WO2018168889A1 - Method for producing polyether compound - Google Patents

Method for producing polyether compound Download PDF

Info

Publication number
WO2018168889A1
WO2018168889A1 PCT/JP2018/009838 JP2018009838W WO2018168889A1 WO 2018168889 A1 WO2018168889 A1 WO 2018168889A1 JP 2018009838 W JP2018009838 W JP 2018009838W WO 2018168889 A1 WO2018168889 A1 WO 2018168889A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyether compound
group
producing
less
molecular weight
Prior art date
Application number
PCT/JP2018/009838
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 幸生
妙子 中野
忠 氣仙
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2018168889A1 publication Critical patent/WO2018168889A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used
    • C08G65/12Saturated oxiranes characterised by the catalysts used containing organo-metallic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/24Polyethers

Definitions

  • the present invention relates to a method for producing a high molecular weight polyether compound, a method for producing a viscosity index improver containing the polyether compound, and a method for producing a lubricating oil composition.
  • Polyether compounds such as polyalkylene glycols (hereinafter also simply referred to as “PAG”) are widely used as raw materials for polyurethane products such as elastomers, adhesives and sealants, and functional oils.
  • PAG is produced, for example, by addition polymerization of oxirane monomers such as ethylene oxide and propylene oxide to an initiator having active hydrogen atoms such as various alcohols.
  • an alkali metal alkoxide catalyst, a double metal cyanide complex, or the like is generally used (see, for example, Patent Document 1).
  • these catalysts when these catalysts are used, unsaturated alcohols are produced by side reactions, and the alcohols serve as initiators, so that it is generally difficult to produce high molecular weight PAGs.
  • Patent Document 2 in order to obtain a high molecular weight PAG in a short reaction, oxirane is polymerized in the presence of an alkali metal alkoxide catalyst and aluminum organyl, and at the time of the polymerization, crown ether and cryptand are used. It is disclosed that they are not used together.
  • Patent Document 3 discloses a method using a trialkylaluminum and an onium salt initiator in order to obtain a polymer containing an oxirane monomer unit having a high molecular weight and a narrow molecular weight distribution.
  • Patent Documents 2 and 3 only disclose a PAG having a weight average molecular weight (Mw) of less than 100,000, and further high molecular weight is desired in order to obtain a high-performance viscosity index improver. .
  • the present invention has been made in view of the above problems, and an object of the present invention is to produce a high molecular weight polyether compound.
  • component (A) organoaluminum
  • component (B) onium salt
  • An organoaluminum (A) and an onium salt (B) A method for producing a polyether compound, comprising a step of polymerizing an oxirane monomer using a molar ratio [A / B] of component (A) to component (B) of 3 or more and 60 or less. .
  • R 1 represents a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms having 1 to 4 bonds
  • R 7 O is derived from an oxirane monomer.
  • R 8 represents a structural unit, and R 8 represents a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or an oxygen-containing hydrocarbon group having 1 to 10 carbon atoms.
  • m is a value at which the weight average molecular weight of the polyether compound is 100,000 or more
  • n is an integer of 1 or more and 4 or less.
  • a plurality of R 7 Os may be the same as or different from each other. When n is 2 or more, a plurality of R 8 may be the same or different from each other.
  • a method for producing a viscosity index improver comprising a step of diluting the polyether compound obtained by the production method according to [1] or the polyether compound according to [2] with a base oil.
  • a method for producing a lubricating oil composition comprising a step of blending the polyether compound obtained by the production method according to [1] above or the polyether compound according to [2] above into a lubricating base oil.
  • a viscosity index improver comprising the polyether compound obtained by the production method according to [1] or the polyether compound according to [2].
  • a lubricating oil composition comprising the polyether compound obtained by the production method according to the above [1] or the polyether compound according to the above [2] and a lubricating base oil.
  • [7] A method in which the polyether compound obtained by the production method described in [1] above or the polyether compound described in [2] above is added to a lubricating oil composition to improve the viscosity index.
  • a refrigerator filled with the lubricating oil composition obtained by the production method according to [4] or the lubricating oil composition according to [6].
  • An internal combustion engine filled with the lubricating oil composition obtained by the production method according to [4] or the lubricating oil composition according to [6].
  • An industrial apparatus filled with the lubricating oil composition obtained by the production method according to [4] or the lubricating oil composition according to [6].
  • the present invention will be described using embodiments.
  • Method for producing polyether compound In the method for producing a polyether compound according to an embodiment of the present invention, the organic aluminum (A) and the onium salt (B) are mixed in a quantity ratio [A / B] of the component (A) and the component (B). It is a method for producing a polyether compound having a step of polymerizing an oxirane monomer using a molar ratio of 3 or more and 60 or less.
  • the organoaluminum (A) is preferably a trialkylaluminum, more preferably a trialkylaluminum having an alkyl group having 1 to 18 carbon atoms, and even more preferably a trialkylaluminum having an alkyl group having 1 to 8 carbon atoms.
  • Component (A) serves as a catalyst in the polymerization reaction in the production method.
  • the alkyl group in component (A) may be branched or linear. Moreover, the alkyl groups contained in one molecule may be the same or different from each other.
  • Component (A) is preferably trimethylaluminum, triethylaluminum, tri-n-butylaluminum or triisobutylaluminum, more preferably triisobutylaluminum.
  • a component (A) may be used independently and may be used in combination of 2 or more type.
  • the trialkylaluminum may be diluted with a solvent such as hexane or toluene.
  • the amount of component (A) used is such that the amount ratio [A / B] of component (A) to component (B) is 3 to 60 in terms of molar ratio.
  • the ratio [A / B] is 3 or more and 60 or less in terms of molar ratio, a high molecular weight polyether compound can be produced.
  • the ratio [A / B] is preferably 5 or more, more preferably 6 or more, still more preferably 7 or more, and preferably 50 or less, more preferably 40 or less, in terms of molar ratio. More preferably, it is 30 or less.
  • the polymerization reaction of the oxirane monomer is carried out under the conditions of 10 ° C.
  • the ratio [A / B] is preferably 5 or more, more preferably 6 or more, still more preferably 7 or more, and preferably 30 or less, more preferably 25 or less, and still more preferably 20 or less. It is.
  • Onium salt (B) serves as a polymerization initiator in the polymerization reaction in the production method.
  • Examples of the component (B) include a halogen-free onium salt and a halogen-containing onium salt, and a halogen-free onium salt is preferable.
  • the halogen-free onium salt is an onium salt having no halogen atom in the onium salt.
  • the onium salt serving as a polymerization initiator does not have a halogen atom, the resulting polyether compound does not contain a halogen atom at the polymerization initiation terminal. Therefore, it is preferable when obtaining a polyether compound having a lower halogen content.
  • the halogen-free onium salt includes, for example, a halogen-free ammonium salt, and preferably includes a compound represented by the following general formula (1).
  • R 1 is a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms having 1 to 4 bonds
  • R 2 is a linear or branched carbon atom having 4 or more carbon atoms. 8 or less alkyl group
  • n is an integer of 1 or more and 4 or less.
  • n is an integer of 1 or more and 2 or less, and R 1 preferably has 1 or more and 2 or less bonding portions, and n is 1.
  • R 1 is more preferably a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the carbon number of R 2 is preferably 4 or more and 6 or less, and more preferably 4.
  • R 1 examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a neopentyl group, linear or branched alkyl groups such as tert-pentyl group, n-hexyl group, methylpentyl group and isohexyl group; from polyhydric alcohols such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane and pentaerythritol A linear or branched saturated hydrocarbon group having 2 or more and 4 or less bonds, exemplified by a residue excluding a hydroxyl group.
  • R 2 examples include n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, isobutyl, sec-butyl, tert-butyl, isopentyl, Examples thereof include linear or branched alkyl groups such as neopentyl group, tert-pentyl group, methylpentyl group, isohexyl group and 2-ethylhexyl group, preferably linear or branched butyl group, linear or branched octyl Groups and the like.
  • a plurality of R 2 may be the same as each other or different from each other.
  • a plurality of R 2 are preferably the same as each other.
  • the halogen-free onium salt is synthesized, for example, by reacting an alkali metal alkoxide with a quaternary ammonium salt.
  • the alkali metal alkoxide can be obtained by alkoxylating an alcohol with an alkali metal hydride.
  • the alkyl group of the alcohol to be used is changed according to the carbon number of R 1 , and those having 1 to 6 carbon atoms are used.
  • the alkyl group may be linear or branched.
  • an alcohol having a valence of 1 to 4 is used.
  • propane and pentaerythritol examples include propane and pentaerythritol.
  • the quaternary ammonium salt include tetrabutylammonium chloride, tetrabutylammonium bromide, tetraoctylammonium chloride, and tetraoctylammonium bromide.
  • Halogen-containing onium salt As said halogen-containing onium salt, a halogen-containing ammonium salt is mentioned, for example, Preferably, the compound represented by following General formula (2) is mentioned.
  • X represents a halogen atom
  • R 3 to R 6 each independently represents an alkyl group having 1 to 8 carbon atoms.
  • the halogen atom represented by X includes at least one halogen atom selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a chlorine atom or a bromine atom. Preferably it is a chlorine atom.
  • the alkyl group having 1 to 8 carbon atoms represented by R 3 to R 6 is independently more preferably 1 to 5 carbon atoms, and still more preferably 1 to 4 carbon atoms.
  • the alkyl group may be linear, branched, or cyclic, and is preferably linear.
  • alkyl group having 1 to 8 carbon atoms examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, isopropyl group, isobutyl group, sec-butyl group, Examples thereof include a tert-butyl group, an isopentyl group, a neopentyl group, a tert-pentyl group, a methylpentyl group, an isohexyl group, and a 2-ethylhexyl group.
  • a methyl group, an ethyl group, a propyl group, a butyl group, and an octyl group are preferable, and a methyl group, an ethyl group, a propyl group, and a butyl group are more preferable.
  • a plurality of R 3 to R 6 are preferably the same as each other.
  • halogen-containing onium salt examples include, for example, tetramethylammonium chloride, tetramethylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium bromide, tetraoctylammonium chloride, tetraoctylammonium bromide, and preferably composed of these.
  • At least one selected from the group more preferably at least one selected from the group consisting of tetrabutylammonium bromide, tetraoctylammonium chloride, tetraoctylammonium bromide, and tetrabutylammonium chloride, more preferably tetrabutylammonium chloride or tetra Butylammonium bromide.
  • Component (B) may be used in an amount that varies depending on the molecular weight of the desired polyether compound, but is preferably 0.005 mol% or more and 0.150 mol% with respect to all monomers in the reaction system. Or less, more preferably 0.010 mol% or more and 0.100 mol% or less, still more preferably 0.010 mol% or more and 0.060 mol% or less, still more preferably 0.010 mol% or more and 0.030 mol% or less. It is. By making the usage-amount of onium salt more than these lower limits, it becomes possible to advance a polymerization reaction appropriately by using onium salt as an initiator. Moreover, the molecular weight of the polyether compound obtained becomes high enough by setting it as these upper limit values or less.
  • the halogen-containing onium salt may be used in an amount that varies depending on the desired molecular weight. Preferably it is 0.0002 mass% (2 mass ppm) or more and 1.000 mass% (10,000 mass ppm) or less with respect to the total amount with containing onium salt, More preferably, it is 0.0010 mass% (10 mass ppm) ) Or more and 0.5000 mass% (5,000 mass ppm) or less, more preferably 0.0020 mass% (20 mass ppm) or more and 0.2000 mass% (2,000 mass ppm) or less, still more preferably 0.00.
  • a component (B) may be used independently and may be used in combination of 2 or more type.
  • the oxirane monomer is a compound having a hetero 3-membered ring (hereinafter also referred to as “3-membered ether structure”) composed of 2 carbon atoms and 1 oxygen atom.
  • the oxirane monomer those having no halogen atom in the molecule are preferably used.
  • the oxirane monomer include ethylene oxide, alkylene oxide having a chain or branched alkyl group, alkylene oxide having a chain or branched alkenyl group, alicyclic epoxide, alkyl glycidyl ether, and aromatic epoxide. Can be mentioned.
  • the alkylene oxide having a chain or branched alkyl group is not particularly limited as long as the alkyl group is a compound in which the alkyl group is bonded to a carbon atom of a three-membered ring ether structure.
  • propylene oxide 1,2-epoxy Butane, 1,2-epoxyisobutane, 2,3-epoxybutane, 1,2-epoxypentane, 1,2-epoxyhexane, 1,2-epoxyheptane, 1,2-epoxyoctane, 1,2-epoxynonane 1,2-epoxydecane, 1,2-epoxyundecane, 1,2-epoxydodecane, 1,2-epoxytridecane, 1,2-epoxytetradecane, 1,2-epoxypentadecane, 1,2-epoxyhexadecane 1,2-epoxyheptadecane, 1,2-epoxyoctadecane, 1,2-epoxy
  • the alkylene oxide having a chain or branched alkenyl group is not particularly limited as long as it is a compound in which the alkenyl group is bonded to a carbon atom of a 3-membered ring ether structure.
  • 2-vinyloxirane, 2-allyl Examples include oxirane, 2-isopropenyloxirane, 2- (3-butenyloxirane), 2- (5-hexenyloxirane), and 2- (7-octenyloxirane).
  • An alkylene oxide having a chain or branched alkyl group and an alkenyl group may be used, and examples thereof include 2-methyl-2-isopropenyloxirane and 2-methyl-2-allyloxirane.
  • Examples of the alicyclic epoxide include compounds in which a cycloalkyl group is bonded to a carbon atom of a 3-membered ring ether structure.
  • 1,2-epoxycyclopentane, 1,2-epoxycyclohexane, 1,2 -5 carbon atoms such as epoxycycloheptane, 1,2-epoxycyclooctane, 1,2-epoxycyclononane, 1,2-epoxycyclodecane, 1,2-epoxycycloundecane, 1,2-epoxycyclododecane, etc.
  • the alicyclic epoxide of 12 or less is mentioned.
  • alkyl glycidyl ether examples include methyl glycidyl ether, ethyl glycidyl ether, and butyl glycidyl ether
  • aromatic epoxide examples include styrene oxide and phenyl glycidyl ether. These may be used alone or in combination of two or more.
  • the polyether compound has a structure similar to that of a conventionally used PAG, and various In various fields. For example, in the lubricating oil field, it is suitably used as a viscosity index improver.
  • ethylene oxide, propylene oxide, 1,2-epoxybutane, 1,2-epoxyisobutane, and 2,3-epoxybutane preferably one or more selected from the group consisting of ethylene oxide, propylene oxide, 1,2-epoxybutane, 1,2-epoxyisobutane, and 2,3-epoxybutane, more preferably ethylene oxide, propylene oxide.
  • 1,2-epoxybutane more preferably propylene oxide, 1,2-epoxybutane or a mixture thereof, and still more preferably propylene oxide.
  • the oxirane monomer may be an oxirane monomer having a halogen atom.
  • the oxirane monomer having a halogen atom include a compound containing at least one halogen atom selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom and a three-membered ring ether structure.
  • epihalohydrins such as epifluorohydrin, epichlorohydrin, epibromohydrin, epiiodohydrin, ⁇ -methylepichlorohydrin; p-chlorostyrene oxide, dibromophenylglycidyl ether, Tetrafluoroethylene oxide, hexafluoropropylene oxide, perfluorophenyl glycidyl ether and the like can be mentioned.
  • epihalohydrin is preferable and epichlorohydrin is more preferable.
  • the synthesis of the polyether compound is performed by ring-opening polymerization of an oxirane monomer in the presence of the component (A) and the component (B).
  • the polymerization reaction is usually performed by mixing these raw materials in the reaction system.
  • the raw materials are mixed, for example, by adding the onium salt (B) dissolved in the oxirane monomer to the organoaluminum (A) previously charged in the reaction system, and then further adding the oxirane monomer. Preferably it is done.
  • the organic aluminum (A) is further charged, and the onium salt previously dissolved in the oxirane monomer with respect to the mixture of the solvent and the organic aluminum (A).
  • the polymerization reaction may be performed by adding an oxirane monomer to a mixture of the organoaluminum (A) and the onium salt (B) previously charged in the reaction system, or the onium salt (B) and An organic aluminum (A) may be added to a mixture of oxirane monomers.
  • the polymerization reaction is not particularly limited, but it is preferably performed in the presence of a solvent. By carrying out in the presence of a solvent, it becomes easy to control polymerization, and it becomes easy to produce a high molecular weight polyether compound.
  • the solvent is not particularly limited as long as it is inert to the raw material.
  • chain saturated hydrocarbon solvents such as n-pentane, n-hexane, n-heptane and n-octane; isooctane
  • Branched-chain saturated hydrocarbon solvents such as cycloaliphatic saturated hydrocarbon solvents such as cyclopentane and cyclohexane
  • saturated hydrocarbon solvents such as benzene and toluene
  • aromatic hydrocarbon solvents such as benzene and toluene
  • monoethers Ether solvents such as diether, triether, tetraether, polyvinyl ether, polyalkylene glycols, and the like.
  • examples of the monoether include dialkyl ethers in which the alkyl group has 1 to 12 carbon atoms.
  • a dialkyl diether having an alkyl group having 1 to 12 carbon atoms is used, such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol and the like.
  • dialkyl ethers of alkanediols examples of the triether and tetraether include trivalent or tetravalent alcohol alkyl ethers such as glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol.
  • solvents it is preferable to use a saturated hydrocarbon solvent from the viewpoint of easy production of a higher molecular weight polyether compound.
  • solvents may be used alone or in combination of two or more.
  • the “solvent” refers to a solvent added to the reaction system in order to synthesize the polyether compound by polymerizing the oxirane monomer.
  • solvents which are previously contained in additives other than the oxirane monomer such as catalyst (component (A)) and polymerization initiator (component (B))
  • Solvents containing agents are not included in the “solvent” mentioned here.
  • the molar amount of the monomer with respect to 1 L of the solvent is preferably 0.10 mol / L or more and 10.00 mol / L or less, more preferably 1.00 mol / L or more and 8.00 mol / L or less, More preferably, it is added to the reaction system so as to be 1.00 mol / L or more and 4.00 mol / L or less.
  • the amount of the solvent used in the reaction system is such that the molar amount of the oxirane monomer relative to 1 L of the solvent is preferably 0.50 mol / mol from the viewpoint of making it easier to produce a high molecular weight polyether compound.
  • L or more more preferably 1.00 mol / L or more, further preferably 2.00 mol / L or more, still more preferably 2.50 mol / L or more, and preferably 8.00 mol / L or less. More preferably, it is 6.00 mol / L or less, More preferably, it is 5.00 mol / L or less, More preferably, it is 4.50 mol / L or less.
  • Conditions for carrying out the polymerization reaction of the oxirane monomer can be appropriately set according to the type of raw material used, the target molecular weight, and the like.
  • the pressure during the polymerization reaction is usually atmospheric pressure.
  • the temperature at which the oxirane monomer is polymerized can be, for example, -30 ° C. or more and 100 ° C. or less, but for example, higher than the weight average molecular weight (Mw) of 100,000 or more. From the viewpoint of obtaining a polyether compound having a molecular weight, it is preferably ⁇ 30 ° C. or higher, more preferably ⁇ 20 ° C. or higher, still more preferably ⁇ 15 ° C. or higher, and preferably 30 ° C.
  • a high-molecular weight polyether compound can be obtained even under mild conditions of about room temperature. From the viewpoint of workability and safety during the polymerization reaction, and from the viewpoint of industrialization, it is preferable to polymerize the oxirane compound under milder conditions to obtain a high molecular weight polyether compound.
  • the temperature at which the oxirane monomer is polymerized in the production method is preferably ⁇ 10 ° C. or more, more preferably ⁇ 5 ° C. or higher, more preferably 0 ° C. or higher, even more preferably 5 ° C. or higher, even more preferably 10 ° C. or higher, and preferably 40 ° C. or lower, more preferably 35 ° C. or lower, still more preferably 30 ° C. Below, more preferably 25 ° C. or less.
  • the polymerization time is preferably 0.5 hours or more and 24 hours or less, more preferably 1 hour or more and 15 hours or less, and further preferably 2 hours or more and 10 hours or less.
  • the polymerization reaction may be stopped, for example, by adding water, alcohol, acidic substance, basic substance, or a mixture thereof to deactivate the catalyst (component (A)).
  • the polyether compound may be recovered by removing impurities and volatile components by a conventional method such as filtration and distillation under reduced pressure in the recovery step.
  • the catalyst (component (A)) may be removed by pressure filtration using an adsorbent, or may be removed by washing with high-temperature alkaline water and then with pure water without using an adsorbent. .
  • the terminal of the obtained polyether compound becomes a hydroxyl group
  • the terminal hydroxyl group may introduce a functional group with a modifier.
  • the terminal of the polyether compound introduces a hydrocarbon group having 1 to 10 carbon atoms or an oxygen-containing hydrocarbon group having 1 to 10 carbon atoms by esterifying or etherifying a hydroxyl group.
  • the hydrocarbon group includes an alkyl group
  • the oxygen-containing hydrocarbon group includes an acyl group. Details of these hydrocarbon group and oxygen-containing hydrocarbon group are the same as those for R 8 described later.
  • a polyether compound having a weight average molecular weight (Mw) of 100,000 or more can be produced.
  • Mw weight average molecular weight
  • the polyether compound is useful in various fields. For example, in the lubricating oil field, it is suitably used as a viscosity index improver for improving the viscosity index. More preferably used as a viscosity index improver for a refrigerator oil composition.
  • the weight average molecular weight (Mw) of the polyether compound obtained by the production method is preferably 100,000 or more, more preferably 200,000 or more, further from the viewpoint of effectively expressing the effect of the obtained polyether compound. Preferably it is 300,000 or more. In addition, from the viewpoint of easy handling and ease of production of the obtained polyether compound, it is preferably 1,000,000 or less, more preferably 600,000 or less, and still more preferably 550,000 or less. In addition, the value of the said weight average molecular weight (Mw) is a value measured using the method as described in the Example mentioned later.
  • the polyether compound according to an embodiment of the present invention is a compound represented by the following general formula (3) or (4), and has a weight average molecular weight (Mw) of 100,000 or more, preferably 1,000,000. It becomes the following.
  • R 1 and n are each the same as R 1 and n in the general formula (1), the same applies to its preferred embodiment.
  • R 7 O is a structural unit derived from an oxirane monomer
  • m is a value at which the weight average molecular weight of the polyether compound is 100,000 or more, and preferably 1,000,000 or less.
  • R 8 is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or an oxygen-containing hydrocarbon group having 1 to 10 carbon atoms.
  • a plurality of R 7 Os may be the same as or different from each other.
  • n is 2 or more, a plurality of R 8 may be the same or different from each other.
  • X, R 7 O, and R 8 are the same as X in General Formula (2) and R 7 O and R 8 in General Formula (3), respectively.
  • the preferred embodiment is also the same.
  • r is a value with which the weight average molecular weight of the polyether compound is 100,000 or more, and preferably a value with 1,000,000 or less.
  • a plurality of R 7 Os may be the same as or different from each other.
  • R 7 in the general formulas (3) and (4) is, for example, a divalent hydrocarbon group having 2 to 27 carbon atoms or a divalent hydrocarbon group having 2 to 27 carbon atoms having an oxygen atom. Can be mentioned. These may be used alone in one molecule or in combination of two or more.
  • the oxirane monomer is preferably ethylene oxide or an alkylene oxide having a chain alkyl group. Accordingly, in the general formulas (3) and (4), R 7 O is preferably —CR 9 2 CR 9 2 O— (wherein R 9 independently represents a hydrogen atom or a chain alkyl group).
  • a total number of carbon atoms of 2 or more and 27 or less, and the total number of carbon atoms is more preferably 2 or more and 20 or less, still more preferably 2 or more and 12 or less. Preferably they are 2 or more and 4 or less.
  • R 7 O -CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (CH 2 CH 3) O -, - CH 2 C (CH 3 ) 2 O—, —CH (CH 3 ) CH (CH 3 ) O—.
  • -CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (CH 2 CH 3) O- is more preferable.
  • the polyether compound when the total carbon number of R 7 O is 2 or more and 4 or less, the polyether compound is easily used in various fields.
  • a viscosity index improver in the lubricating oil field, as a viscosity index improver. It is preferably used and more preferably used as a viscosity index improver for use in refrigerator oil compositions.
  • the hydrocarbon group having 1 to 10 carbon atoms in R 8 may be linear, branched or cyclic.
  • the hydrocarbon group is preferably an alkyl group, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a branched or linear butyl group, a branched or linear pentyl group, a branched or linear hexyl group, A branched or straight chain heptyl group, a branched or straight chain octyl group, a branched or straight chain nonyl group, a branched or straight chain decyl group, a cyclopentyl group, a cyclohexyl group, etc.
  • Examples of the oxygen-containing hydrocarbon group having 1 to 10 carbon atoms in R 8 include an acyl group having 2 to 10 carbon atoms, a chain aliphatic group having an ether bond, and a cyclic aliphatic group having an ether bond (for example, , Tetrahydrofurfuryl group) and the like.
  • the hydrocarbon group moiety of the acyl group having 2 to 10 carbon atoms may be linear, branched or cyclic.
  • the hydrocarbon group portion of the acyl group is preferably an alkyl group, and examples thereof include those having 1 to 9 carbon atoms among the alkyl groups that can be selected as R 8 described above.
  • R 8 is preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, still more preferably a hydrogen atom, a methyl group or an ethyl group, and still more preferably a hydrogen atom. Is an atom. If in one molecule R 8 have multiple to R 8 may be the same as each other in each molecule, it may be different.
  • the polyether compound represented by the general formula (4) is more preferably a polyether compound represented by the following general formula (5).
  • X, R 8 and r are each the same as the X, R 8 and r in the general formula (4), it is the same preferred embodiments thereof.
  • R 10 represents a single bond or a methylene group
  • R 11 represents a hydrogen atom, a chlorine atom, or an alkyl group having 1 to 24 carbon atoms.
  • Y represents a single bond or an oxygen atom.
  • the plurality of R 10 may be the same as or different from each other.
  • the plurality of R 11 may be the same as or different from each other.
  • a plurality of Y may be the same as each other or different from each other.
  • R 10 is preferably a single bond.
  • R 11 is preferably a hydrogen atom or an alkyl group having 1 to 24 carbon atoms.
  • the alkyl group preferably has 1 to 15 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably 1 to 3 carbon atoms.
  • the alkyl group may be linear, branched, or cyclic, and is preferably linear.
  • alkyl group having 1 to 24 carbon atoms examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, and a dodecyl group.
  • they are a hydrogen atom, a methyl group, an ethyl group, or a propyl group, More preferably, they are a hydrogen atom or a methyl group, More preferably, it is a methyl group.
  • Y is preferably a single bond. Further, although there are a plurality of Y, the plurality of Y may be the same or different from each other.
  • the case where R 10 and Y are both single bonds means that R 11 is directly bonded to the carbon atom in the main chain of the polyether compound represented by the general formula (5).
  • the general formula (5) is preferably the same plurality of R 10 with each other, a plurality of R 11 are the same and, at the same plurality of Y with each other.
  • a polyether having a molecular structure represented by the general formula (3), (4) or (5) As a compound, it was difficult to obtain a polymer having a weight average molecular weight (Mw) of 100,000 or more.
  • Mw weight average molecular weight
  • the polyether compound is preferably obtained by the method for producing a polyether compound.
  • the polyether compound having a structure represented by the general formula (3), (4) or (5) having a weight average molecular weight (Mw) of 100,000 or more has various characteristics due to its high molecular weight.
  • the high molecular weight polyether compound can improve the viscosity index of the lubricating oil composition by being blended with the lubricating oil composition, but the weight average molecular weight (Mw) should be 100,000 or more.
  • the viscosity index can be further increased.
  • the polyether compound has a weight average molecular weight (Mw) of preferably 150,000 or more, more preferably 200,000 or more, and more preferably 300,000 or more.
  • the polyether compound can more easily exhibit various characteristics obtained when it is made into a polymer. For example, when used as a viscosity index improver, the viscosity index can be further increased.
  • the polyether compound has a weight average molecular weight (Mw) of 1,000,000 or less because the production and handleability thereof are easier. Examples of handleability include the viewpoint of good or bad solubility in a lubricating base oil or a base oil for dilution contained in a viscosity index improver described later. From the viewpoint of production and handling of the polyether compound, the weight average molecular weight (Mw) of the polyether compound is more preferably 800,000 or less, still more preferably 600,000 or less, and still more preferably 550,000 or less. It is.
  • the polyether compound preferably has a molecular weight distribution (Mw / Mn) represented by a ratio of its weight average molecular weight (Mw) to number average molecular weight (Mn), preferably 10.0 or less, more preferably 5. It is 0 or less, more preferably 3.0 or less, and still more preferably 2.5 or less.
  • the lower limit is not particularly limited, but is preferably 1.1 or more, more preferably 1.3 or more, still more preferably 1.4 or more, and still more preferably 1.5 or more.
  • the said weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) can be measured by the method as described in an Example.
  • m in the general formula (3) and r in the general formulas (4) and (5) each independently represent an integer with which the weight average molecular weight (Mw) of the polyether compound is 100,000 or more, Preferably, it is an integer such that the weight average molecular weight (Mw) of the polyether compound is 150,000 or more, more preferably 200,000 or more, still more preferably 300,000 or more, and preferably 1,000,000 or less, More preferably, it is an integer that is 800,000 or less, more preferably 600,000 or less, and still more preferably 550,000 or less.
  • the polyether compound represented by the general formula (3) is preferably obtained by the method for producing a polyether compound using a halogen-free onium salt represented by the general formula (1) as a polymerization initiator. Is.
  • the polyether compound represented by the general formula (4) or (5) is preferably a halogen-containing onium salt represented by the general formula (2) as a polymerization initiator, It is obtained by the method.
  • the halogen atom content in the polymer molecule measured by combustion ion chromatography is preferably 0.1000% by mass (1,000 ppm by mass).
  • the polyether compound represented by General formula (4) or (5) it is preferable that it is a polyether compound which has a halogen atom only in the molecular terminal.
  • terminal halogens are less likely to be eliminated and the risk of acid generation can be reduced. Further, the risk of the polymer being decomposed by the acid can be reduced.
  • halogen atom chlorine atom
  • content of the halogen atom (chlorine atom) in the said polymer molecule can be measured with a combustion ion chromatograph method, for example with the following apparatus and conditions.
  • Sample combustion / equipment Product name “AQF-100”, manufactured by Mitsubishi Chemical Analytech Co., Ltd./ Combustion conditions
  • Combustion furnace set temperature Pre-stage 800 ° C., post-stage 1,000 ° C.
  • the lubricating oil composition includes a lubricating base oil and the polyether compound, and preferably includes a lubricating base oil and a polyether compound obtained by the production method. .
  • the lubricating oil composition improves the viscosity index by containing a polyether compound having a high molecular weight as described above.
  • the polyether compound is generally 0.01% to 50% by mass, preferably 0.1% to 30% by mass, more preferably 0.1% to 15% by mass. Contained.
  • the lubricating base oil is not particularly limited as long as it is generally used as a base oil for lubricating oil, and includes mineral oil, synthetic oil, or a mixture thereof, and an oxygen-containing base oil is preferable.
  • the oxygen-containing base oil include aliphatic monoesters, aliphatic diesters, aliphatic triesters, polyol esters (POE), aliphatic monoethers, aliphatic diethers, aliphatic triethers, aliphatic And tetravinyl ether and aliphatic polyvinyl ether (PVE).
  • POE polyol esters
  • PVE polyol esters
  • the lubricating base oil is not particularly limited, but usually has a 100 ° C.
  • kinematic viscosity in the range of 0.5 mm 2 / s to 50 mm 2 / s and in the range of 1 mm 2 / s to 25 mm 2 / s. Some are preferred.
  • the kinematic viscosity was measured using a glass capillary viscometer according to JIS K2283-2000.
  • the lubricating oil composition is an antioxidant, an oily agent, an extreme pressure agent, a detergent / dispersant, a viscosity index improver other than the polyether compound, a rust preventive agent, a metal antibacterial agent as long as the effect of the polyether compound is not impaired.
  • You may contain additives, such as an activator and an antifoamer. You may use these individually by 1 type or in combination of 2 or more types.
  • the said lubricating oil composition may consist of the said lubricating base oil and the said polyether compound, without mix
  • the lubricating oil composition may be composed of at least one selected from the group consisting of the above-mentioned lubricating base oil, polyether compound, and the aforementioned additives.
  • the lubricating oil composition is preferably used as a refrigerating machine oil. That is, the lubricating oil composition is used by filling the inside of the refrigerator together with the refrigerant, and is suitably used, for example, for lubricating a sliding portion such as a compressor provided in the refrigerator.
  • the lubricating oil composition is used in internal combustion engines such as gasoline engines and diesel engines, transmissions, shock absorbers, various gear structures, various bearing mechanisms, and other various industrial devices. May be.
  • an embodiment of the present invention includes a refrigerator filled with the lubricating oil composition.
  • An embodiment of the present invention includes an internal combustion engine filled with the lubricating oil composition, and examples of the internal combustion engine include a gasoline engine and / or a diesel engine. Moreover, as one Embodiment of this invention, the industrial apparatus with which the said lubricating oil composition was filled is mentioned. Examples of the industrial device include one or more selected from the group consisting of a transmission, a shock absorber, various gear structures, and various bearing mechanisms.
  • the lubricating oil composition is produced by blending the lubricating base oil with the polyether compound and other various additives used as necessary, preferably the lubricating base oil. It is manufactured by blending the polyether compound obtained by the above production method and other various additives used as necessary. That is, the method for producing a lubricating oil composition according to an embodiment of the present invention is a production method having a step of blending the polyether compound into a lubricating base oil, and preferably a polysilicic acid obtained by the production method. It is a manufacturing method which has the process of mix
  • the polyether compound is preferably used as an additive for improving the viscosity index of a lubricating oil composition, and more preferably used as a viscosity index improver for refrigerating machine oil. That is, an embodiment of the present invention is a method of adding the polyether compound to a lubricating oil composition to improve the viscosity index, and preferably the polyether compound obtained by the production method is used as a lubricating oil composition. It is a method of improving the viscosity index by adding to a product.
  • the said viscosity index improver may consist of the said polyether compound single-piece
  • the viscosity index improver may contain a base oil for diluting the polyether compound in addition to the polyether compound. As the base oil, various base oils listed in the lubricating base oil can be used.
  • the method for producing a viscosity index improver is a production method including a step of diluting the polyether compound with a base oil, and preferably a polyether compound obtained by the production method.
  • a production method having a step of diluting with a base oil is used suitably for a lubricating oil composition, and is suitably used by a refrigerator oil composition.
  • the polyether compound can be used in various applications other than the lubricating oil application, and can be used as a raw material for polymer materials such as urethane constituting elastomers, resins, rubbers and the like. Urethane is used for sealants, adhesives and the like, for example.
  • the following physical properties of the polyether compound were measured according to the following procedure.
  • Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) The weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured using gel permeation chromatography (GPC).
  • GPC uses two TSKgel SuperMultipore HZ-M manufactured by Tosoh Corporation as a column, performs measurement using tetrahydrofuran as an eluent, and a refractive index detector as a detector, and uses polystyrene as a standard sample as a weight average molecular weight (Mw) and a number.
  • the average molecular weight (Mn) was determined.
  • the molecular weight distribution (Mw / Mn) was calculated using the obtained weight average molecular weight (Mw) and number average molecular weight (Mn) values.
  • Example 1 A thermometer, a stirring blade (four inclined paddles), and a 20 mL and 100 mL dropping funnel were attached to a 1 L four-necked separable flask, and the inside of the separable flask was replaced with nitrogen. Under a nitrogen atmosphere, 500 mL of n-heptane (manufactured by Wako Pure Chemical Industries, Ltd., trade name “super dehydrated heptane”) was charged into the separable flask as a solvent. The separable flask was immersed in a thermostatic chamber whose refrigerant temperature was controlled at 15 ° C. or higher and 18 ° C.
  • tetrabutylammonium methoxide (component (B)) as a polymerization initiator was added to a 20 mL 2-neck pear flask with a three-way cock as a polymerization initiator. .6 mg (0.2765 mmol) was charged. After the pear-shaped flask was taken out of the glove box, 10 mL (0.143 mol) of propylene oxide was added and dissolved in a nitrogen atmosphere to prepare a propylene oxide solution of tetrabutylammonium methoxide.
  • the propylene oxide solution of tetrabutylammonium methoxide was charged into a 20 mL dropping funnel provided in the separable flask, and 90 mL (1.287 mol) of propylene oxide was charged into the other 100 mL dropping funnel.
  • a propylene oxide solution of tetrabutylammonium methoxide in the 20 mL dropping funnel was dropped into the separable flask whose internal temperature was controlled at 20 ° C. over 10 minutes.
  • Example 2 In Example 1, polyether compound 2 was obtained in the same manner as in Example 1 except that 0.83 mmol was used instead of 4.2 mmol of component (A) triisobutylaluminum.
  • Example 3 In Example 1, polyether compound 3 was obtained in the same manner as in Example 1 except that 8.3 mmol was used instead of 4.2 mmol of component (A) triisobutylaluminum.
  • Example 4 A polyether compound 4 was obtained in the same manner as in Example 1 except that 2.1 mmol of component (A) triisobutylaluminum was used instead of 4.2 mmol.
  • Example 5 A polyether compound 5 was obtained in the same manner as in Example 4 except that 300 mL of n-heptane as a solvent was used instead of 500 mL in Example 4.
  • Example 6 A polyether compound 6 was obtained in the same manner as in Example 4 except that 700 mL of n-heptane as a solvent was used instead of 500 mL in Example 4.
  • Example 7 In Example 4, the refrigerant temperature in the constant temperature layer was controlled to 25 ° C. or higher and 28 ° C. or lower, and the internal temperature of the separable flask during the polymerization reaction of propylene oxide was controlled to 30 ° C. instead of 20 ° C. Except that, polyether compound 7 was obtained in the same manner as in Example 4.
  • Example 8 In Example 7, polyether compound 8 was obtained in the same manner as in Example 7 except that 4.2 mmol of component (A) triisobutylaluminum was used instead of 2.1 mmol.
  • Example 9 In Example 7, polyether compound 9 was obtained in the same manner as in Example 7 except that 8.3 mmol was used instead of 2.1 mmol of component (A) triisobutylaluminum.
  • Example 10 In Example 4, instead of controlling the internal temperature of the separable flask at 20 ° C. during the polymerization reaction of propylene oxide by controlling the refrigerant temperature in the constant temperature layer to ⁇ 5 ° C. or more and ⁇ 2 ° C. or less. Except having controlled, it carried out similarly to Example 4 and obtained the polyether compound 10.
  • Example 11 polyether compound 11 was obtained in the same manner as in Example 10 except that 4.2 mmol of component (A) triisobutylaluminum was used instead of 2.1 mmol.
  • Example 12 polyether compound 12 was obtained in the same manner as in Example 10 except that 8.3 mmol was used instead of 2.1 mmol of component (A) triisobutylaluminum.
  • the polymerization reaction was performed in the presence of organoaluminum (component (A)) and onium salt (component (B)) in the amounts of component (A) and component (B).
  • a high molecular weight polyether compound could be produced by carrying out under the condition that the ratio [A / B] was 3 to 60 in terms of molar ratio.
  • it was confirmed that a high molecular weight polyether compound can be produced under mild conditions such as 0 ° C. or higher and 30 ° C. or lower.
  • the polyether compound according to one embodiment of the present invention and the polyether compound obtained by the production method are used in a lubricating oil composition used for a refrigerator, an internal combustion engine, a gear structure, a bearing mechanism, a transmission, a shock absorber, and the like.
  • a viscosity index improver it is preferably used as a viscosity index improver, and more preferably used as a viscosity index improver in a refrigerator oil composition.
  • It can also be used as various raw materials such as urethane constituting adhesives and sealants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Lubricants (AREA)
  • Polyethers (AREA)

Abstract

The present invention relates to a method for producing a polyether compound, which comprises a step for polymerizing an oxirane monomer using an organic aluminum (A) and an onium salt (B) so that the molar ratio of the component (A) to the component (B), namely (A)/(B) is from 3 to 60 (inclusive).

