WO2018168835A1 - Separator for batteries, electrode body and nonaqueous electrolyte secondary battery - Google Patents

Separator for batteries, electrode body and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2018168835A1
WO2018168835A1 PCT/JP2018/009674 JP2018009674W WO2018168835A1 WO 2018168835 A1 WO2018168835 A1 WO 2018168835A1 JP 2018009674 W JP2018009674 W JP 2018009674W WO 2018168835 A1 WO2018168835 A1 WO 2018168835A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
separator
polyolefin
mass
vinylidene fluoride
Prior art date
Application number
PCT/JP2018/009674
Other languages
French (fr)
Japanese (ja)
Inventor
辻本 潤
水野 直樹
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201880010166.8A priority Critical patent/CN110249449B/en
Priority to KR1020197020050A priority patent/KR102231395B1/en
Priority to JP2019506037A priority patent/JP7330885B2/en
Publication of WO2018168835A1 publication Critical patent/WO2018168835A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery separator, an electrode body, and a nonaqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries are widely used in small electronic devices such as mobile phones and portable information terminals.
  • Examples of the form of the nonaqueous electrolyte secondary battery include a cylindrical battery, a square battery, and a laminate battery.
  • these batteries have a configuration in which an electrode body in which a positive electrode and a negative electrode are arranged via a separator, and a nonaqueous electrolytic solution are housed in an exterior body.
  • Examples of the structure of the electrode body include a laminated electrode body in which a positive electrode and a negative electrode are stacked via a separator, and a wound electrode body in which the positive electrode and the negative electrode are spirally wound via a separator.
  • microporous membranes mainly made of polyolefin resin are used as battery separators. Since the microporous membrane made of polyolefin resin has a so-called shutdown function, the current flow can be suppressed and ignition can be prevented by closing the pores of the separator when the battery is abnormally heated.
  • Patent Document 1 includes a positive electrode, a negative electrode, a three-layer separator made of polypropylene, polyethylene, and polypropylene, and an adhesive resin layer made of polyvinylidene fluoride and alumina powder disposed between the electrode and the separator.
  • An electrode body provided with is described.
  • Example 1 of Patent Document 2 VdF-HFP copolymer (HFP unit 0.6 mol%) and VdF-HFP copolymer (weight average molecular weight 470,000, HFP unit 4.8 mol%) were used. There is described a separator in which a porous layer is formed by dissolving in a dimethylacetamide and tripropylene glycol solution and applying this to a polyethylene microporous membrane.
  • Example 1 of Patent Document 3 PVdF (weight average molecular weight 500,000) and VdF-HFP copolymer (weight average molecular weight 400,000, HFP unit 5 mol%) were dissolved in dimethylacetamide and tripropylene glycol solution. A separator in which a porous layer is formed by applying this to a polyethylene microporous film is described.
  • Example 1 of Patent Document 4 PVdF (weight average molecular weight: 700,000) and VdF-HFP copolymer (weight average molecular weight: 470,000, HFP unit: 4.8 mol%) were mixed in dimethylacetamide and tripropylene glycol solution.
  • a separator is described in which a porous layer is formed by dissolving the polymer in a polyethylene microporous film.
  • Example 1 of Patent Document 5 PVdF (weight average molecular weight 350,000) and VdF-HFP copolymer (weight average molecular weight 270,000, HFP copolymer 4.8 mol%) were mixed with dimethylacetamide and tripropylene glycol.
  • a separator is disclosed in which a porous layer is formed by dissolving in a solution and coating it on a polyethylene microporous membrane.
  • Example 23 of Patent Document 6 a VdF-HFP copolymer (weight average molecular weight 1.93 million, HFP unit 1.1 mol%) and a VdF-HFP copolymer (weight average molecular weight 470,000, HFP unit 4. 8 mol%) is dissolved in a dimethylacetamide and tripropylene glycol solution, and a coating solution is prepared by adding aluminum hydroxide, and this is applied to a polyethylene microporous membrane to form a separator having a porous layer.
  • a coating solution is prepared by adding aluminum hydroxide
  • Patent Documents 1 to 5 all improve the adhesion between the separator containing the electrolytic solution and the electrode. However, when the secondary battery is enlarged, further improvement in the adhesion is required.
  • the present inventors evaluated the adhesion between the electrode and the separator when the adhesion between the electrode and the separator during drying and the adhesion between the electrode and the separator when wet. Focusing on the fact that the adhesiveness can be more accurately evaluated by distinguishing and evaluating two types of adhesiveness, and further, using these adhesivenesses as indicators of peel strength when dry and bending strength when wet, respectively. And found that it can be evaluated.
  • the wound electrode body is manufactured by winding a positive electrode and a negative electrode while applying tension to each member via a separator.
  • the positive electrode and the negative electrode applied to the metal current collector hardly expand or contract with respect to the tension, but the separator is wound while extending to some extent in the machine direction.
  • the separator portion is gradually contracted to return to the original length.
  • a force in the parallel direction is generated at the boundary surface between the electrode and the separator, and the wound electrode body (particularly, the electrode body wound flatly) is likely to bend and distort.
  • the separator In order to suppress the occurrence of deflection and distortion of the wound electrode body, the separator is required to have more adhesiveness with the electrode than ever before. Further, when the electrode body is transported, the electrodes and the separator are peeled off unless the respective members are sufficiently bonded, and cannot be transported with a high yield. The problem of adhesion at the time of transportation becomes obvious due to the increase in size of the battery, and there is a concern that the yield may deteriorate. Therefore, the separator is required to have a high peeling force during drying that is difficult to peel off from the electrode.
  • the adhesion between the polyolefin microporous film and the porous layer is also extremely important.
  • the separator is required to have high adhesion between the polyolefin microporous membrane and the porous layer.
  • the tape peeling force obtained by the measuring method mentioned later about this adhesiveness was made into the parameter
  • the yield of the porous layer will be improved by preventing the porous layer from falling off during handling of the separator and during transportation after coating.
  • the separator is required to have adhesiveness with the electrode in the battery after injecting the electrolytic solution. In this specification, this adhesiveness is evaluated using as an index the wet bending strength obtained by the measurement method described later.
  • the measurement method of the bending strength when wet described later can show the difficulty of lateral displacement between the laminated electrode and the separator in the electrode body wet with the electrolyte, and the separator in a state containing the electrolyte
  • Adhesiveness with an electrode can be evaluated according to an actual battery. If this strength is large, it can be considered that improvement of battery characteristics such as suppression of battery swelling after repeated charge and discharge is expected.
  • the peeling force at the time of drying represents the adhesiveness to the interface between the separator and the electrode when the separator does not substantially contain the electrolyte.
  • that electrolyte solution does not contain substantially means that the electrolyte solution in a separator is 500 ppm or less.
  • the battery is required to have a characteristic in which the convex portion of the electrode active material penetrates the separator and the electrode is not easily short-circuited (hereinafter referred to as short-circuit resistance) even when a sudden impact is applied.
  • short-circuit resistance a characteristic in which the convex portion of the electrode active material penetrates the separator and the electrode is not easily short-circuited
  • the battery separator is expected to have a thin film thickness.
  • the thickness of the separator decreases, it becomes difficult to ensure short circuit resistance.
  • it is known that it is effective to contain a certain amount or more of inorganic particles in the porous layer, but when including inorganic particles that can ensure short circuit resistance, There is a tendency for the adhesion of the resin to decrease.
  • the present invention has been made in view of the above circumstances, and is excellent in both the adhesion between the electrode and the separator when dried and the adhesion between the electrode and the separator when wet, and the polyolefin microporous membrane and the porous interlayer
  • Another object of the present invention is to provide a battery separator that is excellent in the adhesive property of the battery and has excellent short circuit resistance, and an electrode body and a secondary battery using the battery separator.
  • the inventors of the present invention have developed a first microporous layer made of a specific first polyolefin resin and a second microporous layer made of a second polyolefin resin.
  • the above-mentioned problem can be solved by a separator including at least a polyolefin multilayer microporous membrane containing a porous layer containing two types of fluororesins having different structures in a specific amount and a specific amount of inorganic particles.
  • the present invention is a battery separator comprising a polyolefin microporous membrane and a porous layer on at least one surface of the polyolefin microporous membrane
  • the polyolefin microporous membrane comprises a polyolefin multilayer microporous membrane having a three-layer structure in which the first microporous layer / second microporous layer / first microporous layer are laminated in this order.
  • the first microporous layer is made of a first polyolefin resin containing polyethylene and polypropylene, and the content of the polypropylene is 10% by mass or more and 50% by mass with respect to the total mass of the first polyolefin resin.
  • the second microporous layer is made of only polyethylene resin
  • the porous layer includes a vinylidene fluoride-hexafluoropropylene copolymer (A), a vinylidene fluoride-hexafluoropropylene copolymer (B), and inorganic particles
  • the vinylidene fluoride-hexafluoropropylene copolymer (A) has not less than 0.3 mol% and not more than 5.0 mol% of hexafluoropropylene units, and has a weight average molecular weight of not less than 900,000 and not more than 2 million, And includes a hydrophilic group
  • the vinylidene fluoride-hexafluoropropylene copolymer (B) has more than 5.0 mol% and not more than 8.0 mol% hexafluoropropylene units, and has a weight average molecular weight of 100,000 to 750,000,
  • the vinylidene fluoride-hexafluoropropylene copolymer (A) preferably contains 0.1 mol% or more and 5.0 mol% or less of a hydrophilic group.
  • the vinylidene fluoride-hexafluoropropylene copolymer (B) preferably has a melting point of 60 ° C. or higher and 145 ° C. or lower.
  • the inorganic particles are preferably at least one selected from titanium dioxide, alumina, and boehmite.
  • the present invention is also an electrode body comprising a positive electrode, a negative electrode, and the battery separator of the present invention.
  • the present invention is also a non-aqueous electrolyte secondary battery comprising the electrode body of the present invention and a non-aqueous electrolyte.
  • both the adhesion between the electrode and the separator at the time of drying and the adhesion between the electrode and the separator at the time of wetness are excellent, and the adhesion between the polyolefin multilayer microporous membrane and the porous layer, and A separator excellent in short circuit resistance, and an electrode body and a secondary battery using the separator are provided.
  • FIG. 1 is a schematic diagram illustrating an example of a battery separator according to the present embodiment.
  • FIG. 2 is a schematic view showing an example of the battery separator of the present embodiment.
  • FIG. 3 is a schematic diagram showing a method for evaluating the bending strength when wet.
  • FIG. 4 is a schematic diagram showing an evaluation method for a short-circuit resistance test.
  • FIG.1 and FIG.2 is a figure which shows an example of the separator which concerns on this embodiment.
  • a battery separator 10 (hereinafter sometimes abbreviated as “separator 10”) includes a polyolefin microporous membrane 1 and a porous layer laminated on at least one surface of the polyolefin microporous membrane 1.
  • the polyolefin microporous membrane 1 includes a polyolefin multilayer microporous structure having a three-layer structure in which a first microporous layer a / second microporous layer b / first microporous layer a are laminated in this order. It can consist of membrane 1 '.
  • each layer constituting the battery separator will be described.
  • the first microporous layer a is composed of a first polyolefin resin containing polyethylene and polypropylene.
  • the first polyolefin resin is preferably composed mainly of polypropylene and polyethylene.
  • having polypropylene and polyethylene as main components means that polypropylene and polyethylene are contained in an amount of 95% or more, preferably 99% by mass or more, based on the total mass of the first polyolefin resin.
  • a high density polyethylene is a main component from a viewpoint of strength.
  • the lower limit of the weight average molecular weight (hereinafter referred to as Mw) of the high-density polyethylene is preferably 1 ⁇ 10 5 or more, more preferably 2 ⁇ 10 5 or more.
  • the upper limit of the Mw of the high density polyethylene is preferably 8 ⁇ 10 5 or less, more preferably 7 ⁇ 10 5 or less.
  • the first microporous layer a contains polypropylene.
