WO2018169121A1 - Method, device, and program for predicting prognosis of synovial sarcoma by using artificial neural network - Google Patents

Method, device, and program for predicting prognosis of synovial sarcoma by using artificial neural network Download PDF

Info

Publication number
WO2018169121A1
WO2018169121A1 PCT/KR2017/004189 KR2017004189W WO2018169121A1 WO 2018169121 A1 WO2018169121 A1 WO 2018169121A1 KR 2017004189 W KR2017004189 W KR 2017004189W WO 2018169121 A1 WO2018169121 A1 WO 2018169121A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
survival
neural network
synovial sarcoma
artificial neural
Prior art date
Application number
PCT/KR2017/004189
Other languages
French (fr)
Korean (ko)
Inventor
서성욱
한일규
김준혁
Original Assignee
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사회복지법인 삼성생명공익재단 filed Critical 사회복지법인 삼성생명공익재단
Publication of WO2018169121A1 publication Critical patent/WO2018169121A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders

Definitions

  • the present invention relates to a method, apparatus and program for predicting prognosis of synovial sarcoma using an artificial neural network.
  • Synovial sarcoma accounts for about 10% of malignant soft tissue tumors
  • synovial sarcoma The study of synovial sarcoma is difficult due to its prevalence, which makes it difficult to include a large number of studies, and includes a heterogeneous group such as various histological subtypes, positions in the trunk and limbs, and inadequate surgical resection. Even so, it is difficult to reach clear conclusions. As a result, a large number of case studies and various studies have been conducted on the types of cells expressed by tumors in relation to the characteristics of synovial sarcoma, their actual biological behavior, the presence of more common biological phenotypes in adolescence, prognostic factors, and usefulness of adjuvant chemotherapy. The controversy still exists.
  • the present invention aims to provide a method, apparatus and program for predicting the prognosis of synovial sarcoma using an artificial neural network.
  • Prognosis prediction method of synovial sarcoma using an artificial neural network comprising: obtaining clinical data and survival data of a plurality of synovial sarcoma patients; Acquiring training input data and training output data from the clinical data and the survival data; And generating a model for predicting survival rate of synovial sarcoma patients by learning an artificial neural network including an input layer, a hidden layer, and an output layer using the training input data and the training output data.
  • the learning input data is age, sex, tumor location, initial metastasis, whether chemotherapy, radiation therapy, ablation of the plurality of synovial sarcoma patients Resection margin positive and pathological subtype data.
  • acquiring training input data and training output data from the clinical data and the survival data, respectively may include missing values using a k-nearest neighbor algorithm (knn). data, NaN) may be added.
  • knn k-nearest neighbor algorithm
  • generating the model for predicting the survival rate may include training the artificial neural network for each time interval.
  • generating the model for predicting the survival rate comprises: generating an N-th section survival prediction model using the clinical data and the N-th section survival time data of the plurality of synovial sarcoma patients; And generating an N + 1th interval survival prediction model using Nth interval survival prediction data obtained from the Nth interval survival prediction model and N + 1st interval survival time data of the plurality of synovial sarcoma patients. can do.
  • the generating of the N-th section survival prediction model may further include assigning a score according to the survival period to the N-th section survival period data.
  • the score may be proportional to the survival period of the N-th section.
  • an apparatus for predicting prognosis of synovial sarcoma using an artificial neural network includes a data acquisition unit configured to acquire clinical data and survival data of a plurality of synovial sarcoma patients; An artificial neural network learning unit which acquires learning input data and learning output data from the clinical data and the survival period data, and learns an artificial neural network including an input layer, a hidden layer, and an output layer by using the learning input data and the learning output data. ; And a survival prediction model generator for generating a model for predicting the survival rate of the synovial sarcoma patient using the learned artificial neural network.
  • the learning input data is age, sex, tumor location, initial metastasis, whether chemotherapy, radiation therapy, ablation of the plurality of synovial sarcoma patients Resection margin positive and pathological subtype data.
  • the neural network learning unit may add missing data (NaN) using a k-nearest neighbor algorithm (knn).
  • NaN missing data
  • knn k-nearest neighbor algorithm
  • the artificial neural network learning unit may learn the artificial neural network for each time interval (time interval).
  • the survival prediction model generator generates an Nth section survival prediction model using the clinical data and Nth section survival period data of the plurality of synovial sarcoma patients, and the Nth section survival prediction model.
  • the N + 1 section survival prediction model may be generated using the N th section survival prediction data obtained from the N + 1 section survival survival data of the plurality of synovial sarcoma patients.
  • the survival rate prediction model generator when generating the N-th section survival prediction model may assign a score according to the survival period to the N-th section survival period data.
  • the score may be proportional to the survival period of the N-th section.
  • Another embodiment of the present invention discloses a computer program stored in a medium for performing a prognostic prediction method of synovial sarcoma using the artificial neural network described above using a computer.
  • the method, apparatus and program for predicting prognosis of synovial sarcoma using the artificial neural network according to the present invention it is possible to accurately predict the prognosis of the synovial sarcoma patient for each individual.
  • the prognosis of each treatment method can be simulated using the learned artificial neural network, so that the treatment method tailored to each patient can be determined.
  • the scope of the present invention is not limited by these effects.
  • FIG. 1 is a flow chart showing a prognostic method of synovial sarcoma using an artificial neural network according to an embodiment of the present invention.
  • FIG. 2 is a simplified illustration of the topology (topology) of the artificial neural network according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a method of generating a model for predicting the survival rate of the N-th section of the synovial sarcoma patient according to the prognostic method of the synovial sarcoma using the artificial neural network according to an embodiment of the present invention.
  • FIG. 4 is a diagram schematically showing a part of a heatmap graph of an artificial neural network according to an embodiment of the present invention.
  • FIG. 5 is a ROC graph showing the prediction accuracy of the prognostic prediction method of synovial sarcoma using an artificial neural network according to an embodiment of the present invention.
  • 6 is a graph showing the results of Kaplan-Meier survival prediction analysis for each clinical variable.
  • Figure 7 is a ROC graph comparing the prediction accuracy of the cochlear proportional hazard model (Cox proportional hazard model) and the prognostic prediction method of synovial sarcoma using the artificial neural network of the present invention.
  • FIG. 8 is a view schematically showing the configuration of a prognostic prediction device for synovial sarcoma using an artificial neural network according to an embodiment of the present invention.
  • a 'node' means an object of abstract concept that can change a value with a specific algorithm and connect with another node.
  • the term 'input layer' is a set of one or more nodes having a particular variable assigned by the user
  • the term 'output layer' is one or more nodes having a result value of the procedure according to a specific procedure determined by the user.
  • "Hidden layer” means a set of one or more nodes that store interim results and temporary values that appear temporarily when performing a procedure set by a user.
  • the term 'prognosis' is a medical term indicating the prediction of survival, progression and recovery of a patient.
  • FIG. 1 is a flow chart showing a prognostic method of synovial sarcoma using an artificial neural network according to an embodiment of the present invention.
  • Prognosis prediction method of synovial sarcoma using an artificial neural network the step of obtaining clinical data and survival data of a plurality of synovial sarcoma patients (S10); Acquiring learning input data and learning output data from the clinical data and the survival period data (S20); And generating a model for predicting survival rate of synovial sarcoma patients by learning an artificial neural network including an input layer, a hidden layer, and an output layer using the training input data and the training output data (S30).
  • a step (S10) of obtaining clinical data of a plurality of synovial sarcoma patients and survival time data after synovial sarcoma onset is performed.
  • the clinical data includes physical personal information such as age and gender of the patient, surgical records after synovial sarcoma, and pathological records related to synovial sarcoma such as recurrence or the like.
  • Survival data after the onset of synovial sarcoma shows that the period from the time of recognition of the synovial sarcoma to the death in the case of a patient who has already died, and from the time of the recognition of the synovial sarcoma to a surviving patient, It may mean a period until the time point, but is not limited thereto.
  • Clinical data and survival data after synovial sarcoma onset can be obtained from synovial sarcoma patients in one or more hospitals or regions.
  • Clinical data may be obtained from a medical image of a patient or may be obtained from a patient's specimen test result, but is not limited thereto.
  • the present inventors obtained clinical data and survival data from 242 synovial sarcoma patients who were followed up from March 2001 to February 2013 at Seoul National University Hospital, Samsung Seoul Hospital, and National Cancer Center. Table 1 below summarizes the clinical data of the 242 synovial sarcoma patients.
  • step (S20) of acquiring the learning input data and the learning output data from the clinical data and the survival period data is performed.
  • the training input data refers to data to be input to a node of the input layer in order to learn an artificial neural network to be described later.
  • Table 1 shows variables that can be included in the learning input data and their classification.
  • the learning input data may include age, sex, tumor location, initial metastasis, whether chemotherapy, radiation therapy, section margin positive and Data such as pathological subtypes.
  • various clinical variables such as stage, surgery date, recurrence, cell division activity, tumor necrosis, malignancy, vascular invasion, molecular genetic subtypes, etc. may also be included in the learning input data.
  • stage, surgery date, recurrence, cell division activity, tumor necrosis, malignancy, vascular invasion, molecular genetic subtypes, etc. may also be included in the learning input data.
  • stage surgery date, recurrence, cell division activity, tumor necrosis, malignancy, vascular invasion, molecular genetic subtypes, etc.
  • Pathological subtypes are divided into monophasic, biphasic and undetermined. At this time, the subtypes may be classified into three, including 'other', or 'other' may be treated with NaN to classify the subtypes into two, and each may be labeled and converted into a mathematical value.
  • Quantitative variables such as age
  • Tumor size may be treated with two classifications, such as 5 cm or less or more than 5 cm, but may be processed into quantitative real variables, normalized, processed, and changed to one number.
  • the training output data refers to data to be compared with the value of the node output to the output layer in order to learn the artificial neural network.
  • This learning output data is obtained from survival data after synovial sarcoma onset in a patient.
  • the training output data may be, for example, survival information of the patient N years after the onset of synovial sarcoma.
  • the output data for training to be compared to the value to be output to the [survival rate node, mortality node] of the output layer of the artificial neural network to be described later is [1, 0]
  • the learning output data to be compared with the value to be output to the [survival rate node, mortality node] of the output layer may be [0, 1].
  • a treatment method for ranking a score is provided without processing the learning output data as [0, 1] as described above when the patient dies, which will be described later. .
  • the learning input data and the learning output data thus obtained are used to train the artificial neural network to be described later.
  • the step of acquiring the learning input data and the learning output data from the clinical data and the survival data, respectively is based on missing values using a k-nearest neighbor algorithm (knn).
  • the method may include adding (missing data, NaN).
  • whether the clinical data of the patient C is closer to the patient A or the patient B may be determined based on, for example, the distance of the learning input data vector of each patient.
  • Table 3 since the clinical data of patient C is closer to patient B than patient A, it is possible to assign 1 to the positive resection of patient C.
  • the missing item may be added using the knn algorithm. Therefore, it is possible to retrain the artificial neural network by adding other local data with missing data.
  • the clinical data and the survival data after the onset of sarcoma can be processed to be mathematically processed, thereby obtaining learning input data and learning output data.
  • the clinical data of the above patients A, B, C, etc. are exemplary and do not limit the present invention.
  • the above description has been given of an example in which survival periods are divided into monthly units, but the present invention is not limited thereto, and the survival periods may be divided into various units such as semi-annual, quarterly, monthly, and day according to design.
  • a step of generating a model for predicting survival rate of synovial sarcoma patients by training the artificial neural network using the training input data and the training output data (S30) is performed. do.
  • FIG. 2 is a diagram briefly illustrating the topology of an artificial neural network (hereinafter also referred to as SNN) according to an embodiment of the present invention.
  • the neural network has an input layer with multiple nodes, one or more hidden layers and an output layer.
  • the input layer of the neural network has n in nodes. Learning input data values are input to each node of the input layer. At this time, the input layer has a form like an n in ⁇ 1 matrix.
  • the input layer may include a node for inputting survival prediction data of the synovial sarcoma patient. For example, if there are i data obtained from the clinical data of each synovial sarcoma patient, the learning input data to be input to the input layer of the neural network for survival prediction after N + 1 years is used to predict the N-year survival rate of the synovial sarcoma patient. It may be i + 1 data sets including the used data. For example, in FIG. 2, a total of 10 nodes are shown, including nine nodes into which nine learning input data obtained from clinical data are input and one node 210 into which survival prediction data is input.
  • the output layer of the artificial neural network has n out nodes.
  • the node value of the output layer output through the coefficient output and the activation function of the connection of each node is compared with the learning output data value.
  • the output layer has a form like n out ⁇ 1 matrix.
  • the output layer has two nodes, such as [survival rate node, mortality node], but is not limited thereto.
  • the plurality of hidden layers connects n in nodes corresponding to the input layer to n out nodes.
  • the hidden layer connects an input layer into which learning input data obtained from clinical data is input, and an output layer including a 'survival rate node'.
  • the nodes of each hidden layer may be fully connected to each other with the nodes of another adjacent hidden layer.
  • the artificial neural network is trained using three hidden layers, but the number of hidden layers and types of algorithms are not limited thereto.
  • each node When each training input data is input to the input layer and output to the output layer via the hidden layer, each node to minimize the difference between the value (actual value) and the output value (prediction value) of each training output data corresponding to each training input data.
  • the artificial neural network is learned.
  • FIG. 3 is a diagram illustrating a method of generating a model for predicting the survival rate of the N-th section of the synovial sarcoma patient according to the prognostic method of the synovial sarcoma using the artificial neural network according to an embodiment of the present invention.
  • generating the model for predicting the survival rate may include training the artificial neural network for each time interval.
  • the time interval may vary from year to year, half year, quarter, month, etc.
  • the year will be described as an example.
  • the neural network can be learned from clinical data of synovial sarcoma patients to predict the annual survival of synovial sarcoma patients, such as survival from one year to five years after onset.
  • the survival rate is predicted for each N + 1th interval (N: natural number).
  • N natural number
  • the survival rate prediction result data in the Nth interval is used to predict the survival rate in the N + 1th interval. That is, the survival rate prediction for each section is made in an inductive manner.
  • the one year of survival prediction model (PM 1) and, after N-year survival rate prediction model (PM N) is shown.
  • the survival rate prediction model (PM 1 ) which is an input / output function that can output the survival rate (P 1 ) after one year, trains the artificial neural network. Is generated.
  • the learning input data input to the input layer of the artificial neural network includes clinical data (X) and an initial survival rate (P 0 ).
  • Clinical data (X) that is input to each model may be initial values, that is, clinical data at initial examination.
  • the survival rate initial value P 0 may be set to 1, for example.
  • the survival data after one year obtained from the survival period data of the patient is used. For example, if a patient D died 15 months after the onset of sarcoma, the surviving point was 1 year after the onset of the disease, and thus the learning output data to be compared with the value to be output to the [survival node, mortality node] of the output layer becomes [1, 0]. .
  • the artificial neural network is trained to predict survival rate after one year of synovial sarcoma patient by using such learning input data and learning output data.
  • a two-year survival rate prediction model (PM 2 ), which is an input / output function capable of outputting a survival rate after two years (P 2 ).
  • PM 2 a survival rate prediction model
  • the learning input data input to the input layer of the artificial neural network includes clinical data (X) and a survival rate prediction result value P 1 after one year.
  • survival data two years later obtained from the survival data of the patient is used as the learning output data. For example, if a patient D survived 15 months after the onset of sarcoma, and died 2 years after the onset of the disease, the learning output data to be compared with the value to be output to the [survival rate node, mortality node] of the output layer is [0, 1]. Can be.
  • a treatment method for ranking a score is provided without processing the output data for learning as [0, 1] as described above when the patient dies.
  • the method may further include assigning a score according to the survival period to the N-th section survival period data. That is, in the present embodiment, the learning output data may be [p, 1-p], where p may be assigned a non-zero score value. According to one embodiment, the score may be given in proportion to the survival of the Nth section of the patient. In this case, the survival period may be divided into at least monthly units. For example, the score according to the survival period for each section of the patient D who survived for 1 year and 3 months is as shown in Table 6 below.
  • the survival rate is not counted as 0, and the ranked score is given as much as the survival period.
  • the number of significant data used to generate the survival prediction model can be increased, and as a result, the accuracy of the survival prediction is improved.
  • the artificial neural network may be retrained to predict survival rate of two years after synovial sarcoma using the learning input data and the learning output data using the score.
  • the survival rate after N years is predicted using the survival rate prediction result (P N - 1 ) after N-1 years reflecting the 'prognosis of the patient at the time point after N-1 years'. Survival prediction performance improves as the artificial neural network is trained for each year.
  • the residual ( ⁇ N ⁇ ) of a value indicating actual survival after N-1 years (S N-1 ) and a predicted survival rate after N-1 years (P N-1 ) 1 ) multiplying the coefficient ⁇ by a value (S N ) indicating whether or not the actual survival after N years, may be used as the output data (Y N ) for training.
  • the present inventors constructed an artificial neural network based on clinical data and survival data from 242 synovial sarcoma patients who were followed up from March 2001 to February 2013 at Seoul National University Hospital, Samsung Seoul Hospital, and National Cancer Center.
  • the training data used 80% of the total data and the test data used the remaining 20%.
  • FIG. 4 is a diagram schematically showing a part of a heatmap graph of an artificial neural network according to an embodiment of the present invention.
  • the present inventors modeled an artificial neural network predicting survival after 1 year, 2 years, 3 years, 4 years, and 5 years after the onset of synovial sarcoma.
  • the neural network included an input layer, three hidden layers, and an output layer.
  • the learning input data input to the input layer was composed of clinical data having nine variables and one survival rate data.
  • the output layer consisted of two nodes applying the Softmax function and representing survival / mortality, and the hidden layer was fully-connected.
  • the survival predicted after N years is multiplied by the weight ⁇ and inputted into the input layer of the artificial neural network predicting the survival rate after N + 1 years.
  • Graph 511 shows a state in which learning input data is input to an input layer of an artificial neural network predicting survival rate after one year.
  • the vertical axis of the heatmap of graph 511 is the serial number of each synovial sarcoma patient, and the horizontal axis corresponds to each node of the artificial neural network input layer.
  • the total number of nodes in the input layer includes a total of nine nodes and one survival node obtained from the clinical data shown in [Table 1].
  • the value corresponding to each node is represented by the intensity of the color.
  • survival and mortality after one year for a plurality of synovial sarcoma patients were represented by two nodes.
  • the survival predicted neural network 1 year later converges a total of 10 node values (shown in graph 511) to a total of 2 node values (shown in graph 514) through the hidden layer (shown in graphs 512 and 513).
  • the survival rate prediction data obtained in one year is input to the input layer of the survival rate prediction model after two years (Graph 531). This process is repeated, and finally, the survival prediction model after five years predicts survival after five years of synovial sarcoma (Graph 554). This is then compared with the survival data 500 after 5 years of actual use as an indicator for comparing the accuracy of the survival rate prediction.
  • ROC receiver operating characteristic
  • the node functions were tanh, tanh, Relu function and softmax function for the output layer, respectively.
  • Kaplan-Meier survival prediction methods and log-rank tests are performed to determine the covariates to use in the survival prediction model. Selected from clinical data.
  • FIG. 6 is a graph showing the results of Kaplan-Meier survival prediction analysis for each clinical variable.
  • variables were included to assess the effects of treatment.
  • CoxPHR multivariate Cox proportional risk regression
  • Figure 7 is a ROC graph comparing the prediction accuracy of the cochlear proportional hazard model (Cox proportional hazard model) and the prognostic prediction method of synovial sarcoma using the artificial neural network of the present invention.
  • the AUC of the graphs were compared using the DeLong method.
  • the AUC was 0.918 (95% confidence interval: 0.829-0.970) for the model according to the invention (SNN) and 0.745 (95% confidence interval: 0.629-0.841) for the Cox model (COX).
  • Statistically significant 0.039
  • the AUC difference between the two models was 0.173 (95% confidence interval: 0.008-0.337). Therefore, the performance of the SNN is higher than that of the Cox model.
  • the performance of the SNN is better because the coefficients of the input layer nodes can be different for each annual interval, and the intermediate truncation data can also be analyzed in a nonparametric manner.
  • the survival rate according to the treatment method was simulated using the treatment method as a variable for each patient.
  • [Table 7] and [Table 8] is a table simulating the survival rate of the patient when the chemotherapy procedure is differently entered into the survival prediction model.
  • the prognostic prediction method of synovial sarcoma using the artificial neural network according to the present invention it is possible to simulate the prognosis by each treatment method using the learned artificial neural network, it is possible to determine a patient-specific treatment.
  • FIG. 8 is a view schematically showing the configuration of a prognostic prediction device for synovial sarcoma using an artificial neural network according to an embodiment of the present invention.
  • the apparatus 10 for predicting prognosis of synovial sarcoma shown in FIG. 8 shows only components related to the present embodiment in order to prevent the features of the present embodiment from being blurred. Accordingly, it will be understood by those skilled in the art that other general purpose components may be further included in addition to the components illustrated in FIG. 8.
  • the prognostic prediction apparatus 10 of synovial sarcoma may correspond to at least one processor or may include at least one processor. Accordingly, the prognostic prediction device 10 of synovial sarcoma may be driven in a form included in another hardware device such as a microprocessor or a general purpose computer system.
  • the invention can be represented by functional block configurations and various processing steps. Such functional blocks may be implemented in various numbers of hardware or / and software configurations that perform particular functions.
  • the present invention is an integrated circuit configuration such as memory, processing, logic, look-up table, etc., capable of executing various functions by the control of one or more microprocessors or other control devices. You can employ them.
  • the present invention includes various algorithms implemented in data structures, processes, routines or other combinations of programming constructs, including C, C ++ It may be implemented in a programming or scripting language such as Java, an assembler, or the like.
  • the functional aspects may be implemented with an algorithm running on one or more processors.
  • the present invention may employ the prior art for electronic environment setting, signal processing, and / or data processing.
  • Terms such as “mechanism”, “element”, “means”, “configuration” may be used widely, and the components of the present invention are not limited to mechanical and physical configurations.
  • the term may include the meaning of a series of routines of software in conjunction with a processor or the like.
  • the prognostic prediction apparatus 10 of the synovial sarcoma includes a data acquirer 11, an artificial neural network learner 12, and a survival predictive model generator 13.
  • the data acquisition unit 11 acquires medical data of a plurality of synovial sarcoma patients, such as clinical data and survival time data after the onset of synovial sarcoma.
  • the clinical data may be obtained from a medical image of the patient or may be obtained from a patient's specimen test result, but is not limited thereto.
  • the neural network learning unit 12 obtains learning input data and learning output data from clinical data and survival data of a plurality of synovial sarcoma patients, and includes an input layer, a hidden layer, and an output layer using the learning input data and the learning output data. Learning artificial neural network.
  • Survival prediction model generation unit 13 predicts the survival rate of the synovial sarcoma patient using the learned artificial neural network.
  • predicting the survival rate may mean inputting clinical information of the synovial sarcoma patient to calculate the survival rate of the patient through a predetermined algorithm.
  • the learning input data is age, sex, tumor location, initial metastasis, whether chemotherapy, radiation therapy, ablation of the plurality of synovial sarcoma patients Resection margin positive and pathological subtype data.
  • the neural network learning unit 12 may add missing data (NaN) using a k-nearest neighbor algorithm (knn).
  • NaN missing data
  • knn k-nearest neighbor algorithm
  • the artificial neural network learning unit 12 may learn the artificial neural network for each time interval.
  • the survival prediction model generation unit 13 generates an Nth section survival prediction model by using the clinical data and the Nth section survival period data of the plurality of synovial sarcoma patients, and the Nth section
  • the N + 1 section survival prediction model may be generated using the N th section survival prediction data obtained from the survival prediction model and the N + 1 section survival time data of the plurality of synovial sarcoma patients.
  • the survival prediction model generation unit 13 may assign a score according to the survival period to the N-th section survival period data when generating the N-th section survival rate prediction model.
  • the score may be proportional to the survival period of the N-th section.
  • the prognosis prediction method of synovial sarcoma using an artificial neural network may be written as a program that can be executed by a computer, and the program may be executed using a computer-readable recording medium. It can be implemented in a general purpose digital computer to operate.
  • the computer-readable recording medium may include a storage medium such as a magnetic storage medium (eg, a ROM, a floppy disk, a hard disk, etc.) and an optical reading medium (eg, a CD-ROM, a DVD, etc.).
  • the method, apparatus and program for predicting prognosis of synovial sarcoma using the artificial neural network according to the present invention it is possible to accurately predict the prognosis of the synovial sarcoma patient for each individual.
  • the prognosis of each treatment method can be simulated using the learned artificial neural network, so that the treatment method tailored to each patient can be determined.
  • the present invention relates to a method, apparatus, and program for predicting the prognosis of synovial sarcoma using an artificial neural network, and may be used in an industry for predicting the prognosis of a disease.

