition is carried out in a vacuum deposition tank (1), a stirring tank (2) provided in the lower portion of the vacuum deposition tank, a screw (3) provided in the stirring tank and stirring a carrier, that is, a polymer chip, and in the vacuum deposition tank It can be made using a metal particle deposition apparatus which is provided on the top of the stirring tank and composed of a deposition source 4 for generating metal vapor particles.
  • the vacuum deposition tank may adjust the degree of vacuum to 10 -4 to 1 torr using the vacuum pump (5).
  • the vapor particles for forming nanoparticles are thickly deposited on the carrier near the vapor source from which the vapor particles are generated, but as the carriers move away from the vapor source, the average free path of the vapor particles is reduced. The distance is shortened so that the vapor particles are not deposited on the carrier.
  • the scattering direction of the atomized metal vapor in the deposition source is preferably in the direction opposite to the carrier. Since the vaporization direction of the atomized vapor is opposite to the carrier, the metal vapor is scattered upwards, but the vacuum degree is 10 -4 to 1 torr, so that the collision between the metal vapor particles and the inert gas particles caused by the inert gas filled therein results in an average free path.
  • the metal vapor particles are shortened and are deposited on a carrier, ie, a polymer chip, which is moved downward by gravity and is stirred to form nanoparticles on the surface of the polymer chip.
  • the speed of the screw for stirring the polymer chip it is preferable to adjust the speed of the screw for stirring the polymer chip at 1 to 200 rpm. If the stirring speed is less than 1 rpm, the agitation is not sufficiently done, there is a problem that the metal vapor particles are not evenly attached to the surface of the polymer chip, when the stirring speed exceeds 200 rpm, the stirred polymer chip is scattered There is this.
  • the vacuum degree of the vacuum deposition tank is controlled by including an inert gas, and the inert gas may be argon (Ar), neon (Ne), N 2 , O 2 , CH 4, or the like.
  • Generating steam particles for forming nanoparticles using the deposition source may use a physical vapor deposition method, for example, thermal deposition such as resistance heating, plasma heating, induction heating, laser heating, dish, etc.
  • thermal deposition such as resistance heating, plasma heating, induction heating, laser heating, dish, etc.
  • DC sputtering, DC-RF sputtering, laser sputtering, electron beam deposition (E-Beam Evaproation), etc. are mentioned.
  • the deposition time may be 10 minutes to 20 hours. By adjusting the time it is possible to control the concentration of the metal particles on the polymer chip.
  • the vacuum deposition may control the growth of the nanoparticles by adjusting the vacuum degree of the deposition tank, the speed of the screw, the deposition time, the deposition power and the like to control the size and amount of metal nanoparticles deposited on the polymer chip.
  • the polymers used in the manufacture of the polymer chip on which the metal nanoparticles of the present invention are deposited may be used without any limitation on the polymer surface capable of injection molding, but are preferably thermoplastic polymers. More preferably, linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), polysufone (PS), polycarbonete (PC), polyvinylchloride (PVC), ABS (Acrylonitrile-butadiene-styrene) and PET (Polyethyleneterephthalate) are used.
  • LLDPE linear low-density polyethylene
  • LDPE low-density polyethylene
  • HDPE high-density polyethylene
  • PP polypropylene
  • PS polysufone
  • PC polycarbonete
  • PC polyvinylchloride
  • ABS Acrylonitrile-butadiene-styrene
  • PET Polyethyleneter
  • the metal nanoparticles may be used both of the nanoparticle surface of the metal having antibacterial and antiseptic properties, and preferably metals such as copper, silver, zinc, brass, and bronze may be used.
  • the average size of the metal nanoparticles is 2 to 30 nm, preferably 2 to 10 nm.
  • the amount of the metal nanoparticles deposited in the polymer on which the metal nanoparticles are deposited is preferably 0.01 to 0.5% by weight.
  • the nanoparticles made by the method of the present invention are 2 to 30 nm in size, more preferably 2 to 10 nm in size, and are smaller than nanoparticles prepared by the metal vapor condensation method, thereby increasing the surface area of the metal in a small amount. It is possible to, and do not require a separate solvent removal process by depositing the nanoparticles on the polymer without using a dispersant, a solvent, etc. like a chemical method.
  • the nanoparticles produced by the method of the present invention do not need a separate solvent removal process because they have high purity, excellent uniformity, and do not contain a solvent. It is less than the nanoparticles, so even a small amount of metal nanoparticles have the advantage of high antimicrobial properties.
  • Step (b) of the present invention is a step of obtaining a thin polymer film containing the nanoparticles by inserting the polymer chip deposited on the surface of the metal nanoparticles into the injection machine.
  • Polymeric chips in which the nanoparticles of the present invention are deposited have an advantage that the existing packaging material manufacturing process and equipment can be used as they are.
  • the injection step may be used by mixing the polymer chip on which the metal nanoparticles are deposited on the surface and the polymer chip on which the metal nanoparticles are not deposited.
  • the mixing ratio of the polymer chip on which the metal nanoparticles are deposited on the surface and the polymer chip on which the metal nanoparticles are not deposited is preferably 1:10 to 1: 1 by weight. That is, the present invention can easily prepare a polymer film in which the fine metal nanoparticles are evenly dispersed by uniformly mixing and melting and injecting the polymer chip having the metal nanoparticles deposited on the surface and the general polymer chip on which the metal nanoparticles are not deposited. Can be.
  • the film is manufactured in a thin thickness, the surface area is increased relative to the volume, and even though a small amount of metal is added, many metals are exposed to the surface to provide a high antibacterial effect.
  • the thickness of the film produced in step (b) is not limited, but a thin thickness of 0.05 mm or less, preferably 0.01 mm or less is preferred in order to expose the metal to the surface as much as possible.
  • the temperature for melting the polymer chip may be 100 ° C. or more.
  • the thin polymer film to which the metal of step (b) is added is laminated to a general film to produce a food packaging material, it is possible to manufacture a product having a high antibacterial property and a suitable thickness and strength while using a minimum amount of metal.
  • the antimicrobial activity caused by contact with bacteria is a metal exposed on the surface and the particles inside do not directly contribute to the antimicrobial effect,
  • the nanoparticles dispersed well inside are placed between the long chains of the polymers, which prevents partial movement of the polymers, thereby inhibiting the penetration and diffusion of oxygen, which is the main cause of food decay, and lowers the oxygen permeability.
  • Step (c) of the present invention is to prepare a polymer member for general food packaging materials having heat resistance and mechanical strength.
  • the polymer member is preferably PET, OPP, PVC, PS, nylon, HDPE and the like.
  • the polymer member may be a thin polymer film or a thick film for a food tray.
  • the thickness of the polymer member may be 0.05 to 0.5 mm depending on the required mechanical strength.
  • Step (d) of the present invention is a step of laminating the polymer film having the antibacterial and bactericidal function of step (b) and the polymer member having the heat resistance and the mechanical strength of step (c).
  • the lamination may use a laminating method and may use a dry method or a tea die method.
  • Two or more kinds of polymer films may be formed by pressing a roller by heating heat. At this time, it may be laminated using a separate adhesive and / or solvent or using PE.
  • the polymer film layer including the metal nanoparticles of the manufactured food packaging material is a surface in direct contact with the food.
  • the food packaging material of this invention can further laminate a functional polymer member as needed.
  • the surface directly contacting the food is a polymer film layer containing metal nanoparticles.
  • the present invention provides an antimicrobial food packaging material prepared through the above steps (a) to (d) and including a polymer nanoparticle-containing polymer film layer and a polymer member layer having heat resistance.
  • the food packaging material of the present invention includes the metal nanoparticles in contact with the food can maintain the freshness of the food for a long time and give an antibacterial effect, the other side provides the heat resistance and mechanical strength required for the food packaging material.
  • the metal nanoparticle-containing polymer film layer of the food packaging material of the present invention is well dispersed in the metal nanoparticles, the film surface has a double effect of imparting even antibacterial power and the inside of the film to prevent oxygen permeation, which is the main culprit of food decay.
  • the films that have excellent mechanical strength, heat resistance, and printability to prevent mechanical properties from falling off. Therefore, antibacterial sterilization, oxygen permeation prevention, mechanical property increase, thermal property increase, and excellent Provided is a food packaging material having printability.
  • a disk-type copper (Cu) or silver (Ag) target of 10 cm diameter and 1 cm thickness is attached to the DC sputtering cathode.
  • the LLDPE chip used as a packaging material was put into a stirring tank in the vacuum chamber, the vacuum chamber door was closed and vacuum evacuation was started.
  • the weight of the injected polymer chip is 6.5 kg.
  • a low vacuum of 1x10 -2 Torr was made using a rotary pump, and a high vacuum of 1x10 -5 Torr or less was made using an oil diffusion pump.
  • Ar gas was injected into the vacuum chamber at a high vacuum at a flow rate of 50 to 150 sccm and the polymer chip was stirred at a speed of 60 rpm.
  • Ar gas injection is intended to create a plasma for deposition and polymer chip agitation is to ensure that the deposited particles are kept coarse and not coarse.
  • power is applied to DC power, plasma is generated and deposition of metal particles proceeds.
  • the deposition time is 9 hours and the metal concentration is 0.3 wt% each.
  • a PP chip in which copper or silver was deposited was prepared in the same manner as in Example 1-1 using the PP chip (see FIGS. 3 and 4).
  • FIG. 5 is a transmission electron micrograph of silver (Ag) which is one of the additive metals.
  • Ag silver
  • its size is less than 20 nm, mostly around 10 nm, which is fine compared to the general electric explosion method (about 50 to 100 nm), one of the existing physical vapor deposition methods. Since the antimicrobial effect acts on the surface of metal particles, the larger the surface area, the higher the efficiency.
  • the fine metal nanoparticles of 10 nm size are uniformly dispersed in the polymer, the amount is smaller than the large mass of 50-100 nm size.
  • the surface of the polymer can be evenly exhibited antimicrobial properties, making a high surface area is a cause of showing the high antibacterial properties of the packaging material.
  • a film having a thickness of 0.01 mm was prepared using a polymer chip in which LLDPE and copper LLDPE prepared in Example 1-1 were mixed at a weight ratio of 9: 1. Film manufacturing conditions are melted by heating to about 150-200 °C in a typical polymer film injection vessel and the film is injected to room temperature in the atmosphere (Fig. 6).
  • a film having a thickness of 0.01 mm was prepared using a polymer chip in which PP and copper (Cu) prepared in Example 1-2 were mixed at a weight ratio of 9: 1.
  • a PET film having a thickness of 12 ⁇ m was prepared and laminated with an LLDPE film including copper nanoparticles prepared in Example 2-1 to prepare an antimicrobial food packaging material.
  • the laminating method is to mix the adhesive and the EA solvent between the PET film and the antimicrobial LLDPE, pass the rollers, and then laminate to make one film (Fig. 8).
  • the laminated PET film is stable at a high temperature, so the shape of the film container can be seen to be maintained even when the water inside the film becomes a high temperature.
  • the polymer film to which the nanoparticles are added only warms the water inside without affecting the microwave like a general polymer.
  • the packaging material is easily deteriorated at a high temperature, and the original color is changed. In the case of the present invention, it can be confirmed that there is no deterioration as shown in FIGS. 9 and 10. .
  • the antimicrobial test of the antimicrobial food packaging material of the present invention was conducted. After adding copper to the LLDEP polymer chip and melting it to produce a film, the antimicrobial test was performed using the film adhesion method (JIS Z 2801) and the results were shown.
  • the bacteria used for the test were Staphylococcus aureus and Escherichia coli, and the change patterns of the bacteria are shown in Table 1 and Table 2, respectively.
  • the antimicrobial activity against bacteria was 4.6 for Staphylococcus aureus and 3.2 for Escherichia coli, which is higher than that of the standard 2.0.
  • FIG. 11 is a bacterial growth picture of the control sample and the test sample for Staphylococcus aurea
  • Figure 12 is a bacterial growth picture of the control sample and the test sample for Escherichia coli. Both strains showed a decrease in strains in the test sample compared to the control sample.
  • the white rice stored in the general film is a fungus bacteria breeding from the initial 3-4 days after 10 days can be seen that the fungus bacteria are almost black, but when using the packaging material of the present invention white rice 10 days It can be seen that the fungi do not multiply and maintain the color of white rice even after elapsed.
  • 6-2. 14 is a photograph of the result after storing the apple in a normal packaging material (left) and the copper-added LLDPE packaging material (right) manufactured according to the present invention at room temperature for 10 days.
  • the fungus bacteria grow from the first 3-4 days, and after 10 days, the fungus bacteria can be seen in many parts, but when the l packaging material of the present invention is used, the apples 10 It can be seen that after a period of time the fungi do not multiply and retain their color.
  • 6-3. 15 is a photograph after 10 days at room temperature after storing the tofu in a general packaging material (left) and the copper-added LLDPE packaging material (right) manufactured according to the present invention. As shown in the picture, the tofu stored in the general film can be seen that the fungus bacteria have been propagated from the beginning 3-4 days, but when using the packaging material of the present invention, the tofu is seen to keep the fungus without propagation even after 10 days. Can be.
  • the antimicrobial packaging material of the present invention has excellent antimicrobial properties compared to the general commercial packaging, it can be seen that it can maintain the freshness and delay the decay during food storage.
  • the packaging material of the present invention can be confirmed that there is no discoloration of the banana unlike the general packaging material.
  • unlike ordinary organic antimicrobial material can be indirectly confirmed that the deterioration in water or microwave or copper nanoparticles are not eluted.
  • FIG. 7-2 The LLDPE packaging material containing copper of the present invention was tested for the degree of food rapid deterioration by using the packaging material after one day of 100 ° C. water was added as in Example 4-2.
  • Figure 17 is prepared in accordance with the present invention and immediately after putting the banana in the copper-added LLDPE packaging material after 100 days of water and microwave treatment and stored for 1 day (a) and heated to 60 °C in a heating oven for 1 hour 30 minutes It is a photograph observing the change of ((c)) after ((b)) and only the contents were taken out.
  • the packaging materials of the present invention can be seen that the copper nanoparticles are not easily eluted even after 100 °C water storage for one day has antibacterial sterilization performance.
  • the packaging material of the present invention does not contain harmful metals and harmful organic compounds, or contains potassium permanganate, which is far below the standard value. Therefore, the packaging material does not contain harmful ingredients. It can be seen that in the process of making the packaging film, it can be produced very simply and easily without containing harmful ingredients.
  • the present invention has the effect of easily manufacturing a food packaging material having both antibacterial and heat resistance by a simple process of laminating a metal nanoparticle-containing film and a polymer member having heat resistance. Using a polymer chip on which metal nanoparticles are deposited, there is an effect that an antimicrobial food packaging material can be manufactured directly in an existing process system.
  • the antimicrobial food packaging material produced by the manufacturing method of the present invention is an excellent industrial applicability having both antibacterial and heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Wrappers (AREA)
  • Packages (AREA)