  • polypropylene is added to the first microporous layer a, the peel strength (adhesiveness) between the polyolefin multilayer microporous membrane 1 'and the porous layer 2 is further improved, and when used as a battery separator, meltdown The temperature can be further improved.
  • a block copolymer and a random copolymer can be used in addition to the homopolymer.
  • the block copolymer and random copolymer can contain a copolymer component with an ⁇ -olefin other than propylene, and ethylene is preferable as the other ⁇ -olefin.
  • the lower limit of Mw of polypropylene is preferably 5 ⁇ 10 5 or more, more preferably 6.5 ⁇ 10 5 or more, and still more preferably 8 ⁇ 10 5 or more.
  • Mw of the polypropylene is within the above range, a film having a uniform film thickness can be obtained without deteriorating the dispersibility of the polypropylene during sheet formation.
  • the upper limit of Mw of a polypropylene is not specifically limited, For example, it is 2 * 10 ⁇ 6 > or less.
  • the content of polypropylene is preferably 10% by mass or more and 50% by mass or less with respect to the total mass of the first polyolefin resin. When the content of polypropylene exceeds 50% by mass, ion permeability may be deteriorated.
  • the lower limit of the polypropylene content is preferably 15% by mass or more, and more preferably 20% by mass or more. When the content of polypropylene is in the above range, both excellent adhesion between the polyolefin multilayer microporous membrane 1 ′ and the porous layer 2, and good meltdown characteristics and ion permeability can be achieved.
  • the second microporous layer b is made of only a polyethylene resin.
  • being made of only a polyethylene resin means that the polyethylene resin is 99% by mass or more. This is because contaminants derived from foreign substances and dirt adhering to the raw resin or polyolefin microporous membrane manufacturing process lines and equipment may be peeled off and mixed into the membrane.
  • the type of polyethylene used in the second microporous layer b high density polyethylene such as density exceeding 0.94 g / cm 3, density polyethylene in the range density of 0.93 ⁇ 0.94g / cm 3 , Low density polyethylene having a density lower than 0.93 g / cm 3 , linear low density polyethylene, ultrahigh molecular weight polyethylene, and the like. From the viewpoint of strength, high density polyethylene and ultra high molecular weight polyethylene may be contained. preferable.
  • the polyethylene may be not only an ethylene homopolymer but also a copolymer containing a small amount of another ⁇ -olefin.
  • Examples of the ⁇ -olefin include propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, octene, vinyl acetate, methyl methacrylate, styrene and the like.
  • the polyolefin multilayer microporous membrane 1 ′ particularly when it is produced by a coextrusion method, it may be difficult to control uneven physical properties in the width direction due to a difference in viscosity between the layers.
  • ultrahigh molecular weight polyethylene the molecular network of the entire membrane is strengthened, so that non-uniform deformation hardly occurs and the multilayer microporous membrane 1 having excellent physical property uniformity can be obtained.
  • the weight average molecular weight (hereinafter referred to as Mw) of the high density polyethylene is preferably 1 ⁇ 10 5 or more, more preferably 2 ⁇ 10 5 or more.
  • the upper limit of the weight average molecular weight of the high density polyethylene is preferably 8 ⁇ 10 5 , more preferably 7 ⁇ 10 5 .
  • the Mw of the ultra high molecular weight polyethylene is preferably 1 ⁇ 10 6 or more and less than 4 ⁇ 10 6 .
  • the Mw of the ultra high molecular weight polyethylene is 4 ⁇ 10 6 or more, the viscosity of the melt becomes too high, and thus there may be a problem in the film forming process such that the resin cannot be extruded from the die. .
  • the content of the ultrahigh molecular weight polyethylene is preferably 5% by mass or more, more preferably 18% by mass or more, with respect to 100% by mass of the entire polyethylene resin constituting the second microporous layer b. .
  • the upper limit of the content of ultrahigh molecular weight polyethylene is preferably 45% by mass or less, more preferably 40% by mass or less, based on 100% by mass of the entire polyethylene resin.
  • the content of the ultrahigh molecular weight polyethylene is within the above preferable range, sufficient tensile strength can be obtained even when the thickness of the polyolefin multilayer microporous membrane 1 ′ is reduced.
  • the tensile strength of the polyolefin multilayer microporous membrane 1 ' is preferably 100 MPa or more. There is no particular upper limit on the tensile strength.
  • the molecular weight distribution (Mw / Mn) which is the ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polyolefin resin of the first microporous layer a and the polyethylene resin of the second microporous layer b is respectively It is preferably in the range of 5 to 200, more preferably 10 to 100.
  • Mw / Mn is the above preferable range, it is easy to extrude the polyolefin solution in the production process, and even when the thickness of the polyolefin multilayer microporous membrane 1 'is further reduced, sufficient machinery can be obtained. Strength is obtained.
  • Mw / Mn is used as a measure of molecular weight distribution.
  • Mw / Mn of a single polyolefin resin can be appropriately adjusted by multistage polymerization of polyolefin.
  • Mw / Mn of the mixture of polyolefin resin can be suitably adjusted by adjusting the molecular weight and mixing ratio of each component.
  • the thickness of the polyolefin multilayer microporous membrane 1 ′ is not particularly limited, but the lower limit is 3 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 7 ⁇ m or more. From the viewpoint of increasing the capacity, it is 16 ⁇ m or less, more preferably 12 ⁇ m or less.
  • the film thickness of the polyolefin multilayer microporous membrane 1 ′ is in the above preferred range, practical membrane strength and pore blocking function can be retained, which is more suitable for increasing the capacity of the battery, which is expected to advance in the future.
  • the battery separator 10 of the present embodiment has the polyolefin microporous membrane 1 having a small thickness, the separator 10 between the polyolefin multilayer microporous membrane 1 'and the porous layer 2, and between the separator 10 and the electrode. And when the separator 10 is thinned, the effect is more clearly exhibited.
  • the thickness ratio of the second microporous layer b is preferably 30% or more and 90% or less with respect to the entire layer (the whole) of the polyolefin multilayer microporous membrane 1 ′.
  • the lower limit is more preferably 40% or more, and the upper limit is more preferably 80% or less.
  • an antioxidant In the first microporous layer and the second microporous layer constituting the polyolefin multilayer microporous membrane 1 ′, an antioxidant, a heat stabilizer, an antistatic agent, Various additives such as an ultraviolet absorber, an antiblocking agent, a filler, or a nucleating agent may be contained. In particular, it is preferable to add an antioxidant for the purpose of suppressing oxidative deterioration due to the thermal history of the polyolefin resin. Appropriate selection of the type and amount of antioxidants and heat stabilizers is important for adjusting or enhancing the properties of the polyolefin multilayer microporous membrane 1 '. In addition, in this specification, the addition amount of these additives is not included in content of said 1st polyolefin resin and polyethylene resin.
  • the polyolefin multilayer microporous membrane 1 ′ does not substantially contain inorganic particles.
  • substantially free of inorganic particles means, for example, a content of 50 ppm or less, preferably 10 ppm or less, most preferably the detection limit or less when inorganic elements are quantified by fluorescent X-ray analysis. Even if particles are not positively added to the polyolefin microporous membrane, contaminants derived from foreign substances and raw material resin or dirt attached to the line and equipment in the polyolefin microporous membrane manufacturing process are peeled off. It is because it may be mixed in.
  • the air resistance of this multi-layer, microporous polyolefin membrane 1 ' has an upper limit of 300 sec / 100 cm 3 Air or less, preferably 200 sec / 100 cm 3 Air, more preferably at most 150 sec / 100 cm 3 Air.
  • the upper limit of the porosity of the polyolefin multilayer microporous membrane 1 ′ is preferably 70% or less, more preferably 60% or less, and even more preferably 55% or less.
  • the lower limit of the porosity is preferably 30% or more, more preferably 35% or more, and further preferably 40% or more.
  • the average pore diameter of the polyolefin multilayer microporous membrane 1 ′ greatly affects the pore closing performance, it is preferably 0.01 ⁇ m or more and 1.0 ⁇ m or less, more preferably 0.05 ⁇ m or more and 0.5 ⁇ m or less, and still more preferably 0.8. 1 ⁇ m or more and 0.3 ⁇ m or less.
  • the average pore diameter of the polyolefin multilayer microporous membrane 1 ′ is within the above preferred range, the response to the temperature of the pore clogging phenomenon does not become slow, and the pore clogging temperature due to the temperature rise rate does not shift to a higher temperature side. .
  • the production method of polyolefin multilayer microporous membrane is not particularly limited as long as the polyolefin multilayer microporous membrane 1 'having the above-described properties can be produced, and conventionally known methods can be used. For example, the methods described in the specifications of Japanese Patent No. 2132327 and Japanese Patent No. 3347835, International Publication No. 2006/137540, and the like can be used.
  • the method for producing the polyolefin multilayer microporous membrane 1 ′ preferably includes the following steps (1) to (8).
  • Step (3) of preparing the polyolefin resin solution (3) Steps of coextruding the first and second polyolefin resin solutions to form a sheet and then cooling to obtain an extruded product (4) Stretching the extruded product (first (1) stretching step) to obtain a gel-like multilayer sheet (5) removing the film-forming solvent from the gel-like multilayer sheet and obtaining the multilayer sheet (6) drying the multilayer sheet, Step of obtaining (7) Step of drawing the first stretched multilayer sheet to obtain a second stretched multilayer sheet (8) Step of heat treating the second stretched multilayer sheet to obtain a polyolef
  • the first and second polyolefin resin solutions are simultaneously extruded by a multilayer die under a specific condition to form a multilayer sheet. .
  • the first and second polyolefin resin solutions are simultaneously extruded by a multilayer die under a specific condition to form a multilayer sheet. .
  • meltdown temperature mechanical strength, air permeability resistance and porosity, and a polyolefin multi-layer microporous membrane having a small maximum pore diameter. 1 can be manufactured. These characteristics cannot be achieved by the single-layer polyolefin microporous membrane 1.
  • the step (1) and the step (2) after using the above-described resin material, in the step (4) and the step (7), the film is stretched under an appropriate temperature condition to be described later. Good porosity and fine pore structure control can be achieved.
  • an appropriate film-forming solvent is added to the first polyolefin resin and polyethylene resin, respectively, and then melt-kneaded.
  • First and second polyolefin resin solutions are prepared, respectively.
  • a melt-kneading method for example, a method using a twin-screw extruder described in the specifications of Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. Since the melt-kneading method is well-known, description is abbreviate
  • the mixing ratio of the first or second polyolefin resin and the film-forming solvent in the first or second polyolefin resin solution is not particularly limited, but is 20 to 30 parts by mass of the first or second polyolefin resin.
  • the film forming solvent is preferably 70 to 80 parts by mass.
  • Step (3) Extrusion Forming Step Next, the first and second polyolefin resin solutions are respectively fed from an extruder to one die, where the two solutions are combined in layers and extruded into a sheet.
  • the extrusion method may be either a flat die method or an inflation method. In either method, the solution is supplied to separate manifolds and stacked in layers at the lip inlet of a multilayer die (multiple manifold method), or the solution is supplied to the die in a layered flow in advance (block method) ) Can be used. Since the multi-manifold method and the block method itself are known, a detailed description thereof will be omitted.
  • the gap of the multi-layer flat die is 0.1 to 5 mm.
  • the extrusion temperature is preferably 140 to 250 ° C., and the extrusion speed is preferably 0.2 to 15 m / min.
  • an extruded molded body is formed by cooling the obtained laminated extruded molded body.
  • a forming method of the formed body for example, methods disclosed in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. Cooling is preferably performed at a rate of 50 ° C./min or more at least up to the gelation temperature. Cooling is preferably performed to 30 ° C. or lower.
  • the microphases of the first and second polyolefins separated by the film-forming solvent can be fixed. When the cooling rate is within the above range, the crystallinity is maintained in an appropriate range, and an extruded product suitable for stretching is obtained.
  • a method of contacting with a cooling medium such as cold air or cooling water, a method of contacting with a cooling roll, or the like can be used, but it is preferable that the cooling is performed by contacting with a roll cooled with a cooling medium.