Abstract

A method for predicting the prognosis of synovial sarcoma by using an artificial neural network, according to one embodiment of the present invention, comprises the steps of: acquiring clinical data and survival period data of a plurality of synovial sarcoma patients; acquiring learning input data and learning output data from the clinical data and the survival period data; and teaching an artificial neural network, including an input layer, a hidden layer, and an output layer, by using the learning input data and the learning output data, so as to generate a model for predicting the survival rates of the synovial sarcoma patients.

Description

인공신경망을 이용한 활액막 육종의 예후 예측 방법, 장치 및 프로그램Prognostic Method, Apparatus and Program of Synovial Sarcoma Using Artificial Neural Network
본 발명은 인공신경망을 이용한 활액막 육종의 예후 예측 방법, 장치 및 프로그램에 관한 것이다. The present invention relates to a method, apparatus and program for predicting prognosis of synovial sarcoma using an artificial neural network.
활액막 육종(Synovial Sarcoma)은 악성 연부조직 종양의 약 10%를 차지하고Synovial sarcoma accounts for about 10% of malignant soft tissue tumors
20~30대 이전에 자주 생기는 종양으로, 아직 그 병태 생리와 예후 인자가 잘 알려지지 않았으며 수술적 절제 외에 항암 화학 요법이나 방사선 치료의 효용성이 확립되지 않은 종양이다. It is a tumor that occurs frequently before the 20s and 30s, and its pathophysiology and prognostic factors are not well known, and the efficacy of chemotherapy or radiation therapy in addition to surgical resection has not been established.
활액막 육종에 대한 연구는 그 유병률로 인해 많은 수를 포함한 연구 자체가 어렵고, 다양한 조직학적 아형, 몸통과 사지에서의 위치, 부적합한 수술 절제연과 같이 비균질한 집단을 포함하고 있으므로 비록 더 큰 연구가 이루어진다고 하더라도 명확한 결론에 이르기에는 어려움이 있다. 그로 인해 활액막 육종의 특성과 관련하여 종양에 의해 표현되는 세포 유형, 실제 생물학적 행태, 청소년기에서 더 자주 생기는 생물학적 표현형 여부, 예후 인자, 보조 항암약물 치료의 유용성 등에 대해 많은 수의 증례 논문과 다양한 연구에도 불구하고 논란은 여전히 존재한다.The study of synovial sarcoma is difficult due to its prevalence, which makes it difficult to include a large number of studies, and includes a heterogeneous group such as various histological subtypes, positions in the trunk and limbs, and inadequate surgical resection. Even so, it is difficult to reach clear conclusions. As a result, a large number of case studies and various studies have been conducted on the types of cells expressed by tumors in relation to the characteristics of synovial sarcoma, their actual biological behavior, the presence of more common biological phenotypes in adolescence, prognostic factors, and usefulness of adjuvant chemotherapy. The controversy still exists.
활액막 육종에 관한 기존의 연구는 증례 보고 또는 외과적 수술 이후 방사선 치료 또는 보조적 항암 치료의 효과를 분석한 것에 그칠 뿐, 활액막 육종 환자의 생존율 또는 예후 예측을 정확하게 수행할 수 없다는 문제가 있다. Existing studies on synovial sarcoma only have analyzed the effects of radiation therapy or adjuvant chemotherapy after case reports or surgical operations, and cannot accurately predict survival or prognosis of synovial sarcoma patients.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점을 해결하기 위한 것으로써, 인공신경망을 이용하여 활액막 육종의 예후를 예측하는 방법, 장치 및 프로그램을 제공하는 것을 목적으로 한다. Disclosure of Invention The present invention aims to provide a method, apparatus and program for predicting the prognosis of synovial sarcoma using an artificial neural network.
그러나, 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.However, these problems are illustrative, and the scope of the present invention is not limited thereby.
본 발명의 일 실시예에 따른 인공신경망을 이용한 활액막 육종의 예후 예측 방법은, 복수의 활액막 육종 환자들의 임상 데이터 및 생존 기간 데이터를 획득하는 단계; 상기 임상 데이터와 상기 생존 기간 데이터로부터 학습용 입력 데이터와 학습용 출력 데이터를 획득하는 단계; 및 상기 학습용 입력 데이터와 상기 학습용 출력 데이터를 이용하여 입력층, 은닉층, 출력층을 포함하는 인공신경망을 학습시켜 활액막 육종 환자의 생존율을 예측하는 모델을 생성하는 단계;를 포함한다.Prognosis prediction method of synovial sarcoma using an artificial neural network according to an embodiment of the present invention, the method comprising: obtaining clinical data and survival data of a plurality of synovial sarcoma patients; Acquiring training input data and training output data from the clinical data and the survival data; And generating a model for predicting survival rate of synovial sarcoma patients by learning an artificial neural network including an input layer, a hidden layer, and an output layer using the training input data and the training output data.
일 실시예에 있어서, 상기 학습용 입력 데이터는 상기 복수의 활액막 육종 환자들의 나이, 성별, 종양 위치, 초기 전이(initial metastasis) 여부, 화학 요법(chemotherapy) 시술 여부, 방사선 치료(radiation therapy) 여부, 절제면(resection margin) 양성 여부 및 병리학적 아형(subtype) 데이터를 포함할 수 있다.In one embodiment, the learning input data is age, sex, tumor location, initial metastasis, whether chemotherapy, radiation therapy, ablation of the plurality of synovial sarcoma patients Resection margin positive and pathological subtype data.
일 실시예에 있어서, 상기 임상 데이터와 상기 생존 기간 데이터로부터 각각 학습용 입력 데이터와 학습용 출력 데이터를 획득하는 단계는, k-최근접 이웃 알고리즘(k-nearest neighbor algorithm: knn)을 이용하여 결측치(missing data, NaN)를 추가하는 단계를 포함할 수 있다. In one embodiment, acquiring training input data and training output data from the clinical data and the survival data, respectively, may include missing values using a k-nearest neighbor algorithm (knn). data, NaN) may be added.
일 실시예에 있어서, 상기 생존율을 예측하는 모델을 생성하는 단계는, 시간 구간(time interval) 별로 상기 인공신경망을 학습시키는 단계를 포함할 수 있다. In one embodiment, generating the model for predicting the survival rate may include training the artificial neural network for each time interval.
일 실시예에 있어서, 상기 생존율을 예측하는 모델을 생성하는 단계는, 상기 임상 데이터 및 상기 복수의 활액막 육종 환자들의 N번째 구간 생존 기간 데이터를 이용하여 N번째 구간 생존율 예측 모델을 생성하는 단계; 및 상기 N번째 구간 생존율 예측 모델로부터 얻은 N번째 구간 생존율 예측 데이터 및 상기 복수의 활액막 육종 환자들의 N+1번째 구간 생존 기간 데이터를 이용하여 N+1번째 구간 생존율 예측 모델을 생성하는 단계;를 포함할 수 있다. In one embodiment, generating the model for predicting the survival rate comprises: generating an N-th section survival prediction model using the clinical data and the N-th section survival time data of the plurality of synovial sarcoma patients; And generating an N + 1th interval survival prediction model using Nth interval survival prediction data obtained from the Nth interval survival prediction model and N + 1st interval survival time data of the plurality of synovial sarcoma patients. can do.
일 실시예에 있어서, 상기 N번째 구간 생존율 예측 모델을 생성하는 단계는, 상기 N번째 구간 생존 기간 데이터에 대하여 생존 기간에 따른 스코어를 부여하는 단계;를 더 포함할 수 있다. In an embodiment, the generating of the N-th section survival prediction model may further include assigning a score according to the survival period to the N-th section survival period data.
일 실시예에 있어서, 상기 스코어는 상기 N번째 구간의 생존 기간에 비례할 수 있다. In one embodiment, the score may be proportional to the survival period of the N-th section.
본 발명의 다른 실시예에 따른 인공신경망을 이용한 활액막 육종의 예후 예측 장치는, 복수의 활액막 육종 환자들의 임상 데이터 및 생존 기간 데이터를 획득하는 데이터 획득부; 상기 임상 데이터와 상기 생존 기간 데이터로부터 학습용 입력 데이터와 학습용 출력 데이터를 획득하고, 상기 학습용 입력 데이터와 상기 학습용 출력 데이터를 이용하여 입력층, 은닉층, 출력층을 포함하는 인공신경망을 학습시키는 인공신경망 학습부; 및 상기 학습된 인공신경망을 이용하여 활액막 육종 환자의 생존율을 예측하는 모델을 생성하는 생존율 예측 모델 생성부;를 포함한다. According to another embodiment of the present invention, an apparatus for predicting prognosis of synovial sarcoma using an artificial neural network includes a data acquisition unit configured to acquire clinical data and survival data of a plurality of synovial sarcoma patients; An artificial neural network learning unit which acquires learning input data and learning output data from the clinical data and the survival period data, and learns an artificial neural network including an input layer, a hidden layer, and an output layer by using the learning input data and the learning output data. ; And a survival prediction model generator for generating a model for predicting the survival rate of the synovial sarcoma patient using the learned artificial neural network.
일 실시예에 있어서, 상기 학습용 입력 데이터는 상기 복수의 활액막 육종 환자들의 나이, 성별, 종양 위치, 초기 전이(initial metastasis) 여부, 화학 요법(chemotherapy) 시술 여부, 방사선 치료(radiation therapy) 여부, 절제면(resection margin) 양성 여부 및 병리학적 아형(subtype) 데이터를 포함할 수 있다. In one embodiment, the learning input data is age, sex, tumor location, initial metastasis, whether chemotherapy, radiation therapy, ablation of the plurality of synovial sarcoma patients Resection margin positive and pathological subtype data.
일 실시예에 있어서, 상기 인공신경망 학습부는, k-최근접 이웃 알고리즘(k-nearest neighbor algorithm: knn)을 이용하여 결측치(missing data, NaN)를 추가할 수 있다. In one embodiment, the neural network learning unit may add missing data (NaN) using a k-nearest neighbor algorithm (knn).
일 실시예에 있어서, 상기 인공신경망 학습부는, 시간 구간(time interval) 별로 상기 인공신경망을 학습시킬 수 있다. In one embodiment, the artificial neural network learning unit may learn the artificial neural network for each time interval (time interval).
일 실시예에 있어서, 상기 생존율 예측 모델 생성부는, 상기 임상 데이터 및 상기 복수의 활액막 육종 환자들의 N번째 구간 생존 기간 데이터를 이용하여 N번째 구간 생존율 예측 모델을 생성하고, 상기 N번째 구간 생존율 예측 모델로부터 얻은 N번째 구간 생존율 예측 데이터 및 상기 복수의 활액막 육종 환자들의 N+1번째 구간 생존 기간 데이터를 이용하여 N+1번째 구간 생존율 예측 모델을 생성할 수 있다. The survival prediction model generator generates an Nth section survival prediction model using the clinical data and Nth section survival period data of the plurality of synovial sarcoma patients, and the Nth section survival prediction model. The N + 1 section survival prediction model may be generated using the N th section survival prediction data obtained from the N + 1 section survival survival data of the plurality of synovial sarcoma patients.
일 실시예에 있어서, 상기 생존율 예측 모델 생성부는, 상기 N번째 구간 생존율 예측 모델을 생성할 때 상기 N번째 구간 생존 기간 데이터에 대하여 생존 기간에 따른 스코어를 부여할 수 있다. In one embodiment, the survival rate prediction model generator, when generating the N-th section survival prediction model may assign a score according to the survival period to the N-th section survival period data.
일 실시예에 있어서, 상기 스코어는 상기 N번째 구간의 생존 기간에 비례할 수 있다. In one embodiment, the score may be proportional to the survival period of the N-th section.
본 발명의 다른 실시예는 컴퓨터를 이용하여 전술한 인공신경망을 이용한 활액막 육종의 예후 예측 방법을 실행하기 위하여 매체에 저장된 컴퓨터 프로그램을 개시한다.Another embodiment of the present invention discloses a computer program stored in a medium for performing a prognostic prediction method of synovial sarcoma using the artificial neural network described above using a computer.
전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다. Other aspects, features, and advantages other than those described above will become apparent from the following drawings, claims, and detailed description of the invention.
본 발명에 따른 인공신경망을 이용한 활액막 육종의 예후 예측 방법, 장치 및 프로그램에 따르면, 활액막 육종 환자의 예후를 개개인별로 정확하게 예측할 수 있다. 그뿐만 아니라, 학습된 인공신경망을 이용하여 각 치료 방법에 의한 예후를 시뮬레이션할 수 있으므로 환자별 맞춤형 치료 방법을 결정할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to the method, apparatus and program for predicting prognosis of synovial sarcoma using the artificial neural network according to the present invention, it is possible to accurately predict the prognosis of the synovial sarcoma patient for each individual. In addition, the prognosis of each treatment method can be simulated using the learned artificial neural network, so that the treatment method tailored to each patient can be determined. Of course, the scope of the present invention is not limited by these effects.
도 1은 본 발명의 일 실시예에 따른 인공신경망을 이용한 활액막 육종의 예후 예측 방법을 나타낸 순서도이다. 1 is a flow chart showing a prognostic method of synovial sarcoma using an artificial neural network according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 의한 인공신경망의 토폴러지(topology)를 간략하게 나타낸 그림이다.Figure 2 is a simplified illustration of the topology (topology) of the artificial neural network according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 인공신경망을 이용한 활액막 육종의 예후 예측 방법에 따라 활액막 육종 환자의 N번째 구간 생존율을 예측하는 모델을 생성하는 방법을 예시한 그림이다. 3 is a diagram illustrating a method of generating a model for predicting the survival rate of the N-th section of the synovial sarcoma patient according to the prognostic method of the synovial sarcoma using the artificial neural network according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 인공신경망의 히트맵(heatmap) 그래프의 일부를 개략적으로 나타낸 그림이다.4 is a diagram schematically showing a part of a heatmap graph of an artificial neural network according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 인공신경망을 이용한 활액막 육종의 예후 예측 방법의 예측 정확도를 나타내는 ROC 그래프이다. 5 is a ROC graph showing the prediction accuracy of the prognostic prediction method of synovial sarcoma using an artificial neural network according to an embodiment of the present invention.
도 6은 각 임상적 변수에 대한 Kaplan-Meier 생존 예측 분석 결과를 나타낸 그래프이다.6 is a graph showing the results of Kaplan-Meier survival prediction analysis for each clinical variable.
도 7은 본 발명의 인공신경망을 이용한 활액막 육종의 예후 예측 방법과 콕스 비례위험모델(Cox proportional hazard model)의 예측 정확도를 비교한 ROC 그래프이다. Figure 7 is a ROC graph comparing the prediction accuracy of the cochlear proportional hazard model (Cox proportional hazard model) and the prognostic prediction method of synovial sarcoma using the artificial neural network of the present invention.
도 8은 본 발명의 일 실시예에 따른 인공신경망을 이용한 활액막 육종의 예후 예측 장치의 구성을 개략적으로 나타낸 그림이다.8 is a view schematically showing the configuration of a prognostic prediction device for synovial sarcoma using an artificial neural network according to an embodiment of the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세한 설명에 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail. Effects and features of the present invention, and methods of achieving them will be apparent with reference to the embodiments described below in detail together with the drawings. However, the present invention is not limited to the embodiments disclosed below but may be implemented in various forms.