Description

ポリエーテル化合物の製造方法Method for producing polyether compound
 本発明は、高分子量のポリエーテル化合物を製造する方法、当該ポリエーテル化合物を含む粘度指数向上剤の製造方法及び潤滑油組成物の製造方法に関する。 The present invention relates to a method for producing a high molecular weight polyether compound, a method for producing a viscosity index improver containing the polyether compound, and a method for producing a lubricating oil composition.
 ポリアルキレングリコール類等(以下、単に「PAG」ともいう。)のポリエーテル化合物は、エラストマー、接着剤、シーラント等のポリウレタン製品や、機能性油剤の原料として広く用いられている。PAGは、例えば、各種アルコール等の活性水素原子を有する開始剤に、エチレンオキシド及びプロピレンオキシド等のオキシラン単量体を付加重合させて製造される。
 PAGを製造するための触媒としては、アルカリ金属アルコキシド触媒、複合金属シアン化物錯体等が一般的に使用されている(例えば、特許文献1参照)。しかしながら、これらの触媒を使用した場合には、副反応により不飽和アルコールが生成され、そのアルコールが開始剤となるため、高分子量のPAGを製造することは一般的に困難なことが多い。
Polyether compounds such as polyalkylene glycols (hereinafter also simply referred to as “PAG”) are widely used as raw materials for polyurethane products such as elastomers, adhesives and sealants, and functional oils. PAG is produced, for example, by addition polymerization of oxirane monomers such as ethylene oxide and propylene oxide to an initiator having active hydrogen atoms such as various alcohols.
As a catalyst for producing PAG, an alkali metal alkoxide catalyst, a double metal cyanide complex, or the like is generally used (see, for example, Patent Document 1). However, when these catalysts are used, unsaturated alcohols are produced by side reactions, and the alcohols serve as initiators, so that it is generally difficult to produce high molecular weight PAGs.
 そこで、従来、種々の方法でPAG等のポリエーテル化合物の分子量を高くすることが検討されている。例えば、特許文献2では、短時間の反応で高分子量のPAGを得るために、アルカリ金属アルコキシド触媒、及びアルミニウムオルガニル存在下でオキシランを重合するとともに、その重合の際に、クラウンエーテル及びクリプタンドを併用しないようにすることが開示されている。
 また、特許文献3には、高い分子量と狭い分子量分布を兼ね備えた、オキシラン単量体単位を含む重合体を得るために、トリアルキルアルミニウム及びオニウム塩開始剤を用いる方法が開示されている。
Therefore, it has been studied to increase the molecular weight of polyether compounds such as PAG by various methods. For example, in Patent Document 2, in order to obtain a high molecular weight PAG in a short reaction, oxirane is polymerized in the presence of an alkali metal alkoxide catalyst and aluminum organyl, and at the time of the polymerization, crown ether and cryptand are used. It is disclosed that they are not used together.
Patent Document 3 discloses a method using a trialkylaluminum and an onium salt initiator in order to obtain a polymer containing an oxirane monomer unit having a high molecular weight and a narrow molecular weight distribution.
特開平3-195727号公報Japanese Patent Laid-Open No. 3-195727 特表2007-533783号公報Special table 2007-533783 gazette 特開2013-57088号公報JP 2013-57088 A
 近年、各種分野においてPAG等のポリエーテル化合物を、より高い分子量とすることが望まれつつある。例えば、潤滑油分野においては、PAGを粘度指数向上剤として用いることが検討されているが、粘度指数をより向上させるために、より高い分子量のものが望まれている。しかし、特許文献2及び3では、重量平均分子量(Mw)が10万未満のPAGが開示されるのみであり、高性能の粘度指数向上剤とするためには、更なる高分子量化が望まれる。 In recent years, it has been desired that polyether compounds such as PAG have a higher molecular weight in various fields. For example, in the lubricating oil field, the use of PAG as a viscosity index improver has been studied, but a higher molecular weight is desired in order to further improve the viscosity index. However, Patent Documents 2 and 3 only disclose a PAG having a weight average molecular weight (Mw) of less than 100,000, and further high molecular weight is desired in order to obtain a high-performance viscosity index improver. .
 本発明は、以上の問題点を鑑みてなされたものであり、本発明の課題は、高分子量のポリエーテル化合物を製造することである。 The present invention has been made in view of the above problems, and an object of the present invention is to produce a high molecular weight polyether compound.
 本発明者らは、鋭意検討の結果、有機アルミニウム(A)(以下、単に「成分(A)」ともいう。)及びオニウム塩(B)(以下、単に「成分(B)」ともいう。)を特定の量比〔A/B〕を満たすように用いてオキシラン単量体を重合させ、PAG等のポリエーテル化合物を製造することで、高分子量のポリエーテル化合物を得られることを見出し、以下の本発明を完成させた。
[1] 有機アルミニウム(A)とオニウム塩(B)とを、
 成分(A)と成分(B)との量比〔A/B〕が、モル比で3以上60以下となるように用いてオキシラン単量体を重合させる工程を有する、ポリエーテル化合物の製造方法。
[2] 下記一般式(3)又は(4)で表される化合物であって、重量平均分子量(Mw)が100,000である、ポリエーテル化合物。
As a result of intensive studies, the present inventors have studied organoaluminum (A) (hereinafter also simply referred to as “component (A)”) and onium salt (B) (hereinafter also simply referred to as “component (B)”). It is found that a high molecular weight polyether compound can be obtained by polymerizing an oxirane monomer to satisfy a specific quantitative ratio [A / B] and producing a polyether compound such as PAG. The present invention was completed.
[1] An organoaluminum (A) and an onium salt (B)
A method for producing a polyether compound, comprising a step of polymerizing an oxirane monomer using a molar ratio [A / B] of component (A) to component (B) of 3 or more and 60 or less. .
[2] A polyether compound represented by the following general formula (3) or (4), wherein the weight average molecular weight (Mw) is 100,000.
Figure JPOXMLDOC01-appb-C000002

(一般式(3)中、Rは結合部を1個以上4個以下有する直鎖又は分岐の炭素数1以上6以下の飽和炭化水素基を示し、ROはオキシラン単量体由来の構成単位を示し、Rは、水素原子、炭素数1以上10以下の炭化水素基、又は炭素数1以上10以下の酸素含有炭化水素基を示す。
 mは、当該ポリエーテル化合物の重量平均分子量が100,000以上となる値であり、nは、1以上4以下の整数である。
 複数存在するROは、互いに同一であってもよいし、互いに異なっていてもよい。また、nが2以上の場合、複数存在するRは互いに同一であってもよいし、互いに異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000002

(In General Formula (3), R 1 represents a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms having 1 to 4 bonds, and R 7 O is derived from an oxirane monomer. R 8 represents a structural unit, and R 8 represents a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or an oxygen-containing hydrocarbon group having 1 to 10 carbon atoms.
m is a value at which the weight average molecular weight of the polyether compound is 100,000 or more, and n is an integer of 1 or more and 4 or less.
A plurality of R 7 Os may be the same as or different from each other. When n is 2 or more, a plurality of R 8 may be the same or different from each other. )
Figure JPOXMLDOC01-appb-C000003

(一般式(4)中、Xはハロゲン原子を示し、RO、及びRは、それぞれ、一般式(3)中の前記RO及びRと同義である。
 rは、当該ポリエーテル化合物の重量平均分子量が100,000以上となる値である。
 複数存在するROは、互いに同一であってもよいし、異なっていてもよい。)
[3] 上記[1]に記載の製造方法で得たポリエーテル化合物又は上記[2]に記載のポリエーテル化合物を、基油で希釈する工程を有する、粘度指数向上剤の製造方法。
[4] 上記[1]に記載の製造方法で得たポリエーテル化合物又は上記[2]に記載のポリエーテル化合物を、潤滑油基油に配合する工程を有する、潤滑油組成物の製造方法。
[5] 上記[1]に記載の製造方法で得たポリエーテル化合物又は上記[2]に記載のポリエーテル化合物を含む、粘度指数向上剤。
[6] 上記[1]に記載の製造方法で得たポリエーテル化合物又は上記[2]に記載のポリエーテル化合物と、潤滑油基油とを含む、潤滑油組成物。
[7] 上記[1]に記載の製造方法で得たポリエーテル化合物又は上記[2]に記載のポリエーテル化合物を、潤滑油組成物に添加し、粘度指数を向上させる方法。
[8] 上記[4]に記載の製造方法で得た潤滑油組成物又は上記[6]に記載の潤滑油組成物を充填した冷凍機。
[9] 上記[4]に記載の製造方法で得た潤滑油組成物又は上記[6]に記載の潤滑油組成物を充填した内燃機関。
[10] 上記[4]に記載の製造方法で得た潤滑油組成物又は上記[6]に記載の潤滑油組成物を充填した工業用装置。
Figure JPOXMLDOC01-appb-C000003