  • Step (4) First Stretching Step Next, the obtained extruded molded body is stretched at least in a uniaxial direction (first stretching) to obtain a gel-like multilayer sheet. Since the extruded product contains a film-forming solvent, it can be stretched uniformly.
  • the extruded body is preferably stretched at a predetermined ratio after heating by a tenter method, a roll method, an inflation method, or a combination thereof.
  • the stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. In the case of biaxial stretching, any of simultaneous biaxial stretching, sequential stretching and multistage stretching (for example, a combination of simultaneous biaxial stretching and sequential stretching) may be used.
  • the stretching ratio (area stretching ratio) in this step is preferably 2 times or more, and more preferably 3 times or more and 30 times or less.
  • 9 times or more is preferable, 16 times or more is more preferable, and 25 times or more is particularly preferable.
  • it is preferably 3 times or more in both the longitudinal direction and the transverse direction (MD and TD directions), and the draw ratios in the MD direction and the TD direction may be the same or different.
  • the draw ratio in this process means the area draw ratio of the microporous film immediately before being used for the next process on the basis of the microporous film immediately before this process.
  • the stretching temperature is preferably 90 ° C. or higher and 130 ° C. or lower, more preferably 110 ° C. or higher and 120 ° C. or lower, and still more preferably 114 ° C. or higher and 117 ° C. or lower.
  • the film may be stretched by providing a temperature distribution in the film thickness direction, whereby a multilayer microporous film having further excellent mechanical strength can be obtained. Details of the method are described in Japanese Patent No. 3347854.
  • the film-forming solvent is removed from the gel-like multilayer sheet to obtain a multilayer sheet. Removal (cleaning) of the film-forming solvent is performed using a cleaning solvent.
  • the first and second polyolefin phases are phase-separated from the film-forming solvent phase. Therefore, when the film-forming solvent is removed, a porous film is obtained.
  • the obtained porous film is composed of fibrils forming a fine three-dimensional network structure, and has pores (voids) that communicate irregularly three-dimensionally. Since the cleaning solvent and the method for removing the film-forming solvent using the same are known, the description thereof is omitted. For example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent Application Laid-Open No. 2002-256099 can be used.
  • Step (6) Drying Next, the multilayer sheet is dried to obtain a first stretched multilayer sheet. Drying is preferably carried out until the residual cleaning solvent is 5% by mass or less, more preferably 3% by mass or less, with the multilayer microporous membrane being 100% by mass (dry weight). When the residual cleaning solvent is within the above range, the porosity of the multilayer microporous membrane is maintained when the second stretching step and heat treatment step described below are performed, and deterioration of permeability is suppressed.
  • the drying temperature is preferably 50 ° C. or higher and 80 ° C. or lower.
  • the first stretched multilayer sheet after drying is preferably stretched in at least a uniaxial direction.
  • the first stretched multilayer sheet can be stretched by the tenter method or the like while heating.
  • the stretching may be uniaxial stretching or biaxial stretching. In the case of biaxial stretching, either simultaneous biaxial stretching or sequential stretching may be used.
  • the stretching temperature in this step is not particularly limited, but is usually 90 to 135 ° C, more preferably 95 to 130 ° C.
  • the lower limit of the stretching ratio (area stretching ratio) in the uniaxial direction of stretching of the first stretched multilayer sheet in this step is preferably 1.0 times or more, more preferably 1.1 times or more, and further preferably 1 .2 times or more.
  • the upper limit is preferably 1.8 times or less.
  • the lower limit of the area stretching ratio is preferably 1.0 times or more, more preferably 1.1 times or more, and still more preferably 1.2 times or more.
  • the upper limit is preferably 3.5 times or less, and 1.0 to 2.0 times in each of the MD direction and the TD direction, and the draw ratios in the MD direction and the TD direction may be the same or different.
  • the draw ratio in this process means the draw ratio of the 2nd extending
  • the heat treatment method heat setting treatment and / or heat relaxation treatment can be used.
  • the heat setting treatment is a heat treatment in which heating is performed while keeping the dimensions of the film unchanged.
  • the thermal relaxation treatment is a heat treatment that heat-shrinks the film in the MD direction or the TD direction during heating.
  • the heat setting treatment is preferably performed by a tenter method or a roll method.
  • a thermal relaxation treatment method a method disclosed in Japanese Patent Application Laid-Open No. 2002-256099 can be given.
  • the heat treatment temperature is more preferably within the range of ⁇ 5 ° C. of the second stretching temperature of the second stretched multilayer sheet, and particularly preferably within the range of ⁇ 3 ° C.
  • Porous layer The porous layer 2 contains two types of vinylidene fluoride-hexafluoropropylene copolymers (VdF-HFP) and inorganic particles. Hereinafter, each component which comprises the porous layer 2 is demonstrated below.
  • VdF-HFP vinylidene fluoride-hexafluoropropylene copolymers
  • the vinylidene fluoride-hexafluoropropylene copolymer (A) (hereinafter sometimes simply referred to as copolymer (A)) is a copolymer containing vinylidene fluoride units and hexafluoropropylene units. As described later, it contains a hydrophilic group.
  • the lower limit of the content of hexafluoropropylene units in the copolymer (A) is 0.3 mol%, preferably 0.5 mol%.
  • the upper limit of the content of hexafluoropropylene units is 5.0 mol%, more preferably 2.5 mol%.
  • the lower limit of the weight average molecular weight of the copolymer (A) is 900,000, preferably 1,000,000.
  • the upper limit of the weight average molecular weight of the copolymer (A) is 2 million, more preferably 1.5 million.
  • the weight average molecular weight of the copolymer (A) is within the above range, in the step of forming the porous layer, the time for dissolving the copolymer (A) in the solvent is not extremely long, and the production efficiency is increased. Can maintain an appropriate gel strength when swollen in the electrolyte, and can improve the bending strength when wet.
  • the weight average molecular weight of a copolymer (A) is a polystyrene conversion value by a gel permeation chromatography.
  • the copolymer (A) has a hydrophilic group. Since the copolymer (A) has a hydrophilic group, the copolymer (A) can be more firmly bonded to the active material existing on the electrode surface and the binder component in the electrode. The reason for this is not particularly limited, but it is presumed that the adhesive force is improved by hydrogen bonding.
  • the hydrophilic group include a hydroxyl group, a carboxylic acid group, a sulfonic acid group, and salts thereof. Among these, carboxylic acid groups and carboxylic acid esters are particularly preferable.
  • a method for introducing a hydrophilic group into the copolymer (A) a known method can be used.
  • maleic anhydride, maleic acid, maleic ester, malein A method of introducing a monomer having a hydrophilic group such as acid monomethyl ester into the main chain by copolymerization or a method of introducing it as a side chain by grafting can be used.
  • the hydrophilic group modification rate can be measured by FT-IR, NMR, quantitative titration or the like.
  • a carboxylic acid group it can be determined from the absorption intensity ratio of C—H stretching vibration and C ⁇ O stretching vibration of a carboxyl group based on a homopolymer using FT-IR.
  • the lower limit of the hydrophilic group content of the copolymer (A) is preferably 0.1 mol%, more preferably 0.3 mol%.
  • the upper limit of the hydrophilic group content is preferably 5.0 mol%, more preferably 4.0 mol%.
  • the content of the hydrophilic group exceeds 5.0 mol%, the polymer crystallinity becomes too low, the degree of swelling with respect to the electrolytic solution becomes high, and the bending strength when wet is deteriorated.
  • the content of the hydrophilic group is within the above range, the affinity between the inorganic particles contained in the porous layer 2 and the copolymer (A) is increased, the short circuit resistance is improved, and the inorganic particles are removed.
  • strength of the porous layer 2 increases with the copolymer (A) which has a hydrophilic group which is the main component of the porous layer 2, and an inorganic particle.
  • the quantification of the hydrophilic group of the vinylidene fluoride-hexafluoropropylene copolymer in the porous layer 2 can be determined by IR (infrared absorption spectrum) method, NMR (nuclear magnetic resonance) method or the like.
  • the copolymer (A) is a copolymer obtained by further polymerizing other monomers other than vinylidene fluoride, hexafluoropropylene, and a monomer having a hydrophilic group, as long as the characteristics are not impaired. Also good.
  • other monomers include monomers such as tetrafluoroethylene, trifluoroethylene, trichloroethylene, and vinyl fluoride.
  • the separator 10 has a high affinity for the nonaqueous electrolyte when used in a nonaqueous electrolyte secondary battery, and is chemically and physically Stability is high, it exhibits bending strength when wet, and the affinity with the electrolyte is sufficiently maintained even when used at high temperatures.
  • the vinylidene fluoride-hexafluoropropylene copolymer (B) (hereinafter sometimes simply referred to as copolymer (B)) is a copolymer containing vinylidene fluoride units and hexafluoropropylene units. .
  • the content of hexafluoropropylene in the copolymer (B) exceeds 5.0 mol%, more preferably 6.0 mol% or more, and even more preferably 7.0 mol% or more.
  • the content of the hexafluoropropylene unit is 5.0 mol% or less, the adhesion between the separator and the electrode during drying (peeling force during drying) may not be sufficiently obtained.
  • the upper limit is 8.0 mol%, more preferably 7.5 mol%.
  • the content of the hexafluoropropylene unit exceeds 8.0 mol%, it may swell excessively with respect to the electrolytic solution, and the bending strength when wet may decrease.
  • the copolymer (B) may contain a hydrophilic group or not.
  • the copolymer (B) has a weight average molecular weight of 100,000 to 750,000.
  • weight average molecular weight of the copolymer (B) is in the above range, it has high affinity for the non-aqueous electrolyte, high chemical and physical stability, and excellent separator and electrode during drying. Adhesiveness (peeling force when dried) is obtained.
  • the reason for this is not particularly limited, but the copolymer (B) has fluidity under heating and pressure conditions that develop a peeling force during drying, and becomes an anchor by entering the porous layer of the electrode. It can be presumed that the layer 2 and the electrode have strong adhesiveness.
  • the copolymer (B) contributes to the peeling force at the time of drying, and can contribute to the deflection of the wound electrode body and the laminated electrode body, the prevention of distortion, and the improvement of the transportability.
  • the copolymer (B) is a resin different from the copolymer (A).
  • the lower limit of the weight average molecular weight of the copolymer (B) is 100,000, preferably 150,000.
  • the weight average molecular weight of the copolymer (B) is below the lower limit of the above range, the amount of entanglement of the molecular chains is too small, so that the resin strength becomes weak and the porous layer 2 is liable to cohesive failure.
  • the upper limit of the weight average molecular weight of the copolymer (B) is preferably 750,000, more preferably 700,000. When the weight average molecular weight of a copolymer (B) exceeds the upper limit of the said range, in order to obtain the peeling force at the time of drying, it is necessary to raise the press temperature in the manufacturing process of a winding body.
  • the lower limit of the melting point of the copolymer (B) is preferably 60 ° C, more preferably 80 ° C.
  • the upper limit of the melting point of the copolymer (B) is preferably 145 ° C, more preferably 140 ° C.
  • fusing point (Tm) is the temperature of the peak top of the endothermic peak at the time of temperature rising measured by the differential scanning calorimetry (DSC) method.
  • the copolymer (B) is a copolymer having a vinylidene fluoride unit and a hexafluoropropylene unit.
  • the copolymer (B) can be obtained by a suspension polymerization method or the like, similar to the copolymer (A).
  • the melting point of the copolymer (B) can be adjusted by controlling the crystallinity of the site composed of vinylidene fluoride units. For example, when the copolymer (B) contains a monomer other than the vinylidene fluoride unit, the melting point can be adjusted by controlling the ratio of the vinylidene fluoride unit.
  • Monomers other than vinylidene fluoride units are tetrafluoroethylene, trifluoroethylene, trichloroethylene, hexafluoropropylene, fluorinated vinyl maleic anhydride, maleic acid, maleic acid ester, maleic acid monomethyl ester, etc. You may have more. Examples thereof include a method in which the monomer is added when the copolymer (B) is polymerized and introduced into the main chain by copolymerization, or a method in which it is introduced as a side chain by grafting. Further, the melting point may be adjusted by controlling the ratio of Head-to-Head bonds (—CH 2 —CF 2 —CF 2 —CH 2 —) of vinylidene fluoride units.