Abstract

The present invention relates to a method for producing an antibacterial food packaging material containing a metal nanoparticle, and an antibacterial food packaging material produced thereby and, particularly, to a method for producing an antibacterial food packaging material, in which a metal nanoparticle, such as copper, brass, bronze, silver, and zinc, is uniformly dispersed in a thin polymer film, and the resulting film is laminated on a polymer film having excellent thermal and mechanical properties, and an antibacterial food packaging material produced thereby.

Description

금속 나노 입자가 포함된 항균 식품 포장재 및 그의 제조 방법Antimicrobial food packaging material containing metal nanoparticles and its manufacturing method
본 발명은 금속 나노 입자가 포함된 항균 식품 포장재의 제조방법 및 그로부터 제조된 항균 식품 포장재에 관한 것이다. 구체적으로는 동, 황동, 청동, 은, 아연 등의 금속 나노입자를 얇은 고분자 필름에 균일하게 분산되게 하고 이를 열적, 기계적 성질이 우수한 고분자 필름과 합지하여 항균 식품 포장재를 제조하는 방법 및 그로부터 제조된 항균 식품 포장재에 관한 것이다.The present invention relates to a method for producing an antimicrobial food packaging material containing metal nanoparticles and an antimicrobial food packaging material prepared therefrom. Specifically, metal nanoparticles such as copper, brass, bronze, silver, and zinc are uniformly dispersed in a thin polymer film and laminated with a polymer film having excellent thermal and mechanical properties. Antimicrobial food packaging material.
식품 포장재란 일정시간 동안 육류, 어류, 채소류, 과일류, 가공식품 등의 음식물("식품"으로 표기될 수 있음)의 신선도를 유지하고, 다양한 유해 외부 환경으로부터의 오염을 방지하기 위한 것이다. 식품을 보관할 경우 시간이 경과함에 따라 식품의 신선도가 떨어지고 곰팡이 및 세균의 번식으로 인하여 식품의 부패 상황을 피할 수 없다. 1인 가구 증가 및 외식 문화 발달로 인하여 식품들을 오랜 기간 동안 보관해야 할 경우가 증가하고 이로 인하여 많은 양의 식품들이 부패하여 폐기되고 있는 상황이다.Food packaging materials are intended to maintain the freshness of foods (may be referred to as "food"), such as meat, fish, vegetables, fruits, processed foods for a certain time, and to prevent contamination from various harmful external environments. When food is stored, the freshness of the food decreases with time, and the corruption of the food cannot be avoided due to the growth of mold and bacteria. Due to the increase in the number of single households and the development of eating culture, there is an increasing need to store food for a long time, which causes a large amount of food to be destroyed and disposed of.
식품의 오랜 보존을 위한 방안들은 다양하게 개발되었다. 가장 일반적인 방법으로는 냉동, 훈육 건조, 소금 절임, 향신료 첨가 등의 방법들이 있으나 이들은 식품의 맛을 변환시키고 보존을 위한 에너지가 많이 든다는 단점이 있다.Various measures for long preservation of food have been developed. The most common methods include freezing, dried meat, pickling salt, and adding spices, but these have the disadvantage of changing the taste of the food and taking a lot of energy for preservation.
따라서 식품의 신선도를 장기간 유지시키고 세균 및 곰팡이에 의한 부패를 막는 항균 식품 포장재에 대한 연구 개발이 활발히 진행되어 다양한 항균포장재가 발명되어 왔다.Therefore, research and development of antimicrobial food packaging material that maintains the freshness of food for a long time and prevents decay by bacteria and mold have been actively progressed, and various antibacterial packaging materials have been invented.
대한민국 공개특허공보 2002-0090657에서는 금속분말을 고온 용융된 고분자에 첨가하여 마스터칩을 만들고 이를 사출성형하는데 사용하는 방법을 개시하고 있다. 다른 방법으로 클로린 다이오사이드, 에탄올, 이산화황, 트리클로산, 와사비 추출물 등 다양한 종류의 유기방부제 또는 가스첨가제를 사용해 항균포장재를 제조하는 방법이 있다.Korean Unexamined Patent Publication No. 2002-0090657 discloses a method of adding a metal powder to a high temperature molten polymer to make a master chip and using the same for injection molding. Another method is to prepare an antimicrobial packaging material using various kinds of organic preservatives or gas additives such as chlorine diside, ethanol, sulfur dioxide, triclosan and wasabi extract.
그러나 고분자에 금속 광물을 첨가 하는 종래 방법은 제조 공정이 복잡하여 제조단가가 오르고, 금속 입자 등의 뭉침 현상이 발생하여 포장재의 품질 균일도를 떨어뜨리고 공정의 재연성을 훼손하는 단점이 있다. 한편, 유기방부제를 포함하는 포장재의 경우 고온 안정성이 떨어져서 고분자를 이용한 필름 가공시 유기 방부제의 효능이 파괴되는 문제점이 있다. However, the conventional method of adding a metal mineral to the polymer has a disadvantage in that the manufacturing process is complicated, the manufacturing cost increases, agglomeration of metal particles, etc., reduces the quality uniformity of the packaging material and impairs the reproducibility of the process. On the other hand, in the case of a packaging material containing an organic preservative, there is a problem that the high temperature stability is deteriorated and the efficacy of the organic preservative is destroyed when processing a film using a polymer.
최근 금속 나노입자를 포함하는 고분자 필름을 제조하고자 하는 시도가 있다.Recently, there is an attempt to manufacture a polymer film containing metal nanoparticles.
금속 나노입자를 제조하는 방법은 다양한데, 대한민국 공개특허번호 2002-0090657호는 고가의 유기금속 화합물을 이용하여 고온에서 금속 증기를 만들고 이를 낮은 온도에 분출시켜 응축시키는 금속 증기 응축법(Physical vapor condensation)을 소개하고 있다. 이렇게 제작한 금속 분말을 일정양의 고온 용융된 고분자에 첨가하여 필름을 만드는 방법이 있다. 그러나 상기 금속 증기 응축법으로 제작된 금속 나노입자들은 크기다 100 nm로 비교적 조대하다.There are various methods of manufacturing metal nanoparticles, and Korean Patent Laid-Open No. 2002-0090657 discloses a metal vapor condensation method in which a metal vapor is made at a high temperature by using an expensive organometallic compound and ejected at a low temperature to condense it. It introduces. There is a method of making a film by adding the metal powder thus prepared to a certain amount of hot melted polymer. However, the metal nanoparticles produced by the metal vapor condensation method are relatively coarse at 100 nm in size.
*한편, 화학적 방법에 의해 금속 나노입자 용액을 만들고 이를 용융된 고분자 물질에 조금씩 첨가하면서 용액에 있는 용매들은 날려보내면서 금속 나노입자들을 고분자에 첨가하는 방법이 있다. 이 후 이 금속나노입자 포함 고분자 용액을 고농도의 마스터 칩으로 사용하며 직접 사출 성형 중에 섞는 방법이 있다. 그러나 이러한 공정에서는 나노입자들이 균일하게 분산되지 못하고, 이로 인하여 많은 양의 금속 나노 입자들을 첨가하더라도 항균 특성이 뛰어나지 못하다는 단점이 있다. On the other hand, there is a method of adding metal nanoparticles to a polymer by making a solution of metal nanoparticles by a chemical method and gradually adding them to the molten polymer material while blowing out the solvents in the solution. Thereafter, the polymer solution containing the metal nanoparticles is used as a high concentration master chip, and there is a method of mixing during direct injection molding. However, in such a process, nanoparticles are not uniformly dispersed, and thus there is a disadvantage in that antimicrobial properties are not excellent even if a large amount of metal nanoparticles are added.
화학적 환원법으로 나노입자를 고분자 칩에 첨가하는 공정은 각 용액내 환원제 및 분산제 등의 불순물 유입을 피할 수 없고 고분자 종류에 따른 다양한 분산제 및 환원제, 건조, 열처리 등의 조건이 상이하고 공정 자체가 복합한 단점이 있다.In the process of adding nanoparticles to the polymer chip by chemical reduction method, inflow of impurities such as reducing agent and dispersant in each solution cannot be avoided, and various dispersing agents and reducing agents according to the type of polymer are different, and the process itself is complex. There are disadvantages.
본 발명은 인체에 무해하고 항균 특성이 뛰어나서 식자재 보관시 신선도를 오래 유지할 수 있고, 식품의 부패를 방지할 수 있는 항균 식품 포장재를 보다 경제적으로 제조하는 방법을 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a method for economically manufacturing an antimicrobial food packaging material which is harmless to the human body and has excellent antimicrobial properties, which can maintain freshness for a long time, and prevent food corruption.
또한 본 발명은 식품의 부패를 방지하고 신선도를 오래 유지할 수 있는 항균 식품 포장재를 제공하는 것을 목적으로 한다.It is another object of the present invention to provide an antimicrobial food packaging material capable of preventing the corruption of food and maintaining the freshness for a long time.
상기 목적 달성을 위하여 본 발명은The present invention to achieve the above object
(a) 금속 나노 입자가 표면에 증착된 고분자 칩을 준비하는 단계,(a) preparing a polymer chip having metal nanoparticles deposited thereon;
(b) 상기 금속 나노 입자가 표면에 증착된 고분자 칩을 이용하여 금속 나노 입자 함유 고분자 필름을 제조하는 단계,(b) preparing a metal nanoparticle-containing polymer film by using the polymer chip having the metal nanoparticles deposited thereon;
(c)내열성을 갖는 고분자 부재를 준비하는 단계, 및(c) preparing a polymer member having heat resistance, and
(d) 상기 금속 나노 입자 함유 고분자 필름과 상기 고분자 부재를 합지하는 단계를 포함하는 항균 식품 포장재 제조방법을 제공한다.(D) provides a method for producing an antimicrobial food packaging material comprising the step of laminating the metal nanoparticle-containing polymer film and the polymer member.
본 발명은 상기 금속 나노 입자가 표면에 증착된 고분자 칩은 진공 증착조 내에서 진공 증착 방법에 의해 제조되는 것을 특징으로 한다.The present invention is characterized in that the polymer chip in which the metal nanoparticles are deposited on the surface is manufactured by a vacuum deposition method in a vacuum deposition tank.
상기 진공 증착 방법은 고분자 칩을 담은 교반조와 금속 증착원을 구비한 진공증착조 내에서 고분자 칩을 교반하면서 금속 증기 입자를 발생시켜 고분자 칩에 직접 부착되도록 하는 것을 특징으로 한다.The vacuum evaporation method is characterized in that the metal vapor particles are generated to be attached directly to the polymer chip while stirring the polymer chip in the vacuum deposition tank provided with a metal deposition source and a stirring tank containing the polymer chip.
또한 본 발명은 상기 제조방법으로 제조된 항균 식품 포장재를 제공한다.In another aspect, the present invention provides an antimicrobial food packaging material prepared by the above method.
