WO2018169328A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2018169328A1
WO2018169328A1 PCT/KR2018/003055 KR2018003055W WO2018169328A1 WO 2018169328 A1 WO2018169328 A1 WO 2018169328A1 KR 2018003055 W KR2018003055 W KR 2018003055W WO 2018169328 A1 WO2018169328 A1 WO 2018169328A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sensor
cooling
fan
pin
Prior art date
Application number
PCT/KR2018/003055
Other languages
French (fr)
Korean (ko)
Inventor
오민규
설혜연
김석현
임형근
최지훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180028119A external-priority patent/KR102521019B1/en
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to AU2018234345A priority Critical patent/AU2018234345B2/en
Priority to JP2019550625A priority patent/JP6845944B2/en
Priority to RU2019132421A priority patent/RU2732466C1/en
Publication of WO2018169328A1 publication Critical patent/WO2018169328A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0252Removal of heat by liquids or two-phase fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/11Sensor to detect if defrost is necessary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2107Temperatures of a Peltier element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/08Refrigerator tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • F25D25/024Slidable shelves
    • F25D25/025Drawers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Definitions

  • the present specification relates to a refrigerator.
  • thermoelectric element refers to a device that implements heat absorption and heat generation using the Peltier Effect.
  • the Peltier effect refers to the effect that when a voltage is applied to both ends of the device, an endothermic phenomenon occurs on one side and an exothermic phenomenon occurs on the opposite side depending on the direction of the current.
  • This thermoelectric element may be used in a refrigerator instead of a refrigeration cycle device.
  • the refrigerator forms a food storage space capable of blocking heat penetrating from the outside by cabinets and doors filled with heat insulating material therein.
  • the refrigerator may include a freezing device including an evaporator for absorbing heat inside the food storage space and a heat dissipation device for discharging heat collected outside the food storage space.
  • the refrigerator maintains the food storage space in a low temperature temperature area where microorganisms cannot survive and multiply by using the freezing device, and stores the stored food without deterioration for a long time.
  • the refrigerator may be formed by being divided into a refrigerating chamber storing food in a temperature region of an image and a freezing chamber storing food in a sub-zero temperature region.
  • a top freezer refrigerator having an upper freezer compartment and a lower refrigerator compartment
  • a bottom freezer refrigerator having a lower freezer compartment and an upper refrigerator compartment
  • a left freezer compartment and a right freezer compartment Side by side refrigerators and the like can be classified.
  • the refrigerator may include a plurality of shelves and drawers in the food storage space in order for the user to conveniently load or withdraw the food stored in the food storage space.
  • the refrigeration apparatus for cooling the food storage space is implemented as a refrigeration cycle device consisting of a compressor, a condenser, an expander, an evaporator, it is difficult to fundamentally block the vibration and noise generated from the compressor.
  • the installation place of the refrigerator such as a cosmetic refrigerator, is not limited to the kitchen but is expanded to the living room or the bedroom, etc., if noise and vibration are not blocked at the source, it causes great inconvenience to the refrigerator user.
  • thermoelectric element If the thermoelectric element is applied to a refrigerator, the food storage space can be cooled without a refrigeration cycle device.
  • thermoelectric elements do not generate noise and vibration unlike compressors. Therefore, if the thermoelectric element is applied to the refrigerator, even if the refrigerator is installed in a space other than the kitchen, the problems of noise and vibration can be solved.
  • Korean Patent Laid-Open No. 10-2010-0057216 (2010.05.31.) Discloses a configuration of cooling an ice making chamber using a thermoelectric element.
  • Korean Unexamined Patent Publication No. 1997-0002215 (1997.01.24.) Discloses a control method of a refrigerator having a thermoelectric element.
  • thermoelectric elements have inherent characteristics that are distinguished from refrigeration cycle devices. Therefore, a cooling operation method different from a refrigerator having a refrigeration cycle apparatus should be applied to a refrigerator having a thermoelectric element.
  • An object of the present invention is to propose a refrigerator capable of accurately measuring the temperature of a cooling sink by forming a defrost temperature sensor in the cooling sink.
  • Another object of the present invention is to propose a refrigerator in which a sensor module having a defrost temperature sensor is easily mounted.
  • Another object of the invention is to propose a refrigerator which is prevented from flowing of liquid to the wires connected to the defrost temperature sensor.
  • Another object of the present invention is to propose a control method suitable for a refrigerator having a thermoelectric element and a fan and a refrigerator controlled by the control method in consideration of the characteristics of a thermoelectric element that cools or generates heat depending on the polarity of the voltage.
  • Another object of the present invention is to propose a refrigerator for driving defrosting operation based on a driving integration time of a thermoelectric element module, an external temperature of a refrigerator, a temperature of a thermoelectric element module, and the like so as to ensure reliability of a defrosting operation.
  • Another object of the present invention is to propose a refrigerator that can improve defrosting efficiency by operating a natural defrosting operation which naturally removes frost and a heat source defrosting operation using a heat source.
  • Another object of the present invention is to propose a refrigerator which is formed to end the defrosting operation on the basis of the temperature condition to ensure the reliability of the defrosting operation.
  • a refrigerator includes: a cabinet forming a storage compartment; A door for opening and closing the storage compartment; A thermoelectric module provided in the cabinet to cool the storage chamber, the thermoelectric element including a thermoelectric element, a cooling sink in contact with the thermoelectric element, and a heat sink in contact with the thermoelectric element; And a sensor module installed in the cooling sink and having a defrost temperature sensor configured to sense a temperature of the cooling sink.
  • the cooling sink includes a base and cooling fins extending from the base and arranged with a plurality of fins spaced apart from each other, and the sensor module includes a sensor holder supporting the defrost temperature sensor and coupled to the cooling fins.
  • the sensor holder may be installed at the upper corner of the cooling fin.
  • the cooling fin may include a plurality of fins extending in a vertical direction and spaced apart in a horizontal direction, and the sensor holder may be coupled to a part of fins spaced apart from the plurality of fins.
  • the heat dissipation fin may include a first fin protruding from the base, a second fin and a third plate having a protruding length shorter than the first fin from the base, and the sensor holder having the second fin and the third fin. Can be combined.
  • the third pin may be located at the outermost part of the plurality of pins.
  • the sensor holder may include a holder frame accommodating the defrost temperature sensor and a plurality of pin coupling parts extending from the holder frame, and the plurality of pin coupling parts may be coupled to the second pin and the third pin.
  • Each of the pin coupling portions includes a first extension portion extending vertically from the holder frame and a second extension portion extending vertically from an end portion of the first extension portion and disposed to face a side surface of the holder frame.
  • the second pin and the third pin may be fitted between the side of the holder frame and the second extension part.
  • At least one of the holder frame and the second extension part may have an anti-slip protrusion.
  • the holder frame elastically supports a sensor accommodating space for accommodating the defrost temperature sensor, a retracting opening for introducing the defrost temperature sensor into the sensor accommodating space, and the defrost temperature sensor introduced into the sensor accommodating space. It may include a support and a removal prevention projection for preventing the removal of the defrost temperature sensor accommodated in the sensor receiving space.
  • a plurality of support parts may be spaced apart from the holder frame, and a stopper for limiting the movement of the defrost temperature sensor may be provided in an area between the plurality of support parts.
  • the heat dissipation fin may include a fourth fin positioned between the second fin and the third fin and having a protruding length from the base that is shorter than the second fin and the third fin and in contact with the defrost temperature sensor. Can be.
  • a portion of the defrost temperature sensor may protrude to the outside of the holder frame in a state accommodated in the sensor accommodating space, and the fourth pin may contact the protruding portion of the defrost temperature sensor.
  • the defrost temperature sensor may be formed to have a length longer than a width, and the sensor holder may be coupled to the heat dissipation fin while the defrost temperature sensor is standing in the sensor holder.
  • An upper surface of the holder frame may cover an upper surface of the defrost temperature sensor, and a lower surface of the holder frame may include a drawing opening through which a wire connected to the defrost temperature sensor is drawn out.
  • the door is formed to open and close the storage compartment;
  • a thermoelectric module formed to cool the storage chamber;
  • a defrost temperature sensor installed at the thermoelectric module and configured to sense a temperature of the thermoelectric module;
  • a controller configured to control the output of the thermoelectric module.
  • the thermoelectric device module may include a thermoelectric device including a heat absorbing part and a heat radiating part; A cooling sink disposed in contact with the heat absorbing portion and configured to exchange heat with an inside of the storage compartment; A first fan installed to face the cooling sink and generating wind to promote heat exchange of the cooling sink; A heat sink disposed in contact with the heat dissipation unit and configured to exchange heat with an outer side of the storage compartment; And a second fan installed to face the heat sink and generating wind to promote heat exchange of the second heat sink.
  • the controller operates a natural defrosting operation to remove frost formed on the thermoelectric element module at predetermined intervals based on a driving integration time of the thermoelectric element module, and the temperature of the thermoelectric element module measured by the defrost temperature sensor. When the reference defrost end temperature is reached, the natural defrosting operation is terminated.
  • the predetermined period for determining the operation of the natural defrosting operation is changed based on whether the door is open.
  • thermoelectric element When the natural defrosting operation is activated, the operation of the thermoelectric element is stopped, the first fan is continuously rotated, and the second fan is temporarily stopped and then rotated again after a predetermined time elapses.
  • the refrigerator further includes an outside air temperature sensor configured to measure an external temperature of the refrigerator.
  • the control unit is configured to operate a heat source defrosting operation when the external temperature measured by the outside air temperature sensor is equal to or less than a reference external temperature, and the temperature of the thermoelectric element module measured by the defrost temperature sensor reaches the reference defrost end temperature. When the heat source defrosting operation is terminated.
  • the control unit is configured to operate a heat source defrosting operation when the temperature of the thermoelectric module measured by the defrost temperature sensor is equal to or less than a reference thermoelectric module temperature, and the temperature of the thermoelectric module measured by the defrost temperature sensor is The heat source defrosting operation is terminated when reaching a temperature higher by a predetermined width than the reference defrost end temperature.
  • thermoelectric element When the heat source defrosting operation is operated, a reverse voltage is applied to the thermoelectric element, and the first fan and the second fan are rotated.
  • a predetermined period for determining the operation of the natural defrosting operation is shortened in inverse proportion to the opening time of the door.
  • the predetermined period for determining the operation of the natural defrosting operation is reduced to a shorter value than before the door is opened by the opening of the door.
  • the controller When the temperature of the storage compartment rises by a predetermined temperature within a predetermined time after the door is opened and closed, the controller is configured to operate a load corresponding to lower the temperature of the storage compartment, and when the load corresponding operation is activated, the natural defrost The predetermined period for determining the operation of the operation is reduced to a shorter value than before the operation of the load corresponding operation.
  • the refrigerator further includes an internal temperature sensor configured to measure a temperature of the storage compartment, and a rotation speed of the first fan and the second fan is measured by the internal temperature sensor during a cooling operation of cooling the storage compartment.
  • the rotational speed of the first fan in the defrosting operation is greater than the rotational speed of the first fan in the cooling operation, and the rotational speed of the second fan in the defrosting operation.
  • the rotation speed of the second fan is greater than or equal to that.
  • the rotational speed of the first fan in the defrosting operation and the maximum rotational speed of the first fan in the cooling operation are the same, and the rotational speed of the second fan in the defrosting operation and the maximum of the second fan in the cooling operation.
  • the rotation speeds are the same.
  • the sensor module having a defrost temperature sensor is installed in the cooling sink, there is an advantage that the temperature of the cooling sink can be accurately measured by the defrost temperature sensor.
  • the sensor holder is installed on the uppermost side of the cooling fin, it is possible to minimize the flow of liquid such as defrost water to the defrost temperature sensor in the sensor holder during the defrosting process.
  • the defrosting operation is operated by the driving integration time of the thermoelectric element module, and the defrosting cycle is shorter than the original based on the opening of the door, so that the reliability of the defrosting operation can be improved by changing the defrosting cycle according to the operation status of the refrigerator. .
  • the defrosting operation may be additionally operated based on the temperature of the thermoelectric module measured by the defrost temperature sensor or the external temperature of the refrigerator measured by the outside temperature sensor as well as the driving integration time of the thermoelectric module.
  • the defrosting operation can be operated efficiently based on the variables.
  • the present invention when the defrosting is not required to operate the natural defrosting operation is implemented to reduce the power consumption, if the need for rapid defrosting heat source defrosting operation can be operated to maximize the effect of the defrosting operation. .
  • the present invention can improve the reliability of the defrosting operation.
  • the defrosting operation is terminated at a temperature higher than the original reference defrosting end temperature at which the defrosting operation is terminated, so that problems such as clogging of the cooling sink passage due to the overdeposition can be solved.
  • thermoelectric module 1 is a conceptual view illustrating a first embodiment of a refrigerator having a thermoelectric module.
  • thermoelectric module 2 is an exploded perspective view of a thermoelectric module according to an exemplary embodiment of the present invention.
  • thermoelectric module 3 is a perspective view of a thermoelectric module and a defrost temperature sensor.
  • thermoelectric element module 4 is a plan view of the thermoelectric element module and the defrost temperature sensor shown in FIG.
  • FIG. 5 is a flowchart illustrating a control method of a refrigerator proposed by the present invention.
  • FIG. 6 is a conceptual view illustrating a control method of a refrigerator based on which section of a first temperature section to a third temperature section belongs to a storage compartment.
  • FIG. 7 is a flowchart illustrating defrost operation control of the refrigerator proposed by the present invention.
  • thermoelectric element 8 is a conceptual diagram illustrating the output of the thermoelectric element, the rotational speed of the first fan, and the rotational speed of the second fan according to the passage of time according to the cooling operation and the natural defrosting operation.
  • thermoelectric element 9 is a conceptual diagram illustrating the output of the thermoelectric element, the rotational speed of the first fan, and the rotational speed of the second fan according to the passage of time according to the cooling operation and the heat source defrosting operation.
  • FIG. 10 is a flowchart illustrating load control operation control of a refrigerator having a thermoelectric module.
  • FIG. 11 is a perspective view of a refrigerator according to a second embodiment of the present invention.
  • FIG. 12 is a perspective view illustrating an open state of the door in FIG. 11;
  • FIG. 13 is a plan view of the refrigerator of FIG. 11; FIG.
  • FIG. 14 is an exploded perspective view of a cabinet according to an embodiment of the present invention.
  • 15 is a view showing a state before the middle plate is assembled according to the second embodiment of the present invention.
  • 16 is a view showing a state in which the middle plate is assembled according to the second embodiment of the present invention.
  • FIG. 17 is a perspective view of an installation bracket according to a second embodiment of the present invention.
  • FIG. 18 is a perspective view of a cooling apparatus according to a second embodiment of the present invention.
  • FIG. 19 is a plan view of the cooling device of FIG.
  • FIG. 22 is a front view showing a state in which a sensor module according to a second embodiment of the present invention is installed in a cooling sink.
  • FIG. 23 is a perspective view illustrating a sensor module installed in a cooling sink according to a second embodiment of the present invention.
  • FIG. 24 is a top view of a cooling sink according to a second embodiment of the present invention.
  • 25 is a perspective view of a sensor module according to a second embodiment of the present invention.
  • 26 is a longitudinal sectional view of the sensor holder according to the second embodiment of the present invention.
  • thermoelectric module 1 is a conceptual view illustrating a first embodiment of a refrigerator having a thermoelectric module.
  • the refrigerator 100 of the present invention is configured to simultaneously perform the functions of a small side table and the refrigerator 100.
  • a side table refers to a small table that is originally used by the bedside or on the side of the kitchen.
  • the side table is made so that a stand or the like can be placed on the upper surface thereof, and an accessory can be stored therein.
  • the refrigerator 100 of the present invention is made so that food and the like can be stored at a low temperature therein, while maintaining the original function of the side table where a stand or the like can be placed.
  • the exterior of the refrigerator 100 is formed by a cabinet 110 and a door 130.
  • the cabinet 110 may be formed by the inner case 111, the out case 112, and the heat insulating material 113.
  • the inner case 111 is installed inside the outer case 112, and forms a storage compartment 120 capable of storing food at a low temperature. Since the size of the refrigerator 100 may be limited in order to use the refrigerator 100 as a side table, the size of the storage compartment 120 formed by the inner case 111 should also be limited to about 200L or less.
  • the out case 112 forms the appearance of a side table. Since the front part of the refrigerator 100 is provided with a door 130, the out case 112 forms the exterior of the remaining part except the front part of the refrigerator 100.
  • the upper surface of the outer case 112 is preferably formed flat so that you can put a prop, such as a stand.
  • the heat insulating material 113 is arrange
  • the heat insulator 113 is configured to suppress heat transfer from the relatively hot outside to the relatively cold storage compartment 120.
  • the door 130 is mounted to the front of the cabinet 110.
  • the door 130 forms the exterior of the refrigerator 100 together with the cabinet 110.
  • the door 130 is configured to open and close the storage compartment 120 by a slide movement.
  • the door 130 may be provided with two or more 131, 132 in the refrigerator 100, and as shown in FIG. 1, each door 130 may be disposed along the vertical direction.
  • a drawer 140 may be installed in the storage room 120 to efficiently utilize space.
  • the drawer 140 forms a food storage area in the storage compartment 120.
  • the drawer 140 is coupled to the door 130 and is formed to be withdrawn from the storage chamber 120 according to the slide movement of the door 130.
  • Two drawers 141 and 142 may be disposed along the up and down direction similarly to the door 130.
  • One drawer 141, 142 is coupled to each door 131, 132, and is coupled to each door 131, 132 each time the door 131, 132 is slid.
  • the drawers 141 and 142 may be withdrawn from the storage compartment 120 along the doors 131 and 132.
  • the machine room 150 may be formed behind the storage room 120.
  • the out case 112 may include a partition wall 112a to form the machine room 150.
  • the heat insulating material 113 is disposed between the partition wall 112a and the inner case 111.
  • various electrical equipment and mechanical equipment for driving the refrigerator 100 may be installed in the machine room 150.
  • the support 160 may be installed on the bottom surface of the cabinet 110. As shown in FIG. 1, the support 160 may be formed to separate the cabinet 110 from the floor where the refrigerator 100 is to be installed.
  • the refrigerator 100 installed in the bedroom has a higher frequency of access by the user than the refrigerator 100 installed in the kitchen. Therefore, in order to easily clean the dust accumulated between the refrigerator 100 and the floor, the refrigerator 100 is preferably spaced apart from the floor. Since the support 160 separates the cabinet 110 from the floor where the refrigerator 100 is to be installed, using this structure can facilitate cleaning.
  • the refrigerator 100 operates 24 hours unlike other home appliances. Therefore, if the refrigerator 100 is placed next to the bed, the noise and vibration in the refrigerator 100 is transmitted to the person who sleeps in the bed, especially at night time, thereby disturbing sleep. Therefore, in order to perform the functions of the side table and the refrigerator 100 at the same time by arranging the refrigerator 100 by the bed, the refrigerator 100 must have sufficient low noise and low vibration performance.
  • thermoelectric module 170 uses the thermoelectric module 170 to cool the storage compartment 120.
  • the thermoelectric element 170 is installed on the rear wall 111a of the storage chamber 120 to cool the storage chamber 120.
  • the thermoelectric module 170 includes a thermoelectric device, and the thermoelectric device refers to a device that implements cooling and heat generation by using the Peltier effect as described in the technical item that is the background of the invention.
  • the storage chamber 120 may be cooled by operating the thermoelectric element.
  • the controller 180 is formed to control the overall operation of the refrigerator 100.
  • the controller 180 may control the output of the thermoelectric element or the fan provided in the thermoelectric element module 170, and control the operation of various components included in the refrigerator 100.
  • the controller 180 may include a printed circuit board (PCB) and a microcomputer.
  • the controller 180 may be installed in the machine room 150, but is not necessarily limited thereto.
  • the output of the thermoelectric element may be controlled based on a set temperature input by a temperature user of the storage chamber 120, an external temperature of the refrigerator 100, and the like. .
  • the cooling operation, the defrosting operation, the load response operation, and the like are determined by the control of the controller 180, and the output of the thermoelectric element depends on the operation determined by the controller 180.
  • the temperature of the storage compartment 120 or the external temperature of the refrigerator may be measured by the sensor units 191, 192, 193, 194, and 195 provided in the refrigerator.
  • the sensor units 191, 192, 193, 194, and 195 may be formed of at least one device that measures physical properties such as the temperature sensors 191, 192, 193, the humidity sensor 194, and the wind pressure sensor 195.
  • the temperature sensors 191, 192, and 193 may be installed in the storage chamber 120, the thermoelectric module 170, and the out case 112, respectively. The temperature of the installed area is measured.
  • the internal temperature sensor 191 is installed in the storage compartment 120 and is formed to measure the temperature of the storage compartment 120.
  • the defrost temperature sensor 192 is installed in the thermoelectric module 170 and is formed to measure the temperature of the thermoelectric module 170.
  • the outside temperature sensor 193 is installed in the out case 112 and is formed to measure the outside temperature of the refrigerator 100.
  • the humidity sensor 194 is installed in the storage compartment 120. It is formed to measure the humidity of the storage compartment 120.
  • the wind pressure sensor 195 is installed in the thermoelectric module 170 to measure the wind pressure of the first fan 173 (see FIG. 2).
  • thermoelectric module 170 The detailed configuration of the thermoelectric module 170 will be described with reference to FIG. 2.
  • thermoelectric module 2 is an exploded perspective view of a thermoelectric module.
  • the thermoelectric module 170 includes a thermoelectric element 171, a cooling sink 172, a first fan 173, a heat sink 175, a second fan 176, and a heat insulator 177.
  • the thermoelectric module 170 operates between the first and second regions which are separated from each other, and absorbs heat in one region and radiates heat in the other region.
  • the first area and the second area refer to areas that are spatially separated from each other by a boundary. If the thermoelectric module 170 is applied to the refrigerator (100 in FIG. 1), the first area corresponds to any one of the outside of the storage compartment (120 in FIG. 1) and the refrigerator (100 in FIG. 1), and the second region is It corresponds to the other one.
  • thermoelectric element 171 is formed by forming a PN junction with a P-type semiconductor and an N-type semiconductor, and connecting a plurality of PN junctions in series.
  • the thermoelectric element 171 includes a heat absorbing portion 171a and a heat radiating portion 171b facing in opposite directions.
  • the heat absorbing portion 171a and the heat dissipating portion 171b have a shape capable of surface contact. Therefore, the heat absorbing portion 171a may be referred to as a heat absorbing surface, and the heat radiating portion 171b may be referred to as a heat radiating surface.
  • the heat absorbing portion 171a and the heat dissipating portion 171b may be generically named as the first portion and the second portion, or may be named as the first surface and the second surface. This is for convenience of description only and does not limit the scope of the invention.
  • the cooling sink 172 is disposed to contact the heat absorbing portion 171a of the thermoelectric element 171.
  • the cooling sink 172 is configured to heat exchange with the first region.
  • the first area corresponds to the storage compartment (120 of FIG. 1) of the refrigerator (100 of FIG. 1), and the heat exchange target of the cooling sink 172 is air inside the storage compartment (120 of FIG. 1).
  • the first fan 173 is installed to face the cooling sink 172 and generates wind to promote heat exchange of the cooling sink 172. Since the heat exchange is a natural phenomenon, even without the first fan 173, the cooling sink 172 may exchange heat with air in the storage compartment 120 (FIG. 1). However, as the thermoelectric module 170 includes the first fan 173, heat exchange of the cooling sink 172 may be further promoted.
  • the first fan 173 may be wrapped by the cover 174.
  • the cover 174 may include portions other than the portion 174a surrounding the first fan 173.
  • a plurality of holes 174b may be formed in the portion 174a surrounding the first fan 173 to allow air inside the storage compartment 120 (FIG. 1) to pass through the cover 174.
  • the cover 174 may have a structure that can be fixed to the rear wall (111a of FIG. 1) of the storage compartment (120 of FIG. 1).
  • the cover 174 includes a portion 174c extending from both sides of the portion 174a surrounding the first fan 173, and a screw fastening hole that can be screwed into the extended portion 174c.
  • the structure in which 174e) is formed is shown.
  • a screw 179c may be inserted into a portion surrounding the first fan 173 to further fix the cover 174 to the rear wall 111a of FIG. 1.
  • Holes 174b and 174d through which air can pass may be formed in the portion 174a surrounding the first fan 173 and the extending portion 174c.
  • the heat sink 175 is disposed to contact the heat dissipation part 171b of the thermoelectric element 171.
  • the heat sink 175 is configured to heat exchange with the second region.
  • the second area corresponds to an outer space of the refrigerator 100 (in FIG. 1), and the heat exchange target of the heat sink 175 is air outside the refrigerator 100 (FIG. 1).
  • the second fan 176 is installed to face the heat sink 175 and generates wind to promote heat exchange of the heat sink 175.
  • the second fan 176 promotes heat exchange of the heat sink 175 is the same as the first fan 173 promotes heat exchange of the cooling sink 172.
  • the second fan 176 may optionally have a shroud 176c.
  • the shroud 176c is made to guide the wind.
  • the shroud 176c may be configured to surround the vanes 176b at a position spaced apart from the vanes 176b as shown in FIG. 2.
  • the shroud 176c may be provided with a screw fastening hole 176d for fixing the second fan 176.
  • the cooling sink 172 and the first fan 173 correspond to the heat absorbing side of the thermoelectric module 170.
  • the heat sink 175 and the second fan 176 correspond to the heat generating side of the thermoelectric module 170.
  • At least one of the cooling sink 172 and the heat sink 175 includes a base 172a and 175a and fins 172b and 175b, respectively.
  • the cooling sink 172 and the heat sink 175 will be described on the premise that both of the base 172a, 175a and the fins 172b, 175b.
  • the bases 172a and 175a are in surface contact with the thermoelectric element 171.
  • the base 172a of the cooling sink 172 is in surface contact with the heat absorbing portion 171a of the thermoelectric element 171
  • the base 175a of the heat sink 175 is in contact with the heat radiating portion 171b of the thermoelectric element 171. Contact with cotton.
  • the bases 172a and 175a and the thermoelectric element 171 may be in surface contact with each other.
  • a thermal grease or a thermal compound may be used to increase the thermal conductivity by filling a minute gap between the bases 172a and 175a and the thermoelectric element 171.
  • Fins 172b and 175b protrude from base 172a and 175a to exchange heat with air in the first region or air in the second region. Since the first region corresponds to the storage compartment (120 of FIG. 1) and the second region corresponds to the exterior of the refrigerator (100 of FIG. 1), the fins 172b of the cooling sink 172 are the storage compartment (120 of FIG. 1). The heat sink 175 and the fins 175b of the heat sink 175 are made to heat exchange with the outside air of the refrigerator (100 of FIG. 1).
  • the pins 172b and 175b are spaced apart from each other. This is because the heat exchange area may increase as the fins 172b and 175b are spaced apart from each other. If the fins 172b and 175b are stuck together, there will be no heat exchange area between the fins 172b and 175b, but because the fins 172b and 175b are spaced apart from each other, the fins 172b and 175b are spaced apart from each other. There may also be a heat exchange area in between. Since the thermal conductivity increases as the heat transfer area increases, the area of the fins exposed to the first and second areas should be increased to improve the heat transfer performance of the heat sink.
  • the thermal conductivity of the heat sink 175 corresponding to the heat generating side should be larger than that of the cooling sink 172. This is because sufficient heat absorption is achieved at the heat absorbing portion 171a only when heat is radiated more quickly at the heat radiating portion 171b of the thermoelectric element 171. This is due to the fact that the thermoelectric element 171 is not a simple thermal conductor, but an endotherm is made by applying a voltage and heat is radiated from the other side. Therefore, sufficient heat dissipation must be made in the heat dissipating portion 171b of the thermoelectric element 171 to achieve sufficient cooling in the heat absorbing portion 171a.
  • the heat exchange area of the heat sink 175 must be larger than the heat exchange area of the cooling sink 172. Assuming that all the heat exchange areas of the cooling sink 172 are all used for heat exchange, it is preferable that the heat exchange area of the heat sink 175 is three times or more than the heat exchange area of the cooling sink 172.
  • the air volume and the wind speed formed by the second fan 176 are preferably larger than the air volume and the wind speed formed by the first fan 173.
  • the heat sink 175 requires a larger heat exchange area than the cooling sink 172, the area of the base 175a and the fins 175b is larger than those of the cooling sink 172 (172a) 172b. Even bigger. Further, the heat sink 175 may be provided with a heat pipe 175c to quickly distribute the heat transferred to the base 175a of the heat sink 175 to the fins.
  • the heat pipe 175c is configured to receive a heat transfer fluid therein, one end of the heat pipe 175c passes through the base 175a and the other end passes through the fins 175b.
  • Heat pipe 175c is a device that transfers heat from base 175a to fins 175b through evaporation of the heat transfer fluid contained therein. Without the heat pipe 175c, heat exchange would be concentrated only in the adjacent fins 175b of the base 175a. This is because heat is not sufficiently distributed to the pins 175b which are far from the base 175a.
  • heat exchange may occur at all fins 175b of the heat sink 175. This is because the heat of the base 175a can be evenly distributed to the pins 175b disposed relatively far from the base 175a.
  • the base 175a of the heat sink 175 may be formed of two layers (two layers) 175a1 and 175a2 for embedding the heat pipe 175c.
  • the first layer 175a1 of the base 175a surrounds one side of the heat pipe 175c, and the second layer 175a2 covers the other side of the heat pipe 175c, and two layers 175a1 and 175a2 May be arranged to face each other.
  • the first layer 175a1 may be disposed to be in contact with the heat dissipation unit 171b of the thermoelectric element 171 and may have a size that is the same as or similar to that of the thermoelectric element 171.
  • the second layer 175a2 is connected to the pins 175b, and the pins 175b protrude from the second layer 175a2.
  • the second layer 175a2 may have a larger size than the first layer 175a1.
  • One end of the heat pipe 175c is disposed between the first layer 175a1 and the second layer 175a2.
  • the heat insulator 177 is installed between the cooling sink 172 and the heat sink 175.
  • the heat insulator 177 is formed to surround the edge of the thermoelectric element 171.
  • a hole 177a may be formed in the heat insulating material 177, and a thermoelectric element 171 may be disposed in the hole 177a.
  • thermoelectric element module 170 is a device that realizes cooling of the storage chamber (120 of FIG. 1) through endothermic and heat dissipation formed at one side and the other side of the thermoelectric element 171, but is not a simple thermal conductor. Therefore, it is not preferable that heat of the cooling sink 172 is directly transferred to the heat sink 175. This is because a decrease in the temperature difference between the cooling sink 172 and the heat sink 175 due to the direct heat transfer causes a decrease in the performance of the thermoelectric element 171. In order to prevent this phenomenon, the insulation 177 is configured to block direct heat transfer between the cooling sink 172 and the heat sink 175.
  • the fastening plate 178 is disposed between the cooling sink 172 and the heat insulator 177 or between the heat sink 175 and the heat insulator 177.
  • the fastening plate 178 is for fixing the cooling sink 172 and the heat sink 175, and the cooling sink 172 and the heat sink 175 may be screwed to the fastening plate 178 by screws. .
  • the fastening plate 178 may be formed to surround the edge of the thermoelectric element 171 together with the heat insulating material 177.
  • the fastening plate 178 has a hole 178a corresponding to the thermoelectric element 171, similar to the heat insulating material 177, and the thermoelectric element 171 may be disposed in the hole 178a.
  • the fastening plate 178 is not an essential configuration of the thermoelectric module 170, and may be replaced with another configuration capable of fixing the cooling sink 172 and the heat sink 175.
  • a plurality of screw fastening holes 178b and 178c may be formed in the fastening plate 178 to fix the cooling sink 172 and the heat sink 175.
  • the cooling sink 172 and the heat insulator 177 are formed with screw fastening holes 172c and 177b corresponding to the fastening plate 178, and screws 179a are formed in the three screw fastening holes 172c, 177b and 178b.
  • the cooling sink 172 may be inserted in order to fix the cooling sink 172 to the fastening plate 178.
  • a screw fastening hole 175d corresponding to the fastening plate 178 is also formed in the heat sink 175, and the screw 179b is sequentially inserted into the two screw fastening holes 178c and 175d to connect the heat sink 175. It may be fixed to the fastening plate 178.
  • the fastening plate 178 may have a recess 178d formed to accommodate one side of the heat pipe 175c.
  • the recess 178d may be formed to correspond to the heat pipe 175c and partially wrap.
  • the heat sink 175 includes the heat pipe 175c, since the fastening plate 178 has the recessed portion 178d, the heat sink 175 may be in close contact with the fastening plate 178, and the thermoelectric element
  • the overall thickness of module 170 can be made thinner.
  • At least one of the first fan 173 and the second fan 176 described above includes hubs 173a and 176a and vanes 173b and 176b. Hubs 173a and 176a are coupled to a central axis of rotation (not shown). Vanes 173b and 176b are radially installed around the hubs 173a and 176a.
  • Axial flow fans 173 and 176 are separated from the centrifugal fan.
  • the axial flow fans 173 and 176 are formed to cause wind in the rotation axis direction, and air enters the rotation axis direction of the axial flow fans 173 and 176 to exit in the rotation axis direction.
  • the centrifugal fan is formed to cause wind in the centrifugal direction (or circumferential direction), and air enters the centrifugal direction in the direction of the rotation axis of the centrifugal fan.
  • the defrost temperature sensor 192 is mounted on the thermoelectric module and is formed to measure the temperature of the thermoelectric module 170. Referring to FIG. 2, the defrost temperature sensor 192 is coupled to the cooling sink 172. The structure of the defrost temperature sensor 192 will be described with reference to FIGS. 3 and 4.
  • thermoelectric module 3 is a perspective view of the thermoelectric module and the defrost temperature sensor 192.
  • 4 is a plan view of the thermoelectric element module 170 and the defrost temperature sensor 192 shown in FIG.
  • the defrost temperature sensor 192 is coupled to the fin 172b of the cooling sink 172.
  • the fins 172b of the cooling sink 172 protrude from the base 172a, some of which have a shorter protruding length p2 compared to the other fins.
  • the defrost temperature sensor 192 is wrapped by the sensor holder 192a, and the sensor holder 192a has a shape that can be fitted to a pin having a shorter protruding length than other pins.
  • 3 illustrates a structure in which both legs of the sensor holder 192a are fitted to two pins. If the distance d2 between both legs of the sensor holder 192a is slightly smaller than the distance d1 between the outer surfaces of the two pins, the sensor holder 192a may be fitted to the two pins.
  • the position of the defrost temperature sensor 192 is selected as the place where the temperature rise takes the longest in the cooling sink 172 during the defrosting operation. This is because the reliability of the defrosting operation can be improved.
  • the position of the defrost temperature sensor 192 is determined by the position of the sensor holder 192a.
  • the fins disposed outside the cooling sink 172 are far from the base 172a, the temperature rise is slow during defrosting operation.
  • the outermost fin is not only influenced by the thermoelectric module 170 but also by the air outside the thermoelectric module 170. Therefore, it is preferable that the sensor holder 192a is coupled to the pin just inside the outermost pin.
  • the upper and lower positions of the sensor holder 192a are preferably the uppermost or lower side of the pin. In FIG. 3, the sensor holder 192a is coupled to the uppermost side of the pin.
  • the protruding length p2 of the pin to which the sensor holder 192a is coupled has a length shorter than the protruding length p1 of the other pin.
  • FIG. 5 is a flowchart illustrating a control method of a refrigerator proposed by the present invention.
  • thermoelectric module starts cooling operation when the thermoelectric module is supplied with power for the first time. Since the power of the thermoelectric element module may be cut off due to natural defrosting, if the power is again supplied to the thermoelectric element module after the natural defrost is completed, the thermoelectric element module resumes the cooling operation.
  • Integration refers to the cumulative counting of the driving time of the thermoelectric module. Integration of the driving time of the thermoelectric module is continued during the control process of the refrigerator, which is the basis for inputting the defrosting operation.
  • the external temperature of the refrigerator, the temperature of the storage compartment, and the temperature of the thermoelectric module are measured.
  • the temperatures measured at this stage may be used to control the output of the thermoelectric element or the fan at the control unit together with the set temperature input by the user.
  • the load response operation refers to an operation of rapidly cooling a storage compartment as hot food or the like is put into a storage compartment of a refrigerator. The reason for determining the necessity of load response operation is mentioned later. If it is determined that the load response operation is necessary, the thermoelectric element is operated at the preset output by operating the load response operation, and the fan is rotated at the preset rotation speed. If it is determined that no load response operation is necessary, the process proceeds to the next step.
  • the defrosting operation refers to an operation of preventing frost from forming on the thermoelectric module or removing frost formed on the thermoelectric module. Similarly, the basis for determining the necessity of defrosting operation will be described later. If it is determined that defrosting operation is necessary, the defrosting operation is performed to operate the thermoelectric element at a preset output, and the fan is rotated at a preset rotational speed. However, in the case of natural defrosting, the power supplied to the thermoelectric element may be cut off. If it is determined that defrosting is not necessary, the process proceeds to the next step.
  • the cooling operation is input when it is determined that the load corresponding operation and the defrost operation are not necessary.
  • the cooling operation is controlled based on the temperature of the storage compartment and the temperature input by the user. The result of the control is the output of the thermoelectric element and the output of the fan.
  • the output of the thermoelectric element is determined based on the temperature of the storage compartment, the set temperature input by the user, and the external temperature of the refrigerator.
  • the rotation speed of the fan is determined based on the temperature of the storage compartment.
  • the fan refers to at least one of the first fan and the second fan of the thermoelectric module.
  • thermoelectric element when the temperature of the storage compartment corresponds to the third temperature section, the thermoelectric element is operated at the third output, and the fan is rotated at the third rotational speed.
  • thermoelectric element When the temperature of the storage compartment corresponds to the second temperature section, the thermoelectric element is operated at the second output, and the fan is rotated at the second rotational speed.
  • thermoelectric element When the temperature of the storage compartment corresponds to the first temperature section, the thermoelectric element is driven at the first output, and the fan is rotated at the first rotational speed.
  • thermoelectric element The output of the thermoelectric element and the rotational speed of the fan are relative concepts, which will be described later in detail.
  • thermoelectric element and the fan for each temperature section will be described with reference to FIG. 6 and Table 1.
  • FIG. 6 the figures in the figures and tables are only examples for explaining the concept of the present invention, and do not mean an absolute value necessary for the control method proposed by the present invention.
  • FIG. 6 is a conceptual view illustrating a control method of a refrigerator based on which section of a first temperature section to a third temperature section belongs to a storage compartment.
  • the temperature of the storage compartment is divided into a first temperature section, a second temperature section, and a third temperature section.
  • the first temperature section is a section including the set temperature input by the user.
  • the second temperature section is a section of temperature higher than the first temperature section.
  • the third temperature section is a section of temperature higher than the second temperature section. Therefore, the temperature increases sequentially from the first temperature section to the third temperature section.
  • the first temperature section includes the set temperature input by the user, when the temperature of the storage compartment is in the first temperature section, it means that the temperature of the storage compartment has already been lowered to the preset temperature due to the operation of the thermoelectric module. Therefore, the first temperature section is a section satisfying the set temperature.
  • the second temperature section and the third temperature section are unsatisfactory sections that do not satisfy the set temperature because they are higher than the set temperature input by the user. Therefore, the thermoelectric element module operates in the second temperature section and the third temperature section to lower the temperature of the storage compartment to the set temperature.
  • the third temperature section corresponds to a higher temperature than the second temperature section, the third temperature section is a section requiring more powerful cooling.
  • the second temperature section may be referred to as an unsatisfactory section
  • the third temperature section may be referred to as an upper limit section.
  • each temperature range depends on whether the temperature of the storage compartment rises or falls. For example, as shown in FIG. 6, the temperature of the storage compartment increases, and the rising entry temperature at which the storage chamber rises from the first temperature section to the second temperature section is N + 0.5 ° C. On the contrary, the falling entry temperature at which the temperature of the storage compartment falls to enter the first temperature section from the second temperature section is N-0.5 ° C. Thus, the rising entry temperature is higher than the falling entry temperature.
  • the rising entry temperature N + 0.5 ° C. at which the temperature of the storage compartment enters the second temperature section from the first temperature section may be higher than the set temperature N input by the user.
  • the falling entrance temperature N-0.5 ° C. at which the temperature of the storage compartment enters the first temperature section from the second temperature section may be lower than the set temperature N input by the user.
  • the rising entry temperature at which the temperature of the storage compartment rises and rises from the second temperature section to the third temperature section is N + 3.5 ° C based on FIG. 6.
  • the falling entry temperature at which the temperature of the storage compartment falls to enter the second temperature section from the third temperature section is N + 2.0 ° C.
  • the rising entry temperature is higher than the falling entry temperature.
  • the control of the thermoelectric element or fan is changed again without the storage compartment being sufficiently cooled. For example, as soon as the set temperature of the storage compartment is satisfied and the thermoelectric element and the fan are stopped as soon as the second temperature section enters the first temperature section, the temperature of the storage compartment immediately enters the second temperature section. In order to prevent this phenomenon and to sufficiently maintain the temperature of the storage compartment in the first temperature section, the falling entry temperature must be lower than the rising entry temperature.
  • thermoelectric element the output of the thermoelectric element and the rotation speed of the fan at an arbitrary set temperature will be described. Next, the change of control according to set temperature is demonstrated.
  • thermoelectric element at any set temperature (N1) is shown in Table 1.
  • N1 The output of the thermoelectric element at any set temperature (N1) is shown in Table 1.
  • Table 1 in the Hot / Cool item, if one surface of the thermoelectric element in contact with the cooling sink corresponds to the heat absorbing surface that is endothermic, it is marked as Cool. To be displayed. RT also refers to the room temperature of the refrigerator.
  • the output of the thermoelectric element is determined based on (a) which of the first temperature section, the second temperature section and the third temperature section the temperature of the storage compartment.
  • thermoelectric element The higher the voltage applied to the thermoelectric element, the larger the output of the thermoelectric element, and thus the output of the thermoelectric element can be known from the voltage applied to the thermoelectric element. As the output of the thermoelectric element increases, the thermoelectric element may realize stronger cooling.
  • the rotation speed of the fan is determined based on (a) which of the first temperature section, the second temperature section and the third temperature section the temperature of the storage compartment belongs to.
  • the fan refers to the first fan and / or the second fan of the thermoelectric module.
  • the rotational speed of the fan can be known from the rotational speed (RPM) of the fan per unit time. Larger RPMs mean that the fans spin faster. As the fan receives a higher voltage, the fan speed increases. The faster the fan rotates, the more the heat sinks in the cooling sink and / or heat sink can be promoted, resulting in stronger cooling.
  • RPM rotational speed
  • thermoelectric element when the temperature of the storage chamber corresponds to the third temperature section, the thermoelectric element is operated at the third output.
  • the third output is + 22V regardless of the external temperature.
  • the third output is a constant value regardless of the external temperature.
  • the third output (+ 22V) is a value exceeding the first output (0V, + 12V, + 16V in Table 1) of the first temperature section.
  • the third output is a value equal to or greater than the second output (+ 12V, + 14V, + 16V, + 22V in Table 1) of the second temperature section.
  • the third output may correspond to the maximum output of the thermoelectric element.
  • the output of the thermoelectric element in the third temperature section is kept constant at the maximum output.
  • the fan is rotated at the third rotational speed.
  • the third rotational speed is a value exceeding the first rotational speed of the first temperature section.
  • the third rotation speed is a value equal to or greater than the second rotation speed in the second temperature section.
  • the thermoelectric element is operated at the second output.
  • the second output is not a constant value but a value that is gradually changed (increased) in accordance with an increase in the external temperature measured by the outside temperature sensor.
  • the second output is gradually increased to + 12V, + 14V, + 16V, + 22V as the external temperature increases.
  • the second output is a value greater than or equal to the first output of the first temperature section under the same external temperature condition.
  • the second output + 12V under RT ⁇ 12 °C condition is above the first output 0V.
  • the second output of + 14V is greater than or equal to the first output of 0V.
  • the second output of + 16V is greater than the first output of + 12V.
  • the second output of + 22V is greater than the first output of + 16V.
  • the second output is a value less than or equal to the third output of the third temperature section. Referring to Table 1, under all external temperature conditions, the second output (+ 12V, + 14V, + 16V, + 22V) is less than or equal to the third output (+ 22V).
  • the fan is rotated at the second rotational speed.
  • the second rotational speed is a value greater than or equal to the first rotational speed of the first temperature section.
  • the second rotational speed is a value less than or equal to the third rotational speed of the third temperature section.
  • the thermoelectric element is operated at the first output.
  • the first output is not a constant value but a value that is gradually changed (increased) in accordance with an increase in the external temperature measured by the outside temperature sensor.
  • the first output is gradually changed (increased) as the external temperature increases, such as 0V, + 12V, and + 16V.
  • the reference external temperature may be referred to as a value (eg, 15 ° C.) between 12 ° C. and 18 ° C.
  • the number of stepwise increases of the second output is greater than the number of stepwise increases of the first output in the same temperature range.
  • the second output changes in four steps: +12, +14, +16, and +22, but within the same temperature range, the first output changes in three steps: 0V, + 12V, + 16V. Accordingly, the second temperature section corresponds to all the entire variable sections, and the first temperature section corresponds to the partial variable sections.
  • the first output is a value less than or equal to the second output of the second temperature section under the same external temperature condition.
  • the first output 0V is less than + 12V the second output under the conditions RT ⁇ 12 °C.
  • the first output, 0V is below the second output, + 14V.
  • the first output of + 12V is less than or equal to the second output of + 16V.
  • the first output, + 16V is below the second output, + 22V.
  • the first output is a value less than the third output of the third temperature section. Referring to Table 1, under all external temperature conditions, the first output (0V, 0V, + 12V, + 16V) is less than the third output (+ 22V).
  • the first output includes zero.
  • the output 0 means that the thermoelectric element is stopped because no voltage is applied to the thermoelectric element. That is, when the temperature of the storage compartment is lowered to the set temperature input by the user, the operation of the thermoelectric element may be stopped.
  • the fan is rotated at the first rotational speed.
  • the first rotational speed is a value less than or equal to the second rotational speed of the second temperature section.
  • the first rotational speed is a value less than the third rotational speed of the third temperature section.
  • the first rotational speed of the fan has a value greater than zero. This is different from the first output of the thermoelement including zero. This means that the fan can continue to rotate even when no voltage is applied to the thermoelectric element.
  • the voltage may not be applied to the thermoelectric element when the temperature falls into the first temperature section from the second temperature section. This is because the first output is shown as 0V in Table 1.
  • the first output is shown as 0V in Table 1.
  • the rotation speed of the fan is lowered, and the fan still continues to rotate.
  • thermoelectric element does not immediately change to room temperature, but maintains a cold temperature for a long time. Therefore, if the fan continues to rotate, the heat exchange of the cooling sink can be continuously promoted, and the temperature of the storage compartment can be sufficiently maintained in the first temperature section.
  • the temperature section of the storage compartment is satisfied and divided into two stages of dissatisfaction, and the refrigeration cycle device is operated only in the dissatisfaction section to lower the temperature of the storage compartment to the set temperature.
  • the refrigeration cycle device is operated only in the dissatisfaction section to lower the temperature of the storage compartment to the set temperature.
  • thermoelectric module as in the present invention can perform more detailed control by dividing the temperature of the storage compartment into three stages as in the control method proposed by the present invention.
  • the thermoelectric module is only turned on and off electrically by the application of voltage, so it is independent of mechanical reliability and does not lose its reliability even in frequent on and off operations.
  • thermoelectric element module does not reach the refrigeration cycle apparatus having a compressor. Therefore, when the temperature of the storage compartment rises into an unsatisfactory region due to the initial power supply, the thermoelectric element stop, the input of a load such as food in the storage compartment, it takes a long time to enter the satisfaction region again. Therefore, if the temperature of the storage compartment is additionally defined in three stages in addition to the satisfaction and dissatisfaction, it is possible to implement a control to rapidly lower the temperature of the storage compartment at the highest output in the third highest temperature section.
  • the first temperature section and the second temperature section are not only for cooling but also for reducing power consumption and low noise of the fan.
  • the temperature section of the storage compartment is subdivided, and as the temperature of the storage compartment is lowered, the output of the thermoelectric element and the rotation speed of the fan are lowered, thereby reducing power consumption and low noise of the fan.
  • FIG. 7 is a flowchart illustrating defrost operation control of the refrigerator proposed by the present invention.
  • frost is formed on the cooling sink and the first fan.
  • Defrost operation refers to the action of removing this frost.
  • the concept of the extended defrost proposed by the present invention is to implement a fast defrost and power consumption reduction by using a combination of the heat source defrost and natural defrost according to the conditions.
  • the heat source defrosting operation means to defrost the thermoelectric module by supplying energy to the thermoelectric element
  • the natural defrosting operation means to defrost naturally without supplying energy to the thermoelectric element.
  • a heat source is also required for natural defrosting operation.
  • the heat source of natural defrosting operation is the waste heat of the heat sink and the air inside the storage compartment. Even in the natural defrosting operation, at least one of the first fan and the second fan may be rotated.
  • the normal defrosting operation is usually set as the basic operation
  • the heat source defrosting is set as the special operation for a special case requiring rapid defrosting.
  • the operation to be performed for the operation of the defrosting operation is to determine the necessity of the defrosting operation. First, it is necessary to determine the necessity of defrosting operation through external temperature measurement, integration of the driving time of the thermoelectric element module, and measurement of the temperature of the defrost temperature sensor.
  • thermoelectric module integrating the driving time of the thermoelectric module to determine the operation of the defrosting operation is to operate the defrosting operation periodically according to the natural flow of time. This case cannot be regarded as a case where relatively fast defrosting is required. Therefore, the defrosting operation which is operated by integrating the driving of the thermoelectric element module is selected as the natural defrosting operation.
  • the reason why the natural defrosting operation is operated based on time is to improve the reliability of the defrosting operation. If the natural defrosting operation is operated on the basis of temperature, the defrosting operation may not be operated simply because of a slight temperature difference even though the defrosting is already required. However, if the temperature conditions are alleviated too much, the heat source defrost will be operated unnecessarily even if the natural defrosting operation alone is sufficient, thereby worsening the power consumption.
  • thermoelectric defrosting operation which is operated based on the temperature is selected as the heat source defrosting operation.
  • the need for rapid defrosting is a special case, so the thermoelectric defrosting operation may be operated on the basis of temperature.
  • the controller is configured to operate the heat source defrosting operation when the external temperature measured by the ambient air temperature sensor is equal to or less than the reference external temperature. Referring to FIG. 7, 8 ° C. is selected as an example of the reference external temperature.
  • An external temperature above 8 ° C means that it is relatively warm. In warm environments, frost is not easily implanted. Therefore, the heat source defrosting operation is operated only when the external temperature is 8 ° C. or less (NO).
  • the controller is configured to operate the heat source defrosting operation when the temperature of the thermoelectric element module measured by the defrost temperature sensor is equal to or lower than the reference thermoelectric module temperature. Referring to FIG. 7, -10 ° C is selected as an example of the reference thermoelectric module temperature.
  • thermoelectric module exceeds -10 °C means that the temperature of the thermoelectric module is not excessively low. If the temperature of the thermoelectric element module is not excessively low, frost is not easily implanted. Therefore, the heat source defrosting operation is operated only when the thermoelectric module is below -10 ° C (NO).
  • the natural defrosting operation is performed at predetermined intervals by accumulating the driving time of the thermoelectric module.
  • the controller is configured to operate a natural defrosting operation for removing frost formed on the thermoelectric module at predetermined intervals based on the driving integration time of the thermoelectric module.
  • the predetermined period for determining the operation of the natural defrosting operation is changed based on whether the door is opened, as in the load corresponding operation. Therefore, in order to determine the predetermined period, it is first determined whether there is an opening of the door, such as a load response operation, before the operation of the natural defrosting operation.
  • the integration time is determined whether the integration time has reached a cycle set as a default value. In FIG. 7, 9 hours is selected as an example of the default value. When the integration time reaches 9 hours, the natural defrosting operation is activated.
  • the integration time is changed to a value shorter than the period set as the default value.
  • one hour is selected as an example of a time shorter than the default value.
  • the predetermined period for determining the operation of the natural defrosting operation can be reduced to a shorter value than before the door is opened by the door opening.
  • the opening time of the door can be shortened in inverse proportion to the opening time of the door. For example, the period per second of opening time of the door can be reduced by 7 minutes.
  • Third is the operation of load response operation.
  • the controller When the temperature of the storage compartment rises by a predetermined temperature within a predetermined time after the door is opened and closed, the controller is configured to operate a load corresponding operation for lowering the temperature of the storage compartment.
  • the load corresponding operation When the load corresponding operation is activated, the predetermined period for determining the operation of the natural defrosting operation is reduced to a shorter value than before the load corresponding operation.
  • thermoelectric module operates at the maximum output after the door is opened and closed. This is because the opening of the door, the load response operation, and the like require lowering the temperature of the storage compartment. After operating at the maximum output of the thermoelectric module, frost easily forms, so rapid defrosting should be achieved. Therefore, if these factors exist before the operation of the natural defrosting operation, the integration time for determining the operation of the natural defrosting operation should be changed to a value shorter than the default value.
  • thermoelectric element When the natural defrosting operation is started, the operation of the thermoelectric element is stopped. The voltage supplied to the thermoelectric element becomes 0V. However, the voltage supplied to the thermoelectric element does not suddenly change to 0 V, and the thermoelectric module performs pre-cooling operation. Pre-cooling operation means that the power of the thermoelectric element module is not immediately cut off, but the output of the thermoelectric element is sequentially reduced to converge to zero.
  • the first fan When the natural defrosting operation is activated, the first fan is continuously rotated, and the second fan is temporarily stopped. Since the frost is formed on the cooling sink and the first fan which are kept at a low temperature during the cooling operation, the rotation of the first fan must be maintained during the natural defrosting operation. This is to remove frost by promoting heat exchange of the cooling sink.
  • frost is not easily implanted in the second fan. This is because the second fan corresponds to the heat dissipation side of the thermoelectric element. Therefore, the rotation of the second fan throughout the natural defrosting operation wastes power consumption without any particular effect. In order to reduce power consumption, the rotation of the second fan is temporarily stopped until the frost melts.
  • the second fan is rotated again after a preset time elapses.
  • frost is removed within 3 to 4 minutes. As the frost melts, condensate may form in the cooling sink and the first fan, and dew may form on the heat sink and the second fan. Condensate generated in the cooling sink and the first fan is removed by the rotation of the first fan. Dew formed on the heat sink and the second fan is removed by the rotation of the second fan.
  • the preset time may be, for example, 5 minutes.
  • thermoelectric element since no voltage is applied to the thermoelectric element during the natural defrosting operation, power consumption to the thermoelectric element may be reduced.
  • the second fan since the second fan is temporarily stopped and then rotated again, power consumption can be further reduced while the rotation of the second fan is stopped.
  • the controller When the temperature of the thermoelectric element module measured by the defrost temperature sensor reaches the reference defrost end temperature, the controller is configured to end the natural defrosting operation. As illustrated in FIG. 7, the reference defrost end temperature may be 5 ° C. FIG.
  • the end of the natural defrosting operation is determined based on the temperature. This also applies to the heat source defrosting operation described later. The reason why the end of the defrosting operation is based on the temperature is to improve the reliability of the defrosting operation.
  • the defrosting operation is terminated based on time, there is a fear that the defrosting operation ends before the defrosting is completed. Even if the two refrigerators installed in different environments terminate the defrosting operation according to the same time condition, there is a problem of scattering in which one of the refrigerators is defrosted and in another, the defrost is not completed. Therefore, in order to solve such a problem of dispersion, it is preferable that the defrosting operation is finished based on the temperature.
  • the heat source defrosting operation is operated.
  • the controller is configured to operate the heat source defrosting operation when the outside temperature of the refrigerator measured by the outside air temperature sensor is equal to or less than the reference outside temperature.
  • thermoelectric element When the heat source defrosting operation is activated, a reverse voltage is applied to the thermoelectric element. For example, a voltage of -10V can be applied to the thermoelectric element.
  • the first fan and the second fan are rotated throughout the operation of the heat source defrosting operation.
  • thermoelectric element When a reverse voltage is applied to the thermoelectric element, the heat absorbing side and the heat dissipating side of the thermoelectric element are switched. For example, the cooling sink and the first fan become the heat dissipating side of the thermoelectric module, and the heat sink and the second fan become the heat absorbing side of the thermoelectric module. Since the cooling sink is warmed, the cooling sink and the frost formed on the first layer can be removed.
  • thermoelectric element When a reverse voltage is applied to the thermoelectric element, a temperature difference occurs on one side and the other side of the thermoelectric element. Therefore, the first fan and the second fan continuously rotate to promote heat exchange between the cooling sink and the heat sink, so that the frost can be removed quickly.
  • the controller When the temperature of the thermoelectric element module measured by the defrost temperature sensor reaches the reference defrost end temperature, the controller is configured to end the heat source defrosting operation. As illustrated in FIG. 7, the reference defrost end temperature may be 5 ° C. FIG.
  • the heat source defrosting operation is operated.
  • the controller is configured to operate the heat source defrosting operation when the temperature of the thermoelectric element module measured by the defrost temperature sensor is equal to or lower than the reference thermoelectric module temperature.
  • thermoelectric element when the heat source defrosting operation is operated, a reverse voltage is applied to the thermoelectric element.
  • a voltage of -10V can be applied to the thermoelectric element.
  • the first fan and the second fan are rotated throughout the operation of the heat source defrosting operation.
  • the controller When the temperature of the thermoelectric element module measured by the defrost temperature sensor reaches a temperature higher than the reference defrost end temperature by a predetermined width, the controller is configured to end the heat source defrosting operation. As illustrated in FIG. 7, the temperature higher by the predetermined width than the reference defrost end temperature may be 7 ° C. FIG.
  • thermoelectric element module If the temperature of the thermoelectric element module is less than the reference thermoelectric module temperature, it means that a condition in which an electrodeposition phase can be easily formed. Therefore, the reliability of the defrosting operation can be improved only when the heat source defrosting operation is terminated at a temperature higher than the end temperature of the natural defrosting operation.
  • thermoelectric element operations of the thermoelectric element, the first fan, and the second fan during the natural defrosting operation and the heat source defrosting operation will be described.
  • thermoelectric element 8 is a conceptual diagram illustrating the output of the thermoelectric element, the rotational speed of the first fan, and the rotational speed of the second fan according to the passage of time according to the cooling operation and the natural defrosting operation.
  • the horizontal axis reference line means time
  • the vertical axis reference line means the output of the thermoelectric element or the rotation speed of the first fan and the second fan.
  • the third temperature section, the second temperature section, and the first temperature section are sequentially displayed.
  • the output of the thermoelectric element and the rotation speed of the first fan and the second fan are determined based on the temperature of the storage chamber measured by the temperature sensor in the refrigerator.
  • thermoelectric element operates at the third output, the first fan is rotated at the third rotational speed, and the second fan is also rotated at the third rotational speed.
  • the third rotational speed of the first fan and the third rotational speed of the second fan are different from each other, and the rotational speed of the second fan is faster.
  • thermoelectric element is operated at the second output, the first fan is rotated at the second rotational speed, and the second fan is also rotated at the second rotational speed.
  • the second rotational speed of the first fan and the second rotational speed of the second fan are different from each other, and the rotational speed of the second fan is faster.
  • thermoelectric element operates at the first output
  • the first fan is rotated at the first rotational speed
  • the second fan is also rotated at the first rotational speed.
  • first rotational speed of the first fan and the first rotational speed of the second fan are different from each other, and the rotational speed of the second fan is faster.
  • thermoelectric element When the natural defrosting operation is activated, the operation of the thermoelectric element is stopped.
  • the first fan is rotated at a third rotational speed.
  • the second fan is temporarily stopped and then rotates at a third rotational speed after a predetermined time elapses.
  • the rotational speed of the first fan in the defrosting operation is more than the rotational speed of the first fan in the cooling operation.
  • the rotation speed of the first fan in the defrosting operation and the maximum rotation speed of the first fan in the cooling operation may be the same.
  • the rotation speed of the second fan in the defrosting operation is more than the rotation speed of the second fan in the cooling operation.
  • the rotation speed of the second fan in the defrosting operation and the maximum rotation speed of the second fan in the cooling operation may be the same.
  • thermoelectric element 9 is a conceptual diagram illustrating the output of the thermoelectric element, the rotational speed of the first fan, and the rotational speed of the second fan according to the passage of time according to the cooling operation and the heat source defrosting operation.
  • thermoelectric element and the rotational speed of the fan are determined based on the temperature of the storage compartment measured by the temperature sensor in the refrigerator.
  • thermoelectric element When the heat source defrosting operation is activated, a reverse voltage is applied to the thermoelectric element.
  • the first fan and the second fan are rotated at a third rotational speed, respectively.
  • the third rotational speed of the first fan and the third rotational speed of the second fan are different from each other, and the rotational speed of the second fan is faster.
  • the fan rotation speed during the defrosting operation is faster than during the defrosting operation.
  • the fan rotation speed during defrost operation and the fan rotation speed during cooling operation may be the same.
  • FIG. 10 is a flowchart illustrating load control operation control of a refrigerator having a thermoelectric module.
  • the load-response operation can be operated after a preset time rather than being restarted immediately. This is to prevent overcooling. When this preset time is counted and reaches zero, the load response operation can be started again.
  • the load response operation can be operated as rain after the door is opened and closed. For example, if the temperature of the storage compartment rises by 2 ° C or more within 5 minutes after the door is closed, the load response operation may be activated. Since the load response determination time is counted after the door is closed, even if the temperature of the storage compartment rises by 2 ° C or more than before the door is opened, the load response operation is not activated because the load response determination time is 0 before the door is still closed.
  • the controller is configured to operate the load corresponding operation.
  • the first load response operation is operated when hot food is put into the storage compartment and rapid cooling is required.
  • the first load-response operation is activated when the temperature of the storage compartment rises by 2 ° C or more within 5 minutes after the door is opened and closed.
  • the second load-response operation is operated when the temperature is not so high but food with a large heat capacity is input and continuous cooling is required.
  • the second load-response operation is activated when the temperature of the storage compartment rises 8 ° C or more with respect to the set temperature input by the user within 20 minutes after the door is opened and closed. If it is determined that the first load correspondence operation, the first load correspondence operation is not operated.
  • the control unit does not operate the load corresponding operation.
  • thermoelectric element is operated at the third output regardless of which of the first temperature section, the second temperature section, and the third temperature section belongs to the temperature of the storage compartment.
  • the third output may correspond to the maximum output of the thermoelectric element.
  • the need for a load-response operation means that the temperature of the storage compartment has already entered or is very likely to enter the third temperature range, so that the thermoelectric element is operated at the third output for rapid cooling.
  • the load response operation is configured such that the fan is rotated at the third rotational speed regardless of which of the first temperature section, the second temperature section and the third temperature section belongs to the storage compartment.
  • the third rotational speed of the first fan and the third rotational speed of the second fan are different from each other, and the second fan is rotated at a higher speed than the first fan.
  • the need for load-response operation means that the temperature of the storage compartment has already entered or is very likely to enter the third temperature range, so that the fan is rotated at the third rotational speed for rapid cooling. This is to reduce fan noise.
  • the load response operation is completed based on the temperature or the time.
  • the load response operation may be completed when the temperature of the storage compartment becomes lower than the preset temperature by a preset temperature or when a predetermined time elapses since the load response operation is operated.
  • FIG. 11 is a perspective view of a refrigerator according to a second embodiment of the present invention
  • FIG. 12 is a perspective view illustrating an open state of the door in FIG. 11
  • FIG. 13 is a plan view of the refrigerator of FIG. 11.
  • the refrigerator 400 includes a cabinet 410 including a storage compartment 411 and a cabinet 410 connected to the cabinet 410 to open and close the storage compartment 511.
  • a door 420 may be included.
  • the cabinet 410 may include an inner case 510 forming the storage compartment 511 and an outer case 411 surrounding the inner case 510.
  • the outer case 411 may be formed of a metal material.
  • the outer case 411 may have an aluminum (Al) material.
  • the outer case 411 may be formed by bending or bending at least twice.
  • the outer case 411 may be formed by bonding a plurality of metal plates.
  • the outer case 411 may include, for example, a pair of side panels 412 and 413.
  • the inner case 510 may be fixed to the outer case 411 directly or indirectly while being positioned between the pair of side panels 412 and 413.
  • the front end portions 412a of the pair of side panels 412 and 413 may be located in front of the front surface of the inner case 510.
  • the left and right widths of the door 420 may be equal to or smaller than the distance between the pair of side panels 412 and 413.
  • a space in which the door 420 may be positioned may be formed between the pair of side panels 412 and 413.
  • the door 420 may be located between the pair of side panels 412 and 413 with the door 420 closing the storage compartment 511.
  • the front surface of the door 420 is the front side of each side panel 412 so that the appearance of the door 420 and the cabinet 410 has a sense of unity in a state in which the door 420 is closed the storage compartment 511.
  • 413 may be coplanar with the front end portion 412a.
  • the front surface of the door 420 and the front end portion 412a of each side panel 412 and 413 may form a front appearance of the refrigerator 400.
  • the door 420 may include a front panel 421 and a door liner 422 coupled to a rear surface of the front panel 421.
  • the front panel 421 may be formed of a wood material.
  • the front panel 421 and the door liner 422 may be fastened by a fastening member such as a screw.
  • the front panel 421 and the door liner 422 form a foaming space, and as the foaming liquid is filled in the foaming space, a heat insulating material may be provided between the front panel 421 and the door liner 422. have.
  • the door 420 may define a handle space 690 into which the user's hand can be drawn so that the user can hold the door 420 to open the door 420.
  • the handle space 690 may be formed as a portion of the upper side of the door liner 422 is recessed downward.
  • the handle space 690 may be located between the front panel 421 and the cabinet 410 with the door 420 closing the storage compartment 511. Accordingly, the user may open the door 420 by pulling the door 420 after entering the hand into the handle space 690 while the door 420 closes the storage compartment 511. .
  • the handle-like structure does not protrude to the outside in the state in which the door 420 is closed, the aesthetics of the refrigerator 400 is improved.
  • the height of the refrigerator 400 is not limited, but may be lower than that of a general adult. As the capacity of the refrigerator 400 is lower, the height of the refrigerator 400 may be lower.
  • the upper end portion 412b of each of the pair of side panels 412 and 413 may be positioned higher than the upper end portion of the inner case 510.
  • a space may be formed above the inner case 510, and a cabinet cover 590 may be located in the space.
  • the cabinet cover 590 may form an upper appearance of the cabinet 410. That is, the cabinet cover 590 forms an upper appearance of the refrigerator 400.
  • the cabinet cover 590 may be directly fixed to the inner case 510 or fixed to a middle plate 550 surrounding the inner case 510.
  • the cabinet cover 590 may be located between the pair of side panels 412 and 413 while the cabinet cover 590 covers the inner case 510.
  • the upper surface of the cabinet cover 590 may be flush with the upper ends 412b of the side panels 412 and 413 so that the exterior of the cabinet cover 590 and the cabinet 410 may have a sense of unity. It can be located on the same height.
  • the cabinet cover 590 may be formed of, for example, a wood material.
  • the front panel 421 and the cabinet cover 590 may be formed of the same material.
  • the front panel 421 and the cabinet cover 590 of the door 420 are each formed of a wood material, the door 420 and the cabinet cover with the door 420 closed. There is an advantage that the aesthetics are improved because of the uniformity of the material between 590.
  • the cabinet cover 590 is formed of a wood material, thereby improving the basic aesthetics as well as the refrigerator ( 400 has the advantage of having a sense of unity with the surrounding furniture is located.
  • the refrigerator 400 of the present embodiment may be used as a side table refrigerator as an example.
  • the side table refrigerator may also function as a side table in addition to the food storage function. Unlike common refrigerators, which are often provided in kitchens, side table refrigerators can be used by the bedroom bed. According to the present embodiment, since the cabinet cover 590 and the front panel 421 are formed of a wood material, the cabinet cover 590 and the front panel 421 may be harmonized with surrounding furniture even when the refrigerator 400 is placed in the bedroom.
  • the height of the side table refrigerator is preferably similar to that of the bed, for example, and may be formed to have a height lower than that of a general refrigerator and compact.
  • the front surface 590a of the cabinet cover 590 may be located in front of the front surface of the inner case 510. Accordingly, the cabinet cover 590 may cover a part of the door liner 422 from the upper side while the door 420 closes the storage compartment 511.
  • the refrigerator 400 may further include one or more drawer assemblies 430 and 440 accommodated in the storage compartment 511.
  • a plurality of drawer assemblies 430 and 440 may be provided in the storage compartment 511.
  • the plurality of drawer assemblies 430 and 440 may include an upper drawer assembly 430 and a lower drawer assembly 440. In some cases, the upper drawer assembly 430 may be omitted.
  • the door 420 may open and close the storage compartment 511 while moving in a forward and backward sliding manner.
  • the door 420 opens and closes the storage compartment 511 in a sliding manner, so that the door ( 420 has the advantage of being possible to open.
  • the refrigerator 400 may further include a rail assembly (not shown) for sliding in and out of the door 420.
  • the rail assembly (not shown) may have one side connected to the door 420 and the other side connected to the lower drawer assembly 440.
  • FIG. 14 is an exploded perspective view of a cabinet according to an embodiment of the present invention.
  • the cabinet 410 may include an outer case 411, an inner case 510, and a cabinet cover 590.
  • the outer case 410 may include a pair of side panels 412 and 13.
  • the pair of side panels 412 and 413 may form a side surface of the refrigerator 400.
  • the outer case 411 may further include a rear panel 560 forming a rear exterior of the refrigerator 400.
  • the exterior of the refrigerator 400 except for the door 420 may be formed by the side panels 412 and 413, the cabinet cover 590, and the rear panel 560.
  • the cabinet 410 may further include a case supporter 530 supporting the inner case 510, and a base 520 coupled to the lower side of the case supporter 530.
  • the cabinet 410 may further include a middle plate 550 forming a foaming space together with the inner case 510.
  • the middle plate 550 may cover the upper side and the rear side of the inner case 510 at a position spaced apart from the inner case 510.
  • the display unit 540 may be coupled to one or more of the middle plate 550 and the side panels 412 and 413.
  • the cabinet 410 may further include a cooling device 700 for cooling the storage compartment 511.
  • the cooling device 700 may include a thermoelectric module, a cooling fan, and a heat radiating fan, and the size of the refrigerator may be reduced by a thermoelectric element.
  • a foaming space is formed by the inner case 510, the side panels 412 and 413, the case supporter 530, and the middle plate 550, and a foaming liquid for filling a heat insulating material may be filled in the foaming space.
  • Figure 15 is a view showing a state before the middle plate is assembled according to the second embodiment of the present invention
  • Figure 16 is a view showing a state in which the middle plate is assembled according to the second embodiment of the present invention
  • Figure 17 is A perspective view of an installation bracket according to a second embodiment of the present invention.
  • the middle plate 550 may cover the inner case 510 at the rear of the inner case 510.
  • the middle plate 550 includes a rear plate 552 covering a rear surface of the inner case 510 and an upper plate 554 covering an upper surface of the inner case 510. can do.
  • the upper plate 554 may extend horizontally from an upper end of the rear plate 552. Therefore, the middle plate 550 may be formed in the form of "a".
  • the upper plate 554 may be seated on the upper front of the inner case 510.
  • the upper plate 554 may be attached to the front upper end of the inner case 510 by an adhesive means.
  • the upper plate 554 is spaced apart from the upper surface of the inner case 510 in a state in which the upper plate 554 is seated on the front upper end of the inner case 510. Therefore, the foam space 517 may be defined between the upper plate 554 and the upper surface of the inner case 510.
  • the rear plate 552 may be coupled to the case supporter 530.
  • a plate fastening rib 538 may be formed in the case supporter 530.
  • Fastening holes 538a and 555 for fastening bolts may be formed in the plate fastening ribs 538 and the rear plate 552, respectively.
  • the rear plate 552 may be fastened to the plate fastening rib 538 by a bolt in a state of being in contact with the rear surface of the plate fastening rib 538.
  • the middle plate 550 may be assembled while the mounting bracket 600 is fastened to the rear plate 552 between the rear plate 552 and the rear surface of the inner case 510.
  • the rear plate 552 may be spaced apart from the rear surface of the inner case 510. Accordingly, a foam space 518 may be defined between the rear plate 552 and the rear surface of the inner case 510.
  • the fixing bracket 558 may be fixed at the rear side of the rear plate 552, and the fixing bracket 558 may be fixed to each side panel 412 and 413. Therefore, not only the rear plate 552 is fixed to the side panels 412 and 413 by the fixing bracket 558, but the deformation of the rear plate 552 may be prevented in the process of filling the foam liquid.
  • An injection hole 553 may be formed in the rear plate 552 to inject the foam liquid.
  • the inlet 553 may be blocked by a packing not shown.
  • the rear plate 552 may further include a passage hole 552a through which the cooling device 700 passes.
  • the upper surface of the upper plate 554 may be lower than the upper end portions 412b of the side panels 412 and 413. Therefore, a space in which the cabinet cover 590 may be located is located above the upper plate 554.
  • the rear surface of the rear plate 552 is disposed to be spaced inward from the rear ends of the respective side panels 412 and 413. Accordingly, a heat dissipation passage 690 may exist behind the rear plate 552 to allow air for heat dissipation of the cooling apparatus 700 to flow.
  • the mounting bracket 600 may include a mounting plate 610 in the form of a plate.
  • the installation plate 610 may be fastened to the rear plate 552 by a fastening member such as a screw.
  • the mounting plate 610 may include a first surface 610a and a second surface 610b facing the first surface 610a.
  • a fastening extension part 552b for fastening the mounting bracket 600 may be formed in the through hole 552a in the rear plate 552, and a fastening hole 552c is formed in the extension part 552b. Can be formed.
  • the first surface 610a of the mounting plate 610 may be in contact with the extension 552b.
  • the installation plate 610 may include a receiving portion 611 for receiving a portion of the cooling device 700.
  • the accommodation part 611 may be formed as a portion of the first surface 610a is recessed toward the second surface 610b. A portion of the accommodating part 611 may protrude from the second surface 610b.
  • the bottom of the receiving portion 611 may be provided with an opening 612 for penetrating the cooling sink 200 to be described later.
  • the receiving portion 611 includes a wall 611a surrounding the cooling sink 200 passing through the opening 612, and a reinforcing rib 611b is formed in part or all of the wall 611a. Can be.
  • a fastening boss 627 for fastening with the middle plate 550 may be formed on the second surface 610b of the installation plate 610.
  • the fastening boss 627 may protrude in a direction away from the first surface 610a on the second surface 610b.
  • a plurality of first fastening parts 621a and 621b may be formed on the second surface 610b of the mounting plate 610 for fastening with the cooling device 700.
  • the plurality of first fastening parts 621a and 621b may protrude in a direction away from the first surface 610a on the second surface 610b.
  • a plurality of first fastening parts 621a and 621b may be disposed at both sides of the opening 612 to secure the fastening with the cooling device 700.
  • the plurality of first fastening parts 621a and 621b may be spaced apart in the vertical direction on both sides of the opening 612.
  • the first fastening protrusions 714 and 715 of the cooling device 700 to be described later are accommodated in a portion corresponding to the plurality of first fastening parts 621a and 621b on the first surface 610a of the mounting plate 610.
  • First protrusion part receiving grooves 621 and 622 may be formed.
  • a rib receiving groove 625 may be formed in the second surface 610b of the installation plate 610.
  • the rib receiving groove 625 connects the space in the receiving portion 611 with the first protrusion receiving grooves 621 and 622.
  • the installation plate 610 may further include a second fastening part 623 for fastening with the inner case 510.
  • the second fastening portion 623 may be formed on both sides of the receiving portion 611, respectively.
  • the second fastening part 623 may protrude from the second surface 610b of the installation plate 610.
  • the inner case 510 may be provided with a plate fastening boss 516 aligned with the second fastening part 623.
  • the plate fastening boss 116 may protrude from the rear surface of the inner case 510.
  • the second fastening part 623 is positioned at two points or two adjacent points of the mounting plate 610. Can be.
  • the second fastening part 623 may be located in an area corresponding to an area between the plurality of first fastening parts 621a and 621b.
  • the installation plate 610 may include a second protrusion accommodating groove 624 for accommodating the second fastening protrusion 718 of the cooling apparatus 700 to be described later.
  • the second protrusion accommodating groove 624 may be aligned with the second fastening portion 623.
  • FIG. 18 is a perspective view of a cooling apparatus according to a second embodiment of the present invention
  • FIG. 19 is a plan view of the cooling apparatus of FIG. 18,
  • FIGS. 20 and 21 are exploded perspective views of the cooling apparatus of FIG. 18.
  • the cooling device 700 may include a thermoelectric module.
  • the thermoelectric module may include a thermoelectric element 720, a cooling sink 200, a heat sink 750, and a module frame 710.
  • thermoelectric module may maintain the temperature of the storage compartment 511 by utilizing a Peltier effect. Since the thermoelectric module itself is a well-known technology, details of driving principles will be omitted.
  • the cooling device 700 may pass through the middle plate 550 and may be disposed in front of the rear panel 560.
  • the thermoelectric element 720 may include a low temperature part and a high temperature part, and the low temperature part and the high temperature part may be determined according to a direction of a voltage applied to the thermoelectric element 720.
  • the low temperature portion of the thermoelectric element 720 may be disposed closer to the inner case 510 than the high temperature portion.
  • the low temperature part may contact the cooling sink 200, and the high temperature part may contact the heat sink 750.
  • the cooling sink 200 cools the storage compartment 511, and heat dissipation may occur in the heat sink 750.
  • the fuse 725 When a fuse 725 is connected to the thermoelectric element 720 and an overvoltage is applied to the thermoelectric element 720, the fuse 725 may block a voltage applied to the thermoelectric element 720.
  • the cooling device 700 further includes a cooling fan for flowing air from the storage compartment 511 to the cooling sink 200 and a heat dissipation fan 790 for flowing external air to the heat sink 750. can do.
  • the cooling fan may be disposed in front of the cooling sink 730, and the heat radiating fan 790 may be disposed at the rear of the heat sink 750.
  • the cooling fan may be disposed to face the cooling sink 530, and the heat radiating fan 590 may be disposed to face the heat sink 550.
  • the cooling fan may be disposed inside the inner case 510.
  • the cooling fan may be covered by a fan cover.
  • the cooling device 700 may further include a sensor module 300.
  • the sensor module 300 may be disposed in the cooling sink 200. A structure for installing the sensor module 300 in the cooling sink 200 will be described later with reference to the drawings.
  • the cooling device 700 may further include a heat insulating member 770 surrounding the thermoelectric element 720.
  • the thermoelectric element 720 may be located in the heat insulating member 770.
  • the heat insulating member 770 may be provided with an element mounting hole 771 opened in the front-rear direction.
  • the thermoelectric element 720 may be located in the element mounting hole 771.
  • the thickness in the front-rear direction of the heat insulating member 770 may be thicker than the thickness of the thermoelectric element 771.
  • the heat insulating member 770 may prevent the heat of the thermoelectric element 720 from being conducted around the thermoelectric element 720, thereby increasing the cooling efficiency of the thermoelectric element 720. Since the circumference of the thermoelectric element 720 is covered by the heat insulating member 770, heat transmitted from the cooling sink 200 to the heat sink 750 may not be dissipated to the periphery.
  • the cooling sink 200 may be disposed to contact the thermoelectric element 720.
  • the cooling sink 200 may be maintained at a low temperature in contact with the low temperature portion of the thermoelectric element 720.
  • the cooling sink 200 may include a base 210 and a cooling fin 220.
  • the base 210 may be disposed to contact the thermoelectric element 720. At least a portion of the base 210 may be inserted into an element mounting hole 771 formed in the heat insulating member 770 to be in contact with the thermoelectric element 720.
  • the base 210 may include a protrusion 211a having a protruding shape to be inserted into the device mounting hole 771.
  • the base 210 may be in contact with the low temperature portion of the thermoelectric element 720 to conduct cold air to the cooling fin 220.
  • the cooling fin 220 may be disposed to contact the base 210.
  • the base 210 may be located between the cooling fins 220 and the thermoelectric element 720, and the cooling fins 220 may be located in front of the base 210.
  • the cooling fin 220 may be positioned in the storage compartment 511 through the inner case 510.
  • the inner case 510 may include a flow path forming part 515 forming a cooling flow path.
  • the cooling fin 220 may be positioned in the cooling flow path, and may cool the air by heat exchange with air in the cooling flow path.
  • the cooling fins 220 may include a plurality of fins, and the plurality of fins may contact the base 210.
  • Each of the plurality of pins may extend in the vertical direction and be arranged to be spaced apart from each other in the horizontal direction.
  • the module frame 710 may include a box-shaped frame body 711.
  • a space 712 may be formed in the frame body 711 to accommodate the heat insulating member 770 or the thermoelectric element 720. Since the thermoelectric element 720 is accommodated in the heat insulating member 770, the thermoelectric element 720 may be located in the space 712.
  • the module frame 710 may be formed of a material capable of minimizing heat loss due to heat conduction.
  • the module frame 710 may have a non-metallic material such as plastic.
  • the module frame 710 may prevent the heat of the heat sink 750 from being conducted to the cooling sink 200.
  • a gasket 719 may be coupled to the front surface of the frame body 711.
  • the gasket 719 may have an elastic material such as rubber.
  • the gasket 719 may be formed in a rectangular ring shape, but is not limited thereto.
  • the gasket 719 may be a sealing member.
  • a gasket groove 711a may be formed on the front surface of the frame body 711 to accommodate the gasket 719.
  • the frame body 711 may be accommodated in the accommodation portion 611 of the installation plate 610.
  • the frame body 711 may be in contact with the wall 611a forming the receiving portion 611.
  • the gasket 719 coupled to the frame body 711 may be in contact with the bottom of the receiving portion 611.
  • the heat dissipation passage 690 formed between the middle plate 550 and the rear panel 560 and the cooling passage may be prevented from communicating by the gasket 719.
  • the module frame 710 may further include a coupling plate 713 extending from the frame body 711.
  • the coupling plate 713 may extend from both sides of the frame body 711, for example.
  • the coupling plate 713 is configured to be coupled to the mounting bracket 600.
  • the coupling plate 713 may be provided with a plurality of first fastening protrusions 714 and 715 for fastening with the plurality of first fastening parts 621a and 621b.
  • the plurality of first fastening protrusions 714 and 715 may be spaced apart in the vertical direction.
  • the coupling plate 713 may further include a second fastening protrusion 718 for fastening with the second fastening portion 623.
  • the second fastening protrusion 718 has a point that divides the height of the module frame 710 into two or It may be located adjacent to the bisecting point.
  • the fastening member may fasten the plate fastening boss 516, the second fastening part 623, and the second fastening protrusion 718.
  • the coupling plate 713 is minimized so that the coupling plate 713 is deformed with respect to the frame body 711 while the coupling member is fastened to the plurality of first coupling protrusions 714 and 715.
  • a connecting rib 716 connecting the frame body 711 and the first fastening protrusions 714 and 715 may protrude from the 713.
  • the fastening member fastened to the second fastening protrusion 718 allows the gasket 719 of the frame body 711 to be in contact with the bottom of the receiving portion 611.
  • the heat sink 750 may include a heat dissipation plate 753, a heat dissipation pipe 752, and a heat dissipation fin 751.
  • the heat dissipation fins 751 may include a plurality of fins stacked in a state spaced apart in the vertical direction.
  • the heat dissipation plate 753 is formed in a thin plate shape and is coupled to contact the heat dissipation fin 751.
  • the heat sink 750 may further include an element contact plate 754 for contacting the thermoelectric element 720.
  • An area of the device contact plate 754 may be smaller than that of the heat dissipation plate 753.
  • the device contact plate 754 may be formed to be substantially the same size as the thermoelectric device 720.
  • the device contact plate 754 may be located in the device mounting hole 771 formed in the heat insulating member 770.
  • the device contact plate 754 and the thermoelectric element 720 may be in surface contact with each other.
  • a thermal grease or a thermal compound may be applied between the device contact plate 754 and the thermoelectric device 720 to increase a thermal conductivity by filling a minute gap.
  • the heat dissipation plate 753 may be in contact with a high temperature portion of the thermoelectric element 720 to conduct heat to the heat dissipation pipe 752 and the plurality of heat dissipation fins 751.
  • the heat dissipation fin 751 may be located behind the middle plate 550.
  • the heat dissipation fin 751 may be positioned between the middle plate 550 and the rear panel 560, and may radiate heat by exchanging heat with external air sucked by the heat dissipation fan 790.
  • the heat dissipation fan 790 may be disposed to face the heat sink 750, and may blow external air to the heat sink 750.
  • the heat radiating fan 790 may include a fan 792 and a shroud 793 surrounding the outside of the fan 792.
  • the fan 792 may be, for example, an axial fan.
  • the heat radiating fan 790 may be spaced apart from the heat sink 750. As a result, the flow resistance of the air blown by the heat radiating fan 790 may be minimized, and heat exchange efficiency of the heat sink 750 may be increased.
  • the heat radiating fan 790 may be fixed to the heat sink 750 by a fixing pin 780.
  • the fixing pin 780 may be coupled to the plurality of heat dissipation fins 751.
  • the fixing pin 780 may pass through the shroud 793.
  • the shroud 793 may be spaced apart from the heat dissipation fin 751 while the shroud 793 is coupled to the fixing pin 780.
  • the fixing pin 780 may be formed of a material having low thermal conductivity such as rubber or silicon. Therefore, since the heat radiating fan 790 is coupled to the fixing fin 780, vibration generated in the rotation process of the fan 792 may be minimized to be transmitted to the heat sink 750.
  • FIG. 22 is a front view illustrating a sensor module installed in a cooling sink according to a second embodiment of the present invention
  • FIG. 23 is a perspective view illustrating a sensor module installed in a cooling sink according to a second embodiment of the present invention.
  • FIG. 24 is a top view of a cooling sink according to another embodiment of the present invention
  • FIG. 25 is a perspective view of a sensor module according to a second embodiment of the present invention
  • FIG. 26 is a sensor holder according to a second embodiment of the present invention. Is a longitudinal cross-sectional view of.
  • the sensor module 300 may include a defrost temperature sensor 350 and a sensor holder 301 to which the defrost temperature sensor 350 is mounted.
  • the sensor holder 301 may be mounted to the cooling sink 200.
  • the cooling sink 200 may include a base 210 and a cooling fin 220 extending from the base 210.
  • the cooling fins 220 may include a plurality of fins 221, 231, 232, and 234.
  • the plurality of pins 221, 231, 232, and 234 may be arranged in parallel in a state spaced apart in the horizontal direction.
  • the plurality of pins 221, 231, 232, and 234 may extend in the vertical direction.
  • the sensor module 300 may be coupled to some of the pins 221, 231, 232, and 234.
  • the defrost temperature sensor 350 adjusts the temperatures of the plurality of pins 221, 231, 232, and 234. It has the advantage of being able to measure accurately.
  • the plurality of pins 221, 231, 232, and 234 may include a plurality of first pins 221.
  • the upper and lower lengths of the plurality of first pins 221 are not limited, but may be the same as the upper and lower lengths of the base 210.
  • the plurality of pins 221, 231, 232, and 234 may include a second pin 231 and a third pin 232 to which the sensor holder 301 is coupled.
  • the second pin 231 and the third pin 232 may be collectively referred to as a coupling pin.
  • the second pin 231 may be referred to as a first coupling pin
  • the third pin 232 may be referred to as a second coupling pin.
  • the second pin 231 and the third pin 232 may be spaced apart in the horizontal direction.
  • each of the second pin 231 and the third pin 232 from the base 210 is shorter than the protruding length of the first pin 221.
  • Protruding lengths of the second pin 231 and the third pin 232 from the base 210 may be the same.
  • each of the second fin 231 and the third fin 232 is shorter than the protruding length of the first fin 221 is because of the second fin 231 and the third fin 232. This is to minimize the length of the sensor holder 301 protrudes forward of the first pin 221 in the state in which the sensor holder 301 is coupled to the sensor holder 301.
  • the third pin 232 may be located at the outermost position among the plurality of pins 221, 231, 232, and 234.
  • the highest point of the second pin 232 and the highest point of the third pin 233 may be located at the same height.
  • the sensor holder 301 is coupled to the second pin 232 and the third pin 233 at a position close to the highest point or the highest point of the second pin 232 and the third pin 233. Can be. The reason is to minimize the flow of liquid such as defrost water to the sensor module (300).
  • the vertical length of the third pin 232 may be shorter than the vertical length of the second pin 231. This is to secure a space in which a fastening member for fastening the base 210 to the heat insulating material 113 is positioned below the third pin 232.
  • a fifth fin 233 having the same shape as the third fin 232 may be provided below the third fin 232 so as to prevent the cooling performance from being lowered.
  • One or more fourth pins 234 may be provided between the second pin 231 and the third pin 232.
  • the fourth pin 234 serves to support the sensor module 300 coupled to the second pin 231 and the third pin 232. Therefore, the fourth pin 234 may be referred to as a support pin.
  • the protruding length of the fourth pin 234 from the base 210 may be the second pin 231 and the third pin ( It is formed shorter than the protruding length of 232).
  • a plurality of fourth pins 234 may be located between the second pin 231 and the third pin 232.
  • the sensor module 300 includes the second pin 231 and the third pin 232 in a direction closer to the base 210 in front of the second pin 231 and the third pin 232. Is coupled to.
  • the sensor module 300 may contact the fourth pin 234 while the sensor module 300 is coupled to the second pin 231 and the third pin 232. When the sensor module 300 is in contact with the fourth pin 234, the coupling of the sensor module 300 may be terminated.
  • the second pin 231 or the third pin 232 may be disconnected due to excessive force. Deformation can be prevented.
  • the sensor holder 301 may include a holder frame 310 surrounding the defrost temperature sensor 350.
  • the holder frame 310 may include a sensor accommodating space 312 for accommodating the defrost temperature sensor 350.
  • the defrost temperature sensor 350 is not limited, but is formed in a shape that extends upward and downward, and the holder frame 310 is a rectangular parallelepiped having a longer length than the left and right widths to accommodate the defrost temperature sensor 350. It may be formed in the form.
  • At least a portion of the defrost temperature sensor 350 may be formed in a cylindrical shape.
  • the holder frame 310 may include an inlet opening 311 for accommodating the defrost temperature sensor 350 into the sensor accommodation space 312.
  • the inlet opening 311 of the holder frame 310 may be provided with a plurality of anti-separation protrusions 314 for preventing the defrost temperature sensor 350 introduced into the sensor accommodation space 312 from falling out. have.
  • the plurality of anti-separation protrusions 314 may be arranged to be spaced apart from each other in the vertical direction as well as spaced apart from each other. That is, the plurality of anti-separation protrusions 314 may be arranged up and down on each of the left and right sides of the holder frame 310.
  • the holder frame 310 may be provided with a support 332 for elastically supporting the defrost temperature sensor 350 introduced into the sensor accommodating space 312.
  • a pair of supports 332 arranged up and down may support the defrost temperature sensor 350.
  • the pair of support portions 332 may be arranged spaced apart in the vertical direction.
  • the support part 332 may be provided in a form deformable in the holder frame 310 so that the support part 332 elastically supports the defrost temperature sensor 350.
  • the support part 332 may be deformable with respect to the holder frame 310.
  • the slits 330 may be formed at both sides of the support part 332.
  • the support part 332 may include a convex part 334 to enable elastic support of the defrost temperature sensor 350 by the support part 332.
  • the convex portion 334 may be convex toward the inlet opening 311.
  • the defrost temperature sensor 350 may contact the convex portion 334.
  • the defrosting temperature sensor 350 presses the convex portion 334 so that the plurality of anti-separation protrusions 314 may contact the defrosting temperature sensor 350 while the support portion 332 is elastically deformed. Can be.
  • the defrost temperature sensor 350 may be prevented from moving in the holder frame 310.
  • Stoppers 335 and 336 for limiting the movement of the defrost temperature sensor 350 may be provided in an area between the pair of support parts 332 of the holder frame 310.
  • the stoppers 335 and 336 may protrude in directions close to each other on both inner side surfaces of the holder frame 310.
  • a pair of stoppers 335 and 336 may be provided in the holder frame 310 in a state spaced apart in the horizontal direction.
  • a drawing opening 326 for drawing the wire 360 connected to the defrost temperature sensor 350 may be formed.
  • the sensor holder 301 may be coupled to the cooling fin 220 while the defrost temperature sensor 350 is standing.
  • the holder frame 310 may cover the top surface of the defrost temperature sensor 350. Therefore, the liquid such as the defrost water can be prevented from falling directly to the upper surface of the defrost temperature sensor 350.
  • the sensor holder 301 may further include a pin coupling part 341 to be coupled to the cooling fin 220.
  • the pin coupling part 341 may be provided at both sides of the holder frame 310.
  • the pin coupling portion 341 of one side of the holder frame 310 may be coupled to the second pin 231, and the pin coupling portion 341 of the other side may be coupled to the third pin 232. .
  • the second pin 231 and the third pin 232 may be fitted to the pin coupling portion 341.
  • the pin coupling portion 341 includes a first extension portion 342 extending vertically from the holder frame 310 and a second extension portion extending vertically from an end of the first extension portion 342. 344 may be included.
  • the second extension part 344 is disposed to face each other in a state spaced apart from the side of the holder frame 310. That is, the first extension part 342 serves to allow the second extension part 344 to be spaced apart from the holder frame 310.
  • the coupling pin may be inserted between the holder frame 310 and the second extension portion 344.
  • At least one of the extensions 344 may be formed with anti-slip protrusions 328 and 345.
  • the plurality of anti-slip protrusions 328 and 345 may be arranged to be spaced apart in the vertical direction.
  • the user may fix the sensor holder 301 to the cooling fin 220 only by moving the sensor holder 301 toward the cooling fin 220.
  • the sensor holder 301 is moved toward the cooling fin 220, and the coupling pin is fitted to the pin coupling part 341. .
  • the sensor holder 301 is prevented from sliding downward with respect to the coupling pin by the anti-slip protrusions 328 and 345. Can be.
  • the sensor holder 301 is coupled to an upper corner of the cooling fin 220, so that liquid such as the defrost water may fall to the sensor holder 310.
  • the defrost temperature sensor 350 When the sensor holder 301 is coupled to the cooling fins, the defrost temperature sensor 350 is elastically supported by the support 334 so that the defrost temperature sensor 350 contacts the fourth fin 234. Can remain in one state.
  • the defrost temperature sensor 350 in a state where the defrost temperature sensor 350 is accommodated in the sensor accommodating space 312, a part of the defrost temperature sensor 350 protrudes out of the holder frame 310, and the defrost temperature sensor ( The protruding portion of 350 may contact the fourth pin 234.
  • the defrost temperature sensor 350 can accurately measure the temperature of the cooling fin 220, and thus can accurately determine the defrost need time.
  • a drawing opening 326 for drawing out the wire 360 is formed below the holder frame 310, and the pin coupling part 341 is positioned at both sides of the holder frame 310, thereby providing the pins with the pins. The flow of the liquid falling along the coupling portion 341 to the wire 60 side can be minimized.
  • the refrigerator described above is not limited to the configuration and method of the above-described embodiments, but the embodiments may be configured by selectively combining all or some of the embodiments so that various modifications can be made.