  • the content of the copolymer (A) is 86% by mass, more preferably 88% by mass, with respect to 100% by mass of the total weight of the copolymer (A) and the copolymer (B). is there.
  • the upper limit of the content of the copolymer (A) is 98% by mass, more preferably 97% by mass.
  • the upper limit of the content of the copolymer (B) is 14% by mass, preferably 12% by mass with respect to 100% by mass of the total weight of the copolymer (A) and the copolymer (B). It is.
  • the lower limit of the content of the copolymer (B) is 2% by mass, which is 3% by mass.
  • the porous layer 2 can contain a resin other than the copolymer (A) and the copolymer (B) as long as the effects of the present invention are not impaired.
  • the copolymer (A) and the copolymer (B) are preferably used.
  • content of the said copolymer (A) or the said copolymer (B) is 100 mass of resin components of the porous layer 2. % As a percentage.
  • the porous layer 2 contains inorganic particles. By including particles in the porous layer 2, the short-circuit resistance can be particularly improved, and an improvement in thermal stability can be expected.
  • Inorganic particles include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass particles, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide particles, barium sulfate, calcium fluoride, lithium fluoride, zeolite , Molybdenum sulfide, mica, boehmite, magnesium oxide and the like.
  • inorganic particles containing a large amount of OH groups are preferred, and specifically, selected from titanium dioxide, alumina, and boehmite. It is preferable to use more than one type.
  • the content of the inorganic particles contained in the porous layer 2 is 80% by volume, preferably 70% by volume, more preferably 60% by volume with respect to 100% by volume of the solid content volume of the porous layer 2. It is. On the other hand, the lower limit of the content of inorganic particles is 40% by volume, more preferably 45% by volume, still more preferably 50% by volume, and most preferably 51% by volume.
  • the content of the inorganic particles contained in the porous layer 2 was calculated by calculating the density of the copolymer (A) and the copolymer (B) as 1.77 g / cm 3 .
  • the porous layer 2 when inorganic particles having no adhesiveness are contained in the porous layer, the bending strength when wet and the peeling force when drying tend to decrease.
  • the porous layer 2 according to the present embodiment contains a specific fluororesin in a specific ratio, so that when the inorganic particles are contained in the above range, the porous layer 2 has a high adhesive force to the electrode, The balance between the bending strength when wet and the peeling force when drying is good, and excellent short-circuit resistance can be obtained.
  • the average particle size of the inorganic particles is preferably 1.5 times or more and 50 times or less, more preferably 2.0 times or more and 20 times or less of the average flow pore size of the polyolefin microporous membrane. It is.
  • the average flow pore size was measured according to JISK3832 and ASTM F316-86, and for example, measured in the order of Dry-up and Wet-up using a palm porometer (PMI, CFP-1500A).
  • PMI palm porometer
  • pressure was applied to a microporous membrane sufficiently immersed in Galwick (trade name) manufactured by PMI with a known surface tension, and the pore size converted from the pressure at which air began to penetrate was defined as the maximum pore size.
  • d C ⁇ ⁇ / P
  • d ( ⁇ m) is the pore diameter of the microporous membrane
  • ⁇ (mN / m) is the surface tension of the liquid
  • P (Pa) is the pressure
  • C is a constant.
  • the average particle size of the inorganic particles is preferably 0.3 ⁇ m to 1.8 ⁇ m, more preferably 0.5 ⁇ m to 1.5 ⁇ m, still more preferably. 0.9 ⁇ m to 1.3 ⁇ m.
  • the average particle diameter of the particles can be measured using a laser diffraction method or dynamic light scattering method measuring device. For example, particles dispersed in an aqueous solution containing a surfactant using an ultrasonic probe were measured with a particle size distribution measuring apparatus (manufactured by Nikkiso Co., Ltd., Microtrac HRA) and accumulated 50% from the small particle side in terms of volume.
  • the value of the particle size (D50) at the time is preferably the average particle size.
  • Examples of the shape of the particles include a true spherical shape, a substantially spherical shape, a plate shape, and a needle shape, but are not particularly limited.
  • the film thickness of the porous layer 2 is preferably 0.5 ⁇ m or more and 3 ⁇ m or less per side, more preferably 1 ⁇ m or more and 2.5 ⁇ m or less, and further preferably 1 ⁇ m or more and 2 ⁇ m or less.
  • the film thickness per side is 0.5 ⁇ m or more, high adhesion to the electrode (bending strength when wet, peel strength when drying) can be secured.
  • the film thickness per side is 3 ⁇ m or less, the winding volume can be suppressed and the film can be made thinner, which is more suitable for increasing the capacity of batteries that will be developed in the future.
  • the porosity of the porous layer 2 is preferably 30% or more and 90% or less, more preferably 40% or more and 70% or less. When the porosity of the porous layer 2 is within the above range, an increase in the electrical resistance of the separator can be prevented, a large current can be passed, and the film strength can be maintained.
  • the manufacturing method of the battery separator is not particularly limited, and can be manufactured using a known method. Hereinafter, an example of a method for manufacturing a battery separator will be described.
  • the battery separator manufacturing method can include the following steps (1) to (3) in sequence. (1) A step of obtaining a fluororesin solution in which a vinylidene fluoride-hexafluoropropylene copolymer (A) and a vinylidene fluoride-hexafluoropropylene copolymer (B) are dissolved in a solvent. (2) Inorganic in the fluororesin solution. A step of adding particles, mixing and dispersing to obtain a coating solution (3) A step of applying the coating solution to the polyolefin microporous membrane, immersing it in a coagulation solution, washing and drying.
  • Step (1) Step of obtaining a fluororesin solution
  • the vinylidene fluoride-hexafluoropropylene copolymer (A) and the vinylidene fluoride-hexafluoropropylene copolymer (B) are gradually added to a solvent and completely dissolved.
  • the solvent is not particularly limited as long as it can dissolve the vinylidene fluoride-hexafluoropropylene copolymer (A) and the vinylidene fluoride-hexafluoropropylene copolymer (B) and is miscible with the coagulation liquid.
  • the solvent is preferably N-methyl-2-pyrrolidone.
  • Step (2) Step of obtaining a coating solution
  • a coating solution it is important to sufficiently disperse inorganic particles. Specifically, particles are added while stirring the fluororesin solution and pre-dispersed by stirring with a disper for a certain time (for example, about 1 hour), and then dispersed using a bead mill or paint shaker. Through the step (dispersing step), the aggregation of particles is reduced, and further mixed with a three-one motor with a stirring blade to prepare a coating solution.
  • Step (3) A step of applying the coating liquid to the microporous film, immersing it in the coagulating liquid, washing and drying, applying the coating liquid to the microporous film, immersing the applied microporous film in the coagulating liquid
  • the vinylidene fluoride-hexafluoropropylene copolymer (A) and the vinylidene fluoride-hexafluoropropylene copolymer (B) are phase-separated, coagulated in a state having a three-dimensional network structure, washed and dried.
  • a microporous membrane and a battery separator having a porous layer on the surface of the microporous membrane are obtained.
  • the method of applying the coating liquid to the microporous film may be a known method, for example, dip coating method, reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method, Examples thereof include an air knife coating method, a Mayer bar coating method, a pipe doctor method, a blade coating method, and a die coating method, and these methods can be used alone or in combination.
  • the coagulation liquid preferably contains water as a main component, and is preferably an aqueous solution containing 1 to 20% by mass of a good solvent for the copolymer (A) and the copolymer (B), more preferably 5 to 15% by mass. It is an aqueous solution.
  • a good solvent include N-methyl-2-pyrrolidone, N, N-dimethylformamide, and N, N-dimethylacetamide.
  • the immersion time in the coagulation liquid is preferably 3 seconds or more. The upper limit is not limited, but 10 seconds is sufficient.
  • Water can be used for cleaning. Drying can be performed using, for example, hot air of 100 ° C. or less.
  • the battery separator 10 of the present embodiment can be suitably used for both a battery using an aqueous electrolyte and a battery using a non-aqueous electrolyte, but is preferably used for a non-aqueous electrolyte secondary battery. It can. Specifically, it can be preferably used as a separator for secondary batteries such as nickel-hydrogen batteries, nickel-cadmium batteries, nickel-zinc batteries, silver-zinc batteries, lithium secondary batteries, and lithium polymer secondary batteries. Especially, it is preferable to use as a separator of a lithium ion secondary battery.
  • a positive electrode and a negative electrode are arranged via a separator, and the separator contains an electrolytic solution (electrolyte).
  • the structure of the non-aqueous electrolyte electrode is not particularly limited, and a conventionally known structure can be used.
  • an electrode structure coin type in which a disk-like positive electrode and a negative electrode are opposed to each other, a flat plate-like structure
  • An electrode structure stacked type in which positive and negative electrodes are alternately stacked, an electrode structure in which stacked belt-like positive and negative electrodes are wound (winding type), and the like can be used.
  • the battery separator of this embodiment can have excellent adhesiveness between the separator and the electrode in any battery structure.
  • the current collector, the positive electrode, the positive electrode active material, the negative electrode, the negative electrode active material, and the electrolyte used in the non-aqueous electrolyte secondary battery including a lithium ion secondary battery are not particularly limited, and a conventionally known material is appropriately selected. They can be used in combination.
  • the battery separator 10 may be formed by laminating the porous 2 on one surface of the polyolefin microporous membrane 1, and porous on both surfaces of the polyolefin microporous membrane 1. 2 may be laminated.
  • the wet bending strength of the separator 10 is preferably 4.0 N or more, more preferably 5.0 N or more, and still more preferably 6.0 N or more.
  • the upper limit of the bending strength when wet is not particularly defined, but is, for example, 15.0 N or less.
  • the bending strength when wet can be measured by the method described in Examples described later.
  • the peeling force when the separator 10 is dried is preferably 2.0 N / m or more, more preferably 5.0 N / m or more, and still more preferably 6.0 N / m or more.
  • the upper limit of the peeling force at the time of drying is not particularly defined, it is, for example, 40.0 N / m or less.
  • the peeling force at the time of drying is within the preferable range, it is expected that the wound electrode body or the laminated electrode body can be transported without the electrode body being scattered.
  • the peeling force at the time of drying can be measured by the method as described in the below-mentioned Example.
  • the separator 10 of the present embodiment can achieve both a high bending strength when wet and a high peel strength when drying. Specifically, the separator 10 can satisfy a bending strength when wet of 4.0 N or more and a peel strength when dry of 2.0 N / m or more, as shown in Examples described later.
  • a preferable upper limit of the air resistance of the separator 10 is 350 sec / 100 cm 3 Air, preferably 250 sec / 100 cm 3 Air, and more preferably 200 sec / 100 cm 3 Air.
  • the lower limit is 50 sec / 100 cm 3 Air, preferably 70 sec / 100 cm 3 Air, more preferably 100 sec / 100 cm 3 Air.
  • this invention is not limited to said embodiment, It can implement in various deformation
  • film thickness Using a contact-type film thickness meter (“Lightmatic” (registered trademark) series 318 manufactured by Mitutoyo Corporation), the film thicknesses of the microporous film and the separator were measured. In the measurement, 20 points were measured under the condition of a weight of 0.01 N using a carbide spherical measuring element ⁇ 9.5 mm, and the average value of the obtained measured values was taken as the film thickness.
  • Lightmatic registered trademark
  • Weight average molecular weight (Mw) of vinylidene fluoride-hexafluoropropylene copolymer (A) and vinylidene fluoride-hexafluoropropylene copolymer (B) It calculated
  • Measurement device GPC-150C manufactured by Waters Corporation ⁇ Column: 2 shodex KF-806M manufactured by Showa Denko KK ⁇ Column temperature: 23 ° C Solvent (mobile phase): 0.05M lithium chloride added N-methyl-2-pyrrolidone (NMP) ⁇ Solvent flow rate: 0.5 ml / min ⁇ Sample preparation: 4 mL of measurement solvent was added to 2 mg of the sample, and gently stirred at room temperature (dissolution was visually confirmed).