본 발명의 항균 식품 포장재 제조방법은 금속 나노 입자 함유 필름과 내열성을 갖는 고분자 부재를 합지하는 간편한 공정에 의하여 항균성과 내열성을 모두 갖춘 식품 포장재를 손쉽게 제조할 수 있는 효과가 있다. 금속 나노 입자가 증착된 고분자 칩을 사용하여 기존의 공정시스템에서 바로 항균 식품 포장재를 제작할 수 있는 효과가 있다. 본 발명은 제작 공정상 금속 나노 입자가 고분자 칩에 바로 부착되기 때문에 금속 나노입자를 분산시키기 위한 별도의 분산 공정 및 분산제가 필요 없는 장점이 있다. 또한 화학적 공정에서 필요한 환원제와 같은 첨가제가 사용되지 않기 때문에 불순물 유입 없이 금속 나노입자가 부착된 고분자 칩을 얻을 수 있다. 본 발명은 고분자 칩에 부착된 금속 나노 입자가 10 nm 크기로 미세하여 높은 항균 활성을 보인다. 본 발명은 항균성을 지니는 필름을 얇게 제작한 후 일반 필름과 합지하는 방식으로 식품 포장재를 제조함으로 포장재 제작에 사용되는 금속을 감소시킬 수 있어 소재의 원료 단가를 낮출 수 있는 장점이 있다. 항균은 포장재 중 식품과 접촉하는 표면에서만 작용하는 반면, 타면은 내열성을 가지는 부재로 제조됨으로써 열적 안정성이 확보되고 인쇄도 가능한 식품 포장재를 제공하는 효과가 있다.The antimicrobial food packaging material manufacturing method of the present invention has an effect of easily manufacturing a food packaging material having both antimicrobial properties and heat resistance by a simple process of laminating a metal nanoparticle-containing film and a polymer member having heat resistance. Using a polymer chip on which metal nanoparticles are deposited, there is an effect that an antimicrobial food packaging material can be manufactured directly in an existing process system. According to the present invention, since the metal nanoparticles are directly attached to the polymer chip in the manufacturing process, there is no need for a separate dispersion process and a dispersant to disperse the metal nanoparticles. In addition, since an additive such as a reducing agent required in a chemical process is not used, a polymer chip to which metal nanoparticles are attached can be obtained without introducing impurities. In the present invention, the metal nanoparticles attached to the polymer chip have a fine size of 10 nm and exhibit high antibacterial activity. The present invention has the advantage of reducing the raw material cost of the material can be reduced by the metal used in the production of the packaging material by manufacturing a food packaging material in a manner of laminating with a general film after producing a thin film having antimicrobial properties. Antibacterial acts only on the surface of the packaging material in contact with the food, while the other surface is made of a member having heat resistance, thereby ensuring a thermal stability and providing a food packaging material capable of printing.
도 1은 본 발명의 항균 식품 포장재 제조방법 모식도이다.Figure 1 is a schematic diagram of a method for producing antimicrobial food packaging material of the present invention.
도 2는 금속 나노입자가 층착된 고분자 칩 제조를 위한 진공증착 장치 개략도이다.2 is a schematic diagram of a vacuum deposition apparatus for manufacturing a polymer chip on which metal nanoparticles are deposited.
도 3은 본 발명의 은 나노입자가 증착된 PP 칩의 사진이다.3 is a photograph of a PP chip on which silver nanoparticles of the present invention are deposited.
도 4는 본 발명의 구리 나노입자가 증착된 PP 칩의 사진이다.4 is a photograph of a PP chip on which copper nanoparticles of the present invention are deposited.
도 5는 본 발명의 첨가 금속 중 하나인 은(Ag)의 투과전자현미경 사진이다.5 is a transmission electron micrograph of silver (Ag) which is one of the additive metals of the present invention.
도 6은 본 발명 구리 나노입자가 증착된 LLDPE칩을 이용하여 일반 필름 사출기로 만든 항균 필름 사진이다.Figure 6 is an antimicrobial film photo made of a general film injection machine using the LLDPE chip deposited copper nanoparticles of the present invention.
도 7은 본 발명 구리 나노입자가 증착된 PP칩을 이용하여 일반 필름 사출기로 만든 항균 필름 사진이다.Figure 7 is a photograph of the antimicrobial film made of a general film injection machine using the PP chip deposited copper nanoparticles of the present invention.
도 8은 구리 나노입자를 포함하는 LLDPE 필름과 PET 필름을 합지하여 만든 항균 식품 포장재의 사진이다.8 is a photograph of an antimicrobial food packaging material made by laminating a LLDPE film and a PET film containing copper nanoparticles.
도 9는 구리 나노입자를 포함하는 LLDPE 필름과 PET 필름을 합지하여 만든 항균 식품 포장재에 물을 넣은 후 일반 Microwave oven 을 이용하여 물을 가열시킨 후의 필름 외관 사진이다.FIG. 9 is a photograph of a film appearance after heating water using a microwave oven after putting water in an antimicrobial food packaging material made by laminating a LLDPE film and a PET film including copper nanoparticles.
도 10은 구리 나노입자를 포함하는 LLDPE 필름과 PET 필름을 합지하여 만든 항균 식품 포장재에 100℃ 물을 넣은 후 Microwave 처리 후 하루 보관 후의 외관 사진이다.10 is a photograph of the appearance after storage of one day after microwave treatment after putting 100 ℃ water in the antimicrobial food packaging material made by laminating a LLDPE film and a PET film containing copper nanoparticles.
도 11은 본 발명에 따라 제작된 항균 식품 포장재의 포도상구균에 대한 항균 테스트 결과 사진으로 왼쪽은 대조샘플의 결과이고 오른쪽은 시험샘플의 결과이다. 11 is a photograph of the antimicrobial test results for staphylococcus aureus of the antimicrobial food packaging material produced according to the present invention.
도 12는 본 발명에 따라 제작된 항균 식품 포장재의 대장균에 대한 항균 테스트 결과 사진으로 왼쪽은 대조샘플의 결과이고 오른쪽은 시험샘플의 결과이다. 12 is an antimicrobial test result photograph of E. coli of the antimicrobial food packaging material produced according to the present invention, the left is the result of the control sample and the right is the result of the test sample.
도 13은 일반 포장재(왼쪽)와 본 발명에 따라 제작된 구리 나노입자가 첨가된 LLDPE 포장재(오른쪽)에 흰밥을 보관한 후 10일 경과한 후의 사진이다.FIG. 13 is a photograph after 10 days of storing white rice in a general packaging material (left) and LLDPE packaging material (right) to which copper nanoparticles prepared according to the present invention are added.
도 14는 일반 포장재(왼쪽)와 본 발명에 따라 제작된 구리 나노입자가 첨가된 LLDPE 포장재(오른쪽)에 사과를 보관한 후 10일 경과한 후의 사진이다.FIG. 14 is a photograph after 10 days of storing apples in a general packaging material (left) and LLDPE packaging material (right) to which copper nanoparticles prepared according to the present invention are added.
도 15는 일반 포장재(왼쪽)와 본 발명에 따라 제작된 구리 나노입자가 첨가된 LLDPE 포장재(오른쪽)에 두부를 보관한 후 10일 경과한 후의 사진이다.15 is a photograph after 10 days after storing the tofu in a general packaging material (left) and LLDPE packaging material (right) to which copper nanoparticles prepared according to the present invention are added.
도 16은 본 발명에 따라 제작된 구리가 첨가된 LLDPE 포장재를 microwave 오븐에서 물을 가열시킨 이후 바나나를 넣은 후 ((a): 초기 사진)와 가열 오븐에서 60℃로 가열후 관찰된 사진((b))과 봉지에서 뺀 후((c))의 사진이다.Figure 16 is a copper-added LLDPE packaging material prepared according to the present invention after heating the water in a microwave oven after the addition of banana ((a): initial photo) and the photograph observed after heating to 60 ℃ in a heating oven (( b)) and after removing it from the bag ((c)).
도 17은 본 발명에 따라 제작된 구리가 첨가된 LLDPE 포장재에 100℃ 물을 넣고 microwave 처리 후 1일 보관 한 후 바나나를 넣었을 때((a): 초기 사진)와 가열 오븐에서 60℃로 가열후((b)) 관찰된 사진과 봉지에서 뺀 후((c))의 사진이다.FIG. 17 is 100 ° C. water in a copper-added LLDPE packaging material prepared according to the present invention and stored for one day after microwave treatment, when banana is added ((a): initial photograph) and after heating to 60 ° C. in a heating oven. ((b)) Observed photographs and photographs taken out of the bag ((c)).
도 18 및 19는 식품약품안전청이 인증하는 분석기관으로부터 음식물 포장재로서의 유해물질 분석을 의뢰하여 받은 결과이다.18 and 19 are results obtained by requesting the analysis of harmful substances as food packaging material from the analysis agency certified by the Food and Drug Administration.
본 발명은The present invention
(a) 금속 나노 입자가 표면에 증착된 고분자 칩을 준비하는 단계,(a) preparing a polymer chip having metal nanoparticles deposited thereon;
(b) 상기 금속 나노 입자가 표면에 증착된 고분자 칩을 이용하여 금속 나노 입자 함유 고분자 필름을 제조하는 단계,(b) preparing a metal nanoparticle-containing polymer film by using the polymer chip having the metal nanoparticles deposited thereon;
(c) 내열성을 갖는 고분자 부재를 준비하는 단계 및(c) preparing a polymer member having heat resistance; and
(d) 상기 금속 나노 입자 함유 고분자 필름과 상기 고분자 부재를 합지하는 단계를 포함하는 항균 식품 포장재 제조방법을 제공한다.(D) provides a method for producing an antimicrobial food packaging material comprising the step of laminating the metal nanoparticle-containing polymer film and the polymer member.
이하 본 발명을 상세히 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail. The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 발명은 금속 나노 입자를 함유하여 항균 및 살균 능력을 갖는 고분자 필름과 종래 식품 포장재로 사용되는 내열성을 갖는 고분자 부재를 합지하여 항균 식품 포장재를 제조하는 것이다. 본 발명의 항균 식품 포장재 제조방법은 종래 기술 대비 공정은 간단한 반면, 제조된 식품 포장재는 식품의 보존에 유용한 항균 및 살균 효과와 기존 포장재의 열적 안정성을 모두 갖는 장점이 있다.The present invention is to produce an antimicrobial food packaging material by laminating a polymer film containing metal nanoparticles having antimicrobial and sterilizing ability and a polymer member having heat resistance used as a conventional food packaging material. While the process for preparing the antimicrobial food packaging material of the present invention is simple compared to the prior art, the prepared food packaging material has the advantages of having both antimicrobial and bactericidal effects useful for preservation of food and thermal stability of existing packaging materials.
도 1에 본 발명에 의한 식품 포장재 제작 공정도를 간략하게 도시하였다.1 briefly illustrates a manufacturing process of the food packaging material according to the present invention.
상기 단계 (a)의 금속 나노 입자가 표면에 증착된 고분자 칩은 진공 증착조 내에서 고분자 칩을 담체로 하여 담체의 표면에 금속 나노 입자가 진공 증착되는 방법에 의해 제조되는 것이 바람직하다. The polymer chip in which the metal nanoparticles are deposited on the surface of the step (a) is preferably manufactured by a method in which the metal nanoparticles are vacuum deposited on the surface of the carrier using the polymer chip as a carrier in a vacuum deposition tank.
이하 도 2의 진공증착 장치를 일예로 상기 진공 증착공정을 보다 상세히 설명한다. 진공 증착은 진공 증착조(1), 상기 진공 증착조 내의 하부에 구비된 교반조(2), 상기 교반조 내에 구비되고 담체 즉, 고분자 칩을 교반하는 스크류(3), 및 상기 진공 증착조 내의 교반조 상부에 구비되고 금속 증기 입자를 발생시키는 증착원(4)으로 구성되는 금속 입자 증착장치를 이용하여 이루어질 수 있다. 상기 진공 증착조는 진공펌프(5)를 이용하여 진공도를 10-4 내지 1 torr 로 조절할 수 있다. 상기 진공도가 10-4 torr 이하의 저진공에서는 증기 입자가 발생되는 증착원으로부터 가까운 담체쪽에는 나노입자 형성을 위한 증기 입자가 두껍게 증착되지만, 담체들이 증착원에서 멀어질수록 증기 입자들의 평균 자유 행적의 거리가 짧아져서 증기 입자는 담체에 증착되지 않게 된다.Hereinafter, the vacuum deposition process of the vacuum deposition apparatus of FIG. 2 will be described in more detail. Vacuum deposition is carried out in a vacuum deposition tank (1), a stirring tank (2) provided in the lower portion of the vacuum deposition tank, a screw (3) provided in the stirring tank and stirring a carrier, that is, a polymer chip, and in the vacuum deposition tank It can be made using a metal particle deposition apparatus which is provided on the top of the stirring tank and composed of a deposition source 4 for generating metal vapor particles. The vacuum deposition tank may adjust the degree of vacuum to 10 -4 to 1 torr using the vacuum pump (5). In the low vacuum of 10 -4 torr or less, the vapor particles for forming nanoparticles are thickly deposited on the carrier near the vapor source from which the vapor particles are generated, but as the carriers move away from the vapor source, the average free path of the vapor particles is reduced. The distance is shortened so that the vapor particles are not deposited on the carrier.