Abstract

A refrigerator of the present invention comprises: a cabinet forming a storage room; a door for opening or closing the storage room; a thermoelectric element module which is disposed at the cabinet to cool the storage room and includes a thermoelectric element, a cooling sink in contact with the thermoelectric element, and a heat sink in contact with the thermoelectric element; and a sensor module which is installed in the cooling sink and includes a defrost temperature sensor for sensing the temperature of the cooling sink.

Description

냉장고Refrigerator
본 명세서는 냉장고에 관한 것이다. The present specification relates to a refrigerator.
열전소자는 펠티어 효과(Peltier Effect)를 이용하여 흡열과 발열을 구현하는 소자를 가리킨다. 펠티어 효과는 소자의 양 단에 전압을 인가하면, 전류의 방향에 따라 한쪽 면에서는 흡열 현상이 발생하고, 반대쪽 면에서는 발열 현상이 일어나는 효과를 가리킨다. 이 열전소자는 냉동사이클 장치 대신 냉장고에 이용될 수 있다. The thermoelectric element refers to a device that implements heat absorption and heat generation using the Peltier Effect. The Peltier effect refers to the effect that when a voltage is applied to both ends of the device, an endothermic phenomenon occurs on one side and an exothermic phenomenon occurs on the opposite side depending on the direction of the current. This thermoelectric element may be used in a refrigerator instead of a refrigeration cycle device.
일반적으로 냉장고는 내부에 단열재로 충전된 캐비닛과 도어에 의해, 외부에서 침투하는 열을 차단 가능한 식품 저장공간을 형성한다. 또한, 상기 냉장고는 상기 식품 저장공간 내부의 열을 흡수하는 증발기와 상기 식품저장공간 외부로 수집된 열을 배출하는 방열장치로 구성된 냉동장치를 구비한다. 상기 냉장고는, 상기 냉동장치를 이용하여 상기 식품 저장공간을 미생물의 생존 및 증식이 어려운 저온의 온도영역으로 유지하여, 저장된 식품을 장기간 변질 없이 보관한다. In general, the refrigerator forms a food storage space capable of blocking heat penetrating from the outside by cabinets and doors filled with heat insulating material therein. The refrigerator may include a freezing device including an evaporator for absorbing heat inside the food storage space and a heat dissipation device for discharging heat collected outside the food storage space. The refrigerator maintains the food storage space in a low temperature temperature area where microorganisms cannot survive and multiply by using the freezing device, and stores the stored food without deterioration for a long time.
상기 냉장고는 영상의 온도영역으로 식품을 저장하는 냉장실과 영하의 온도영역으로 식품을 저장하는 냉동실로 분리하여 형성될 수 있다. 상기 냉장실과 냉동실의 배치에 따라, 상부 냉동실과 하부 냉장실을 배치한 탑 프리저(Top Freezer) 냉장고와 하부 냉동실과 상부 냉장실을 배치한 바텀 프리저(Bottom Freezer) 냉장고, 그리고 좌측 냉동실과 우측 냉장실로 배치한 사이드 바이 사이드(Side by side) 냉장고 등으로 분류될 수 있다. The refrigerator may be formed by being divided into a refrigerating chamber storing food in a temperature region of an image and a freezing chamber storing food in a sub-zero temperature region. According to the arrangement of the refrigerator compartment and the freezer compartment, a top freezer refrigerator having an upper freezer compartment and a lower refrigerator compartment, a bottom freezer refrigerator having a lower freezer compartment and an upper refrigerator compartment, and a left freezer compartment and a right freezer compartment Side by side refrigerators and the like can be classified.
그리고, 사용자가 상기 식품 저장공간에 저장된 식품을 편리하게 적치하거나, 인출하기 위해, 냉장고는 다수개의 선반과 서랍 등을 상기 식품 저장공간 내부에 구비할 수 있다. In addition, the refrigerator may include a plurality of shelves and drawers in the food storage space in order for the user to conveniently load or withdraw the food stored in the food storage space.
식품 저장공간을 냉각하는 냉동장치가 압축기, 응축기, 팽창기, 증발기 등으로 이루어진 냉동사이클 장치로 구현되면, 압축기에서 발생되는 진동과 소음을 원천적으로 차단하기 어렵다. If the refrigeration apparatus for cooling the food storage space is implemented as a refrigeration cycle device consisting of a compressor, a condenser, an expander, an evaporator, it is difficult to fundamentally block the vibration and noise generated from the compressor.
특히 최근에는 화장품 냉장고 등과 같이 냉장고의 설치 장소가 주방으로만 한정되지 않고 거실이나 침실 등으로 확장되고 있는데, 소음과 진동이 원천적으로 차단되지 못한다면 냉장고 사용자에게 큰 불편을 일으키게 된다.In particular, recently, the installation place of the refrigerator, such as a cosmetic refrigerator, is not limited to the kitchen but is expanded to the living room or the bedroom, etc., if noise and vibration are not blocked at the source, it causes great inconvenience to the refrigerator user.
열전소자를 냉장고에 적용하면 냉동사이클 장치 없이도 식품 저장공간을 냉각할 수 있다. 특히 열전소자는 압축기와 달리 소음과 진동을 발생시키지 않는다. 따라서, 열전소자가 냉장고에 적용된다면 주방 이외의 공간에 냉장고를 설치하더라도 소음과 진동의 문제를 해결할 수 있다.If the thermoelectric element is applied to a refrigerator, the food storage space can be cooled without a refrigeration cycle device. In particular, thermoelectric elements do not generate noise and vibration unlike compressors. Therefore, if the thermoelectric element is applied to the refrigerator, even if the refrigerator is installed in a space other than the kitchen, the problems of noise and vibration can be solved.
이와 관련하여 대한민국 공개특허공보 제10-2010-0057216호(2010.05.31.)에는 열전소자를 이용하여 제빙실을 냉각하는 구성이 개시되어 있다. 또한 대한민국 공개특허공보 특1997-0002215호(1997.01.24.)에는 열전소자를 구비하는 냉장고의 제어 방법이 개시되어 있다. In this regard, Korean Patent Laid-Open No. 10-2010-0057216 (2010.05.31.) Discloses a configuration of cooling an ice making chamber using a thermoelectric element. In addition, Korean Unexamined Patent Publication No. 1997-0002215 (1997.01.24.) Discloses a control method of a refrigerator having a thermoelectric element.
그러나 열전소자를 이용하여 얻을 수 있는 냉력은 냉동사이클 장치에 비해 작다. 또한 열전소자는 냉동사이클 장치와는 구별되는 고유의 특성을 갖는다. 따라서 냉동사이클 장치를 구비하는 냉장고와는 다른 냉각 운전 방법이 열전소자를 구비하는 냉장고에 적용되어야 한다. However, the cold power obtained using the thermoelectric element is smaller than that of the refrigeration cycle apparatus. In addition, thermoelectric elements have inherent characteristics that are distinguished from refrigeration cycle devices. Therefore, a cooling operation method different from a refrigerator having a refrigeration cycle apparatus should be applied to a refrigerator having a thermoelectric element.
본 발명의 일 목적은, 쿨링 싱크에 제상 온도 센서를 형성함으로써, 쿨링 싱크의 온도를 정확하게 측정할 수 있는 있는 냉장고를 제안하는 것이다. An object of the present invention is to propose a refrigerator capable of accurately measuring the temperature of a cooling sink by forming a defrost temperature sensor in the cooling sink.
본 발명의 다른 목적은, 제상 온도 센서를 구비하는 센서 모듈의 장착이 용이한 냉장고를 제안하는 것이다. Another object of the present invention is to propose a refrigerator in which a sensor module having a defrost temperature sensor is easily mounted.
본 발명의 또 다른 목적은, 제상 온도 센서에 연결되는 전선으로 액체가 유동하는 것이 최소화되는 방지되는 냉장고를 제안하는 것이다. Another object of the invention is to propose a refrigerator which is prevented from flowing of liquid to the wires connected to the defrost temperature sensor.
본 발명의 또 다른 목적은 전압의 극성에 따라 냉각 또는 발열을 하는 열전소자의 특성을 고려하여 열전소자와 팬을 구비하는 냉장고에 적합한 제어 방법과 이 제어 방법에 의해 제어되는 냉장고를 제안하는 것이다. Another object of the present invention is to propose a control method suitable for a refrigerator having a thermoelectric element and a fan and a refrigerator controlled by the control method in consideration of the characteristics of a thermoelectric element that cools or generates heat depending on the polarity of the voltage.
본 발명의 또 다른 목적은 제상 운전의 신뢰성을 확보하도록 열전소자모듈의 구동 적산 시간, 냉장고의 외부 온도, 열전소자모듈의 온도 등에 근거하여 제상 운전을 구동하는 냉장고를 제안하는 것이다.Another object of the present invention is to propose a refrigerator for driving defrosting operation based on a driving integration time of a thermoelectric element module, an external temperature of a refrigerator, a temperature of a thermoelectric element module, and the like so as to ensure reliability of a defrosting operation.
본 발명의 또 다른 일 목적은 자연적으로 서리를 제거하는 자연 제상 운전과 열원을 이용한 열원 제상 운전을 복합적으로 가동하여 제상 효율을 향상시킬 수 있는 냉장고를 제안하는 것이다.Another object of the present invention is to propose a refrigerator that can improve defrosting efficiency by operating a natural defrosting operation which naturally removes frost and a heat source defrosting operation using a heat source.
본 발명의 또 다른 일 목적은 제상 운전의 신뢰성을 확보하도록 온도 조건에 근거하여 제상 운전을 종료하도록 형성되는 냉장고를 제안하는 것이다. Another object of the present invention is to propose a refrigerator which is formed to end the defrosting operation on the basis of the temperature condition to ensure the reliability of the defrosting operation.
일 측면에 따른 냉장고는, 저장실을 형성하는 캐비닛; 상기 저장실을 개폐하는 도어; 상기 캐비닛에 구비되어 상기 저장실을 냉각시키며, 열전 소자와, 상기 열전 소자와 접촉하는 쿨링 싱크와, 상기 열전 소자와 접촉하는 히트 싱크를 포함하는 열전소자모듈; 및 상기 쿨링 싱크에 설치되며, 상기 쿨링 싱크의 온도를 감지하는 제상 온도 센서를 구비하는 센서 모듈을 포함한다. According to an aspect, a refrigerator includes: a cabinet forming a storage compartment; A door for opening and closing the storage compartment; A thermoelectric module provided in the cabinet to cool the storage chamber, the thermoelectric element including a thermoelectric element, a cooling sink in contact with the thermoelectric element, and a heat sink in contact with the thermoelectric element; And a sensor module installed in the cooling sink and having a defrost temperature sensor configured to sense a temperature of the cooling sink.
상기 쿨링 싱크는, 베이스와, 상기 베이스에서 연장되며 복수의 핀이 이격되어 배열되는 쿨링핀을 포함하고, 상기 센서 모듈은 상기 제상 온도 센서를 지지하며 상기 쿨링핀에 결합되는 센서 홀더를 포함한다. The cooling sink includes a base and cooling fins extending from the base and arranged with a plurality of fins spaced apart from each other, and the sensor module includes a sensor holder supporting the defrost temperature sensor and coupled to the cooling fins.
상기 센서 홀더는 상기 쿨링핀의 상부 코너 설치될 수 있다. The sensor holder may be installed at the upper corner of the cooling fin.
상기 쿨링핀은, 상하 방향으로 연장되며, 수평 방향으로 이격되는 복수의 핀을 포함하고, 상기 복수의 핀 중에서 이격되어 배치되는 일부의 핀에 상기 센서 홀더가 결합될 수 있다. The cooling fin may include a plurality of fins extending in a vertical direction and spaced apart in a horizontal direction, and the sensor holder may be coupled to a part of fins spaced apart from the plurality of fins.
상기 방열핀은, 상기 베이스로부터 돌출되는 제1핀과, 상기 베이스로부터 돌출 길이가 상기 제1핀 보다 짧은 제2핀 및 제3판을 포함하고, 상기 센서 홀더는 상기 제2핀 및 제3핀과 결합될 수 있다. The heat dissipation fin may include a first fin protruding from the base, a second fin and a third plate having a protruding length shorter than the first fin from the base, and the sensor holder having the second fin and the third fin. Can be combined.
상기 제3핀은 상기 복수의 핀 중에서 최외곽에 위치될 수 있다. The third pin may be located at the outermost part of the plurality of pins.
상기 센서 홀더는 상기 제상 온도 센서를 수용하는 홀더 프레임과, 상기 홀더 프레임에서 연장되는 복수의 핀 결합부를 포함하고, 상기 복수의 핀 결합부가 상기 제2핀 및 제3핀과 결합될 수 있다. The sensor holder may include a holder frame accommodating the defrost temperature sensor and a plurality of pin coupling parts extending from the holder frame, and the plurality of pin coupling parts may be coupled to the second pin and the third pin.
상기 각 핀 결합부는 상기 홀더 프레임에서 수직하게 연장되는 제1연장부와, 상기 제1연장부의 단부에서 수직하게 연장되며, 상기 홀더 프레임의 측면과 마주보도록 배치되는 제2연장부를 포함하고, 상기 제2핀 및 제3핀은 상기 홀더 프레임의 측면과 상기 제2연장부 사이에 끼워질 수 있다. Each of the pin coupling portions includes a first extension portion extending vertically from the holder frame and a second extension portion extending vertically from an end portion of the first extension portion and disposed to face a side surface of the holder frame. The second pin and the third pin may be fitted between the side of the holder frame and the second extension part.
상기 홀더 프레임과 상기 제2연장부 중 하나 이상에는 미끄럼 방지 돌기가 형성될 수 있다. At least one of the holder frame and the second extension part may have an anti-slip protrusion.
상기 홀더 프레임은, 상기 제상 온도 센서가 수용되기 위한 센서 수용 공간과, 상기 센서 수용 공간으로 상기 제상 온도 센서를 인입시키기 위한 인입 개구와, 상기 센서 수용 공간으로 인입된 상기 제상 온도 센서를 탄성 지지하는 지지부와, 상기 센서 수용 공간에 수용된 상기 제상 온도 센서의 탈거를 방지하기 위한 탈거 방지 돌기를 포함할 수 있다. The holder frame elastically supports a sensor accommodating space for accommodating the defrost temperature sensor, a retracting opening for introducing the defrost temperature sensor into the sensor accommodating space, and the defrost temperature sensor introduced into the sensor accommodating space. It may include a support and a removal prevention projection for preventing the removal of the defrost temperature sensor accommodated in the sensor receiving space.
상기 홀더 프레임에는 복수의 지지부가 이격되어 배치될 수 있고, 상기 복수의 지지부 사이 영역에는 상기 제상 온도 센서의 이동을 제한하기 위한 스토퍼가 구비될 수 있다. A plurality of support parts may be spaced apart from the holder frame, and a stopper for limiting the movement of the defrost temperature sensor may be provided in an area between the plurality of support parts.
상기 방열핀은 상기 제2핀과 상기 제3핀 사이에 위치되고, 상기 베이스로부터의 돌출 길이가 상기 제2핀 및 상기 제3핀 보다 짧으며, 상기 제상 온도 센서와 접촉하는 제4핀을 포함할 수 있다. The heat dissipation fin may include a fourth fin positioned between the second fin and the third fin and having a protruding length from the base that is shorter than the second fin and the third fin and in contact with the defrost temperature sensor. Can be.
상기 제상 온도 센서의 일부는 상기 센서 수용 공간에 수용된 상태에서 상기 홀더 프레임의 외측으로 돌출되고, 상기 제4핀은 상기 제상 온도 센서의 돌출된 부분에 접촉할 수 있다. A portion of the defrost temperature sensor may protrude to the outside of the holder frame in a state accommodated in the sensor accommodating space, and the fourth pin may contact the protruding portion of the defrost temperature sensor.
상기 제상 온도 센서는 폭 보다 길이가 긴 형태로 형성되고, 상기 센서 홀더에서 상기 제상 온도 센서가 세워진 상태로 상기 센서 홀더가 상기 방열핀에 결합될 수 있다. The defrost temperature sensor may be formed to have a length longer than a width, and the sensor holder may be coupled to the heat dissipation fin while the defrost temperature sensor is standing in the sensor holder.
상기 홀더 프레임의 상면은 상기 제상 온도 센서의 상면을 커버하고, 상기 홀더 프레임이 하면에는 상기 제상 온도 센서에 연결된 전선이 인출되는 인출 개구가 구비될 수 있다. An upper surface of the holder frame may cover an upper surface of the defrost temperature sensor, and a lower surface of the holder frame may include a drawing opening through which a wire connected to the defrost temperature sensor is drawn out.
다른 측면에 따른 냉장고는, 저장실을 개폐하도록 형성되는 도어; 상기 저장실을 냉각하도록 형성되는 열전소자모듈; 상기 열전소자모듈에 설치되며, 상기 열전소자모듈의 온도를 감지하도록 형성되는 제상 온도 센서; 및 상기 열전소자모듈의 출력을 제어하도록 형성되는 제어부를 포함한다. Refrigerator according to another aspect, the door is formed to open and close the storage compartment; A thermoelectric module formed to cool the storage chamber; A defrost temperature sensor installed at the thermoelectric module and configured to sense a temperature of the thermoelectric module; And a controller configured to control the output of the thermoelectric module.
상기 열전소자모듈은, 흡열부와 방열부를 구비하는 열전소자; 상기 흡열부와 접촉하도록 배치되고, 상기 저장실의 내측과 열 교환 하도록 이루어지는 쿨링 싱크; 상기 쿨링 싱크를 마주보도록 설치되며, 상기 쿨링 싱크의 열 교환을 촉진하도록 바람을 일으키는 제1 팬; 상기 방열부와 접촉하도록 배치되고, 상기 저장실의 외측과 열 교환 하도록 이루어지는 히트 싱크; 및 상기 히트 싱크를 마주보도록 설치되며, 상기 제2 히트 싱크의 열교환을 촉진하도록 바람을 일으키는 제2 팬을 포함한다.The thermoelectric device module may include a thermoelectric device including a heat absorbing part and a heat radiating part; A cooling sink disposed in contact with the heat absorbing portion and configured to exchange heat with an inside of the storage compartment; A first fan installed to face the cooling sink and generating wind to promote heat exchange of the cooling sink; A heat sink disposed in contact with the heat dissipation unit and configured to exchange heat with an outer side of the storage compartment; And a second fan installed to face the heat sink and generating wind to promote heat exchange of the second heat sink.
상기 제어부는 상기 열전소자모듈의 구동 적산 시간에 근거하여 기설정된 주기마다 상기 열전소자모듈에 착상된 서리를 제거하는 자연 제상 운전을 가동하고, 상기 제상 온도 센서에 의해 측정되는 상기 열전소자모듈의 온도가 기준 제상 종료 온도에 도달하면 상기 자연 제상 운전을 종료하도록 형성된다.The controller operates a natural defrosting operation to remove frost formed on the thermoelectric element module at predetermined intervals based on a driving integration time of the thermoelectric element module, and the temperature of the thermoelectric element module measured by the defrost temperature sensor. When the reference defrost end temperature is reached, the natural defrosting operation is terminated.
상기 자연 제상 운전의 가동을 결정하는 상기 기설정된 주기는 상기 도어의 개방 여부에 근거하여 변동된다.The predetermined period for determining the operation of the natural defrosting operation is changed based on whether the door is open.
상기 자연 제상 운전이 가동되면, 상기 열전소자의 작동이 정지되고, 상기 제1 팬이 계속해서 회전되며, 상기 제2 팬이 일시적으로 정지되었다가 기설정된 시간 경과 후에 다시 회전된다.When the natural defrosting operation is activated, the operation of the thermoelectric element is stopped, the first fan is continuously rotated, and the second fan is temporarily stopped and then rotated again after a predetermined time elapses.
상기 냉장고는 상기 냉장고의 외부 온도를 측정하도록 형성되는 외기 온도 센서를 더 포함한다.The refrigerator further includes an outside air temperature sensor configured to measure an external temperature of the refrigerator.
상기 제어부는 상기 외기 온도 센서에 의해 측정되는 외부 온도가 기준 외부 온도 이하이면 열원 제상 운전을 가동하도록 형성되고, 상기 제상 온도 센서에 의해 측정되는 상기 열전소자모듈의 온도가 상기 기준 제상 종료 온도에 도달하면 상기 열원 제상 운전을 종료하도록 형성된다.The control unit is configured to operate a heat source defrosting operation when the external temperature measured by the outside air temperature sensor is equal to or less than a reference external temperature, and the temperature of the thermoelectric element module measured by the defrost temperature sensor reaches the reference defrost end temperature. When the heat source defrosting operation is terminated.
상기 제어부는 상기 제상 온도 센서에 의해 측정되는 상기 열전소자모듈의 온도가 기준 열전소자모듈 온도 이하이면 열원 제상 운전을 가동하도록 형성되고, 상기 제상 온도 센서에 의해 측정되는 상기 열전소자모듈의 온도가 상기 기준 제상 종료 온도보다 기설정된 폭만큼 높은 온도에 도달하면 상기 열원 제상 운전을 종료하도록 형성된다.The control unit is configured to operate a heat source defrosting operation when the temperature of the thermoelectric module measured by the defrost temperature sensor is equal to or less than a reference thermoelectric module temperature, and the temperature of the thermoelectric module measured by the defrost temperature sensor is The heat source defrosting operation is terminated when reaching a temperature higher by a predetermined width than the reference defrost end temperature.
상기 열원 제상 운전이 가동되면, 상기 열전소자에 역전압이 가해지고, 상기 제1 팬과 상기 제2 팬이 회전된다.When the heat source defrosting operation is operated, a reverse voltage is applied to the thermoelectric element, and the first fan and the second fan are rotated.
상기 도어가 개방되면, 상기 자연 제상 운전의 가동을 결정하는 기설정된 주기가 상기 도어의 개방 시간에 반비례하여 짧아진다.When the door is opened, a predetermined period for determining the operation of the natural defrosting operation is shortened in inverse proportion to the opening time of the door.
상기 자연 제상 운전의 가동을 결정하는 기설정된 주기는 상기 도어의 열림에 의해 상기 도어의 열림 전보다 짧은 값으로 감소된다.The predetermined period for determining the operation of the natural defrosting operation is reduced to a shorter value than before the door is opened by the opening of the door.
상기 도어가 열렸다가 닫힌 후 기설정된 시간 내에 상기 저장실의 온도가 기설정된 온도만큼 상승한 경우, 상기 제어부는 상기 저장실의 온도를 낮추는 부하 대응을 가동하도록 형성되며, 상기 부하 대응 운전이 가동되면 상기 자연 제상 운전의 가동을 결정하는 기설정된 주기가 상기 부하 대응 운전의 가동 전보다 짧은 값으로 감소된다.When the temperature of the storage compartment rises by a predetermined temperature within a predetermined time after the door is opened and closed, the controller is configured to operate a load corresponding to lower the temperature of the storage compartment, and when the load corresponding operation is activated, the natural defrost The predetermined period for determining the operation of the operation is reduced to a shorter value than before the operation of the load corresponding operation.
상기 냉장고는 상기 저장실의 온도를 측정하도록 형성되는 고내 온도 센서를 더 포함하고, 상기 저장실을 냉각하는 냉각 운전 시 상기 제1 팬과 상기 제2 팬의 회전 속도는 상기 고내 온도 센서에 의해 측정되는 저장실의 온도 조건에 근거하여 결정되며, 상기 제상 운전 시 상기 제1 팬의 회전 속도는 상기 냉각 운전 시 상기 제1 팬의 회전 속도 이상이고, 상기 제상 운전 시 상기 제2 팬의 회전 속도는 상기 냉각 운전 시 상기 제2 팬의 회전 속도 이상이다.The refrigerator further includes an internal temperature sensor configured to measure a temperature of the storage compartment, and a rotation speed of the first fan and the second fan is measured by the internal temperature sensor during a cooling operation of cooling the storage compartment. The rotational speed of the first fan in the defrosting operation is greater than the rotational speed of the first fan in the cooling operation, and the rotational speed of the second fan in the defrosting operation. The rotation speed of the second fan is greater than or equal to that.
상기 제상 운전 시 상기 제1 팬의 회전 속도와 상기 냉각 운전 시 상기 제1 팬의 최고 회전 속도가 서로 같고, 상기 제상 운전 시 상기 제2 팬의 회전 속도와 상기 냉각 운전 시 상기 제2 팬의 최고 회전 속도가 서로 같다. The rotational speed of the first fan in the defrosting operation and the maximum rotational speed of the first fan in the cooling operation are the same, and the rotational speed of the second fan in the defrosting operation and the maximum of the second fan in the cooling operation. The rotation speeds are the same.
상기와 같은 구성의 본 발명에 의하면, 쿨링 싱크에 제상 온도 센서를 구비하는 센서 모듈이 설치되므로, 제상 온도 센서에 의해서 쿨링 싱크의 온도를 정확하게 측정할 수 있는 장점이 있다. According to the present invention having the above configuration, since the sensor module having a defrost temperature sensor is installed in the cooling sink, there is an advantage that the temperature of the cooling sink can be accurately measured by the defrost temperature sensor.
또한, 센서 홀더에 구비되는 핀 결합부에 쿨링핀을 구성하는 핀의 일부가 끼움 결합되므로, 상기 센서 홀더를 상기 쿨링핀에 쉽게 결합시킬 수 있는 장점이 있다. In addition, since a part of the pin constituting the cooling fin is coupled to the pin coupling portion provided in the sensor holder, there is an advantage that the sensor holder can be easily coupled to the cooling fin.
또한, 센서 홀더가 상기 쿨링핀의 최상측부에 설치되므로, 제상 과정에서 제상수와 같은 액체가 상기 센서 홀더 내의 제상 온도 센서로 유동하는 것이 최소화될 수 있다. In addition, since the sensor holder is installed on the uppermost side of the cooling fin, it is possible to minimize the flow of liquid such as defrost water to the defrost temperature sensor in the sensor holder during the defrosting process.
또한, 상기 홀더 프레임의 하측에 전선 인출을 위한 개구가 형성되고, 상기 핀 결합부는 상기 홀더 프레임의 양측에 위치되므로, 상기 핀 결합부를 따라 낙하되는 액체가 상기 전선 측으로 유동하는 것이 최소화될 수 있다. In addition, since openings for drawing wires are formed in the lower side of the holder frame, and the pin coupling portions are located at both sides of the holder frame, the liquid falling along the pin coupling portion can be minimized to flow to the wire side.
열전소자모듈의 구동 적산 시간 의해 제상 운전이 가동되며, 도어의 개방 등에 근거하여 제상 주기가 본래보다 짧아지도록 구성되므로, 냉장고의 작동 상황에 따른 제상 주기 변화를 통해 제상 운전의 신뢰성을 제고할 수 있다.The defrosting operation is operated by the driving integration time of the thermoelectric element module, and the defrosting cycle is shorter than the original based on the opening of the door, so that the reliability of the defrosting operation can be improved by changing the defrosting cycle according to the operation status of the refrigerator. .
또한 열전소자모듈의 구동 적산 시간뿐만 아니라 외기 온도 센서에 의해 측정되는 냉장고의 외부 온도나, 제상 온도 센서에 의해 측정되는 열전소자모듈의 온도에 근거하여 제상 운전이 추가 가동될 수 있도록 구성되므로, 여러 변수들에 근거하여 제상 운전이 효율적으로 가동될 수 있다.In addition, the defrosting operation may be additionally operated based on the temperature of the thermoelectric module measured by the defrost temperature sensor or the external temperature of the refrigerator measured by the outside temperature sensor as well as the driving integration time of the thermoelectric module. The defrosting operation can be operated efficiently based on the variables.
또한 본 발명은, 신속한 제상을 필요로 하지 않는 경우에는 자연 제상 운전이 가동되어 소비 전력 절감을 구현하고, 신속한 제상을 필요로 하는 경우에는 열원 제상 운전이 가동되어 제상 운전의 효과를 극대화할 수 있다.In addition, the present invention, when the defrosting is not required to operate the natural defrosting operation is implemented to reduce the power consumption, if the need for rapid defrosting heat source defrosting operation can be operated to maximize the effect of the defrosting operation. .
또한 본 발명은, 제상 온도 센서에 의해 측정되는 열전소자모듈의 온도에 근거하여 제상 운전을 종료하므로 제상 운전의 신뢰성을 제고할 수 있다. 또한 과착상 조건에서는 제상 운전을 종료하는 본래의 기준 제상 종료 온도보다 높은 온도에서 제상 운전을 종료하도록 이루어지므로, 과착상에 의한 쿨링 싱크의 유로 폐색 등의 문제를 해결할 수 있다. In addition, since the defrosting operation is terminated based on the temperature of the thermoelectric element module measured by the defrosting temperature sensor, the present invention can improve the reliability of the defrosting operation. In addition, in the defrosting condition, the defrosting operation is terminated at a temperature higher than the original reference defrosting end temperature at which the defrosting operation is terminated, so that problems such as clogging of the cooling sink passage due to the overdeposition can be solved.
도 1은 열전소자모듈을 구비하는 냉장고의 제1실시 예를 보인 개념도다.1 is a conceptual view illustrating a first embodiment of a refrigerator having a thermoelectric module.
도 2는 본 발명의 일 실시 예에 따른 열전소자모듈의 분해 사시도다.2 is an exploded perspective view of a thermoelectric module according to an exemplary embodiment of the present invention.
도 3은 열전소자모듈과 제상 온도 센서의 사시도다.3 is a perspective view of a thermoelectric module and a defrost temperature sensor.
도 4는 도 3에 도시된 열전소자모듈과 제상 온도 센서의 평면도다.4 is a plan view of the thermoelectric element module and the defrost temperature sensor shown in FIG.
도 5는 본 발명에서 제안하는 냉장고의 제어 방법을 보인 흐름도다.5 is a flowchart illustrating a control method of a refrigerator proposed by the present invention.
도 6은 저장실의 온도가 제1 온도 구간 내지 제3 온도 구간 중 어느 구간에 속하는지에 근거한 냉장고의 제어 방법을 설명하기 위한 개념도다.FIG. 6 is a conceptual view illustrating a control method of a refrigerator based on which section of a first temperature section to a third temperature section belongs to a storage compartment.
도 7은 본 발명에서 제안하는 냉장고의 제상 운전 제어를 보인 흐름도다.7 is a flowchart illustrating defrost operation control of the refrigerator proposed by the present invention.
도 8은 냉각 운전과 자연 제상 운전에 따른 열전소자의 출력, 제1 팬의 회전 속도, 제2 팬의 회전 속도를 시간의 흐름에 따라 나타낸 개념도다.8 is a conceptual diagram illustrating the output of the thermoelectric element, the rotational speed of the first fan, and the rotational speed of the second fan according to the passage of time according to the cooling operation and the natural defrosting operation.
도 9는 냉각 운전과 열원 제상 운전에 따른 열전소자의 출력, 제1 팬의 회전 속도, 제2 팬의 회전 속도를 시간의 흐름에 따라 나타낸 개념도다.9 is a conceptual diagram illustrating the output of the thermoelectric element, the rotational speed of the first fan, and the rotational speed of the second fan according to the passage of time according to the cooling operation and the heat source defrosting operation.
도 10은 열전소자모듈을 구비하는 냉장고의 부하 대응 운전 제어를 보인 흐름도다. 10 is a flowchart illustrating load control operation control of a refrigerator having a thermoelectric module.
도 11은 본 발명의 제2실시 예에 따른 냉장고의 사시도.11 is a perspective view of a refrigerator according to a second embodiment of the present invention.
도 12는 도 11에서 도어가 열린 상태를 보여주는 사시도.FIG. 12 is a perspective view illustrating an open state of the door in FIG. 11; FIG.
도 13은 도 11의 냉장고의 평면도.FIG. 13 is a plan view of the refrigerator of FIG. 11; FIG.
도 14는 본 발명의 일 실시 예에 따른 캐비닛의 분해 사시도. 14 is an exploded perspective view of a cabinet according to an embodiment of the present invention.
도 15는 본 발명의 제2실시 예에 따른 미들 플레이트가 조립되기 전 상태를 보여주는 도면.15 is a view showing a state before the middle plate is assembled according to the second embodiment of the present invention.
도 16은 본 발명의 제2실시 예에 따른 미들 플레이트가 조립 완료된 상태를 보여주는 도면.16 is a view showing a state in which the middle plate is assembled according to the second embodiment of the present invention.
도 17은 본 발명의 제2실시 예에 따른 설치 브라켓의 사시도.17 is a perspective view of an installation bracket according to a second embodiment of the present invention.
도 18은 본 발명의 제2실시 예에 따른 냉각 장치의 사시도.18 is a perspective view of a cooling apparatus according to a second embodiment of the present invention.
도 19는 도 18의 냉각 장치의 평면도.19 is a plan view of the cooling device of FIG.
도 20 및 도 21은 도 18의 냉각 장치의 분해 사시도.20 and 21 are exploded perspective views of the cooling device of FIG.
도 22는 본 발명의 제2실시 예에 따른 센서 모듈이 쿨링 싱크에 설치된 모습을 보여주는 정면도.22 is a front view showing a state in which a sensor module according to a second embodiment of the present invention is installed in a cooling sink.
도 23은 본 발명의 제2실시 예에 따른 센서 모듈이 쿨링 싱크에 설치된 모습을 보여주는 사시도. 23 is a perspective view illustrating a sensor module installed in a cooling sink according to a second embodiment of the present invention.
도 24는 본 발명의 제2실시 예에 따른 쿨링 싱크의 상면도.24 is a top view of a cooling sink according to a second embodiment of the present invention.
도 25는 본 발명의 제2실시 예에 따른 센서 모듈의 사시도.25 is a perspective view of a sensor module according to a second embodiment of the present invention.
도 26은 본 발명의 제2실시 예에 따른 센서 홀더의 종단면도. 26 is a longitudinal sectional view of the sensor holder according to the second embodiment of the present invention.
이하, 본 발명에 관련된 냉장고에 대하여 도면을 참조하여 보다 상세하게 설명한다. 본 명세서에서는 서로 다른 실시예라도 동일, 유사한 구성에 대해서는 동일, 유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다. 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. EMBODIMENT OF THE INVENTION Hereinafter, the refrigerator which concerns on this invention is demonstrated in detail with reference to drawings. In the present specification, different embodiments are given the same or similar reference numerals for the same or similar components, and description thereof is replaced with the first description. As used herein, the singular forms "a", "an" and "the" include plural forms unless the context clearly indicates otherwise.
도 1은 열전소자모듈을 구비하는 냉장고의 제1실시 예를 보인 개념도다.1 is a conceptual view illustrating a first embodiment of a refrigerator having a thermoelectric module.
본 발명의 냉장고(100)는 협탁(small side table)과 냉장고(100)의 기능을 동시에 수행하도록 이루어진다. 협탁은 본래 침대 옆이나 주방의 한 켠에 두고 사용하는 작은 탁자를 가리킨다. 협탁은 그 윗면에 스탠드 등을 올려 놓을 수 있도록 이루어지고, 그 내부에는 소품을 수납할 수 있도록 이루어진다. 본 발명의 냉장고(100)는 스탠드 등을 올려 놓을 수 있는 협탁 본래의 기능을 그대로 유지하면서, 그 내부에 식품 등을 저온으로 보관할 수 있도록 이루어진다.The refrigerator 100 of the present invention is configured to simultaneously perform the functions of a small side table and the refrigerator 100. A side table refers to a small table that is originally used by the bedside or on the side of the kitchen. The side table is made so that a stand or the like can be placed on the upper surface thereof, and an accessory can be stored therein. The refrigerator 100 of the present invention is made so that food and the like can be stored at a low temperature therein, while maintaining the original function of the side table where a stand or the like can be placed.
도 1을 참조하면, 냉장고(100)의 외관은 캐비닛(110)(cabinet)과 도어(130)(door)에 의해 형성된다. Referring to FIG. 1, the exterior of the refrigerator 100 is formed by a cabinet 110 and a door 130.
캐비닛(110)은 이너 케이스(111), 아웃 케이스(112) 및 단열재(113)에 의해 형성될 수 있다. The cabinet 110 may be formed by the inner case 111, the out case 112, and the heat insulating material 113.
이너 케이스(111)는 아웃 케이스(112)의 내측에 설치되며, 식품을 저온으로 저장할 수 있는 저장실(120)을 형성한다. 냉장고(100)가 협탁으로 사용되기 위해서는 냉장고(100)의 크기가 제한적일 수 밖에 없으므로, 이너 케이스(111)에 의해 형성되는 저장실(120)의 크기도 약 200L 이하로 제한되어야 한다.The inner case 111 is installed inside the outer case 112, and forms a storage compartment 120 capable of storing food at a low temperature. Since the size of the refrigerator 100 may be limited in order to use the refrigerator 100 as a side table, the size of the storage compartment 120 formed by the inner case 111 should also be limited to about 200L or less.
아웃 케이스(112)는 협탁 형상의 외관을 형성한다. 냉장고(100)의 전면부는 도어(130)가 설치되므로, 아웃 케이스(112)는 냉장고(100)의 전면부를 제외한 나머지 부분의 외관을 형성한다. 아웃 케이스(112)의 윗면은 스탠드 등의 소품을 올려 놓을 수 있도록 평평하게 형성되는 것이 바람직하다.The out case 112 forms the appearance of a side table. Since the front part of the refrigerator 100 is provided with a door 130, the out case 112 forms the exterior of the remaining part except the front part of the refrigerator 100. The upper surface of the outer case 112 is preferably formed flat so that you can put a prop, such as a stand.
단열재(113)는 이너 케이스(111)와 아웃 케이스(112)의 사이에 배치된다. 단열재(113)는 상대적으로 뜨거운 외부로부터 상대적으로 찬 저장실(120)로 열이 전달되는 것을 억제하도록 이루어진다.The heat insulating material 113 is arrange | positioned between the inner case 111 and the out case 112. As shown in FIG. The heat insulator 113 is configured to suppress heat transfer from the relatively hot outside to the relatively cold storage compartment 120.
도어(130)는 캐비닛(110)의 전면부에 장착된다. 도어(130)는 캐비닛(110)과 함께 냉장고(100)의 외관을 형성된다. 도어(130)는 슬라이드 이동에 의해 저장실(120)을 개폐하도록 이루어진다. 도어(130)는 냉장고(100)에 두 개(131, 132) 이상 구비될 수 있으며, 도 1에 도시된 바와 같이 각각의 도어(130)는 상하 방향을 따라 배치될 수 있다.The door 130 is mounted to the front of the cabinet 110. The door 130 forms the exterior of the refrigerator 100 together with the cabinet 110. The door 130 is configured to open and close the storage compartment 120 by a slide movement. The door 130 may be provided with two or more 131, 132 in the refrigerator 100, and as shown in FIG. 1, each door 130 may be disposed along the vertical direction.
저장실(120)에는 공간의 효율적이 활용을 위한 드로워(drawer)(140)가 설치될 수 있다. 드로워(140)는 저장실(120) 내에서 식품 보관 영역을 형성하게 되다. 드로워(140)는 도어(130)에 결합되고, 도어(130)의 슬라이드 이동을 따라 저장실(120)로부터 인출 가능하게 형성된다.A drawer 140 may be installed in the storage room 120 to efficiently utilize space. The drawer 140 forms a food storage area in the storage compartment 120. The drawer 140 is coupled to the door 130 and is formed to be withdrawn from the storage chamber 120 according to the slide movement of the door 130.
두 개의 드로워(141, 142)가 도어(130)와 마찬가지로 상하 방향을 따라 배치될 수 있다. 하나의 도어(131)(132)마다 하나씩의 드로워(141)(142)가 결합되어, 각각의 도어(131)(132)를 슬라이드 이동시킬 때마다 각 도어(131)(132)에 결합된 드로워(141)(142)가 도어(131)(132)를 따라 저장실(120)로부터 인출될 수 있다.Two drawers 141 and 142 may be disposed along the up and down direction similarly to the door 130. One drawer 141, 142 is coupled to each door 131, 132, and is coupled to each door 131, 132 each time the door 131, 132 is slid. The drawers 141 and 142 may be withdrawn from the storage compartment 120 along the doors 131 and 132.
저장실(120) 뒤에는 기계실(150)이 형성될 수 있다. 기계실(150)을 형성하기 위해 아웃 케이스(112)는 격벽(112a)을 구비할 수 있다. 이 경우 단열재(113)는 격벽(112a)과 이너 케이스(111) 사이에 배치된다. 기계실(150)에는 냉장고(100)의 구동을 위한 각종 전기 설비와 기계 설비 등이 설치될 수 있다.The machine room 150 may be formed behind the storage room 120. The out case 112 may include a partition wall 112a to form the machine room 150. In this case, the heat insulating material 113 is disposed between the partition wall 112a and the inner case 111. In the machine room 150, various electrical equipment and mechanical equipment for driving the refrigerator 100 may be installed.
캐비닛(110)의 바닥면에는 지지대(160)가 설치될 수 있다. 지지대(160)는 도 1에 도시된 바와 같이 캐비닛(110)을 냉장고(100)가 설치될 바닥으로부터 이격시키도록 형성될 수 있다. 침실 등에 설치되는 냉장고(100)는 주방에 설치되는 냉장고(100)보다 사용자의 접근 빈도가 높다. 따라서 냉장고(100)와 바닥 사이에 누적되는 먼지를 쉽게 청소하기 위해서는 냉장고(100)가 바닥으로부터 이격되는 것이 바람직하다. 지지대(160)는 냉장고(100)가 설치될 바닥으로부터 캐비닛(110)을 이격시키므로, 이 구조를 이용하면 청소를 용이하게 할 수 있다.The support 160 may be installed on the bottom surface of the cabinet 110. As shown in FIG. 1, the support 160 may be formed to separate the cabinet 110 from the floor where the refrigerator 100 is to be installed. The refrigerator 100 installed in the bedroom has a higher frequency of access by the user than the refrigerator 100 installed in the kitchen. Therefore, in order to easily clean the dust accumulated between the refrigerator 100 and the floor, the refrigerator 100 is preferably spaced apart from the floor. Since the support 160 separates the cabinet 110 from the floor where the refrigerator 100 is to be installed, using this structure can facilitate cleaning.
냉장고(100)는 가정 내의 다른 가전 제품과 달리 24시간 내내 작동한다. 따라서 침대 옆에 냉장고(100)가 놓여진다면, 특히 밤 시간에 냉장고(100)에서 소음과 진동이 침대에서 잠을 자는 사람에게 전달되게 되어 수면을 방해하게 된다. 그러므로 냉장고(100)가 침대 옆에 배치되어 협탁과 냉장고(100)의 기능을 동시에 수행하기 위해서는, 냉장고(100)가 충분한 저소음 및 저진동 성능을 가져야 한다.The refrigerator 100 operates 24 hours unlike other home appliances. Therefore, if the refrigerator 100 is placed next to the bed, the noise and vibration in the refrigerator 100 is transmitted to the person who sleeps in the bed, especially at night time, thereby disturbing sleep. Therefore, in order to perform the functions of the side table and the refrigerator 100 at the same time by arranging the refrigerator 100 by the bed, the refrigerator 100 must have sufficient low noise and low vibration performance.
만약 냉장고(100)의 저장실(120)을 냉각하는 용도로 압축기를 포함하는 냉동사이클 장치가 사용된다면, 압축기에서 발생하는 소음과 진동을 원천적으로 차단하기 어렵다. 따라서 저소음 및 저진동 성능 확보를 위해 냉동사이클 장치는 제한적으로만 사용되어야 하며, 본 발명의 냉장고(100)는 열전소자모듈(170)을 이용하여 저장실(120)을 냉각한다.If a refrigeration cycle apparatus including a compressor is used for cooling the storage compartment 120 of the refrigerator 100, it is difficult to fundamentally block noise and vibration generated from the compressor. Therefore, in order to ensure low noise and low vibration performance, a refrigeration cycle apparatus should be used only in a limited manner, and the refrigerator 100 of the present invention uses the thermoelectric module 170 to cool the storage compartment 120.
열전소자모듈(170)은 저장실(120)의 후벽(111a)에 설치되어 저장실(120)을 냉각하도록 이루어진다. 열전소자모듈(170)은 열전소자를 포함하며, 열전소자는 발명의 배경이 되는 기술 항목에서 설명한 바와 같이 펠티어 효과를 이용하여 냉각과 발열을 구현하는 소자를 가리킨다. 열전소자의 흡열측이 저장실(120)을 향하도록 배치되고 열전소자의 발열측이 냉장고(100)의 외부를 향하도록 배치되면, 열전소자의 작동을 통해 저장실(120)을 냉각할 수 있게 된다.The thermoelectric element 170 is installed on the rear wall 111a of the storage chamber 120 to cool the storage chamber 120. The thermoelectric module 170 includes a thermoelectric device, and the thermoelectric device refers to a device that implements cooling and heat generation by using the Peltier effect as described in the technical item that is the background of the invention. When the heat absorbing side of the thermoelectric element is disposed to face the storage chamber 120 and the heat generating side of the thermoelectric element is disposed to face the outside of the refrigerator 100, the storage chamber 120 may be cooled by operating the thermoelectric element.
제어부(180)는 냉장고(100)의 전반적인 작동을 제어하도록 형성된다. 예를 들어 제어부(180)는 열전소자모듈(170)에 구비되는 열전소자나 팬의 출력을 제어하며, 그 외에 냉장고(100)에 구비되는 각종 구성들의 작동을 제어할 수 있다. 제어부(180)는 인쇄회로기판(PCB)과 마이컴(microcomputer)으로 구성될 수 있다. 제어부(180)는 기계실(150)에 설치될 수 있으나, 반드시 이에 한정되는 것은 아니다.The controller 180 is formed to control the overall operation of the refrigerator 100. For example, the controller 180 may control the output of the thermoelectric element or the fan provided in the thermoelectric element module 170, and control the operation of various components included in the refrigerator 100. The controller 180 may include a printed circuit board (PCB) and a microcomputer. The controller 180 may be installed in the machine room 150, but is not necessarily limited thereto.
제어부(180)가 열전소자모듈(170)를 제어하는 경우에는, 저장실(120)의 온도 사용자에 의해 입력된 설정 온도, 냉장고(100)의 외부 온도 등에 근거하여 열전소자의 출력을 제어할 수 있다. 냉각 운전, 제상 운전, 부하 대응 운전 등은 제어부(180)의 제어에 의해 결정되며, 열전소자의 출력은 제어부(180)에 의해 결정된 운전에 따라 달라진다.When the controller 180 controls the thermoelectric module 170, the output of the thermoelectric element may be controlled based on a set temperature input by a temperature user of the storage chamber 120, an external temperature of the refrigerator 100, and the like. . The cooling operation, the defrosting operation, the load response operation, and the like are determined by the control of the controller 180, and the output of the thermoelectric element depends on the operation determined by the controller 180.