(In the general formula (4), X represents a halogen atom, R 7 O, and R 8 are each the same meaning as the R 7 O and R 8 in general formula (3).
r is a value at which the weight average molecular weight of the polyether compound is 100,000 or more.
A plurality of R 7 Os may be the same as or different from each other. )
[3] A method for producing a viscosity index improver, comprising a step of diluting the polyether compound obtained by the production method according to [1] or the polyether compound according to [2] with a base oil.
[4] A method for producing a lubricating oil composition, comprising a step of blending the polyether compound obtained by the production method according to [1] above or the polyether compound according to [2] above into a lubricating base oil.
[5] A viscosity index improver comprising the polyether compound obtained by the production method according to [1] or the polyether compound according to [2].
[6] A lubricating oil composition comprising the polyether compound obtained by the production method according to the above [1] or the polyether compound according to the above [2] and a lubricating base oil.
[7] A method in which the polyether compound obtained by the production method described in [1] above or the polyether compound described in [2] above is added to a lubricating oil composition to improve the viscosity index.
[8] A refrigerator filled with the lubricating oil composition obtained by the production method according to [4] or the lubricating oil composition according to [6].
[9] An internal combustion engine filled with the lubricating oil composition obtained by the production method according to [4] or the lubricating oil composition according to [6].
[10] An industrial apparatus filled with the lubricating oil composition obtained by the production method according to [4] or the lubricating oil composition according to [6].
 高分子量のポリエーテル化合物を製造することが可能になる。 It becomes possible to produce a high molecular weight polyether compound.
 以下、本発明について、実施形態を用いて説明する。
[ポリエーテル化合物の製造方法]
 本発明の一実施形態に係るポリエーテル化合物の製造方法は、有機アルミニウム(A)とオニウム塩(B)とを、成分(A)と成分(B)との量比〔A/B〕が、モル比で3以上60以下となるように用いてオキシラン単量体を重合させる工程を有する、ポリエーテル化合物を製造する方法である。
Hereinafter, the present invention will be described using embodiments.
[Method for producing polyether compound]
In the method for producing a polyether compound according to an embodiment of the present invention, the organic aluminum (A) and the onium salt (B) are mixed in a quantity ratio [A / B] of the component (A) and the component (B). It is a method for producing a polyether compound having a step of polymerizing an oxirane monomer using a molar ratio of 3 or more and 60 or less.
<成分(A):有機アルミニウム(A)>
 前記有機アルミニウム(A)としては、好ましくはトリアルキルアルミニウムであり、より好ましくはアルキル基の炭素数が1以上18以下のトリアルキルアルミニウム、更に好ましくはアルキル基の炭素数が1以上8以下のトリアルキルアルミニウム、より好ましくはアルキル基の炭素数が2以上6以下のトリアルキルアルミニウムである。
 成分(A)は、前記製造方法における重合反応で、触媒となるものである。
 成分(A)中のアルキル基は、分岐であってもよいし、直鎖であってもよい。また、1分子中に含まれるアルキル基は互いに同一であってもよいし、互いに異なっていてもよい。
 成分(A)としては、好ましくはトリメチルアルミニウム、トリエチルアルミニウム、トリn-ブチルアルミニウム、トリイソブチルアルミニウムが挙げられ、より好ましくはトリイソブチルアルミニウムである。
 成分(A)は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
また、当該トリアルキルアルミニウムは、ヘキサン、トルエン等の溶剤で希釈されているものを使用してもよい。
<Component (A): Organoaluminum (A)>
The organoaluminum (A) is preferably a trialkylaluminum, more preferably a trialkylaluminum having an alkyl group having 1 to 18 carbon atoms, and even more preferably a trialkylaluminum having an alkyl group having 1 to 8 carbon atoms. Alkyl aluminum, more preferably trialkylaluminum having an alkyl group with 2 to 6 carbon atoms.
Component (A) serves as a catalyst in the polymerization reaction in the production method.
The alkyl group in component (A) may be branched or linear. Moreover, the alkyl groups contained in one molecule may be the same or different from each other.
Component (A) is preferably trimethylaluminum, triethylaluminum, tri-n-butylaluminum or triisobutylaluminum, more preferably triisobutylaluminum.
A component (A) may be used independently and may be used in combination of 2 or more type.
The trialkylaluminum may be diluted with a solvent such as hexane or toluene.
 成分(A)の使用量は、成分(A)と成分(B)との量比〔A/B〕が、モル比で3以上60以下となるように用いる。
 当該比〔A/B〕が、モル比で3以上60以下であると、高分子量のポリエーテル化合物を製造することが可能になる。
 このような観点から、当該比〔A/B〕は、モル比で好ましくは5以上、より好ましくは6以上、更に好ましくは7以上であり、そして、好ましくは50以下、より好ましくは40以下、更に好ましくは30以下である。
 また、前記製造方法で、重合を10℃以上40℃以下の条件下、好ましくは20℃以上30℃以下の条件下で前記オキシラン単量体の重合反応を行なう場合、更に高分子量のポリエーテル化合物を得る観点から、当該比〔A/B〕は、好ましくは5以上、より好ましくは6以上、更に好ましくは7以上であり、そして好ましくは30以下、より好ましくは25以下、更に好ましくは20以下である。
The amount of component (A) used is such that the amount ratio [A / B] of component (A) to component (B) is 3 to 60 in terms of molar ratio.
When the ratio [A / B] is 3 or more and 60 or less in terms of molar ratio, a high molecular weight polyether compound can be produced.
From such a viewpoint, the ratio [A / B] is preferably 5 or more, more preferably 6 or more, still more preferably 7 or more, and preferably 50 or less, more preferably 40 or less, in terms of molar ratio. More preferably, it is 30 or less.
In the above production method, when the polymerization reaction of the oxirane monomer is carried out under the conditions of 10 ° C. to 40 ° C., preferably 20 ° C. to 30 ° C., a higher molecular weight polyether compound. The ratio [A / B] is preferably 5 or more, more preferably 6 or more, still more preferably 7 or more, and preferably 30 or less, more preferably 25 or less, and still more preferably 20 or less. It is.
<成分(B):オニウム塩(B)>
 前記オニウム塩(B)は、前記製造方法における重合反応で、重合開始剤となるものである。成分(B)としては、例えば、ハロゲン非含有オニウム塩及びハロゲン含有オニウム塩が挙げられ、好ましくはハロゲン非含有オニウム塩である。
<Component (B): Onium salt (B)>
The onium salt (B) serves as a polymerization initiator in the polymerization reaction in the production method. Examples of the component (B) include a halogen-free onium salt and a halogen-containing onium salt, and a halogen-free onium salt is preferable.
(ハロゲン非含有オニウム塩)
 前記ハロゲン非含有オニウム塩は、オニウム塩中にハロゲン原子を有さないオニウム塩である。前記製造方法で、ハロゲン非含有オニウム塩を用いる場合、重合開始剤となるオニウム塩がハロゲン原子を有さないため、得られるポリエーテル化合物は重合開始末端にハロゲン原子を含有しない。したがって、よりハロゲン含有量の少ないポリエーテル化合物を得る場合には好ましい。
(Halogen-free onium salt)
The halogen-free onium salt is an onium salt having no halogen atom in the onium salt. When a halogen-free onium salt is used in the production method, since the onium salt serving as a polymerization initiator does not have a halogen atom, the resulting polyether compound does not contain a halogen atom at the polymerization initiation terminal. Therefore, it is preferable when obtaining a polyether compound having a lower halogen content.
 前記ハロゲン非含有オニウム塩としては、例えば、ハロゲン非含有アンモニウム塩が挙げられ、好ましくは、下記一般式(1)で表される化合物が挙げられる。 The halogen-free onium salt includes, for example, a halogen-free ammonium salt, and preferably includes a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)中、Rは、結合部を1個以上4個以下有する直鎖又は分岐の炭素数1以上6以下の飽和炭化水素基、Rは直鎖又は分岐の炭素数4以上8以下のアルキル基、nは1以上4以下の整数である。 In the general formula (1), R 1 is a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms having 1 to 4 bonds, and R 2 is a linear or branched carbon atom having 4 or more carbon atoms. 8 or less alkyl group, n is an integer of 1 or more and 4 or less.
 ここで、一般式(1)で表される化合物としては、nが1以上2以下の整数であるとともに、Rが結合部を1個以上2個以下有することが好ましく、nが1であるとともに、Rが直鎖又は分岐の炭素数1以上6以下のアルキル基であることがより好ましい。
 また、Rの炭素数としては、1以上5以下が好ましく、1以上4以下がより好ましい。Rの炭素数としては、4以上6以下が好ましく、4がより好ましい。
 なお、一般式(1)のオニウム塩を使用する場合、得られるポリエーテル化合物において、R1(-Oが重合開始末端となる。
Here, as the compound represented by the general formula (1), n is an integer of 1 or more and 2 or less, and R 1 preferably has 1 or more and 2 or less bonding portions, and n is 1. In addition, R 1 is more preferably a linear or branched alkyl group having 1 to 6 carbon atoms.
As the number of carbon atoms in R 1, preferably 1 to 5, 1 to 4 is more preferable. The carbon number of R 2 is preferably 4 or more and 6 or less, and more preferably 4.
When the onium salt of the general formula (1) is used, R 1 (—O ) n is the polymerization initiation terminal in the obtained polyether compound.
 Rとしては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、n-ヘキシル基、メチルペンチル基、イソへキシル基等の直鎖又は分岐のアルキル基;エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール等の多価アルコールから水酸基を除いた残基;で例示される、結合部を2個以上4個以下有する直鎖又は分岐の飽和炭化水素基が挙げられる。
 また、Rとしては、例えば、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、メチルペンチル基、イソへキシル基、2-エチルヘキシル基等の直鎖又は分岐のアルキル基が挙げられ、好ましくは直鎖又は分岐のブチル基、直鎖又は分岐のオクチル基等が挙げられる。
 なお、複数存在するRは、互いに同一であってもよいし、互いに異なっていてもよい。複数存在するRは、好ましくは互いに同一である。
Examples of R 1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a neopentyl group, linear or branched alkyl groups such as tert-pentyl group, n-hexyl group, methylpentyl group and isohexyl group; from polyhydric alcohols such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane and pentaerythritol A linear or branched saturated hydrocarbon group having 2 or more and 4 or less bonds, exemplified by a residue excluding a hydroxyl group.
Examples of R 2 include n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, isobutyl, sec-butyl, tert-butyl, isopentyl, Examples thereof include linear or branched alkyl groups such as neopentyl group, tert-pentyl group, methylpentyl group, isohexyl group and 2-ethylhexyl group, preferably linear or branched butyl group, linear or branched octyl Groups and the like.
A plurality of R 2 may be the same as each other or different from each other. A plurality of R 2 are preferably the same as each other.
 ハロゲン非含有オニウム塩は、例えば、アルカリ金属アルコキシドと第4級アンモニウム塩を反応させて合成する。
 アルカリ金属アルコキシドは、アルコールをアルカリ金属の水素化物でアルコキシ化することにより得られる。使用するアルコールのアルキル基は、Rの炭素数に応じて変更されるものであり、炭素数1以上6以下のものが使用される。アルキル基は、直鎖でも分岐構造でもよい。
 アルコールとしては、1価以上4価以下のアルコールが使用され、例えば、メタノール、エタノール、プロパノール、2-プロパノール、ブタノール、イソブチルアルコール、tert-ブチルアルコール、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。
 第4級アンモニウム塩としては、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、テトラオクチルアンモニウムクロリド、テトラオクチルアンモニウムブロミド等が挙げられる。
The halogen-free onium salt is synthesized, for example, by reacting an alkali metal alkoxide with a quaternary ammonium salt.
The alkali metal alkoxide can be obtained by alkoxylating an alcohol with an alkali metal hydride. The alkyl group of the alcohol to be used is changed according to the carbon number of R 1 , and those having 1 to 6 carbon atoms are used. The alkyl group may be linear or branched.
As the alcohol, an alcohol having a valence of 1 to 4 is used. For example, methanol, ethanol, propanol, 2-propanol, butanol, isobutyl alcohol, tert-butyl alcohol, ethylene glycol, propylene glycol, neopentyl glycol, trimethylol Examples include propane and pentaerythritol.
Examples of the quaternary ammonium salt include tetrabutylammonium chloride, tetrabutylammonium bromide, tetraoctylammonium chloride, and tetraoctylammonium bromide.
(ハロゲン含有オニウム塩)
 前記ハロゲン含有オニウム塩としては、例えば、ハロゲン含有アンモニウム塩が挙げられ、好ましくは、下記一般式(2)で表される化合物が挙げられる。
(Halogen-containing onium salt)
As said halogen-containing onium salt, a halogen-containing ammonium salt is mentioned, for example, Preferably, the compound represented by following General formula (2) is mentioned.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(2)中、Xはハロゲン原子を示し、R~Rは、それぞれ独立に、炭素数1以上8以下のアルキル基を示す。 In the general formula (2), X represents a halogen atom, and R 3 to R 6 each independently represents an alkyl group having 1 to 8 carbon atoms.
 一般式(2)中、Xが示すハロゲン原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子からなる群より選ばれる少なくとも1種のハロゲン原子が挙げられ、好ましくは塩素原子又は臭素原子、より好ましくは塩素原子である。 In the general formula (2), the halogen atom represented by X includes at least one halogen atom selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a chlorine atom or a bromine atom. Preferably it is a chlorine atom.
 R~Rが示す炭素数1以上8以下のアルキル基としては、それぞれ独立に、より好ましくは炭素数1以上5以下、更に好ましくは炭素数1以上4以下である。また、当該アルキル基は直鎖状、分岐状、又は環状のいずれでもよく、好ましくは直鎖状である。
 当該炭素数1以上8以下のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、メチルペンチル基、イソへキシル基、2-エチルヘキシル基等が挙げられる。これらの中では、好ましくはメチル基、エチル基、プロピル基、ブチル基、オクチル基、より好ましくはメチル基、エチル基、プロピル基、ブチル基である。
 一般式(2)中、複数のR~Rが互いに同一であることが好ましい。
The alkyl group having 1 to 8 carbon atoms represented by R 3 to R 6 is independently more preferably 1 to 5 carbon atoms, and still more preferably 1 to 4 carbon atoms. The alkyl group may be linear, branched, or cyclic, and is preferably linear.
Examples of the alkyl group having 1 to 8 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, isopropyl group, isobutyl group, sec-butyl group, Examples thereof include a tert-butyl group, an isopentyl group, a neopentyl group, a tert-pentyl group, a methylpentyl group, an isohexyl group, and a 2-ethylhexyl group. Among these, a methyl group, an ethyl group, a propyl group, a butyl group, and an octyl group are preferable, and a methyl group, an ethyl group, a propyl group, and a butyl group are more preferable.
In general formula (2), a plurality of R 3 to R 6 are preferably the same as each other.
 当該ハロゲン含有オニウム塩としては、例えば、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、テトラオクチルアンモニウムクロリド、テトラオクチルアンモニウムブロミド等が挙げられ、好ましくは、これらからなる群より選ばれる少なくとも1種、より好ましくはテトラブチルアンモニウムブロミド、テトラオクチルアンモニウムクロリド、テトラオクチルアンモニウムブロミド、及びテトラブチルアンモニウムクロリドからなる群より選ばれる少なくとも1種、更に好ましくはテトラブチルアンモニウムクロリド又はテトラブチルアンモニウムブロミドである。 Examples of the halogen-containing onium salt include, for example, tetramethylammonium chloride, tetramethylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium bromide, tetraoctylammonium chloride, tetraoctylammonium bromide, and preferably composed of these. At least one selected from the group, more preferably at least one selected from the group consisting of tetrabutylammonium bromide, tetraoctylammonium chloride, tetraoctylammonium bromide, and tetrabutylammonium chloride, more preferably tetrabutylammonium chloride or tetra Butylammonium bromide.
 成分(B)は、所望するポリエーテル化合物の分子量に応じて使用量を変更すればよいが、反応系内の全単量体に対して、好ましくは0.005モル%以上0.150モル%以下、より好ましくは0.010モル%以上0.100モル%以下、更に好ましくは0.010モル%以上0.060モル%以下、より更に好ましくは0.010モル%以上0.030モル%以下である。オニウム塩の使用量を、これら下限値以上とすることで、オニウム塩を開始剤として適切に重合反応を進行させることが可能になる。また、これら上限値以下とすることで、得られるポリエーテル化合物の分子量が十分に高くなる。 Component (B) may be used in an amount that varies depending on the molecular weight of the desired polyether compound, but is preferably 0.005 mol% or more and 0.150 mol% with respect to all monomers in the reaction system. Or less, more preferably 0.010 mol% or more and 0.100 mol% or less, still more preferably 0.010 mol% or more and 0.060 mol% or less, still more preferably 0.010 mol% or more and 0.030 mol% or less. It is. By making the usage-amount of onium salt more than these lower limits, it becomes possible to advance a polymerization reaction appropriately by using onium salt as an initiator. Moreover, the molecular weight of the polyether compound obtained becomes high enough by setting it as these upper limit values or less.
 なお、成分(B)として、前記ハロゲン含有オニウム塩を用いる場合、当該ハロゲン含有オニウム塩は、所望する分子量に応じて使用量を変更すればよいが、反応系内の全単量体と当該ハロゲン含有オニウム塩との合計量に対して、好ましくは0.0002質量%(2質量ppm)以上1.0000質量%(10,000質量ppm)以下、より好ましくは0.0010質量%(10質量ppm)以上0.5000質量%(5,000質量ppm)以下、更に好ましくは0.0020質量%(20質量ppm)以上0.2000質量%(2,000質量ppm)以下、より更に好ましくは0.0040質量%(40質量ppm)以上0.1500質量%(1,500質量ppm)以下である。当該ハロゲン含有オニウム塩の使用量を、これら下限値以上とすることで、当該ハロゲン含有オニウム塩を開始剤として適切に重合反応を進行させることが可能になる。また、これら上限値以下とすることで、得られるポリエーテル化合物の分子量が十分に高くなる。
 成分(B)は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
When the halogen-containing onium salt is used as the component (B), the halogen-containing onium salt may be used in an amount that varies depending on the desired molecular weight. Preferably it is 0.0002 mass% (2 mass ppm) or more and 1.000 mass% (10,000 mass ppm) or less with respect to the total amount with containing onium salt, More preferably, it is 0.0010 mass% (10 mass ppm) ) Or more and 0.5000 mass% (5,000 mass ppm) or less, more preferably 0.0020 mass% (20 mass ppm) or more and 0.2000 mass% (2,000 mass ppm) or less, still more preferably 0.00. It is 0040 mass% (40 mass ppm) or more and 0.1500 mass% (1,500 mass ppm) or less. By setting the amount of the halogen-containing onium salt used to be equal to or higher than these lower limit values, it becomes possible to appropriately proceed the polymerization reaction using the halogen-containing onium salt as an initiator. Moreover, the molecular weight of the polyether compound obtained becomes high enough by setting it as these upper limit values or less.
A component (B) may be used independently and may be used in combination of 2 or more type.
<オキシラン単量体>
 前記オキシラン単量体とは、炭素2原子、酸素1原子からなる複素3員環(以下、「3員環エーテル構造」ともいう。)を有する化合物である。オキシラン単量体としては、好ましくは、分子内にハロゲン原子を有しないものが使用される。
 オキシラン単量体としては、例えば、エチレンオキシド、鎖状又は分岐状のアルキル基を有するアルキレンオキシド、鎖状又は分岐状のアルケニル基を有するアルキレンオキシド、脂環式エポキシド、アルキルグリシジルエーテル、芳香族エポキシドが挙げられる。
<Oxirane monomer>
The oxirane monomer is a compound having a hetero 3-membered ring (hereinafter also referred to as “3-membered ether structure”) composed of 2 carbon atoms and 1 oxygen atom. As the oxirane monomer, those having no halogen atom in the molecule are preferably used.
Examples of the oxirane monomer include ethylene oxide, alkylene oxide having a chain or branched alkyl group, alkylene oxide having a chain or branched alkenyl group, alicyclic epoxide, alkyl glycidyl ether, and aromatic epoxide. Can be mentioned.
 鎖状又は分岐状のアルキル基を有するアルキレンオキシドは、アルキル基が3員環エーテル構造の炭素原子上に結合している化合物であれば特に限定されないが、例えば、プロピレンオキシド、1,2-エポキシブタン、1,2-エポキシイソブタン、2,3-エポキシブタン、1,2-エポキシペンタン、1,2-エポキシヘキサン、1,2-エポキシヘプタン、1,2-エポキシオクタン、1,2-エポキシノナン、1,2-エポキシデカン、1,2-エポキシウンデカン、1,2-エポキシドデカン、1,2-エポキシトリデカン、1,2-エポキシテトラデカン、1,2-エポキシペンタデカン、1,2-エポキシヘキサデカン、1,2-エポキシヘプタデカン、1,2-エポキシオクタデカン、1,2-エポキシノナデカン、1,2-エポキシイコサン、1,2-エポキシヘンイコサン、1,2-エポキシドコサン、1,2-エポキシトリコサン、1,2-エポキシテトラコサン、1,2-エポキシペンタコサン等の鎖状又は分岐状のアルキル基を有する炭素数3以上27以下のアルキレンオキシドが挙げられる。
 鎖状又は分岐状のアルキル基を有するアルキレンオキシドとしては、好ましくは炭素数3以上12以下、より好ましくは炭素数3又は4のアルキレンオキシドである。
The alkylene oxide having a chain or branched alkyl group is not particularly limited as long as the alkyl group is a compound in which the alkyl group is bonded to a carbon atom of a three-membered ring ether structure. For example, propylene oxide, 1,2-epoxy Butane, 1,2-epoxyisobutane, 2,3-epoxybutane, 1,2-epoxypentane, 1,2-epoxyhexane, 1,2-epoxyheptane, 1,2-epoxyoctane, 1,2-epoxynonane 1,2-epoxydecane, 1,2-epoxyundecane, 1,2-epoxydodecane, 1,2-epoxytridecane, 1,2-epoxytetradecane, 1,2-epoxypentadecane, 1,2-epoxyhexadecane 1,2-epoxyheptadecane, 1,2-epoxyoctadecane, 1,2-epoxynonadecane, 1, -Chains or branches such as epoxy icosane, 1,2-epoxy heicosane, 1,2-epoxy docosane, 1,2-epoxy tricosane, 1,2-epoxy tetracosane, 1,2-epoxy pentacosane And an alkylene oxide having 3 to 27 carbon atoms and having an alkyl group in the form of a ring.
The alkylene oxide having a chain or branched alkyl group is preferably an alkylene oxide having 3 to 12 carbon atoms, more preferably 3 or 4 carbon atoms.