상기 증착원에서 원자화 된 금속 증기의 비산 방향은 담체 반대 방향인 것이 바람직하다. 원자화된 증기의 비산 방향이 담체 반대 방향이어서 금속 증기는 상방으로 비산하지만 진공도가 10-4 내지 1 torr 이기 때문에 내부에 채워진 불활성 가스로 인한 금속 증기 입자와 불활성 가스 입자간의 충돌이 일어나 평균자유경로가 짧아져서 금속 증기 입자가 중력에 의해 하향방향으로 이동하여 교반되는 담체, 즉 고분자 칩 상에 증착됨으로써 고분자 칩 표면에 나노 입자를 형성하는 것이다.The scattering direction of the atomized metal vapor in the deposition source is preferably in the direction opposite to the carrier. Since the vaporization direction of the atomized vapor is opposite to the carrier, the metal vapor is scattered upwards, but the vacuum degree is 10 -4 to 1 torr, so that the collision between the metal vapor particles and the inert gas particles caused by the inert gas filled therein results in an average free path. The metal vapor particles are shortened and are deposited on a carrier, ie, a polymer chip, which is moved downward by gravity and is stirred to form nanoparticles on the surface of the polymer chip.
상기 진공 증착에서 고분자 칩을 교반하는 스크류의 속도를 1 내지 200 rpm 으로 조절하는 것이 바람직하다. 상기 교반속도가 1 rpm 미만일 경우에는 교반이 충분히 이루어지지 않아 금속 증기 입자가 고분자 칩 표면에 균일하게 부착되지 못하는 문제점이 있으며, 교반 속도가 200 rpm을 초과할 경우에는 교반되는 고분자 칩이 비산되는 문제점이 있다.In the vacuum deposition, it is preferable to adjust the speed of the screw for stirring the polymer chip at 1 to 200 rpm. If the stirring speed is less than 1 rpm, the agitation is not sufficiently done, there is a problem that the metal vapor particles are not evenly attached to the surface of the polymer chip, when the stirring speed exceeds 200 rpm, the stirred polymer chip is scattered There is this.
진공 증착조의 진공도는 불활성 가스를 포함시켜 조절하며, 상기 불활성 가스는 아르곤(Ar), 네온(Ne), N2, O2, CH4등일 수 있다.The vacuum degree of the vacuum deposition tank is controlled by including an inert gas, and the inert gas may be argon (Ar), neon (Ne), N 2 , O 2 , CH 4, or the like.
상기 증착원을 이용하여 나노입자 형성을 위한 증기입자를 발생시키는 단계는, 물리적 기상증착법을 사용할 수 있으며, 그 예로 저항 가열법, 플라즈마 가열법, 유도가열법, 레이저 가열법 등의 열 증착, 디시 스퍼터링(DC Sputtering), 디시 알에프 스퍼터링(DC-RF Sputtering), 레이저 스퍼터링, 전자 빔 증착(E-Beam Evaproation) 등을 들 수 있다.Generating steam particles for forming nanoparticles using the deposition source may use a physical vapor deposition method, for example, thermal deposition such as resistance heating, plasma heating, induction heating, laser heating, dish, etc. DC sputtering, DC-RF sputtering, laser sputtering, electron beam deposition (E-Beam Evaproation), etc. are mentioned.
본 발명에서 증착 시간은 10 분에서 20 시간일 수 있다. 상기 시간을 조절함에 따라 고분자 칩에 대한 금속 입자의 농도를 제어할 수 있다.In the present invention, the deposition time may be 10 minutes to 20 hours. By adjusting the time it is possible to control the concentration of the metal particles on the polymer chip.
상기 진공 증착은 증착조의 진공도, 스크류의 속도, 증착 시간, 증착 파워 등을 조절함으로써 나노 입자의 성장을 제어하여 고분자 칩에 증착되는 금속 나노 입자의 크기 및 양을 조절할 수 있다. The vacuum deposition may control the growth of the nanoparticles by adjusting the vacuum degree of the deposition tank, the speed of the screw, the deposition time, the deposition power and the like to control the size and amount of metal nanoparticles deposited on the polymer chip.
본 발명의 금속 나노입자가 증착된 고분자 칩의 제조에 사용되는 고분자는 사출성형이 가능한 고분자면 제한 없이 모두 사용 가능하나 바람직하게는 열가소성 고분자이다. 더욱 바람직하게는 LLDPE(Linear low-density polyethylene), LDPE(Low-density polyethylene), HDPE(High-density polyethylene), PP(Polypropylene), PS(Polysufone), PC(Polycarbonete), PVC(Polyvinylchloride), ABS(Acrylonitrile-butadiene-styrene), PET(Polyethyleneterephthalate) 등을 사용한다. 상기 고분자 칩의 크기는 제한이 없으나 바람직하게는 1~5mm, 더욱 바람직하게는 2~3mm이다.The polymers used in the manufacture of the polymer chip on which the metal nanoparticles of the present invention are deposited may be used without any limitation on the polymer surface capable of injection molding, but are preferably thermoplastic polymers. More preferably, linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), polysufone (PS), polycarbonete (PC), polyvinylchloride (PVC), ABS (Acrylonitrile-butadiene-styrene) and PET (Polyethyleneterephthalate) are used. The size of the polymer chip is not limited but is preferably 1 to 5mm, more preferably 2 to 3mm.
상기 금속 나노 입자는 항균 및 살균 능력을 갖는 금속의 나노 입자면 모두 사용 가능한데 바람직하게는 구리, 은, 아연, 황동, 청동 등의 금속을 사용할 수 있다. 금속 나노 입자의 평균크기는 2~30nm, 바람직하게는 2~10nm이다. 나노입자들이 상기와 같은 크기로 형성되는 경우 나노입자 간의 뭉침 현상이 방지되고 고분자 용융액에 잘 분산되어 금속 나노입자가 잘 분산된 고분자 필름을 제조할 수 있다.The metal nanoparticles may be used both of the nanoparticle surface of the metal having antibacterial and antiseptic properties, and preferably metals such as copper, silver, zinc, brass, and bronze may be used. The average size of the metal nanoparticles is 2 to 30 nm, preferably 2 to 10 nm. When the nanoparticles are formed in the size as described above, the aggregation phenomenon between the nanoparticles is prevented and well dispersed in the polymer melt to prepare a polymer film in which the metal nanoparticles are well dispersed.
금속 나노입자가 증착된 고분자 중에 증착된 금속나노입자의 양은 바람직하게는 0.01 내지 0.5중량%이다.The amount of the metal nanoparticles deposited in the polymer on which the metal nanoparticles are deposited is preferably 0.01 to 0.5% by weight.
즉, 본 발명의 방법으로 만들어진 나노 입자들은 크기가 2~30nm, 더욱 바랍직하게는 2-10 nm크기여서, 금속 증기 응축법으로 제조된 나노입자 대비 크기가 작아서 적은 양으로 금속의 표면적을 증대 시킬 수 있으며, 화학적 방법처럼 분산제, 용매 등을 사용하지 않으면서 나노 입자들을 고분자에 증착시킴으로써 별도의 용매제거를 위한 공정이 필요하지 않다. That is, the nanoparticles made by the method of the present invention are 2 to 30 nm in size, more preferably 2 to 10 nm in size, and are smaller than nanoparticles prepared by the metal vapor condensation method, thereby increasing the surface area of the metal in a small amount. It is possible to, and do not require a separate solvent removal process by depositing the nanoparticles on the polymer without using a dispersant, a solvent, etc. like a chemical method.
또한 종래 기술의 경우 불충분한 나노 입자의 분산과 공정단계의 뭉침현상 때문에 많은 양의 항균제를 첨가하여야 해서 가격경쟁력이 떨어지고 식품 포장재의 성능 지속력에 한계를 보였으며, 사출된 용기들이 불투명하여 투명성을 요구하는 용기들에 사용할 수 없는 단점이 있었다. In addition, in the prior art, due to insufficient dispersion of nanoparticles and agglomeration of process steps, it is necessary to add a large amount of antimicrobial agent, resulting in low price competitiveness and limited performance sustainability of food packaging materials. There was a disadvantage that can not be used in containers.
이에 반해 본 발명의 방식으로 제작된 나노입자는 순도가 높고 균일성이 뛰어나며 용매를 포함하고 있지 않기 때문에 별도로 용매를 제거하는 공정이 필요없으며, 입자의 크기가 금속 증기 응축법이나 기계적 연마법의 금속 나노 입자들보다 적서어 적은 양의 금속 나노 입자들만으로도 항균성이 높은 장점을 가지게 된다.In contrast, the nanoparticles produced by the method of the present invention do not need a separate solvent removal process because they have high purity, excellent uniformity, and do not contain a solvent. It is less than the nanoparticles, so even a small amount of metal nanoparticles have the advantage of high antimicrobial properties.
본 발명의 단계 (b)는 상기 금속 나노 입자가 표면에 증착된 고분자 칩을 사출기에 삽입하여 나노 입자가 함유된 얇은 고분자 필름을 얻는 단계이다. 본 발명의 나노 입자가 증착된 고분자 칩들은 기존의 포장재 제작 공정 및 장비를 그대로 사용할 수 있다는 장점이 있다.Step (b) of the present invention is a step of obtaining a thin polymer film containing the nanoparticles by inserting the polymer chip deposited on the surface of the metal nanoparticles into the injection machine. Polymeric chips in which the nanoparticles of the present invention are deposited have an advantage that the existing packaging material manufacturing process and equipment can be used as they are.
상기 사출단계는 금속 나노 입자가 표면에 증착된 고분자 칩과 금속 나노 입자가 증착되지 않은 고분자 칩을 원하는 비율로 혼합하여 사용할 수 있다. 이때 금속 나노 입자가 표면에 증착된 고분자 칩과 금속 나노 입자가 증착되지 않은 고분자 칩의 혼합비는 바람직하게는 1:10 ~ 1:1 중량비이다. 즉, 본 발명은 금속 나노 입자가 표면에 증착된 고분자 칩과 금속 나노 입자가 증착되지 않은 일반적인 고분자 칩을 균일하게 혼합하고 용융시켜 사출함으로써 미세 금속 나노 입자가 고르게 분산된 고분자 필름을 용이하게 제조할 수 있다. The injection step may be used by mixing the polymer chip on which the metal nanoparticles are deposited on the surface and the polymer chip on which the metal nanoparticles are not deposited. At this time, the mixing ratio of the polymer chip on which the metal nanoparticles are deposited on the surface and the polymer chip on which the metal nanoparticles are not deposited is preferably 1:10 to 1: 1 by weight. That is, the present invention can easily prepare a polymer film in which the fine metal nanoparticles are evenly dispersed by uniformly mixing and melting and injecting the polymer chip having the metal nanoparticles deposited on the surface and the general polymer chip on which the metal nanoparticles are not deposited. Can be.
이때 얇은 두께로 필름을 제조한다면 부피 대비 표면적이 높아져 적은 양의 금속을 첨가하여도 많은 금속이 표면에 노출되어 높은 항균 효과를 제공한다. 단계 (b)에서 제조되는 필름의 두께는 제한되지 않으나 표면에 금속을 최대한 많이 노출시키기 위하여 0.05 mm이하, 바람직하게는 0.01 mm 이하의 얇은 두께가 바람직하다. 상기 고분자 칩의 용융을 위한 온도는 100℃ 이상일 수 있다.In this case, if the film is manufactured in a thin thickness, the surface area is increased relative to the volume, and even though a small amount of metal is added, many metals are exposed to the surface to provide a high antibacterial effect. The thickness of the film produced in step (b) is not limited, but a thin thickness of 0.05 mm or less, preferably 0.01 mm or less is preferred in order to expose the metal to the surface as much as possible. The temperature for melting the polymer chip may be 100 ° C. or more.
즉, 단계 (b)의 금속이 첨가된 얇은 고분자 필름을 일반 필름에 합지하여 식품 포장재를 제작한다면 최소한의 금속을 사용하면서도 높은 항균성과 적당한 두께 및 강도를 가지는 제품을 제조할 수 있다.That is, if the thin polymer film to which the metal of step (b) is added is laminated to a general film to produce a food packaging material, it is possible to manufacture a product having a high antibacterial property and a suitable thickness and strength while using a minimum amount of metal.