상기 저장실(120)의 온도 또는 냉장고의 외부 온도 등은 냉장고에 마련된 센서부(191, 192, 193, 194, 195)에 의해 측정될 수 있다. 센서부(191, 192, 193, 194, 195)는 온도 센서(191, 192, 193), 습도 센서(194), 풍압 센서(195) 등 물성을 측정하는 적어도 하나의 장치로 형성될 수 있다. 예를 들어 온도 센서(191, 192, 193)는 저장실(120), 열전소자모듈(170), 아웃 케이스(112)에 각각 설치될 수 있으며, 각 온도 센서(191, 192, 193)는 자신이 설치된 영역의 온도를 측정하게 된다.The temperature of the storage compartment 120 or the external temperature of the refrigerator may be measured by the sensor units 191, 192, 193, 194, and 195 provided in the refrigerator. The sensor units 191, 192, 193, 194, and 195 may be formed of at least one device that measures physical properties such as the temperature sensors 191, 192, 193, the humidity sensor 194, and the wind pressure sensor 195. For example, the temperature sensors 191, 192, and 193 may be installed in the storage chamber 120, the thermoelectric module 170, and the out case 112, respectively. The temperature of the installed area is measured.
고내 온도 센서(191)는 저장실(120)에 설치되며, 저장실(120)의 온도를 측정하도록 형성된다. 제상 온도 센서(192)는 열전소자모듈(170)에 설치되며, 열전소자모듈(170)의 온도를 측정하도록 형성된다. 외기 온도 센서(193)는 아웃 케이스(112)에 설치되며, 냉장고(100)의 외부 온도를 측정하도록 형성된다.The internal temperature sensor 191 is installed in the storage compartment 120 and is formed to measure the temperature of the storage compartment 120. The defrost temperature sensor 192 is installed in the thermoelectric module 170 and is formed to measure the temperature of the thermoelectric module 170. The outside temperature sensor 193 is installed in the out case 112 and is formed to measure the outside temperature of the refrigerator 100.
습도 센서(194)는 저장실(120)에 설치되며. 저장실(120)의 습도를 측정하도록 형성된다. 풍압 센서(195)는 열전소자모듈(170)에 설치되어 제1 팬(173, 도 2 참조)의 풍압을 측정한다.The humidity sensor 194 is installed in the storage compartment 120. It is formed to measure the humidity of the storage compartment 120. The wind pressure sensor 195 is installed in the thermoelectric module 170 to measure the wind pressure of the first fan 173 (see FIG. 2).
열전소자모듈(170)의 세부 구성에 대하여는 도 2를 참조하여 설명한다.The detailed configuration of the thermoelectric module 170 will be described with reference to FIG. 2.
도 2는 열전소자모듈의 분해 사시도다.2 is an exploded perspective view of a thermoelectric module.
열전소자모듈(170)은 열전소자(171), 쿨링 싱크(172), 제1 팬(173), 히트 싱크(175), 제2 팬(176) 및 단열재(177)를 포함한다. 열전소자모듈(170)은 서로 구분되는 제1 영역과 제2 영역 사이에서 작동하여, 어느 한 영역에서 흡열하고 다른 한 영역에서 방열하도록 이루어진다. The thermoelectric module 170 includes a thermoelectric element 171, a cooling sink 172, a first fan 173, a heat sink 175, a second fan 176, and a heat insulator 177. The thermoelectric module 170 operates between the first and second regions which are separated from each other, and absorbs heat in one region and radiates heat in the other region.
제1 영역과 제2 영역은 경계에 의해 공간적으로 서로 구분되는 영역들을 가리킨다. 열전소자모듈(170)이 냉장고(도 1의 100)에 적용된다면, 제1 영역은 저장실(도 1의 120)과 냉장고(도 1의 100)의 외부 중 어느 하나에 해당하고, 제2 영역은 다른 하나에 해당한다.The first area and the second area refer to areas that are spatially separated from each other by a boundary. If the thermoelectric module 170 is applied to the refrigerator (100 in FIG. 1), the first area corresponds to any one of the outside of the storage compartment (120 in FIG. 1) and the refrigerator (100 in FIG. 1), and the second region is It corresponds to the other one.
열전소자(171)는 P형 반도체와 N형 반도체로 PN 접합을 형성하고, 다수의 PN 접합을 직렬로 연결하여 형성된다.The thermoelectric element 171 is formed by forming a PN junction with a P-type semiconductor and an N-type semiconductor, and connecting a plurality of PN junctions in series.
열전소자(171)는 서로 반대 방향을 향하는 흡열부(171a)와 방열부(171b)를 구비한다. 효과적인 열 전달을 위해서는 흡열부(171a)와 방열부(171b)가 면 접촉 가능한 형상으로 이루어지는 것이 바람직하다. 따라서 흡열부(171a)는 흡열면으로, 방열부(171b)는 방열면으로 명명될 수 있다. 또한 흡열부(171a)와 방열부(171b)를 일반화하여 제1부분과 제2부분으로 명명하거나 제1면과 제2면으로 명명할 수 있다. 이는 설명의 편의를 위한 것일 뿐, 발명의 범위를 제한하는 것은 아니다.The thermoelectric element 171 includes a heat absorbing portion 171a and a heat radiating portion 171b facing in opposite directions. For effective heat transfer, it is preferable that the heat absorbing portion 171a and the heat dissipating portion 171b have a shape capable of surface contact. Therefore, the heat absorbing portion 171a may be referred to as a heat absorbing surface, and the heat radiating portion 171b may be referred to as a heat radiating surface. In addition, the heat absorbing portion 171a and the heat dissipating portion 171b may be generically named as the first portion and the second portion, or may be named as the first surface and the second surface. This is for convenience of description only and does not limit the scope of the invention.
쿨링 싱크(172)는 열전소자(171)의 흡열부(171a)와 접촉하도록 배치된다. 쿨링 싱크(172)는 제1 영역과 열 교환 하도록 이루어진다. 제1 영역은 냉장고(도 1의 100)의 저장실(도 1의 120)에 해당하며, 쿨링 싱크(172)의 열 교환 대상은 저장실(도 1의 120) 내부의 공기다.The cooling sink 172 is disposed to contact the heat absorbing portion 171a of the thermoelectric element 171. The cooling sink 172 is configured to heat exchange with the first region. The first area corresponds to the storage compartment (120 of FIG. 1) of the refrigerator (100 of FIG. 1), and the heat exchange target of the cooling sink 172 is air inside the storage compartment (120 of FIG. 1).
제1 팬(173)은 쿨링 싱크(172)를 마주보도록 설치되며, 쿨링 싱크(172)의 열 교환을 촉진하도록 바람을 일으킨다. 열 교환은 자연 현상이기 때문에 제1 팬(173)이 없더라도 쿨링 싱크(172)는 저장실(도 1의 120)의 공기와 열 교환 가능하다. 그러나 열전소자모듈(170)이 제1 팬(173)을 포함함에 따라 쿨링 싱크(172)의 열 교환이 더욱 촉진될 수 있다.The first fan 173 is installed to face the cooling sink 172 and generates wind to promote heat exchange of the cooling sink 172. Since the heat exchange is a natural phenomenon, even without the first fan 173, the cooling sink 172 may exchange heat with air in the storage compartment 120 (FIG. 1). However, as the thermoelectric module 170 includes the first fan 173, heat exchange of the cooling sink 172 may be further promoted.
제1 팬(173)은 커버(174)에 의해 감싸일 수 있다. 커버(174)는 제1 팬(173)을 감싸는 부분(174a) 외에 다른 부분을 포함할 수 있다. 제1 팬(173)을 감싸는 부분(174a)에는 저장실(도 1의 120) 내부의 공기가 상기 커버(174)를 통과할 수 있도록 다수의 홀(174b)이 형성될 수 있다.The first fan 173 may be wrapped by the cover 174. The cover 174 may include portions other than the portion 174a surrounding the first fan 173. A plurality of holes 174b may be formed in the portion 174a surrounding the first fan 173 to allow air inside the storage compartment 120 (FIG. 1) to pass through the cover 174.
또한 커버(174)는 저장실(도 1의 120)의 후벽(도 1의 111a)에 고정될 수 있는 구조를 가질 수 있다. 일 예로 도 2에는 커버(174)가 제1 팬(173)을 감싸는 부분(174a)의 양측에서 연장되는 부분(174c)을 구비하고, 상기 연장되는 부분(174c)에 나사 삽입 가능한 나사 체결공(174e)이 형성되는 구조가 도시되어 있다. 아울러 제1 팬(173)을 감싸는 부분에 나사(179c)가 삽입되어 커버(174)를 후벽(도 1의 111a)에 추가 고정시킬 수 있다. 상기 제1 팬(173)을 감싸는 부분(174a)과 상기 연장되는 부분(174c)에 공기가 통과할 수 있는 모두 홀(174b)(174d)이 형성될 수 있다.In addition, the cover 174 may have a structure that can be fixed to the rear wall (111a of FIG. 1) of the storage compartment (120 of FIG. 1). For example, in FIG. 2, the cover 174 includes a portion 174c extending from both sides of the portion 174a surrounding the first fan 173, and a screw fastening hole that can be screwed into the extended portion 174c. The structure in which 174e) is formed is shown. In addition, a screw 179c may be inserted into a portion surrounding the first fan 173 to further fix the cover 174 to the rear wall 111a of FIG. 1. Holes 174b and 174d through which air can pass may be formed in the portion 174a surrounding the first fan 173 and the extending portion 174c.
히트 싱크(175)는 열전소자(171)의 방열부(171b)와 접촉하도록 배치된다. 히트 싱크(175)는 제2 영역과 열 교환 하도록 이루어진다. 제2 영역은 냉장고(도 1의 100)의 외부 공간에 해당하며, 히트 싱크(175)의 열 교환 대상은 냉장고(도 1의 100) 외부의 공기다.The heat sink 175 is disposed to contact the heat dissipation part 171b of the thermoelectric element 171. The heat sink 175 is configured to heat exchange with the second region. The second area corresponds to an outer space of the refrigerator 100 (in FIG. 1), and the heat exchange target of the heat sink 175 is air outside the refrigerator 100 (FIG. 1).
제2 팬(176)은 히트 싱크(175)를 마주보도록 설치되며, 히트 싱크(175)의 열 교환을 촉진하도록 바람을 일으킨다. 제2 팬(176)이 히트 싱크(175)의 열 교환을 촉진하는 것은 제1 팬(173)이 쿨링 싱크(172)의 열 교환을 촉진하는 것과 동일하다.The second fan 176 is installed to face the heat sink 175 and generates wind to promote heat exchange of the heat sink 175. The second fan 176 promotes heat exchange of the heat sink 175 is the same as the first fan 173 promotes heat exchange of the cooling sink 172.
제2 팬(176)은 선택적으로 슈라우드(176c)를 구비할 수 있다. 슈라우드(176c)는 바람을 가이드 하도록 이루어진다. 예를 들어 슈라우드(176c)는 도 2에 도시된 바와 같이 베인들(176b)로부터 이격된 위치에서 베인들(176b)을 감싸도록 이루어질 수 있다. 추가로 슈라우드(176c)에는 제2 팬(176)의 고정을 위한 나사 체결공(176d)이 형성될 수 있다.The second fan 176 may optionally have a shroud 176c. The shroud 176c is made to guide the wind. For example, the shroud 176c may be configured to surround the vanes 176b at a position spaced apart from the vanes 176b as shown in FIG. 2. In addition, the shroud 176c may be provided with a screw fastening hole 176d for fixing the second fan 176.
쿨링 싱크(172)와 제1 팬(173)은 열전소자모듈(170)의 흡열측에 해당한다. 그리고 히트 싱크(175)와 제2 팬(176)은 열전소자모듈(170)의 발열측에 해당한다.The cooling sink 172 and the first fan 173 correspond to the heat absorbing side of the thermoelectric module 170. The heat sink 175 and the second fan 176 correspond to the heat generating side of the thermoelectric module 170.
쿨링 싱크(172)와 히트 싱크(175) 중 적어도 하나는 각각 베이스(172a)(175a)와 핀들(fins)(172b)(175b)을 포함한다. 다만, 이하에서는 쿨링 싱크(172)와 히트 싱크(175)가 모두 베이스(172a)(175a)와 핀들(172b)(175b)을 포함하는 것을 전제로 설명한다. At least one of the cooling sink 172 and the heat sink 175 includes a base 172a and 175a and fins 172b and 175b, respectively. However, hereinafter, the cooling sink 172 and the heat sink 175 will be described on the premise that both of the base 172a, 175a and the fins 172b, 175b.
베이스(172a)(175a)는 열전소자(171)와 면 접촉하도록 이루어진다. 쿨링 싱크(172)의 베이스(172a)는 열전소자(171)의 흡열부(171a)와 면 접촉하고, 히트 싱크(175)의 베이스(175a)는 열전소자(171)의 방열부(171b)와 면 접촉한다.The bases 172a and 175a are in surface contact with the thermoelectric element 171. The base 172a of the cooling sink 172 is in surface contact with the heat absorbing portion 171a of the thermoelectric element 171, and the base 175a of the heat sink 175 is in contact with the heat radiating portion 171b of the thermoelectric element 171. Contact with cotton.
열 전달 면적이 커질수록 열전도율이 증가하므로, 베이스(172a)(175a)와 열전소자(171)는 서로 면 접촉하는 것이 이상적이다. 또한 베이스(172a)(175a)와 열전소자(171) 사이에 미세한 간극을 채워 열전도율을 증가시키기 위해 열전도체(thermal grease 또는 thermal compound)가 이용될 수 있다.Since the thermal conductivity increases as the heat transfer area increases, the bases 172a and 175a and the thermoelectric element 171 may be in surface contact with each other. In addition, a thermal grease or a thermal compound may be used to increase the thermal conductivity by filling a minute gap between the bases 172a and 175a and the thermoelectric element 171.
핀들(172b)(175b)은 제1 영역의 공기 또는 제2 영역의 공기와 열 교환 하도록 베이스(172a)(175a)로부터 돌출된다. 제1 영역은 저장실(도 1의 120)에 해당하고, 제2 영역은 냉장고(도 1의 100)의 외부에 해당하므로, 쿨링 싱크(172)의 핀들(172b)은 저장실(도 1의 120)의 공기와 열 교환 하도록 이루어지고, 히트 싱크(175)의 핀들(175b)은 냉장고(도 1의 100)의 외부 공기와 열 교환 하도록 이루어진다. Fins 172b and 175b protrude from base 172a and 175a to exchange heat with air in the first region or air in the second region. Since the first region corresponds to the storage compartment (120 of FIG. 1) and the second region corresponds to the exterior of the refrigerator (100 of FIG. 1), the fins 172b of the cooling sink 172 are the storage compartment (120 of FIG. 1). The heat sink 175 and the fins 175b of the heat sink 175 are made to heat exchange with the outside air of the refrigerator (100 of FIG. 1).
핀들(172b)(175b)은 서로 이격되게 배치된다. 핀들(172b)(175b)이 서로 이격됨에 따라 열 교환 면적이 증가할 수 있기 때문이다. 핀들(172b)(175b)이 만약 서로 붙어 있다면 핀들(172b)(175b) 사이에 열 교환 면적이 존재하지 않을 것이나, 핀들(172b)(175b)이 서로 이격되어 있으므로 핀들(172b)(175b) 사이사이에도 열 교환 면적이 존재할 수 있다. 열 전달 면적이 커질수록 열전도율이 증가하므로, 히트 싱크의 열 전달 성능을 향상시키기 위해서는 제1 영역과 제2 영역에 노출되는 핀들의 면적이 커져야 한다.The pins 172b and 175b are spaced apart from each other. This is because the heat exchange area may increase as the fins 172b and 175b are spaced apart from each other. If the fins 172b and 175b are stuck together, there will be no heat exchange area between the fins 172b and 175b, but because the fins 172b and 175b are spaced apart from each other, the fins 172b and 175b are spaced apart from each other. There may also be a heat exchange area in between. Since the thermal conductivity increases as the heat transfer area increases, the area of the fins exposed to the first and second areas should be increased to improve the heat transfer performance of the heat sink.
또한, 흡열측에 해당하는 쿨링 싱크(172)의 충분한 냉각 효과를 구현하기 위해서는 발열측에 해당하는 히트 싱크(175)의 열전도율이 쿨링 싱크(172)에 비해 커야 한다. 열전소자(171)의 방열부(171b)에서 더욱 신속하게 방열이 이루어져야 흡열부(171a)에서 충분한 흡열이 이루어지기 때문이다. 이것은 열전소자(171)가 단순한 열전도체가 아니라 전압을 인가함에 따라 일측에서 흡열이 이루어지고, 타측에서 방열이 이루어지는 소자라는 것에서 기인한다. 따라서 열전소자(171)의 방열부(171b)에서 더욱 강한 방열이 이루어져야 흡열부(171a)에서 충분한 냉각이 구현될 수 있다.In addition, in order to realize a sufficient cooling effect of the cooling sink 172 corresponding to the heat absorbing side, the thermal conductivity of the heat sink 175 corresponding to the heat generating side should be larger than that of the cooling sink 172. This is because sufficient heat absorption is achieved at the heat absorbing portion 171a only when heat is radiated more quickly at the heat radiating portion 171b of the thermoelectric element 171. This is due to the fact that the thermoelectric element 171 is not a simple thermal conductor, but an endotherm is made by applying a voltage and heat is radiated from the other side. Therefore, sufficient heat dissipation must be made in the heat dissipating portion 171b of the thermoelectric element 171 to achieve sufficient cooling in the heat absorbing portion 171a.
이러한 점을 고려할 때 쿨링 싱크(172)에서 흡열이 이루어지고 히트 싱크(175)에서 방열이 이루어진다면, 쿨링 싱크(172)의 열 교환 면적보다 히트 싱크(175)의 열 교환 면적이 커야 한다. 쿨링 싱크(172)의 모든 열 교환 면적이 모두 열 교환에 이용된다고 가정하면, 히트 싱크(175)의 열 교환 면적이 쿨링 싱크(172)의 열 교환 면적보다 3배 이상인 것이 바람직하다.Considering this point, if endothermic heat is generated in the cooling sink 172 and heat dissipation is performed in the heat sink 175, the heat exchange area of the heat sink 175 must be larger than the heat exchange area of the cooling sink 172. Assuming that all the heat exchange areas of the cooling sink 172 are all used for heat exchange, it is preferable that the heat exchange area of the heat sink 175 is three times or more than the heat exchange area of the cooling sink 172.
이것은 제1 팬(173)과 제2 팬(176)에도 동일하게 적용되는 원리이다. 흡열 측에 충분한 냉각 효과를 구현하기 위해서 제2 팬(176)에 의해 형성되는 풍량과 풍속은 제1 팬(173)에 의해 형성되는 풍량과 풍속보다 큰 것이 바람직하다. This is the same principle that applies to the first fan 173 and the second fan 176. In order to realize a sufficient cooling effect on the endothermic side, the air volume and the wind speed formed by the second fan 176 are preferably larger than the air volume and the wind speed formed by the first fan 173.
히트 싱크(175)는 쿨링 싱크(172)에 비해 더 큰 열 교환 면적을 필요로 하기 때문에, 베이스(175a)와 핀들(175b)의 면적이 쿨링 싱크(172)의 그것들(172a)(172b)보다 더욱 크다. 나아가 히트 싱크(175)의 베이스(175a)로 전달된 열을 핀들에 신속하게 분배하기 위해 히트 싱크(175)는 히트 파이프(175c)를 구비할 수 있다. Since the heat sink 175 requires a larger heat exchange area than the cooling sink 172, the area of the base 175a and the fins 175b is larger than those of the cooling sink 172 (172a) 172b. Even bigger. Further, the heat sink 175 may be provided with a heat pipe 175c to quickly distribute the heat transferred to the base 175a of the heat sink 175 to the fins.
히트 파이프(175c)는 내부에 열 전달 유체를 수용하도록 이루어지며, 히트 파이프(175c)의 일단은 베이스(175a)를 관통하고 타단은 핀들(175b)을 관통한다. 히트 파이프(175c)는 내부에 수용된 열 전달 유체의 증발을 통해 열을 베이스(175a)에서 핀들(175b)로 전달하는 장치다. 히트 파이프(175c)가 없다면, 베이스(175a)의 인접한 핀들(175b)에서만 열 교환이 집중될 것이다. 베이스(175a)로부터 멀리 존재하는 핀들(175b)에는 열이 충분히 분배되지 않기 때문이다.The heat pipe 175c is configured to receive a heat transfer fluid therein, one end of the heat pipe 175c passes through the base 175a and the other end passes through the fins 175b. Heat pipe 175c is a device that transfers heat from base 175a to fins 175b through evaporation of the heat transfer fluid contained therein. Without the heat pipe 175c, heat exchange would be concentrated only in the adjacent fins 175b of the base 175a. This is because heat is not sufficiently distributed to the pins 175b which are far from the base 175a.
그러나 히트 파이프(175c)가 존재함에 따라 히트 싱크(175)의 모든 핀들(175b)에서 열 교환이 이루어질 수 있다. 베이스(175a)의 열이 베이스(175a)로부터 상대적으로 멀리 배치된 핀들(175b)에도 골고루 분배될 수 있기 때문이다.However, as the heat pipe 175c is present, heat exchange may occur at all fins 175b of the heat sink 175. This is because the heat of the base 175a can be evenly distributed to the pins 175b disposed relatively far from the base 175a.
히트 싱크(175)의 베이스(175a)는 히트 파이프(175c)를 내장하기 위해 두 겹(두 레이어)(175a1, 175a2)으로 형성될 수 있다. 베이스(175a)의 제1 레이어(175a1)는 히트 파이프(175c)의 일 측을 감싸고 제2 레이어(175a2)는 히트 파이프(175c)의 타 측을 감싸도록 이루어지며, 두 겹(175a1, 175a2)은 서로 마주보도록 배치될 수 있다.The base 175a of the heat sink 175 may be formed of two layers (two layers) 175a1 and 175a2 for embedding the heat pipe 175c. The first layer 175a1 of the base 175a surrounds one side of the heat pipe 175c, and the second layer 175a2 covers the other side of the heat pipe 175c, and two layers 175a1 and 175a2 May be arranged to face each other.
제1 레이어(175a1)는 열전소자(171)의 방열부(171b)와 접촉하도록 배치되며, 열전소자(171)와 동일 내지 유사한 크기를 가질 수 있다. 제2 레이어(175a2)는 핀들(175b)과 연결되며, 핀들(175b)은 제2 레이어(175a2)로부터 돌출된다. 제2 레이어(175a2)는 제1 레이어(175a1)보다 큰 크기를 가질 수 있다. 그리고 히트 파이프(175c)의 일단은 제1 레이어(175a1)와 제2 레이어(175a2) 사이에 배치된다.The first layer 175a1 may be disposed to be in contact with the heat dissipation unit 171b of the thermoelectric element 171 and may have a size that is the same as or similar to that of the thermoelectric element 171. The second layer 175a2 is connected to the pins 175b, and the pins 175b protrude from the second layer 175a2. The second layer 175a2 may have a larger size than the first layer 175a1. One end of the heat pipe 175c is disposed between the first layer 175a1 and the second layer 175a2.
단열재(177)는 쿨링 싱크(172)와 히트 싱크(175) 사이에 설치된다. 단열재(177)는 열전소자(171)의 테두리를 감싸도록 형성된다. 예를 들어 도 2에 도시된 바와 같이 단열재(177)에는 구멍(177a)이 형성되고, 구멍(177a)에 열전소자(171)가 배치될 수 있다.The heat insulator 177 is installed between the cooling sink 172 and the heat sink 175. The heat insulator 177 is formed to surround the edge of the thermoelectric element 171. For example, as illustrated in FIG. 2, a hole 177a may be formed in the heat insulating material 177, and a thermoelectric element 171 may be disposed in the hole 177a.
앞서 설명한 바와 같이 열전소자모듈(170)은 열전소자(171)의 일측과 타측에서 이루어지는 흡열과 방열을 통해 저장실(도 1의 120)의 냉각을 구현하는 소자이지 단순한 열전도체가 아니다. 따라서 쿨링 싱크(172)의 열이 히트 싱크(175)로 직접 전달되는 것은 바람직하지 못하다. 직접적인 열 전달로 인해 쿨링 싱크(172)와 히트 싱크(175) 간의 온도차가 줄어들면, 열전소자(171)의 성능을 저하시키는 원인이 되기 때문이다. 이러한 현상을 방지하기 위해 단열재(177)는 쿨링 싱크(172)와 히트 싱크(175) 간의 직접적인 열 전달을 차단하도록 이루어진다.As described above, the thermoelectric element module 170 is a device that realizes cooling of the storage chamber (120 of FIG. 1) through endothermic and heat dissipation formed at one side and the other side of the thermoelectric element 171, but is not a simple thermal conductor. Therefore, it is not preferable that heat of the cooling sink 172 is directly transferred to the heat sink 175. This is because a decrease in the temperature difference between the cooling sink 172 and the heat sink 175 due to the direct heat transfer causes a decrease in the performance of the thermoelectric element 171. In order to prevent this phenomenon, the insulation 177 is configured to block direct heat transfer between the cooling sink 172 and the heat sink 175.
체결 플레이트(178)는 쿨링 싱크(172)와 단열재(177) 사이에 배치되거나 히트 싱크(175)와 단열재(177) 사이에 배치된다. 체결 플레이트(178)는 쿨링 싱크(172)와 히트 싱크(175)의 고정을 위한 것으로, 쿨링 싱크(172)와 히트 싱크(175)는 나사에 의해 상기 체결 플레이트(178)에 나사 결합될 수 있다.The fastening plate 178 is disposed between the cooling sink 172 and the heat insulator 177 or between the heat sink 175 and the heat insulator 177. The fastening plate 178 is for fixing the cooling sink 172 and the heat sink 175, and the cooling sink 172 and the heat sink 175 may be screwed to the fastening plate 178 by screws. .
체결 플레이트(178)는 단열재(177)와 함께 열전소자(171)의 테두리를 감싸도록 형성될 수 있다. 체결 플레이트(178)는 단열재(177)와 마찬가지로 열전소자(171)에 대응되는 구멍(178a)을 구비하고, 상기 구멍(178a)에 열전소자(171)가 배치될 수 있다. 다만, 체결 플레이트(178)는 열전소자모듈(170)의 필수적인 구성은 아니고, 쿨링 싱크(172)와 히트 싱크(175)를 고정할 수 있는 다른 구성으로 대체 가능하다.The fastening plate 178 may be formed to surround the edge of the thermoelectric element 171 together with the heat insulating material 177. The fastening plate 178 has a hole 178a corresponding to the thermoelectric element 171, similar to the heat insulating material 177, and the thermoelectric element 171 may be disposed in the hole 178a. However, the fastening plate 178 is not an essential configuration of the thermoelectric module 170, and may be replaced with another configuration capable of fixing the cooling sink 172 and the heat sink 175.
체결 플레이트(178)에는 쿨링 싱크(172)와 히트 싱크(175)의 고정을 위한 다수의 나사 체결공(178b)(178c)이 형성될 수 있다. 쿨링 싱크(172)와 단열재(177)에는 체결 플레이트(178)에 대응되는 나사 체결공(172c)(177b)이 형성되며, 나사(179a)가 상기 세 나사 체결공(172c, 177b, 178b)에 순차적으로 삽입되어 쿨링 싱크(172)를 체결 플레이트(178)에 고정시킬 수 있다. 히트 싱크(175)에도 체결 플레이트(178)에 대응되는 나사 체결공(175d)이 형성되며, 나사(179b)가 상기 두 나사 체결공(178c, 175d)에 순차적으로 삽입되어 히트 싱크(175)를 체결 플레이트(178)에 고정시킬 수 있다.A plurality of screw fastening holes 178b and 178c may be formed in the fastening plate 178 to fix the cooling sink 172 and the heat sink 175. The cooling sink 172 and the heat insulator 177 are formed with screw fastening holes 172c and 177b corresponding to the fastening plate 178, and screws 179a are formed in the three screw fastening holes 172c, 177b and 178b. The cooling sink 172 may be inserted in order to fix the cooling sink 172 to the fastening plate 178. A screw fastening hole 175d corresponding to the fastening plate 178 is also formed in the heat sink 175, and the screw 179b is sequentially inserted into the two screw fastening holes 178c and 175d to connect the heat sink 175. It may be fixed to the fastening plate 178.
체결 플레이트(178)에는 히트 파이프(175c)의 일측을 수용하도록 이루어지는 리세스부(178d)가 형성될 수 있다. 리세스부(178d)는 히트 파이프(175c)에 대응되게 형성되며 부분적으로 감싸도록 이루어질 수 있다. 히트 싱크(175)가 히트 파이프(175c)를 구비하더라도, 체결 플레이트(178)가 리세스부(178d)를 구비하므로, 히트 싱크(175)가 체결 플레이트(178)에 밀착될 수 있으며, 열전소자모듈(170)의 전체 두께를 더 얇게 만들 수 있다.The fastening plate 178 may have a recess 178d formed to accommodate one side of the heat pipe 175c. The recess 178d may be formed to correspond to the heat pipe 175c and partially wrap. Although the heat sink 175 includes the heat pipe 175c, since the fastening plate 178 has the recessed portion 178d, the heat sink 175 may be in close contact with the fastening plate 178, and the thermoelectric element The overall thickness of module 170 can be made thinner.
앞서 설명된 제1 팬(173)과 제2 팬(176) 중 적어도 하나는 허브(173a)(176a)와 베인들(173b)(176b)을 구비한다. 허브(173a)(176a)는 회전 중심축(미도시)에 결합된다. 베인들(vanes)(173b)(176b)은 허브(173a)(176a)의 둘레에 방사형으로 설치된다.At least one of the first fan 173 and the second fan 176 described above includes hubs 173a and 176a and vanes 173b and 176b. Hubs 173a and 176a are coupled to a central axis of rotation (not shown). Vanes 173b and 176b are radially installed around the hubs 173a and 176a.
축류팬(173)(176)은 원심팬으로부터 구분된다. 축류팬(173)(176)은 회전축 방향으로 바람을 일으키도록 형성되며, 축류팬(173)(176)의 회전축 방향으로 공기가 들어와서 회전축 방향으로 나간다. 이에 반해 원심팬은 원심 방향(또는 원주 방향)으로 바람을 일으키도록 형성되며, 원심팬의 회전축 방향으로 공기가 들어와 원심 방향으로 나간다. Axial flow fans 173 and 176 are separated from the centrifugal fan. The axial flow fans 173 and 176 are formed to cause wind in the rotation axis direction, and air enters the rotation axis direction of the axial flow fans 173 and 176 to exit in the rotation axis direction. In contrast, the centrifugal fan is formed to cause wind in the centrifugal direction (or circumferential direction), and air enters the centrifugal direction in the direction of the rotation axis of the centrifugal fan.
제상 온도 센서(192)는 열전소자모듈에 장착되며, 열전소자모듈(170)의 온도를 측정하도록 형성된다. 도 2를 참조하면 제상 온도 센서(192)는 쿨링 싱크(172)에 결합된다. 제상 온도 센서(192)의 구조에 대하여는 도 3과 도 4를 참조하여 설명한다.The defrost temperature sensor 192 is mounted on the thermoelectric module and is formed to measure the temperature of the thermoelectric module 170. Referring to FIG. 2, the defrost temperature sensor 192 is coupled to the cooling sink 172. The structure of the defrost temperature sensor 192 will be described with reference to FIGS. 3 and 4.
도 3은 열전소자모듈과 제상 온도 센서(192)의 사시도다. 도 4는 도 3에 도시된 열전소자모듈(170)과 제상 온도 센서(192)의 평면도다. 3 is a perspective view of the thermoelectric module and the defrost temperature sensor 192. 4 is a plan view of the thermoelectric element module 170 and the defrost temperature sensor 192 shown in FIG.
제상 온도 센서(192)는 쿨링 싱크(172)의 핀(172b)에 결합된다. 쿨링 싱크(172)의 핀(172b)들은 베이스(172a)로부터 돌출되어 있는데, 그 중 일부는 다른 핀에 비해 짧은 돌출 길이(p2)를 갖는다. The defrost temperature sensor 192 is coupled to the fin 172b of the cooling sink 172. The fins 172b of the cooling sink 172 protrude from the base 172a, some of which have a shorter protruding length p2 compared to the other fins.
제상 온도 센서(192)는 센서 홀더(192a)에 의해 감싸이며, 센서 홀더(192a)는 다른 핀에 비해 짧은 돌출 길이를 갖는 핀에 끼워질 수 있는 형상을 갖는다. 도 3에는 센서 홀더(192a)의 양측 다리가 두 핀에 끼워진 구조가 도시되어 있다. 두 핀의 외측면 간의 거리(d1)보다 센서 홀더(192a)의 양측 다리 사이의 거리(d2)가 미소하게 작다면, 센서 홀더(192a)가 두 핀에 끼워질 수 있다.The defrost temperature sensor 192 is wrapped by the sensor holder 192a, and the sensor holder 192a has a shape that can be fitted to a pin having a shorter protruding length than other pins. 3 illustrates a structure in which both legs of the sensor holder 192a are fitted to two pins. If the distance d2 between both legs of the sensor holder 192a is slightly smaller than the distance d1 between the outer surfaces of the two pins, the sensor holder 192a may be fitted to the two pins.
제상 온도 센서(192)의 위치는 제상 운전 시 상기 쿨링 싱크(172)에서 온도 상승이 가장 오래 걸리는 곳으로 선정된다. 그래야 제상 운전의 신뢰성을 제고할 수 있기 때문이다. 제상 온도 센서(192)의 위치는 센서 홀더(192a)의 위치에 의해 결정된다.The position of the defrost temperature sensor 192 is selected as the place where the temperature rise takes the longest in the cooling sink 172 during the defrosting operation. This is because the reliability of the defrosting operation can be improved. The position of the defrost temperature sensor 192 is determined by the position of the sensor holder 192a.
쿨링 싱크(172)에서 중심에 배치되는 핀은 베이스(172a)와 가장 가깝기 때문에 제상 운전 시 온도 상승이 신속하게 이루어진다. 반면 쿨링 싱크(172)에서 바깥쪽에 배치되는 핀은 베이스(172a)로부터 멀리 떨어져 있기 때문에 제상 운전 시 온도 상승이 느리다.Since the fin disposed at the center of the cooling sink 172 is closest to the base 172a, the temperature rises rapidly during the defrosting operation. On the other hand, since the fins disposed outside the cooling sink 172 are far from the base 172a, the temperature rise is slow during defrosting operation.
다만, 최외곽의 핀은 열전소자모듈(170)의 영향뿐만 아니라 상기 열전소자모듈(170) 외측의 공기에 의한 영향도 받게 된다. 따라서 최외곽의 핀보다는 그 바로 안쪽의 핀에 센서 홀더(192a)가 결합되는 것이 바람직하다. 또한 센서 홀더(192a)의 상하 위치는 핀의 가장 상측 또는 하측이 바람직하며, 도 3에서는 핀의 가장 상측에 센서 홀더(192a)가 결합된 것으로 도시되어 있다.However, the outermost fin is not only influenced by the thermoelectric module 170 but also by the air outside the thermoelectric module 170. Therefore, it is preferable that the sensor holder 192a is coupled to the pin just inside the outermost pin. In addition, the upper and lower positions of the sensor holder 192a are preferably the uppermost or lower side of the pin. In FIG. 3, the sensor holder 192a is coupled to the uppermost side of the pin.
핀의 돌출 길이가 일정하더라도 센서 홀더(192a)가 핀에 끼워질 수는 있다. 그러나 핀의 길이가 일정하게 되면, 제상 온도 센서(192)가 베이스(172a)로부터 너무 멀리 이격되기 때문에 정확한 온도 측정이 어려워진다. 따라서 센서 홀더(192a)가 결합되는 핀의 돌출 길이(p2)는 타 핀의 돌출 길이(p1)보다 짧은 길이를 갖는 것이 바람직하다.Even if the protruding length of the pin is constant, the sensor holder 192a may be fitted to the pin. However, if the length of the fin is constant, accurate temperature measurement becomes difficult because the defrost temperature sensor 192 is spaced too far from the base 172a. Therefore, it is preferable that the protruding length p2 of the pin to which the sensor holder 192a is coupled has a length shorter than the protruding length p1 of the other pin.
도 5는 본 발명에서 제안하는 냉장고의 제어 방법을 보인 흐름도다.5 is a flowchart illustrating a control method of a refrigerator proposed by the present invention.
(S100) 먼저, 열전소자모듈은 전원 최초 투입 등을 이유로 전원을 공급받으면 냉각 운전을 시작하게 된다. 자연 제상 등을 이유로 열전소자모듈의 전원이 차단될 수도 있으므로, 자연 제상이 종료된 후에 열전소자모듈에 다시 전원이 투입되면, 열전소자모듈이 냉각 운전을 재개하게 된다.First, the thermoelectric module starts cooling operation when the thermoelectric module is supplied with power for the first time. Since the power of the thermoelectric element module may be cut off due to natural defrosting, if the power is again supplied to the thermoelectric element module after the natural defrost is completed, the thermoelectric element module resumes the cooling operation.
(S200) 이어서, 열전소자모듈의 구동 시간을 적산하게 된다. 적산이란 열전소자모듈의 구동 시간을 누적적으로 카운팅하는 것을 의미한다. 열전소자모듈의 구동 시간 적산은 냉장고의 제어 과정 동안 계속되며, 제상 운전을 투입하는 근거가 된다.Next, the driving time of the thermoelectric module is integrated. Integration refers to the cumulative counting of the driving time of the thermoelectric module. Integration of the driving time of the thermoelectric module is continued during the control process of the refrigerator, which is the basis for inputting the defrosting operation.
(S300) 다음으로는, 냉장고의 외부 온도, 저장실의 온도, 열전소자모듈의 온도를 측정하게 된다. 이 단계에서 측정되는 온도들은 사용자에 의해 입력된 설정 온도와 함께 제어부에서 열전소자의 출력이나 팬의 출력을 제어하는 것에 이용될 수 있다.Next, the external temperature of the refrigerator, the temperature of the storage compartment, and the temperature of the thermoelectric module are measured. The temperatures measured at this stage may be used to control the output of the thermoelectric element or the fan at the control unit together with the set temperature input by the user.
(S400) 부하 대응 운전의 필요성을 판단한다. 부하 대응 운전이란 냉장고의 저장실에 뜨거운 음식물 등이 투입됨에 따라 저장실을 신속하게 냉각하는 운전을 가리킨다. 부하 대응 운전의 필요성을 판단하는 근거에 대하여는 후술한다. 부하 대응 운전이 필요하다고 판단되면 부하 대응 운전을 가동하여 열전소자가 미리 설정된 출력으로 운전되며, 팬이 미리 설정된 회전 속도로 회전된다. 부하 대응 운전이 필요하지 않다고 판단되면 다음 단계로 진행된다.(S400) It is determined whether the load response operation. The load response operation refers to an operation of rapidly cooling a storage compartment as hot food or the like is put into a storage compartment of a refrigerator. The reason for determining the necessity of load response operation is mentioned later. If it is determined that the load response operation is necessary, the thermoelectric element is operated at the preset output by operating the load response operation, and the fan is rotated at the preset rotation speed. If it is determined that no load response operation is necessary, the process proceeds to the next step.
(S500) 제상 운전의 필요성을 판단한다. 제상 운전이란 서리가 열전소자모듈에 착상되는 것을 방지하거나 착상된 서리를 제거하는 운전을 가리킨다. 마찬가지로 제상 운전의 필요성을 판단하는 근거에 대하여는 후술한다. 제상 운전이 필요하다고 판단되면 제상 운전을 가동하여 열전소자가 미리 설정된 출력으로 운전되며, 팬이 미리 설정된 회전 속도로 회전된다. 다만, 자연 제상의 경우에는 열전소자에 공급되는 전원이 차단될 수 있다. 제상 운전이 필요하지 않다고 판단되면 다음 단계로 진행된다.(S500) Determine the need for defrosting operation. The defrosting operation refers to an operation of preventing frost from forming on the thermoelectric module or removing frost formed on the thermoelectric module. Similarly, the basis for determining the necessity of defrosting operation will be described later. If it is determined that defrosting operation is necessary, the defrosting operation is performed to operate the thermoelectric element at a preset output, and the fan is rotated at a preset rotational speed. However, in the case of natural defrosting, the power supplied to the thermoelectric element may be cut off. If it is determined that defrosting is not necessary, the process proceeds to the next step.
(S600) 부하 대응 운전과 제상 운전은 냉각 운전에 선행하기 때문에 부하 대응 운전과 제상 운전이 필요하지 않다고 판단된 경우에 냉각 운전이 투입된다. 냉각 운전은 저장실의 온도와 사용자에 의해 입력된 온도를 근거로 제어된다. 제어의 결과는 열전소자의 출력과 팬의 출력으로 나타난다.(S600) Since the load corresponding operation and the defrost operation precede the cooling operation, the cooling operation is input when it is determined that the load corresponding operation and the defrost operation are not necessary. The cooling operation is controlled based on the temperature of the storage compartment and the temperature input by the user. The result of the control is the output of the thermoelectric element and the output of the fan.
본 발명에서는 열전소자의 출력이 저장실의 온도, 사용자에 의해 입력된 설정 온도, 및 냉장고의 외부 온도에 근거하여 결정된다. 또한 본 발명에서는 팬의 회전 속도가 저장실의 온도에 근거하여 결정된다. 여기서 팬이란 열전소자모듈의 제1 팬과 제2 팬 중 적어도 하나를 의미한다.In the present invention, the output of the thermoelectric element is determined based on the temperature of the storage compartment, the set temperature input by the user, and the external temperature of the refrigerator. In the present invention, the rotation speed of the fan is determined based on the temperature of the storage compartment. Here, the fan refers to at least one of the first fan and the second fan of the thermoelectric module.
예컨대 도 5의 흐름도에서 저장실의 온도가 제3 온도 구간에 해당하면, 열전소자는 제3 출력으로 운전되고, 팬은 제3 회전 속도로 회전된다. 저장실의 온도가 제2 온도 구간에 해당하면, 열전소자는 제2 출력으로 운전되고, 팬은 제2 회전 속도로 회전된다. 저장실의 온도가 제1 온도 구간에 해당하면, 열전소자는 제1 출력으로 운전되고, 팬은 제1 회전 속도로 회전된다.For example, in the flowchart of FIG. 5, when the temperature of the storage compartment corresponds to the third temperature section, the thermoelectric element is operated at the third output, and the fan is rotated at the third rotational speed. When the temperature of the storage compartment corresponds to the second temperature section, the thermoelectric element is operated at the second output, and the fan is rotated at the second rotational speed. When the temperature of the storage compartment corresponds to the first temperature section, the thermoelectric element is driven at the first output, and the fan is rotated at the first rotational speed.
열전 소자의 출력과 팬의 회전 속도는 상대적인 개념으로, 그 세부 구성에 대하여는 후술한다.The output of the thermoelectric element and the rotational speed of the fan are relative concepts, which will be described later in detail.
이하에서는 도 6, 그리고 표 1을 참조하여 각 온도 구간 별 열전소자와 팬의 제어에 대하여 설명한다. 다만, 도면과 표의 수치들은 본 발명의 개념을 설명하기 위한 일 예에 해당하는 것일 뿐, 본 발명에서 제안하는 제어 방법에 반드시 필요한 절대적인 값을 의미하는 것은 아니다.Hereinafter, the control of the thermoelectric element and the fan for each temperature section will be described with reference to FIG. 6 and Table 1. FIG. However, the figures in the figures and tables are only examples for explaining the concept of the present invention, and do not mean an absolute value necessary for the control method proposed by the present invention.
도 6은 저장실의 온도가 제1 온도 구간 내지 제3 온도 구간 중 어느 구간에 속하는지에 근거한 냉장고의 제어 방법을 설명하기 위한 개념도다.FIG. 6 is a conceptual view illustrating a control method of a refrigerator based on which section of a first temperature section to a third temperature section belongs to a storage compartment.
저장실의 온도는 제1 온도 구간, 제2 온도 구간, 제3 온도 구간으로 구분된다. 여기서 제1 온도 구간은 사용자에 의해 입력된 설정 온도를 포함하는 구간이다. 제2 온도 구간은 제1 온도 구간보다 높은 온도의 구간이다. 제3 온도 구간은 제2 온도 구간보다 높은 온도의 구간이다. 따라서 제1 온도 구간으로부터 제3 온도 구간으로 갈수록 온도가 순차적으로 증가한다.The temperature of the storage compartment is divided into a first temperature section, a second temperature section, and a third temperature section. Here, the first temperature section is a section including the set temperature input by the user. The second temperature section is a section of temperature higher than the first temperature section. The third temperature section is a section of temperature higher than the second temperature section. Therefore, the temperature increases sequentially from the first temperature section to the third temperature section.
제1 온도 구간은 사용자에 의해 입력된 설정 온도를 포함하기 때문에, 저장실의 온도가 제1 온도 구간에 있다면 열전소자모듈의 작동으로 인해 저장실의 온도가 이미 설정 온도까지 낮아졌다는 것을 의미한다. 따라서 제1 온도 구간은 설정 온도를 만족하는 구간이다.Since the first temperature section includes the set temperature input by the user, when the temperature of the storage compartment is in the first temperature section, it means that the temperature of the storage compartment has already been lowered to the preset temperature due to the operation of the thermoelectric module. Therefore, the first temperature section is a section satisfying the set temperature.
제2 온도 구간과 제3 온도 구간은 사용자에 의해 입력된 설정 온도보다 높은 온도 구간이기 때문에 설정 온도를 만족하지 못하는 불만족 구간이다. 따라서 제2 온도 구간과 제3 온도 구간에서는 열전소자모듈이 작동하여 저장실의 온도를 설정 온도까지 낮춰야 한다. 다만, 제3 온도 구간은 제2 온도 구간보다 더 높은 온도에 해당하므로, 더욱 강력한 냉각을 요구하는 구간이다. 제2 온도 구간과 제3 온도 구간을 서로 구분하기 위해 제2 온도 구간은 불만족 구간, 제3 온도 구간은 상한 구간으로 명명될 수 있다.The second temperature section and the third temperature section are unsatisfactory sections that do not satisfy the set temperature because they are higher than the set temperature input by the user. Therefore, the thermoelectric element module operates in the second temperature section and the third temperature section to lower the temperature of the storage compartment to the set temperature. However, since the third temperature section corresponds to a higher temperature than the second temperature section, the third temperature section is a section requiring more powerful cooling. In order to distinguish the second temperature section from the third temperature section, the second temperature section may be referred to as an unsatisfactory section, and the third temperature section may be referred to as an upper limit section.
각 온도 구간의 경계는 저장실의 온도가 상승 진입하는지 하강 진입하는지에 따라 달라진다. 예를 들어 도 6를 기준으로 저장실의 온도가 상승하여 제1 온도 구간에서 제2 온도 구간으로 상승 진입하는 상승 진입 온도는 N+0.5℃다. 반대로 저장실의 온도가 하강하여 제2 온도 구간에서 제1 온도 구간으로 진입하는 하강 진입 온도는 N-0.5℃다. 따라서 상승 진입 온도는 하강 진입 온도보다 높다.The boundary of each temperature range depends on whether the temperature of the storage compartment rises or falls. For example, as shown in FIG. 6, the temperature of the storage compartment increases, and the rising entry temperature at which the storage chamber rises from the first temperature section to the second temperature section is N + 0.5 ° C. On the contrary, the falling entry temperature at which the temperature of the storage compartment falls to enter the first temperature section from the second temperature section is N-0.5 ° C. Thus, the rising entry temperature is higher than the falling entry temperature.
저장실의 온도가 제1 온도 구간에서 제2 온도 구간으로 진입하는 상승 진입 온도(N+0.5℃)는 사용자에 의해 입력된 설정 온도(N)보다 높을 수 있다. 반대로 저장실의 온도가 제2 온도 구간에서 제1 온도 구간으로 진입하는 하강 진입 온도(N-0.5℃)는 사용자에 의해 입력된 설정 온도(N)보다 낮을 수 있다.The rising entry temperature N + 0.5 ° C. at which the temperature of the storage compartment enters the second temperature section from the first temperature section may be higher than the set temperature N input by the user. On the contrary, the falling entrance temperature N-0.5 ° C. at which the temperature of the storage compartment enters the first temperature section from the second temperature section may be lower than the set temperature N input by the user.