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용된다.In the following embodiments, the terms first, second, etc. are used for the purpose of distinguishing one component from other components rather than having a limiting meaning.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In the following examples, the singular forms "a", "an" and "the" include plural forms unless the context clearly indicates otherwise.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.In the following examples, the terms including or having have meant that there is a feature or component described in the specification and does not preclude the possibility of adding one or more other features or components.
이하의 실시예에서, '노드'는 특정 값을 가지고 특정 알고리즘을 거쳐 그 값을 변화시킬 수 있으며, 다른 노드와 연결할 수 있는 추상적 개념의 객체를 의미한다. In the following embodiments, a 'node' means an object of abstract concept that can change a value with a specific algorithm and connect with another node.
이하의 실시예에서, 용어 '입력층'은 사용자가 부여한 특정 변수를 가지는 한 개 이상의 노드들의 집합이며, 용어 '출력층'은 사용자가 정한 특정한 절차에 따라서 그 절차의 결과값을 가지는 한 개 이상의 노드들의 집합이고, '은닉층'은 사용자가 정해준 절차를 수행할 때에 임시로 나타나는 중간 결과 및 임시값을 저장하는 한 개 이상의 노드들의 집합을 의미한다. In the following embodiments, the term 'input layer' is a set of one or more nodes having a particular variable assigned by the user, and the term 'output layer' is one or more nodes having a result value of the procedure according to a specific procedure determined by the user. "Hidden layer" means a set of one or more nodes that store interim results and temporary values that appear temporarily when performing a procedure set by a user.
입력층의 노드들과 은닉층의 노드들 사이, 그리고 은닉층의 노드들과 출력층의 노드들 사이에는 각각 링크들이 존재할 수 있으며, 이 링크들은 사용자가 정의한 절차에 의해 부여받는 특정한 계수(weight) 또는 가중치를 가질 수 있다.There may be links between the nodes of the input layer and the nodes of the hidden layer, and between the nodes of the hidden layer and the nodes of the output layer, each of which has a specific weight or weight given by a user defined procedure. Can have
이하의 실시예에서 용어 '예후'는 환자의 생존율, 병세의 진행, 회복에 관한 예측을 나타내는 의학용어이다. In the following examples, the term 'prognosis' is a medical term indicating the prediction of survival, progression and recovery of a patient.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 같거나 대응하는 구성 요소는 같은 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and the same or corresponding components will be denoted by the same reference numerals, and redundant description thereof will be omitted. .
도 1은 본 발명의 일 실시예에 따른 인공신경망을 이용한 활액막 육종의 예후 예측 방법을 나타낸 순서도이다. 1 is a flow chart showing a prognostic method of synovial sarcoma using an artificial neural network according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 인공신경망을 이용한 활액막 육종의 예후 예측 방법은, 복수의 활액막 육종 환자들의 임상 데이터 및 생존 기간 데이터를 획득하는 단계(S10); 상기 임상 데이터와 상기 생존 기간 데이터로부터 학습용 입력 데이터와 학습용 출력 데이터를 획득하는 단계(S20); 상기 학습용 입력 데이터와 상기 학습용 출력 데이터를 이용하여 입력층, 은닉층, 출력층을 포함하는 인공신경망을 학습시켜 활액막 육종 환자의 생존율을 예측하는 모델을 생성하는 단계(S30);를 포함한다. Prognosis prediction method of synovial sarcoma using an artificial neural network according to an embodiment of the present invention, the step of obtaining clinical data and survival data of a plurality of synovial sarcoma patients (S10); Acquiring learning input data and learning output data from the clinical data and the survival period data (S20); And generating a model for predicting survival rate of synovial sarcoma patients by learning an artificial neural network including an input layer, a hidden layer, and an output layer using the training input data and the training output data (S30).
도 1을 참조하면, 복수의 활액막 육종 환자들의 임상 데이터 및 활액막 육종 발병 후 생존 기간 데이터를 획득하는 단계(S10)가 수행된다. Referring to FIG. 1, a step (S10) of obtaining clinical data of a plurality of synovial sarcoma patients and survival time data after synovial sarcoma onset is performed.
본 명세서에서 임상 데이터는, 환자의 나이, 성별 등의 신체적 개인정보와 활액막 육종 발생 후의 수술 기록, 재발 여부 등 활액막 육종에 관련된 병적 기록 등을 포함한다. 활액막 육종 발병 후 생존 기간 데이터는, 이미 사망한 환자의 경우에는 활액막 육종 발생을 인지한 시점부터 사망까지의 기간을, 생존하고 있는 환자의 경우에는 활액막 육종 발생을 인지한 시점부터 본 발명을 실시하는 시점까지의 기간을 의미할 수 있으나 이에 제한되는 것은 아니다. In the present specification, the clinical data includes physical personal information such as age and gender of the patient, surgical records after synovial sarcoma, and pathological records related to synovial sarcoma such as recurrence or the like. Survival data after the onset of synovial sarcoma shows that the period from the time of recognition of the synovial sarcoma to the death in the case of a patient who has already died, and from the time of the recognition of the synovial sarcoma to a surviving patient, It may mean a period until the time point, but is not limited thereto.
임상 데이터 및 활액막 육종 발병 후 생존 기간 데이터는 한 개 이상의 병원 또는 지역의 활액막 육종 환자들로부터 획득할 수 있다. 임상 데이터는 환자의 의료 영상으로부터 획득되거나, 환자의 검체 검사 결과로부터 획득될 수 있으나 이에 한정되지 않는다. 본 발명자들은 서울대학교병원, 삼성서울병원, 국립암센터에서 2001년 3월부터 2013년 2월까지 추시 관찰한 242명의 활액막 육종 환자들로부터 임상 데이터 및 생존 기간 데이터를 획득하였다. 아래의 [표 1]은 상기 242명의 활액막 육종 환자들의 임상 데이터를 분류한 것이다. Clinical data and survival data after synovial sarcoma onset can be obtained from synovial sarcoma patients in one or more hospitals or regions. Clinical data may be obtained from a medical image of a patient or may be obtained from a patient's specimen test result, but is not limited thereto. The present inventors obtained clinical data and survival data from 242 synovial sarcoma patients who were followed up from March 2001 to February 2013 at Seoul National University Hospital, Samsung Seoul Hospital, and National Cancer Center. Table 1 below summarizes the clinical data of the 242 synovial sarcoma patients.
VariableVariable ValueValue VariableVariable ValueValue
MedianMedian AgeAge 37.45 (5-90)37.45 (5-90) RadiationRadiation TherapyTherapy
PatientPatient SexSex YesYes 128 (52.9%)128 (52.9%)
MM 116 (47.9%)116 (47.9%) NoNo 114 (47.1%)114 (47.1%)
FF 126 (52.1%)126 (52.1%) ResectionResection MarginMargin
TumourTumour SizeSize PositivePositive 24 (9.9%)24 (9.9%)
≤ 5 cm≤ 5 cm 129 (53.3%)129 (53.3%) NegativeNegative 218 (90.1%)218 (90.1%)
> 5 cm> 5 cm 113 (46.6%)113 (46.6%) SubtypeSubtype
LocationLocation ofof TumourTumour MonophasicMonophasic 149 (61.6%)149 (61.6%)
TrunkTrunk 100 (41.3%)100 (41.3%) BiphasicBiphasic 62 (25.6%)62 (25.6%)
ExtremityExtremity 142 (58.7%)142 (58.7%) UndeterminedUndetermined 31 (12.8%)31 (12.8%)
InitialInitial MetastasisMetastasis Survival Periods(months) Survival Periods (months) 65.26 (0.6-375)65.26 (0.6-375)
YesYes 26 (10.7%)26 (10.7%)
NoNo 216 (89.3%)216 (89.3%) OverallOverall MortalityMortality
ChemotherapyChemotherapy PositivePositive 46 (19%)46 (19%)
YesYes 121 (50%)121 (50%) NegativeNegative 196 (81.0%)196 (81.0%)
NoNo 121 (50%)121 (50%)
이후, 임상 데이터와 생존 기간 데이터로부터 각각 학습용 입력 데이터와 학습용 출력 데이터를 획득하는 단계(S20)가 수행된다. Thereafter, a step (S20) of acquiring the learning input data and the learning output data from the clinical data and the survival period data is performed.
학습용 입력 데이터는 후술할 인공신경망을 학습하기 위해 입력층의 노드에 입력될 데이터를 의미한다. The training input data refers to data to be input to a node of the input layer in order to learn an artificial neural network to be described later.
[표 1]은 학습용 입력 데이터에 포함될 수 있는 변수 및 이의 분류를 나타낸다. 일 실시예에 따르면, 학습용 입력 데이터는 나이, 성별, 종양 위치, 초기 전이(initial metastasis) 여부, 화학 요법(chemotherapy) 시술 여부, 방사선 치료(radiation therapy) 여부, 절제면(resection margin) 양성 여부 및 병리학적 아형(subtype)과 같은 데이터를 포함할 수 있다. 한편, 위의 예시 외에 병기(stage), 수술 날짜, 재발 여부, 세포 분열 활동도, 종양 괴사 여부, 악성도, 혈관 침범 여부, 분자유전학적 아형 등과 같은 다양한 임상적 변수 역시 학습용 입력 데이터에 포함될 수 있음은 물론이다. Table 1 shows variables that can be included in the learning input data and their classification. According to one embodiment, the learning input data may include age, sex, tumor location, initial metastasis, whether chemotherapy, radiation therapy, section margin positive and Data such as pathological subtypes. On the other hand, in addition to the above examples, various clinical variables such as stage, surgery date, recurrence, cell division activity, tumor necrosis, malignancy, vascular invasion, molecular genetic subtypes, etc. may also be included in the learning input data. Of course.
[표 1]에 예시된 학습용 입력 데이터 중에서, 성별, 종양 위치, 초기 전이 여부, 화학 요법 시술 여부, 방사선 치료 여부, 절제면 양성 여부 등과 같은 변수는 2개의 분류뿐이므로, 이를 0, 1 또는 1, 2 등으로 라벨링하여 하나의 수학적 값으로 변환시킬 수 있다.Among the input data for training illustrated in [Table 1], there are only two classifications such as gender, tumor location, initial metastasis, chemotherapy, radiation treatment, and positive resection. Can be converted to a mathematical value by labeling it with 2,.
병리학적 아형(subtype)은 단상형(Monophasic), 이상형(Biphasic), 기타(undetermined)로 나뉜다. 이때 '기타'를 포함해 아형을 3개로 분류하거나, '기타'를 NaN으로 처리하여 아형을 2개로 분류한 후 각각을 라벨링하여 하나의 수학적 값으로 변환시킬 수 있다.Pathological subtypes are divided into monophasic, biphasic and undetermined. At this time, the subtypes may be classified into three, including 'other', or 'other' may be treated with NaN to classify the subtypes into two, and each may be labeled and converted into a mathematical value.
나이(age)와 같은 정량적 변수는 정규화(normalization)한 후 가공하여 하나의 수로 변경시킬 수 있다. Quantitative variables, such as age, can be normalized and processed to one number.
종양 크기(tumor size)의 경우 5cm 이하 또는 5cm 초과와 같이 2개의 분류로 처리할 수도 있으나, 정량적 실변수로 처리하여 정규화(normalization)한 후 가공하여 하나의 수로 변경시킬 수도 있다. Tumor size may be treated with two classifications, such as 5 cm or less or more than 5 cm, but may be processed into quantitative real variables, normalized, processed, and changed to one number.
학습용 출력 데이터는 인공신경망을 학습하기 위해 출력층에 출력된 노드의 값과 비교될 데이터를 의미한다. 이러한 학습용 출력 데이터는 환자의 활액막 육종 발병 후 생존 기간 데이터로부터 획득된다. 학습용 출력 데이터는 예컨대 활액막 육종 발병 후 N년 후의 환자의 생존 여부 데이터일 수 있다. The training output data refers to data to be compared with the value of the node output to the output layer in order to learn the artificial neural network. This learning output data is obtained from survival data after synovial sarcoma onset in a patient. The training output data may be, for example, survival information of the patient N years after the onset of synovial sarcoma.
예컨대, 아래 [표 2]와 같은 임상 데이터 및 생존 기간 데이터를 가지는 환자 A가 있다고 가정하자. For example, suppose that patient A has clinical data and survival data as shown in Table 2 below.
임상 데이터Clinical data
변수variable 분류Classification 데이터data
나이(age)Age 실수값Real value 5454
성별(sex) Sex 1= 남자; 2= 여자1 = man; 2 = woman 22
종양 크기 Tumor size 1= 5cm 이하; 2 = 5cm 초과1 = 5 cm or less; 2 = greater than 5 cm 22
종양 위치 Tumor location 1 = trunk; 2= extremity1 = trunk; 2 = extremity 1One
초기 전이 여부 Initial transition 0= negative; 1= positive0 = negative; 1 = positive 1One
화학 요법 시술 여부 Chemotherapy 0= negative; 1= positive0 = negative; 1 = positive 1One
방사선 치료 여부 Whether radiation treatment 0= negative; 1= positive0 = negative; 1 = positive 1One
절제면 양성 여부 Positive margin 0= negative; 1= positive0 = negative; 1 = positive 1One
병리학적 아형 Pathological subtype 1= Monophasic; 2= Biphasic1 = Monophasic; 2 = Biphasic 22
생존 기간 데이터Survival data
생존 기간(월)Survival Month 실수값 (월)Real value (month) 5858
환자 A의 활액막 육종 발병 후 생존 기간은 58개월이므로, 환자 A는 4년(48개월)까지는 생존하였고 5년(60개월) 전에는 사망하였다. 따라서 각 연차별 환자 A의 생존 여부 데이터는 아래 [표 3]과 같다. Patient A survived for up to 4 years (48 months) and died 5 years (60 months) after the onset of synovial sarcoma. Therefore, the survival data of patient A for each year is shown in Table 3 below.
N (년)N (years) 1One 22 33 44 55
환자 A의 생존 여부 (생존: 1, 사망: 0)Patient A Survival (Survival: 1, Death: 0) 1One 1One 1One 1 One 00
따라서 예컨대 환자 A의 2년 후 생존율을 예측하는 인공신경망을 학습시키는 경우, 후술할 인공신경망의 출력층의 [생존율 노드, 사망률 노드]에 출력될 값과 비교될 학습용 출력 데이터는 [1, 0]이 될 수 있고, 5년 후 생존율을 예측하는 인공신경망을 학습시키는 경우, 출력층의 [생존율 노드, 사망률 노드]에 출력될 값과 비교될 학습용 출력 데이터는 [0, 1]이 될 수 있다. 다만 본 발명의 일 실시예에 따르면, 환자가 사망한 경우 학습용 출력 데이터를 상기와 같이 [0, 1]로 처리하지 않고, 랭킹화하여 스코어를 부여할 수 있는 처리 방법이 제안되는데 이에 대하여는 후술한다. Therefore, for example, when training the artificial neural network predicting the survival rate after two years of patient A, the output data for training to be compared to the value to be output to the [survival rate node, mortality node] of the output layer of the artificial neural network to be described later is [1, 0] In the case of learning the artificial neural network predicting the survival rate after 5 years, the learning output data to be compared with the value to be output to the [survival rate node, mortality node] of the output layer may be [0, 1]. However, according to one embodiment of the present invention, a treatment method for ranking a score is provided without processing the learning output data as [0, 1] as described above when the patient dies, which will be described later. .
상기 환자 A의 임상 데이터 및 생존 기간 데이터로부터, 아래 [표 4]와 같은 학습용 입력 데이터 및 학습용 출력 데이터를 얻을 수 있다. From the clinical data and the survival period data of the patient A, learning input data and learning output data as shown in Table 4 below can be obtained.
학습용 입력 데이터Learning input data 학습용 출력 데이터Training output data (N년 후 생존 여부)(Survival after N years)
나이age 성별gender 크기size 위치location 초기 전이Early transition 화학 요법Chemotherapy 방사선 치료Radiation therapy 절제면 양성Ablation noodles 병리적 아형Pathological subtype 1One 22 33 44 55
5454 22 22 1One 1One 1One 1One 1One 22 1One 1One 1One 1 One 00
이렇게 얻은 학습용 입력 데이터 및 학습용 출력 데이터는 후술할 인공신경망을 학습시키는 데 이용된다. The learning input data and the learning output data thus obtained are used to train the artificial neural network to be described later.
한편 본 발명의 일 실시예에 따르면, 임상 데이터와 생존 기간 데이터로부터 각각 학습용 입력 데이터와 학습용 출력 데이터를 획득하는 단계는, k-최근접 이웃 알고리즘(k-nearest neighbor algorithm: knn)을 이용하여 결측치(missing data, NaN)를 추가하는 단계를 포함할 수 있다. Meanwhile, according to an embodiment of the present invention, the step of acquiring the learning input data and the learning output data from the clinical data and the survival data, respectively, is based on missing values using a k-nearest neighbor algorithm (knn). The method may include adding (missing data, NaN).