한편 본 발명에서 금속 나노입자를 포함하는 고분자 필름으로 식품 포장재를 제조하는 경우 균과 접촉하여 항균력을 일으키는 것은 표면에 노출된 금속이며 내부에 있는 입자들은 항균 효과에 직접적으로 기여하지 못하는데, 본 발명의 경우 내부에 잘 분산된 나노 입자들은 고분자의 긴 사슬들 사이에 놓이게 되어 고분자들의 부분적인 운동을 막아 음식물 부패의 주요 원인인 산소의 외부로 부터의 침투 및 확산을 방해하여 산소 투과도를 낮추는 역활을 한다. On the other hand, when manufacturing a food packaging material with a polymer film containing metal nanoparticles in the present invention, the antimicrobial activity caused by contact with bacteria is a metal exposed on the surface and the particles inside do not directly contribute to the antimicrobial effect, In this case, the nanoparticles dispersed well inside are placed between the long chains of the polymers, which prevents partial movement of the polymers, thereby inhibiting the penetration and diffusion of oxygen, which is the main cause of food decay, and lowers the oxygen permeability. .
본 발명의 단계 (c)는 내열성과 기계적 강도를 갖는 일반적인 식품 포장재용 고분자 부재를 준비하는 단계이다. 상기 고분자 부재는 바람직하게는 PET, OPP, PVC, PS, 나일론, HDPE등 이다. 상기 고분자 부재는 얇은 고분자 필름일 수도 있고 식품용 트레이를 위한 후막일 수도 있다. 고분자 부재의 두께는 요구되는 기계적 강도에 따라 0.05~0.5mm일 수 있다.Step (c) of the present invention is to prepare a polymer member for general food packaging materials having heat resistance and mechanical strength. The polymer member is preferably PET, OPP, PVC, PS, nylon, HDPE and the like. The polymer member may be a thin polymer film or a thick film for a food tray. The thickness of the polymer member may be 0.05 to 0.5 mm depending on the required mechanical strength.
본 발명의 단계 (d)는 단계 (b)의 항균 및 살균 기능을 갖는 고분자 필름과 단계 (c)의 내열성과 기계적 강도를 갖는 고분자 부재를 합지하는 단계이다. 상기 합지는 라미네이팅 방식을 사용할 수 있고 드라이방식 또는 티다이방식을 사용할 수 있다. 두가지 이상의 종류의 고분자 필름들을 롤러에 열을 가열하여 압착하는 방법으로 이루어질 수 있다. 이때 별도의 접착제 및/또는 용매를 사용하거나 PE를 사용하여 합지할 수 있다. 제조된 식품 포장재의 금속 나노 입자를 포함하는 고분자 필름층이 식품과 직접적으로 접촉하는 면이 된다.Step (d) of the present invention is a step of laminating the polymer film having the antibacterial and bactericidal function of step (b) and the polymer member having the heat resistance and the mechanical strength of step (c). The lamination may use a laminating method and may use a dry method or a tea die method. Two or more kinds of polymer films may be formed by pressing a roller by heating heat. At this time, it may be laminated using a separate adhesive and / or solvent or using PE. The polymer film layer including the metal nanoparticles of the manufactured food packaging material is a surface in direct contact with the food.
본 발명의 식품 포장재는 필요에 따라 기능성 고분자 부재를 추가로 합지시킬 수 있다. 이 경우도 식품과 직접적으로 접촉하는 면은 금속 나노 입자를 포함하는 고분자 필름층이다.The food packaging material of this invention can further laminate a functional polymer member as needed. In this case as well, the surface directly contacting the food is a polymer film layer containing metal nanoparticles.
본 발명은 상기 단계 (a) 내지 단계 (d)를 통해 제조되고, 금속 나노입자 함유 고분자 필름층 및 내열성을 갖는 고분자 부재층을 포함하는 항균 식품 포장재를 제공한다. 본 발명의 식품 포장재는 식품과 닿는 면은 금속 나노입자가 포함되어 있어서 식품의 신선도를 오래 유지시켜 주고 항균 효과를 줄 수 있고 반대면은 식품 포장재에 필요한 내열성과 기계적 강도를 제공한다.The present invention provides an antimicrobial food packaging material prepared through the above steps (a) to (d) and including a polymer nanoparticle-containing polymer film layer and a polymer member layer having heat resistance. The food packaging material of the present invention includes the metal nanoparticles in contact with the food can maintain the freshness of the food for a long time and give an antibacterial effect, the other side provides the heat resistance and mechanical strength required for the food packaging material.
본 발명의 식품 포장재의 금속 나노입자 함유 고분자 필름층은 금속 나노입자가 잘 분산되어 있어서, 필름 표면은 고른 항균력을 부여하고 필름 내부는 식품 부패의 주범인 산소 투과를 방지하는 2중의 효과를 갖는다. 한편 얇은 필름으로 만들 경우 기계적인 물성이 떨어지는 것을 방지하기 위하여 기존에 많이 사용하는 기계적 강도, 내열성 및 인쇄성이 우수한 필름들과 합지하여 항균 살균력, 산소 투과 방지, 기계적 물성증대, 열적 물성 증대, 우수한 인쇄성을 갖는 식품 포장재를 제공한다.The metal nanoparticle-containing polymer film layer of the food packaging material of the present invention is well dispersed in the metal nanoparticles, the film surface has a double effect of imparting even antibacterial power and the inside of the film to prevent oxygen permeation, which is the main culprit of food decay. On the other hand, when it is made into thin film, it is combined with the films that have excellent mechanical strength, heat resistance, and printability to prevent mechanical properties from falling off. Therefore, antibacterial sterilization, oxygen permeation prevention, mechanical property increase, thermal property increase, and excellent Provided is a food packaging material having printability.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the present invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
<실시예 1> 금속 나노 입자가 표면에 증착된 LLDPE 고분자 칩 및 PP 고분자 칩의 제조Example 1 Fabrication of LLDPE Polymer Chip and PP Polymer Chip with Metal Nanoparticles Deposited on Surface
1-1. 10 cm 지름과 1cm 두께를 가지는 디스크 타입의 구리(Cu) 또는 은(Ag) 타겟을 DC 스퍼터링 캐소드에 부착시킨다. 포장재의 재료로 사용되는 LLDPE 칩을 진공조 내의 교반조에 투입한 후 진공조 도어를 닫고 진공 배기를 시작하였다. 투입한 고분자 칩의 무게는 6.5 kg 이다. 로터리 펌프를 사용하여 1x10-2 Torr의 저진공 상태를 만든 후 오일확산펌프를 사용하여 1x10-5 Torr 이하로 고진공 상태로 만들었다.1-1. A disk-type copper (Cu) or silver (Ag) target of 10 cm diameter and 1 cm thickness is attached to the DC sputtering cathode. After the LLDPE chip used as a packaging material was put into a stirring tank in the vacuum chamber, the vacuum chamber door was closed and vacuum evacuation was started. The weight of the injected polymer chip is 6.5 kg. A low vacuum of 1x10 -2 Torr was made using a rotary pump, and a high vacuum of 1x10 -5 Torr or less was made using an oil diffusion pump.
고진공 상태에서 Ar 가스를 진공조 내로 50 ~ 150 sccm 유량으로 주입하고 고분자 칩을 60 rpm 속도로 교반시켰다. Ar 가스 주입은 증착을 위한 플라즈마를 생성시키기 위한 것이고 고분자 칩 교반은 증착되는 입자가 조대화 되지 않고 미세한 크기로 유지되도록 하기 위함이다. DC 파워에 전원을 인가하면 플라즈마가 발생되며 금속 입자의 증착이 진행된다. 증착 시간은 9시간이고 금속의 농도는 각각 0.3wt% 이다. Ar gas was injected into the vacuum chamber at a high vacuum at a flow rate of 50 to 150 sccm and the polymer chip was stirred at a speed of 60 rpm. Ar gas injection is intended to create a plasma for deposition and polymer chip agitation is to ensure that the deposited particles are kept coarse and not coarse. When power is applied to DC power, plasma is generated and deposition of metal particles proceeds. The deposition time is 9 hours and the metal concentration is 0.3 wt% each.
1-2. PP 칩을 사용하여 상기 실시예 1-1과 동일한 방법으로 구리 또는 은이 증착된 PP 칩을 제조하였다.(도 3 및 도 4 참조)1-2. A PP chip in which copper or silver was deposited was prepared in the same manner as in Example 1-1 using the PP chip (see FIGS. 3 and 4).
도 5는 상기 첨가 금속 중 하나인 은 (Ag) 의 투과전자현미경 사진이다. 은의 TEM 사진에서 확인된 바와 같이 그의 크기가 20 nm 이하이며 대부분 10 nm 부근이며 이는 기존의 물리적 증착 방식 중 하나인 범용적으로 쓰이는 전기 폭발법 (약 50 ~ 100 nm) 에 비해 미세한 크기이다. 항균 현상은 금속입자의 표면에서 작용하기 때문에 표면적이 넓을수록 그 효율이 높은데 본 발명은 10 nm 크기의 미세한 금속 나노 입자들이 균일하게 고분자에 분산되어 있을 경우, 50-100nm 크기의 큰 덩어리 보다 적은 양으로도 고분자의 표면에 고르게 항균성을 나타낼 수 있으며, 높은 표면적을 만들므로 포장재의 높은 항균 특성을 나타내는 원인이 된다.5 is a transmission electron micrograph of silver (Ag) which is one of the additive metals. As seen in the TEM picture of silver, its size is less than 20 nm, mostly around 10 nm, which is fine compared to the general electric explosion method (about 50 to 100 nm), one of the existing physical vapor deposition methods. Since the antimicrobial effect acts on the surface of metal particles, the larger the surface area, the higher the efficiency. In the present invention, when the fine metal nanoparticles of 10 nm size are uniformly dispersed in the polymer, the amount is smaller than the large mass of 50-100 nm size. In addition, the surface of the polymer can be evenly exhibited antimicrobial properties, making a high surface area is a cause of showing the high antibacterial properties of the packaging material.
<실시예 2> 금속 나노 입자를 포함하는 고분자 필름의 제조Example 2 Preparation of Polymer Film Containing Metal Nanoparticles
2-1. LLDPE와 실시예 1-1에서 제조한 구리가 증착된 LLDPE를 9:1의중량비로 혼합한 고분자 칩을 사용하여 두께 0.01mm의 필름을 제조하였다. 필름 제조 조건은 일반적인 고분자 필름 사출 용기에서 약 150- 200℃로 가열하여 용융시키고 이를 대기중의 상온으로 필름을 사출시킨다.(도 6)2-1. A film having a thickness of 0.01 mm was prepared using a polymer chip in which LLDPE and copper LLDPE prepared in Example 1-1 were mixed at a weight ratio of 9: 1. Film manufacturing conditions are melted by heating to about 150-200 ℃ in a typical polymer film injection vessel and the film is injected to room temperature in the atmosphere (Fig. 6).
2-2. PP와 실시예 1-2에서 제조한 구리(Cu)가 증착된 PP를 9:1의 중량비로 혼합한 고분자 칩을 사용하여 두께 0.01mm의 필름을 제조하였다.(도 7)2-2. A film having a thickness of 0.01 mm was prepared using a polymer chip in which PP and copper (Cu) prepared in Example 1-2 were mixed at a weight ratio of 9: 1.
<실시예 3> PET필름이 합지된 식품 포장재의 제조Example 3 Preparation of Food Packaging Material Laminated with PET Film
두께 12㎛의 PET 필름을 준비하고 실시예 2-1에서 제조한 구리 나노 입자를 포함하는 LLDPE 필름과 합지하여 항균 식품 포장재를 제조하였다.A PET film having a thickness of 12 μm was prepared and laminated with an LLDPE film including copper nanoparticles prepared in Example 2-1 to prepare an antimicrobial food packaging material.
합지 방법은 PET 필름과 항균LLDPE 사이에 접착제와 EA용제를 섞어 롤러를 통과하면서 합지를 한 후 건조시켜서 하나의 필름으로 만드는 것이다.(도 8)The laminating method is to mix the adhesive and the EA solvent between the PET film and the antimicrobial LLDPE, pass the rollers, and then laminate to make one film (Fig. 8).
<실시예 4> 내열성 시험Example 4 Heat Resistance Test
4-1. 실시예 3에서 제조한 식품 포장재를 이용하여 필름 용기를 제조한 후 물을 넣고 일반 Microwave oven 을 이용하여 물을 가열시킨 후 필름의 외관을 관찰하였다. 이를 도 9에 도시하였다.4-1. After preparing a film container using the food packaging material prepared in Example 3, the water was added and the water was heated using a general microwave oven and the appearance of the film was observed. This is illustrated in FIG. 9.
사진에서 보듯이 합지된 PET 필름이 고온에서 안정하기 때문에 필름 내부의 물이 고온으로 되더라도 필름 용기의 형태가 그대로 유지된 것을 볼 수 있다. 또한 나노 입자가 첨가된 고분자 필름이 일반 고분자처럼 microwave 에 영향을 주지 않고 내부의 물만 데워지는 것을 확인할 수 있다.As shown in the photo, the laminated PET film is stable at a high temperature, so the shape of the film container can be seen to be maintained even when the water inside the film becomes a high temperature. In addition, it can be seen that the polymer film to which the nanoparticles are added only warms the water inside without affecting the microwave like a general polymer.
4-2. 실시예 3에서 제조한 필름용기에 100 ℃ 물을 넣고 microwave 처리 후 하루 보관 후 외관 사진을 도 10에 도시하였다.4-2. 100 ℃ water was added to the film container prepared in Example 3 after the microwave treatment and stored after one day appearance is shown in Figure 10.