마찬가지로 도 6를 기준으로 저장실의 온도가 상승하여 제2 온도 구간에서 제3 온도 구간으로 상승 진입하는 상승 진입 온도는 N+3.5℃다. 반대로 저장실의 온도가 하강하여 제3 온도 구간에서 제2 온도 구간으로 진입하는 하강 진입 온도는 N+2.0℃다. 따라서 상승 진입 온도는 하강 진입 온도보다 높다.Similarly, the rising entry temperature at which the temperature of the storage compartment rises and rises from the second temperature section to the third temperature section is N + 3.5 ° C based on FIG. 6. On the contrary, the falling entry temperature at which the temperature of the storage compartment falls to enter the second temperature section from the third temperature section is N + 2.0 ° C. Thus, the rising entry temperature is higher than the falling entry temperature.
만일 상승 진입 온도가 하강 진입 온도가 서로 같다면, 저장실이 충분히 냉각되지 않은 채 열전소자나 팬의 제어가 다시 변경된다. 예를 들어 제2 온도 구간에서 제1 온도 구간으로 진입하자 마자 저장실의 설정 온도가 만족되어 열전소자와 팬이 정지하게 된다면, 저장실의 온도는 곧바로 다시 제2 온도 구간으로 진입하게 된다. 이러한 현상을 방지하고 저장실의 온도를 제1 온도 구간에 충분히 머무르게 하게 위해서는 반드시 하강 진입 온도가 상승 진입 온도보다 낮아야 한다.If the rising entry temperatures are equal to the falling entry temperatures, the control of the thermoelectric element or fan is changed again without the storage compartment being sufficiently cooled. For example, as soon as the set temperature of the storage compartment is satisfied and the thermoelectric element and the fan are stopped as soon as the second temperature section enters the first temperature section, the temperature of the storage compartment immediately enters the second temperature section. In order to prevent this phenomenon and to sufficiently maintain the temperature of the storage compartment in the first temperature section, the falling entry temperature must be lower than the rising entry temperature.
여기서는 먼저 임의의 설정 온도에서 열전소자의 출력과 팬의 회전 속도에 대하여 설명한다. 이어서 설정 온도에 따른 제어의 변화에 대하여 설명한다.First, the output of the thermoelectric element and the rotation speed of the fan at an arbitrary set temperature will be described. Next, the change of control according to set temperature is demonstrated.
임의의 설정 온도(N1)에서 열전소자의 출력은 표 1에 나타내었다. 표 1에서 Hot/Cool 항목에서는 쿨링 싱크와 접촉하는 열전소자의 일 면이 흡열 작용을 하고 있는 흡열면에 해당하면 Cool로 표시하고, 반대로 상기 일 면이 방열 작용을 하고 있는 방열면에 해당하면 Hot로 표시한다. 또한 RT는 냉장고의 외부 온도(room temperature)를 가리킨다.The output of the thermoelectric element at any set temperature (N1) is shown in Table 1. In Table 1, in the Hot / Cool item, if one surface of the thermoelectric element in contact with the cooling sink corresponds to the heat absorbing surface that is endothermic, it is marked as Cool. To be displayed. RT also refers to the room temperature of the refrigerator.
순서order 조건(제1설정온도, N1)Condition (1st set temperature, N1) Hot/CoolHot / Cool RT<12℃RT <12 ℃ RT>12℃RT> 12 ℃ RT>18℃RT> 18 ℃ RT>27℃RT> 27 ℃
1One 제3온도구간Third temperature section CoolCool +22V+ 22V +22V+ 22V +22V+ 22V +22V+ 22V
22 제2온도구간Second temperature section CoolCool +12V+ 12V +14V+ 14V +16V+16 V +22V+ 22V
33 제1온도구간1st temperature section CoolCool 0V0 V 0V0 V +12V+ 12V +16V+16 V
열전소자의 출력은 (a) 저장실의 온도가 제1 온도 구간, 제2 온도 구간 및 제3 온도 구간 중 어느 구간에 속하는지에 근거하여 결정된다.The output of the thermoelectric element is determined based on (a) which of the first temperature section, the second temperature section and the third temperature section the temperature of the storage compartment.
열전소자에 인가되는 전압이 높을수록 열전소자의 출력이 커지므로, 열전소자의 출력은 열전소자에 인가되는 전압으로부터 알 수 있다. 열전소자의 출력이 커지면 열전소자는 더욱 강한 냉각을 구현할 수 있다.The higher the voltage applied to the thermoelectric element, the larger the output of the thermoelectric element, and thus the output of the thermoelectric element can be known from the voltage applied to the thermoelectric element. As the output of the thermoelectric element increases, the thermoelectric element may realize stronger cooling.
한편, 팬의 회전속도는 (a) 저장실의 온도가 상기 제1 온도 구간, 상기 제2 온도 구간 및 상기 제3 온도 구간 중 어느 구간에 속하는지에 근거하여 결정된다. 여기서 팬이란 열전소자모듈의 제1 팬 및/또는 제2 팬을 가리킨다.Meanwhile, the rotation speed of the fan is determined based on (a) which of the first temperature section, the second temperature section and the third temperature section the temperature of the storage compartment belongs to. The fan refers to the first fan and / or the second fan of the thermoelectric module.
팬의 회전 속도는 단위 시간당 팬의 회전수(RPM)로부터 알 수 있다. 팬의 RPM이 크다는 것은 팬이 더 빠르게 회전한다는 것을 의미한다. 팬이 더욱 높은 전압이 인가되면 팬의 회전수가 증가한다. 팬이 더욱 빠르게 회전하면 쿨링 싱크 및/또는 히트 싱크의 열교환을 더욱 촉진하게 되어 더욱 강한 냉각을 구현할 수 있다.The rotational speed of the fan can be known from the rotational speed (RPM) of the fan per unit time. Larger RPMs mean that the fans spin faster. As the fan receives a higher voltage, the fan speed increases. The faster the fan rotates, the more the heat sinks in the cooling sink and / or heat sink can be promoted, resulting in stronger cooling.
도 6을 참조할 때 저장실의 온도가 제3 온도 구간에 해당하면, 열전소자는 제3 출력으로 운전된다. 표 1에서 제3 출력은 외부 온도에 관계없이 +22V다. 따라서 제3 출력은 외부 온도에 관계없이 일정한 값이다.Referring to FIG. 6, when the temperature of the storage chamber corresponds to the third temperature section, the thermoelectric element is operated at the third output. In Table 1, the third output is + 22V regardless of the external temperature. Thus, the third output is a constant value regardless of the external temperature.
제3 출력(+22V)은 제1 온도 구간의 제1 출력(표 1에서의 0V, +12V, +16V)을 초과하는 값이다. 그리고 제3 출력은 제2 온도 구간의 제2 출력(표 1에서의 +12V, +14V, +16V, +22V) 이상의 값이다.The third output (+ 22V) is a value exceeding the first output (0V, + 12V, + 16V in Table 1) of the first temperature section. The third output is a value equal to or greater than the second output (+ 12V, + 14V, + 16V, + 22V in Table 1) of the second temperature section.
제3 출력은 열전소자의 최대 출력에 해당할 수 있다. 이 경우 제3 온도 구간에서 열전소자의 출력은 상기 최대 출력으로 일정하게 유지된다.The third output may correspond to the maximum output of the thermoelectric element. In this case, the output of the thermoelectric element in the third temperature section is kept constant at the maximum output.
또한, 저장실의 온도가 제3 온도 구간에 해당하면, 팬이 제3 회전 속도로 회전된다. 여기서 제3 회전 속도는 제1 온도 구간의 제1 회전 속도를 초과하는 값이다. 그리고 제3 회전 속도는 제2 온도 구간의 제2 회전 속도 이상의 값이다.In addition, when the temperature of the storage compartment corresponds to the third temperature section, the fan is rotated at the third rotational speed. Here, the third rotational speed is a value exceeding the first rotational speed of the first temperature section. The third rotation speed is a value equal to or greater than the second rotation speed in the second temperature section.
저장실의 온도가 제2 온도 구간에 해당하면, 열전소자는 제2 출력으로 운전된다. 여기서 제2 출력은 일정한 값이 아니라 외기 온도 센서에 의해 측정되는 외부 온도의 증가에 따라 단계적으로 가변(증가)되는 값이다. 표 1에서 제2 출력은 외부 온도의 증가에 따라 +12V, +14V, +16V, +22V로 단계적으로 증가한다.If the temperature of the storage compartment corresponds to the second temperature section, the thermoelectric element is operated at the second output. Here, the second output is not a constant value but a value that is gradually changed (increased) in accordance with an increase in the external temperature measured by the outside temperature sensor. In Table 1, the second output is gradually increased to + 12V, + 14V, + 16V, + 22V as the external temperature increases.
제2 출력은 동일한 외부 온도 조건에서 제1 온도 구간의 제1 출력 이상의 값이다. 표 1을 참조하면 RT<12℃ 조건에서 제2 출력인 +12V는 제1 출력인 0V 이상이다. RT>12℃ 조건에서 제2 출력인 +14V는 제1 출력인 0V 이상이다. RT>18℃ 조건에서 제2 출력인 +16V는 제1 출력인 +12V 이상이다. RT>27℃ 조건에서 제2 출력인 +22V는 제1 출력인 +16V 이상이다.The second output is a value greater than or equal to the first output of the first temperature section under the same external temperature condition. Referring to Table 1, the second output + 12V under RT <12 ℃ condition is above the first output 0V. At RT> 12 ° C, the second output of + 14V is greater than or equal to the first output of 0V. At RT> 18 ° C, the second output of + 16V is greater than the first output of + 12V. At RT> 27 ° C, the second output of + 22V is greater than the first output of + 16V.
그리고 제2 출력은 제3 온도 구간의 제3 출력 이하의 값이다. 표 1을 참조하면 모든 외부 온도 조건에서 제2 출력(+12V, +14V, +16V, +22V)은 제3 출력(+22V) 이하이다.The second output is a value less than or equal to the third output of the third temperature section. Referring to Table 1, under all external temperature conditions, the second output (+ 12V, + 14V, + 16V, + 22V) is less than or equal to the third output (+ 22V).
한편, 저장실의 온도가 제2 온도 구간에 해당하면, 팬이 제2 회전 속도로 회전된다. 여기서 제2 회전 속도는 제1 온도 구간의 제1 회전 속도 이상의 값이다. 그리고 제2 회전 속도는 제3 온도 구간의 제3 회전 속도 이하의 값이다.On the other hand, when the temperature of the storage compartment corresponds to the second temperature section, the fan is rotated at the second rotational speed. Here, the second rotational speed is a value greater than or equal to the first rotational speed of the first temperature section. The second rotational speed is a value less than or equal to the third rotational speed of the third temperature section.
저장실의 온도가 제1 온도 구간에 해당하면, 열전소자는 제1 출력으로 운전된다. 여기서 제1 출력은 일정한 값이 아니라 외기 온도 센서에 의해 측정되는 외부 온도의 증가에 따라 단계적으로 가변(증가)되는 값이다. 다만, 제1 온도 구간에서 외부 온도가 기준 외부 온도보다 높은 때 제1 출력은 0V, +12V, +16V와 같이 외부 온도의 증가에 따라 단계적으로 가변(증가)된다. 그러나 제1 온도 구간에서 외부 온도가 기준 외부 온도 이하일 때에는 제1 출력이 0으로 유지된다. 열전소자의 작동이 정지 상태로 유지되는 것이다. 표 1에서 상기 기준 외부 온도는 12℃와 18℃ 사이의 값(예를 들어 15℃)이라고 할 수 있다.If the temperature of the storage compartment corresponds to the first temperature section, the thermoelectric element is operated at the first output. Here, the first output is not a constant value but a value that is gradually changed (increased) in accordance with an increase in the external temperature measured by the outside temperature sensor. However, when the external temperature is higher than the reference external temperature in the first temperature section, the first output is gradually changed (increased) as the external temperature increases, such as 0V, + 12V, and + 16V. However, when the external temperature is less than the reference external temperature in the first temperature section, the first output is maintained at zero. The operation of the thermoelectric element is kept at a standstill. In Table 1, the reference external temperature may be referred to as a value (eg, 15 ° C.) between 12 ° C. and 18 ° C.
표 1의 제1 온도 구간과 제2 온도 구간을 비교하면 동일한 온도 범위에서 제2 출력의 단계적인 증가 횟수가 제1 출력의 단계적인 증가 횟수보다 크다. 제2 출력은 +12, +14, +16, +22로 4단계로 변화하나, 동일한 온도 범위에서 제1 출력은 0V, +12V, +16V로 3단계로 변화한다. 따라서 제2 온도 구간은 전 전체 가변 구간에 해당하고, 제1 온도 구간은 부분 가변 구간에 해당한다.Comparing the first temperature section and the second temperature section of Table 1, the number of stepwise increases of the second output is greater than the number of stepwise increases of the first output in the same temperature range. The second output changes in four steps: +12, +14, +16, and +22, but within the same temperature range, the first output changes in three steps: 0V, + 12V, + 16V. Accordingly, the second temperature section corresponds to all the entire variable sections, and the first temperature section corresponds to the partial variable sections.
제1 출력은 동일한 외부 온도 조건에서 제2 온도 구간의 제2 출력 이하의 값이다.The first output is a value less than or equal to the second output of the second temperature section under the same external temperature condition.
표 1을 참조하면 RT<12℃ 조건에서 제1 출력인 0V는 제2 출력인 +12V 이하이다. RT>12℃ 조건에서 제1 출력인 0V는 제2 출력인 +14V 이하이다. RT>18℃ 조건에서 제1 출력인 +12V는 제2 출력인 +16V 이하이다. RT>27℃ 조건에서 제1 출력인 +16V는 제2 출력인 +22V 이하이다.Referring to Table 1, the first output 0V is less than + 12V the second output under the conditions RT <12 ℃. At RT> 12 ° C, the first output, 0V, is below the second output, + 14V. At RT> 18 ° C, the first output of + 12V is less than or equal to the second output of + 16V. At RT> 27 ° C, the first output, + 16V, is below the second output, + 22V.
그리고 제1 출력은 제3 온도 구간의 제3 출력 미만의 값이다. 표 1을 참조하면 모든 외부 온도 조건에서 제1 출력(0V, 0V, +12V, +16V)은 제3 출력(+22V) 미만이다.And the first output is a value less than the third output of the third temperature section. Referring to Table 1, under all external temperature conditions, the first output (0V, 0V, + 12V, + 16V) is less than the third output (+ 22V).
제1 출력은 0을 포함한다. 출력이 0이란 것은 열전소자에 전압이 인가되지 않아 열전소자의 작동이 정지 상태라는 것을 의미한다. 즉 저장실의 온도가 사용자에 의해 입력된 설정 온도까지 낮아지게 되면 열전소자의 작동이 정지될 수 있다.The first output includes zero. The output 0 means that the thermoelectric element is stopped because no voltage is applied to the thermoelectric element. That is, when the temperature of the storage compartment is lowered to the set temperature input by the user, the operation of the thermoelectric element may be stopped.
한편, 저장실의 온도가 제1 온도 구간에 해당하면, 팬이 제1 회전 속도로 회전된다. 여기서 제1 회전 속도는 제2 온도 구간의 제2 회전 속도 이하의 값이다. 그리고 제1 회전 속도는 제3 온도 구간의 제3 회전 속도 미만의 값이다.On the other hand, when the temperature of the storage compartment corresponds to the first temperature section, the fan is rotated at the first rotational speed. Here, the first rotational speed is a value less than or equal to the second rotational speed of the second temperature section. The first rotational speed is a value less than the third rotational speed of the third temperature section.
팬의 제1 회전 속도는 0보다 큰 값을 갖는다. 이것은 열전소자의 제1 출력이 0을 포함하는 것과 상이하다. 즉 열전소자에 전압이 인가되지 않은 상태에서도 팬은 계속 회전할 수 있다는 것을 의미한다.The first rotational speed of the fan has a value greater than zero. This is different from the first output of the thermoelement including zero. This means that the fan can continue to rotate even when no voltage is applied to the thermoelectric element.
예를 들어 RT<12℃ 조건에서 저장실의 온도가 낮아져 제2 온도 구간으로부터 제1 온도 구간으로 하강 진입 하는 경우 열전소자에 전압이 인가되지 않을 수 있다. 표 1에서 제1 출력이 0V로 표시되어 있기 때문이다. 그러나 저장실의 온도가 제2 온도 구간에서 제1 온도 구간으로 진입하더라도 팬의 회전 속도만 낮아질 뿐 팬은 여전히 회전을 계속한다.For example, when the temperature of the storage compartment is lowered under the condition of RT <12 ° C., the voltage may not be applied to the thermoelectric element when the temperature falls into the first temperature section from the second temperature section. This is because the first output is shown as 0V in Table 1. However, even when the temperature of the storage room enters the first temperature section from the second temperature section, only the rotation speed of the fan is lowered, and the fan still continues to rotate.
그 이유는 열전소자의 작동이 정지되더라도 열전소자가 곧바로 상온으로 변화하는 것이 아니라 차가운 온도를 상당 기간 유지하고 있기 때문이다. 따라서 팬이 계속해서 회전하면 쿨링 싱크의 열교환을 계속해서 촉진할 수 있고, 저장실의 온도를 제1 온도 구간에 충분히 머무르게 할 수 있다.The reason is that even if the operation of the thermoelectric element is stopped, the thermoelectric element does not immediately change to room temperature, but maintains a cold temperature for a long time. Therefore, if the fan continues to rotate, the heat exchange of the cooling sink can be continuously promoted, and the temperature of the storage compartment can be sufficiently maintained in the first temperature section.
종래의 냉장고는 저장실의 온도 구간을 만족, 불만족의 2단계로 구분하고 불만족 구간에서만 냉동사이클 장치를 가동하여 저장실의 온도를 설정 온도로 낮추도록 이루어진다. 특히 냉동사이클 장치를 구비하는 냉장고의 경우 저장실의 온도를 3단계까지 구분하여 단계적으로 제어할 수 없었다. 그것은 냉동사이클 장치에 구비되는 압축기를 과도하게 자주 켜고 끄게 되면 압축기의 기계적인 신뢰성에 악영향을 미치기 때문이었다. 온도 구간을 확장함으로 인해 얻는 장점보다 압축기의 신뢰성을 잃는 것이 더욱 큰 치명적인 문제다.In the conventional refrigerator, the temperature section of the storage compartment is satisfied and divided into two stages of dissatisfaction, and the refrigeration cycle device is operated only in the dissatisfaction section to lower the temperature of the storage compartment to the set temperature. In particular, in the case of a refrigerator provided with a refrigeration cycle device, it was not possible to control the temperature of the storage compartment up to three stages step by step. This is because excessively turning on and off the compressor of the refrigeration cycle system adversely affects the mechanical reliability of the compressor. Losing the reliability of the compressor is more critical than gaining from extending the temperature range.
이에 반해 본 발명과 같이 열전소자모듈을 구비하는 냉장고는 본 발명에서 제안하는 제어 방법과 같이 저장실의 온도를 3단계로 구분하여 더욱 세부적인 제어를 수행할 수 있다. 열전소자모듈은 전압의 인가에 의해 전기적으로 켜고 꺼질 뿐이므로 기계적인 신뢰성과 무관하고 잦은 온, 오프 동작에도 신뢰성을 잃지 않기 때문이다.On the contrary, a refrigerator having a thermoelectric module as in the present invention can perform more detailed control by dividing the temperature of the storage compartment into three stages as in the control method proposed by the present invention. The thermoelectric module is only turned on and off electrically by the application of voltage, so it is independent of mechanical reliability and does not lose its reliability even in frequent on and off operations.
특히 열전소자모듈의 냉각 성능은 압축기를 구비하는 냉동사이클 장치에 미치지 못한다. 따라서 초기 전원 투입, 열전소자 구동 정지, 저장실 내 음식물과 같은 부하 투입 등의 이유로 저장실의 온도가 불만족 영역으로 상승 진입하게 되면, 다시 만족 영역으로 하강 진입하는데 시간이 오래 소요된다. 따라서 저장실의 온도를 만족과 불만족 외에 3단계로 추가 정의하게 되면, 가장 온도가 높은 제3 온도 구간에서 가장 높은 출력으로 저장실의 온도를 신속하게 낮추는 제어를 구현할 수 있다.In particular, the cooling performance of the thermoelectric element module does not reach the refrigeration cycle apparatus having a compressor. Therefore, when the temperature of the storage compartment rises into an unsatisfactory region due to the initial power supply, the thermoelectric element stop, the input of a load such as food in the storage compartment, it takes a long time to enter the satisfaction region again. Therefore, if the temperature of the storage compartment is additionally defined in three stages in addition to the satisfaction and dissatisfaction, it is possible to implement a control to rapidly lower the temperature of the storage compartment at the highest output in the third highest temperature section.
또한 제1 온도 구간과 제2 온도 구간은 냉각뿐만 아니라 소비 전력 절감과 팬의 저소음을 위한 것이다. 본 발명은 저장실의 온도 구간을 세분화 하고, 저장실의 온도가 낮아짐에 따라 열전 소자의 출력과 팬의 회전 속도를 낮추도록 이루어지므로, 소비 전력 절감은 물론 팬의 저소음을 함께 구현할 수 있다.In addition, the first temperature section and the second temperature section are not only for cooling but also for reducing power consumption and low noise of the fan. According to the present invention, the temperature section of the storage compartment is subdivided, and as the temperature of the storage compartment is lowered, the output of the thermoelectric element and the rotation speed of the fan are lowered, thereby reducing power consumption and low noise of the fan.
이하에서는 제상 효율, 소비 전력 절감을 구현할 수 있는 제상 운전에 대하여 설명한다.Hereinafter, a defrosting operation capable of implementing defrost efficiency and power consumption reduction will be described.
도 7은 본 발명에서 제안하는 냉장고의 제상 운전 제어를 보인 흐름도다.7 is a flowchart illustrating defrost operation control of the refrigerator proposed by the present invention.
열전소자모듈이 누적적으로 작동하게 되면 쿨링 싱크와 제1 팬에는 서리가 착상된다. 제상 운전이란 이 서리를 제거하는 동작을 가리킨다.When the thermoelectric module operates cumulatively, frost is formed on the cooling sink and the first fan. Defrost operation refers to the action of removing this frost.
본 발명에서 제안하는 확장된 제상의 개념이란 열원 제상과 자연 제상을 조건에 따라 복합적으로 이용하여 신속한 제상과 소비 전력 절감을 구현하는 것이다. 열원 제상 운전이란 열전소자에 에너지를 공급하여 열전소자모듈을 제상하는 것을 의미하며, 자연 제상 운전이란 열전소자에 에너지를 공급하지 않고 자연적으로 제상하는 것을 의미한다. 다만 자연 제상 운전의 경우에도 열원은 필요하다. 자연 제상 운전의 열원은 저장실 내부의 공기와 히트 싱크의 폐열이다. 자연 제상 운전의 경우에도 제1 팬과 제2 팬 중 적어도 하나는 회전될 수 있다.The concept of the extended defrost proposed by the present invention is to implement a fast defrost and power consumption reduction by using a combination of the heat source defrost and natural defrost according to the conditions. The heat source defrosting operation means to defrost the thermoelectric module by supplying energy to the thermoelectric element, and the natural defrosting operation means to defrost naturally without supplying energy to the thermoelectric element. However, a heat source is also required for natural defrosting operation. The heat source of natural defrosting operation is the waste heat of the heat sink and the air inside the storage compartment. Even in the natural defrosting operation, at least one of the first fan and the second fan may be rotated.
냉장고의 소비 전력 절감을 위해서는 열원 제상보다는 자연 제상 운전이 바람직하다. 따라서 평상시에는 자연 제상 운전이 기본 운전으로 설정되며, 신속한 제상을 필요로 하는 특수한 경우를 위해 열원 제상이 특수 운전으로 설정된다.In order to reduce power consumption of the refrigerator, natural defrosting operation is preferable to heat source defrosting. Therefore, the normal defrosting operation is usually set as the basic operation, and the heat source defrosting is set as the special operation for a special case requiring rapid defrosting.
(S510) 제상 운전의 가동을 위해 선행되어야 할 동작은 제상 운전의 필요성을 판단하는 것이다. 먼저, 외부 온도 측정, 열전소자모듈의 구동 시간 적산, 제상 온도 센서의 온도 측정 등을 통해 제상 운전 투입의 필요성을 판단한다.(S510) The operation to be performed for the operation of the defrosting operation is to determine the necessity of the defrosting operation. First, it is necessary to determine the necessity of defrosting operation through external temperature measurement, integration of the driving time of the thermoelectric element module, and measurement of the temperature of the defrost temperature sensor.
외기 온도 센서에 의해 측정되는 외부 온도가 너무 낮거나, 열전소자모듈의 구동 시간이 기설정된 시간을 초과하였거나, 제상 온도 센서에 의해 측정되는 열전소자모듈의 온도가 너무 낮으면 쿨링 싱크와 제1 팬에 서리가 착상되기 쉽다. 따라서 이들의 경우에는 제상 운전이 필요한 경우로 판단될 수 있다.Cooling sink and first fan when the external temperature measured by the outside temperature sensor is too low, the operating time of the thermoelectric element module exceeds the preset time, or the temperature of the thermoelectric element module measured by the defrost temperature sensor is too low. It is easy to frost on. Therefore, in these cases, it may be determined that the defrosting operation is necessary.
이 중 열전소자모듈의 구동 시간을 적산하여 제상 운전의 가동을 결정하는 것은 시간의 자연스러운 흐름에 따라 주기적인 제상 운전을 가동하는 것이다. 이 경우는 상대적으로 신속한 제상을 필요로 하는 경우라고 볼 수 없다. 따라서 열전소자모듈의 구동을 적산하여 가동되는 제상 운전은 자연 제상 운전으로 선택된다.Of these, integrating the driving time of the thermoelectric module to determine the operation of the defrosting operation is to operate the defrosting operation periodically according to the natural flow of time. This case cannot be regarded as a case where relatively fast defrosting is required. Therefore, the defrosting operation which is operated by integrating the driving of the thermoelectric element module is selected as the natural defrosting operation.
자연 제상 운전이 시간을 기준으로 가동되는 이유는 제상 운전의 신뢰성을 제고하기 위함이다. 만일 자연 제상 운전이 온도를 기준으로 가동된다면, 이미 제상이 필요함에도 불구하고 단순히 미소한 온도 차이 때문에 제상 운전이 가동되지 않는 경우가 발생하게 된다. 그렇다고 하여 온도 조건을 너무 완화하면 자연 제상 운전만으로 충분한 경우에도 열원 제상이 불필요하게 가동되어 소비 전력을 악화시킨다.The reason why the natural defrosting operation is operated based on time is to improve the reliability of the defrosting operation. If the natural defrosting operation is operated on the basis of temperature, the defrosting operation may not be operated simply because of a slight temperature difference even though the defrosting is already required. However, if the temperature conditions are alleviated too much, the heat source defrost will be operated unnecessarily even if the natural defrosting operation alone is sufficient, thereby worsening the power consumption.
외부 온도가 너무 낮거나, 열전소자모듈의 온도가 너무 낮으면 과착상의 우려가 존재하며, 신속한 제상을 필요로 한다. 따라서 온도를 기준으로 가동되는 제상 운전은 열원 제상 운전으로 선택된다. 신속한 제상을 필요로 하는 경우는 특수한 경우이므로, 열전 제상 운전은 온도를 기준으로 가동되더라도 무방하다.If the external temperature is too low or the temperature of the thermoelectric element module is too low, there is a concern of over-deposition, it requires a quick defrost. Therefore, the defrosting operation which is operated based on the temperature is selected as the heat source defrosting operation. The need for rapid defrosting is a special case, so the thermoelectric defrosting operation may be operated on the basis of temperature.
(S520) 다음으로, 외기 온도 센서에 의해 측정되는 외부 온도가 기준 외부 온도보다 높은지 또는 낮은지를 판단한다. 제어부는 외기 온도 센서에 의해 측정되는 외부 온도가 기준 외부 온도 이하이면 열원 제상 운전을 가동하도록 형성된다. 도 7을 참조하면 기준 외부 온도의 일 예로 8℃가 선택된다.Next, it is determined whether the outside temperature measured by the outside temperature sensor is higher or lower than the reference outside temperature. The controller is configured to operate the heat source defrosting operation when the external temperature measured by the ambient air temperature sensor is equal to or less than the reference external temperature. Referring to FIG. 7, 8 ° C. is selected as an example of the reference external temperature.
외부 온도가 8℃를 초과한다는 것은 상대적으로 따뜻하다는 것을 의미한다. 따뜻한 환경에서는 서리가 쉽게 착상되지 않는다. 따라서 외부 온도가 8℃ 이하인 경우(NO)에만 열원 제상 운전이 가동된다.An external temperature above 8 ° C means that it is relatively warm. In warm environments, frost is not easily implanted. Therefore, the heat source defrosting operation is operated only when the external temperature is 8 ° C. or less (NO).
(S530) 이어서, 제상 온도 센서에 의해 측정되는 열전소자모듈의 온도가 기준 열전소자모듈 온도보다 높은지 또는 낮은지를 판단한다. 제어부는 제상 온도 센서에 의해 측정되는 열전소자모듈의 온도가 기준 열전소자모듈 온도 이하이면 열원 제상 운전을 가동하도록 형성된다. 도 7을 참조하면 기준 열전소자모듈 온도의 일 예로 -10℃가 선택된다.Next, it is determined whether the temperature of the thermoelectric module measured by the defrost temperature sensor is higher or lower than the reference thermoelectric module temperature. The controller is configured to operate the heat source defrosting operation when the temperature of the thermoelectric element module measured by the defrost temperature sensor is equal to or lower than the reference thermoelectric module temperature. Referring to FIG. 7, -10 ° C is selected as an example of the reference thermoelectric module temperature.
열전소자모듈의 온도가 -10℃를 초과한다는 것은 상대적으로 열전소자모듈의 온도가 과도하게 낮지 않다는 것을 의미한다. 열전소자모듈의 온도가 과도하게 낮지 않으면 서리가 쉽게 착상되지 않는다. 따라서 열전소자모듈의 -10℃ 이하인 경우(NO)에만 열원 제상 운전이 가동된다.If the temperature of the thermoelectric module exceeds -10 ℃ means that the temperature of the thermoelectric module is not excessively low. If the temperature of the thermoelectric element module is not excessively low, frost is not easily implanted. Therefore, the heat source defrosting operation is operated only when the thermoelectric module is below -10 ° C (NO).
(S540) 열원 제상 운전이 가동되지 않으면 열전소자모듈의 구동 시간을 적산하여 기설정된 주기마다 자연 제상 운전이 가동된다. 제어부는 열전소자모듈의 구동 적산 시간에 근거하여 기설정된 주기마다 열전소자모듈에 착상된 서리를 제거하는 자연 제상 운전을 가동하도록 형성된다. 다만, 여기서 자연 제상 운전의 가동을 결정하는 기설정된 주기는 부하 대응 운전과 같이 도어의 개방 여부에 근거하여 변동된다. 따라서 기설정된 주기를 결정하기 위해서는 자연 제상 운전의 가동 전에 부하 대응 운전 등과 같이 도어의 개방이 있었는지를 먼저 판단한다.If the heat source defrosting operation is not operated, the natural defrosting operation is performed at predetermined intervals by accumulating the driving time of the thermoelectric module. The controller is configured to operate a natural defrosting operation for removing frost formed on the thermoelectric module at predetermined intervals based on the driving integration time of the thermoelectric module. However, here, the predetermined period for determining the operation of the natural defrosting operation is changed based on whether the door is opened, as in the load corresponding operation. Therefore, in order to determine the predetermined period, it is first determined whether there is an opening of the door, such as a load response operation, before the operation of the natural defrosting operation.
(S541) 부하 대응 운전 후가 아니거나 선행하는 도어의 개방이 없었던 경우(NO)에는 적산 시간이 기본값으로 설정된 주기에 도달하였는지를 판단한다. 도 7에는 기본값의 일 예로 9시간이 선택되어 있다. 적산 시간이 9시간에 도달하였으면 자연 제상 운전이 가동된다.If it is not after the load corresponding operation or if there is no opening of the preceding door (NO), it is determined whether the integration time has reached a cycle set as a default value. In FIG. 7, 9 hours is selected as an example of the default value. When the integration time reaches 9 hours, the natural defrosting operation is activated.
(S542) 반면, 부하 대응 운전 후라면 적산 시간이 기본값으로 설정된 주기보다 짧은 값으로 변동된다. 도 7에는 기본값보다 짧은 시간의 일 예로 1시간이 선택되어 있다. 적산 시간을 짧은 값으로 변동시키는 요인은 여러 가지가 있을 수 있다.On the other hand, after the load response operation, the integration time is changed to a value shorter than the period set as the default value. In FIG. 7, one hour is selected as an example of a time shorter than the default value. There may be a number of factors that change the integration time to a short value.
첫째로, 도어의 열림이다. 자연 제상 운전의 가동을 결정하는 기설정된 주기는 도어의 열림에 의해 도어의 열림 전보다 짧은 값으로 감소될 수 있다.First, the door is open. The predetermined period for determining the operation of the natural defrosting operation can be reduced to a shorter value than before the door is opened by the door opening.
둘째로, 도어의 열림 시간이다. 자연 제상 운전의 가동을 결정하는 기설정된 주기는 도어의 개방 시간에 반비례하여 짧아질 수 있다. 예를 들어 도어의 개방 시간 1초당 주기가 7분씩 감소될 수 있다.Secondly, the opening time of the door. The predetermined period for determining the operation of the natural defrosting operation can be shortened in inverse proportion to the opening time of the door. For example, the period per second of opening time of the door can be reduced by 7 minutes.
셋째로, 부하 대응 운전의 가동이다. 도어가 열렸다가 닫힌 후 기설정된 시간 내에 저장실의 온도가 기설정된 온도만큼 상승한 경우, 제어부는 저장실의 온도를 낮추는 부하 대응 운전을 가동하도록 형성된다. 그리고 부하 대응 운전이 가동되면 자연 제상 운전의 가동을 결정하는 기설정된 주기가 부하 대응 운전의 가동 전보다 짧은 값으로 감소된다.Third is the operation of load response operation. When the temperature of the storage compartment rises by a predetermined temperature within a predetermined time after the door is opened and closed, the controller is configured to operate a load corresponding operation for lowering the temperature of the storage compartment. When the load corresponding operation is activated, the predetermined period for determining the operation of the natural defrosting operation is reduced to a shorter value than before the load corresponding operation.
이와 같은 요인에 의하면 도어의 개폐 후에 열전소자모듈가 최대 출력으로 작동할 가능성이 높다. 도어의 열림이나 부하 대응 운전 등은 저장실의 온도 낮춤을 필요로 하는 경우이기 때문이다. 열전소자모듈의 최대 출력으로 작동하고 나면 서리가 쉽게 착상되므로, 신속한 제상이 이루어져야 한다. 따라서 이들 요인이 자연 제상 운전의 가동 전에 선행하여 존재한다면 자연 제상 운전의 가동을 결정하는 적산 시간이 기본값보다 짧은 값으로 변동되어야 한다.According to such factors, there is a high possibility that the thermoelectric module operates at the maximum output after the door is opened and closed. This is because the opening of the door, the load response operation, and the like require lowering the temperature of the storage compartment. After operating at the maximum output of the thermoelectric module, frost easily forms, so rapid defrosting should be achieved. Therefore, if these factors exist before the operation of the natural defrosting operation, the integration time for determining the operation of the natural defrosting operation should be changed to a value shorter than the default value.
(S551) 자연 제상 운전이 가동되면, 열전소자의 작동이 정지된다. 열전소자에 공급되는 전압이 0V가 되는 것이다. 다만, 열전소자에 공급되는 전압이 급격하게 0V로 변동되는 것은 아니고, 열전소자모듈은 예냉(Pre-cool) 운전을 한다. 예냉 운전이란 열전소자모듈의 전원을 즉각적으로 차단하는 것이 아니라 열전소자의 출력을 순차적으로 감소시켜 0에 수렴하도록 하는 것을 의미한다.(S551) When the natural defrosting operation is started, the operation of the thermoelectric element is stopped. The voltage supplied to the thermoelectric element becomes 0V. However, the voltage supplied to the thermoelectric element does not suddenly change to 0 V, and the thermoelectric module performs pre-cooling operation. Pre-cooling operation means that the power of the thermoelectric element module is not immediately cut off, but the output of the thermoelectric element is sequentially reduced to converge to zero.
자연 제상 운전이 가동되면 제1 팬은 계속해서 회전되고, 제2 팬은 일시적으로 정지된다. 서리는 냉각 운전 시 저온으로 유지되는 쿨링 싱크와 제1 팬에 착상되는 것이기 때문에, 자연 제상 운전 시 제1 팬의 회전은 계속 유지되어야 한다. 쿨링 싱크의 열교환을 촉진하여 서리를 제거하기 위함이다.When the natural defrosting operation is activated, the first fan is continuously rotated, and the second fan is temporarily stopped. Since the frost is formed on the cooling sink and the first fan which are kept at a low temperature during the cooling operation, the rotation of the first fan must be maintained during the natural defrosting operation. This is to remove frost by promoting heat exchange of the cooling sink.
반면, 제2 팬에는 서리가 쉽게 착상되지 않는다. 제2 팬은 열전소자의 방열측에 해당하기 때문이다. 따라서 자연 제상 운전 내내 제2 팬이 회전하는 것은 특별히 얻는 효과 없이 소비 전력을 낭비하는 것이다. 소비 전력 절감을 위해 서리가 녹을 때까지 제2 팬의 회전이 일시적으로 정지된다.On the other hand, frost is not easily implanted in the second fan. This is because the second fan corresponds to the heat dissipation side of the thermoelectric element. Therefore, the rotation of the second fan throughout the natural defrosting operation wastes power consumption without any particular effect. In order to reduce power consumption, the rotation of the second fan is temporarily stopped until the frost melts.
(S552) 제2 팬은 기설정된 시간 경과 후에 다시 회전된다.The second fan is rotated again after a preset time elapses.
자연 제상 운전이 가동되고 나면 서리는 3~4분 이내에 제거된다. 서리가 녹으면서 쿨링 싱크와 제1 팬에는 응축수가 생기기도 하고, 히트 싱크와 제2 팬에는 이슬이 맺히기도 한다. 쿨링 싱크와 제1 팬에 생긴 응축수는 제1 팬의 회전에 의해 제거된다. 히트 싱크와 제2 팬에 맺힌 이슬은 제2 팬의 회전에 의해 제거된다.Once natural defrosting is in operation, frost is removed within 3 to 4 minutes. As the frost melts, condensate may form in the cooling sink and the first fan, and dew may form on the heat sink and the second fan. Condensate generated in the cooling sink and the first fan is removed by the rotation of the first fan. Dew formed on the heat sink and the second fan is removed by the rotation of the second fan.
응축수와 이슬은 서리 착상의 원인이 되기 때문에, 자연 제상 운전의 완전한 완료를 위해서는 응축수와 이슬까지도 제거되어야 한다. 따라서 서리가 3~4분 이내에 제거될 수 있다면 기설정된 시간이란 예를 들어 5분일 수 있다.Since condensate and dew cause frosting, even condensate and dew must be removed to complete the natural defrosting operation. Thus, if frost can be removed within 3-4 minutes, the preset time may be, for example, 5 minutes.
이와 같이 자연 제상 운전 동안에는 열전소자에 전압이 인가되지 않으므로 열전소자에 투입되는 소비 전력이 절감될 수 있다. 뿐만 아니라 제2 팬이 일시적으로 정지하였다가 다시 회전되므로, 제2 팬의 회전이 정지된 동안 소비 전력이 추가 절감될 수 있다.As such, since no voltage is applied to the thermoelectric element during the natural defrosting operation, power consumption to the thermoelectric element may be reduced. In addition, since the second fan is temporarily stopped and then rotated again, power consumption can be further reduced while the rotation of the second fan is stopped.
(S560) 제상 온도 센서에 의해 측정되는 열전소자모듈의 온도가 기준 제상 종료 온도에 도달하면 제어부는 자연 제상 운전을 종료하도록 형성된다. 도 7에 기재된 바에 따르면, 기준 제상 종료 온도는 5℃일 수 있다.When the temperature of the thermoelectric element module measured by the defrost temperature sensor reaches the reference defrost end temperature, the controller is configured to end the natural defrosting operation. As illustrated in FIG. 7, the reference defrost end temperature may be 5 ° C. FIG.
자연 제상 운전의 종료는 온도를 기준으로 결정된다. 이것은 후술하는 열원 제상 운전의 경우도 마찬가지다. 제상 운전의 종료가 온도를 기준으로 하는 이유는 제상 운전의 신뢰성을 제고하기 위함이다.The end of the natural defrosting operation is determined based on the temperature. This also applies to the heat source defrosting operation described later. The reason why the end of the defrosting operation is based on the temperature is to improve the reliability of the defrosting operation.
만약 제상 운전이 시간을 기준으로 종료된다면, 제상이 미처 완료(completion)되기 전에 제상 운전이 종료(end)될 우려가 존재한다. 서로 다른 환경에 설치된 두 냉장고가 같은 시간 조건에 따라 제상 운전을 종료하더라도, 어느 하나의 냉장고에서는 제상이 완료되고, 다른 하나의 냉장고에서는 제상이 미처 완료되지 못하는 산포의 문제가 발생하는 것이다. 따라서 이러한 산포의 문제를 해결하기 위해서는 제상 운전이 온도를 기준으로 종료되는 것이 바람직하다.If the defrosting operation is terminated based on time, there is a fear that the defrosting operation ends before the defrosting is completed. Even if the two refrigerators installed in different environments terminate the defrosting operation according to the same time condition, there is a problem of scattering in which one of the refrigerators is defrosted and in another, the defrost is not completed. Therefore, in order to solve such a problem of dispersion, it is preferable that the defrosting operation is finished based on the temperature.
(S570) 한편, 외부 온도가 기준 외부 온도 이하이면 열원 제상 운전이 가동된다. 제어부는 외기 온도 센서에 의해 측정되는 냉장고의 외부 온도가 기준 외부 온도 이하이면 열원 제상 운전을 가동하도록 형성된다.On the other hand, if the external temperature is less than the reference external temperature, the heat source defrosting operation is operated. The controller is configured to operate the heat source defrosting operation when the outside temperature of the refrigerator measured by the outside air temperature sensor is equal to or less than the reference outside temperature.
열원 제상 운전이 가동되면, 열전소자에 역전압이 가해진다. 예를 들어 열전소자에 -10V의 전압이 가해질 수 있다. 그리고 제1 팬과 제2 팬은 열원 제상 운전의 가동 내내 회전된다.When the heat source defrosting operation is activated, a reverse voltage is applied to the thermoelectric element. For example, a voltage of -10V can be applied to the thermoelectric element. The first fan and the second fan are rotated throughout the operation of the heat source defrosting operation.
열전소자에 역전압이 가해지면, 열전소자모듈의 흡열측과 방열측이 서로 바뀌게 된다. 이를테면 쿨링 싱크와 제1 팬이 열전소자모듈의 방열측이 되고, 히트 싱크와 제2 팬의 열전소자모듈의 흡열측이 된다. 쿨링 싱크가 따뜻해지므로 쿨링 싱크와 제1에 착상된 서리가 제거될 수 있다.When a reverse voltage is applied to the thermoelectric element, the heat absorbing side and the heat dissipating side of the thermoelectric element are switched. For example, the cooling sink and the first fan become the heat dissipating side of the thermoelectric module, and the heat sink and the second fan become the heat absorbing side of the thermoelectric module. Since the cooling sink is warmed, the cooling sink and the frost formed on the first layer can be removed.
열전소자에 역전압이 가해지면 열전소자의 일측과 타측에 온도차가 발생하게 된다. 따라서 제1 팬과 제2 팬이 계속해서 회전하면서 쿨링 싱크와 히트 싱크의 열교환을 촉진해야, 서리가 신속하게 제거될 수 있다.When a reverse voltage is applied to the thermoelectric element, a temperature difference occurs on one side and the other side of the thermoelectric element. Therefore, the first fan and the second fan continuously rotate to promote heat exchange between the cooling sink and the heat sink, so that the frost can be removed quickly.
(S560) 제상 온도 센서에 의해 측정되는 열전소자모듈의 온도가 기준 제상 종료 온도에 도달하면 제어부는 열원 제상 운전을 종료하도록 형성된다. 도 7에 기재된 바에 따르면, 기준 제상 종료 온도는 5℃일 수 있다.When the temperature of the thermoelectric element module measured by the defrost temperature sensor reaches the reference defrost end temperature, the controller is configured to end the heat source defrosting operation. As illustrated in FIG. 7, the reference defrost end temperature may be 5 ° C. FIG.
(S580) 한편, 열전소자모듈의 온도가 기준 열전소자모듈 온도 이하이면 열원 제상 운전이 가동된다. 제어부는 제상 온도 센서에 의해 측정되는 열전소자모듈의 온도가 기준 열전소자모듈 온도 이하이면 열원 제상 운전을 가동하도록 형성된다.On the other hand, when the temperature of the thermoelectric module is less than the reference thermoelectric module temperature, the heat source defrosting operation is operated. The controller is configured to operate the heat source defrosting operation when the temperature of the thermoelectric element module measured by the defrost temperature sensor is equal to or lower than the reference thermoelectric module temperature.
앞서와 마찬가지로 열원 제상 운전이 가동되면, 열전소자에 역전압이 가해진다. 예를 들어 열전소자에 -10V의 전압이 가해질 수 있다. 그리고 제1 팬과 제2 팬은 열원 제상 운전의 가동 내내 회전된다.As described above, when the heat source defrosting operation is operated, a reverse voltage is applied to the thermoelectric element. For example, a voltage of -10V can be applied to the thermoelectric element. The first fan and the second fan are rotated throughout the operation of the heat source defrosting operation.