  • ⁇ Injection volume 0.2mL
  • ⁇ Detector Differential refractive index detector RI (RI-8020 type sensitivity 16 manufactured by Tosoh Corporation)
  • -Calibration curve Prepared from a calibration curve obtained using a monodisperse polystyrene standard sample, using a predetermined conversion constant.
  • the negative electrode 20 (machine direction 161 mm ⁇ width direction 30 mm) produced above and the produced separator 10 (machine direction 160 mm ⁇ width direction 34 mm) are stacked, and a metal plate (length 300 mm, width 25 mm, thickness 1 mm) is laminated.
  • the separator 10 and the negative electrode 20 were wound so that the separator 10 was inside as a winding core, and the metal plate was pulled out to obtain a test winding body 30.
  • the test winding was about 34 mm long and about 28 mm wide.
  • test roll 30 enclosed in the laminate film 22 is sandwiched between two gaskets (thickness 1 mm, 5 cm ⁇ 5 cm), and placed in a precision heating and pressing apparatus (CYPT-10, manufactured by Shinto Kogyo Co., Ltd.). The mixture was pressurized at 98 ° C. and 0.6 MPa for 2 minutes and allowed to cool at room temperature. With the test roll 30 after being pressurized, the bending strength when wet was measured using a universal testing machine (manufactured by Shimadzu Corporation, AGS-J) while encapsulated in the laminate film 22. Details will be described below with reference to FIG.
  • Two aluminum L-shaped angles 41 are arranged in parallel so that the 90 ° part is on top, with the ends aligned, and the fulcrum with the 90 ° part as a fulcrum The distance was fixed to 15 mm.
  • the length direction of the L-shaped angle 41 by aligning the midpoint of the width direction of the test winding body (about 28 mm) with the 7.5 mm point which is the middle of the distance between the fulcrums of the two aluminum L-shaped angles 41
  • the test winding body 30 was arranged so as not to protrude from the sides of the test piece.
  • the length direction side (about 34 mm) of the test winding body does not protrude from the length direction side of the aluminum L-shaped angle 42 (thickness 1 mm, 10 mm ⁇ 10 mm, length 4 cm) as an indenter.
  • the 90 ° portion of the aluminum L-shaped angle 42 is aligned with the midpoint of the side in the width direction of the test winding body, and the aluminum L-shaped angle 42 is placed so that the 90 ° portion is down. It was fixed to the load cell (load cell capacity 50N) of the universal testing machine.
  • the average value of the maximum test force obtained by measuring the three test winding bodies at a load speed of 0.5 mm / min was defined as the bending strength when wet.
  • a double-sided tape having a width of 1 cm is attached to the negative electrode side of the laminate of the negative electrode 20 and the separator 10, and the other side of the double-sided tape is attached to a SUS plate (thickness 3 mm, length 150 mm ⁇ width 50 mm). The pasting was performed so that the machine direction and the SUS plate length direction were parallel. This was made into the peeling test piece.
  • a separator 10 was sandwiched between load cell side chucks using a universal testing machine (AGS-J, manufactured by Shimadzu Corporation), and a 180 degree peel test was performed at a test speed of 300 mm / min.
  • a value obtained by averaging measured values from a stroke of 20 mm to 70 mm during the peel test was defined as the peel strength of the peel test piece.
  • a total of three peel test pieces were measured, and a value obtained by converting the average peel force into a width was defined as a peel force during drying (N / m).
  • the sample laminate 31 was fixed to the compression jig (lower side) 44 of the universal testing machine with double-sided tape.
  • the aluminum foil 4 and the negative electrode 21 of the sample laminate 31 were connected to a circuit composed of a capacitor and a clad resistor with a cable.
  • the capacitor was charged to about 1.5 V, and a metal ball 6 (material: chromium (SUJ-2)) having a diameter of about 500 ⁇ m was placed between the separator in the sample laminate 31 and the aluminum foil 4.
  • a compression jig is attached to the universal testing machine, and the sample laminate 31 including the metal balls 6 is placed between both compression jigs 43 and 44 as shown in FIG. / Min. The test was terminated when the load reached 100 N.
  • the part where the inflection point appeared in the change in compressive load was taken as the film breaking point of the separator, and the moment when the circuit was formed and the current was detected via the metal sphere was taken as the short-circuit occurrence point.
  • the compression displacement A (t) when the separator breaks due to compression and an inflection point occurs in the compression stress, and the compression displacement B (t) at the moment when the current flows through the circuit are measured. If the numerical value obtained in 1.1 is 1.1 or more, even if the separator breaks due to foreign matter mixed in the battery, it means that the insulation is maintained by the coating layer composition adhering to the surface of the foreign matter, Short-circuit resistance was evaluated as good.
  • Peel strength between the porous layer and polyolefin multilayer microporous membrane (tape peel strength) (Preparation of peel test piece)
  • the separators (machine direction: 120 mm ⁇ width direction: 25 mm) prepared in Examples and Comparative Examples were installed on a glass plate so that air did not enter.
  • Double-sided tape (machine direction 100mm x width direction 20mm, manufactured by Seiwa Sangyo Co., Ltd., transparent film double-sided tape SFR-2020) is installed so that the machine direction of the separator and the machine direction of the separator are aligned.
  • the sample was subjected to 5 reciprocating treatments using a roller (SA-1003-B, tester industry, manual type, rubber strength 80 ⁇ 5 Hs).
  • a cellophane tape (manufactured by Nichiban Co., Ltd., cello tape (registered trademark), plant-based, No. 405, machine direction: 100 mm ⁇ width direction: 15 mm) is pasted on the separator side of the laminate of the double-sided tape and the separator, and the rest is left.
  • the porous layer surface may remain on the polyolefin multilayer microporous membrane side at the peeling interface.
  • the peel strength between the porous layer and the polyolefin multilayer microporous membrane was calculated.
  • the peel strength between the porous layer and the polyolefin multilayer microporous membrane is preferably 0.15 N / mm or more, more preferably 0.20 N / mm or more, and most preferably 0.25 N / mm or more.
  • Example 1 Preparation of First Polyolefin Resin Solution 20% by mass of polypropylene (PP: melting point 162 ° C.) having a Mw of 2.0 ⁇ 10 6 and high density polyethylene (HDPE: density of 0.6) having an Mw of 5.6 ⁇ 10 5 .
  • PP polypropylene
  • HDPE high density polyethylene
  • a mixture was prepared by blending 0.2 part by mass of methane.
  • Second polyolefin resin solution 40% by mass of ultra high molecular weight polyethylene (UHMwPE) having Mw of 2.0 ⁇ 10 6 and high density polyethylene (HDPE: density of 0.955 g) having Mw of 5.6 ⁇ 10 5 / Cm 3 ) 100 parts by mass of a second polyolefin resin composed of 60% by mass with 0.2 parts by mass of the antioxidant tetrakis [methylene-3- (3,5-ditertiarybutyl-4-hydroxyphenyl) -propionate] methane Parts were blended to prepare a mixture.
  • UHMwPE ultra high molecular weight polyethylene
  • HDPE high density polyethylene
  • the first and second polyolefin resin solutions are supplied from each twin-screw extruder to the three-layer T-die, and the first polyolefin resin solution / second polyolefin resin solution / first polyolefin resin solution.
  • the film was extruded so as to have a layer thickness ratio of 10/80/10, and cooled while being drawn at a take-up speed of 2 m / min with a cooling roll adjusted to 30 ° C. to obtain a three-layer extrudate.
  • Second stretching and heat setting The first stretched multilayer sheet was stretched 1.4 times (second stretching) in the TD direction at 126 ° C using a batch stretching machine. Next, this membrane was heat-set at 126 ° C. by a tenter method to obtain a polyolefin three-layer microporous membrane A having a thickness of 12 ⁇ m, a porosity of 46%, and an air resistance of 150 seconds / 100 cc.
  • copolymer (A1) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 98.0 / 1.5 / 0.5 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A1) was synthesized. The weight average molecular weight of the obtained copolymer (A1) was 1,500,000.
  • copolymer (B1) was synthesized as follows. A copolymer (B1) was synthesized by suspension polymerization using vinylidene fluoride and hexafluoropropylene as starting materials so that the molar ratio of vinylidene fluoride / hexafluoropropylene was 93.0 / 7.0. The weight average molecular weight of the obtained copolymer (B1) was 300,000.
  • the obtained coating liquid (A) was applied to both sides of the polyolefin three-layer microporous membrane A in an equal amount by a dip coating method.
  • the coated film is immersed in an aqueous solution (coagulation solution) containing 10% by mass of N-methyl-2-pyrrolidone (NMP), washed with pure water, and then dried at 50 ° C. to obtain a battery separator. It was.
  • the thickness of the battery separator was 15 ⁇ m.
  • Example 2 In the preparation of the first polyolefin resin solution, the thickness was 12 ⁇ m, the porosity was 45%, in the same manner as in Example 1 except that the blending amount of polypropylene was 10% by mass and the blending amount of high-density polyethylene was 90% by mass.
  • a battery separator was obtained in the same manner as in Example 1 except that the polyolefin three-layer microporous membrane B was used.
  • Example 3 In the preparation of the first polyolefin resin solution, the thickness was 12 ⁇ m, the porosity was 48%, in the same manner as in Example 1 except that the blending amount of polypropylene was 45 mass% and the blending amount of high-density polyethylene was 55 mass%.
  • a battery separator was obtained in the same manner as in Example 1 except that the polyolefin three-layer microporous membrane C was used.
  • copolymer (B2) was synthesized as follows.
  • a copolymer (B2) was synthesized by suspension polymerization using vinylidene fluoride and hexafluoropropylene as starting materials so that the molar ratio of vinylidene fluoride / hexafluoropropylene was 94.5 / 5.5.
  • the weight average molecular weight of the obtained copolymer (B2) was 280,000.
  • a battery separator was obtained in the same manner as in Example 1 except that the coating liquid (B) in which the copolymer (B1) was replaced with the copolymer (B2) was used in the preparation of the coating liquid.
  • Example 5 As the copolymer (B), a copolymer (B3) was synthesized as follows. A copolymer (B3) was synthesized by suspension polymerization using vinylidene fluoride and hexafluoropropylene as starting materials so that the molar ratio of vinylidene fluoride / hexafluoropropylene was 92.0 / 8.0. The weight average molecular weight of the obtained copolymer (B3) was 350,000. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (C) in which the copolymer (B1) was replaced with the copolymer (B3) was used in the preparation of the coating liquid.
  • the coating liquid (C) in which the copolymer (B1) was replaced with the copolymer (B3) was used in the preparation of the coating liquid.
  • copolymer (A2) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 99.0 / 0.5 / 0.5 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A2) was synthesized. The weight average molecular weight of the obtained copolymer (A2) was 1,400,000.
  • a battery separator was obtained in the same manner as in Example 1 except that the coating liquid (D) in which the copolymer (A1) was replaced with the copolymer (A2) was used in the preparation of the coating liquid.
  • copolymer (A3) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 95.0 / 4.5 / 0.5 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A3) was synthesized. The weight average molecular weight of the obtained copolymer (A3) was 1,700,000. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (E) in which the copolymer (A1) was replaced with the copolymer (A3) was used in the preparation of the coating liquid.
  • copolymer (A4) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 98.0 / 1.5 / 0.5 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A4) was synthesized. The weight average molecular weight of the obtained copolymer (A4) was 1,900,000. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (F) in which the copolymer (A1) was replaced with the copolymer (A4) was used in the preparation of the coating liquid.
  • Example 9 In the preparation of the coating liquid, the blending ratio of the copolymer (A1) and the copolymer (B1) was 28.0 parts by mass of the copolymer (A1) and 2.0 parts by mass of the copolymer (B1). A battery separator was obtained in the same manner as in Example 1 except that the working liquid (G) was used.