도 10에서와 같이 100℃ 물에 오래 보관 하더라도 색상이나 형태에서 변형이 없는 것을 확인할 수 있다. As shown in Figure 10 can be confirmed that there is no deformation in color or form even if stored for a long time at 100 ℃ water.
일반적으로 항균을 위해 유기 항균재의 사용이나 화학적으로 금속 나노입자를 넣은 경우 고온에서 포장재가 쉽게 변질이 되어 원래의 색이 변하는데 본 발명의 경우 도 9 및 10에서와 같이 변질이 없는 것을 확인할 수가 있다. In general, when the use of an organic antimicrobial material or chemically added metal nanoparticles for antibacterial, the packaging material is easily deteriorated at a high temperature, and the original color is changed. In the case of the present invention, it can be confirmed that there is no deterioration as shown in FIGS. 9 and 10. .
<실시예 5> 항균성 시험Example 5 Antimicrobial Test
본 발명의 항균 식품 포장재의 항균도 테스트를 진행하였다. LLDEP 고분자 칩에 구리를 첨가시킨 뒤 이를 용융하여 필름을 제작한 후 필름밀착법 (JIS Z 2801)을 이용하여 항균 테스트를 진행하고 결과를 나타내었다. The antimicrobial test of the antimicrobial food packaging material of the present invention was conducted. After adding copper to the LLDEP polymer chip and melting it to produce a film, the antimicrobial test was performed using the film adhesion method (JIS Z 2801) and the results were shown.
테스트에 사용한 균은 포도상구균과 대장균이고 각각 표 1, 표 2에 균의 변화 양상을 표시하였다. 균에 대한 항균활성치가 포도상구균은 4.6, 대장균은 3.2으로 일반적인 항균 효과 기준인 2.0 보다 높은 값을 보인다. The bacteria used for the test were Staphylococcus aureus and Escherichia coli, and the change patterns of the bacteria are shown in Table 1 and Table 2, respectively. The antimicrobial activity against bacteria was 4.6 for Staphylococcus aureus and 3.2 for Escherichia coli, which is higher than that of the standard 2.0.
대조샘플Control sample 시험샘플Test sample
초기균수Initial bacterial count 1.3 X 104 1.3 X 10 4 1.3 X 104 1.3 X 10 4
24시간 후24 hours later 2.5 X 104 2.5 X 10 4 < 0.63<0.63
항균활성치Antimicrobial activity -- 4.64.6
대조샘플Control sample 시험샘플Test sample
초기균수Initial bacterial count 1.3 X 104 1.3 X 10 4 1.4 X 104 1.4 X 10 4
24시간 후24 hours later 1.3 X 106 1.3 X 10 6 8.1 X 102 8.1 X 10 2
항균활성치Antimicrobial activity -- 3.23.2
도 11은 포도상구균에 대한 대조샘플과 시험샘플의 세균 증식 사진이며 도 12는 대장균에 대한 대조샘플과 시험샘플의 세균 증식 사진이다. 두 균주 모두 대조샘플에 비해 시험샘플의 경우 균주가 감소한 사실을 확인할 수 있다. <실시예 6> 식품 보관능력시험11 is a bacterial growth picture of the control sample and the test sample for Staphylococcus aurea, Figure 12 is a bacterial growth picture of the control sample and the test sample for Escherichia coli. Both strains showed a decrease in strains in the test sample compared to the control sample. Example 6 Food Storage Capacity Test
6-1. 일반 포장재 (왼쪽) 와 본 발명에 따라 제작된 구리가 첨가된 LLDPE 포장재 (오른쪽) 에 흰밥을 상온에서 10일간 보관한 후 결과 사진을 도 13에 도시하였다.6-1. After the white rice was stored at room temperature for 10 days in a general packaging material (left) and a copper-added LLDPE packaging material (right) manufactured according to the present invention, the resulting photograph is shown in FIG. 13.
사진에서 보듯이 일반 필름에 보관한 흰밥의 경우 초기 3-4일부터 곰팡이 균이 번식하다가 10일 경과 후엔 거의 검정색으로 곰팡이 균이 번식된 것을 볼 수 있으나 본 발명의 포장재를 사용할 경우 흰밥이 10일 경과 후에도 곰팡이 균이 번식하지 않고 흰밥의 색을 유지하는 것을 볼 수 있다. As shown in the picture, the white rice stored in the general film is a fungus bacteria breeding from the initial 3-4 days after 10 days can be seen that the fungus bacteria are almost black, but when using the packaging material of the present invention white rice 10 days It can be seen that the fungi do not multiply and maintain the color of white rice even after elapsed.
6-2. 도 14는 일반 포장재 (왼쪽) 와 본 발명에 따라 제작된 구리가 첨가된 LLDPE 포장재 (오른쪽) 에 사과를 상온에서 10일간 보관한 후 결과사진이다. 사진에서 보듯이 일반 필름에 보관한 사과의 경우 초기 3-4일부터 곰팡이 균이 번식하다가 10일 경과 후엔 많은 부분에 곰팡이 균이 번식된 것을 볼 수 있으나 본 발명의l포장재를 사용할 경우 사과가 10일 경과 후에도 곰팡이 균이 번식하지 않고 색을 유지하는 것을 볼 수 있다.6-2. 14 is a photograph of the result after storing the apple in a normal packaging material (left) and the copper-added LLDPE packaging material (right) manufactured according to the present invention at room temperature for 10 days. As shown in the picture, in the case of apples stored in a general film, the fungus bacteria grow from the first 3-4 days, and after 10 days, the fungus bacteria can be seen in many parts, but when the l packaging material of the present invention is used, the apples 10 It can be seen that after a period of time the fungi do not multiply and retain their color.
6-3. 도 15는 일반 포장재 (왼쪽) 와 본 발명에 따라 제작된 구리가 첨가된 LLDPE 포장재 (오른쪽) 에 두부를 보관한 후 상온에서 10일 경과한 후의 사진이다. 사진에서 보듯이 일반 필름에 보관한 두부의 경우초기 3-4일부터 곰팡이 균이 번식된 것을 볼 수 있으나 본 발명의 포장재를 사용한 경우 두부는 10일 경과 후에도 곰팡이 균이 번식하지 않고 유지하는 것을 볼 수 있다.6-3. 15 is a photograph after 10 days at room temperature after storing the tofu in a general packaging material (left) and the copper-added LLDPE packaging material (right) manufactured according to the present invention. As shown in the picture, the tofu stored in the general film can be seen that the fungus bacteria have been propagated from the beginning 3-4 days, but when using the packaging material of the present invention, the tofu is seen to keep the fungus without propagation even after 10 days. Can be.
도 13, 14, 15 의 부패도 필드 테스트 결과, 본 발명의 항균 포장재는 상용의 일반 포장재에 비해 우수한 항균성을 가지고 있어서, 식품 보관 시 신선도를 오래 유지시키고 부패를 지연시킬 수 있음을 확인할 수 있다.13, 14, and 15 of the decay field test results, the antimicrobial packaging material of the present invention has excellent antimicrobial properties compared to the general commercial packaging, it can be seen that it can maintain the freshness and delay the decay during food storage.
<실시예 7> 쾌속 변질 정도 시험<Example 7> Rapid deterioration degree test
7-1. 본 발명의 구리를 포함하는 LLDPE 포장재에 대해 실시예 4-1과 같이 물을 넣고 일반 Microwave oven 을 이용하여 물을 가열시킨 후 상기 포장재를 이용하여 식품 쾌속 변질 정도를 시험하였다. 도 16은 본 발명에 따라 제작되고 가열된 구리가 첨가된 LLDPE 포장재에 바나나를 넣은 직후((a)) 및 가열 오븐에서 60℃로 1시간 30분 가열후((b)) 및 내용물만 꺼낸 경우 ((c))의 변화를 관찰한 사진이다.7-1. In the LLDPE packaging material containing copper of the present invention, water was added in the same manner as in Example 4-1, and water was heated using a general microwave oven, and then the degree of food rapid deterioration was tested using the packaging material. Figure 16 is immediately after putting the banana in the copper-added LLDPE packaging material produced according to the present invention ((a)) and after heating for 1 hour and 30 minutes at 60 ° C. in the heating oven ((b)) and the contents were taken out It is a photograph observing the change of ((c)).
일반 포장재는 쾌속 변질 실험에서 바나나의 노란색이 검정색으로 변질된 반면, 본 발명의 포장재는 일반 포장재와는 달리 바나나의 변색이 없는 것을 확인할 수 있다. 즉 일반 유기 항균재와는 달리 100℃ 물이나 microwave에 변질이 되거나 구리 나노입자가 용출이 되지 않음을 간접적으로 확인 할 수 있다. In general packaging material, while the yellow color of the banana is changed to black in the rapid deterioration experiment, the packaging material of the present invention can be confirmed that there is no discoloration of the banana unlike the general packaging material. In other words, unlike ordinary organic antimicrobial material can be indirectly confirmed that the deterioration in water or microwave or copper nanoparticles are not eluted.
7-2. 본 발명의 구리를 포함하는 LLDPE 포장재에 대해 실시예 4-2와 같이 100 ℃ 물을 넣고 1일 경과한 후의 포장재를 이용하여 식품 쾌속 변질 정도를 시험하였다. 도 17은 본 발명에 따라 제작되고 100℃ 물을 넣고 microwave 처리 후 1일 보관한 후의 구리가 첨가된 LLDPE 포장재에 바나나를 넣은 직후((a)) 및 가열 오븐에서 60℃로 1시간 30분 가열후((b)) 및 내용물만 꺼낸 경우 ((c))의 변화를 관찰한 사진이다.7-2. The LLDPE packaging material containing copper of the present invention was tested for the degree of food rapid deterioration by using the packaging material after one day of 100 ° C. water was added as in Example 4-2. Figure 17 is prepared in accordance with the present invention and immediately after putting the banana in the copper-added LLDPE packaging material after 100 days of water and microwave treatment and stored for 1 day (a) and heated to 60 ℃ in a heating oven for 1 hour 30 minutes It is a photograph observing the change of ((c)) after ((b)) and only the contents were taken out.
일반 포장재와는 달리 본 발명의 포장재는 100℃ 물을 하루 보관후에도 구리나노 입자가 쉽게 용출이 되지 않아 항균 살균 성능을 갖는 것을 알 수 있다.Unlike general packaging materials, the packaging materials of the present invention can be seen that the copper nanoparticles are not easily eluted even after 100 ℃ water storage for one day has antibacterial sterilization performance.
<실시예 8> 성분 분석Example 8 Component Analysis
도 18 및 도 19는 공인된 기관으로부터 받은 본 필름의 식품 포장재 관련 유해성분 분석표이다. 분석표에서 보듯이 본 발명의 포장재는 유해 금속 및 유해 유기 화합물을 포함하고 있지 않거나 과망간산 칼륨 소비산의 경우 기준치에 아주 미치지 못하는 양을 함유하고 있어 식품포장재로서 유해성분을 포함하고 있지 않음을 알수 있고 항균 포장재 필름을 만드는 공정에서 아주 단순하면서도 쉽게 유해한 성분을 포함하지 않으면서 제조할 수 있음을 알 수 있다. 18 and 19 is a harmful ingredient analysis table of the food packaging material of the film received from an authorized agency. As shown in the analysis table, the packaging material of the present invention does not contain harmful metals and harmful organic compounds, or contains potassium permanganate, which is far below the standard value. Therefore, the packaging material does not contain harmful ingredients. It can be seen that in the process of making the packaging film, it can be produced very simply and easily without containing harmful ingredients.
본 발명은 금속 나노입자 함유 필름과 내열성을 갖는 고분자 부재를 합지하는 간편한 공정에 의하여 항균성과 내열성을 모두 갖춘 식품 포장재를 손쉽게 제조할 수 있는 효과가 있다. 금속 나노 입자가 증착된 고분자 칩을 사용하여 기존의 공정시스템에서 바로 항균 식품 포장재를 제작할 수 있는 효과가 있다.The present invention has the effect of easily manufacturing a food packaging material having both antibacterial and heat resistance by a simple process of laminating a metal nanoparticle-containing film and a polymer member having heat resistance. Using a polymer chip on which metal nanoparticles are deposited, there is an effect that an antimicrobial food packaging material can be manufactured directly in an existing process system.
본 발명의 제조방법으로 제조된 항균 식품 포장재는 항균성과 내열성을 모두 갖는 산업상 이용가능성이 우수한 포장재이다The antimicrobial food packaging material produced by the manufacturing method of the present invention is an excellent industrial applicability having both antibacterial and heat resistance.