 鎖状又は分岐状のアルケニル基を有するアルキレンオキシドは、アルケニル基が3員環エーテル構造の炭素原子上に結合している化合物であれば特に限定されないが、例えば、2-ビニルオキシラン、2-アリルオキシラン、2-イソプロペニルオキシラン、2-(3-ブテニルオキシラン)、2-(5-ヘキセニルオキシラン)、2-(7-オクテニルオキシラン)等が挙げられる。
 なお、鎖状又は分岐状のアルキル基及びアルケニル基を有するアルキレンオキシドであってもよく、例えば、2-メチル-2-イソプロペニルオキシラン、2-メチル-2-アリルオキシラン等が挙げられる。
The alkylene oxide having a chain or branched alkenyl group is not particularly limited as long as it is a compound in which the alkenyl group is bonded to a carbon atom of a 3-membered ring ether structure. For example, 2-vinyloxirane, 2-allyl Examples include oxirane, 2-isopropenyloxirane, 2- (3-butenyloxirane), 2- (5-hexenyloxirane), and 2- (7-octenyloxirane).
An alkylene oxide having a chain or branched alkyl group and an alkenyl group may be used, and examples thereof include 2-methyl-2-isopropenyloxirane and 2-methyl-2-allyloxirane.
 脂環式エポキシドとしては、シクロアルキル基が3員環エーテル構造の炭素原子上に結合している化合物が挙げられ、例えば、1,2-エポキシシクロペンタン、1,2-エポキシシクロヘキサン、1,2-エポキシシクロへプタン、1,2-エポキシシクロオクタン、1,2-エポキシシクロノナン、1,2-エポキシシクロデカン、1,2-エポキシシクロウンデカン、1,2-エポキシシクロドデカン等の炭素数5以上12以下の脂環式エポキシドが挙げられる。
 また、アルキルグリシジルエーテルとしては、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル等が挙げられ、芳香族エポキシドとしては、スチレンオキシド、フェニルグリシジルエーテル等が挙げられる。
 これらは、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
Examples of the alicyclic epoxide include compounds in which a cycloalkyl group is bonded to a carbon atom of a 3-membered ring ether structure. For example, 1,2-epoxycyclopentane, 1,2-epoxycyclohexane, 1,2 -5 carbon atoms such as epoxycycloheptane, 1,2-epoxycyclooctane, 1,2-epoxycyclononane, 1,2-epoxycyclodecane, 1,2-epoxycycloundecane, 1,2-epoxycyclododecane, etc. The alicyclic epoxide of 12 or less is mentioned.
Examples of the alkyl glycidyl ether include methyl glycidyl ether, ethyl glycidyl ether, and butyl glycidyl ether, and examples of the aromatic epoxide include styrene oxide and phenyl glycidyl ether.
These may be used alone or in combination of two or more.
 上記した中では、好ましくはエチレンオキシド及び鎖状又は分岐状のアルキル基を有するアルキレンオキシドからなる群より選ばれる1種以上、より好ましくはエチレンオキシド及び鎖状のアルキル基を有するアルキレンオキシドからなる群より選ばれる1種以上、更に好ましくはエチレンオキシド及び鎖状のアルキル基を有する炭素数3又は4のアルキレンオキシドからなる群より選ばれる1種以上である。
 エチレンオキシド及び鎖状のアルキル基を有する炭素数3又は4のアルキレンオキシドからなる群より選ばれる1種以上を使用することで、ポリエーテル化合物は、従来一般に使用されるPAGと同様の構造となり、様々な分野で好適に使用されるようになる。例えば、潤滑油分野では、粘度指数向上剤として好適に使用される。
 上記した中では、好ましくはエチレンオキシド、プロピレンオキシド、1,2-エポキシブタン、1,2-エポキシイソブタン、及び2,3-エポキシブタンからなる群より選ばれる1種以上、より好ましくはエチレンオキシド、プロピレンオキシド、及び1,2-エポキシブタンからなる群より選ばれる1種以上、更に好ましくはプロピレンオキシド、1,2-エポキシブタン又はそれらの混合物、より更に好ましくはプロピレンオキシドである。
Among the above, preferably one or more selected from the group consisting of ethylene oxide and alkylene oxide having a chain or branched alkyl group, more preferably selected from the group consisting of ethylene oxide and alkylene oxide having a chain alkyl group. 1 or more selected from the group consisting of ethylene oxide and alkylene oxide having 3 or 4 carbon atoms having a chain alkyl group.
By using at least one selected from the group consisting of ethylene oxide and a C3 or C4 alkylene oxide having a chain alkyl group, the polyether compound has a structure similar to that of a conventionally used PAG, and various In various fields. For example, in the lubricating oil field, it is suitably used as a viscosity index improver.
Among the above, preferably one or more selected from the group consisting of ethylene oxide, propylene oxide, 1,2-epoxybutane, 1,2-epoxyisobutane, and 2,3-epoxybutane, more preferably ethylene oxide, propylene oxide. And one or more selected from the group consisting of 1,2-epoxybutane, more preferably propylene oxide, 1,2-epoxybutane or a mixture thereof, and still more preferably propylene oxide.
 また、当該オキシラン単量体としては、ハロゲン原子を有するオキシラン単量体であってもよい。
 当該ハロゲン原子を有するオキシラン単量体としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子からなる群より選ばれる少なくとも1種のハロゲン原子と3員環エーテル構造とを含有する化合物であれば特に限定されず、例えば、エピフルオロヒドリン、エピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリン、β-メチルエピクロロヒドリン等のエピハロヒドリン;p-クロロスチレンオキシド、ジブロモフェニルグリシジルエーテル、テトラフルオロエチレンオキシド、ヘキサフルオロプロピレンオキシド、パーフルオロフェニルグリシジルエーテル等が挙げられる。これらの中でも、エピハロヒドリンが好ましく、エピクロロヒドリンがより好ましい。
The oxirane monomer may be an oxirane monomer having a halogen atom.
Examples of the oxirane monomer having a halogen atom include a compound containing at least one halogen atom selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom and a three-membered ring ether structure. Without limitation, for example, epihalohydrins such as epifluorohydrin, epichlorohydrin, epibromohydrin, epiiodohydrin, β-methylepichlorohydrin; p-chlorostyrene oxide, dibromophenylglycidyl ether, Tetrafluoroethylene oxide, hexafluoropropylene oxide, perfluorophenyl glycidyl ether and the like can be mentioned. Among these, epihalohydrin is preferable and epichlorohydrin is more preferable.
 前記ポリエーテル化合物の合成は、成分(A)及び成分(B)の存在下、オキシラン単量体を開環重合することで行う。重合反応は、通常、これら原料を反応系内で混合することで行う。
 原料の混合は、例えば、反応系内に先に仕込んだ有機アルミニウム(A)に、オキシラン単量体に溶解させたオニウム塩(B)を添加し、その後、更にオキシラン単量体を添加して行うことが好ましい。
 そして、反応系内に後述する溶媒を仕込んだ後、更に、有機アルミニウム(A)を仕込み、当該溶媒と有機アルミニウム(A)との混合物に対し、先にオキシラン単量体に溶解させたオニウム塩(B)を添加し、その後、更にオキシラン単量体を添加して行うことがより好ましく、当該後から添加するオキシラン単量体は、反応系の反応温度が所望の温度に維持されるように添加速度を調整して添加するのが更に好ましい。
 また、重合反応は、反応系内に先に仕込んだ有機アルミニウム(A)、及びオニウム塩(B)の混合物に、オキシラン単量体を添加して行ってもよいし、オニウム塩(B)及びオキシラン単量体の混合物に、有機アルミニウム(A)を添加して行ってもよい。
The synthesis of the polyether compound is performed by ring-opening polymerization of an oxirane monomer in the presence of the component (A) and the component (B). The polymerization reaction is usually performed by mixing these raw materials in the reaction system.
The raw materials are mixed, for example, by adding the onium salt (B) dissolved in the oxirane monomer to the organoaluminum (A) previously charged in the reaction system, and then further adding the oxirane monomer. Preferably it is done.
And after preparing the solvent mentioned later in the reaction system, the organic aluminum (A) is further charged, and the onium salt previously dissolved in the oxirane monomer with respect to the mixture of the solvent and the organic aluminum (A). It is more preferable to add (B) and then further add an oxirane monomer, and the oxirane monomer to be added later is maintained so that the reaction temperature of the reaction system is maintained at a desired temperature. More preferably, the addition rate is adjusted.
In addition, the polymerization reaction may be performed by adding an oxirane monomer to a mixture of the organoaluminum (A) and the onium salt (B) previously charged in the reaction system, or the onium salt (B) and An organic aluminum (A) may be added to a mixture of oxirane monomers.
<ポリエーテル化合物の製造時に用いる溶媒>
 当該重合反応は、特に限定されないが、溶媒の存在下で行うことが好ましい。溶媒の存在下で行うことで、重合を制御しやすくなり、高分子量のポリエーテル化合物が製造しやすくなる。
 当該溶媒としては、原料に対して不活性なものであれば特に限定されないが、例えば、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン等の鎖状飽和炭化水素系溶媒;イソオクタン等の分岐鎖状飽和炭化水素系溶媒;シクロペンタン、シクロヘキサン等の脂環式飽和炭化水素系溶媒;等の飽和炭化水素系溶媒、また、ベンゼン、トルエン等の芳香族炭化水素系溶媒;モノエーテル、ジエーテル、トリエーテル、テトラエーテル、ポリビニルエーテル、ポリアルキレングリコール類等のエーテル系溶媒;が挙げられる。
<Solvent used for production of polyether compound>
The polymerization reaction is not particularly limited, but it is preferably performed in the presence of a solvent. By carrying out in the presence of a solvent, it becomes easy to control polymerization, and it becomes easy to produce a high molecular weight polyether compound.
The solvent is not particularly limited as long as it is inert to the raw material. For example, chain saturated hydrocarbon solvents such as n-pentane, n-hexane, n-heptane and n-octane; isooctane Branched-chain saturated hydrocarbon solvents such as cycloaliphatic saturated hydrocarbon solvents such as cyclopentane and cyclohexane; saturated hydrocarbon solvents such as benzene and toluene; aromatic hydrocarbon solvents such as benzene and toluene; monoethers , Ether solvents such as diether, triether, tetraether, polyvinyl ether, polyalkylene glycols, and the like.
 ここで、モノエーテルとしては、アルキル基の炭素数が1以上12以下であるジアルキルエーテル等が例示される。また、ジエーテルとしては、アルキル基の炭素数が1以上12以下であるジアルキルジエーテルが用いられ、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール等のアルカンジオールのジアルキルエーテルが挙げられる。トリエーテル及びテトラエーテルとしては、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等の3価又は4価アルコールのアルキルエーテルが挙げられる。 Here, examples of the monoether include dialkyl ethers in which the alkyl group has 1 to 12 carbon atoms. In addition, as the diether, a dialkyl diether having an alkyl group having 1 to 12 carbon atoms is used, such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol and the like. And dialkyl ethers of alkanediols. Examples of the triether and tetraether include trivalent or tetravalent alcohol alkyl ethers such as glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol.
 これらの溶媒の中では、より高分子量のポリエーテル化合物を製造しやすくなる観点から、飽和炭化水素系溶媒を用いることが好ましい。
 これらの溶媒は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 なお、当該「溶媒」とは、前記オキシラン単量体を重合してポリエーテル化合物を合成するために反応系に添加される溶媒のことをいう。例えば、触媒(成分(A))及び重合開始剤(成分(B))等の前記オキシラン単量体以外の添加剤に予め含まれている溶剤又はこれら添加剤の取り扱い上の観点から、これら添加剤を含有する溶剤等は、ここでいう「溶媒」には含まないものとする。
Among these solvents, it is preferable to use a saturated hydrocarbon solvent from the viewpoint of easy production of a higher molecular weight polyether compound.
These solvents may be used alone or in combination of two or more.
The “solvent” refers to a solvent added to the reaction system in order to synthesize the polyether compound by polymerizing the oxirane monomer. For example, from the viewpoint of handling of the solvent or these additives, which are previously contained in additives other than the oxirane monomer such as catalyst (component (A)) and polymerization initiator (component (B)) Solvents containing agents are not included in the “solvent” mentioned here.
 当該溶媒は、溶媒1Lに対する単量体のモル量が、好ましくは0.10モル/L以上10.00モル/L以下、より好ましくは1.00モル/L以上8.00モル/L以下、更に好ましくは1.00モル/L以上4.00モル/L以下となるように反応系に添加される。当該溶媒1Lに対する単量体のモル量をこれらの上限値以下とすることで、高分子量のポリエーテル化合物を製造しやすくなる。また、当該溶媒1Lに対する単量体のモル量をこれらの下限値以上とすることで、反応容器のサイズが必要以上に大きくなることが防止される。
 また、当該溶媒の反応系での使用量としては、高分子量のポリエーテル化合物を更に製造しやすくする観点からは、溶媒1Lに対する前記オキシラン単量体のモル量が、好ましくは0.50モル/L以上、より好ましくは1.00モル/L以上、更に好ましくは2.00モル/L以上、より更に好ましくは2.50モル/L以上であり、そして、好ましくは8.00モル/L以下、より好ましくは6.00モル/L以下、更に好ましくは5.00モル/L以下、より更に好ましくは4.50モル/L以下である。
In the solvent, the molar amount of the monomer with respect to 1 L of the solvent is preferably 0.10 mol / L or more and 10.00 mol / L or less, more preferably 1.00 mol / L or more and 8.00 mol / L or less, More preferably, it is added to the reaction system so as to be 1.00 mol / L or more and 4.00 mol / L or less. By making the molar amount of the monomer with respect to 1 L of the solvent not more than these upper limit values, it becomes easy to produce a high molecular weight polyether compound. Moreover, it is prevented that the size of the reaction vessel becomes unnecessarily large by setting the molar amount of the monomer with respect to 1 L of the solvent to be not less than these lower limit values.
In addition, the amount of the solvent used in the reaction system is such that the molar amount of the oxirane monomer relative to 1 L of the solvent is preferably 0.50 mol / mol from the viewpoint of making it easier to produce a high molecular weight polyether compound. L or more, more preferably 1.00 mol / L or more, further preferably 2.00 mol / L or more, still more preferably 2.50 mol / L or more, and preferably 8.00 mol / L or less. More preferably, it is 6.00 mol / L or less, More preferably, it is 5.00 mol / L or less, More preferably, it is 4.50 mol / L or less.
 オキシラン単量体の重合反応を行う条件は、用いる原料の種類、目的とする分子量等に応じて適宜設定することができる。重合反応時の圧力は、通常、大気圧下である。
 また、前記オキシラン単量体を重合する時の温度は、例えば、-30℃以上100℃以下で行なうことができるが、例えば、重量平均分子量(Mw)が100,000以上であるようなより高分子量のポリエーテル化合物を得る観点からは、好ましくは-30℃以上、より好ましくは-20℃以上、更に好ましくは-15℃以上であり、そして、好ましくは30℃以下、より好ましくは10℃以下、更に好ましくは0℃以下である。
 ここで、これまで、室温程度の温和な条件下では、例えば、重量平均分子量(Mw)が100,000以上であるような更に高分子量のポリエーテル化合物を得ることが難しかった。しかしながら、前記本発明の一実施形態に係るポリエーテル化合物の製造方法では、室温程度の温和な条件下でも、高分子量のポリエーテル化合物を得ることが可能になる。そして、重合反応を行なう際の作業性及び安全性の観点、並びに工業化の観点からも、より温和な条件下でオキシラン化合物を重合して、高分子量のポリエーテル化合物を得ることが好ましい。
 したがって、このような温和な条件下で高分子量のポリエーテル化合物を得る観点からは、前記製造方法において、前記オキシラン単量体を重合する時の温度は、好ましくは-10℃以上、より好ましくは-5℃以上、更に好ましくは0℃以上、より更に好ましくは5℃以上、より更に好ましくは10℃以上であり、そして、好ましくは40℃以下、より好ましくは35℃以下、更に好ましくは30℃以下、より好ましくは25℃以下である。
 また、重合時間は、好ましくは0.5時間以上24時間以下、より好ましくは1時間以上15時間以下、更に好ましくは2時間以上10時間以下である。
Conditions for carrying out the polymerization reaction of the oxirane monomer can be appropriately set according to the type of raw material used, the target molecular weight, and the like. The pressure during the polymerization reaction is usually atmospheric pressure.
The temperature at which the oxirane monomer is polymerized can be, for example, -30 ° C. or more and 100 ° C. or less, but for example, higher than the weight average molecular weight (Mw) of 100,000 or more. From the viewpoint of obtaining a polyether compound having a molecular weight, it is preferably −30 ° C. or higher, more preferably −20 ° C. or higher, still more preferably −15 ° C. or higher, and preferably 30 ° C. or lower, more preferably 10 ° C. or lower. More preferably, it is 0 ° C. or lower.
Heretofore, it has been difficult to obtain a higher molecular weight polyether compound having a weight average molecular weight (Mw) of 100,000 or more under mild conditions of about room temperature. However, in the method for producing a polyether compound according to one embodiment of the present invention, a high-molecular weight polyether compound can be obtained even under mild conditions of about room temperature. From the viewpoint of workability and safety during the polymerization reaction, and from the viewpoint of industrialization, it is preferable to polymerize the oxirane compound under milder conditions to obtain a high molecular weight polyether compound.
Therefore, from the viewpoint of obtaining a high molecular weight polyether compound under such mild conditions, the temperature at which the oxirane monomer is polymerized in the production method is preferably −10 ° C. or more, more preferably −5 ° C. or higher, more preferably 0 ° C. or higher, even more preferably 5 ° C. or higher, even more preferably 10 ° C. or higher, and preferably 40 ° C. or lower, more preferably 35 ° C. or lower, still more preferably 30 ° C. Below, more preferably 25 ° C. or less.
The polymerization time is preferably 0.5 hours or more and 24 hours or less, more preferably 1 hour or more and 15 hours or less, and further preferably 2 hours or more and 10 hours or less.
 前記重合反応は、例えば、水、アルコール、酸性物質、塩基性物質又はこれらの混合物等を添加し、触媒(成分(A))を失活させて停止してもよい。
 また、重合反応終了後、回収工程で、ろ過、減圧留去等の常法により、不純物、揮発成分を取り除いてポリエーテル化合物を回収すればよい。
 触媒(成分(A))は、吸着剤を用いた加圧ろ過によって取り除いてもよいし、吸着剤を用いることなく、高温のアルカリ水で洗浄した後に純水で洗浄することによって取り除いてもよい。
 更に、得られるポリエーテル化合物の末端は、水酸基となるものであるが、その末端水酸基は変性剤により官能基を導入してもよい。例えば、ポリエーテル化合物の末端は、水酸基をエステル化、又はエーテル化等することで、炭素数1以上10以下の炭化水素基又は炭素数1以上10以下の酸素含有炭化水素基等を導入してもよい。なお、炭化水素基としてはアルキル基が挙げられ、酸素含有炭化水素基としてはアシル基が挙げられるが、これら炭化水素基及び酸素含有炭化水素基の詳細は、後述するRと同様である。
The polymerization reaction may be stopped, for example, by adding water, alcohol, acidic substance, basic substance, or a mixture thereof to deactivate the catalyst (component (A)).
Further, after completion of the polymerization reaction, the polyether compound may be recovered by removing impurities and volatile components by a conventional method such as filtration and distillation under reduced pressure in the recovery step.
The catalyst (component (A)) may be removed by pressure filtration using an adsorbent, or may be removed by washing with high-temperature alkaline water and then with pure water without using an adsorbent. .
Furthermore, although the terminal of the obtained polyether compound becomes a hydroxyl group, the terminal hydroxyl group may introduce a functional group with a modifier. For example, the terminal of the polyether compound introduces a hydrocarbon group having 1 to 10 carbon atoms or an oxygen-containing hydrocarbon group having 1 to 10 carbon atoms by esterifying or etherifying a hydroxyl group. Also good. The hydrocarbon group includes an alkyl group, and the oxygen-containing hydrocarbon group includes an acyl group. Details of these hydrocarbon group and oxygen-containing hydrocarbon group are the same as those for R 8 described later.
 本発明の一実施形態に係るポリエーテル化合物の製造方法では、高分子量のポリエーテル化合物を得ることが可能であり、更には、前述した温和な条件下でも、高分子量のポリエーテル化合物を得ることが可能である。例えば、重量平均分子量(Mw)が100,000以上であるポリエーテル化合物を製造可能である。
 重量平均分子量(Mw)を100,000以上とすることで、ポリエーテル化合物は、様々な分野で有用となり、例えば、潤滑油分野では、粘度指数を向上させる粘度指数向上剤として好適に使用され、冷凍機油組成物用の粘度指数向上剤としてより好適に使用される。
 前記製造方法で得られるポリエーテル化合物の重量平均分子量(Mw)としては、得られるポリエーテル化合物の効果を有効に発現させる観点から、好ましくは100,000以上、より好ましくは200,000以上、更に好ましくは300,000以上である。
 また、得られるポリエーテル化合物の取り扱い性、製造の容易性の観点から、好ましくは1,000,000以下、より好ましくは600,000以下、更に好ましくは550,000以下である。
 なお、当該重量平均分子量(Mw)の値は、後述する実施例に記載の方法を用いて測定される値である。
In the method for producing a polyether compound according to an embodiment of the present invention, it is possible to obtain a high molecular weight polyether compound, and furthermore, to obtain a high molecular weight polyether compound even under the mild conditions described above. Is possible. For example, a polyether compound having a weight average molecular weight (Mw) of 100,000 or more can be produced.
By setting the weight average molecular weight (Mw) to 100,000 or more, the polyether compound is useful in various fields. For example, in the lubricating oil field, it is suitably used as a viscosity index improver for improving the viscosity index. More preferably used as a viscosity index improver for a refrigerator oil composition.
The weight average molecular weight (Mw) of the polyether compound obtained by the production method is preferably 100,000 or more, more preferably 200,000 or more, further from the viewpoint of effectively expressing the effect of the obtained polyether compound. Preferably it is 300,000 or more.
In addition, from the viewpoint of easy handling and ease of production of the obtained polyether compound, it is preferably 1,000,000 or less, more preferably 600,000 or less, and still more preferably 550,000 or less.
In addition, the value of the said weight average molecular weight (Mw) is a value measured using the method as described in the Example mentioned later.
[ポリエーテル化合物]
 本発明の一実施形態に係るポリエーテル化合物は、下記一般式(3)又は(4)で表される化合物であって、重量平均分子量(Mw)が100,000以上好ましくは1,000,000以下となるものである。
[Polyether compounds]