예컨대, 아래의 [표 5]과 같은 임상 데이터를 가지는 환자 A, B, C가 있다고 가정하자. 환자 C의 경우에는 절제면 양성 여부를 확인하기 위한 검사를 받지 않아, 절제면 양성 여부에 해당하는 값이 결측된(missing, NaN) 상태이다. For example, suppose there are patients A, B, and C with clinical data as shown in Table 5 below. In case of patient C, no test was performed to confirm whether the resection was positive, and a value corresponding to the resection was positive (missing, NaN).
변수variable 분류Classification 환자 APatient A 환자 BPatient B 환자C Patient C
나이(age)Age 실수값Real value 5454 6565 6464
성별(sex) Sex 1= 남자; 2= 여자1 = man; 2 = woman 22 1One 1One
종양 크기 Tumor size 1= 5cm 이하; 2 = 5cm 초과1 = 5 cm or less; 2 = greater than 5 cm 22 1One 1One
종양 위치 Tumor location 1 = trunk; 2= extremity1 = trunk; 2 = extremity 1One 22 22
초기 전이 여부 Initial transition 0= negative; 1= positive0 = negative; 1 = positive 1One 00 00
화학 요법 시술 여부 Chemotherapy 0= negative; 1= positive0 = negative; 1 = positive 1One 00 00
방사선 치료 여부 Whether radiation treatment 0= negative; 1= positive0 = negative; 1 = positive 1One 00 1One
절제면 양성 여부 Positive margin 0= negative; 1= positive0 = negative; 1 = positive 1One 00 NaNNaN
병리학적 아형 Pathological subtype 1= Monophasic; 2= Biphasic1 = Monophasic; 2 = Biphasic 22 1One 1One
생존 기간(월)Survival Month 실수값Real value 5858 7272 4646
이때 환자 C의 임상 데이터가 환자 A와 환자 B 중 누구에게 더 가까운지는 예컨대 각 환자의 학습용 입력 데이터 벡터의 거리를 통해 판별할 수 있다. 예시한 [표 3]의 경우에는 환자 C의 임상 데이터가 환자 A보다는 환자 B에 가까우므로, 환자 C의 절제면 양성 여부 값에 1을 부여할 수 있다. In this case, whether the clinical data of the patient C is closer to the patient A or the patient B may be determined based on, for example, the distance of the learning input data vector of each patient. In the case of Table 3, since the clinical data of patient C is closer to patient B than patient A, it is possible to assign 1 to the positive resection of patient C.
실제로는 비교해야 하는 환자의 수가 많으므로, 위의 예시는 knn 알고리즘을 설명하기 위해 상황을 단순화한 것에 불과할 뿐 반드시 실제의 상황을 반영하는 것은 아니다. 이때 공지된 다양한 knn 알고리즘이 있으므로 본 명세서에서는 자세한 기재를 생략한다.In practice, since the number of patients to be compared is large, the above example merely simplifies the situation to illustrate the knn algorithm and does not necessarily reflect the actual situation. In this case, since there are various known knn algorithms, detailed descriptions are omitted herein.
예컨대 본 발명의 인공신경망의 입력층에 입력되는 학습용 입력 데이터의 항목이 다른 지역 또는 병원의 임상 데이터에는 없는 경우, knn 알고리즘을 이용하여 결측된 항목을 추가할 수 있다. 따라서 결측된 데이터가 있는 다른 지역 데이터를 추가시켜 인공신경망을 재학습시키는 것이 가능하다. For example, when the item of the learning input data inputted to the input layer of the artificial neural network of the present invention is not included in clinical data of another region or hospital, the missing item may be added using the knn algorithm. Therefore, it is possible to retrain the artificial neural network by adding other local data with missing data.
이와 같은 과정을 통해 임상 데이터 및 육종 발병 후 생존 기간 데이터를 수학적으로 처리할 수 있게 가공하여, 학습용 입력 데이터 및 학습용 출력 데이터를 획득할 수 있다.Through this process, the clinical data and the survival data after the onset of sarcoma can be processed to be mathematically processed, thereby obtaining learning input data and learning output data.
위의 환자 A, B, C의 임상 데이터 등은 예시적인 것으로 본 발명을 제한하는 것은 아니다. 또한 상기에서는 생존 기간이 월 단위로 구분된 예를 설명하였으나, 본 발명은 이에 한정되지 않으며, 설계에 따라 반기, 분기, 월, 일 등 다양한 단위로 생존 기간의 구분이 가능하다. The clinical data of the above patients A, B, C, etc. are exemplary and do not limit the present invention. In addition, the above description has been given of an example in which survival periods are divided into monthly units, but the present invention is not limited thereto, and the survival periods may be divided into various units such as semi-annual, quarterly, monthly, and day according to design.
학습용 입력 데이터와 학습용 출력 데이터를 획득하는 단계(S20) 후에는, 학습용 입력 데이터와 학습용 출력 데이터를 이용하여 인공신경망을 학습시켜 활액막 육종 환자의 생존율을 예측하는 모델을 생성하는 단계(S30)가 수행된다. After acquiring the training input data and the training output data (S20), a step of generating a model for predicting survival rate of synovial sarcoma patients by training the artificial neural network using the training input data and the training output data (S30) is performed. do.
도 2은 본 발명의 일 실시예에 의한 인공신경망(Survival Neural Network, 이하 SNN으로도 명명한다)의 토폴러지(topology)를 간략하게 나타낸 그림이다. 인공신경망은 여러 개의 노드를 가지는 입력층, 1층 이상의 은닉층과 출력층을 가진다. FIG. 2 is a diagram briefly illustrating the topology of an artificial neural network (hereinafter also referred to as SNN) according to an embodiment of the present invention. The neural network has an input layer with multiple nodes, one or more hidden layers and an output layer.
인공신경망의 입력층은 nin개의 노드를 가진다. 입력층의 각 노드에는 학습용 입력 데이터값이 입력된다. 이때 입력층은 마치 nin ×1 행렬과 같은 형태를 가지게 된다. 이때 입력층은 활액막 육종 환자의 생존율 예측 데이터를 입력하기 위한 노드를 포함할 수 있다. 예컨대 각각의 활액막 육종 환자의 임상 데이터로부터 얻은 i개의 데이터가 있는 경우, N+1년 후 생존율 예측을 위한 인공신경망의 입력층에 입력될 학습용 입력 데이터는 상기 활액막 육종 환자의 N년도 생존율 예측 결과를 이용한 데이터를 포함한 i+1개의 데이터 세트일 수 있다. 예시적으로, 도 2에서는 임상 데이터로부터 얻은 9개의 학습용 입력 데이터가 입력되는 9개의 노드 및 생존율 예측 데이터가 입력되는 1개의 노드(210)를 포함한 총 10개의 노드가 도시되어 있다. The input layer of the neural network has n in nodes. Learning input data values are input to each node of the input layer. At this time, the input layer has a form like an n in × 1 matrix. In this case, the input layer may include a node for inputting survival prediction data of the synovial sarcoma patient. For example, if there are i data obtained from the clinical data of each synovial sarcoma patient, the learning input data to be input to the input layer of the neural network for survival prediction after N + 1 years is used to predict the N-year survival rate of the synovial sarcoma patient. It may be i + 1 data sets including the used data. For example, in FIG. 2, a total of 10 nodes are shown, including nine nodes into which nine learning input data obtained from clinical data are input and one node 210 into which survival prediction data is input.
한편, 인공신경망의 출력층은 nout개의 노드를 가진다. 각 노드의 연결의 계수출력및 활성함수를 통해 출력된 출력층의 노드의 값은 학습용 출력 데이터값과 비교된다. 이때 출력층은 마치 nout ×1 행렬과 같은 형태를 가지게 된다. 본 발명의 일 실시예에서는 출력층이 [생존율 노드, 사망률 노드]와 같이 2개의 노드를 가지나 이에 제한되는 것은 아니다. On the other hand, the output layer of the artificial neural network has n out nodes. The node value of the output layer output through the coefficient output and the activation function of the connection of each node is compared with the learning output data value. At this time, the output layer has a form like n out × 1 matrix. In one embodiment of the present invention, the output layer has two nodes, such as [survival rate node, mortality node], but is not limited thereto.
복수 개의 은닉층은 입력층에 해당하는 nin개의 노드를 nout개의 노드로 연결한다. 본 발명의 실시예에서는 은닉층이 임상 데이터로부터 얻은 학습용 입력 데이터가 입력되는 입력층과, '생존율 노드'를 포함하는 출력층을 연결한다. 각각의 은닉층의 노드는 인접한 다른 은닉층의 노드와 서로 완전히 연결(fully connected)될 수 있다. 본 발명의 일 실시예에서는 3개의 은닉층을 사용하여 인공신경망을 학습시키나 은닉층의 개수 및 알고리즘의 종류 등은 이에 제한되지 않는다. The plurality of hidden layers connects n in nodes corresponding to the input layer to n out nodes. In an embodiment of the present invention, the hidden layer connects an input layer into which learning input data obtained from clinical data is input, and an output layer including a 'survival rate node'. The nodes of each hidden layer may be fully connected to each other with the nodes of another adjacent hidden layer. In an embodiment of the present invention, the artificial neural network is trained using three hidden layers, but the number of hidden layers and types of algorithms are not limited thereto.
각 학습용 입력 데이터가 입력층에 입력되어 은닉층을 거쳐 출력층에 출력될 때, 각 학습용 입력 데이터에 대응하는 각 학습용 출력 데이터의 값(실제값)과 출력된 값(예측값)의 차이를 최소화하도록 각 노드 연결의 계수(weight)가 조절됨으로써, 인공신경망이 학습된다. When each training input data is input to the input layer and output to the output layer via the hidden layer, each node to minimize the difference between the value (actual value) and the output value (prediction value) of each training output data corresponding to each training input data. By controlling the weight of the connection, the artificial neural network is learned.
도 3은 본 발명의 일 실시예에 따른 인공신경망을 이용한 활액막 육종의 예후 예측 방법에 따라 활액막 육종 환자의 N번째 구간 생존율을 예측하는 모델을 생성하는 방법을 예시한 그림이다. 3 is a diagram illustrating a method of generating a model for predicting the survival rate of the N-th section of the synovial sarcoma patient according to the prognostic method of the synovial sarcoma using the artificial neural network according to an embodiment of the present invention.
본 발명의 일 실시예에 따르면, 생존율을 예측하는 모델을 생성하는 단계는 시간 구간(time interval) 별로 상기 인공신경망을 학습시키는 단계를 포함할 수 있다. 상기 시간 구간은 연, 반기, 분기, 월 등 다양할 수 있으나 이하에서는 연(year)을 예시로 설명한다. 예를 들어, 인공신경망은 활액막 육종 환자의 임상 데이터로부터 활액막 육종 환자의 연차 별 생존율, 예컨대 발병 후 1년부터 5년 후까지의 생존율을 예측하도록 학습될 수 있다. According to an embodiment of the present invention, generating the model for predicting the survival rate may include training the artificial neural network for each time interval. The time interval may vary from year to year, half year, quarter, month, etc. Hereinafter, the year will be described as an example. For example, the neural network can be learned from clinical data of synovial sarcoma patients to predict the annual survival of synovial sarcoma patients, such as survival from one year to five years after onset.
본 발명의 일 실시예에 따르면, 생존율을 예측하는 모델을 생성하는 단계는, 상기 임상 데이터 및 상기 복수의 활액막 육종 환자들의 N번째 구간 생존 기간 데이터를 이용하여 N번째 구간 생존율 예측 모델(PMN)을 생성하는 단계; 및 상기 N번째 구간 생존율 예측 모델로부터 얻은 N번째 구간 생존율 예측 데이터(PN) 및 상기 복수의 활액막 육종 환자들의 N+1번째 구간 생존 기간 데이터를 이용하여 N+1번째 구간 생존율 예측 모델(PMN+1)을 생성하는 단계;를 포함할 수 있다.According to an embodiment of the present invention, the step of generating a model for predicting the survival rate, N-section interval survival prediction model (PM N ) using the clinical data and the N-section survival time data of the plurality of synovial sarcoma patients Generating a; And N + 1st section survival prediction model (PM N) using Nth section survival prediction data (P N ) obtained from the Nth section survival prediction model and N + 1st section survival time data of the plurality of synovial sarcoma patients. +1 ) may be generated.
본 발명의 일 실시예에 따르면 활액막 육종 환자의 1, 2, … , N, N+1번째 구간 별 생존율이 예측되는데(N: 자연수), 이때 N+1번째 구간에서의 생존율 예측을 위해 N번째 구간에서의 생존율 예측 결과 데이터가 이용된다. 즉, 각 구간 별 생존율 예측이 귀납적인 방식으로 이루어지게 된다. According to one embodiment of the present invention, 1, 2,... The survival rate is predicted for each N + 1th interval (N: natural number). At this time, the survival rate prediction result data in the Nth interval is used to predict the survival rate in the N + 1th interval. That is, the survival rate prediction for each section is made in an inductive manner.
도 3을 참조하면, 1년 후 생존율 예측 모델(PM1)과, N년 후 생존율 예측 모델(PMN)이 도시되었다. 이때 임상 데이터(X) 및 생존율 초기값(P0)을 입력하였을 때 1년 후 생존율(P1)을 출력할 수 있는 입출력함수인 1년 후 생존율 예측 모델(PM1)이 인공신경망을 학습시켜 생성된다. 3, the one year of survival prediction model (PM 1) and, after N-year survival rate prediction model (PM N) is shown. At this time, when the clinical data (X) and the initial survival rate (P 0 ) are input, the survival rate prediction model (PM 1 ), which is an input / output function that can output the survival rate (P 1 ) after one year, trains the artificial neural network. Is generated.
이때 인공신경망의 입력층에 입력되는 학습용 입력 데이터는 임상 데이터(X) 및 생존율 초기값(P0)을 포함한다. 각 모델의 입력이 되는 임상 데이터(X)는 모두 초기값, 즉 초진 시의 임상 데이터일 수 있다. 생존율 초기값(P0)은 예컨대 1로 설정될 수 있다. In this case, the learning input data input to the input layer of the artificial neural network includes clinical data (X) and an initial survival rate (P 0 ). Clinical data (X) that is input to each model may be initial values, that is, clinical data at initial examination. The survival rate initial value P 0 may be set to 1, for example.
1년 후 생존율 예측을 위한 학습용 출력 데이터에는, 환자의 생존 기간 데이터로부터 얻은 1년 후 생존 여부 데이터가 이용된다. 예컨대 어떤 환자 D가 육종 발병 15개월 후 사망한 경우, 발병 후 1년 후 시점에는 생존하였으므로 출력층의 [생존율 노드, 사망률 노드]에 출력될 값과 비교될 학습용 출력 데이터는 [1, 0]이 된다. 인공신경망은 이러한 학습용 입력 데이터 및 학습용 출력 데이터를 이용하여, 활액막 육종 환자의 1년 후 생존율을 예측할 수 있도록 학습된다. For the learning output data for predicting the survival rate after one year, the survival data after one year obtained from the survival period data of the patient is used. For example, if a patient D died 15 months after the onset of sarcoma, the surviving point was 1 year after the onset of the disease, and thus the learning output data to be compared with the value to be output to the [survival node, mortality node] of the output layer becomes [1, 0]. . The artificial neural network is trained to predict survival rate after one year of synovial sarcoma patient by using such learning input data and learning output data.
다음으로, 임상 데이터(X) 및 1년 후 생존율 예측 결과값(P1)을 입력하였을 때 2년 후 생존율(P2)을 출력할 수 있는 입출력함수인 2년 후 생존율 예측 모델(PM2)이 인공신경망을 학습시켜 생성된다. 이때 인공신경망의 입력층에 입력되는 학습용 입력 데이터는 임상 데이터(X) 및 1년 후 생존율 예측 결과값(P1)을 포함한다. Next, when inputting clinical data (X) and a survival rate prediction result value after one year (P 1 ), a two-year survival rate prediction model (PM 2 ), which is an input / output function capable of outputting a survival rate after two years (P 2 ). Created by learning this artificial neural network. In this case, the learning input data input to the input layer of the artificial neural network includes clinical data (X) and a survival rate prediction result value P 1 after one year.