Claims (9)

  1. (a) 금속 나노입자가 표면에 증착된 고분자 칩을 준비하는 단계,(a) preparing a polymer chip having metal nanoparticles deposited thereon;
    (b) 상기 금속 나노입자가 표면에 증착된 고분자 칩을 이용하여 금속 나노입자 함유 고분자 필름을 제조하는 단계,(b) preparing a metal nanoparticle-containing polymer film by using a polymer chip having the metal nanoparticles deposited on a surface thereof;
    (c) 내열성을 갖는 고분자 부재를 준비하는 단계 및(c) preparing a polymer member having heat resistance; and
    (d) 상기 금속 나노입자 함유 고분자 필름과 상기 고분자 부재를 합지하는 단계를 포함하는 항균 식품 포장재 제조방법(D) manufacturing an antimicrobial food packaging material comprising the step of laminating the metal nanoparticle-containing polymer film and the polymer member.
  2. 청구항 1에 있어서, 상기 금속 나노입자가 표면에 증착된 고분자 칩은 진공 증착조 내에서 진공 증착 방법에 의해 제조되는 것을 특징으로 하는 항균 식품 포장재 제조방법The method of claim 1, wherein the polymer chip on which the metal nanoparticles are deposited is manufactured by a vacuum deposition method in a vacuum deposition tank.
  3. 청구항 2에 있어서, 상기 진공 증착 방법은 고분자 칩을 담은 교반조와 금속 증착원을 포함하는 진공증착조 내에서 고분자 칩을 교반하면서 금속 증기 입자를 발생시켜 고분자 칩에 직접 부착되도록 하는 것을 특징으로 하는 항균 식품 포장재 제조방법The antimicrobial method of claim 2, wherein the vacuum deposition method generates metal vapor particles while directly attaching the polymer chip to the polymer chip while stirring the polymer chip in the vacuum deposition tank including the stirring chamber containing the polymer chip and the metal deposition source. Food Packaging Material Manufacturing Method
  4. 청구항 1에 있어서, 상기 단계 (b)는 금속 나노 입자가 표면에 증착된 고분자 칩과 금속 나노 입자가 증착되지 않은 고분자 칩을 1:10 ~ 1:1 중량비로 혼합하여 사용하는 것을 특징으로 하는 항균 식품 포장재 제조방법The method according to claim 1, wherein the step (b) is characterized in that the antimicrobial, characterized in that the mixture of the polymer chip on which the metal nanoparticles are deposited on the surface and the polymer chip on which the metal nanoparticles are not deposited in a 1:10 to 1: 1 weight ratio How to prepare food packaging materials
  5. 청구항 1에 있어서, 상기 금속 나노 입자가 표면에 증착된 고분자 칩의 고분자는 LLDPE(Linear low-density polyethylene), LDPE(Low-density polyethylene), HDPE(High-density polyethylene), PP(Polypropylene), PS(Polysufone), PC(Polycarbonete), PVC(Polyvinylchloride), ABS(Acrylonitrile-butadiene-styrene), 및 PET(Polyethyleneterephthalate)로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 항균 식품 포장재 제조방법The polymer of the polymer chip on which the metal nanoparticles are deposited on the surface is linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), PS (Polysufone), PC (Polycarbonete), PVC (Polyvinylchloride), ABS (Acrylonitrile-butadiene-styrene), and PET (Polyethyleneterephthalate) PET manufacturing method characterized in that at least one member selected from the group consisting of.
  6. 청구항 1에 있어서, 상기 금속은 구리, 은, 아연, 황동 및 청동으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 항균 식품 포장재 제조방법The method of claim 1, wherein the metal is copper, silver, zinc, brass and bronze antimicrobial food packaging material manufacturing method characterized in that at least one member selected from the group consisting of.
  7. 청구항 1에 있어서, 상기 내열성을 갖는 고분자 부재의 고분자는 PET(Polyethyleneterephthalate), OPP(oriented polypropylene), PVC(Polyvinylchloride), 나일론, HDPE(High-density polyethylene) 및 PS(Polysufone)로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 항균 식품 포장재 제조방법The polymer member of the polymer member having heat resistance is selected from the group consisting of polyethylene terephthalate (PET), oriented polypropylene (OPP), polyvinylchloride (PVC), nylon, high-density polyethylene (HDPE) and polysufone (PS). Antimicrobial food packaging material manufacturing method characterized in that at least one
  8. 청구항 1에 있어서, 기능성을 갖는 고분자 부재를 1종 이상 추가로 합지 하는 것을 특징으로 하는 항균 식품 포장재 제조방법The method for producing an antimicrobial food packaging material according to claim 1, wherein the polymer member having functionality is further laminated at least one kind.
  9. 청구항 1의 제조방법으로 제조되고 Prepared by the manufacturing method of claim 1
    금속 나노 입자 함유 고분자 필름층 및 내열성을 갖는 고분자 부재층을 포함하는 항균 식품 포장재Antimicrobial food packaging material comprising a metal nanoparticle-containing polymer film layer and a polymer member layer having heat resistance
PCT/KR2018/003060 2017-03-15 2018-03-15 Antibacterial food packaging material containing metal nanoparticle and production method therefor WO2018169331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0032326 2017-03-15
KR1020170032326A KR101780166B1 (en) 2017-03-15 2017-03-15 Antimicrobial functional food film