The polyether compound according to an embodiment of the present invention is a compound represented by the following general formula (3) or (4), and has a weight average molecular weight (Mw) of 100,000 or more, preferably 1,000,000. It becomes the following.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(3)中、R及びnは、それぞれ、一般式(1)中の前記R及びnと同様であり、その好適な態様も同様である。また、ROはオキシラン単量体由来の構成単位、mは、当該ポリエーテル化合物の重量平均分子量が100,000以上となる値であり、そして、好ましくは1,000,000以下となる値である。Rは、水素原子、炭素数1以上10以下の炭化水素基、又は炭素数1以上10以下の酸素含有炭化水素基である。複数存在するROは、互いに同一であってもよいし、互いに異なっていてもよい。また、nが2以上の場合、複数存在するRは互いに同一であってもよいし、互いに異なっていてもよい。 In the general formula (3), R 1 and n are each the same as R 1 and n in the general formula (1), the same applies to its preferred embodiment. R 7 O is a structural unit derived from an oxirane monomer, m is a value at which the weight average molecular weight of the polyether compound is 100,000 or more, and preferably 1,000,000 or less. It is. R 8 is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or an oxygen-containing hydrocarbon group having 1 to 10 carbon atoms. A plurality of R 7 Os may be the same as or different from each other. When n is 2 or more, a plurality of R 8 may be the same or different from each other.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(4)中、X、RO、及びRは、それぞれ、一般式(2)中の前記X、並びに一般式(3)中の前記RO及びRと同様であり、その好適な態様も同様である。rは、当該ポリエーテル化合物の重量平均分子量が100,000以上となる値であり、そして、好ましくは1,000,000以下となる値である。複数存在するROは、互いに同一であってもよいし、異なっていてもよい。 In General Formula (4), X, R 7 O, and R 8 are the same as X in General Formula (2) and R 7 O and R 8 in General Formula (3), respectively. The preferred embodiment is also the same. r is a value with which the weight average molecular weight of the polyether compound is 100,000 or more, and preferably a value with 1,000,000 or less. A plurality of R 7 Os may be the same as or different from each other.
 一般式(3)及び(4)におけるオキシラン単量体の化合物の例は、前記製造方法の欄で前述したとおりである。一般式(3)及び(4)におけるRとしては、例えば、炭素数2以上27以下の2価の炭化水素基、又は酸素原子を有する炭素数2以上27以下の2価の炭化水素基が挙げられる。これらは、1分子中において単独で使用されてもよいし、2種以上を組み合わせて使用されてもよい。
 オキシラン単量体としては、上記のように、エチレンオキシド、及び鎖状のアルキル基を有するアルキレンオキシドが好ましい。したがって、一般式(3)及び(4)において、ROは、好ましくは、-CR CR O-(ただし、Rは、それぞれ独立に、水素原子又は鎖状のアルキル基を表す。)の構造を有し、かつ合計炭素数が2以上27以下の2価の基であり、当該合計炭素数は、より好ましくは2以上20以下、更に好ましくは2以上12以下、より更に好ましくは2以上4以下である。
 なお、より好ましいROの態様としては、-CHCHO-、-CHCH(CH)O-、-CHCH(CHCH)O-、-CHC(CHO-、-CH(CH)CH(CH)O-が挙げられる。これらの中では、-CHCHO-、-CHCH(CH)O-、-CHCH(CHCH)O-が更に好ましい。ROの合計炭素数が、2以上4以下となることで前述したように、ポリエーテル化合物が、様々な分野で好適に使用されやすくなり、例えば、潤滑油分野では、粘度指数向上剤として好適に使用され、冷凍機油組成物に用いる粘度指数向上剤としてより好適に使用される。
Examples of the compound of the oxirane monomer in the general formulas (3) and (4) are as described above in the column of the production method. R 7 in the general formulas (3) and (4) is, for example, a divalent hydrocarbon group having 2 to 27 carbon atoms or a divalent hydrocarbon group having 2 to 27 carbon atoms having an oxygen atom. Can be mentioned. These may be used alone in one molecule or in combination of two or more.
As described above, the oxirane monomer is preferably ethylene oxide or an alkylene oxide having a chain alkyl group. Accordingly, in the general formulas (3) and (4), R 7 O is preferably —CR 9 2 CR 9 2 O— (wherein R 9 independently represents a hydrogen atom or a chain alkyl group). And a total number of carbon atoms of 2 or more and 27 or less, and the total number of carbon atoms is more preferably 2 or more and 20 or less, still more preferably 2 or more and 12 or less. Preferably they are 2 or more and 4 or less.
As the embodiment of the more preferred R 7 O, -CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (CH 2 CH 3) O -, - CH 2 C (CH 3 ) 2 O—, —CH (CH 3 ) CH (CH 3 ) O—. Of these, -CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (CH 2 CH 3) O- is more preferable. As described above, when the total carbon number of R 7 O is 2 or more and 4 or less, the polyether compound is easily used in various fields. For example, in the lubricating oil field, as a viscosity index improver. It is preferably used and more preferably used as a viscosity index improver for use in refrigerator oil compositions.
 Rにおける炭素数1以上10以下の炭化水素基は、直鎖状、分岐鎖状、環状のいずれであってもよい。該炭化水素基はアルキル基が好ましく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、分岐又は直鎖のブチル基、分岐又は直鎖のペンチル基、分岐又は直鎖のヘキシル基、分岐又は直鎖のヘプチル基、分岐又は直鎖のオクチル基、分岐又は直鎖のノニル基、分岐又は直鎖のデシル基、シクロペンチル基、シクロヘキシル基等を挙げることができる。
 Rにおける炭素数1以上10以下の酸素含有炭化水素基としては、炭素数2以上10以下のアシル基、エーテル結合を有する鎖状の脂肪族基、エーテル結合を有する環状の脂肪族基(例えば、テトラヒドロフルフリル基)等が挙げられる。炭素数2以上10以下のアシル基が有する炭化水素基部分は、直鎖状、分岐鎖状、環状のいずれであってもよい。該アシル基の炭化水素基部分は、アルキル基が好ましく、例えば、前述のRとして選択し得るアルキル基のうち炭素数1以上9以下のものが挙げられる。
 Rは、前記した中では、好ましくは水素原子又はアルキル基、より好ましくは水素原子又は炭素数1以上4以下のアルキル基、更に好ましくは水素原子又はメチル基若しくはエチル基、より更に好ましくは水素原子である。
 1分子中にRが複数ある場合、各分子においてRは互いに同一であってもよいし、異なっていてもよい。
The hydrocarbon group having 1 to 10 carbon atoms in R 8 may be linear, branched or cyclic. The hydrocarbon group is preferably an alkyl group, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a branched or linear butyl group, a branched or linear pentyl group, a branched or linear hexyl group, A branched or straight chain heptyl group, a branched or straight chain octyl group, a branched or straight chain nonyl group, a branched or straight chain decyl group, a cyclopentyl group, a cyclohexyl group, etc. can be mentioned.
Examples of the oxygen-containing hydrocarbon group having 1 to 10 carbon atoms in R 8 include an acyl group having 2 to 10 carbon atoms, a chain aliphatic group having an ether bond, and a cyclic aliphatic group having an ether bond (for example, , Tetrahydrofurfuryl group) and the like. The hydrocarbon group moiety of the acyl group having 2 to 10 carbon atoms may be linear, branched or cyclic. The hydrocarbon group portion of the acyl group is preferably an alkyl group, and examples thereof include those having 1 to 9 carbon atoms among the alkyl groups that can be selected as R 8 described above.
R 8 is preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, still more preferably a hydrogen atom, a methyl group or an ethyl group, and still more preferably a hydrogen atom. Is an atom.
If in one molecule R 8 have multiple to R 8 may be the same as each other in each molecule, it may be different.
 また、前記一般式(4)で表されるポリエーテル化合物は、より好ましくは以下の一般式(5)で表されるポリエーテル化合物である。 The polyether compound represented by the general formula (4) is more preferably a polyether compound represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(5)中、X、R及びrは、それぞれ、一般式(4)中の前記X、R及びrと同様であり、その好適な態様も同様である。R10は単結合又はメチレン基を示し、R11は水素原子、塩素原子又は炭素数1以上24以下のアルキル基を示す。Yは単結合又は酸素原子を示す。
 複数のR10は互いに同一であってもよいし、互いに異なっていてもよい。複数のR11は互いに同一であってもよいし、互いに異なっていてもよい。複数のYは互いに同一であってもよいし、互いに異なっていてもよい。
In the general formula (5), X, R 8 and r are each the same as the X, R 8 and r in the general formula (4), it is the same preferred embodiments thereof. R 10 represents a single bond or a methylene group, and R 11 represents a hydrogen atom, a chlorine atom, or an alkyl group having 1 to 24 carbon atoms. Y represents a single bond or an oxygen atom.
The plurality of R 10 may be the same as or different from each other. The plurality of R 11 may be the same as or different from each other. A plurality of Y may be the same as each other or different from each other.
 R10は、好ましくは単結合である。
 R11は、好ましくは水素原子、又は前記炭素数1以上24以下のアルキル基である。当該アルキル基の炭素数は、好ましくは炭素数1以上15以下、より好ましくは炭素数1以上5以下、更に好ましくは炭素数1以上3以下である。また、当該アルキル基は直鎖状、分岐状、又は環状のいずれでもよく、好ましくは直鎖状である。
 前記炭素数1以上24以下のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、トリコシル基、テトラコシル基、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、メチルペンチル基、イソへキシル基、ペンチルヘキシル基、ブチルペンチル基、2-エチルヘキシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらの中では、好ましくは水素原子、メチル基、エチル基、又はプロピル基、より好ましくは水素原子又はメチル基、更に好ましくはメチル基である。
R 10 is preferably a single bond.
R 11 is preferably a hydrogen atom or an alkyl group having 1 to 24 carbon atoms. The alkyl group preferably has 1 to 15 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably 1 to 3 carbon atoms. The alkyl group may be linear, branched, or cyclic, and is preferably linear.
Examples of the alkyl group having 1 to 24 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, and a dodecyl group. , Tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, heicosyl group, docosyl group, tricosyl group, tetracosyl group, isopropyl group, isobutyl group, sec-butyl group, tert- Butyl, isopentyl, neopentyl, tert-pentyl, methylpentyl, isohexyl, pentylhexyl, butylpentyl, 2-ethylhexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc. Be mentioned In these, Preferably they are a hydrogen atom, a methyl group, an ethyl group, or a propyl group, More preferably, they are a hydrogen atom or a methyl group, More preferably, it is a methyl group.
 Yは、好ましくは単結合である。また、Yは複数存在するが、複数のYは互いに同一であってもよいし、互いに異なっていてもよい。
 なお、R10及びYが共に単結合である場合とは、R11が一般式(5)で表されるポリエーテル化合物の主鎖中の炭素原子に直接結合することを表す。
 一般式(5)中、好ましくは複数のR10が互いに同一であり、複数のR11が互いに同一であり、複数のYが互いに同一である。
Y is preferably a single bond. Further, although there are a plurality of Y, the plurality of Y may be the same or different from each other.
The case where R 10 and Y are both single bonds means that R 11 is directly bonded to the carbon atom in the main chain of the polyether compound represented by the general formula (5).
In the general formula (5), is preferably the same plurality of R 10 with each other, a plurality of R 11 are the same and, at the same plurality of Y with each other.
 従来、例えば、-10℃以上のような前述した比較的温和な条件下でオキシラン単量体を重合する場合、一般式(3)、(4)又は(5)で示される分子構造のポリエーテル化合物として、重量平均分子量(Mw)が100,000以上の高分子を得ることが困難であったが、前述の本発明の一実施形態に係る製造方法によれば、製造することが可能になる。
 当該ポリエーテル化合物は、好ましくは前記ポリエーテル化合物の製造方法により得られるものである。
Conventionally, for example, when an oxirane monomer is polymerized under the above-mentioned relatively mild conditions such as −10 ° C. or higher, a polyether having a molecular structure represented by the general formula (3), (4) or (5) As a compound, it was difficult to obtain a polymer having a weight average molecular weight (Mw) of 100,000 or more. However, according to the production method according to the embodiment of the present invention, it can be produced. .
The polyether compound is preferably obtained by the method for producing a polyether compound.
 重量平均分子量(Mw)が100,000以上の一般式(3)、(4)又は(5)で示される構造を有するポリエーテル化合物は、分子量が高いことで様々な特性を有する。例えば、当該高分子量のポリエーテル化合物は、潤滑油組成物に配合することで、潤滑油組成物の粘度指数を向上させることができるが、重量平均分子量(Mw)を100,000以上とすることで、粘度指数をより高くすることが可能になる。
 ポリエーテル化合物は、その重量平均分子量(Mw)が、好ましくは150,000以上、より好ましくは200,000以上、より好ましくは300,000以上である。ポリエーテル化合物は、このように分子量を極めて高くすることで、高分子にしたときに得られる様々な特性をより発揮しやすくなる。例えば、粘度指数向上剤として使用する場合には、粘度指数を更に高くすることが可能である。
 また、ポリエーテル化合物は、その重量平均分子量(Mw)が1,000,000以下であると、その製造や取り扱い性がより容易になるため好ましい。取り扱い性の例としは、後述する潤滑油基油又は粘度指数向上剤が含有する希釈用の基油等に対する溶解性の良否といった観点が挙げられる。当該ポリエーテル化合物の製造や取り扱い性の観点からは、ポリエーテル化合物の重量平均分子量(Mw)は、より好ましくは800,000以下、更に好ましくは600,000以下、より更に好ましくは550,000以下である。
The polyether compound having a structure represented by the general formula (3), (4) or (5) having a weight average molecular weight (Mw) of 100,000 or more has various characteristics due to its high molecular weight. For example, the high molecular weight polyether compound can improve the viscosity index of the lubricating oil composition by being blended with the lubricating oil composition, but the weight average molecular weight (Mw) should be 100,000 or more. Thus, the viscosity index can be further increased.
The polyether compound has a weight average molecular weight (Mw) of preferably 150,000 or more, more preferably 200,000 or more, and more preferably 300,000 or more. By making the molecular weight extremely high in this way, the polyether compound can more easily exhibit various characteristics obtained when it is made into a polymer. For example, when used as a viscosity index improver, the viscosity index can be further increased.
In addition, it is preferable that the polyether compound has a weight average molecular weight (Mw) of 1,000,000 or less because the production and handleability thereof are easier. Examples of handleability include the viewpoint of good or bad solubility in a lubricating base oil or a base oil for dilution contained in a viscosity index improver described later. From the viewpoint of production and handling of the polyether compound, the weight average molecular weight (Mw) of the polyether compound is more preferably 800,000 or less, still more preferably 600,000 or less, and still more preferably 550,000 or less. It is.
 また、当該ポリエーテル化合物は、その重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)が、好ましくは10.0以下、より好ましくは5.0以下、更に好ましくは3.0以下、より更に好ましくは2.5以下である。
 また、その下限値は特に制限はないが、好ましくは1.1以上、より好ましくは1.3以上、更に好ましくは1.4以上、より更に好ましくは1.5以上である。
 当該重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、実施例に記載の方法で測定することができる。
The polyether compound preferably has a molecular weight distribution (Mw / Mn) represented by a ratio of its weight average molecular weight (Mw) to number average molecular weight (Mn), preferably 10.0 or less, more preferably 5. It is 0 or less, more preferably 3.0 or less, and still more preferably 2.5 or less.
The lower limit is not particularly limited, but is preferably 1.1 or more, more preferably 1.3 or more, still more preferably 1.4 or more, and still more preferably 1.5 or more.
The said weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) can be measured by the method as described in an Example.
 したがって、一般式(3)中のm、一般式(4)及び(5)中のrは、それぞれ独立に、ポリエーテル化合物の重量平均分子量(Mw)が100,000以上となる整数を示し、好ましくはポリエーテル化合物の重量平均分子量(Mw)が150,000以上、より好ましくは200,000以上、更に好ましくは300,000以上となる整数であり、そして、好ましくは1,000,000以下、より好ましくは800,000以下、更に好ましくは600,000以下、より更に好ましくは550,000以下となる整数である。 Therefore, m in the general formula (3) and r in the general formulas (4) and (5) each independently represent an integer with which the weight average molecular weight (Mw) of the polyether compound is 100,000 or more, Preferably, it is an integer such that the weight average molecular weight (Mw) of the polyether compound is 150,000 or more, more preferably 200,000 or more, still more preferably 300,000 or more, and preferably 1,000,000 or less, More preferably, it is an integer that is 800,000 or less, more preferably 600,000 or less, and still more preferably 550,000 or less.
 なお、一般式(3)で表されるポリエーテル化合物は、好ましくは、重合開始剤として一般式(1)で表されるハロゲン非含有オニウム塩を用い、前記ポリエーテル化合物の製造方法により得られるものである。
 また、一般式(4)又は(5)で表されるポリエーテル化合物は、好ましくは、重合開始剤として、一般式(2)で表されるハロゲン含有オニウム塩を用い、前記ポリエーテル化合物の製造方法により得られるものである。
 一般式(4)又は(5)で表されるポリエーテル化合物の場合、燃焼イオンクロマトグラフで測定されるポリマー分子中のハロゲン原子含有量が、好ましくは0.1000質量%(1,000質量ppm)以下、より好ましくは0.0300質量%(300質量ppm)以下、更に好ましくは0.0100質量%(100質量ppm)以下であり、そして、好ましくは0.0001質量%(1質量ppm)以上、より好ましくは0.0010質量%(10質量ppm)以上、更に好ましくは0.0050質量%(50質量ppm)以上である。
 また、一般式(4)又は(5)で表されるポリエーテル化合物の場合、分子末端にのみ、ハロゲン原子を有するポリエーテル化合物であることが好ましい。分子内部のハロゲン(2級や3級)に比べて、末端ハロゲン(1級)は脱離しにくく、酸が発生する恐れを低減できる。また、その酸によりポリマーが分解する恐れも低減できる。
The polyether compound represented by the general formula (3) is preferably obtained by the method for producing a polyether compound using a halogen-free onium salt represented by the general formula (1) as a polymerization initiator. Is.
Moreover, the polyether compound represented by the general formula (4) or (5) is preferably a halogen-containing onium salt represented by the general formula (2) as a polymerization initiator, It is obtained by the method.
In the case of the polyether compound represented by the general formula (4) or (5), the halogen atom content in the polymer molecule measured by combustion ion chromatography is preferably 0.1000% by mass (1,000 ppm by mass). ) Or less, more preferably 0.0300 mass% (300 mass ppm) or less, still more preferably 0.0100 mass% (100 mass ppm) or less, and preferably 0.0001 mass% (1 mass ppm) or more. More preferably, it is 0.0010 mass% (10 mass ppm) or more, More preferably, it is 0.0050 mass% (50 mass ppm) or more.
Moreover, in the case of the polyether compound represented by General formula (4) or (5), it is preferable that it is a polyether compound which has a halogen atom only in the molecular terminal. Compared to halogens (secondary or tertiary) in the molecule, terminal halogens (primary) are less likely to be eliminated and the risk of acid generation can be reduced. Further, the risk of the polymer being decomposed by the acid can be reduced.
 なお、前記ポリマー分子中のハロゲン原子(塩素原子)の含有量は、例えば、下記装置及び条件で燃焼イオンクロマトグラフ法により測定できる。
(1)試料燃焼
・装置:製品名「AQF-100」、株式会社三菱化学アナリテック製
・燃焼条件
 燃焼炉設定温度:前段800℃、後段1,000℃
 ガス流量:燃焼管外管より、酸素=400mL/分
      燃焼管内管より、アルゴン又は酸素=200mL/分
      加湿用超純水供給量:0.1mL/分
(2)イオンクロマトグラフ
・装置:製品名「DX-120」、サーモフィッシャーサイエンティフィック株式会社製
・カラム:「Dionex(登録商標) IonPac(登録商標) AG12A」及び「Dionex(登録商標) IonPac(登録商標) AS12A」、いずれもサーモフィッシャーサイエンティフィック株式会社製
In addition, content of the halogen atom (chlorine atom) in the said polymer molecule can be measured with a combustion ion chromatograph method, for example with the following apparatus and conditions.
(1) Sample combustion / equipment: Product name “AQF-100”, manufactured by Mitsubishi Chemical Analytech Co., Ltd./ Combustion conditions Combustion furnace set temperature: Pre-stage 800 ° C., post-stage 1,000 ° C.
Gas flow rate: From the outer tube of the combustion tube, oxygen = 400 mL / min From the inner tube of the combustion tube, argon or oxygen = 200 mL / min Supply amount of ultrapure water for humidification: 0.1 mL / min (2) Ion chromatograph / device: Product name “DX-120”, manufactured by Thermo Fisher Scientific Co., Ltd., Column: “Dionex (registered trademark) IonPac (registered trademark) AG12A” and “Dionex (registered trademark) IonPac (registered trademark) AS12A”, both of which are Thermo Fisher Scientific Made by Tiffic Corporation
[潤滑油組成物]
 本発明の一実施形態に係る潤滑油組成物は、潤滑油基油と、前記ポリエーテル化合物を含むものであり、好ましくは潤滑油基油と、前記製造方法により得られるポリエーテル化合物を含むものである。当該潤滑油組成物は、前述のように分子量の高いポリエーテル化合物を含有することで、粘度指数が向上する。
 当該潤滑油組成物において、ポリエーテル化合物は、通常0.01質量%以上50質量%以下、好ましくは0.1質量%以上30質量%以下、より好ましくは0.1質量%以上15質量%以下で含有される。
 前記潤滑油基油としては、一般に潤滑油の基油として用いられるものであればよく、特に制限はないが、鉱油、合成油、又はこれらの混合物が挙げられ、含酸素基油が好ましい。該含酸素基油としては、脂肪族系モノエステル、脂肪族系ジエステル、脂肪族系トリエステル、ポリオールエステル(POE)、脂肪族系モノエーテル、脂肪族系ジエーテル、脂肪族系トリエーテル、脂肪族系テトラエーテル、脂肪族系ポリビニルエーテル(PVE)等が挙げられる。
 当該潤滑油基油は、特に制限はないが、通常、100℃動粘度が0.5mm/s以上50mm/s以下の範囲にあり、1mm/s以上25mm/s以下の範囲にあるものが好ましい。なお、動粘度はJIS K2283-2000に準じ、ガラス製毛管式粘度計を用いて測定したものである。
[Lubricating oil composition]
The lubricating oil composition according to an embodiment of the present invention includes a lubricating base oil and the polyether compound, and preferably includes a lubricating base oil and a polyether compound obtained by the production method. . The lubricating oil composition improves the viscosity index by containing a polyether compound having a high molecular weight as described above.
In the lubricating oil composition, the polyether compound is generally 0.01% to 50% by mass, preferably 0.1% to 30% by mass, more preferably 0.1% to 15% by mass. Contained.