학습용 출력 데이터에는, 환자의 생존 기간 데이터로부터 얻은 2년 후 생존 여부 데이터가 이용된다. 예컨대 어떤 환자 D가 육종 발병 후 15개월 후 생존한 경우, 발병 후 2년 후 시점에는 사망하였으므로 출력층의 [생존율 노드, 사망률 노드]에 출력될 값과 비교될 학습용 출력 데이터는 [0, 1]이 될 수 있다. Survival data two years later obtained from the survival data of the patient is used as the learning output data. For example, if a patient D survived 15 months after the onset of sarcoma, and died 2 years after the onset of the disease, the learning output data to be compared with the value to be output to the [survival rate node, mortality node] of the output layer is [0, 1]. Can be.
다만 본 발명의 일 실시예에 따르면, 환자가 사망한 경우 학습용 출력 데이터를 상기와 같이 [0, 1]로 처리하지 않고, 랭킹화하여 스코어를 부여할 수 있는 처리 방법이 제안된다. However, according to one embodiment of the present invention, a treatment method for ranking a score is provided without processing the output data for learning as [0, 1] as described above when the patient dies.
일 실시예에 따르면, N번째 구간 생존율 예측 모델(PMN)을 생성하는 단계는, According to one embodiment, generating the N-th interval survival prediction model (PM N ),
상기 N번째 구간 생존 기간 데이터에 대하여 생존 기간에 따른 스코어를 부여하는 단계를 더 포함할 수 있다. 즉 본 실시예에서 학습용 출력 데이터는 [p, 1-p]일 수 있고, 여기서 p에는 0이 아닌 스코어 값이 부여될 수 있다. 일 실시예에 따르면, 스코어는 환자의 N번째 구간의 생존 기간에 비례하도록 부여될 수 있다. 여기서 생존 기간은, 적어도 월 단위로 구분될 수 있다. 예컨대, 1년 3개월 생존한 환자 D의 구간 별 생존 기간에 따른 스코어는 아래의 [표 6]과 같게 된다. The method may further include assigning a score according to the survival period to the N-th section survival period data. That is, in the present embodiment, the learning output data may be [p, 1-p], where p may be assigned a non-zero score value. According to one embodiment, the score may be given in proportion to the survival of the Nth section of the patient. In this case, the survival period may be divided into at least monthly units. For example, the score according to the survival period for each section of the patient D who survived for 1 year and 3 months is as shown in Table 6 below.
N (년)N (years) 1One 22 33 44 55
구간별 스코어Interval Score 1One 3/123/12 00 00 00
따라서 이 경우 2년 후 생존율을 예측하는 인공신경망을 학습시킬 때, 출력층의 [생존율 노드, 사망률 노드]의 값과 비교될 학습용 출력 데이터는 [3/12, 1-3/12] = [0.75, 0.25]가 될 수 있다.Therefore, in this case, when training the artificial neural network predicting survival rate after 2 years, the output data for learning to be compared with the value of [survival node, mortality node] of the output layer is [3/12, 1-3 / 12] = [0.75, 0.25].
이와 같은 방법에 따르면, 사망 등의 이유로 추적 기간이 5년 미만인 환자의 데이터(중도 절단 데이터, right-censored case)의 경우라도 생존율이 0으로 카운트되지 않고 생존 기간만큼의 랭킹화된 스코어가 부여됨으로써, 생존율 예측 모델 생성에 사용되는 유의미한 데이터 수를 늘릴 수 있어, 결과적으로 생존율 예측의 정확도가 향상된다. According to this method, even in the case of data of patients whose follow-up period is less than 5 years due to death or the like (right-censored case), the survival rate is not counted as 0, and the ranked score is given as much as the survival period. In addition, the number of significant data used to generate the survival prediction model can be increased, and as a result, the accuracy of the survival prediction is improved.
인공신경망은 이러한 학습용 입력 데이터 및 스코어를 이용한 학습용 출력 데이터를 이용하여, 활액막 육종 환자의 2년 후 생존율을 예측할 수 있도록 다시 학습될 수 있다. The artificial neural network may be retrained to predict survival rate of two years after synovial sarcoma using the learning input data and the learning output data using the score.
이와 같은 과정이 반복됨에 따라(N=N+1), 임상 데이터(X) 및 N-1년 후 생존율 예측 결과(PN - 1)를 입력하였을 때 N년 후 생존율(PN)을 출력할 수 있는 입출력함수인 N년 후 생존율 예측 모델(PMN)이 인공신경망을 학습시켜 생성된다. As this process is repeated (N = N + 1), when the clinical data (X) and the survival rate prediction result (P N - 1 ) after N-1 years are inputted, the survival rate after N years (P N ) is output. After N years, a possible input / output function, a survival predicting model (PM N ) is generated by training artificial neural networks.
본 발명의 일 실시예에 따르면, 'N-1년 후 시점에서의 환자의 예후'를 반영하는 N-1년 후 생존율 예측 결과(PN - 1)를 이용하여 N년 후의 생존율을 예측하므로, 각 연차별로 인공신경망을 학습시킬 때마다 생존율 예측 성능이 좋아지게 된다. According to an embodiment of the present invention, the survival rate after N years is predicted using the survival rate prediction result (P N - 1 ) after N-1 years reflecting the 'prognosis of the patient at the time point after N-1 years'. Survival prediction performance improves as the artificial neural network is trained for each year.
한편, 이때 아래 <수학식 1>과 같이 N-1년 후 실제 생존 여부를 나타내는 값(SN-1)과 N-1년 후 생존율 예측값(PN-1)의 잔차(residual, λN-1)에 계수 β를 곱한 값을 N년 후 실제 생존 여부를 나타내는 값(SN)에 더하여, 이를 학습용 출력 데이터(YN)로 활용할 수도 있다. On the other hand, as shown in Equation 1 below, the residual (λ N− ) of a value indicating actual survival after N-1 years (S N-1 ) and a predicted survival rate after N-1 years (P N-1 ) 1 ) multiplying the coefficient β by a value (S N ) indicating whether or not the actual survival after N years, may be used as the output data (Y N ) for training.
<수학식 1><Equation 1>
YN = SN + β·λN-1 Y N = S N + β · λ N-1
활액막 육종 환자의 생존율을 예측하는 모델 생성이 완료되면, 인공신경망의 각 노드의 연결에 대응하는 계수(weight)가 생존율 예측에 최적화되도록 학습된 상태가 된다. 따라서 임의의 활액막 육종 환자의 임상 데이터로부터 얻은 입력 데이터를 인공신경망의 입력층에 입력하여 출력층에 출력된 값을 통해 환자의 생존율을 예측할 수 있다. 즉 본 발명에 따른 인공신경망을 이용한 활액막 육종의 예후 예측 방법에 따르면, 활액막 육종 환자의 예후를 개개인별로 정확하게 예측할 수 있다. <실시예>When model generation for predicting survival rate of synovial sarcoma patients is completed, the weight corresponding to the connection of each node of the neural network is learned to optimize the survival rate. Therefore, input data obtained from clinical data of any synovial sarcoma patient can be input to the input layer of the neural network, and the survival rate of the patient can be predicted through the output value of the output layer. That is, according to the prognostic prediction method of the synovial sarcoma using the artificial neural network according to the present invention, it is possible to accurately predict the prognosis of the synovial sarcoma patient for each individual. <Example>
데이터 획득Data acquisition
본 발명자들은 서울대학교병원, 삼성서울병원, 국립암센터에서 2001년 3월부터 2013년 2월까지 추시 관찰한 242명의 활액막 육종 환자들로부터 임상 데이터 및 생존 기간 데이터를 토대로 인공신경망을 구축하였다. 학습용 데이터는 총 데이터 중 80%를, 테스트용 데이터는 나머지 20%를 사용하였다. The present inventors constructed an artificial neural network based on clinical data and survival data from 242 synovial sarcoma patients who were followed up from March 2001 to February 2013 at Seoul National University Hospital, Samsung Seoul Hospital, and National Cancer Center. The training data used 80% of the total data and the test data used the remaining 20%.
인공신경망 구조Neural Network Structure
도 4는 본 발명의 일 실시예에 따른 인공신경망의 히트맵(heatmap) 그래프의 일부를 개략적으로 나타낸 그림이다.4 is a diagram schematically showing a part of a heatmap graph of an artificial neural network according to an embodiment of the present invention.
본 발명자들은 활액막 육종 환자의 육종 발병 후 1년 후, 2년 후, 3년 후, 4년 후, 5년 후 생존율을 예측하는 인공신경망을 모델링 하였다. 상기 인공신경망은 입력층, 3개의 은닉층, 출력층을 포함하였다. 입력층에 입력되는 학습용 입력 데이터는, 9개의 변수를 가지는 임상 데이터와 1개의 생존율 데이터로 구성되었다. 출력층은 Softmax 함수를 적용하고 생존율/사망률을 나타내는 2개의 노드로 구성되었고, 은닉층은 완전히 연결(fully-connected)되었다.The present inventors modeled an artificial neural network predicting survival after 1 year, 2 years, 3 years, 4 years, and 5 years after the onset of synovial sarcoma. The neural network included an input layer, three hidden layers, and an output layer. The learning input data input to the input layer was composed of clinical data having nine variables and one survival rate data. The output layer consisted of two nodes applying the Softmax function and representing survival / mortality, and the hidden layer was fully-connected.
이때 N년 후 생존율 예측 결과에 계수(weight) α를 곱하여 N+1년 후 생존율을 예측하는 인공신경망의 입력층에 입력하였다. 한편, N년 후 실제 생존율에서 N년 후 예측 생존율을 뺀 잔차(residual) λ에 계수 β를 곱하여 N+1년 후 생존율 값에 더한 값을 N+1년 후 생존율을 예측하는 인공신경망의 출력층의 출력값과 비교하였다. At this time, the survival predicted after N years is multiplied by the weight α and inputted into the input layer of the artificial neural network predicting the survival rate after N + 1 years. On the other hand, multiplying the residual λ subtracting the predicted survival rate after N years from the actual survival rate after N years by the coefficient β, and adding the survival rate value after N + 1 years to the output layer of the neural network predicting survival rate after N + 1 years. Compared to the output value.
그래프 511은 1년 후 생존율을 예측하는 인공신경망의 입력층에 학습용 입력 데이터가 입력된 상태를 나타낸다. 그래프 511의 히트맵(heatmap)의 세로축은 각 활액막 육종 환자의 일련번호이고, 가로축은 인공신경망 입력층의 각 노드에 해당한다. 일 실시예에서 입력층의 노드는 총 10개로, [표 1]에 나타난 임상 데이터로부터 얻은 9개의 노드 및 1개의 생존율 노드를 포함한다. 각 노드에 해당하는 값은 색상의 농도로 표시된다. Graph 511 shows a state in which learning input data is input to an input layer of an artificial neural network predicting survival rate after one year. The vertical axis of the heatmap of graph 511 is the serial number of each synovial sarcoma patient, and the horizontal axis corresponds to each node of the artificial neural network input layer. In one embodiment, the total number of nodes in the input layer includes a total of nine nodes and one survival node obtained from the clinical data shown in [Table 1]. The value corresponding to each node is represented by the intensity of the color.
이후, 각 노드에 대한 계수의 학습이 이루어진다. 학습의 결과는 생존 또는 사망으로 라벨링 되며, 최종적으로는 소프트맥스(softmax) 함수를 통해 생존 확률로 표현된다. 이때 그래프 514를 참조하면 복수의 활액막 육종 환자들에 대한 1년 후 생존율 및 사망률이 2개 노드로 표시되었다. 즉, 1년 후 생존율 예측 인공신경망은 총 10개의 노드값(그래프 511에 도시)을 은닉층(그래프 512, 513에 도시)을 거쳐 총 2개의 노드값(그래프 514에 도시)으로 수렴시킨다. Thereafter, learning of coefficients for each node is made. The results of learning are labeled as survival or death, and finally expressed as survival probabilities through the softmax function. Referring to graph 514, survival and mortality after one year for a plurality of synovial sarcoma patients were represented by two nodes. In other words, the survival predicted neural network 1 year later converges a total of 10 node values (shown in graph 511) to a total of 2 node values (shown in graph 514) through the hidden layer (shown in graphs 512 and 513).
한편, 이렇게 얻은 1년 후 생존율 예측 데이터는 2년 후 생존율 예측 모델의 입력층에 입력된다(그래프 531). 이와 같은 과정이 반복되어, 최종적으로 5년 후 생존율 예측 모델은 활액막 육종 환자의 5년 후 생존율을 예측하게 된다(그래프 554). 이후 이는 실제 5년 후 생존 여부 데이터(500)와 비교되어, 생존율 예측의 정확성을 비교하는 지표로 활용된다. On the other hand, the survival rate prediction data obtained in one year is input to the input layer of the survival rate prediction model after two years (Graph 531). This process is repeated, and finally, the survival prediction model after five years predicts survival after five years of synovial sarcoma (Graph 554). This is then compared with the survival data 500 after 5 years of actual use as an indicator for comparing the accuracy of the survival rate prediction.
이때 추적 기간이 5년 미만인 환자의 데이터(중도 절단 데이터, right-censored case)의 경우 학습용 데이터에는 포함되었으나, 생존/사망의 바이너리(binary) 정보만을 얻기 위하여 최종 테스트 데이터에서는 제외되었다.In this case, the data of patients with a follow-up period of less than 5 years (middle truncation data, right-censored case) were included in the training data, but were excluded from the final test data in order to obtain only binary information of survival / death.
도 5는 본 발명의 인공신경망을 이용한 활액막 육종의 예후 예측 방법의 예측 정확도를 나타내는 ROC(receiver operating characteristic) 그래프이다. 생존율 예측의 정확도는 ROC 그래프 아래의 면적인 AUC(area under curve)로 정량화가 가능하며 면적이 1에 가까울수록 정확도가 높다.5 is a receiver operating characteristic (ROC) graph showing the prediction accuracy of the prognostic prediction method of synovial sarcoma using the artificial neural network of the present invention. The accuracy of survival prediction can be quantified by the area under curve (AUC) under the ROC graph, and the closer the area is to 1, the higher the accuracy.
본 발명의 일 실시예에서는 K-fold 교차 검정(cross validation)을 사용하였다(n=3). 초-파라미터(hyperparameter)인 반복 학습 회수(n_epoch), 잔차 계수(β), 확률 계수(α), 은닉층의 개수, 노드 함수의 종류는 AUC의 평균을 최대화하도록 조정되었다. 이를 통해 최종적으로 얻은 ROC의 AUC는 각각 0.93, 0.85, 0.87이었고, 조정된 초-파라미터의 값은 n_epoch = 3, 잔차 계수(β) = 0.3, 확률 계수(α) = 0.01, 은닉층의 개수 = 3이었고, 노드 함수는 은닉층의 경우 각각 tanh, tanh, Relu 함수, 출력층의 경우 softmax 함수였다. In an embodiment of the present invention, a K-fold cross validation was used (n = 3). The hyperparameters of repetitive learning (n_epoch), residual coefficient (β), probability coefficient (α), number of hidden layers, and types of node functions were adjusted to maximize the average of AUC. The AUCs of the final ROCs obtained were 0.93, 0.85 and 0.87, respectively, and the adjusted super-parameter values were n_epoch = 3, residual coefficient (β) = 0.3, probability coefficient (α) = 0.01, number of hidden layers = 3 The node functions were tanh, tanh, Relu function and softmax function for the output layer, respectively.
생존율 예측 모델에 사용할 공변량(covariates) 선택Choose covariates to use for survival prediction models
Kaplan-Meier 생존 예측 방법 및 로그-랭크(log-rank) 테스트를 수행하여 생존율 예측 모델에 사용할 공변량(covariates)을 임상 데이터에서 선택하였다. Kaplan-Meier survival prediction methods and log-rank tests are performed to determine the covariates to use in the survival prediction model. Selected from clinical data.
도 6은 각 임상적 변수에 대한 Kaplan-Meier 생존 예측 분석 결과를 나타낸 그래프이다. 각 그래프에서 초록색으로 표시된 (a) 38세보다 높은 나이, (b) 남자 (p = 0.021), (c) 5cm보다 큰 종양(p = 0.004), (d) 종양이 축(axial)에 위치함(p = 0.007), (e) 초기 전이 있음(p = 0.001), (h) 절제면 양성(p = 0.004), (i) 단상형 (p = 0.0043)의 경우 환자의 예후가 좋지 않은 것으로 나타났다. (f) 화학 요법 및 (g) 방사선 치료의 경우에는 치료에 의한 영향을 평가하기 위해 변수에 포함되었다. 6 is a graph showing the results of Kaplan-Meier survival prediction analysis for each clinical variable. In each graph, (a) older than 38 years old, (b) male (p = 0.021), (c) tumors larger than 5 cm (p = 0.004), and (d) tumors are located axially (p = 0.007), (e) early metastasis (p = 0.001), (h) resected surface positive (p = 0.004), and (i) single-phase (p = 0.0043). . In the case of (f) chemotherapy and (g) radiotherapy, variables were included to assess the effects of treatment.