Publications (1)

Publication Number Publication Date
WO2018169331A1 true WO2018169331A1 (en) 2018-09-20

Family

ID=60033471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003060 WO2018169331A1 (en) 2017-03-15 2018-03-15 Antibacterial food packaging material containing metal nanoparticle and production method therefor

Country Status (2)

Country Link
KR (1) KR101780166B1 (en)
WO (1) WO2018169331A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101780166B1 (en) * 2017-03-15 2017-09-19 고석근 Antimicrobial functional food film
KR101948559B1 (en) 2018-05-09 2019-02-15 주식회사 금빛 Manufacturing method of dehumidifying agent comprising superabsorbing polymer containg metal nanoparticle
KR102673145B1 (en) 2018-12-19 2024-06-10 씨앤지하이테크 주식회사 Method for producing a membrane with metal nano-particles and product using the membrane
KR102057000B1 (en) 2019-01-22 2019-12-17 이승현 Structure layered by soft layer having semi-melted grain
KR102053643B1 (en) 2019-01-30 2019-12-09 주식회사 금빛 Dehumidifying agent comprising superabsorbing polymer containing metal nanoparticle
KR102377855B1 (en) 2021-03-16 2022-03-23 이지훈 Antimicrobial thermoplastic resin sheet and manufacturing method thereof
KR102310736B1 (en) 2021-05-03 2021-10-08 (주)쥬넥스 Manufacturing method of gold nano particles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872737B1 (en) * 2007-08-10 2008-12-08 주식회사 케이피엠테크 Manufacturing method of synthetic fibers with anti-bacterial property containing nanoparticles
KR20140012201A (en) * 2014-01-06 2014-01-29 주식회사 지엘머티리얼즈 Manufacturing method for nano-powder using supporter
KR101644839B1 (en) * 2016-03-22 2016-08-22 주식회사 나노팩코리아 Food packaging films for antibacterial and antifungi
JP2017019237A (en) * 2015-07-14 2017-01-26 住友ベークライト株式会社 Antibacterial film and package
KR101780166B1 (en) * 2017-03-15 2017-09-19 고석근 Antimicrobial functional food film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872737B1 (en) * 2007-08-10 2008-12-08 주식회사 케이피엠테크 Manufacturing method of synthetic fibers with anti-bacterial property containing nanoparticles
KR20140012201A (en) * 2014-01-06 2014-01-29 주식회사 지엘머티리얼즈 Manufacturing method for nano-powder using supporter
JP2017019237A (en) * 2015-07-14 2017-01-26 住友ベークライト株式会社 Antibacterial film and package
KR101644839B1 (en) * 2016-03-22 2016-08-22 주식회사 나노팩코리아 Food packaging films for antibacterial and antifungi
KR101780166B1 (en) * 2017-03-15 2017-09-19 고석근 Antimicrobial functional food film

Also Published As

Publication number Publication date
KR101780166B1 (en) 2017-09-19

Similar Documents

Publication Publication Date Title
WO2018169331A1 (en) Antibacterial food packaging material containing metal nanoparticle and production method therefor
US8834907B2 (en) Active nanocomposite materials and production method thereof
Fatema et al. Silver/poly (vinyl alcohol) nanocomposite film prepared using water in oil microemulsion for antibacterial applications
US7915325B2 (en) Antimicrobial food packaging
JPH03134033A (en) Production of antifungal polyolefin resin molding
EP2323788A1 (en) Biaxially oriented polylactic acid film with high barrier
SG175030A1 (en) Oxygen scavenging films
KR20120066952A (en) Antibacterial vacuum film having 7 layers structure and method for manufacturing the same
Eyssa et al. Gamma irradiation of polyethylene nanocomposites for food packaging applications against stored‐product insect pests
Khalil et al. Antimicrobial behavior and photostability of polyvinyl chloride/1‐vinylimidazole nanocomposites loaded with silver or copper nanoparticles
EP1944332A2 (en) Modification method of surface layer of molded resin article, and modification apparatus of surface layer of molded resin article
CN114736445A (en) Antibacterial flame-retardant polyethylene material and preparation method thereof, antibacterial flame-retardant polyethylene film and preparation method thereof
EP2381503B1 (en) Method for manufacturing material for use in manufacturing electroluminescent organic semiconductor devices
CN116285067B (en) Antibacterial plastic master batch and application thereof in antibacterial plastic products
Ahari et al. Antimicrobial effects of silver/copper/titanium dioxide-nanocomposites synthesised by chemical reduction method to increase the shelf life of caviar (Huso huso)
WO2011071261A2 (en) Zinc sulfide nanoparticle composition, antibacterial and anti-fungicidal polymer resin master batch containing same, and preparation method thereof
KR100872737B1 (en) Manufacturing method of synthetic fibers with anti-bacterial property containing nanoparticles
CN1257932C (en) Anti-virus thin film and biaxial tension technique
Kargar et al. Synthesis of Nano silver and copper by chemical reduction method to produce of NanoTiO2 composites (based on Ag & copper) antimicrobial nanocoated packaging to increase the shelf life of caviar (Huso huso fish fillets)
KR20200081917A (en) Master batch for freshness-keeping film containing illite, preparation method thereof, and preparation method of freshness-keeping film using the same
JPS62232448A (en) Propylene copolymer film
KR101904674B1 (en) Functional plastic bag and method for producing the plastic bag
JP4022298B2 (en) Antibacterial film
KR102717022B1 (en) Sysnthesis method for perovskite nanocrystals composite using block-copolymer
KR102398376B1 (en) Oxygen Scavenging, Antimicrobial and Antifungal Multi-Functional Environment Friendly Film and Manufacturing Method of the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767220

Country of ref document: EP

Kind code of ref document: A1