  • Example 10 In the preparation of the coating liquid, the content of alumina particles was set to 40% by volume with the solid content of the porous layer being 100% by volume, and 35.2 parts by mass of the copolymer (A1) and the copolymer (B1). A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (H) in which 4.7 parts by mass and NMP was changed to 900 parts by mass was used.
  • Example 11 In the preparation of the coating liquid, the content of alumina particles is 75% by volume with the solid content of the porous layer being 100% by volume, and 11.4 parts by mass of copolymer (A1) and copolymer (B1).
  • a battery separator was obtained in the same manner as in Example 1 except that the coating liquid (I) in which 1.5 parts by mass and NMP was changed to 300 parts by mass was used.
  • copolymer (A5) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 98.4 / 1.5 / 0.1 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A5) was synthesized. The weight average molecular weight of the obtained copolymer (A5) was 1,500,000.
  • a battery separator was obtained in the same manner as in Example 1 except that the coating liquid (J) was used instead of the copolymer (A5) in the preparation of the coating liquid.
  • copolymer (A6) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 94.5 / 1.5 / 4.0 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A6) was synthesized. The weight average molecular weight of the obtained copolymer (A6) was 1,500,000.
  • a battery separator was obtained in the same manner as in Example 1 except that the coating liquid (K) in which the copolymer (A1) was replaced with the copolymer (A6) was used in the preparation of the coating liquid.
  • Example 14 The amount of extrusion of the first and second polyolefin resin solutions was adjusted, and a polyolefin three-layer fine layer having a layer thickness ratio of 10/80/10, a thickness of 7 ⁇ m, a porosity of 37%, and an air resistance of 120 seconds / 100 cm 3 A porous membrane D was obtained.
  • a battery separator was obtained in the same manner as in Example 1 except that the polyolefin three-layer microporous membrane D was used. The thickness of the battery separator was 10 ⁇ m.
  • Example 15 The amount of extrusion of the first and second polyolefin resin solutions was adjusted, and the layer thickness ratio was 10/80/10, the thickness was 16 ⁇ m, the porosity was 45%, and the air permeability resistance was 200 seconds / 100 cm 3.
  • a porous membrane E was obtained.
  • a battery separator was obtained in the same manner as in Example 1 except that the polyolefin three-layer microporous membrane E was used. The thickness of the battery separator was 19 ⁇ m.
  • Example 16 As the copolymer (B), a copolymer (B4) was synthesized as follows. A copolymer (B4) was synthesized by suspension polymerization using vinylidene fluoride and hexafluoropropylene as starting materials so that the molar ratio of vinylidene fluoride / hexafluoropropylene was 93.0 / 7.0. The weight average molecular weight of the obtained copolymer (B1) was 700,000. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (L) in which the copolymer (B1) was replaced with the copolymer (B4) was used in the preparation of the coating liquid.
  • a battery separator was obtained in the same manner as in Example 1 except that the coating liquid (L) in which the copolymer (B1) was replaced with the copolymer (B4) was used in the preparation of the coating liquid.
  • Example 17 In preparation of the coating liquid, the alumina particles are replaced with plate-like boehmite particles (density 3.07 g / cm 3 ) having an average particle diameter of 1.0 ⁇ m and an average thickness of 0.4 ⁇ m, and the copolymer (A1) 31.5 mass. Battery separator was obtained in the same manner as in Example 1 except that the coating liquid (M) was used in an amount of 4.2 parts by weight of the copolymer (B1).
  • Example 18 In preparation of the coating liquid, the alumina particles are replaced with an average particle diameter of 0.4 ⁇ m, titania particles (density 4.23 g / cc), 25.3 parts by mass of the copolymer (A1), and the copolymer (B1) 3.4.
  • a battery separator was obtained in the same manner as in Example 1 except that the coating liquid (N) in mass parts was used.
  • Example 19 In the preparation of the coating solution, the blending ratio of the copolymer (A1) and the copolymer (B1) was 29.0 parts by mass of the copolymer (A1) and 1.0 part by mass of the copolymer (B1). A battery separator was obtained in the same manner as in Example 1 except that the working liquid (O) was used.
  • Example 1 In the preparation of the first polyolefin resin solution, the thickness was 12 ⁇ m, the porosity was 44%, and the air resistance was the same as in Example 1 except that polypropylene was not used and the blending amount of the high-density polyethylene was 100% by mass.
  • a polyolefin three-layer microporous membrane F of 100 seconds / 100 cm 3 was obtained.
  • a battery separator was obtained in the same manner as in Example 1 except that the polyolefin three-layer microporous membrane F was used.
  • Example 2 In the preparation of the first polyolefin resin solution, the thickness was 12 ⁇ m, the porosity was 45%, in the same manner as in Example 1 except that the blending amount of polypropylene was 5 mass% and the blending amount of high-density polyethylene was 95 mass%.
  • a battery separator was obtained in the same manner as in Example 1 except that the polyolefin three-layer microporous membrane G was used.
  • Example 3 In the preparation of the first polyolefin resin solution, the thickness was 12 ⁇ m, the porosity was 37%, in the same manner as in Example 1 except that the blending amount of polypropylene was 80% by mass and the blending amount of high-density polyethylene was 20% by mass. A polyolefin three-layer microporous membrane H having an air resistance of 815 sec / 100 cm 3 was obtained. A battery separator was obtained in the same manner as in Example 1 except that the polyolefin three-layer microporous membrane H was used.
  • Example 5 In the preparation of the coating liquid, alumina particles were added so that the solid content of the porous layer was 100% by volume to 95% by volume, and 2.0 parts by mass of the copolymer (A1), 0. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (Q) in which 3 parts by mass and NMP was changed to 250 parts by mass was used.
  • copolymer (A7) was synthesized as follows.
  • a copolymer (A7) was synthesized by suspension polymerization using vinylidene fluoride and hexafluoropropylene as starting materials so that the molar ratio of vinylidene fluoride / hexafluoropropylene was 98.5 / 1.5.
  • the weight average molecular weight of the obtained copolymer (A7) was 1,500,000.
  • a battery separator was obtained in the same manner as in Example 1 except that the coating liquid (S) in which the copolymer (A1) was replaced with the copolymer (A7) was used in the preparation of the coating liquid.
  • Example 8 In the preparation of the coating liquid, the coating liquid (T) prepared without using the copolymer (B) by replacing the copolymer (A) with 30.0 parts by weight of polyvinylidene fluoride (weight average molecular weight 1,500,000) A battery separator was obtained in the same manner as in Example 1 except that was used.
  • copolymer (A8) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 98.0 / 1.5 / 0.5 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A8) was synthesized. The weight average molecular weight of the obtained copolymer (A8) was 650,000.
  • a battery was prepared in the same manner as in Example 1 except that in the preparation of the coating liquid, the copolymer (A1) was replaced with the copolymer (A8) and the coating liquid (U) in which NMP was changed to 500 parts by mass was used. A separator was obtained.
  • copolymer (B5) was synthesized as follows.
  • a copolymer (B5) was synthesized by suspension polymerization using vinylidene fluoride and hexafluoropropylene as starting materials so that the molar ratio of vinylidene fluoride / hexafluoropropylene was 93.0 / 7.0.
  • the weight average molecular weight of the obtained copolymer (B5) was 70,000.
  • a battery separator was obtained in the same manner as in Example 1 except that the coating liquid (V) was used instead of the copolymer (B5) in the preparation of the coating liquid.
  • Comparative Example 11 A battery separator was obtained in the same manner as in Comparative Example 1 except that the polyolefin three-layer microporous membrane D was used. The thickness of the battery separator was 10 ⁇ m.
  • composition and characteristics of the polyolefin multilayer microporous membrane used in the above Examples and Comparative Examples are shown in Table 1, and the structure of the copolymer (A) and copolymer (B) of the porous layer, the weight average molecular weight, coating
  • Table 2 The composition of the liquid and the characteristics of the obtained battery separator are shown in Table 2.
  • the battery separator of the present embodiment when used in a non-aqueous electrolyte secondary battery, satisfies the peeling force during drying and the bending strength when wet, and the adhesion between the separators of the polyolefin multilayer microporous membrane and the porous layer. And the separator for batteries which is excellent in the adhesiveness between a separator and an electrode, and is excellent in short circuit tolerance can be provided. Therefore, the battery separator according to the present embodiment can be suitably used even when a larger size and a higher capacity of a battery (particularly a laminate type battery) are required in the future.

Abstract

The present invention addresses the problem of providing a separator for batteries, which has excellent bondability and short circuit resistance. The present invention is a separator for batteries, which is provided with a polyolefin microporous membrane and a porous layer that is arranged on at least one surface of the polyolefin microporous membrane, and which is configured such that: the polyolefin microporous membrane is composed of a polyolefin multilayer microporous membrane that has a three-layer structure wherein a first microporous layer, a second microporous layer and another first microporous layer are laminated in this order; the first microporous layers are formed from a first polyolefin resin that contains a polyethylene and a polypropylene; the content of the polypropylene is from 10% by mass to 50% by mass (inclusive) relative to the total mass of the first polyolefin resin; the second microporous layer is formed only from a polyethylene resin; and the porous layer contains a vinylidene fluoride-hexafluoropropylene copolymer (A), a vinylidene fluoride-hexafluoropropylene copolymer (B) and inorganic particles.

Description

電池用セパレータ、電極体及び非水電解質二次電池Battery separator, electrode body, and non-aqueous electrolyte secondary battery
 本発明は電池用セパレータ、電極体及び非水電解質二次電池に関する。 The present invention relates to a battery separator, an electrode body, and a nonaqueous electrolyte secondary battery.
 非水電解質二次電池、中でも、リチウムイオン二次電池は、携帯電話や携帯情報端末等の小型電子機器に使用されて広く普及している。非水電解質二次電池の形態としては、例えば、円筒型電池、角型電池、ラミネート型電池等が挙げられる。一般に、これらの電池は、正極と負極とがセパレータを介して配置された電極体と、非水電解液とが外装体に収納された構成を有する。電極体の構造としては、例えば、正極と負極とをセパレータを介して積層した積層電極体、正極と負極とをセパレータを介して渦巻き状に巻回した巻回電極体などが挙げられる。 Non-aqueous electrolyte secondary batteries, especially lithium ion secondary batteries, are widely used in small electronic devices such as mobile phones and portable information terminals. Examples of the form of the nonaqueous electrolyte secondary battery include a cylindrical battery, a square battery, and a laminate battery. In general, these batteries have a configuration in which an electrode body in which a positive electrode and a negative electrode are arranged via a separator, and a nonaqueous electrolytic solution are housed in an exterior body. Examples of the structure of the electrode body include a laminated electrode body in which a positive electrode and a negative electrode are stacked via a separator, and a wound electrode body in which the positive electrode and the negative electrode are spirally wound via a separator.
 従来、電池用セパレータとしては、主にポリオレフィン樹脂からなる微多孔膜が使用されている。ポリオレフィン樹脂からなる微多孔膜は、いわゆるシャットダウン機能を有するため、電池の異常発熱時にセパレータの細孔を閉塞することにより、電流の流れを抑制して、発火などを防ぐことができる。 Conventionally, microporous membranes mainly made of polyolefin resin are used as battery separators. Since the microporous membrane made of polyolefin resin has a so-called shutdown function, the current flow can be suppressed and ignition can be prevented by closing the pores of the separator when the battery is abnormally heated.
 近年、電池用セパレータにおいて、ポリオレフィン樹脂からなる層の一方または両方の面に、ポリオレフィン樹脂以外の他の層を設けることで電池特性を向上させる試みがなされている。例えば、フッ素樹脂を含有する多孔層をポリオレフィン樹脂からなる層の一方又は両方の面に設けた電池用セパレータが提案されている。また、多孔層に無機粒子を加えることにより、事故などで電池に鋭利な金属が貫き、急な短絡を起こし発熱した場合でもセパレータの溶融収縮を防ぎ、電極間における短絡部の拡大を抑制することが知られている。 In recent years, in battery separators, attempts have been made to improve battery characteristics by providing layers other than polyolefin resin on one or both sides of a layer made of polyolefin resin. For example, a battery separator in which a porous layer containing a fluororesin is provided on one or both surfaces of a layer made of a polyolefin resin has been proposed. In addition, by adding inorganic particles to the porous layer, even if sharp metal penetrates the battery due to an accident, etc., even if it causes a sudden short circuit and generates heat, it prevents melting shrinkage of the separator and suppresses the expansion of the short circuit part between the electrodes. It has been known.