콕스cox 비례위험모델( Proportional Risk Model CoxCox proportionalproportional hazardhazard modelmodel )과의 비교Comparison with)
본 발명의 일 실시예에 따른 인공신경망을 이용한 활액막 육종의 예후 예측 방법과의 비교를 위해, 똑같은 학습용 데이터와 테스트 데이터를 이용하여 다변수 콕스 비례위험 회귀 분석(CoxPHR)을 수행하였다.For comparison with a prognostic prediction method of synovial sarcoma using an artificial neural network according to an embodiment of the present invention, multivariate Cox proportional risk regression (CoxPHR) was performed using the same training data and test data.
도 7은 본 발명의 인공신경망을 이용한 활액막 육종의 예후 예측 방법과 콕스 비례위험모델(Cox proportional hazard model)의 예측 정확도를 비교한 ROC 그래프이다. 상기 그래프의 AUC는 DeLong 방법을 이용하여 비교되었다. Figure 7 is a ROC graph comparing the prediction accuracy of the cochlear proportional hazard model (Cox proportional hazard model) and the prognostic prediction method of synovial sarcoma using the artificial neural network of the present invention. The AUC of the graphs were compared using the DeLong method.
본 발명에 따른 모델(SNN)의 경우 AUC가 0.918 (95% 신뢰구간: 0.829-0.970)이었고, 콕스 모델(COX)의 경우 0.745 (95% 신뢰구간: 0.629-0.841)이었다. 통계적으로 유의하게(p = 0.039), 두 모델의 AUC 차이는 0.173 (95% 신뢰구간: 0.008-0.337)였다. 따라서 SNN의 성능이 콕스 모델의 성능보다 높았다. The AUC was 0.918 (95% confidence interval: 0.829-0.970) for the model according to the invention (SNN) and 0.745 (95% confidence interval: 0.629-0.841) for the Cox model (COX). Statistically significant (p = 0.039), the AUC difference between the two models was 0.173 (95% confidence interval: 0.008-0.337). Therefore, the performance of the SNN is higher than that of the Cox model.
SNN의 성능이 더 뛰어난 이유는, 각 연차별 구간마다 입력층 노드의 계수를 다르게 할 수 있고, 중도 절단 데이터 역시 비모수적인(nonparametric) 방법으로 분석할 수 있기 때문으로 판단된다. The performance of the SNN is better because the coefficients of the input layer nodes can be different for each annual interval, and the intermediate truncation data can also be analyzed in a nonparametric manner.
치료 방법에 따른 예후 시뮬레이션Prognosis simulation according to treatment method
상기와 같이 활액막 육종 예후 예측을 위한 인공신경망을 구성한 후에, 각 환자마다 치료 방법을 변수로 하여, 치료 방법에 따른 생존율을 시뮬레이션하였다. After constructing the artificial neural network for the prediction of synovial sarcoma prognosis as described above, the survival rate according to the treatment method was simulated using the treatment method as a variable for each patient.
[표 7] 및 [표 8]은 화학 요법 시술 여부를 생존율 예측 모델에 다르게 입력하였을 때 환자의 생존율을 시뮬레이션한 표이다.[Table 7] and [Table 8] is a table simulating the survival rate of the patient when the chemotherapy procedure is differently entered into the survival prediction model.
Figure PCTKR2017004189-appb-T000001
Figure PCTKR2017004189-appb-T000001
IndividualIndividual covariatescovariates RealReal outcomeoutcome 5-5- yearyear survivalsurvival probability  probability
SexSex SizeSize LocationLocation InitialInitial meta meta MarginMargin SubtypeSubtype SurviveSurvive DeathDeath ChemoChemo therapytherapy NoNo adjuvant  adjuvant
malemale >5cm> 5cm ExtExt 00 00 unclassifiedunclassified 3838 1One 0.6390.639 0.8350.835
femalefemale >5cm> 5cm ExtExt 00 nannan unclassifiedunclassified 9797 1One 0.6400.640 0.7050.705
malemale >5cm> 5cm AxialAxial 00 00 bibi 2323 1One 0.6180.618 0.6800.680
malemale >5cm> 5cm ExtExt 00 00 monomono 2222 1One 0.6220.622 0.6820.682
[표 7]을 참조하면, 환자가 여성(female)이고 종양의 크기가 5cm보다 작은 경우, 보조적 화학 치료 요법(adjuvant chemotherapy)에 의해 생존율이 크게 높아짐을 확인할 수 있다. 한편 [표 8]을 참조하면, 환자가 남성(male)이고 종양의 크기가 5cm보다 작은 경우, 보조적 화학 치료 요법에 의해 오히려 생존율이 낮아짐을 확인할 수 있다. Referring to [Table 7], when the patient is a female and the tumor size is less than 5 cm, it can be seen that the survival rate is greatly increased by adjuvant chemotherapy. Meanwhile, referring to [Table 8], when the patient is a male and the tumor size is smaller than 5 cm, it can be seen that the survival rate is lowered by the adjuvant chemotherapy.
즉 본 발명에 따른 인공신경망을 이용한 활액막 육종의 예후 예측 방법에 따르면, 학습된 인공신경망을 이용하여 각 치료 방법에 의한 예후를 시뮬레이션할 수 있으므로 환자별 맞춤형 치료 방법을 결정할 수 있다.That is, according to the prognostic prediction method of synovial sarcoma using the artificial neural network according to the present invention, it is possible to simulate the prognosis by each treatment method using the learned artificial neural network, it is possible to determine a patient-specific treatment.
도 8은 본 발명의 일 실시예에 따른 인공신경망을 이용한 활액막 육종의 예후 예측 장치의 구성을 개략적으로 나타낸 그림이다. 8 is a view schematically showing the configuration of a prognostic prediction device for synovial sarcoma using an artificial neural network according to an embodiment of the present invention.
도 8에 도시된 활액막 육종의 예후 예측 장치(10)는 본 실시예의 특징이 흐려지는 것을 방지하기 위하여 본 실시예와 관련된 구성요소들만을 도시한 것이다. 따라서, 도 8에 도시된 구성요소들 외에 다른 범용적인 구성요소들이 더 포함될 수 있음을 본 실시예와 관련된 기술분야에서 통상의 지식을 가진 자라면 이해할 수 있다.The apparatus 10 for predicting prognosis of synovial sarcoma shown in FIG. 8 shows only components related to the present embodiment in order to prevent the features of the present embodiment from being blurred. Accordingly, it will be understood by those skilled in the art that other general purpose components may be further included in addition to the components illustrated in FIG. 8.
본 발명의 일 실시예에 따른 활액막 육종의 예후 예측 장치(10)는 적어도 하나 이상의 프로세서(processor)에 해당하거나, 적어도 하나 이상의 프로세서를 포함할 수 있다. 이에 따라, 활액막 육종의 예후 예측 장치(10)는 마이크로프로세서나 범용 컴퓨터 시스템과 같은 다른 하드웨어 장치에 포함된 형태로 구동될 수 있다.The prognostic prediction apparatus 10 of synovial sarcoma according to an embodiment of the present invention may correspond to at least one processor or may include at least one processor. Accordingly, the prognostic prediction device 10 of synovial sarcoma may be driven in a form included in another hardware device such as a microprocessor or a general purpose computer system.
본 발명은 기능적인 블록 구성들 및 다양한 처리 단계들로 나타내어질 수 있다. 이러한 기능 블록들은 특정 기능들을 실행하는 다양한 개수의 하드웨어 또는/및 소프트웨어 구성들로 구현될 수 있다. 예를 들어, 본 발명은 하나 이상의 마이크로프로세서들의 제어 또는 다른 제어 장치들에 의해서 다양한 기능들을 실행할 수 있는, 메모리, 프로세싱, 로직(logic), 룩 업 테이블(look-up table) 등과 같은 직접 회로 구성들을 채용할 수 있다. 본 발명에의 구성 요소들이 소프트웨어 프로그래밍 또는 소프트웨어 요소들로 실행될 수 있는 것과 유사하게, 본 발명은 데이터 구조, 프로세스들, 루틴들 또는 다른 프로그래밍 구성들의 조합으로 구현되는 다양한 알고리즘을 포함하여, C, C++, 자바(Java), 어셈블러(assembler) 등과 같은 프로그래밍 또는 스크립팅 언어로 구현될 수 있다. 기능적인 측면들은 하나 이상의 프로세서들에서 실행되는 알고리즘으로 구현될 수 있다. 또한, 본 발명은 전자적인 환경 설정, 신호 처리, 및/또는 데이터 처리 등을 위하여 종래 기술을 채용할 수 있다. "메커니즘", "요소", "수단", "구성"과 같은 용어는 넓게 사용될 수 있으며, 본 발명의 구성요소들이 기계적이고 물리적인 구성들로서 한정되는 것은 아니다. 상기 용어는 프로세서 등과 연계하여 소프트웨어의 일련의 처리들(routines)의 의미를 포함할 수 있다.The invention can be represented by functional block configurations and various processing steps. Such functional blocks may be implemented in various numbers of hardware or / and software configurations that perform particular functions. For example, the present invention is an integrated circuit configuration such as memory, processing, logic, look-up table, etc., capable of executing various functions by the control of one or more microprocessors or other control devices. You can employ them. Similar to the components in the present invention may be implemented in software programming or software elements, the present invention includes various algorithms implemented in data structures, processes, routines or other combinations of programming constructs, including C, C ++ It may be implemented in a programming or scripting language such as Java, an assembler, or the like. The functional aspects may be implemented with an algorithm running on one or more processors. In addition, the present invention may employ the prior art for electronic environment setting, signal processing, and / or data processing. Terms such as "mechanism", "element", "means", "configuration" may be used widely, and the components of the present invention are not limited to mechanical and physical configurations. The term may include the meaning of a series of routines of software in conjunction with a processor or the like.
도 8을 참조하면, 활액막 육종의 예후 예측 장치(10)는 데이터 획득부(11), 인공신경망 학습부(12) 및 생존율 예측 모델 생성부(13)를 포함한다.Referring to FIG. 8, the prognostic prediction apparatus 10 of the synovial sarcoma includes a data acquirer 11, an artificial neural network learner 12, and a survival predictive model generator 13.
데이터 획득부(11)는 복수의 활액막 육종 환자들의 의료 데이터, 예컨대 임상 데이터를 및 활액막 육종 발병 후 생존 기간 데이터를 획득한다. 임상 데이터는 환자의 의료 영상으로부터 획득되거나, 환자의 검체 검사 결과로부터 획득될 수 있으나, 이에 한정되지 않는다.The data acquisition unit 11 acquires medical data of a plurality of synovial sarcoma patients, such as clinical data and survival time data after the onset of synovial sarcoma. The clinical data may be obtained from a medical image of the patient or may be obtained from a patient's specimen test result, but is not limited thereto.
인공신경망 학습부(12)는 복수의 활액막 육종 환자들의 임상 데이터와 생존 기간 데이터로부터 학습용 입력 데이터와 학습용 출력 데이터를 획득하고, 학습용 입력 데이터와 학습용 출력 데이터를 이용하여 입력층, 은닉층, 출력층을 포함하는 인공신경망을 학습시킨다. The neural network learning unit 12 obtains learning input data and learning output data from clinical data and survival data of a plurality of synovial sarcoma patients, and includes an input layer, a hidden layer, and an output layer using the learning input data and the learning output data. Learning artificial neural network.
생존율 예측 모델 생성부(13)는 학습된 인공신경망을 이용하여 활액막 육종 환자의 생존율을 예측한다. 이때 생존율을 예측한다는 것은 활액막 육종 환자의 임상 정보를 입력하면 소정의 알고리즘을 통해 상기 환자의 생존율을 산출한다는 것을 의미할 수 있다. Survival prediction model generation unit 13 predicts the survival rate of the synovial sarcoma patient using the learned artificial neural network. In this case, predicting the survival rate may mean inputting clinical information of the synovial sarcoma patient to calculate the survival rate of the patient through a predetermined algorithm.
일 실시예에 있어서, 상기 학습용 입력 데이터는 상기 복수의 활액막 육종 환자들의 나이, 성별, 종양 위치, 초기 전이(initial metastasis) 여부, 화학 요법(chemotherapy) 시술 여부, 방사선 치료(radiation therapy) 여부, 절제면(resection margin) 양성 여부 및 병리학적 아형(subtype) 데이터를 포함할 수 있다. In one embodiment, the learning input data is age, sex, tumor location, initial metastasis, whether chemotherapy, radiation therapy, ablation of the plurality of synovial sarcoma patients Resection margin positive and pathological subtype data.
일 실시예에 있어서, 인공신경망 학습부(12)는, k-최근접 이웃 알고리즘(k-nearest neighbor algorithm: knn)을 이용하여 결측치(missing data, NaN)를 추가할 수 있다. In one embodiment, the neural network learning unit 12 may add missing data (NaN) using a k-nearest neighbor algorithm (knn).
일 실시예에 있어서, 인공신경망 학습부(12)는, 시간 구간(time interval) 별로 상기 인공신경망을 학습시킬 수 있다. In one embodiment, the artificial neural network learning unit 12 may learn the artificial neural network for each time interval.
일 실시예에 있어서, 생존율 예측 모델 생성부(13)는, 상기 임상 데이터 및 상기 복수의 활액막 육종 환자들의 N번째 구간 생존 기간 데이터를 이용하여 N번째 구간 생존율 예측 모델을 생성하고, 상기 N번째 구간 생존율 예측 모델로부터 얻은 N번째 구간 생존율 예측 데이터 및 상기 복수의 활액막 육종 환자들의 N+1번째 구간 생존 기간 데이터를 이용하여 N+1번째 구간 생존율 예측 모델을 생성할 수 있다. In one embodiment, the survival prediction model generation unit 13 generates an Nth section survival prediction model by using the clinical data and the Nth section survival period data of the plurality of synovial sarcoma patients, and the Nth section The N + 1 section survival prediction model may be generated using the N th section survival prediction data obtained from the survival prediction model and the N + 1 section survival time data of the plurality of synovial sarcoma patients.
일 실시예에 있어서, 생존율 예측 모델 생성부(13)는, 상기 N번째 구간 생존율 예측 모델을 생성할 때 상기 N번째 구간 생존 기간 데이터에 대하여 생존 기간에 따른 스코어를 부여할 수 있다. In one embodiment, the survival prediction model generation unit 13 may assign a score according to the survival period to the N-th section survival period data when generating the N-th section survival rate prediction model.
일 실시예에 있어서, 상기 스코어는 상기 N번째 구간의 생존 기간에 비례할 수 있다. In one embodiment, the score may be proportional to the survival period of the N-th section.
한편, 도 1에 도시된 본 발명의 일 실시예에 따른 인공신경망을 이용한 활액막 육종의 예후 예측 방법은 컴퓨터에서 실행될 수 있는 프로그램으로 작성할 수 있고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드 디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.Meanwhile, the prognosis prediction method of synovial sarcoma using an artificial neural network according to an embodiment of the present invention shown in FIG. 1 may be written as a program that can be executed by a computer, and the program may be executed using a computer-readable recording medium. It can be implemented in a general purpose digital computer to operate. The computer-readable recording medium may include a storage medium such as a magnetic storage medium (eg, a ROM, a floppy disk, a hard disk, etc.) and an optical reading medium (eg, a CD-ROM, a DVD, etc.).
본 발명에 따른 인공신경망을 이용한 활액막 육종의 예후 예측 방법, 장치 및 프로그램에 따르면, 활액막 육종 환자의 예후를 개개인별로 정확하게 예측할 수 있다. 그뿐만 아니라, 학습된 인공신경망을 이용하여 각 치료 방법에 의한 예후를 시뮬레이션할 수 있으므로 환자별 맞춤형 치료 방법을 결정할 수 있다.According to the method, apparatus and program for predicting prognosis of synovial sarcoma using the artificial neural network according to the present invention, it is possible to accurately predict the prognosis of the synovial sarcoma patient for each individual. In addition, the prognosis of each treatment method can be simulated using the learned artificial neural network, so that the treatment method tailored to each patient can be determined.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
본 발명은 인공신경망을 이용하여 활액막 육종의 예후를 예측하는 방법, 장치 및 프로그램에 관한 것으로, 병의 예후를 예측하는 산업에 이용될 수 있다. The present invention relates to a method, apparatus, and program for predicting the prognosis of synovial sarcoma using an artificial neural network, and may be used in an industry for predicting the prognosis of a disease.