(S590) 제상 온도 센서에 의해 측정되는 열전소자모듈의 온도가 기준 제상 종료 온도보다 기설정된 폭만큼 높은 온도에 도달하면 제어부는 열원 제상 운전을 종료하도록 형성된다. 도 7에 기재된 바에 따르면, 기준 제상 종료 온도보다 기설정된 폭만큼 높은 온도는 7℃일 수 있다.When the temperature of the thermoelectric element module measured by the defrost temperature sensor reaches a temperature higher than the reference defrost end temperature by a predetermined width, the controller is configured to end the heat source defrosting operation. As illustrated in FIG. 7, the temperature higher by the predetermined width than the reference defrost end temperature may be 7 ° C. FIG.
열전소자모듈의 온도가 기준 열전소자모듈 온도 이하라는 것은 과착상이 쉽게 형성될 수 있는 조건임을 의미한다. 따라서 자연 제상 운전의 종료 온도보다 더 높은 온도에서 열원 제상 운전이 종료되도록 하여야 제상 운전의 신뢰성을 제고할 수 있다.If the temperature of the thermoelectric element module is less than the reference thermoelectric module temperature, it means that a condition in which an electrodeposition phase can be easily formed. Therefore, the reliability of the defrosting operation can be improved only when the heat source defrosting operation is terminated at a temperature higher than the end temperature of the natural defrosting operation.
이하에서는 자연 제상 운전과 열원 제상 운전 시 열전소자, 제1 팬, 제2 팬의 동작에 대하여 설명한다.Hereinafter, operations of the thermoelectric element, the first fan, and the second fan during the natural defrosting operation and the heat source defrosting operation will be described.
도 8은 냉각 운전과 자연 제상 운전에 따른 열전소자의 출력, 제1 팬의 회전 속도, 제2 팬의 회전 속도를 시간의 흐름에 따라 나타낸 개념도다.8 is a conceptual diagram illustrating the output of the thermoelectric element, the rotational speed of the first fan, and the rotational speed of the second fan according to the passage of time according to the cooling operation and the natural defrosting operation.
가로축 기준선은 시간을 의미하며, 세로축 기준선은 열전소자의 출력 또는 제1 팬과 제2 팬의 회전 속도를 의미한다.The horizontal axis reference line means time, and the vertical axis reference line means the output of the thermoelectric element or the rotation speed of the first fan and the second fan.
냉각 운전에는 제3 온도 구간, 제2 온도 구간, 제1 온도 구간이 순차적으로 표시되어 있다. 냉각 운전 시 열전소자의 출력, 제1 팬과 제2 팬의 회전 속도는 고내 온도 센서에 의해 측정되는 저장실의 온도에 근거하여 결정된다.In the cooling operation, the third temperature section, the second temperature section, and the first temperature section are sequentially displayed. In the cooling operation, the output of the thermoelectric element and the rotation speed of the first fan and the second fan are determined based on the temperature of the storage chamber measured by the temperature sensor in the refrigerator.
제3 온도 구간에서는 열전소자가 제3 출력으로 작동하고, 제1 팬이 제3 회전 속도로 회전되며, 제2 팬도 제3 회전 속도로 회전된다. 다만, 제1 팬의 제3 회전 속도와 제2 팬의 제3 회전 속도는 서로 상이한 값이며, 제2 팬의 회전 속도가 더 빠르다.In the third temperature section, the thermoelectric element operates at the third output, the first fan is rotated at the third rotational speed, and the second fan is also rotated at the third rotational speed. However, the third rotational speed of the first fan and the third rotational speed of the second fan are different from each other, and the rotational speed of the second fan is faster.
이어서, 제2 온도 구간에서는 열전소자가 제2 출력으로 작동하고, 제1 팬이 제2 회전 속도로 회전되며, 제2 팬도 제2 회전 속도로 회전된다. 다만, 제1 팬의 제2 회전 속도와 제2 팬의 제2 회전 속도는 서로 상이한 값이며, 제2 팬의 회전 속도가 더 빠르다.Subsequently, in the second temperature section, the thermoelectric element is operated at the second output, the first fan is rotated at the second rotational speed, and the second fan is also rotated at the second rotational speed. However, the second rotational speed of the first fan and the second rotational speed of the second fan are different from each other, and the rotational speed of the second fan is faster.
다음으로, 제1 온도 구간에서는 열전소자가 제1 출력으로 작동하고, 제1 팬이 제1 회전 속도로 회전되며, 제2 팬도 제1 회전 속도로 회전된다. 다만, 제1 팬의 제1 회전 속도와 제2 팬의 제1 회전 속도는 서로 상이한 값이며, 제2 팬의 회전 속도가 더 빠르다.Next, in the first temperature section, the thermoelectric element operates at the first output, the first fan is rotated at the first rotational speed, and the second fan is also rotated at the first rotational speed. However, the first rotational speed of the first fan and the first rotational speed of the second fan are different from each other, and the rotational speed of the second fan is faster.
자연 제상 운전이 가동되면, 열전소자의 작동은 정지된다. 제1 팬은 제3 회전 속도로 회전된다. 그리고 제2 팬의 회전은 일시적으로 정지되었다가 기설정된 시간 경과 후에 제3 회전 속도로 회전된다.When the natural defrosting operation is activated, the operation of the thermoelectric element is stopped. The first fan is rotated at a third rotational speed. The second fan is temporarily stopped and then rotates at a third rotational speed after a predetermined time elapses.
따라서 제상 운전 시 제1 팬의 회전 속도는 냉각 운전 시 제1 팬의 회전 속도 이상이다. 제상 운전 시 제1 팬의 회전 속도와 냉각 운전 시 제1 팬의 최고 회전 속도는 서로 같을 수 있다.Therefore, the rotational speed of the first fan in the defrosting operation is more than the rotational speed of the first fan in the cooling operation. The rotation speed of the first fan in the defrosting operation and the maximum rotation speed of the first fan in the cooling operation may be the same.
또한 제상 운전 시 제2 팬의 회전 속도는 냉각 운전 시 제2 팬의 회전 속도 이상이다. 제상 운전 시 제2 팬의 회전 속도와 냉각 운전 시 제2 팬의 최고 회전 속도는 서로 같을 수 있다.In addition, the rotation speed of the second fan in the defrosting operation is more than the rotation speed of the second fan in the cooling operation. The rotation speed of the second fan in the defrosting operation and the maximum rotation speed of the second fan in the cooling operation may be the same.
도 9는 냉각 운전과 열원 제상 운전에 따른 열전소자의 출력, 제1 팬의 회전 속도, 제2 팬의 회전 속도를 시간의 흐름에 따라 나타낸 개념도다.9 is a conceptual diagram illustrating the output of the thermoelectric element, the rotational speed of the first fan, and the rotational speed of the second fan according to the passage of time according to the cooling operation and the heat source defrosting operation.
냉각 운전에 대한 설명은 도 8의 설명으로 갈음한다. 열전소자의 출력과 팬의 회전 속도는 고내 온도 센서에 의해 측정되는 저장실의 온도에 근거하여 결정된다.The description of the cooling operation is replaced with the description of FIG. 8. The output of the thermoelectric element and the rotational speed of the fan are determined based on the temperature of the storage compartment measured by the temperature sensor in the refrigerator.
열원 제상 운전이 가동되면, 열전소자에는 역전압이 가해진다. 그리고 제1 팬과 제2 팬은 각각 제3 회전속도로 회전된다. 제1 팬의 제3 회전 속도와 제2 팬의 제3 회전 속도는 서로 상이한 값이며, 제2 팬의 회전 속도가 더 빠르다.When the heat source defrosting operation is activated, a reverse voltage is applied to the thermoelectric element. The first fan and the second fan are rotated at a third rotational speed, respectively. The third rotational speed of the first fan and the third rotational speed of the second fan are different from each other, and the rotational speed of the second fan is faster.
따라서 제상 운전 시 팬의 회전 속도는 냉각 운전 시보다 제상 운전 시에 더 빠르다. 제상 운전 시 팬의 회전 속도와 냉각 운전 시 팬의 최고 회전 속도가 서로 같을 수 있다.Therefore, the fan rotation speed during the defrosting operation is faster than during the defrosting operation. The fan rotation speed during defrost operation and the fan rotation speed during cooling operation may be the same.
다음으로는 적산 시간의 변동 근거가 되는 부하 대응 운전에 대하여 설명한다.Next, the load response operation | movement which becomes the basis of the fluctuation of integration time is demonstrated.
도 10은 열전소자모듈을 구비하는 냉장고의 부하 대응 운전 제어를 보인 흐름도다.10 is a flowchart illustrating load control operation control of a refrigerator having a thermoelectric module.
(S410) 먼저 도어의 개폐 여부를 감지한다. 부하란 도어의 개방 또는 도어 개방 후 음식물 투입 등으로 인해 신속하게 저장실의 냉각을 필요로 하는 것을 의미한다. 따라서 부하 대응 운전의 투입 여부는 반드시 도어의 개방 후에 판단될 수 있다. (S410) First it detects whether the door is opened or closed. The load means that the storage compartment needs to be cooled rapidly due to the opening of the door or the introduction of food after opening the door. Therefore, whether the load-response operation is input may be determined after the door is opened.
(S420) 도어가 열렸다가 닫힌 것으로 감지되면, 부하 대응 운전의 재투입 방지 시간이 0에 도달하였는지 판단한다. 일단 부하 대응 운전이 완료되면, 설령 저장실의 냉각이 필요한 상황이 다시 발생하였다고 하더라도 곧바로 부하 대응 운전이 재가동 되는 것이 아니라 기설정된 시간 후에 가동될 수 있다. 이것은 과냉을 방지하기 위함이다. 이 기설정된 시간을 카운트 하여 0에 도달한 경우에 부하 대응 운전이 다시 가동될 수 있다.If it is detected that the door is opened and closed, it is determined whether the re-input prevention time of the load response operation reaches zero. Once the load-response operation is completed, even if the situation where the storage chamber needs to be cooled again occurs, the load-response operation can be operated after a preset time rather than being restarted immediately. This is to prevent overcooling. When this preset time is counted and reaches zero, the load response operation can be started again.
(S430) 다음으로는 부하 대응 판단 시간이 0보다 큰지 점검한다. 부하 대응 운전은 도어가 개방되었다가 닫힌 후에 비로서 가동될 수 있다. 예를 들어 도어가 닫힌 후 5분 이내에 저장실의 온도가 2℃ 이상 상승한 경우 부하 대응 운전이 가동될 수 있다. 부하 대응 판단 시간은 도어가 닫힌 후 카운트 되기 때문에 설령 도어가 개방되기 전보다 저장실의 온도가 2℃ 이상 상승하였더라도, 아직 도어가 닫히기 전이라면 부하 대응 판단 시간이 0이기 때문에 부하 대응 운전은 가동되지 않는다.Next, it is checked whether the load response determination time is greater than zero. The load response operation can be operated as rain after the door is opened and closed. For example, if the temperature of the storage compartment rises by 2 ° C or more within 5 minutes after the door is closed, the load response operation may be activated. Since the load response determination time is counted after the door is closed, even if the temperature of the storage compartment rises by 2 ° C or more than before the door is opened, the load response operation is not activated because the load response determination time is 0 before the door is still closed.
도어가 열렸다가 닫힌 후 기설정된 시간 내에 저장실의 온도가 기설정된 온도만큼 상승한 경우 제어부는 부하 대응 운전을 가동하도록 형성된다.If the temperature of the storage compartment rises by a predetermined temperature within a predetermined time after the door is opened and closed, the controller is configured to operate the load corresponding operation.
(S440) 다음으로는 부하 대응 운전의 종류를 결정한다.Next, the type of load response operation is determined.
제1 부하 대응 운전은 저장실 내에 뜨거운 음식물이 투입되어 신속한 냉각이 필요한 경우에 가동된다. 예를 들어 제1 부하 대응 운전은 도어가 열렸다가 닫힌 후 5분 이내에 저장실의 온도가 2℃ 이상 상승한 경우에 가동된다.The first load response operation is operated when hot food is put into the storage compartment and rapid cooling is required. For example, the first load-response operation is activated when the temperature of the storage compartment rises by 2 ° C or more within 5 minutes after the door is opened and closed.
제2 부하 대응 운전은 온도는 그리 높지 않으나 열용량이 큰 음식물이 투입되어 지속적인 냉각이 필요한 경우에 가동된다. 예를 들어 제2 부하 대응 운전은 도어가 열렸다가 닫힌 후 20분 이내에 저장실의 온도가 사용자에 의해 입력된 설정 온도 대비 8℃ 이상 상승한 경우에 가동된다. 만일 제1 부하 대응 운전으로 결정되면, 제1 부하 대응 운전은 가동되지 않는다.The second load-response operation is operated when the temperature is not so high but food with a large heat capacity is input and continuous cooling is required. For example, the second load-response operation is activated when the temperature of the storage compartment rises 8 ° C or more with respect to the set temperature input by the user within 20 minutes after the door is opened and closed. If it is determined that the first load correspondence operation, the first load correspondence operation is not operated.
제1 부하 대응 운전과 제2 부하 대응 운전 중 어느 것에도 해당되지 않으면 제어부는 부하 대응 운전을 가동하지 않는다.If none of the first load corresponding operation and the second load corresponding operation is applied, the control unit does not operate the load corresponding operation.
(S450) 부하 대응 운전은 상기 저장실의 온도가 상기 제1 온도 구간, 상기 제2 온도 구간 및 상기 제3 온도 구간 중 어느 구간에 속하는지에 무관하게 상기 열전소자가 상기 제3 출력으로 운전되도록 구성된다. 제3 출력은 열전소자의 최대 출력에 해당할 수 있다.In operation S450, the thermoelectric element is operated at the third output regardless of which of the first temperature section, the second temperature section, and the third temperature section belongs to the temperature of the storage compartment. . The third output may correspond to the maximum output of the thermoelectric element.
부하 대응 운전을 필요로 한다는 것은 이미 저장실의 온도가 제3 온도 구간으로 진입하였거나 진입할 가능성이 매우 높은 경우라는 것을 의미하므로 신속한 냉각을 위해 열전소자가 제3 출력으로 가동되는 것이다.The need for a load-response operation means that the temperature of the storage compartment has already entered or is very likely to enter the third temperature range, so that the thermoelectric element is operated at the third output for rapid cooling.
또한 부하 대응 운전은 저장실의 온도가 상기 제1 온도 구간, 상기 제2 온도 구간 및 상기 제3 온도 구간 중 어느 구간에 속하는지에 무관하게 상기 팬이 상기 제3 회전 속도로 회전되도록 구성된다. 다만, 제1 팬의 제3 회전 속도와 제2 팬의 제3 회전 속도는 서로 상이하며, 제2 팬이 제1 팬에 비해 고속으로 회전된다.In addition, the load response operation is configured such that the fan is rotated at the third rotational speed regardless of which of the first temperature section, the second temperature section and the third temperature section belongs to the storage compartment. However, the third rotational speed of the first fan and the third rotational speed of the second fan are different from each other, and the second fan is rotated at a higher speed than the first fan.
마찬가지로 부하 대응 운전을 필요로 한다는 것은 이미 저장실의 온도가 제3 온도 구간으로 진입하였거나 진입할 가능성이 매우 높은 경우라는 것을 의미하므로 신속한 냉각을 위해 팬이 제3 회전 속도록 회전되는 것이다. 이는 팬 소음 감소를 위한 것이다.Similarly, the need for load-response operation means that the temperature of the storage compartment has already entered or is very likely to enter the third temperature range, so that the fan is rotated at the third rotational speed for rapid cooling. This is to reduce fan noise.
(S460) 다음으로 온도 또는 시간을 기준으로 부하 대응 운전을 완료한다. 예를 들어 저장실의 온도가 설정 온도보다 기설정된 온도만큼 낮아지거나, 부하 대응 운전이 가동된지 기설정된 시간이 지난 경우에 부하 대응 운전을 완료할 수 있다.Next, the load response operation is completed based on the temperature or the time. For example, the load response operation may be completed when the temperature of the storage compartment becomes lower than the preset temperature by a preset temperature or when a predetermined time elapses since the load response operation is operated.
(S470) 마지막으로 부하 대응 운전의 재가동을 방지하기 위한 시간을 초기화하여 다시 카운트 한다. (S470) Finally, the time for preventing restart of the load response operation is initialized and counted again.
도 11은 본 발명의 제2실시 예에 따른 냉장고의 사시도이고, 도 12는 도 11에서 도어가 열린 상태를 보여주는 사시도이고, 도 13은 도 11의 냉장고의 평면도이다. FIG. 11 is a perspective view of a refrigerator according to a second embodiment of the present invention, FIG. 12 is a perspective view illustrating an open state of the door in FIG. 11, and FIG. 13 is a plan view of the refrigerator of FIG. 11.
도 11 내지 도 13을 참조하면, 본 실시 예에 따른 냉장고(400)는, 저장실(411)을 구비하는 캐비닛(410: cabinet)과, 상기 캐비닛(410)에 연결되어 상기 저장실(511)을 개폐하는 도어(420: door)를 포함할 수 있다. 11 to 13, the refrigerator 400 according to the present embodiment includes a cabinet 410 including a storage compartment 411 and a cabinet 410 connected to the cabinet 410 to open and close the storage compartment 511. A door 420 may be included.
상기 캐비닛(410)은, 상기 저장실(511)을 형성하는 인너 케이스(510: inner case)와, 상기 인너 케이스(510)를 둘러싸는 아우터 케이스(411: outercase)를 포함할 수 있다. The cabinet 410 may include an inner case 510 forming the storage compartment 511 and an outer case 411 surrounding the inner case 510.
상기 아우터 케이스(411)는, 금속 재질로 형성될 수 있다. 예를 들어, 아우터 케이스(411)는 알루미늄(Al) 재질을 가질 수 있다. 상기 아우터 케이스(411)는 적어도 2회 절곡되거나 밴딩(bending)되어 형성될 수 있다. 또는 상기 아우터 케이스(411)는 복수 개의 금속 플레이트가 접합되어 형성되는 것도 가능하다. The outer case 411 may be formed of a metal material. For example, the outer case 411 may have an aluminum (Al) material. The outer case 411 may be formed by bending or bending at least twice. Alternatively, the outer case 411 may be formed by bonding a plurality of metal plates.
일 예로 상기 아우터 케이스(411)는, 일 예로 한 쌍의 사이드 패널(412, 413: side panel)을 포함할 수 있다. For example, the outer case 411 may include, for example, a pair of side panels 412 and 413.
상기 인너 케이스(510)는 상기 한 쌍의 사이드 패널(412, 413) 사이에 위치된 상태에서 상기 아우터 케이스(411)에 직접 또는 간접적으로 고정될 수 있다. The inner case 510 may be fixed to the outer case 411 directly or indirectly while being positioned between the pair of side panels 412 and 413.
상기 한 쌍의 사이드 패널(412, 413)의 전단부(412a)는 상기 인너 케이스(510)의 전면 보다 전방에 위치될 수 있다. 그리고, 상기 도어(420)의 좌우 폭은 상기 한 쌍의 사이드 패널(412, 413) 사이의 거리와 동일하거나 작을 수 있다. The front end portions 412a of the pair of side panels 412 and 413 may be located in front of the front surface of the inner case 510. The left and right widths of the door 420 may be equal to or smaller than the distance between the pair of side panels 412 and 413.
따라서, 상기 한 쌍의 사이드 패널(412, 413)의 사이에는 상기 도어(420)가 위치될 수 있는 공간이 형성될 수 있다. Accordingly, a space in which the door 420 may be positioned may be formed between the pair of side panels 412 and 413.
일 예로, 상기 도어(420)가 상기 저장실(511)을 닫은 상태에서 상기 도어(420)는 상기 한 쌍의 사이드 패널(412, 413)의 사이에 위치될 수 있다. For example, the door 420 may be located between the pair of side panels 412 and 413 with the door 420 closing the storage compartment 511.
이때, 상기 도어(420)가 상기 저장실(511)을 닫은 상태에서 상기 도어(420)와 상기 캐비닛(410)의 외관이 일체감을 가질 수 있도록 상기 도어(420)의 전면은 상기 각 사이드 패널(412, 413)의 전단부(412a)와 동일 평면 상에 위치될 수 있다. At this time, the front surface of the door 420 is the front side of each side panel 412 so that the appearance of the door 420 and the cabinet 410 has a sense of unity in a state in which the door 420 is closed the storage compartment 511. , 413 may be coplanar with the front end portion 412a.
즉, 상기 도어(420)의 전면 및 상기 각 사이드 패널(412, 413)의 전단부(412a)가 상기 냉장고(400)의 전면 외관을 형성할 수 있다. That is, the front surface of the door 420 and the front end portion 412a of each side panel 412 and 413 may form a front appearance of the refrigerator 400.
상기 도어(420)는, 전면 패널(421)과, 상기 전면 패널(421)의 배면에 결합되는 도어 라이너(422: door liner)를 포함할 수 있다. The door 420 may include a front panel 421 and a door liner 422 coupled to a rear surface of the front panel 421.
제한적이지는 않으나, 상기 전면 패널(421)은 우드(wood) 재질로 형성될 수 있다. Although not limited, the front panel 421 may be formed of a wood material.
상기 전면 패널(421)과 상기 도어 라이너(422)는 일 예로 스크류(screw)와 같은 체결 부재에 의해서 체결될 수 있다. 상기 전면 패널(421)과 상기 도어 라이너(422)는 발포 공간을 형성하며, 상기 발포 공간에 발포액이 충진됨에 따라 상기 전면 패널(421)과 상기 도어 라이너(422) 사이에 단열재가 구비될 수 있다. For example, the front panel 421 and the door liner 422 may be fastened by a fastening member such as a screw. The front panel 421 and the door liner 422 form a foaming space, and as the foaming liquid is filled in the foaming space, a heat insulating material may be provided between the front panel 421 and the door liner 422. have.
상기 도어(420)의 개방을 위하여 사용자가 상기 도어(420)를 잡을 수 있도록, 상기 도어(420)는 사용자의 손이 인입될 수 있는 핸들용 공간(690)을 정의할 수 있다. The door 420 may define a handle space 690 into which the user's hand can be drawn so that the user can hold the door 420 to open the door 420.
상기 핸들용 공간(690)은 일 예로 상기 도어 라이너(422)의 상측 일부가 하방으로 함몰됨에 따라 형성될 수 있다. For example, the handle space 690 may be formed as a portion of the upper side of the door liner 422 is recessed downward.
상기 핸들용 공간(690)은 상기 도어(420)가 상기 저장실(511)을 닫은 상태에서 상기 전면 패널(421)과 상기 캐비닛(410) 사이에 위치될 수 있다. 따라서, 사용자는 상기 도어(420)가 상기 저장실(511)을 닫은 상태에서 상기 핸들용 공간(690)으로 손을 인입한 후에 상기 도어(420)를 잡아 당겨 상기 도어(420)를 개방시킬 수 있다. The handle space 690 may be located between the front panel 421 and the cabinet 410 with the door 420 closing the storage compartment 511. Accordingly, the user may open the door 420 by pulling the door 420 after entering the hand into the handle space 690 while the door 420 closes the storage compartment 511. .
본 실시 예에 의하면, 상기 도어(420)가 닫힌 상태에서, 핸들과 같은 구조가 외부로 돌출되지 않으므로, 냉장고(400)의 미감이 향상되는 장점이 있다. According to the present embodiment, since the handle-like structure does not protrude to the outside in the state in which the door 420 is closed, the aesthetics of the refrigerator 400 is improved.
상기 냉장고(400)의 높이는, 제한적이지 않으나, 일반적인 성인의 키 보다 낮을 수 있다. 상기 냉장고(400)의 용량이 낮을 수록 상기 냉장고(400)의 높이는 낮아질 수 있다. The height of the refrigerator 400 is not limited, but may be lower than that of a general adult. As the capacity of the refrigerator 400 is lower, the height of the refrigerator 400 may be lower.
본 실시 예와 같이 상기 도어(420)의 상측에 핸들용 공간(690)이 존재하는 경우, 상기 냉장고(400)의 높이가 낮아지더라도, 사용자가 서있는 상태 또는 앉아있는 상태에서 상기 도어(420)를 쉽게 개방할 수 있는 장점이 있다. When there is a handle space 690 on the upper side of the door 420 as in this embodiment, even if the height of the refrigerator 400 is lowered, the door 420 in a standing or sitting state of the user There is an advantage that can be easily opened.
한편, 상기 한 쌍의 사이드 패널(412, 413) 각각의 상단부(412b)는 상기 인너 케이스(510)의 상단부 보다 높게 위치될 수 있다. The upper end portion 412b of each of the pair of side panels 412 and 413 may be positioned higher than the upper end portion of the inner case 510.
따라서, 상기 인너 케이스(510)의 상측에는 공간이 형성될 수 있으며, 상기 공간에는 캐비닛 커버(590: cabiner cover)가 위치될 수 있다. 상기 캐비닛 커버(590)는 상기 캐비닛(410)의 상면 외관을 형성할 수 있다. 즉, 상기 캐비닛 커버(590)는 냉장고(400)의 상면 외관을 형성한다. Therefore, a space may be formed above the inner case 510, and a cabinet cover 590 may be located in the space. The cabinet cover 590 may form an upper appearance of the cabinet 410. That is, the cabinet cover 590 forms an upper appearance of the refrigerator 400.
상기 캐비닛 커버(590)는 상기 인너 케이스(510)에 직접 고정되거나 상기 인너 케이스(510)를 둘러싸는 미들 플레이트(550)에 고정될 수 있다. The cabinet cover 590 may be directly fixed to the inner case 510 or fixed to a middle plate 550 surrounding the inner case 510.
상기 캐비닛 커버(590)가 상기 인너 케이스(510)를 커버한 상태에서 상기 캐비닛 커버(590)는 상기 한 쌍의 사이드 패널(412, 413) 사이에 위치될 수 있다. The cabinet cover 590 may be located between the pair of side panels 412 and 413 while the cabinet cover 590 covers the inner case 510.
그리고, 상기 캐비닛 커버(590)와 상기 캐비닛(410)의 외관이 일체감을 가질 수 있도록, 상기 캐비닛 커버(590)의 상면은 상기 각 사이드 패널(412, 413)의 상단부(412b)와 동일 평면 또는 동일 높이 상에 위치될 수 있다. In addition, the upper surface of the cabinet cover 590 may be flush with the upper ends 412b of the side panels 412 and 413 so that the exterior of the cabinet cover 590 and the cabinet 410 may have a sense of unity. It can be located on the same height.
상기 캐비닛 커버(590)는 일 예로 우드 재질로 형성될 수 있다. The cabinet cover 590 may be formed of, for example, a wood material.
즉, 상기 전면 패널(421)과 상기 캐비닛 커버(590)는 동일한 재질로 형성될 수 있다. That is, the front panel 421 and the cabinet cover 590 may be formed of the same material.
본 실시 예에 의하면, 상기 도어(420)의 전면 패널(421) 및 상기 캐비닛 커버(590)가 각각 우드 재질로 형성되므로, 상기 도어(420)가 닫힌 상태에서 상기 도어(420)와 상기 캐비닛 커버(590) 간에 재질의 통일성이 있어 미감이 향상되는 장점이 있다. According to the present embodiment, since the front panel 421 and the cabinet cover 590 of the door 420 are each formed of a wood material, the door 420 and the cabinet cover with the door 420 closed. There is an advantage that the aesthetics are improved because of the uniformity of the material between 590.
더욱이, 냉장고(400)의 높이가 낮은 경우에는 사용자가 상기 캐비닛 커버(590)를 육안으로 확인할 수 있는데, 상기 캐비닛 커버(590)가 우드 재질로 형성됨으로써, 기본적인 미감이 향상될 뿐만 아니라 상기 냉장고(400)가 위치되는 주변의 가구들과 일체감을 가질 수 있는 장점이 있다. In addition, when the height of the refrigerator 400 is low, the user can visually check the cabinet cover 590. The cabinet cover 590 is formed of a wood material, thereby improving the basic aesthetics as well as the refrigerator ( 400 has the advantage of having a sense of unity with the surrounding furniture is located.
본 실시 예의 냉장고(400)는 일 예로 협탁 냉장고로 사용할 수 있다. The refrigerator 400 of the present embodiment may be used as a side table refrigerator as an example.
협탁 냉장고는 음식물의 저장 기능 이외에도 협탁의 기능을 겸할 수 있다. 흔히 부엌에 비치되는 일반 냉장고와 달리, 협탁 냉장고는 침실의 침대 옆에 비치되어 사용될 수 있다. 본 실시 예에 의하면, 상기 캐비닛 커버(590) 및 전면 패널(421)이 우드 재질로 형성되므로, 냉장고(400)를 침실에 놓아도 주변 가구들과 조화를 이룰 수 있다. The side table refrigerator may also function as a side table in addition to the food storage function. Unlike common refrigerators, which are often provided in kitchens, side table refrigerators can be used by the bedroom bed. According to the present embodiment, since the cabinet cover 590 and the front panel 421 are formed of a wood material, the cabinet cover 590 and the front panel 421 may be harmonized with surrounding furniture even when the refrigerator 400 is placed in the bedroom.
사용자의 편의를 위해 협탁 냉장고의 높이는 일 예로 침대의 높이와 유사함이 바람직하며, 일반 냉장고보다 높이가 낮고 컴팩트하게 형성될 수 있다. For the convenience of the user, the height of the side table refrigerator is preferably similar to that of the bed, for example, and may be formed to have a height lower than that of a general refrigerator and compact.
상기 캐비닛 커버(590)의 전면(590a)은 상기 인너 케이스(510)의 전면 보다 전방에 위치될 수 있다. 따라서, 상기 도어(420)가 상기 저장실(511)을 닫은 상태에서 상기 캐비닛 커버(590)가 상기 도어 라이너(422)의 일부를 상측에서 커버할 수 있다. The front surface 590a of the cabinet cover 590 may be located in front of the front surface of the inner case 510. Accordingly, the cabinet cover 590 may cover a part of the door liner 422 from the upper side while the door 420 closes the storage compartment 511.
상기 냉장고(400)는, 상기 저장실(511)에 수용되는 하나 이상의 드로워 어셈블리(430, 440)를 더 포함할 수 있다. The refrigerator 400 may further include one or more drawer assemblies 430 and 440 accommodated in the storage compartment 511.
수납 공간의 효율화를 위하여 상기 저장실(511)에 복수의 드로워 어셈블리(430, 440: drawer assembly)가 구비될 수 있다. In order to improve the storage space, a plurality of drawer assemblies 430 and 440 may be provided in the storage compartment 511.
상기 복수의 드로워 어셈블리(430, 440)는 상부 드로워 어셈블리(430)와, 하부 드로워 어셈블리(440)포함할 수 있다. 경우에 따라서, 상기 상부 드로워 어셈블리(430)는 생략될 수 있다. The plurality of drawer assemblies 430 and 440 may include an upper drawer assembly 430 and a lower drawer assembly 440. In some cases, the upper drawer assembly 430 may be omitted.
상기 도어(420)는 전후 슬라이딩 방식으로 이동하면서 상기 저장실(511)을 개폐할 수 있다. The door 420 may open and close the storage compartment 511 while moving in a forward and backward sliding manner.
본 실시 예에 의하면, 상기 냉장고(400)를 주방이나 거실, 방 등의 좁은 공간에 배치하더라도 상기 도어(420)가 슬라이딩 방식으로 저장실(511)을 개폐하므로, 주변 구조물과의 간섭없이 상기 도어(420)의 개방이 가능한 장점이 있다. According to the present embodiment, even when the refrigerator 400 is disposed in a narrow space such as a kitchen, a living room, or a room, the door 420 opens and closes the storage compartment 511 in a sliding manner, so that the door ( 420 has the advantage of being possible to open.
상기 도어(420)의 슬라이딩 인출입을 위하여 상기 냉장고(400)는 레일 어셈블리(미도시)를 더 포함할 수 있다. The refrigerator 400 may further include a rail assembly (not shown) for sliding in and out of the door 420.
상기 레일 어셈블리(미도시)는 일측이 상기 도어(420)에 연결되고, 타측이 상기 하부 드로워 어셈블리(440)에 연결될 수 있다. The rail assembly (not shown) may have one side connected to the door 420 and the other side connected to the lower drawer assembly 440.
도 14는 본 발명의 일 실시 예에 따른 캐비닛의 분해 사시도이다. 14 is an exploded perspective view of a cabinet according to an embodiment of the present invention.
도 11 내지 도 14를 참조하면, 본 실시 예에 따른 캐비닛(410)은, 아우터 케이스(411)와, 인너 케이스(510), 및 캐비닛 커버(590)를 포함할 수 있다. 11 to 14, the cabinet 410 according to the present exemplary embodiment may include an outer case 411, an inner case 510, and a cabinet cover 590.
상기 아우터 케이스(410)는, 한 쌍의 사이드 패널(412, 13)을 포함할 수 있다. 상기 한 쌍의 사이드 패널(412, 413)은 상기 냉장고(400)의 측면 외관을 형성할 수 있다. The outer case 410 may include a pair of side panels 412 and 13. The pair of side panels 412 and 413 may form a side surface of the refrigerator 400.
상기 아우터 케이스(411)는, 상기 냉장고(400)의 배면 외관을 형성하는 리어 패널(560: rear panel)을 더 포함할 수 있다. The outer case 411 may further include a rear panel 560 forming a rear exterior of the refrigerator 400.
따라서, 상기 도어(420)를 제외한 냉장고(400)의 외관은 상기 사이드 패널(412, 413), 캐비닛 커버(590) 및 상기 리어 패널(560)에 의해서 형성될 수 있다. Therefore, the exterior of the refrigerator 400 except for the door 420 may be formed by the side panels 412 and 413, the cabinet cover 590, and the rear panel 560.
상기 캐비닛(410)은, 상기 인너 케이스(510)를 지지하는 케이스 서포터(530: case supporter)와, 상기 케이스 서포터(530)의 하측에 결합되는 베이스(520: base)를 더 포함할 수 있다. The cabinet 410 may further include a case supporter 530 supporting the inner case 510, and a base 520 coupled to the lower side of the case supporter 530.
상기 캐비닛(410)은, 상기 인너 케이스(510)와 함께 발포 공간을 형성하는 미들 플레이트(550: middle plate)를 더 포함할 수 있다. 상기 미들 플레이트(550)는 상기 인너 케이스(510)와 이격된 위치에서 상기 인너 케이스(510)의 상측 및 후측을 커버할 수 있다. The cabinet 410 may further include a middle plate 550 forming a foaming space together with the inner case 510. The middle plate 550 may cover the upper side and the rear side of the inner case 510 at a position spaced apart from the inner case 510.
상기 미들 플레이트(550) 및 상기 사이드 패널(412, 413) 중 하나 이상에는 디스플레이 유닛(540)이 결합될 수 있다. The display unit 540 may be coupled to one or more of the middle plate 550 and the side panels 412 and 413.
상기 캐비닛(410)은 상기 저장실(511)을 냉각하기 위한 냉각 장치(700)를 더 포함할 수 있다. 상기 냉각 장치(700)는 열전 모듈과, 냉각팬 및 방열팬을 포함할 수 있으며, 열전소자에 의해서 상기 냉장고의 사이즈가 줄어들 수 있다. The cabinet 410 may further include a cooling device 700 for cooling the storage compartment 511. The cooling device 700 may include a thermoelectric module, a cooling fan, and a heat radiating fan, and the size of the refrigerator may be reduced by a thermoelectric element.
상기 인너 케이스(510)와 상기 사이드 패널(412, 413), 케이스 서포터(530) 및 미들 플레이트(550)에 의해서 발포 공간이 형성되며, 상기 발포 공간에 단열재 형성을 위한 발포액이 충진될 수 있다. A foaming space is formed by the inner case 510, the side panels 412 and 413, the case supporter 530, and the middle plate 550, and a foaming liquid for filling a heat insulating material may be filled in the foaming space. .
도 15는 본 발명의 제2실시 예에 따른 미들 플레이트가 조립되기 전 상태를 보여주는 도면이고, 도 16은 본 발명의 제2실시 예에 따른 미들 플레이트가 조립 완료된 상태를 보여주는 도면이며, 도 17은 본 발명의 제2실시 예에 따른 설치 브라켓의 사시도이다. 15 is a view showing a state before the middle plate is assembled according to the second embodiment of the present invention, Figure 16 is a view showing a state in which the middle plate is assembled according to the second embodiment of the present invention, Figure 17 is A perspective view of an installation bracket according to a second embodiment of the present invention.
도 15 내지 도 17을 참조하면, 상기 미들 플레이트(550)는, 상기 인너 케이스(510)의 후방에서 상기 인너 케이스(510)를 커버할 수 있다. 15 to 17, the middle plate 550 may cover the inner case 510 at the rear of the inner case 510.
상기 미들 플레이트(550)는, 상기 인너 케이스(510)의 배면을 커버하는 리어 플레이트(552: rear plate)와, 상기 인너 케이스(510)의 상면을 커버하는 어퍼 플레이트(554: upper plate)를 포함할 수 있다. The middle plate 550 includes a rear plate 552 covering a rear surface of the inner case 510 and an upper plate 554 covering an upper surface of the inner case 510. can do.
상기 어퍼 플레이트(554)는 상기 리어 플레이트(552)의 상단에서 수평하게 연장될 수 있다. 따라서, 상기 미들 플레이트(550)는 "ㄱ"와 같은 형태로 형성될 수 있다. The upper plate 554 may extend horizontally from an upper end of the rear plate 552. Therefore, the middle plate 550 may be formed in the form of "a".
상기 어퍼 플레이트(554)는 상기 인너 케이스(510)의 전면 상단에 안착될 수 있다. 일 예로 상기 어퍼 플레이트(554)는, 상기 인너 케이스(510)의 전면 상단에 접착 수단에 의해서 부착될 수 있다. The upper plate 554 may be seated on the upper front of the inner case 510. For example, the upper plate 554 may be attached to the front upper end of the inner case 510 by an adhesive means.
상기 어퍼 플레이트(554)가 상기 인너 케이스(510)의 전면 상단에 안착된 상태에서 상기 어퍼 플레이트(554)는 상기 인너 케이스(510)의 상면과 이격된다. 따라서, 상기 어퍼 플레이트(554)와 상기 인너 케이스(510)의 상면 사이에 발포 공간(517)이 정의될 수 있다. The upper plate 554 is spaced apart from the upper surface of the inner case 510 in a state in which the upper plate 554 is seated on the front upper end of the inner case 510. Therefore, the foam space 517 may be defined between the upper plate 554 and the upper surface of the inner case 510.
상기 리어 플레이트(552)는 상기 케이스 서포터(530)에 결합될 수 있다. 상기 케이스 서포터(530)에는 플레이트 체결리브(538)가 형성될 수 있다. The rear plate 552 may be coupled to the case supporter 530. A plate fastening rib 538 may be formed in the case supporter 530.
상기 플레이트 체결리브(538) 및 상기 리어 플레이트(552) 각각에는 볼트 체결을 위한 체결홀(538a, 555)이 형성될 수 있다. Fastening holes 538a and 555 for fastening bolts may be formed in the plate fastening ribs 538 and the rear plate 552, respectively.
상기 리어 플레이트(552)는 상기 플레이트 체결리브(538)의 배면에 접촉된 상태에서 볼트에 의해서 상기 플레이트 체결리브(538)와 체결될 수 있다. The rear plate 552 may be fastened to the plate fastening rib 538 by a bolt in a state of being in contact with the rear surface of the plate fastening rib 538.
이때, 상기 리어 플레이트(552)와 상기 인너 케이스(510)의 배면 사이에서 설치 브라켓(600)이 상기 리어 플레이트(552)에 체결된 상태에서 상기 미들 플레이트(550)가 조립될 수 있다. In this case, the middle plate 550 may be assembled while the mounting bracket 600 is fastened to the rear plate 552 between the rear plate 552 and the rear surface of the inner case 510.
상기 리어 플레이트(552)는 상기 인너 케이스(510)의 배면과 이격될 수 있다. 따라서, 상기 리어 플레이트(552)와 상기 인너 케이스(510)의 배면 사이에 발포 공간(518)이 정의될 수 있다. The rear plate 552 may be spaced apart from the rear surface of the inner case 510. Accordingly, a foam space 518 may be defined between the rear plate 552 and the rear surface of the inner case 510.
상기 리어 플레이트(552)의 후측에서 고정 브라켓(558)이 고정될 수 있고, 상기 고정 브라켓(558)은 각 사이드 패널(412, 413)에 고정될 수 있다. 따라서 상기 고정 브라켓(558)에 의해서 상기 리어 플레이트(552)가 상기 사이드 패널(412, 413)에 고정될 뿐만 아니라, 발포액의 충진 과정에서 상기 리어 플레이트(552)의 변형이 방지될 수 있다. The fixing bracket 558 may be fixed at the rear side of the rear plate 552, and the fixing bracket 558 may be fixed to each side panel 412 and 413. Therefore, not only the rear plate 552 is fixed to the side panels 412 and 413 by the fixing bracket 558, but the deformation of the rear plate 552 may be prevented in the process of filling the foam liquid.
상기 리어 플레이트(552)에는 발포액의 주입을 위한 주입구(553)가 형성될 수 있다. 상기 주입구(553)는 도시되지 않은 패킹에 의해서 막힐 수 있다. An injection hole 553 may be formed in the rear plate 552 to inject the foam liquid. The inlet 553 may be blocked by a packing not shown.
상기 리어 플레이트(552)에는 상기 냉각 장치(700)가 관통하기 위한 통과홀(552a)이 추가로 형성될 수 있다. The rear plate 552 may further include a passage hole 552a through which the cooling device 700 passes.
상기 미들 플레이트(550)의 조립이 완료된 상태에서, 상기 어퍼 플레이트(554)의 상면은 상기 각 사이드 패널(412, 413)의 상단부(412b) 보다 낮게 위치될 수 있다. 따라서, 상기 어퍼 플레이트(554)의 상측에 상기 캐비닛 커버(590)가 위치될 수 있는 공간이 존재하게 된다. In the state in which the middle plate 550 is assembled, the upper surface of the upper plate 554 may be lower than the upper end portions 412b of the side panels 412 and 413. Therefore, a space in which the cabinet cover 590 may be located is located above the upper plate 554.
또한, 상기 미들 플레이트(550)의 조립이 완료된 상태에서, 상기 리어 플레이트(552)의 배면은 상기 각 사이드 패널(412, 413)의 후단부에서 내측으로 이격되어 배치된다. 따라서, 상기 리어 플레이트(552)의 후방에 상기 냉각 장치(700)의 방열을 위한 공기가 유동할 수 있는 방열 유로(690)가 존재하게 된다. In addition, in the state in which the middle plate 550 is assembled, the rear surface of the rear plate 552 is disposed to be spaced inward from the rear ends of the respective side panels 412 and 413. Accordingly, a heat dissipation passage 690 may exist behind the rear plate 552 to allow air for heat dissipation of the cooling apparatus 700 to flow.
상기 설치 브라켓(600)은, 판 형태의 설치 플레이트(610)를 포함할 수 있다. 상기 설치 플레이트(610)는 상기 리어 플레이트(552)에 스크류와 같은 체결부재에 의해서 체결될 수 있다. The mounting bracket 600 may include a mounting plate 610 in the form of a plate. The installation plate 610 may be fastened to the rear plate 552 by a fastening member such as a screw.
상기 설치 플레이트(610)는, 제1면(610a)과, 상기 제1면(610a)과 마주보는 제2면(610b)을 포함할 수 있다. The mounting plate 610 may include a first surface 610a and a second surface 610b facing the first surface 610a.
상기 리어 플레이트(552)에서 상기 통과홀(552a)에는 상기 설치 브라켓(600)의 체결을 위한 체결용 연장부(552b)가 형성될 수 있고, 상기 연장부(552b)에 체결홀(552c)이 형성될 수 있다. A fastening extension part 552b for fastening the mounting bracket 600 may be formed in the through hole 552a in the rear plate 552, and a fastening hole 552c is formed in the extension part 552b. Can be formed.
상기 설치 플레이트(610)의 상기 제1면(610a)은 상기 연장부(552b)와 접촉될 수 있다. The first surface 610a of the mounting plate 610 may be in contact with the extension 552b.
상기 설치 플레이트(610)는 상기 냉각 장치(700)의 일부를 수용하기 위한 수용부(611)를 포함할 수 있다. 상기 수용부(611)는 일 예로 상기 제1면(610a)의 일부가 상기 제2면(610b) 측으로 함몰됨에 따라 형성될 수 있다. 그리고, 상기 수용부(611)의 일부는 상기 제2면(610b)에서 돌출될 수 있다. The installation plate 610 may include a receiving portion 611 for receiving a portion of the cooling device 700. For example, the accommodation part 611 may be formed as a portion of the first surface 610a is recessed toward the second surface 610b. A portion of the accommodating part 611 may protrude from the second surface 610b.
상기 수용부(611)의 바닥에는 후술할 쿨링 싱크(200)가 관통하기 위한 개구(612)가 구비될 수 있다. The bottom of the receiving portion 611 may be provided with an opening 612 for penetrating the cooling sink 200 to be described later.
상기 수용부(611)는 상기 개구(612)를 관통하는 상기 쿨링 싱크(200)를 둘러싸는 벽(611a)을 포함하며, 상기 벽(611a)의 일부 또는 전부에는 보강 리브(611b)가 형성될 수 있다. The receiving portion 611 includes a wall 611a surrounding the cooling sink 200 passing through the opening 612, and a reinforcing rib 611b is formed in part or all of the wall 611a. Can be.
상기 설치 플레이트(610)의 제2면(610b)에는 상기 미들 플레이트(550)와의 체결을 위한 체결 보스(627)가 형성될 수 있다. 상기 체결 보스(627)는 상기 제2면(610b)에서 상기 제1면(610a)과 멀어지는 방향으로 돌출될 수 있다. A fastening boss 627 for fastening with the middle plate 550 may be formed on the second surface 610b of the installation plate 610. The fastening boss 627 may protrude in a direction away from the first surface 610a on the second surface 610b.
또한, 상기 설치 플레이트(610)에서 상기 제2면(610b)에는 상기 냉각 장치(700)와의 체결을 위한 복수의 제1체결부(621a, 621b)가 형성될 수 있다. 상기 복수의 제1체결부(621a, 621b)는 상기 제2면(610b)에서 상기 제1면(610a)과 멀어지는 방향으로 돌출될 수 있다. In addition, a plurality of first fastening parts 621a and 621b may be formed on the second surface 610b of the mounting plate 610 for fastening with the cooling device 700. The plurality of first fastening parts 621a and 621b may protrude in a direction away from the first surface 610a on the second surface 610b.
제한적이지는 않으나, 상기 냉각 장치(700)와의 체결이 견고해지도록 상기 개구(612)의 양측에 각각 복수의 제1체결부(621a, 621b)가 배치될 수 있다. 일 예로 상기 개구(612)의 양측에 복수의 제1체결부(621a, 621b)가 상하 방향으로 이격되어 배치될 수 있다. Although not limited, a plurality of first fastening parts 621a and 621b may be disposed at both sides of the opening 612 to secure the fastening with the cooling device 700. For example, the plurality of first fastening parts 621a and 621b may be spaced apart in the vertical direction on both sides of the opening 612.
상기 설치 플레이트(610)의 제1면(610a)에서 상기 복수의 제1체결부(621a, 621b)와 대응되는 부분에는 후술할 냉각 장치(700)의 제1체결 돌출부(714, 715)가 수용되기 위한 제1돌출부 수용홈(621, 622)이 형성될 수 있다. 상기 제1체결 돌출부(714, 715)가 상기 제1돌출부 수용홈(621, 622)에 수용되면, 상기 제1체결 돌출부(714, 715)가 가고정되므로, 스크류를 쉽게 상기 제1체결 돌출부(714, 715)와 상기 제1체결부(621a, 621b)에 체결할 수 있다. The first fastening protrusions 714 and 715 of the cooling device 700 to be described later are accommodated in a portion corresponding to the plurality of first fastening parts 621a and 621b on the first surface 610a of the mounting plate 610. First protrusion part receiving grooves 621 and 622 may be formed. When the first fastening protrusions 714 and 715 are accommodated in the first protrusion accommodating grooves 621 and 622, the first fastening protrusions 714 and 715 are temporarily fixed, so that the first fastening protrusions 714 and 715 are easily fixed. 714 and 715 and the first fastening portions 621a and 621b.
상기 설치 플레이트(610)의 제2면(610b)에는 리브 수용홈(625)이 형성될 수 있다. 상기 리브 수용홈(625)은 상기 수용부(611) 내의 공간과 상기 각 제1돌출부 수용홈(621, 622)을 연결시킨다. A rib receiving groove 625 may be formed in the second surface 610b of the installation plate 610. The rib receiving groove 625 connects the space in the receiving portion 611 with the first protrusion receiving grooves 621 and 622.