 例えば、特許文献1には、正極と、負極と、ポリプロピレン・ポリエチレン・ポリプロピレンからなる三層セパレータと、これら電極とセパレータとの間に配置されたポリフッ化ビニリデンとアルミナ粉末からなる接着性樹脂層とを備えた電極体が記載されている。 For example, Patent Document 1 includes a positive electrode, a negative electrode, a three-layer separator made of polypropylene, polyethylene, and polypropylene, and an adhesive resin layer made of polyvinylidene fluoride and alumina powder disposed between the electrode and the separator. An electrode body provided with is described.
 また、特許文献2の実施例1には、VdF‐HFP共重合体(HFP単位0.6モル%)とVdF‐HFP共重合体(重量平均分子量47万、HFP単位4.8モル%)をジメチルアセトアミドとトリプロピレングリコール溶液に溶解し、これをポリエチレン微多孔膜に塗工して多孔層が形成されたセパレータが記載されている。 In Example 1 of Patent Document 2, VdF-HFP copolymer (HFP unit 0.6 mol%) and VdF-HFP copolymer (weight average molecular weight 470,000, HFP unit 4.8 mol%) were used. There is described a separator in which a porous layer is formed by dissolving in a dimethylacetamide and tripropylene glycol solution and applying this to a polyethylene microporous membrane.
 また、特許文献3の実施例1には、PVdF(重量平均分子量50万)とVdF‐HFP共重合体(重量平均分子量40万、HFP単位5モル%)をジメチルアセトアミドとトリプロピレングリコール溶液に溶解し、これをポリエチレン微多孔膜に塗工して多孔層が形成されたセパレータが記載されている。 In Example 1 of Patent Document 3, PVdF (weight average molecular weight 500,000) and VdF-HFP copolymer (weight average molecular weight 400,000, HFP unit 5 mol%) were dissolved in dimethylacetamide and tripropylene glycol solution. A separator in which a porous layer is formed by applying this to a polyethylene microporous film is described.
 また、特許文献4の実施例1には、PVdF(重量平均分子量70万)とVdF‐HFP共重合体(重量平均分子量47万、HFP単位4.8モル%)をジメチルアセトアミドとトリプロピレングリコール溶液に溶解し、これをポリエチレン微多孔膜に塗工して多孔層が形成されたセパレータが記載されている。 In Example 1 of Patent Document 4, PVdF (weight average molecular weight: 700,000) and VdF-HFP copolymer (weight average molecular weight: 470,000, HFP unit: 4.8 mol%) were mixed in dimethylacetamide and tripropylene glycol solution. A separator is described in which a porous layer is formed by dissolving the polymer in a polyethylene microporous film.
 また、特許文献5の実施例1には、PVdF(重量平均分子量35万)とVdF‐HFP共重合体(重量平均分子量27万、HFP共重合4.8モル%)をジメチルアセトアミドとトリプロピレングリコール溶液に溶解し、これをポリエチレン微多孔膜に塗工して多孔層が形成されたセパレータが記載されている。 In Example 1 of Patent Document 5, PVdF (weight average molecular weight 350,000) and VdF-HFP copolymer (weight average molecular weight 270,000, HFP copolymer 4.8 mol%) were mixed with dimethylacetamide and tripropylene glycol. A separator is disclosed in which a porous layer is formed by dissolving in a solution and coating it on a polyethylene microporous membrane.
 また、特許文献6の実施例23にはVdF‐HFP共重合体(重量平均分子量193万、HFP単位1.1モル%)とVdF‐HFP共重合体(重量平均分子量47万、HFP単位4.8モル%)をジメチルアセトアミドとトリプロピレングリコール溶液に溶解し、さらに、水酸化アルミニウムを加えた塗工液を作製し、これをポリエチレン微多孔膜に塗工して多孔層が形成されたセパレータが記載されている。 Further, in Example 23 of Patent Document 6, a VdF-HFP copolymer (weight average molecular weight 1.93 million, HFP unit 1.1 mol%) and a VdF-HFP copolymer (weight average molecular weight 470,000, HFP unit 4. 8 mol%) is dissolved in a dimethylacetamide and tripropylene glycol solution, and a coating solution is prepared by adding aluminum hydroxide, and this is applied to a polyethylene microporous membrane to form a separator having a porous layer. Are listed.
国際公開1999/036981号International Publication No. 1999/036981 特許第5282179号Japanese Patent No. 5282179 特許第5282180号Patent No. 5282180 特許第5282181号Patent No. 5282181 特許第5342088号Patent No. 53442088 国際公開第2016/152863号International Publication No. 2016/152863
 近年、非水電解質二次電池は、大型タブレット、草刈り機、電動二輪車、電気自動車、ハイブリッド自動車、小型船舶などの大型用途向けの展開が期待されており、これに伴い大型電池の普及が想定され、さらに高容量化も想定される。上記特許文献1~5はいずれも電解液を含んだセパレータと電極との接着性を向上させたものであるが、二次電池が大型化した場合、さらなる接着性の向上が要求される。 In recent years, non-aqueous electrolyte secondary batteries are expected to be deployed for large applications such as large tablets, mowers, electric motorcycles, electric cars, hybrid cars, small ships, etc. Higher capacity is also expected. Patent Documents 1 to 5 all improve the adhesion between the separator containing the electrolytic solution and the electrode. However, when the secondary battery is enlarged, further improvement in the adhesion is required.
 本発明者らは、以下に説明するように、電極とセパレータとの接着性を評価する場合、乾燥時の電極とセパレータとの接着性、及び、湿潤時の電極とセパレータとの接着性、の大きく二つの接着性を区別して評価することにより、より接着性を正確に評価できることに着目し、さらに、これらの接着性を、それぞれ乾燥時剥離力と湿潤時曲げ強さとを指標とすることで、評価できることを見出した。 As will be described below, the present inventors evaluated the adhesion between the electrode and the separator when the adhesion between the electrode and the separator during drying and the adhesion between the electrode and the separator when wet. Focusing on the fact that the adhesiveness can be more accurately evaluated by distinguishing and evaluating two types of adhesiveness, and further, using these adhesivenesses as indicators of peel strength when dry and bending strength when wet, respectively. And found that it can be evaluated.
 すなわち、例えば、巻回電極体は、正極電極と負極電極とをセパレータを介して各部材に張力をかけながら巻回して製造される。このとき、金属集電体に塗工された正極電極や負極電極は張力に対してほとんど伸び縮みしないが、セパレータは機械方向にある程度伸びながら巻回されることになる。この巻回体をしばらく放置するとセパレータ部分がゆっくりと縮んでもとの長さに戻ろうとする。この結果、電極とセパレータとの境界面において平行方向の力が発生し、巻回電極体(特に扁平に巻回した電極体)はたわみや歪みが発生しやすくなる。さらに、電池の大型化に伴うセパレータの広幅化や長尺化によりこれら問題が顕在化し、生産時の歩留り悪化が懸念される。巻回電極体のたわみや歪みが発生するのを抑制するため、セパレータには今まで以上に電極との接着性が求められる。また、電極体を搬送する際、各部材が十分に接着された状態でなければ電極とセパレータが剥がれてしまい歩留りよく搬送させることができない。搬送時の接着性の問題は電池の大型化により顕在化し、歩留り悪化が懸念される。そのため、セパレータには電極から剥離しにくい、高い乾燥時剥離力が求められる。 That is, for example, the wound electrode body is manufactured by winding a positive electrode and a negative electrode while applying tension to each member via a separator. At this time, the positive electrode and the negative electrode applied to the metal current collector hardly expand or contract with respect to the tension, but the separator is wound while extending to some extent in the machine direction. When this wound body is left for a while, the separator portion is gradually contracted to return to the original length. As a result, a force in the parallel direction is generated at the boundary surface between the electrode and the separator, and the wound electrode body (particularly, the electrode body wound flatly) is likely to bend and distort. Furthermore, these problems become apparent due to the widening and lengthening of the separator accompanying the increase in the size of the battery, and there is a concern that the yield during production will deteriorate. In order to suppress the occurrence of deflection and distortion of the wound electrode body, the separator is required to have more adhesiveness with the electrode than ever before. Further, when the electrode body is transported, the electrodes and the separator are peeled off unless the respective members are sufficiently bonded, and cannot be transported with a high yield. The problem of adhesion at the time of transportation becomes obvious due to the increase in size of the battery, and there is a concern that the yield may deteriorate. Therefore, the separator is required to have a high peeling force during drying that is difficult to peel off from the electrode.
 また、高い乾燥時剥離力を維持するためには、ポリオレフィン微多孔膜と多孔層間の接着性もきわめて重要となる。例えば、多孔層、電極間の破壊が起こる前にポリオレフィン微多孔膜と多孔層間の破壊が起こってしまうと、上記たわみ、歪みの抑制や、搬送性向上を見込めない。そのため、セパレータには、ポリオレフィン微多孔膜と多孔層間の高い接着性が求められる。本発明では、この接着性について後述する測定方法により得られるテープ剥離力を指標とした。この値が大きいと乾燥時剥離力が維持される。さらに、セパレータのハンドリング時や、塗工後搬送時の多孔層脱落が抑制され、歩留り向上が期待される。 Also, in order to maintain a high peeling force during drying, the adhesion between the polyolefin microporous film and the porous layer is also extremely important. For example, if the polyolefin microporous film and the porous layer break before the porous layer and the electrode break, it is not possible to suppress the above-described deflection and distortion and improve the transportability. For this reason, the separator is required to have high adhesion between the polyolefin microporous membrane and the porous layer. In this invention, the tape peeling force obtained by the measuring method mentioned later about this adhesiveness was made into the parameter | index. When this value is large, the peeling force during drying is maintained. In addition, it is expected that the yield of the porous layer will be improved by preventing the porous layer from falling off during handling of the separator and during transportation after coating.
 さらに、ラミネート型電池においては、外装体で圧力をかけられる角型、円筒型電池に比べて、圧力をかけづらく、充放電に伴う電極の膨潤・収縮により、セパレータと電極の界面での部分的な遊離がおこりやすい。その結果、電池の膨れ、電池内部の抵抗増大、サイクル性能の低下につながる。そのため、電解液を注入後の電池内での電極との接着性がセパレータには要求されている。本明細書ではこの接着性について、後述する測定方法により得られる湿潤時曲げ強さを指標として評価する。後述する湿潤時曲げ強さの測定方法は電解液によって湿潤状態にある電極体において、積層された電極とセパレータの横ずれの発生しにくさを示すことができ、電解液を含む状態でのセパレータと電極との接着性を実際の電池に則して評価することができる。この強さが大きいと充放電繰り返し後の電池の膨れ抑制などの電池特性向上が期待されると考えらえる。乾燥時剥離力はセパレータが電解液を実質的に含まない状態でのセパレータと電極との境界面に対する接着性を表す。なお、電解液を実質的に含まないとはセパレータ中の電解液が500ppm以下であることを意味する。 Furthermore, in laminated batteries, it is difficult to apply pressure compared to prismatic and cylindrical batteries that can be pressurized with an outer package, and partial swelling at the interface between the separator and electrode due to electrode swelling / shrinkage associated with charge / discharge. Is easily released. As a result, the battery swells, the resistance inside the battery increases, and the cycle performance decreases. Therefore, the separator is required to have adhesiveness with the electrode in the battery after injecting the electrolytic solution. In this specification, this adhesiveness is evaluated using as an index the wet bending strength obtained by the measurement method described later. The measurement method of the bending strength when wet described later can show the difficulty of lateral displacement between the laminated electrode and the separator in the electrode body wet with the electrolyte, and the separator in a state containing the electrolyte Adhesiveness with an electrode can be evaluated according to an actual battery. If this strength is large, it can be considered that improvement of battery characteristics such as suppression of battery swelling after repeated charge and discharge is expected. The peeling force at the time of drying represents the adhesiveness to the interface between the separator and the electrode when the separator does not substantially contain the electrolyte. In addition, that electrolyte solution does not contain substantially means that the electrolyte solution in a separator is 500 ppm or less.