Claims (15)

  1. 복수의 활액막 육종 환자들의 임상 데이터 및 생존 기간 데이터를 획득하는 단계;Obtaining clinical data and survival data of the plurality of synovial sarcoma patients;
    상기 임상 데이터와 상기 생존 기간 데이터로부터 학습용 입력 데이터와 학습용 출력 데이터를 획득하는 단계; 및Acquiring training input data and training output data from the clinical data and the survival data; And
    상기 학습용 입력 데이터와 상기 학습용 출력 데이터를 이용하여 입력층, 은닉층, 출력층을 포함하는 인공신경망을 학습시켜 활액막 육종 환자의 생존율을 예측하는 모델을 생성하는 단계;를 포함하는, 인공신경망을 이용한 활액막 육종의 예후 예측 방법. Learning a neural network including an input layer, a hidden layer, and an output layer using the training input data and the training output data to generate a model for predicting survival rate of synovial sarcoma patient; including, synovial sarcoma using an artificial neural network Prognosis prediction method.
  2. 제1항에 있어서, The method of claim 1,
    상기 학습용 입력 데이터는 상기 복수의 활액막 육종 환자들의 나이, 성별, 종양 위치, 초기 전이(initial metastasis) 여부, 화학 요법(chemotherapy) 시술 여부, 방사선 치료(radiation therapy) 여부, 절제면(resection margin) 양성 여부 및 병리학적 아형(subtype) 데이터를 포함하는, 인공신경망을 이용한 활액막 육종의 예후 예측 방법.The learning input data may include age, sex, tumor location, initial metastasis, chemotherapy, radiation therapy, and section margin of the synovial sarcoma. A method for predicting prognosis of synovial sarcoma using an artificial neural network, including whether or not and pathological subtype data.
  3. 제1항에 있어서, The method of claim 1,
    상기 임상 데이터와 상기 생존 기간 데이터로부터 각각 학습용 입력 데이터와 학습용 출력 데이터를 획득하는 단계는, Acquiring learning input data and learning output data from the clinical data and the survival period data, respectively.
    k-최근접 이웃 알고리즘(k-nearest neighbor algorithm: knn)을 이용하여 결측치(missing data, NaN)를 추가하는 단계를 포함하는, 인공신경망을 이용한 위암의 예후 예측 방법.A method for predicting prognosis of gastric cancer using an artificial neural network, comprising adding missing data (NaN) using a k-nearest neighbor algorithm (knn).
  4. 제1항에 있어서, The method of claim 1,
    상기 생존율을 예측하는 모델을 생성하는 단계는, 시간 구간(time interval) 별로 상기 인공신경망을 학습시키는 단계를 포함하는, 인공신경망을 이용한 활액막 육종의 예후 예측 방법.Generating the model for predicting the survival rate, the step of learning the artificial neural network for each time interval (time interval), the prognostic prediction method of synovial sarcoma using artificial neural network.
  5. 제1항에 있어서, The method of claim 1,
    상기 생존율을 예측하는 모델을 생성하는 단계는,Generating the model for predicting the survival rate,
    상기 임상 데이터 및 상기 복수의 활액막 육종 환자들의 N번째 구간 생존 기간 데이터를 이용하여 N번째 구간 생존율 예측 모델을 생성하는 단계; 및Generating an N-th section survival prediction model using the clinical data and the N-th section survival time data of the plurality of synovial sarcoma patients; And
    상기 N번째 구간 생존율 예측 모델로부터 얻은 N번째 구간 생존율 예측 데이터 및 상기 복수의 활액막 육종 환자들의 N+1번째 구간 생존 기간 데이터를 이용하여 N+1번째 구간 생존율 예측 모델을 생성하는 단계;를 포함하는, 인공신경망을 이용한 활액막 육종의 예후 예측 방법.Generating an N + 1th interval survival prediction model using Nth interval survival prediction data obtained from the Nth interval survival prediction model and N + 1th interval survival time data of the plurality of synovial sarcoma patients. , Prognostic Prediction of Synovial Sarcoma Using Artificial Neural Networks.
  6. 제5항에 있어서,The method of claim 5,
    상기 N번째 구간 생존율 예측 모델을 생성하는 단계는, Generating the N-th interval survival prediction model,
    상기 N번째 구간 생존 기간 데이터에 대하여 생존 기간에 따른 스코어를 부여하는 단계;를 더 포함하는, 인공신경망을 이용한 활액막 육종의 예후 예측 방법.Providing a score according to the survival period for the N-th section survival time data; further comprising, prognostic prediction method of synovial sarcoma using an artificial neural network.
  7. 제6항에 있어서,The method of claim 6,
    상기 스코어는 상기 N번째 구간의 생존 기간에 비례하는, 인공신경망을 이용한 활액막 육종의 예후 예측 방법.The score is proportional to the survival period of the N-th interval, prognostic prediction method of synovial sarcoma using an artificial neural network.
  8. 복수의 활액막 육종 환자들의 임상 데이터 및 생존 기간 데이터를 획득하는 데이터 획득부;A data acquisition unit for acquiring clinical data and survival time data of a plurality of synovial sarcoma patients;
    상기 임상 데이터와 상기 생존 기간 데이터로부터 학습용 입력 데이터와 학습용 출력 데이터를 획득하고, 상기 학습용 입력 데이터와 상기 학습용 출력 데이터를 이용하여 입력층, 은닉층, 출력층을 포함하는 인공신경망을 학습시키는 인공신경망 학습부; 및An artificial neural network learning unit which acquires learning input data and learning output data from the clinical data and the survival period data, and learns an artificial neural network including an input layer, a hidden layer, and an output layer by using the learning input data and the learning output data. ; And
    상기 학습된 인공신경망을 이용하여 활액막 육종 환자의 생존율을 예측하는 모델을 생성하는 생존율 예측 모델 생성부;를 포함하는, 인공신경망을 이용한 활액막 육종의 예후 예측 장치. Survival prediction model generation unit for generating a model for predicting the survival rate of the synovial sarcoma patient using the learned artificial neural network; comprising, a prognostic system for synovium sarcoma using artificial neural network.
  9. 제8항에 있어서, The method of claim 8,
    상기 학습용 입력 데이터는 상기 복수의 활액막 육종 환자들의 나이, 성별, 종양 위치, 초기 전이(initial metastasis) 여부, 화학 요법(chemotherapy) 시술 여부, 방사선 치료(radiation therapy) 여부, 절제면(resection margin) 양성 여부 및 병리학적 아형(subtype) 데이터를 포함하는, 인공신경망을 이용한 활액막 육종의 예후 예측 장치.The learning input data may include age, sex, tumor location, initial metastasis, chemotherapy, radiation therapy, and section margin of the synovial sarcoma. An apparatus for predicting prognosis of synovial sarcoma using an artificial neural network, including whether or not and pathological subtype data.
  10. 제8항에 있어서, The method of claim 8,
    상기 인공신경망 학습부는, k-최근접 이웃 알고리즘(k-nearest neighbor algorithm: knn)을 이용하여 결측치(missing data, NaN)를 추가하는, 인공신경망을 이용한 활액막 육종의 예후 예측 장치.The artificial neural network learning unit adds missing data (NaN) by using a k-nearest neighbor algorithm (knn). The apparatus for predicting prognosis of synovial sarcoma using an artificial neural network.
  11. 제8항에 있어서, The method of claim 8,
    상기 인공신경망 학습부는, 시간 구간(time interval) 별로 상기 인공신경망을 학습시키는, 인공신경망을 이용한 활액막 육종의 예후 예측 장치.The artificial neural network learning unit, to predict the prognosis of synovial sarcoma using the artificial neural network, which learns the artificial neural network for each time interval (time interval).
  12. 제8항에 있어서, The method of claim 8,
    상기 생존율 예측 모델 생성부는The survival rate prediction model generator
    상기 임상 데이터 및 상기 복수의 활액막 육종 환자들의 N번째 구간 생존 기간 데이터를 이용하여 N번째 구간 생존율 예측 모델을 생성하고, Generating an N-th section survival prediction model using the clinical data and the N-th section survival time data of the plurality of synovial sarcoma patients,
    상기 N번째 구간 생존율 예측 모델로부터 얻은 N번째 구간 생존율 예측 데이터 및 상기 복수의 활액막 육종 환자들의 N+1번째 구간 생존 기간 데이터를 이용하여 N+1번째 구간 생존율 예측 모델을 생성하는, 인공신경망을 이용한 활액막 육종의 예후 예측 장치.N-segment survival prediction model is generated by using N-segment survival prediction data obtained from the N-segment survival rate prediction model and N + 1-segment survival period data of the plurality of synovial sarcoma patients. Device for predicting prognosis of synovial sarcoma.
  13. 제12항에 있어서,The method of claim 12,
    상기 생존율 예측 모델 생성부는,The survival rate prediction model generator,
    상기 N번째 구간 생존율 예측 모델을 생성할 때 상기 N번째 구간 생존 기간 데이터에 대하여 생존 기간에 따른 스코어를 부여하는, 인공신경망을 이용한 활액막 육종의 예후 예측 장치.When generating the N-th section survival rate prediction model, the prognosis prediction device of synovial sarcoma using an artificial neural network, which gives a score according to the survival period to the N-th section survival period data.
  14. 제13항에 있어서,The method of claim 13,
    상기 스코어는 상기 N번째 구간의 생존 기간에 비례하는, 인공신경망을 이용한 활액막 육종의 예후 예측 장치.The score is proportional to the survival period of the N-th interval, prognostic prediction device of synovial sarcoma using an artificial neural network.
  15. 컴퓨터를 이용하여 제1항 내지 제5항 중 어느 한 항의 방법을 실행하기 위하여 매체에 저장된 컴퓨터 프로그램. A computer program stored in a medium for executing the method of any one of claims 1 to 5 using a computer.
PCT/KR2017/004189 2017-03-16 2017-04-19 Method, device, and program for predicting prognosis of synovial sarcoma by using artificial neural network WO2018169121A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0033206 2017-03-16
KR1020170033206A KR102172374B1 (en) 2017-03-16 2017-03-16 Apparatus, Method and Computer Program for Predicting the Prognosis of Synovial Sarcoma Using Artificial Neural Network