상기 설치 플레이트(610)는 상기 인너 케이스(510)와의 체결을 위한 제2체결부(623)를 더 포함할 수 있다. 상기 제2체결부(623)는 상기 수용부(611)의 양측에 각각 형성될 수 있다. The installation plate 610 may further include a second fastening part 623 for fastening with the inner case 510. The second fastening portion 623 may be formed on both sides of the receiving portion 611, respectively.
상기 제2체결부(623)는 상기 설치 플레이트(610)의 제2면(610b)에서 돌출될 수 있다. 그리고, 상기 인너 케이스(510)에는 상기 제2체결부(623)와 정렬되는 플레이트 체결 보스(516)가 구비될 수 있다. 상기 플레이트 체결 보스(116)는 상기 인너 케이스(510)의 배면에서 돌출될 수 있다. The second fastening part 623 may protrude from the second surface 610b of the installation plate 610. In addition, the inner case 510 may be provided with a plate fastening boss 516 aligned with the second fastening part 623. The plate fastening boss 116 may protrude from the rear surface of the inner case 510.
상기 인너 케이스(510)와 상기 설치 플레이트(610) 간의 결합력이 최대화되도록, 상기 제2체결부(623)는 상기 설치 플레이트(610)의 높이를 2등분하는 지점 또는 상기 2등분 지점과 인접하게 위치될 수 있다. In order to maximize the coupling force between the inner case 510 and the mounting plate 610, the second fastening part 623 is positioned at two points or two adjacent points of the mounting plate 610. Can be.
일 예로 상기 제2체결부(623)는 상기 복수의 제1체결부(621a, 621b) 사이 영역과 대응되는 영역에 위치될 수 있다. For example, the second fastening part 623 may be located in an area corresponding to an area between the plurality of first fastening parts 621a and 621b.
그리고, 상기 설치 플레이트(610)에는 후술할 냉각 장치(700)의 제2체결 돌출부(718)가 수용되기 위한 제2 돌출부 수용홈(624)을 포함할 수 있다. 상기 제2돌출부 수용홈(624)은 상기 제2체결부(623)와 정렬될 수 있다. In addition, the installation plate 610 may include a second protrusion accommodating groove 624 for accommodating the second fastening protrusion 718 of the cooling apparatus 700 to be described later. The second protrusion accommodating groove 624 may be aligned with the second fastening portion 623.
도 18은 본 발명의 제2실시 예에 따른 냉각 장치의 사시도이고, 도 19는 도 18의 냉각 장치의 평면도이고, 도 20 및 도 21은 도 18의 냉각 장치의 분해 사시도이다. 18 is a perspective view of a cooling apparatus according to a second embodiment of the present invention, FIG. 19 is a plan view of the cooling apparatus of FIG. 18, and FIGS. 20 and 21 are exploded perspective views of the cooling apparatus of FIG. 18.
도 15, 도 18 내지 도 21을 참조하면, 상기 냉각 장치(700)는, 열전 모듈을 포함할 수 있다. 상기 열전 모듈은, 열전 소자(720)와, 쿨링 싱크(200)와, 히트 싱크(750) 및 모듈 프레임(710)을 포함할 수 있다. 15 and 18 to 21, the cooling device 700 may include a thermoelectric module. The thermoelectric module may include a thermoelectric element 720, a cooling sink 200, a heat sink 750, and a module frame 710.
상기 열전 모듈은 펠티에 효과를 활용하여 상기 저장실(511)의 온도를 낮게 유지할 수 있다. 상기 열전 모듈 자체는 주지 기술이므로 구동 원리에 관한 자세한 내용은 생략한다. The thermoelectric module may maintain the temperature of the storage compartment 511 by utilizing a Peltier effect. Since the thermoelectric module itself is a well-known technology, details of driving principles will be omitted.
상기 냉각 장치(700)는, 상기 미들 플레이트(550)를 관통할 수 있고, 상기 리어 패널(560) 보다 전방에 배치될 수 있다. The cooling device 700 may pass through the middle plate 550 and may be disposed in front of the rear panel 560.
상기 열전 소자(720)는 저온부와 고온부를 포함할 수 있고, 상기 저온부와 고온부는 상기 열전 소자(720)에 인가되는 전압의 방향에 따라 결정될 수 있다. 상기 열전 소자(720)의 저온부가 고온부보다 상기 인너 케이스(510)에 가깝게 배치될 수 있다. The thermoelectric element 720 may include a low temperature part and a high temperature part, and the low temperature part and the high temperature part may be determined according to a direction of a voltage applied to the thermoelectric element 720. The low temperature portion of the thermoelectric element 720 may be disposed closer to the inner case 510 than the high temperature portion.
상기 저온부는 상기 쿨링 싱크(200)와 접할 수 있고, 상기 고온부는 상기 히트 싱크(750)와 접할 수 있다. 상기 쿨링 싱크(200)는 상기 저장실(511)을 냉각시키고, 상기 히트 싱크(750)에서는 방열이 일어날 수 있다. The low temperature part may contact the cooling sink 200, and the high temperature part may contact the heat sink 750. The cooling sink 200 cools the storage compartment 511, and heat dissipation may occur in the heat sink 750.
상기 열전 소자(720)에는 퓨즈(725)가 연결되어 상기 열전 소자(720)에 과전압이 인가되는 경우, 상기 퓨즈(725)는 상기 열전 소자(720)에 인가되는 전압을 차단시킬 수 있다. When a fuse 725 is connected to the thermoelectric element 720 and an overvoltage is applied to the thermoelectric element 720, the fuse 725 may block a voltage applied to the thermoelectric element 720.
상기 냉각 장치(700)는, 상기 저장실(511)의 공기를 상기 쿨링 싱크(200)로 유동시키는 냉각팬과, 외부의 공기를 상기 히트 싱크(750)로 유동시키는 방열팬(790)을 더 포함할 수 있다. The cooling device 700 further includes a cooling fan for flowing air from the storage compartment 511 to the cooling sink 200 and a heat dissipation fan 790 for flowing external air to the heat sink 750. can do.
상기 냉각팬은 상기 쿨링 싱크(730)의 전방에 배치될 수 있고, 상기 방열팬(790)은 상기 히트 싱크(750)의 후방에 배치될 수 있다. The cooling fan may be disposed in front of the cooling sink 730, and the heat radiating fan 790 may be disposed at the rear of the heat sink 750.
상기 냉각팬은 상기 쿨링 싱크(530)와 마주보도록 배치될 수 있고, 상기 방열팬(590)은 상기 히트 싱크(550)와 마주보도록 배치될 수 있다. The cooling fan may be disposed to face the cooling sink 530, and the heat radiating fan 590 may be disposed to face the heat sink 550.
상기 냉각팬은 상기 인너 케이스(510)의 내부에 배치될 수 있다. 상기 냉각팬은 팬 커버에 의해서 커버될 수 있다. The cooling fan may be disposed inside the inner case 510. The cooling fan may be covered by a fan cover.
상기 냉각 장치(700)는 센서 모듈(300)을 더 포함할 수 있다. 상기 센서 모듈(300)은, 상기 쿨링 싱크(200)에 배치될 수 있다. 상기 센서 모듈(300)이 상기 쿨링 싱크(200)에 설치되기 위한 구조에 대해서는 도면을 참조하여 후술하기로 한다. The cooling device 700 may further include a sensor module 300. The sensor module 300 may be disposed in the cooling sink 200. A structure for installing the sensor module 300 in the cooling sink 200 will be described later with reference to the drawings.
상기 냉각 장치(700)는 상기 열전 소자(720)를 둘러싸는 단열 부재(770)를 더 포함할 수 있다. 상기 열전 소자(720)는 상기 단열 부재(770) 내에 위치할 수 있다. The cooling device 700 may further include a heat insulating member 770 surrounding the thermoelectric element 720. The thermoelectric element 720 may be located in the heat insulating member 770.
상기 단열 부재(770)에는 전후 방향으로 개방된 소자 장착홀(771)이 마련될 수 있다. 상기 소자 장착홀(771) 내에 상기 열전 소자(720)가 위치될 수 있다. The heat insulating member 770 may be provided with an element mounting hole 771 opened in the front-rear direction. The thermoelectric element 720 may be located in the element mounting hole 771.
상기 단열 부재(770)의 전후 방향 두께는 상기 열전 소자(771)의 두께보다 두꺼울 수 있다. The thickness in the front-rear direction of the heat insulating member 770 may be thicker than the thickness of the thermoelectric element 771.
상기 단열 부재(770)는 상기 열전 소자(720)의 열이 상기 열전 소자(720)의 둘레로 전도되는 것을 방지하여 상기 열전 소자(720)의 냉각 효율을 높힐 수 있다. 상기 열전 소자(720)의 둘레는 상기 단열 부재(770)에 의해서 커버되므로 상기 쿨링 싱크(200)에서 상기 히트 싱크(750)로 전달되는 열이 주변으로 발산되지 않을 수 있다. The heat insulating member 770 may prevent the heat of the thermoelectric element 720 from being conducted around the thermoelectric element 720, thereby increasing the cooling efficiency of the thermoelectric element 720. Since the circumference of the thermoelectric element 720 is covered by the heat insulating member 770, heat transmitted from the cooling sink 200 to the heat sink 750 may not be dissipated to the periphery.
상기 쿨링 싱크(200)는 상기 열전 소자(720)와 접촉하도록 배치될 수 있다. 상기 쿨링 싱크(200)는 상기 열전 소자(720)의 저온부와 접하여 저온으로 유지될 수 있다. The cooling sink 200 may be disposed to contact the thermoelectric element 720. The cooling sink 200 may be maintained at a low temperature in contact with the low temperature portion of the thermoelectric element 720.
상기 쿨링 싱크(200)는 베이스(210)와, 쿨링핀(220)을 포함할 수 있다. The cooling sink 200 may include a base 210 and a cooling fin 220.
상기 베이스(210)는 상기 열전 소자(720)와 접하도록 배치될 수 있다. 상기 베이스(210)의 적어도 일부는 상기 단열 부재(770)에 형성된 소자 장착홀(771)로 삽입되어 상기 열전 소자(720)와 접할 수 있다. The base 210 may be disposed to contact the thermoelectric element 720. At least a portion of the base 210 may be inserted into an element mounting hole 771 formed in the heat insulating member 770 to be in contact with the thermoelectric element 720.
일 예로 상기 베이스(210)는 상기 소자 장착홀(771)에 삽입되기 위하여 돌출된 형태의 돌출부(211a)를 포함할 수 있다. For example, the base 210 may include a protrusion 211a having a protruding shape to be inserted into the device mounting hole 771.
상기 베이스(210)는 상기 열전 소자(720)의 저온부와 접하여 냉기를 상기 쿨링핀(220)으로 전도시킬 수 있다. The base 210 may be in contact with the low temperature portion of the thermoelectric element 720 to conduct cold air to the cooling fin 220.
상기 쿨링핀(220)은 상기 베이스(210)와 접하도록 배치될 수 있다. 상기 베이스(210)는 상기 쿨링핀(220)과 상기 열전 소자(720) 사이에 위치할 수 있고, 상기 쿨링핀(220)은 상기 베이스(210)의 전방에 위치할 수 있다. The cooling fin 220 may be disposed to contact the base 210. The base 210 may be located between the cooling fins 220 and the thermoelectric element 720, and the cooling fins 220 may be located in front of the base 210.
상기 쿨링핀(220)은 상기 인너 케이스(510)를 관통하여 상기 저장실(511) 내에 위치될 수 있다. The cooling fin 220 may be positioned in the storage compartment 511 through the inner case 510.
상기 인너 케이스(510)는 쿨링 유로를 형성하는 유로 형성부(515)를 포함할 수 있다. 상기 쿨링핀(220)은 상기 쿨링 유로에 위치될 수 있고, 상기 쿨링 유로 내의 공기와 열교환하여 공기를 냉각시킬 수 있다. 공기와의 열교환 면적을 늘리기 위해 쿨링핀(220)은 복수의 핀을 포함하고, 복수의 핀이 상기 베이스(210)에 접촉될 수 있다. 복수의 핀 각각은 상하 방향으로 연장되고, 수평 방향으로 서로 이격되도록 배열될 수 있다. The inner case 510 may include a flow path forming part 515 forming a cooling flow path. The cooling fin 220 may be positioned in the cooling flow path, and may cool the air by heat exchange with air in the cooling flow path. In order to increase the heat exchange area with air, the cooling fins 220 may include a plurality of fins, and the plurality of fins may contact the base 210. Each of the plurality of pins may extend in the vertical direction and be arranged to be spaced apart from each other in the horizontal direction.
상기 모듈 프레임(710)은 박스 형상의 프레임 바디(711)를 포함할 수 있다. The module frame 710 may include a box-shaped frame body 711.
상기 프레임 바디(711)에는 상기 단열 부재(770) 또는 열전 소자(720)가 수용되는 공간(712)이 형성될 수 있다. 상기 단열 부재(770)에 상기 열전 소자(720)가 수용되므로, 상기 공간(712)에는 상기 열전 소자(720)가 위치될 수 있다. A space 712 may be formed in the frame body 711 to accommodate the heat insulating member 770 or the thermoelectric element 720. Since the thermoelectric element 720 is accommodated in the heat insulating member 770, the thermoelectric element 720 may be located in the space 712.
상기 모듈 프레임(710)은 열전도로 인한 열손실을 최소화할 수 있는 재질로 형성될 수 있다. 예를 들어, 상기 모듈 프레임(710)은 플라스틱 등의 비금속 재질을 가질 수 있다. 상기 모듈 프레임(710)은 상기 히트 싱크(750)의 열이 상기 쿨링 싱크(200)로 전도되는 것을 방지할 수 있다. The module frame 710 may be formed of a material capable of minimizing heat loss due to heat conduction. For example, the module frame 710 may have a non-metallic material such as plastic. The module frame 710 may prevent the heat of the heat sink 750 from being conducted to the cooling sink 200.
상기 프레임 바디(711)의 전면에는 가스켓(719)이 결합될 수 있다. 상기 가스켓(719)은 고무 등과 같은 탄성 재질을 가질 수 있다. 상기 가스켓(719)은 일 예로 사각 링 형상으로 형성될 수 있으나 이에 한정되지 않는다. 상기 가스켓(719)은 실링 부재일 수 있다. 상기 프레임 바디(711)의 전면에는 상기 가스켓(719)이 수용되기 위한 가스켓 홈(711a)이 형성될 수 있다. A gasket 719 may be coupled to the front surface of the frame body 711. The gasket 719 may have an elastic material such as rubber. For example, the gasket 719 may be formed in a rectangular ring shape, but is not limited thereto. The gasket 719 may be a sealing member. A gasket groove 711a may be formed on the front surface of the frame body 711 to accommodate the gasket 719.
상기 프레임 바디(711)는 상기 설치 플레이트(610)의 수용부(611)에 수용될 수 있다. 상기 프레임 바디(711)는 상기 수용부(611)를 형성하는 벽(611a)에 접촉될 수 있다. 그리고, 상기 프레임 바디(711)에 결합된 가스켓(719)은 상기 수용부(611)의 바닥에 접촉될 수 있다. The frame body 711 may be accommodated in the accommodation portion 611 of the installation plate 610. The frame body 711 may be in contact with the wall 611a forming the receiving portion 611. In addition, the gasket 719 coupled to the frame body 711 may be in contact with the bottom of the receiving portion 611.
따라서, 상기 가스켓(719)에 의해서 상기 미들 플레이트(550)와 상기 리어 패널(560) 사이에 형성되는 방열 유로(690)와 상기 쿨링 유로가 연통되는 것이 방지될 수 있다. Therefore, the heat dissipation passage 690 formed between the middle plate 550 and the rear panel 560 and the cooling passage may be prevented from communicating by the gasket 719.
상기 모듈 프레임(710)은 상기 프레임 바디(711)에서 연장되는 결합 플레이트(713)를 더 포함할 수 있다. 상기 결합 플레이트(713)는 일 예로 상기 프레임 바디(711)의 양측에서 각각 연장될 수 있다. 상기 결합 플레이트(713)는 상기 설치 브라켓(600)과 결합되기 위한 구성이다. The module frame 710 may further include a coupling plate 713 extending from the frame body 711. For example, the coupling plate 713 may extend from both sides of the frame body 711, for example. The coupling plate 713 is configured to be coupled to the mounting bracket 600.
일 예로 상기 결합 플레이트(713)에는 상기 복수의 제1체결부(621a, 621b)와 체결되기 위한 복수의 제1체결 돌출부(714, 715)가 구비될 수 있다. 상기 복수의 제1체결 돌출부(714, 715)는 상하 방향으로 이격되어 배치될 수 있다. For example, the coupling plate 713 may be provided with a plurality of first fastening protrusions 714 and 715 for fastening with the plurality of first fastening parts 621a and 621b. The plurality of first fastening protrusions 714 and 715 may be spaced apart in the vertical direction.
또한, 상기 결합 플레이트(713)에는 상기 제2체결부(623)와 체결되기 위한 제2체결 돌출부(718)가 더 구비될 수 있다. In addition, the coupling plate 713 may further include a second fastening protrusion 718 for fastening with the second fastening portion 623.
상기 인너 케이스(510)와 상기 모듈 프레임(710) 및 상기 설치 브라켓(600) 간의 결합력이 최대화되도록, 상기 제2체결 돌출부(718)는, 상기 모듈 프레임(710)의 높이를 2등분하는 지점 또는 상기 2등분 지점과 인접하게 위치될 수 있다. In order to maximize the coupling force between the inner case 510 and the module frame 710 and the mounting bracket 600, the second fastening protrusion 718 has a point that divides the height of the module frame 710 into two or It may be located adjacent to the bisecting point.
체결부재는 상기 플레이트 체결 보스(516), 상기 제2체결부(623) 및 제2체결 돌출부(718)를 체결할 수 있다. The fastening member may fasten the plate fastening boss 516, the second fastening part 623, and the second fastening protrusion 718.
본 실시 예에서, 상기 복수의 제1체결 돌출부(714, 715)에 체결부재가 체결되는 과정에서 상기 결합 플레이트(713)가 상기 프레임 바디(711)에 대해서 변형되는 것이 최소화되도록, 상기 결합 플레이트(713)에는 상기 프레임 바디(711)와 상기 각 제1체결 돌출부(714, 715)를 연결하는 연결 리브(716)가 돌출될 수 있다. In the present embodiment, the coupling plate 713 is minimized so that the coupling plate 713 is deformed with respect to the frame body 711 while the coupling member is fastened to the plurality of first coupling protrusions 714 and 715. A connecting rib 716 connecting the frame body 711 and the first fastening protrusions 714 and 715 may protrude from the 713.
상기 제2체결 돌출부(718)에 체결되는 체결부재는 상기 프레임 바디(711)의 가스켓(719)이 상기 수용부(611)의 바닥에 접촉되는 상태가 유지되도록 한다. The fastening member fastened to the second fastening protrusion 718 allows the gasket 719 of the frame body 711 to be in contact with the bottom of the receiving portion 611.
상기 히트 싱크(750)는, 방열 플레이트(753)와, 방열 파이프(752)와, 방열 핀(751)을 포함할 수 있다. The heat sink 750 may include a heat dissipation plate 753, a heat dissipation pipe 752, and a heat dissipation fin 751.
상기 방열 핀(751)은 일 예로 상하 방향으로 이격된 상태로 적층된 복수의 핀을 포함할 수 있다. For example, the heat dissipation fins 751 may include a plurality of fins stacked in a state spaced apart in the vertical direction.
상기 방열 플레이트(753)는 얇은 판 형태로 형성되며, 상기 방열핀(751)과 접촉하도록 결합된다. The heat dissipation plate 753 is formed in a thin plate shape and is coupled to contact the heat dissipation fin 751.
상기 히트 싱크(750)는 상기 열전 소자(720)와 접촉하기 위한 소자 접촉판(754)을 더 포함할 수 있다. 상기 소자 접촉판(754)의 면적은 상기 방열 플레이트(753)의 면적 보다 작게 형성될 수 있다. The heat sink 750 may further include an element contact plate 754 for contacting the thermoelectric element 720. An area of the device contact plate 754 may be smaller than that of the heat dissipation plate 753.
상기 소자 접촉판(754)은 대략적으로 상기 열전 소자(720)와 동일한 크기로 형성될 수 있다. 상기 소자 접촉판(754)은 상기 단열 부재(770)에 형성된 소자 장착홀(771) 내에 위치될 수 있다. The device contact plate 754 may be formed to be substantially the same size as the thermoelectric device 720. The device contact plate 754 may be located in the device mounting hole 771 formed in the heat insulating member 770.
열 전달 면적이 커질수록 열전도율이 증가하므로, 상기 소자 접촉판(754)과 상기 열전 소자(720)는 서로 면 접촉하는 것이 이상적이다. 또한, 상기 소자 접촉판(754)과 열전 소자(720) 사이에는 미세한 간극을 채워 열전도율을 증가시키기 위해 열전도체(thermal grease 또는 thermal compound)가 도포될 수 있다. Since the thermal conductivity increases as the heat transfer area increases, the device contact plate 754 and the thermoelectric element 720 may be in surface contact with each other. In addition, a thermal grease or a thermal compound may be applied between the device contact plate 754 and the thermoelectric device 720 to increase a thermal conductivity by filling a minute gap.
상기 방열 플레이트(753)는 상기 열전 소자(720)의 고온부와 접하여 열을 상기 방열 파이프(752) 및 상기 복수의 방열 핀(751)으로 전도시킬 수 있다.The heat dissipation plate 753 may be in contact with a high temperature portion of the thermoelectric element 720 to conduct heat to the heat dissipation pipe 752 and the plurality of heat dissipation fins 751.
상기 방열 핀(751)은 상기 미들 플레이트(550)의 후방에 위치할 수 있다. 상기 방열 핀(751)은 상기 미들 플레이트(550)와 상기 리어 패널(560)의 사이에 위치할 수 있고, 상기 방열팬(790)에 의해 흡입된 외부 공기와 열교환하여 방열될 수 있다. The heat dissipation fin 751 may be located behind the middle plate 550. The heat dissipation fin 751 may be positioned between the middle plate 550 and the rear panel 560, and may radiate heat by exchanging heat with external air sucked by the heat dissipation fan 790.
상기 방열팬(790)은 상기 히트 싱크(750)와 마주보도록 배치될 수 있고, 외부 공기를 상기 히트 싱크(750)로 송풍시킬 수 있다. The heat dissipation fan 790 may be disposed to face the heat sink 750, and may blow external air to the heat sink 750.
상기 방열팬(790)은 팬(792)과, 팬(792)의 외측을 둘러싸는 쉬라우드(793)를 포함할 수 있다. 상기 팬(792)은 일 예로 축류형 팬일 수 있다. The heat radiating fan 790 may include a fan 792 and a shroud 793 surrounding the outside of the fan 792. The fan 792 may be, for example, an axial fan.
상기 방열팬(790)은 상기 히트 싱크(750)와 이격되게 배치될 수 있다. 이로써, 상기 방열팬(790)에 의해 송풍된 공기의 유동 저항이 최소화되고, 상기 히트 싱크(750)에서의 열교환 효율이 증가될 수 있다. The heat radiating fan 790 may be spaced apart from the heat sink 750. As a result, the flow resistance of the air blown by the heat radiating fan 790 may be minimized, and heat exchange efficiency of the heat sink 750 may be increased.
상기 방열팬(790)은 고정핀(780)에 의해서 상기 히트 싱트(750)에 고정될 수 있다. 일 예로 상기 고정핀(780)은 상기 복수의 방열 핀(751)에 결합될 수 있다. The heat radiating fan 790 may be fixed to the heat sink 750 by a fixing pin 780. For example, the fixing pin 780 may be coupled to the plurality of heat dissipation fins 751.
상기 고정핀(780)은 상기 쉬라우드(793)를 관통할 수 있다. 상기 쉬라우드(793)가 상기 고정핀(780)과 결합된 상태에서 상기 쉬라우드(793)는 상기 방열 핀(751)과 이격될 수 있다. The fixing pin 780 may pass through the shroud 793. The shroud 793 may be spaced apart from the heat dissipation fin 751 while the shroud 793 is coupled to the fixing pin 780.
상기 고정핀(780)은 고무 또는 실리콘 등과 같이 열전도율이 낮은 재질로 형성될 수 있다. 따라서, 상기 고정핀(780)에 상기 방열팬(790)이 결합되므로, 상기 팬(792)의 회전 과정에서 발생되는 진동이 상기 히트 싱크(750)로 전달되는 것으 최소화될 수 있다. The fixing pin 780 may be formed of a material having low thermal conductivity such as rubber or silicon. Therefore, since the heat radiating fan 790 is coupled to the fixing fin 780, vibration generated in the rotation process of the fan 792 may be minimized to be transmitted to the heat sink 750.
도 22는 본 발명의 제2실시 예에 따른 센서 모듈이 쿨링 싱크에 설치된 모습을 보여주는 정면도이고, 도 23은 본 발명의 제2실시 예에 따른 센서 모듈이 쿨링 싱크에 설치된 모습을 보여주는 사시도이다. FIG. 22 is a front view illustrating a sensor module installed in a cooling sink according to a second embodiment of the present invention, and FIG. 23 is a perspective view illustrating a sensor module installed in a cooling sink according to a second embodiment of the present invention.
도 24는 본 발명의 다른 실시 예에 따른 쿨링 싱크의 상면도이고, 도 25는 본 발명의 제2실시 예에 따른 센서 모듈의 사시도이고, 도 26은 본 발명의 제2실시 예에 따른 센서 홀더의 종단면도이다. 24 is a top view of a cooling sink according to another embodiment of the present invention, FIG. 25 is a perspective view of a sensor module according to a second embodiment of the present invention, and FIG. 26 is a sensor holder according to a second embodiment of the present invention. Is a longitudinal cross-sectional view of.
도 22 내지 도 26을 참조하면, 본 실시 예에 따른 센서 모듈(300)은, 제상 온도 센서(350)와, 상기 제상 온도 센서(350)가 장착되는 센서 홀더(301)를 포함할 수 있다. 22 to 26, the sensor module 300 according to the present exemplary embodiment may include a defrost temperature sensor 350 and a sensor holder 301 to which the defrost temperature sensor 350 is mounted.
상기 센서 홀더(301)는 상기 쿨링 싱크(200)에 장착될 수 있다. The sensor holder 301 may be mounted to the cooling sink 200.
상기 쿨링 싱크(200)는, 상술한 바와 같이 베이스(210)와, 상기 베이스(210)에서 연장되는 쿨링핀(220)을 포함할 수 있다. 상기 쿨링핀(220)은 복수의 핀(221, 231, 232, 234)을 포함할 수 있다. As described above, the cooling sink 200 may include a base 210 and a cooling fin 220 extending from the base 210. The cooling fins 220 may include a plurality of fins 221, 231, 232, and 234.
제한적이지는 않으나, 상기 복수의 핀(221, 231, 232, 234)은 수평 방향으로 이격된 상태에서 평행하게 배치될 수 있다. 본 실시 예와 같이 상기 복수의 핀(221, 231, 232, 234)이 수평 방향으로 이격되면, 상기 복수의 핀(221, 231, 232, 234)은 상하 방향으로 연장될 수 있다. Although not limited, the plurality of pins 221, 231, 232, and 234 may be arranged in parallel in a state spaced apart in the horizontal direction. When the plurality of pins 221, 231, 232, and 234 are spaced apart in the horizontal direction as in the present embodiment, the plurality of pins 221, 231, 232, and 234 may extend in the vertical direction.
이러한 복수의 핀(221, 231, 232, 234)의 배치에 의하면, 공기가 상하 방향으로 핀 들 사이를 원활히 유동할 수 있을 뿐만 아니라 제상수 등과 같은 액체가 쉽게 하방으로 유동할 수 있게 된다. According to the arrangement of the plurality of fins 221, 231, 232, 234, not only can the air smoothly flow between the fins in the vertical direction, but also liquid such as defrost water can easily flow downward.
상기 센서 모듈(300)은 상기 복수의 핀(221, 231, 232, 234) 중 일부 핀에 결합될 수 있다. 상기 센서 모듈(300)이 상기 복수의 핀(221, 231, 232, 234) 중 일부 핀에 결합되면, 상기 제상 온도 센서(350)가 복수의 핀(221, 231, 232, 234) 들의 온도를 정확하게 측정할 수 있는 장점이 있다. The sensor module 300 may be coupled to some of the pins 221, 231, 232, and 234. When the sensor module 300 is coupled to some of the pins 221, 231, 232, and 234, the defrost temperature sensor 350 adjusts the temperatures of the plurality of pins 221, 231, 232, and 234. It has the advantage of being able to measure accurately.
상기 복수의 핀(221, 231, 232, 234)은, 복수의 제1핀(221)을 포함할 수 있다. The plurality of pins 221, 231, 232, and 234 may include a plurality of first pins 221.
상기 복수의 제1핀(221)의 상하 길이는, 제한적이지는 않으나, 상기 베이스(210)의 상하 길이와 동일할 수 있다. The upper and lower lengths of the plurality of first pins 221 are not limited, but may be the same as the upper and lower lengths of the base 210.
상기 복수의 핀(221, 231, 232, 234)은 상기 센서 홀더(301)가 결합되기 위한 제2핀(231) 및 제3핀(232)을 포함할 수 있다. The plurality of pins 221, 231, 232, and 234 may include a second pin 231 and a third pin 232 to which the sensor holder 301 is coupled.
상기 제2핀(231)과 상기 제3핀(232)을 통칭하여 결합핀이라 이름할 수 있다. 이때, 상기 제2핀(231)을 제1결합핀이라 할 수 있고, 상기 제3핀(232)을 제2결합핀이라 할 수 있다. The second pin 231 and the third pin 232 may be collectively referred to as a coupling pin. In this case, the second pin 231 may be referred to as a first coupling pin, and the third pin 232 may be referred to as a second coupling pin.
상기 제2핀(231) 및 상기 제3핀(232)는 수평 방향으로 이격되어 배치될 수 있다. The second pin 231 and the third pin 232 may be spaced apart in the horizontal direction.
상기 베이스(210)로부터의 상기 제2핀(231) 및 상기 제3핀(232) 각각의 돌출 길이는 상기 제1핀(221)의 돌출 길이 보다 짧다. The protruding length of each of the second pin 231 and the third pin 232 from the base 210 is shorter than the protruding length of the first pin 221.
상기 베이스(210)로부터의 상기 제2핀(231) 및 상기 제3핀(232) 각각의 돌출 길이는 동일할 수 있다. Protruding lengths of the second pin 231 and the third pin 232 from the base 210 may be the same.
상기 제2핀(231) 및 상기 제3핀(232) 각각의 돌출 길이가 상기 제1핀(221)의 돌출 길이 보다 짤게 형성되는 이유는 상기 제2핀(231) 및 상기 제3핀(232)에 상기 센서 홀더(301)가 결합된 상태에서 상기 센서 홀더(301)가 상기 제1핀(221)의 전방으로 돌출되는 길이를 최소화하기 위함이다. The protruding length of each of the second fin 231 and the third fin 232 is shorter than the protruding length of the first fin 221 is because of the second fin 231 and the third fin 232. This is to minimize the length of the sensor holder 301 protrudes forward of the first pin 221 in the state in which the sensor holder 301 is coupled to the sensor holder 301.
상기 제3핀(232)은 상기 복수의 핀(221, 231, 232, 234) 들 중에서 최외곽에 위치될 수 있다. The third pin 232 may be located at the outermost position among the plurality of pins 221, 231, 232, and 234.
상기 제2핀(232)의 최고점과 상기 제3핀(233)의 최고점은 동일한 높이에 위치될 수 있다. The highest point of the second pin 232 and the highest point of the third pin 233 may be located at the same height.
그리고, 상기 센서 홀더(301)는, 상기 제2핀(232)과 상기 제3핀(233)의 최고점 또는 최고점과 인접한 위치에서 상기 제2핀(232) 및 상기 제3핀(233)에 결합될 수 있다. 그 이유는 상기 센서 모듈(300)로 제상수와 같은 액체가 유동하는 것을 최소화하기 위함이다. The sensor holder 301 is coupled to the second pin 232 and the third pin 233 at a position close to the highest point or the highest point of the second pin 232 and the third pin 233. Can be. The reason is to minimize the flow of liquid such as defrost water to the sensor module (300).
상기 제3핀(232)의 상하 길이는 상기 제2핀(231)의 상하 길이 보다 짧게 형성될 수 있다. 이는, 상기 제3핀(232)의 하측에 상기 베이스(210)를 상기 단열재(113)와 체결하기 위한 체결부재가 위치하는 공간을 확보하기 위함이다. The vertical length of the third pin 232 may be shorter than the vertical length of the second pin 231. This is to secure a space in which a fastening member for fastening the base 210 to the heat insulating material 113 is positioned below the third pin 232.
다만, 쿨링 성능이 저하되는 것이 방지되도록 상기 제3핀(232)의 하방에는 상기 제3핀(232)과 동일한 형태의 제5핀(233)이 구비될 수 있다. However, a fifth fin 233 having the same shape as the third fin 232 may be provided below the third fin 232 so as to prevent the cooling performance from being lowered.
상기 제2핀(231)과 상기 제3핀(232) 사이에는 하나 이상의 제4핀(234)이 구비될 수 있다. One or more fourth pins 234 may be provided between the second pin 231 and the third pin 232.
상기 제4핀(234)은 상기 제2핀(231)과 상기 제3핀(232)에 결합된 상기 센서 모듈(300)을 지지하는 역할을 한다. 따라서, 상기 제4핀(234)을 지지핀이라고 이름할 수 있다. The fourth pin 234 serves to support the sensor module 300 coupled to the second pin 231 and the third pin 232. Therefore, the fourth pin 234 may be referred to as a support pin.
상기 제4핀(234)이 상기 센서 모듈(300)을 지지하기 위해서, 상기 베이스(210)로부터의 상기 제4핀(234)의 돌출 길이는 상기 제2핀(231) 및 상기 제3핀(232)의 돌출 길이 보다 짧게 형성된다. In order for the fourth pin 234 to support the sensor module 300, the protruding length of the fourth pin 234 from the base 210 may be the second pin 231 and the third pin ( It is formed shorter than the protruding length of 232).
상기 센서 모듈(300)의 안정적인 지지를 위하여, 복수의 제4핀(234)이 상기 제2핀(231)과 상기 제3핀(232) 사이에 위치될 수 있다. In order to stably support the sensor module 300, a plurality of fourth pins 234 may be located between the second pin 231 and the third pin 232.
상기 센서 모듈(300)은 상기 제2핀(231)과 상기 제3핀(232)의 전방에서 상기 베이스(210)와 가까워지는 방향으로 상기 제2핀(231) 및 상기 제3핀(232)에 결합된다. The sensor module 300 includes the second pin 231 and the third pin 232 in a direction closer to the base 210 in front of the second pin 231 and the third pin 232. Is coupled to.
상기 제2핀(231)과 상기 제3핀(232)에 상기 센서 모듈(300)이 결합되는 과정에서 상기 센서 모듈(300)이 상기 제4핀(234)과 접촉할 수 있다. 상기 제4핀(234)에 상기 센서 모듈(300)이 접촉하게 되면, 상기 센서 모듈(300)의 결합은 종료될 수 있다. The sensor module 300 may contact the fourth pin 234 while the sensor module 300 is coupled to the second pin 231 and the third pin 232. When the sensor module 300 is in contact with the fourth pin 234, the coupling of the sensor module 300 may be terminated.
상기 센서 모듈(300)이 상기 제4핀(234)에 접촉됨에 따라서 상기 센서 모듈(300)이 결합되는 과정에서, 과도한 힘에 의해서 상기 제2핀(231)이나 상기 제3핀(232)이 변형되는 것이 방지될 수 있다. As the sensor module 300 is in contact with the fourth pin 234, the second pin 231 or the third pin 232 may be disconnected due to excessive force. Deformation can be prevented.
상기 센서 홀더(301)는, 상기 제상 온도 센서(350)를 둘러싸는 홀더 프레임(310)을 포함할 수 있다. The sensor holder 301 may include a holder frame 310 surrounding the defrost temperature sensor 350.
상기 홀더 프레임(310)은 상기 제상 온도 센서(350)를 수용하기 위한 센서 수용 공간(312)을 포함할 수 있다. The holder frame 310 may include a sensor accommodating space 312 for accommodating the defrost temperature sensor 350.
상기 제상 온도 센서(350)는 제한적이는 않으나, 상하로 길게 연장되는 형태로 형성되며, 상기 홀더 프레임(310)은 상기 제상 온도 센서(350)를 수용하기 위하여, 좌우 폭에 비하여 길이가 긴 직육면체 형태로 형성될 수 있다. The defrost temperature sensor 350 is not limited, but is formed in a shape that extends upward and downward, and the holder frame 310 is a rectangular parallelepiped having a longer length than the left and right widths to accommodate the defrost temperature sensor 350. It may be formed in the form.
상기 제상 온도 센서(350)의 적어도 일부는 원통 형태로 형성될 수 있다. At least a portion of the defrost temperature sensor 350 may be formed in a cylindrical shape.
상기 홀더 프레임(310)은 상기 센서 수용 공간(312)으로 상기 제상 온도 센서(350)가 수용되기 위한 인입 개구(311)를 포함할 수 있다. The holder frame 310 may include an inlet opening 311 for accommodating the defrost temperature sensor 350 into the sensor accommodation space 312.
상기 홀더 프레임(310)의 인입 개구(311)에는 상기 센서 수용 공간(312)으로 인입된 상기 제상 온도 센서(350)가 외부로 빠지는 것을 방지하기 위한 복수의 탈거 방지 돌기(314)가 구비될 수 있다. The inlet opening 311 of the holder frame 310 may be provided with a plurality of anti-separation protrusions 314 for preventing the defrost temperature sensor 350 introduced into the sensor accommodation space 312 from falling out. have.
일 예로 상기 복수의 탈거 방지 돌기(314)는 수평 방향으로 이격될 뿐만 아니라 상하 방향으로 복수 개가 이격되도록 배열될 수 있다. 즉, 상기 홀더 프레임(310)에서 좌측 및 우측 각각에 상기 복수의 탈거 방지 돌기(314)가 상하로 배열될 수 있다. For example, the plurality of anti-separation protrusions 314 may be arranged to be spaced apart from each other in the vertical direction as well as spaced apart from each other. That is, the plurality of anti-separation protrusions 314 may be arranged up and down on each of the left and right sides of the holder frame 310.
상기 홀더 프레임(310)에는 상기 센서 수용 공간(312)으로 인입된 상기 제상 온도 센서(350)를 탄성 지지하기 위한 지지부(332)가 구비될 수 있다. 제한적이지는 않으나, 상하로 배열되는 한 쌍의 지지부(332)가 상기 제상 온도 센서(350)를 지지할 수 있다. The holder frame 310 may be provided with a support 332 for elastically supporting the defrost temperature sensor 350 introduced into the sensor accommodating space 312. Although not limited, a pair of supports 332 arranged up and down may support the defrost temperature sensor 350.
상기 한 쌍의 지지부(332)는 상하 방향으로 이격되어 배열될 수 있다. The pair of support portions 332 may be arranged spaced apart in the vertical direction.
상기 지지부(332)가 상기 제상 온도 센서(350)를 탄성 지지하기 위하여 상기 지지부(332)는 상기 홀더 프레임(310)에서 변형 가능한 형태로 구비될 수 있다. The support part 332 may be provided in a form deformable in the holder frame 310 so that the support part 332 elastically supports the defrost temperature sensor 350.
일 예로 상기 홀더 프레임(310)에 슬릿(330)이 형성됨에 따라 상기 지지부(332)가 상기 홀더 프레임(310)에 대해서 변형 가능하게 된다. For example, as the slit 330 is formed in the holder frame 310, the support part 332 may be deformable with respect to the holder frame 310.
제한적이는 않으나, 상기 지지부(332)의 양측에 상기 슬릿(330)이 형성될 수 있다. Although not limited, the slits 330 may be formed at both sides of the support part 332.
또한, 상기 지지부(332)에 의해서 상기 제상 온도 센서(350)의 탄성 지지가 가능하도록 상기 지지부(332)는 볼록부(334)를 포함할 수 있다. In addition, the support part 332 may include a convex part 334 to enable elastic support of the defrost temperature sensor 350 by the support part 332.
상기 볼록부(334)는 상기 인입 개구(311)를 향하여 볼록할 수 있다. 상기 제상 온도 센서(350)는 상기 볼록부(334)와 접촉할 수 있다. The convex portion 334 may be convex toward the inlet opening 311. The defrost temperature sensor 350 may contact the convex portion 334.
이때, 상기 제상 온도 센서(350)가 상기 볼록부(334)를 가압하여 상기 지지부(332)가 탄성 변형된 상태에서 상기 복수의 탈거 방지 돌기(314)가 상기 제상 온도 센서(350)와 접촉할 수 있다. 이러한 구조에 의해서 상기 홀더 프레임(310) 내에서 상기 제상 온도 센서(350)가 움직이는 것이 방지될 수 있다. At this time, the defrosting temperature sensor 350 presses the convex portion 334 so that the plurality of anti-separation protrusions 314 may contact the defrosting temperature sensor 350 while the support portion 332 is elastically deformed. Can be. By this structure, the defrost temperature sensor 350 may be prevented from moving in the holder frame 310.
상기 홀더 프레임(310)에서 상기 한 쌍의 지지부(332) 사이 영역에는 상기 제상 온도 센서(350)의 이동을 제한하기 위한 스토퍼(335, 336)가 구비될 수 있다. 상기 스토퍼(335, 336)는 일 예로 상기 홀더 프레임(310)의 내부 양측면에서 서로 가까워지는 방향으로 돌출될 수 있다. 일 예로 한 쌍의 스토퍼(335, 336)가 수평 방향으로 이격된 상태로 상기 홀더 프레임(310)에 구비될 수 있다. Stoppers 335 and 336 for limiting the movement of the defrost temperature sensor 350 may be provided in an area between the pair of support parts 332 of the holder frame 310. For example, the stoppers 335 and 336 may protrude in directions close to each other on both inner side surfaces of the holder frame 310. For example, a pair of stoppers 335 and 336 may be provided in the holder frame 310 in a state spaced apart in the horizontal direction.
상기 홀더 프레임(310)의 바닥에는 상기 제상 온도 센서(350)에 연결된 전선(360)이 인출되기 위한 인출 개구(326)가 형성될 수 있다. At the bottom of the holder frame 310, a drawing opening 326 for drawing the wire 360 connected to the defrost temperature sensor 350 may be formed.
상기 제상 온도 센서(350)가 세워진 상태로 상기 센서 홀더(301)가 상기 쿨링핀(220)에 결합될 수 있다. The sensor holder 301 may be coupled to the cooling fin 220 while the defrost temperature sensor 350 is standing.
상기 센서 홀더(301)가 상기 쿨링핀(220)에 결합된 상태를 기준으로, 상기 홀더 프레임(310)은 상기 제상 온도 센서(350)의 상면을 커버할 수 있다. 따라서, 제상수와 같은 액체가 상기 제상 온도 센서(350)의 상면으로 직접 낙하하는 것이 방지될 수 있다. Based on a state in which the sensor holder 301 is coupled to the cooling fin 220, the holder frame 310 may cover the top surface of the defrost temperature sensor 350. Therefore, the liquid such as the defrost water can be prevented from falling directly to the upper surface of the defrost temperature sensor 350.
상기 센서 홀더(301)는 상기 쿨링핀(220)에 결합되기 위한 핀 결합부(341)를 더 포함할 수 있다. 상기 핀 결합부(341)는 상기 홀더 프레임(310)의 양측에 구비될 수 있다. The sensor holder 301 may further include a pin coupling part 341 to be coupled to the cooling fin 220. The pin coupling part 341 may be provided at both sides of the holder frame 310.
따라서, 상기 홀더 프레임(310)의 일측의 핀 결합부(341)는 상기 제2핀(231)에 결합되고, 타측의 핀 결합부(341)는 상기 제3핀(232)에 결합될 수 있다. Accordingly, the pin coupling portion 341 of one side of the holder frame 310 may be coupled to the second pin 231, and the pin coupling portion 341 of the other side may be coupled to the third pin 232. .
상기 제2핀(231) 및 상기 제3핀(232)는 상기 핀 결합부(341)에 끼움 결합될 수 있다. The second pin 231 and the third pin 232 may be fitted to the pin coupling portion 341.
이를 위하여, 상기 핀 결합부(341)는 상기 홀더 프레임(310)에서 수직하게 연장되는 제1연장부(342)와, 상기 제1연장부(342)의 단부에서 수직하게 연장되는 제2연장부(344)를 포함할 수 있다. To this end, the pin coupling portion 341 includes a first extension portion 342 extending vertically from the holder frame 310 and a second extension portion extending vertically from an end of the first extension portion 342. 344 may be included.
상기 제2연장부(344)는 상기 홀더 프레임(310)의 측면과 이격된 상태에서 마주보도록 배치된다. 즉, 상기 제1연장부(342)는 상기 제2연장부(344)가 상기 홀더 프레임(310)과 이격되도록 하는 역할을 한다. The second extension part 344 is disposed to face each other in a state spaced apart from the side of the holder frame 310. That is, the first extension part 342 serves to allow the second extension part 344 to be spaced apart from the holder frame 310.
따라서, 상기 홀더 프레임(310)과 상기 제2연장부(344) 사이에 상기 결합핀이 삽입될 수 있다. Therefore, the coupling pin may be inserted between the holder frame 310 and the second extension portion 344.
상기 홀더 프레임(310)과 상기 제2연장부(344)에 상기 결합핀이 삽입된 상태에서 상기 센서 홀더(301)가 하방으로 낙하되는 것이 방지되도록 상기 홀더 프레임(310)의 측면과 상기 제2연장부(344) 중 하나 이상에는 미끄럼 방지 돌기(328, 345)가 형성될 수 있다. 제한적이지는 않으나, 복수의 미끄럼 방지 돌기(328, 345)가 상하 방향으로 이격되어 배열될 수 있다. The side of the holder frame 310 and the second side to prevent the sensor holder 301 from falling downward in the state that the coupling pin is inserted into the holder frame 310 and the second extension portion 344 At least one of the extensions 344 may be formed with anti-slip protrusions 328 and 345. Although not limited, the plurality of anti-slip protrusions 328 and 345 may be arranged to be spaced apart in the vertical direction.
사용자는 상기 센서 홀더(301)를 상기 쿨링핀(220) 측을 향하여 이동시키는 행위 만으로 상기 센서 홀더(301)를 상기 쿨링핀(220)에 고정시킬 수 있다. The user may fix the sensor holder 301 to the cooling fin 220 only by moving the sensor holder 301 toward the cooling fin 220.
일 예로 상기 핀 결합부(341)를 상기 결합핀과 정렬시킨 상태에서 상기 센서 홀더(301)를 상기 쿨링핀(220) 측으로 이동시키면, 상기 결합핀이 상기 핀 결합부(341)에 끼움 결합된다. For example, when the pin holder 341 is aligned with the coupling pin, the sensor holder 301 is moved toward the cooling fin 220, and the coupling pin is fitted to the pin coupling part 341. .
상술한 바와 같이 상기 결합핀이 상기 핀 결합부(341)에 끼움 결합된 상태에서는 상기 미끄럼 방지 돌기(328, 345)에 의해서 상기 센서 홀더(301)가 상기 결합핀에 대해서 하방으로 미끄러지는 것이 방지될 수 있다. As described above, when the coupling pin is fitted to the pin coupling portion 341, the sensor holder 301 is prevented from sliding downward with respect to the coupling pin by the anti-slip protrusions 328 and 345. Can be.
도 23과 같이 상기 센서 홀더(301)는 상기 쿨링핀(220)의 상부 코너에 결합되므로, 상기 제상수와 같은 액체가 상기 센서 홀더(310) 측으로 낙하되는 것이 최소화될 수 있다. As shown in FIG. 23, the sensor holder 301 is coupled to an upper corner of the cooling fin 220, so that liquid such as the defrost water may fall to the sensor holder 310.
상기 센서 홀더(301)가 상기 쿨링핀에 결합된 상태에서는 상기 지지부(334)에 의해서 상기 제상 온도 센서(350)가 탄성 지지되어 상기 제상 온도 센서(350)가 상기 제4핀(234)과 접촉한 상태를 유지할 수 있다. When the sensor holder 301 is coupled to the cooling fins, the defrost temperature sensor 350 is elastically supported by the support 334 so that the defrost temperature sensor 350 contacts the fourth fin 234. Can remain in one state.
예를 들어, 상기 제상 온도 센서(350)가 상기 센서 수용 공간(312)에 수용된 상태에서 상기 제상 온도 센서(350)의 일부는 상기 홀더 프레임(310)의 외측으로 돌출되고, 상기 제상 온도 센서(350)의 돌출된 부분이 상기 제4핀(234)에 접촉될 수 있다. For example, in a state where the defrost temperature sensor 350 is accommodated in the sensor accommodating space 312, a part of the defrost temperature sensor 350 protrudes out of the holder frame 310, and the defrost temperature sensor ( The protruding portion of 350 may contact the fourth pin 234.
따라서, 상기 제상 온도 센서(350)가 쿨링핀(220)의 온도를 정확하게 측정할 수 있고, 이에 따라 제상 필요 시점을 정확하게 판단할 수 있다. Therefore, the defrost temperature sensor 350 can accurately measure the temperature of the cooling fin 220, and thus can accurately determine the defrost need time.
또한, 상기 홀더 프레임(310)의 하측에 전선(360)의 인출을 위한 인출 개구(326)가 형성되고, 상기 핀 결합부(341)는 상기 홀더 프레임(310)의 양측에 위치되므로, 상기 핀 결합부(341)를 따라 낙하되는 액체가 상기 전선(60) 측으로 유동하는 것이 최소화될 수 있다. In addition, a drawing opening 326 for drawing out the wire 360 is formed below the holder frame 310, and the pin coupling part 341 is positioned at both sides of the holder frame 310, thereby providing the pins with the pins. The flow of the liquid falling along the coupling portion 341 to the wire 60 side can be minimized.
이상에서 설명된 냉장고는 상기 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다. The refrigerator described above is not limited to the configuration and method of the above-described embodiments, but the embodiments may be configured by selectively combining all or some of the embodiments so that various modifications can be made.