The lubricating base oil is not particularly limited as long as it is generally used as a base oil for lubricating oil, and includes mineral oil, synthetic oil, or a mixture thereof, and an oxygen-containing base oil is preferable. Examples of the oxygen-containing base oil include aliphatic monoesters, aliphatic diesters, aliphatic triesters, polyol esters (POE), aliphatic monoethers, aliphatic diethers, aliphatic triethers, aliphatic And tetravinyl ether and aliphatic polyvinyl ether (PVE).
The lubricating base oil is not particularly limited, but usually has a 100 ° C. kinematic viscosity in the range of 0.5 mm 2 / s to 50 mm 2 / s and in the range of 1 mm 2 / s to 25 mm 2 / s. Some are preferred. The kinematic viscosity was measured using a glass capillary viscometer according to JIS K2283-2000.
 当該潤滑油組成物は、ポリエーテル化合物の効果を阻害しない範囲で、酸化防止剤、油性剤、極圧剤、清浄分散剤、前記ポリエーテル化合物以外の粘度指数向上剤、防錆剤、金属不活性化剤、消泡剤等の添加剤を含有してもよい。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。
 なお、当該潤滑油組成物は、用途によっては、前記ポリエーテル化合物以外の添加剤を配合せず、前記潤滑油基油と前記ポリエーテル化合物からなるものであってもよい。もちろん、当該潤滑油組成物は、前期潤滑油基油及びポリエーテル化合物、並びに前記の各添加剤からなる群より選ばれる1種以上からなるものであってもよい。
The lubricating oil composition is an antioxidant, an oily agent, an extreme pressure agent, a detergent / dispersant, a viscosity index improver other than the polyether compound, a rust preventive agent, a metal antibacterial agent as long as the effect of the polyether compound is not impaired. You may contain additives, such as an activator and an antifoamer. You may use these individually by 1 type or in combination of 2 or more types.
In addition, the said lubricating oil composition may consist of the said lubricating base oil and the said polyether compound, without mix | blending additives other than the said polyether compound depending on a use. Of course, the lubricating oil composition may be composed of at least one selected from the group consisting of the above-mentioned lubricating base oil, polyether compound, and the aforementioned additives.
 当該潤滑油組成物は、冷凍機油として使用されることが好ましい。すなわち、当該潤滑油組成物は、冷媒とともに冷凍機内部に充填して使用され、例えば、冷凍機に設けられた圧縮機等の摺動部分を潤滑するために好適に使用されるものである。
 また、当該潤滑油組成物は、冷凍機以外にも、ガソリンエンジンやディーゼルエンジン等の内燃機関、変速機、ショックアブソーバー、各種歯車構造、各種軸受機構、その他の各種の工業用装置等において使用されてもよい。
 前述のとおり、本発明の一実施形態としては、当該潤滑油組成物を充填した冷凍機が挙げられる。
 また、本発明の一実施形態としては、当該潤滑油組成物を充填した内燃機関が挙げられ、当該内燃機関としては、例えば、ガソリンエンジン及び/又はディーゼルエンジンが挙げられる。
 また、本発明の一実施形態としては、当該潤滑油組成物を充填した工業用装置が挙げられる。当該工業用装置としては、例えば、変速機、ショックアブソーバー、各種歯車構造、及び各種軸受機構からなる群より選ばれる1種以上が挙げられる。
The lubricating oil composition is preferably used as a refrigerating machine oil. That is, the lubricating oil composition is used by filling the inside of the refrigerator together with the refrigerant, and is suitably used, for example, for lubricating a sliding portion such as a compressor provided in the refrigerator.
In addition to the refrigerator, the lubricating oil composition is used in internal combustion engines such as gasoline engines and diesel engines, transmissions, shock absorbers, various gear structures, various bearing mechanisms, and other various industrial devices. May be.
As described above, an embodiment of the present invention includes a refrigerator filled with the lubricating oil composition.
An embodiment of the present invention includes an internal combustion engine filled with the lubricating oil composition, and examples of the internal combustion engine include a gasoline engine and / or a diesel engine.
Moreover, as one Embodiment of this invention, the industrial apparatus with which the said lubricating oil composition was filled is mentioned. Examples of the industrial device include one or more selected from the group consisting of a transmission, a shock absorber, various gear structures, and various bearing mechanisms.
[潤滑油組成物の製造方法]
 前記潤滑油組成物は、前記潤滑油基油に、前記ポリエーテル化合物、及びその他必要に応じて使用される前記各種添加剤を配合して製造されるものであり、好ましくは前記潤滑油基油に、前記製造方法で得たポリエーテル化合物、及びその他必要に応じて使用される前記各種添加剤を配合して製造されるものである。
 すなわち、本発明の一実施形態に係る潤滑油組成物の製造方法としては、前記ポリエーテル化合物を、潤滑油基油に配合する工程を有する製造方法であり、好ましくは前記製造方法で得たポリエーテル化合物を、潤滑油基油に配合する工程を有する製造方法である。そして、前述のとおり、当該製造方法で得られる潤滑油組成物は、冷凍機に使用される冷凍機油組成物であることが好ましい。
[Method for producing lubricating oil composition]
The lubricating oil composition is produced by blending the lubricating base oil with the polyether compound and other various additives used as necessary, preferably the lubricating base oil. It is manufactured by blending the polyether compound obtained by the above production method and other various additives used as necessary.
That is, the method for producing a lubricating oil composition according to an embodiment of the present invention is a production method having a step of blending the polyether compound into a lubricating base oil, and preferably a polysilicic acid obtained by the production method. It is a manufacturing method which has the process of mix | blending an ether compound with lubricating base oil. And as above-mentioned, it is preferable that the lubricating oil composition obtained with the said manufacturing method is a refrigerator oil composition used for a refrigerator.
[粘度指数向上剤]
 前記ポリエーテル化合物は、前述のように、好ましくは潤滑油組成物の粘度指数を向上する添加剤として使用されるものであり、冷凍機油用の粘度指数向上剤として用いることがより好ましい。
 すなわち、本発明の一実施形態としては、前記ポリエーテル化合物を、潤滑油組成物に添加し、粘度指数を向上させる方法であり、好ましくは前記製造方法で得たポリエーテル化合物を、潤滑油組成物に添加し、粘度指数を向上させる方法である。
 当該粘度指数向上剤は、前記ポリエーテル化合物単体からなるものであってもよいが、前記ポリエーテル化合物に加えて他の成分を含有していてもよい。例えば、粘度指数向上剤は、前記ポリエーテル化合物に加えて、前記ポリエーテル化合物を希釈するための基油等を含有していてもよい。当該基油としては、前記潤滑油基油で列挙した各種の基油を使用可能である。
[Viscosity index improver]
As described above, the polyether compound is preferably used as an additive for improving the viscosity index of a lubricating oil composition, and more preferably used as a viscosity index improver for refrigerating machine oil.
That is, an embodiment of the present invention is a method of adding the polyether compound to a lubricating oil composition to improve the viscosity index, and preferably the polyether compound obtained by the production method is used as a lubricating oil composition. It is a method of improving the viscosity index by adding to a product.
Although the said viscosity index improver may consist of the said polyether compound single-piece | unit, in addition to the said polyether compound, you may contain another component. For example, the viscosity index improver may contain a base oil for diluting the polyether compound in addition to the polyether compound. As the base oil, various base oils listed in the lubricating base oil can be used.
[粘度指数向上剤の製造方法]
 すなわち、本発明の一実施形態に係る粘度指数向上剤の製造方法としては、前記ポリエーテル化合物を、基油で希釈する工程を有する製造方法であり、好ましくは前記製造方法で得たポリエーテル化合物を、基油で希釈する工程を有する製造方法である。そして、前述のとおり、当該製造方法で得られる粘度指数向上剤は、潤滑油組成物に好適に使用されるものであり、冷凍機油組成物により好適に使用されるものである。
[Method for producing viscosity index improver]
That is, the method for producing a viscosity index improver according to an embodiment of the present invention is a production method including a step of diluting the polyether compound with a base oil, and preferably a polyether compound obtained by the production method. Is a production method having a step of diluting with a base oil. And as above-mentioned, the viscosity index improver obtained with the said manufacturing method is used suitably for a lubricating oil composition, and is suitably used by a refrigerator oil composition.
 また、前記ポリエーテル化合物は、潤滑油用途以外にも様々な用途で使用可能であり、エラストマー、樹脂、ゴム等を構成するウレタン等の高分子材料の原料として使用することが可能である。ウレタンは例えばシーラント、接着剤等に使用される。 Further, the polyether compound can be used in various applications other than the lubricating oil application, and can be used as a raw material for polymer materials such as urethane constituting elastomers, resins, rubbers and the like. Urethane is used for sealants, adhesives and the like, for example.
 以下に、本発明を、実施例により、更に具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
 なお、ポリエーテル化合物の下記物性の測定は、以下に示す要領に従って行なった。
[重量平均分子量(Mw)及び分子量分布(Mw/Mn)]
 重量平均分子量(Mw)及び数平均分子量(Mn)を、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した。GPCは、カラムとして東ソー株式会社製TSKgel SuperMultiporeHZ-M2本を用い、テトラヒドロフランを溶離液として、検出器に屈折率検出器を用いて測定を行い、ポリスチレンを標準試料として重量平均分子量(Mw)及び数平均分子量(Mn)を求めた。
 分子量分布(Mw/Mn)は、得られた重量平均分子量(Mw)及び数平均分子量(Mn)の値を用いて算出した。
The following physical properties of the polyether compound were measured according to the following procedure.
[Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn)]
The weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured using gel permeation chromatography (GPC). GPC uses two TSKgel SuperMultipore HZ-M manufactured by Tosoh Corporation as a column, performs measurement using tetrahydrofuran as an eluent, and a refractive index detector as a detector, and uses polystyrene as a standard sample as a weight average molecular weight (Mw) and a number. The average molecular weight (Mn) was determined.
The molecular weight distribution (Mw / Mn) was calculated using the obtained weight average molecular weight (Mw) and number average molecular weight (Mn) values.
[実施例1]
 1Lの4つ口セパラブルフラスコに、温度計、撹拌翼(4枚傾斜パドル)、並びに20mL及び100mLの滴下漏斗を取り付け、当該セパラブルフラスコ内を窒素で置換した。
 窒素雰囲気下、溶媒としてn-ヘプタン(和光純薬工業社製、商品名「超脱水ヘプタン」)を500mL当該セパラブルフラスコに仕込んだ。
 冷媒温度を15℃以上18℃以下に制御した恒温槽に、当該セパラブルフラスコを漬け、撹拌翼をスリーワンモーターに接続して200rpmの回転速度で撹拌した。
 次いで、触媒としてトリイソブチルアルミニウムのトルエン溶液(和光純薬工業社製、「1.0mol/Lトリイソブチルアルミニウム トルエン溶液」)を4.2mL(成分(A)であるトリイソブチルアルミニウム換算で4.2mmol)当該セパラブルフラスコ内に仕込んだ。
 次に、グローブボックス内(露点-70℃以下、酸素1ppm以下)で、三方コックを付けた20mLの2口ナシ型フラスコに、重合開始剤としてテトラブチルアンモニウムメトキシド(成分(B))を75.6mg(0.2765mmol)仕込んだ。当該ナシ型フラスコをグローブボックスから出した後、窒素雰囲気下で、プロピレンオキシドを10mL(0.143mol)添加して、溶解させて、テトラブチルアンモニウムメトキシドのプロピレンオキシド溶液を調製した。
 続いて、当該テトラブチルアンモニウムメトキシドのプロピレンオキシド溶液を、前記セパラブルフラスコに備えた20mL滴下漏斗に仕込み、もう一方の100mL滴下漏斗にはプロピレンオキシド90mL(1.287mol)を仕込んだ。
 内温を20℃に制御した当該セパラブルフラスコに、最初に、前記20mL滴下漏斗中のテトラブチルアンモニウムメトキシドのプロピレンオキシド溶液を、10分間かけて滴下した。
 テトラブチルアンモニウムメトキシドのプロピレンオキシド溶液の滴下が終了した後、前記100mL滴下漏斗中のプロピレンオキシド90mLを、当該セパラブルフラスコ内の温度を20℃に制御したまま、3時間かけてゆっくりと滴下した。
 前記100mL滴下漏斗中のプロピレンオキシド90mLの滴下を終了した後、同温度で2時間待ち、エタノールを2mL、5wt%水酸化ナトリウム水溶液を2mL加えて、触媒を失活させ、重合反応を終了させた。
 重合反応を終了した当該セパラブルフラスコに、更にトルエン200mL、「セライト」(登録商標、Imerys Minerals California, Inc.製)20gを添加し、加圧ろ過器(窒素圧0.3MPa)を用いて粗生成物をろ過した。
 ろ液に、酸化防止剤(4,4’-メチレン-ビス(2,6-ジ-tert-ブチルフェノール))を30mg添加し、テフロン(登録商標)製のバッドを用いて真空乾燥器にて濃縮(真空度1Torr以下、温度120℃)して、ポリエーテル化合物1を得た。
[Example 1]
A thermometer, a stirring blade (four inclined paddles), and a 20 mL and 100 mL dropping funnel were attached to a 1 L four-necked separable flask, and the inside of the separable flask was replaced with nitrogen.
Under a nitrogen atmosphere, 500 mL of n-heptane (manufactured by Wako Pure Chemical Industries, Ltd., trade name “super dehydrated heptane”) was charged into the separable flask as a solvent.
The separable flask was immersed in a thermostatic chamber whose refrigerant temperature was controlled at 15 ° C. or higher and 18 ° C. or lower, and the stirring blade was connected to a three-one motor and stirred at a rotation speed of 200 rpm.
Next, 4.2 mL of triisobutylaluminum toluene solution (manufactured by Wako Pure Chemical Industries, Ltd., “1.0 mol / L triisobutylaluminum toluene solution”) as a catalyst (4.2 mmol in terms of triisobutylaluminum as component (A)). ) Charged into the separable flask.
Next, in a glove box (dew point −70 ° C. or less, oxygen 1 ppm or less), tetrabutylammonium methoxide (component (B)) as a polymerization initiator was added to a 20 mL 2-neck pear flask with a three-way cock as a polymerization initiator. .6 mg (0.2765 mmol) was charged. After the pear-shaped flask was taken out of the glove box, 10 mL (0.143 mol) of propylene oxide was added and dissolved in a nitrogen atmosphere to prepare a propylene oxide solution of tetrabutylammonium methoxide.
Subsequently, the propylene oxide solution of tetrabutylammonium methoxide was charged into a 20 mL dropping funnel provided in the separable flask, and 90 mL (1.287 mol) of propylene oxide was charged into the other 100 mL dropping funnel.
First, a propylene oxide solution of tetrabutylammonium methoxide in the 20 mL dropping funnel was dropped into the separable flask whose internal temperature was controlled at 20 ° C. over 10 minutes.
After completion of the dropwise addition of the propylene oxide solution of tetrabutylammonium methoxide, 90 mL of propylene oxide in the 100 mL dropping funnel was slowly added dropwise over 3 hours while controlling the temperature in the separable flask at 20 ° C. .
After completing the dropwise addition of 90 mL of propylene oxide in the 100 mL dropping funnel, the mixture was waited for 2 hours at the same temperature, and 2 mL of ethanol and 2 mL of 5 wt% sodium hydroxide aqueous solution were added to deactivate the catalyst to complete the polymerization reaction. .
200 ml of toluene and 20 g of “Celite” (registered trademark, manufactured by Imerys Minerals California, Inc.) are further added to the separable flask after the completion of the polymerization reaction, and coarsely filtered using a pressure filter (nitrogen pressure: 0.3 MPa). The product was filtered.
30 mg of an antioxidant (4,4′-methylene-bis (2,6-di-tert-butylphenol)) was added to the filtrate and concentrated in a vacuum dryer using a Teflon (registered trademark) pad. (The degree of vacuum was 1 Torr or less and the temperature was 120 ° C.) to obtain a polyether compound 1.
[実施例2]
 実施例1において、成分(A)であるトリイソブチルアルミニウムを4.2mmol用いる代わりに0.83mmol用いたこと以外は、実施例1と同様に操作してポリエーテル化合物2を得た。
[Example 2]
In Example 1, polyether compound 2 was obtained in the same manner as in Example 1 except that 0.83 mmol was used instead of 4.2 mmol of component (A) triisobutylaluminum.
[実施例3]
 実施例1において、成分(A)であるトリイソブチルアルミニウムを4.2mmol用いる代わりに8.3mmol用いたこと以外は、実施例1と同様に操作してポリエーテル化合物3を得た。
[Example 3]
In Example 1, polyether compound 3 was obtained in the same manner as in Example 1 except that 8.3 mmol was used instead of 4.2 mmol of component (A) triisobutylaluminum.
[実施例4]
 実施例1において、成分(A)であるトリイソブチルアルミニウムを4.2mmol用いる代わりに2.1mmol用いたこと以外は、実施例1と同様に操作してポリエーテル化合物4を得た。
[Example 4]
A polyether compound 4 was obtained in the same manner as in Example 1 except that 2.1 mmol of component (A) triisobutylaluminum was used instead of 4.2 mmol.
[実施例5]
 実施例4において、溶媒であるn-ヘプタンを500mL用いる代わりに300mL用いたこと以外は、実施例4と同様に操作してポリエーテル化合物5を得た。
[Example 5]
A polyether compound 5 was obtained in the same manner as in Example 4 except that 300 mL of n-heptane as a solvent was used instead of 500 mL in Example 4.
[実施例6]
 実施例4において、溶媒であるn-ヘプタンを500mL用いる代わりに700mL用いたこと以外は、実施例4と同様に操作してポリエーテル化合物6を得た。
[Example 6]
A polyether compound 6 was obtained in the same manner as in Example 4 except that 700 mL of n-heptane as a solvent was used instead of 500 mL in Example 4.
[実施例7]
 実施例4において、恒温層の冷媒温度を25℃以上28℃以下に制御し、プロピレンオキシドの重合反応を行う際のセパラブルフラスコの内温を20℃に制御する代わりに、30℃に制御したこと以外は、実施例4と同様に操作してポリエーテル化合物7を得た。
[Example 7]
In Example 4, the refrigerant temperature in the constant temperature layer was controlled to 25 ° C. or higher and 28 ° C. or lower, and the internal temperature of the separable flask during the polymerization reaction of propylene oxide was controlled to 30 ° C. instead of 20 ° C. Except that, polyether compound 7 was obtained in the same manner as in Example 4.
[実施例8]
 実施例7において、成分(A)であるトリイソブチルアルミニウムを2.1mmol用いる代わりに4.2mmol用いたこと以外は、実施例7と同様に操作してポリエーテル化合物8を得た。
[Example 8]
In Example 7, polyether compound 8 was obtained in the same manner as in Example 7 except that 4.2 mmol of component (A) triisobutylaluminum was used instead of 2.1 mmol.
[実施例9]
 実施例7において、成分(A)であるトリイソブチルアルミニウムを2.1mmol用いる代わりに8.3mmol用いたこと以外は、実施例7と同様に操作してポリエーテル化合物9を得た。
[Example 9]
In Example 7, polyether compound 9 was obtained in the same manner as in Example 7 except that 8.3 mmol was used instead of 2.1 mmol of component (A) triisobutylaluminum.
[実施例10]
 実施例4において、恒温層の冷媒温度を-5℃以上-2℃以下に制御し、プロピレンオキシドの重合反応を行う際のセパラブルフラスコの内温を20℃に制御する代わりに、0℃に制御したこと以外は、実施例4と同様に操作してポリエーテル化合物10を得た。
[Example 10]
In Example 4, instead of controlling the internal temperature of the separable flask at 20 ° C. during the polymerization reaction of propylene oxide by controlling the refrigerant temperature in the constant temperature layer to −5 ° C. or more and −2 ° C. or less. Except having controlled, it carried out similarly to Example 4 and obtained the polyether compound 10.
[実施例11]
 実施例10において、成分(A)であるトリイソブチルアルミニウムを2.1mmol用いる代わりに4.2mmol用いたこと以外は、実施例10と同様に操作してポリエーテル化合物11を得た。
[Example 11]
In Example 10, polyether compound 11 was obtained in the same manner as in Example 10 except that 4.2 mmol of component (A) triisobutylaluminum was used instead of 2.1 mmol.
[実施例12]
 実施例10において、成分(A)であるトリイソブチルアルミニウムを2.1mmol用いる代わりに8.3mmol用いたこと以外は、実施例10と同様に操作してポリエーテル化合物12を得た。
[Example 12]
In Example 10, polyether compound 12 was obtained in the same manner as in Example 10 except that 8.3 mmol was used instead of 2.1 mmol of component (A) triisobutylaluminum.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 以上のように、各実施例1~12では、重合反応を、有機アルミニウム(成分(A))及びオニウム塩(成分(B))の存在下、成分(A)と成分(B)との量比〔A/B〕が、モル比で3以上60以下となる条件下で行うことで、高分子量のポリエーテル化合物を製造することができた。
 そして、実施例1~12に示すように、0℃以上30℃以下といった、温和な条件下で、高分子量のポリエーテル化合物を製造できることが確認された。
As described above, in each of Examples 1 to 12, the polymerization reaction was performed in the presence of organoaluminum (component (A)) and onium salt (component (B)) in the amounts of component (A) and component (B). A high molecular weight polyether compound could be produced by carrying out under the condition that the ratio [A / B] was 3 to 60 in terms of molar ratio.
As shown in Examples 1 to 12, it was confirmed that a high molecular weight polyether compound can be produced under mild conditions such as 0 ° C. or higher and 30 ° C. or lower.
 本発明の一実施形態に係るポリエーテル化合物の製造方法を用いることで、高分子量のポリエーテル化合物を得ることが可能である。更に、当該製造方法を用いる場合、より温和な条件下で高分子量のポリエーテル化合物を得ることが可能となるため、工業的に非常に有益である。
 また、本発明の一実施形態に係るポリエーテル化合物及び前記製造方法により得られるポリエーテル化合物は、冷凍機、内燃機関、歯車構造、軸受機構、変速機、ショックアブソーバー等に使用される潤滑油組成物に配合され、例えば、粘度指数向上剤として好適に使用されるものであり、冷凍機油組成物の粘度指数向上剤としてより好適に使用されるものである。また、接着剤、シーラント等を構成するウレタン等の各種原料としても使用可能なものである。
By using the method for producing a polyether compound according to an embodiment of the present invention, a high molecular weight polyether compound can be obtained. Furthermore, when the said manufacturing method is used, since it becomes possible to obtain a high molecular weight polyether compound on milder conditions, it is very useful industrially.
In addition, the polyether compound according to one embodiment of the present invention and the polyether compound obtained by the production method are used in a lubricating oil composition used for a refrigerator, an internal combustion engine, a gear structure, a bearing mechanism, a transmission, a shock absorber, and the like. For example, it is preferably used as a viscosity index improver, and more preferably used as a viscosity index improver in a refrigerator oil composition. It can also be used as various raw materials such as urethane constituting adhesives and sealants.