Publications (1)

Publication Number Publication Date
WO2018169121A1 true WO2018169121A1 (en) 2018-09-20

Family

ID=63523221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004189 WO2018169121A1 (en) 2017-03-16 2017-04-19 Method, device, and program for predicting prognosis of synovial sarcoma by using artificial neural network

Country Status (2)

Country Link
KR (1) KR102172374B1 (en)
WO (1) WO2018169121A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102440817B1 (en) * 2020-02-19 2022-09-06 사회복지법인 삼성생명공익재단 Reinforcement learning method, device, and program for identifying causal effect in logged data
KR102444919B1 (en) * 2020-05-29 2022-09-19 서울여자대학교 산학협력단 Method, system and program for deep learning-based cancer prognosis prediction through image analysis around the tumor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060009861A (en) * 2003-04-23 2006-02-01 에자이 가부시키가이샤 Method of creating disease prognosis model, method of predicting disease prognosis using the model, device for predicting disease prognosis using the model, its program, and recording medium
KR20140141520A (en) * 2013-05-30 2014-12-10 가톨릭대학교 산학협력단 Method and system for predicting high risk based on patient safety

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060009861A (en) * 2003-04-23 2006-02-01 에자이 가부시키가이샤 Method of creating disease prognosis model, method of predicting disease prognosis using the model, device for predicting disease prognosis using the model, its program, and recording medium
KR20140141520A (en) * 2013-05-30 2014-12-10 가톨릭대학교 산학협력단 Method and system for predicting high risk based on patient safety

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DELEN, DURSUN ET AL.: "Predicting Breast Cancer Survivability: a Comparison of Three Data Mining Methods", ARTIFICIAL INTELLIGENCE IN MEDICINE, vol. 34, no. 2, 15 July 2004 (2004-07-15), pages 113 - 127, XP055548035, Retrieved from the Internet <URL:http://www.sciencedirect.com/science/article/pii/S0933365704001010> *
KOUROU, KONSTANTINA ET AL.: "Machine Learning Applications in Cancer Prognosis and Prediction", RESEARCH NETWORK OF COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY, vol. 13, 15 November 2014 (2014-11-15), pages 8 - 17, XP055487700, Retrieved from the Internet <URL:http://www.sciencedirect.com/science/article/pii/S2001037014000464> *
SEO, SUNG WOOK: "Prediction of Mortality in Synovial Sarcoma Using Machine Learning Algorithm and Its Clinical Application", 21 October 2016 (2016-10-21), Retrieved from the Internet <URL:http://submissions.niirasmartcom/Veriiy/AAOS2017/submission/temp/rad10EB6.pdf> *

Also Published As

Publication number Publication date
KR102172374B1 (en) 2020-10-30
KR102172374B9 (en) 2021-07-26
KR20180105905A (en) 2018-10-01

Similar Documents

Publication Publication Date Title
WO2018143540A1 (en) Method, device, and program for predicting prognosis of stomach cancer by using artificial neural network
Demir DeepCoroNet: A deep LSTM approach for automated detection of COVID-19 cases from chest X-ray images
WO2018124854A1 (en) Device and method for predicting disease risk of chronic kidney disease
Pawar et al. Breast cancer detection using neural network models
WO2018169121A1 (en) Method, device, and program for predicting prognosis of synovial sarcoma by using artificial neural network
WO2019172498A1 (en) Computer-aided diagnosis system for providing tumor malignancy and basis of malignancy inference and method therefor
WO2021230534A1 (en) Orbital and periorbital lesion prediction apparatus and prediction method therefor
Eroğlu et al. Automatic detection of eardrum otoendoscopic images in patients with otitis media using hybrid‐based deep models
Ibraheem et al. A new model for large dataset dimensionality reduction based on teaching learning-based optimization and logistic regression
CN110916666B (en) Imaging omics feature processing method for predicting recurrence of hepatocellular carcinoma after surgical resection
WO2022124724A1 (en) Machine-learning-based prognosis prediction method and device therefor
WO2018147653A1 (en) Method, device and computer program for generating survival rate prediction model
Venkatapurapu et al. A computational platform integrating a mechanistic model of Crohn’s disease for predicting temporal progression of mucosal damage and healing
Filipescu et al. Deep‐learning approach in the study of skin lesions
US20230207128A1 (en) Processing encrypted data for artificial intelligence-based analysis
Saad et al. Learning-based cancer treatment outcome prognosis using multimodal biomarkers
Yang et al. An interactive prediction system of breast cancer based on ResNet50, chatbot and PyQt
WO2021137471A1 (en) Disease prediction method, apparatus, and computer program
WO2022173201A2 (en) Method for prognosis of type 2 diabetes mellitus after stomach cancer surgery
WO2023003315A1 (en) System and method for predicting early discontinuation of treatment of outpatient with alcohol use disorder
Charulatha et al. Computer-Aided Design for skin disease Identification and Categorization Using Image Processing
Mirarchi et al. Data mining techniques for vestibular data classification
WO2023191564A1 (en) Device and method for predicting disease of interest on basis of deep neural network, and computer-readable program therefor
WO2022173232A2 (en) Method and system for predicting risk of occurrence of lesion
WO2022114823A1 (en) Method for assisting artificial intelligence reading using visual information-based reference search technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900912

Country of ref document: EP

Kind code of ref document: A1