Claims (14)

  1. 저장실을 형성하는 캐비닛; A cabinet forming a storage compartment;
    상기 저장실을 개폐하는 도어; A door for opening and closing the storage compartment;
    상기 캐비닛에 구비되어 상기 저장실을 냉각시키며, 열전 소자와, 상기 열전 소자와 접촉하는 쿨링 싱크와, 상기 열전 소자와 접촉하는 히트 싱크를 포함하는 열전소자모듈; 및 A thermoelectric module provided in the cabinet to cool the storage chamber, the thermoelectric element including a thermoelectric element, a cooling sink in contact with the thermoelectric element, and a heat sink in contact with the thermoelectric element; And
    상기 쿨링 싱크에 설치되며, 상기 쿨링 싱크의 온도를 감지하는 제상 온도 센서를 구비하는 센서 모듈을 포함하는 냉장고. And a sensor module installed at the cooling sink, the sensor module including a defrost temperature sensor configured to sense a temperature of the cooling sink.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 쿨링 싱크는, 베이스와, 상기 베이스에서 연장되며 복수의 핀이 이격되어 배열되는 쿨링핀을 포함하고, The cooling sink includes a base and a cooling fin extending from the base and having a plurality of fins spaced apart from each other.
    상기 센서 모듈은 상기 제상 온도 센서를 지지하며 상기 쿨링핀에 결합되는 센서 홀더를 포함하는 냉장고. The sensor module includes a sensor holder for supporting the defrost temperature sensor and coupled to the cooling fins.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 쿨링핀은, 상하 방향으로 연장되며, 수평 방향으로 이격되는 복수의 핀을 포함하고, The cooling fins include a plurality of fins extending in the vertical direction and spaced apart in the horizontal direction.
    상기 복수의 핀 중에서 이격되어 배치되는 일부의 핀에 상기 센서 홀더가 결합되는 냉장고. The refrigerator is coupled to the sensor holder to a portion of the pin is spaced apart from the plurality of pins.
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 방열핀은, 상기 베이스로부터 돌출되는 제1핀과, The heat dissipation fins, the first fins protruding from the base,
    상기 베이스로부터 돌출 길이가 상기 제1핀 보다 짧은 제2핀 및 제3핀을 포함하고, A second pin and a third pin protruding from the base and shorter than the first pin,
    상기 센서 홀더는 상기 제2핀 및 제3핀에 결합되는 냉장고. The sensor holder is coupled to the second pin and the third pin.
  5. 제 4 항에 있어서, The method of claim 4, wherein
    상기 제3핀은 상기 복수의 핀 중에서 최외곽에 위치되는 냉장고. The third fin is a refrigerator located at the outermost of the plurality of pins.
  6. 제 4 항에 있어서, The method of claim 4, wherein
    상기 센서 홀더는, 상기 제상 온도 센서를 수용하는 홀더 프레임과, 상기 홀더 프레임에서 연장되는 복수의 핀 결합부를 포함하고, The sensor holder includes a holder frame for receiving the defrost temperature sensor and a plurality of pin coupling portions extending from the holder frame,
    상기 복수의 핀 결합부가 상기 제2핀 및 제3핀에 결합되는 냉장고. And a plurality of pin coupling parts coupled to the second pin and the third pin.
  7. 제 6 항에 있어서, The method of claim 6,
    상기 각 핀 결합부는 상기 홀더 프레임에서 수직하게 연장되는 제1연장부와, Each of the pin coupling parts includes a first extension part extending vertically from the holder frame;
    상기 제1연장부의 단부에서 수직하게 연장되며, 상기 홀더 프레임의 측면과 마주보도록 배치되는 제2연장부를 포함하고, A second extension extending vertically from an end of the first extension and disposed to face a side of the holder frame;
    상기 제2핀 및 제3핀 각각 상기 홀더 프레임의 측면과 상기 제2연장부 사이에 끼워지는 냉장고. And a second pin and a third pin respectively inserted between the side of the holder frame and the second extension part.
  8. 제 7 항에 있어서, The method of claim 7, wherein
    상기 홀더 프레임과 상기 제2연장부 중 하나 이상에는 미끄럼 방지 돌기가 형성되는 냉장고. At least one of the holder frame and the second extension part is provided with a non-slip protrusion.
  9. 제 4 항에 있어서, The method of claim 4, wherein
    상기 홀더 프레임은, 상기 제상 온도 센서가 수용되기 위한 센서 수용 공간과, The holder frame may include a sensor accommodating space for accommodating the defrost temperature sensor,
    상기 센서 수용 공간으로 상기 제상 온도 센서를 인입시키기 위한 인입 개구와, An entrance opening for introducing the defrost temperature sensor into the sensor accommodation space;
    상기 센서 수용 공간으로 인입된 상기 제상 온도 센서를 탄성 지지하는 지지부와, A support part for elastically supporting the defrost temperature sensor drawn into the sensor accommodation space;
    상기 센서 수용 공간에 수용된 상기 제상 온도 센서의 탈거를 방지하기 위한 탈거 방지 돌기를 포함하는 냉장고. And a removal prevention protrusion for preventing removal of the defrost temperature sensor accommodated in the sensor accommodation space.
  10. 제 9 항에 있어서, The method of claim 9,
    상기 홀더 프레임에서 복수의 지지부가 이격되어 배치되며, A plurality of support parts are spaced apart from the holder frame,
    상기 복수의 지지부 사이 영역에는 상기 제상 온도 센서의 이동을 제한하기 위한 스토퍼가 구비되는 냉장고. And a stopper for limiting movement of the defrost temperature sensor in a region between the plurality of supports.
  11. 제 9 항에 있어서, The method of claim 9,
    상기 방열핀은, 상기 제2핀과 상기 제3핀 사이에 위치되고, 상기 베이스로부터의 돌출 길이가 상기 제2핀 및 상기 제3핀 보다 짧으며, 상기 제상 온도 센서와 접촉하는 제4핀을 포함하는 냉장고. The heat dissipation fin includes a fourth fin positioned between the second fin and the third fin, the protruding length from the base being shorter than the second fin and the third fin and in contact with the defrost temperature sensor. Refrigerator.
  12. 제 11 항에 있어서, The method of claim 11,
    상기 제상 온도 센서의 일부는 상기 센서 수용 공간에 수용된 상태에서 상기 홀더 프레임의 외측으로 돌출되고, A part of the defrost temperature sensor is protruded out of the holder frame in a state accommodated in the sensor receiving space,
    상기 제4핀은 상기 제상 온도 센서의 돌출된 부분에 접촉하는 냉장고. The fourth pin is in contact with the protruding portion of the defrost temperature sensor.
  13. 제 4 항에 있어서, The method of claim 4, wherein
    상기 제상 온도 센서는 폭 보다 길이가 긴 형태로 형성되고, The defrost temperature sensor is formed in a shape longer than the width,
    상기 센서 홀더에서 상기 제상 온도 센서가 세워진 상태로 상기 센서 홀더가 상기 방열핀에 결합되며, The sensor holder is coupled to the heat dissipation fin with the defrost temperature sensor standing up in the sensor holder,
    상기 홀더 프레임의 상면은 상기 제상 온도 센서의 상면을 커버하고, The upper surface of the holder frame covers the upper surface of the defrost temperature sensor,
    상기 홀더 프레임이 하면에는 상기 제상 온도 센서에 연결된 전선이 인출되는 인출 개구가 구비되는 냉장고. And a drawing opening at a lower surface of the holder frame to draw out a wire connected to the defrost temperature sensor.
  14. 제 4 항에 있어서, The method of claim 4, wherein
    상기 센서 모듈은 상기 방열핀의 상부 코너에 설치되는 냉장고. The sensor module is installed in the upper corner of the heat sink fin.
PCT/KR2018/003055 2017-03-15 2018-03-15 Refrigerator WO2018169328A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2018234345A AU2018234345B2 (en) 2017-03-15 2018-03-15 Refrigerator
JP2019550625A JP6845944B2 (en) 2017-03-15 2018-03-15 refrigerator
RU2019132421A RU2732466C1 (en) 2017-03-15 2018-03-15 Refrigerator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020170032649 2017-03-15
KR10-2017-0032649 2017-03-15
KR1020180028119A KR102521019B1 (en) 2017-03-15 2018-03-09 Refrigerator
KR10-2018-0028119 2018-03-09