Claims (14)

  1.  有機アルミニウム(A)とオニウム塩(B)とを、
     成分(A)と成分(B)との量比〔A/B〕が、モル比で3以上60以下となるように用いてオキシラン単量体を重合させる工程を有する、ポリエーテル化合物の製造方法。
    Organoaluminum (A) and onium salt (B)
    A method for producing a polyether compound, comprising a step of polymerizing an oxirane monomer using a molar ratio [A / B] of component (A) to component (B) of 3 or more and 60 or less. .
  2.  前記オキシラン単量体の重合を、-10℃以上40℃以下で行なう、請求項1に記載のポリエーテル化合物の製造方法。 The method for producing a polyether compound according to claim 1, wherein the polymerization of the oxirane monomer is performed at -10 ° C or higher and 40 ° C or lower.
  3.  成分(A)が、トリアルキルアルミニウムである、請求項1又は2に記載のポリエーテル化合物の製造方法。 The method for producing a polyether compound according to claim 1 or 2, wherein the component (A) is trialkylaluminum.
  4.  成分(B)が、ハロゲン非含有オニウム塩である、請求項1~3のいずれか1項に記載のポリエーテル化合物の製造方法。 The method for producing a polyether compound according to any one of claims 1 to 3, wherein the component (B) is a halogen-free onium salt.
  5.  前記ハロゲン非含有オニウム塩が、下記一般式(1)で表される化合物である、請求項4に記載のポリエーテル化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(1)中、R1は結合部を1個以上4個以下有する直鎖又は分岐の炭素数1以上6以下の飽和炭化水素基、R2は直鎖又は分岐の炭素数4以上8以下のアルキル基、nは1以上4以下の整数である。)
    The manufacturing method of the polyether compound of Claim 4 whose said halogen-free onium salt is a compound represented by following General formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (In the general formula (1), R 1 is a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms having 1 to 4 bonds, and R 2 is a linear or branched carbon atom having 4 or more carbon atoms. An alkyl group of 8 or less, and n is an integer of 1 to 4.
  6.  一般式(1)中、nが1であるとともに、R1が直鎖又は分岐の炭素数1以上6以下のアルキル基である、請求項5に記載のポリエーテル化合物の製造方法。 The method for producing a polyether compound according to claim 5, wherein in general formula (1), n is 1 and R 1 is a linear or branched alkyl group having 1 to 6 carbon atoms.
  7.  前記ポリエーテル化合物の重量平均分子量が100,000以上1,000,000以下である請求項1~6のいずれか1項に記載のポリエーテル化合物の製造方法。 The method for producing a polyether compound according to any one of claims 1 to 6, wherein the weight average molecular weight of the polyether compound is 100,000 or more and 1,000,000 or less.
  8.  前記オキシラン単量体が、エチレンオキシド、プロピレンオキシド、1,2-エポキシブタン、1,2-エポキシイソブタン、及び2,3-エポキシブタンからなる群より選ばれる少なくとも1種である、請求項1~7のいずれか1項に記載のポリエーテル化合物の製造方法。 The oxirane monomer is at least one selected from the group consisting of ethylene oxide, propylene oxide, 1,2-epoxybutane, 1,2-epoxyisobutane, and 2,3-epoxybutane. The manufacturing method of the polyether compound of any one of these.
  9.  前記オキシラン単量体の重合を、溶媒の存在下で行ない、該溶媒1Lに対する前記オキシラン単量体のモル量が、0.10モル/L以上10.00モル/L以下である、請求項1~8のいずれか1項に記載のポリエーテル化合物の製造方法。 The polymerization of the oxirane monomer is performed in the presence of a solvent, and the molar amount of the oxirane monomer with respect to 1 L of the solvent is 0.10 mol / L or more and 10.00 mol / L or less. The method for producing a polyether compound according to any one of 1 to 8.
  10.  前記溶媒として、飽和炭化水素系溶媒を用いる、請求項9に記載のポリエーテル化合物の製造方法。 The method for producing a polyether compound according to claim 9, wherein a saturated hydrocarbon solvent is used as the solvent.
  11.  請求項1~10のいずれか1項に記載の製造方法で得たポリエーテル化合物を、基油で希釈する工程を有する、粘度指数向上剤の製造方法。 A method for producing a viscosity index improver, comprising a step of diluting the polyether compound obtained by the production method according to any one of claims 1 to 10 with a base oil.
  12.  前記粘度指数向上剤が、冷凍機油組成物に用いられる粘度指数向上剤である、請求項11に記載の粘度指数向上剤の製造方法。 The method for producing a viscosity index improver according to claim 11, wherein the viscosity index improver is a viscosity index improver used in a refrigerator oil composition.
  13.  請求項1~10のいずれか1項に記載の製造方法で得たポリエーテル化合物を、潤滑油基油に配合する工程を有する、潤滑油組成物の製造方法。 A method for producing a lubricating oil composition, comprising a step of blending the polyether compound obtained by the production method according to any one of claims 1 to 10 into a lubricating base oil.
  14.  前記潤滑油組成物が、冷凍機油組成物である、請求項13に記載の潤滑油組成物の製造方法。 The method for producing a lubricating oil composition according to claim 13, wherein the lubricating oil composition is a refrigerating machine oil composition.
PCT/JP2018/009838 2017-03-15 2018-03-14 Method for producing polyether compound WO2018168889A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-050632 2017-03-15
JP2017050632A JP2018154674A (en) 2017-03-15 2017-03-15 Method for producing polyether compound