Publications (1)

Publication Number Publication Date
WO2018169328A1 true WO2018169328A1 (en) 2018-09-20

Family

ID=63522426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003055 WO2018169328A1 (en) 2017-03-15 2018-03-15 Refrigerator

Country Status (1)

Country Link
WO (1) WO2018169328A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109931485A (en) * 2019-04-15 2019-06-25 中国船舶重工集团公司第七0三研究所 A kind of vibration acceleration sensor bracket of band heat dissipation and heat insulating function
CN113490824A (en) * 2019-02-28 2021-10-08 Lg电子株式会社 Refrigerator with a door
US20220024281A1 (en) * 2018-12-11 2022-01-27 Denso Thermal Systems S.P.A. Air conditioning system provided with a droplet separator, in particular for a motor vehicle
RU223162U1 (en) * 2023-11-21 2024-02-05 Общество с ограниченной ответственностью "Алекспром" DEVICE FOR COOLING THE SALAD BAR CONTAINER

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070193280A1 (en) * 2004-10-22 2007-08-23 Tuskiewicz George A Portable cooled merchandizing unit with customer enticement features
JP2009008359A (en) * 2007-06-29 2009-01-15 Cleanup Corp Cold storage for custom kitchen
US20090232186A1 (en) * 2008-03-14 2009-09-17 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Locking device for reliably securing a temperature sensor on a heat sink
US20100328897A1 (en) * 2009-06-25 2010-12-30 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Heat sink assembly with temperature display
KR20170018178A (en) * 2015-08-06 2017-02-16 에이에스텍 주식회사 Temperature sensor for evaporator fin in an air conditioner and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070193280A1 (en) * 2004-10-22 2007-08-23 Tuskiewicz George A Portable cooled merchandizing unit with customer enticement features
JP2009008359A (en) * 2007-06-29 2009-01-15 Cleanup Corp Cold storage for custom kitchen
US20090232186A1 (en) * 2008-03-14 2009-09-17 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Locking device for reliably securing a temperature sensor on a heat sink
US20100328897A1 (en) * 2009-06-25 2010-12-30 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Heat sink assembly with temperature display
KR20170018178A (en) * 2015-08-06 2017-02-16 에이에스텍 주식회사 Temperature sensor for evaporator fin in an air conditioner and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220024281A1 (en) * 2018-12-11 2022-01-27 Denso Thermal Systems S.P.A. Air conditioning system provided with a droplet separator, in particular for a motor vehicle
CN113490824A (en) * 2019-02-28 2021-10-08 Lg电子株式会社 Refrigerator with a door
CN109931485A (en) * 2019-04-15 2019-06-25 中国船舶重工集团公司第七0三研究所 A kind of vibration acceleration sensor bracket of band heat dissipation and heat insulating function
RU223162U1 (en) * 2023-11-21 2024-02-05 Общество с ограниченной ответственностью "Алекспром" DEVICE FOR COOLING THE SALAD BAR CONTAINER

Similar Documents

Publication Publication Date Title
AU2018385173B2 (en) Vacuum adiabatic body and refrigerator
WO2011081500A2 (en) Refrigerator
WO2018169328A1 (en) Refrigerator
WO2018174468A1 (en) Refrigerator
WO2019194604A1 (en) Refrigerator
WO2023282639A1 (en) Storehouse
WO2022039429A1 (en) Refrigerator
WO2021096289A1 (en) Refrigerator
WO2021085899A1 (en) Refrigerator and method of controlling the same
WO2021045415A1 (en) Refrigerator and method of controlling the same
WO2021045295A1 (en) Refrigerator
WO2022039430A1 (en) Refrigerator
WO2022039428A1 (en) Refrigerator
WO2023282636A1 (en) Storehouse
WO2022039427A1 (en) Refrigerator
WO2023282645A1 (en) Storehouse
WO2021096291A1 (en) Refrigerator
WO2023282643A1 (en) Storehouse
WO2023282646A1 (en) Storehouse
WO2022255611A1 (en) Refrigerator
WO2023282641A1 (en) Storehouse
WO2021091103A1 (en) Refrigerator and method of controlling the same
AU2019354500B2 (en) Refrigerator and method for controlling the same
WO2023282647A1 (en) Storehouse
WO2024080510A1 (en) Refrigerator and control method for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550625

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018234345

Country of ref document: AU

Date of ref document: 20180315

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18767427

Country of ref document: EP

Kind code of ref document: A1