Publications (1)

Publication Number Publication Date
WO2018168889A1 true WO2018168889A1 (en) 2018-09-20

Family

ID=63522311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009838 WO2018168889A1 (en) 2017-03-15 2018-03-14 Method for producing polyether compound

Country Status (2)

Country Link
JP (1) JP2018154674A (en)
WO (1) WO2018168889A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112552980A (en) * 2020-11-27 2021-03-26 广东石油化工学院 Antirust agent and preparation method thereof
CN113736548A (en) * 2021-09-28 2021-12-03 珠海格力节能环保制冷技术研究中心有限公司 Composition of refrigerant and refrigerating machine oil and air conditioning system
WO2024006723A1 (en) 2022-06-30 2024-01-04 The Procter & Gamble Company Absorbent articles and methods and apparatuses for making absorbent articles with frangible pathways

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070173576A1 (en) * 2003-11-04 2007-07-26 Basf Aktiengesellschaft Method for the anionic polymerization of oxirans
JP2012116904A (en) * 2010-11-30 2012-06-21 Sanyo Chem Ind Ltd Process for producing polyoxyalkylene monool or polyol
JP2015040246A (en) * 2013-08-21 2015-03-02 国立大学法人 東京大学 Method for producing polyether
JP2015147934A (en) * 2015-04-06 2015-08-20 日本ゼオン株式会社 polyether polymer
JP2017025274A (en) * 2015-07-23 2017-02-02 東ソー株式会社 Polyalkylene oxide and method for producing the same
WO2017047620A1 (en) * 2015-09-16 2017-03-23 出光興産株式会社 Polyether compound, viscosity index improver, lubricating oil composition, and production methods therefor
JP2017137430A (en) * 2016-02-04 2017-08-10 東ソー株式会社 Alkylene oxide polymerization catalyst and manufacturing method of polyalkylene oxide using the same
WO2017170965A1 (en) * 2016-03-30 2017-10-05 出光興産株式会社 Polyether compound and production method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070173576A1 (en) * 2003-11-04 2007-07-26 Basf Aktiengesellschaft Method for the anionic polymerization of oxirans
JP2012116904A (en) * 2010-11-30 2012-06-21 Sanyo Chem Ind Ltd Process for producing polyoxyalkylene monool or polyol
JP2015040246A (en) * 2013-08-21 2015-03-02 国立大学法人 東京大学 Method for producing polyether
JP2015147934A (en) * 2015-04-06 2015-08-20 日本ゼオン株式会社 polyether polymer
JP2017025274A (en) * 2015-07-23 2017-02-02 東ソー株式会社 Polyalkylene oxide and method for producing the same
WO2017047620A1 (en) * 2015-09-16 2017-03-23 出光興産株式会社 Polyether compound, viscosity index improver, lubricating oil composition, and production methods therefor
JP2017137430A (en) * 2016-02-04 2017-08-10 東ソー株式会社 Alkylene oxide polymerization catalyst and manufacturing method of polyalkylene oxide using the same
WO2017170965A1 (en) * 2016-03-30 2017-10-05 出光興産株式会社 Polyether compound and production method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112552980A (en) * 2020-11-27 2021-03-26 广东石油化工学院 Antirust agent and preparation method thereof
CN113736548A (en) * 2021-09-28 2021-12-03 珠海格力节能环保制冷技术研究中心有限公司 Composition of refrigerant and refrigerating machine oil and air conditioning system
CN113736548B (en) * 2021-09-28 2023-08-18 珠海格力节能环保制冷技术研究中心有限公司 Refrigerant and refrigerating machine oil composition and air conditioning system
WO2024006723A1 (en) 2022-06-30 2024-01-04 The Procter & Gamble Company Absorbent articles and methods and apparatuses for making absorbent articles with frangible pathways

Also Published As

Publication number Publication date
JP2018154674A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP2019151684A (en) Polyalkylene glycol compound and manufacturing method thereof
WO2018168889A1 (en) Method for producing polyether compound
US9334213B2 (en) Process for the alkoxylation of (per) fluoropolyether alcohols
JP6628355B2 (en) Polyether compound, viscosity index improver, lubricating oil composition, and production method thereof
JPS6214170B2 (en)
US4411819A (en) Thickening aqueous compositions with polyethers modified with alpha-olefin oxides
EP2003110A2 (en) Method for producing (poly)glyceryl ether
JPWO2007040143A1 (en) Method for producing organic polymer having terminal end of trimethoxysilyl group
WO2017170965A1 (en) Polyether compound and production method therefor
JPH0140867B2 (en)
US5506309A (en) Perfluorinates polyethers
KR20020082220A (en) Lubricating oils comprising polyoxyalkylenglycol derivates
US4709099A (en) Polyethers modified with alpha olefin oxides
JP2007204680A (en) Method for manufacturing polyether polyol
CN113286775A (en) Polyalkylene glycol compound
JP2019070060A (en) Alkyl oxirane derivative and lubricant
JPWO2016072514A1 (en) Method for producing polyalkylene glycol, viscosity index improver, lubricating oil composition, and method for producing lubricating oil composition
JPH0459825A (en) Production of polyether
KR960014930B1 (en) Lubricating oil for compression-type refrigerators and polyoxyalkyleneglycol derivative
JP6823813B2 (en) Lubricating oil composition
JP6895066B2 (en) Hydraulic hydraulic oil composition
JPH11335689A (en) Grease and agent for preventing diffuse of base oil of grease
US20230312823A1 (en) Low foaming hydraulic fluids having biodegradable polyalkylene glycol rheology modifiers useful in subsea applications
WO2020054761A1 (en) Method for producing ether derivative
JP2006160829A (en) Method for producing alkenyl polyether

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767791

Country of ref document: EP

Kind code of ref document: A1