 しかしながら、発明者らは、従来技術では、電極体の製造や運搬に要求される、乾燥時の電極及びセパレータ間の接着性と、電解液を注入後に要求される、湿潤時の電極及びセパレータ間の接着性とは、トレードオフの関係があり、両方の物性を満たすことが極めて困難であること、及び、上述の特許文献1~5に開示される技術では、接着性が不足する場合があることを見出した。 However, in the prior art, the inventors have required adhesion between the electrode and the separator during drying, which is required for manufacturing and transporting the electrode body, and between the electrode and the separator when wet, which is required after injecting the electrolyte. There is a trade-off relationship with the adhesiveness of the material, it is extremely difficult to satisfy both physical properties, and the techniques disclosed in Patent Documents 1 to 5 described above may have insufficient adhesiveness. I found out.
 さらに、電池には急激な衝撃が加わっても電極活物質の凸部分がセパレータを貫通して電極が短絡しにくい特性(以下、短絡耐性と記す。)が求められる。しかし、今後、電池用セパレータは膜厚の薄膜化が予測されるところ、セパレータの厚さが薄くなるほど短絡耐性の確保が困難になる。短絡耐性を確保するには多孔層に一定量以上の無機粒子を含有させるのが有効であることが知られているが、短絡耐性を確保できるほどの無機粒子を含有させる場合、電極とセパレータとの接着性が低下する傾向にある。 Furthermore, the battery is required to have a characteristic in which the convex portion of the electrode active material penetrates the separator and the electrode is not easily short-circuited (hereinafter referred to as short-circuit resistance) even when a sudden impact is applied. However, in the future, the battery separator is expected to have a thin film thickness. However, as the thickness of the separator decreases, it becomes difficult to ensure short circuit resistance. In order to ensure short circuit resistance, it is known that it is effective to contain a certain amount or more of inorganic particles in the porous layer, but when including inorganic particles that can ensure short circuit resistance, There is a tendency for the adhesion of the resin to decrease.
 本発明は、上記事情を鑑みたものであり、乾燥時の電極とセパレータとの接着性、及び、湿潤時の電極とセパレータとの接着性の両方に優れ、かつ、ポリオレフィン微多孔膜と多孔層間の接着性にも優れ、さらに、短絡耐性に優れた電池用セパレータと、それを用いた電極体及び二次電池を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is excellent in both the adhesion between the electrode and the separator when dried and the adhesion between the electrode and the separator when wet, and the polyolefin microporous membrane and the porous interlayer Another object of the present invention is to provide a battery separator that is excellent in the adhesive property of the battery and has excellent short circuit resistance, and an electrode body and a secondary battery using the battery separator.
 本発明者らは、上記課題を解決するため、鋭意研究を重ねた結果、特定の第1のポリオレフィン樹脂からなる第1の微多孔層、および第2のポリオレフィン樹脂からなる第2の微多孔層を含むポリオレフィン多層微多孔膜と、構造の異なる2種類のフッ素系樹脂を特定量の配合比で含み、および特定量の無機粒子を含む多孔層と、を少なくとも備えるセパレータによって上記の課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the inventors of the present invention have developed a first microporous layer made of a specific first polyolefin resin and a second microporous layer made of a second polyolefin resin. The above-mentioned problem can be solved by a separator including at least a polyolefin multilayer microporous membrane containing a porous layer containing two types of fluororesins having different structures in a specific amount and a specific amount of inorganic particles As a result, the present invention has been completed.
 すなわち本発明は、ポリオレフィン微多孔膜と、前記ポリオレフィン微多孔膜の少なくとも一方の面に多孔層とを備える電池用セパレータであって、
前記ポリオレフィン微多孔膜は、第1の微多孔層/第2の微多孔層/第1の微多孔層の順に積層した三層構造のポリオレフィン多層微多孔膜からなり、
前記第1の微多孔層は、ポリエチレンとポリプロピレンを含む第1のポリオレフィン樹脂からなり、且つ、前記ポリプロピレンの含有率が、第1のポリオレフィン樹脂の全質量に対して、10質量%以上、50質量%以下であり、前記第2の微多孔層は、ポリエチレン樹脂のみからなり、
前記多孔層は、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)と、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)と、無機粒子とを含み、
前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)は、0.3mol%以上、5.0mol%以下のヘキサフルオロプロピレン単位を有し、重量平均分子量が90万以上、200万以下であり、かつ、親水基を含み、
前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)は、5.0mol%を超え、8.0mol%以下のヘキサフルオロプロピレン単位を有し、重量平均分子量が10万以上75万以下であり、
前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)および前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)の合計100質量%に対して、前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)を86質量%以上、98質量%以下含み、前記多孔層中の固形分100体積%に対して、前記無機粒子を40体積%以上、80体積%以下含む、
電池用セパレータである。
That is, the present invention is a battery separator comprising a polyolefin microporous membrane and a porous layer on at least one surface of the polyolefin microporous membrane,
The polyolefin microporous membrane comprises a polyolefin multilayer microporous membrane having a three-layer structure in which the first microporous layer / second microporous layer / first microporous layer are laminated in this order.
The first microporous layer is made of a first polyolefin resin containing polyethylene and polypropylene, and the content of the polypropylene is 10% by mass or more and 50% by mass with respect to the total mass of the first polyolefin resin. %, And the second microporous layer is made of only polyethylene resin,
The porous layer includes a vinylidene fluoride-hexafluoropropylene copolymer (A), a vinylidene fluoride-hexafluoropropylene copolymer (B), and inorganic particles,
The vinylidene fluoride-hexafluoropropylene copolymer (A) has not less than 0.3 mol% and not more than 5.0 mol% of hexafluoropropylene units, and has a weight average molecular weight of not less than 900,000 and not more than 2 million, And includes a hydrophilic group,
The vinylidene fluoride-hexafluoropropylene copolymer (B) has more than 5.0 mol% and not more than 8.0 mol% hexafluoropropylene units, and has a weight average molecular weight of 100,000 to 750,000,
The total amount of the vinylidene fluoride-hexafluoropropylene copolymer (A) and the vinylidene fluoride-hexafluoropropylene copolymer (B) is 100% by mass with respect to the vinylidene fluoride-hexafluoropropylene copolymer ( A) is contained in an amount of 86% by mass or more and 98% by mass or less, and the inorganic particles are contained in an amount of 40% by volume or more and 80% by volume or less with respect to 100% by volume of the solid content in the porous layer.
It is a battery separator.
 また、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)は、親水基を0.1mol%以上、5.0mol%以下含むことが好ましい。また、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)は、融点が60℃以上145℃以下であることが好ましい。また、無機粒子は、二酸化チタン、アルミナ、ベーマイトから選ばれる1種以上であることが好ましい。 The vinylidene fluoride-hexafluoropropylene copolymer (A) preferably contains 0.1 mol% or more and 5.0 mol% or less of a hydrophilic group. The vinylidene fluoride-hexafluoropropylene copolymer (B) preferably has a melting point of 60 ° C. or higher and 145 ° C. or lower. The inorganic particles are preferably at least one selected from titanium dioxide, alumina, and boehmite.
 また本発明は、正極と、負極と、本発明の電池用セパレータと、を備える電極体である。 The present invention is also an electrode body comprising a positive electrode, a negative electrode, and the battery separator of the present invention.
 また本発明は、本発明の電極体と、非水電解質とを備える非水電解質二次電池である。 The present invention is also a non-aqueous electrolyte secondary battery comprising the electrode body of the present invention and a non-aqueous electrolyte.
 本発明によれば、乾燥時の電極とセパレータとの接着性、及び、湿潤時の電極とセパレータとの接着性の両方に優れ、かつ、ポリオレフィン多層微多孔膜と多孔層間の接着性、および、短絡耐性に優れたセパレータと、それを用いた電極体及び二次電池を提供する。 According to the present invention, both the adhesion between the electrode and the separator at the time of drying and the adhesion between the electrode and the separator at the time of wetness are excellent, and the adhesion between the polyolefin multilayer microporous membrane and the porous layer, and A separator excellent in short circuit resistance, and an electrode body and a secondary battery using the separator are provided.
図1は、本実施形態の電池用セパレータの一例を示す模式図である。FIG. 1 is a schematic diagram illustrating an example of a battery separator according to the present embodiment. 図2は、本実施形態の電池用セパレータの一例を示す模式図である。FIG. 2 is a schematic view showing an example of the battery separator of the present embodiment. 図3は、湿潤時曲げ強さの評価方法を示す模式図である。FIG. 3 is a schematic diagram showing a method for evaluating the bending strength when wet. 図4は、短絡耐性試験の評価方法を示す模式図である。FIG. 4 is a schematic diagram showing an evaluation method for a short-circuit resistance test.
 以下、本発明の実施形態について図面を参照しながら説明する。以下、XYZ座標系を用いて図中の方向を説明する。このXYZ座標系においては、微多孔膜又はセパレータの表面(面内方向)に平行な面をXY平面とする。また、XY平面に垂直な方向(厚み方向)はZ方向とする。X方向、Y方向及びZ方向のそれぞれは、図中の矢印の方向が+方向であり、矢印の方向とは反対の方向が-方向であるものとして説明する。また、図面においては、各構成をわかりやすくするために、一部を強調して、あるいは一部を簡略化して表しており、実際の構造または形状、縮尺等が異なっている場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Hereinafter, directions in the figure will be described using an XYZ coordinate system. In the XYZ coordinate system, a plane parallel to the surface (in-plane direction) of the microporous film or the separator is defined as an XY plane. The direction perpendicular to the XY plane (thickness direction) is the Z direction. In each of the X direction, the Y direction, and the Z direction, the direction of the arrow in the figure is the + direction, and the direction opposite to the arrow direction is the − direction. Further, in the drawings, in order to make each configuration easy to understand, a part of the structure is emphasized or a part of the structure is simplified, and an actual structure, shape, scale, or the like may be different.
 [電池用セパレータの構成]
 図1及び図2は、本実施形態に係るセパレータの一例を示す図である。図1に示すように、電池用セパレータ10(以下、「セパレータ10」と略記する場合がある。)は、ポリオレフィン微多孔膜1と、ポリオレフィン微多孔膜1の少なくとも一方の面に積層された多孔層2と、を備える。図2に示すように、ポリオレフィン微多孔膜1は、第1の微多孔層a/第2の微多孔層b/第1の微多孔層aの順に積層した三層構造を有するポリオレフィン多層微多孔膜1’からなることができる。以下、電池用セパレータを構成する各層について説明する。
[Configuration of battery separator]
FIG.1 and FIG.2 is a figure which shows an example of the separator which concerns on this embodiment. As shown in FIG. 1, a battery separator 10 (hereinafter sometimes abbreviated as “separator 10”) includes a polyolefin microporous membrane 1 and a porous layer laminated on at least one surface of the polyolefin microporous membrane 1. Layer 2. As shown in FIG. 2, the polyolefin microporous membrane 1 includes a polyolefin multilayer microporous structure having a three-layer structure in which a first microporous layer a / second microporous layer b / first microporous layer a are laminated in this order. It can consist of membrane 1 '. Hereinafter, each layer constituting the battery separator will be described.
 1.ポリオレフィン多層微多孔膜
 (1)第1の微多孔層
 第1の微多孔層aは、ポリエチレンとポリプロピレンを含む第1のポリオレフィン樹脂からなる。第1のポリオレフィン樹脂は、ポリプロピレンとポリエチレンを主成分とすることが好ましい。本明細書において、ポリプロピレンとポリエチレンを主成分とするとは、ポリプロピレンとポリエチレンを、第1のポリオレフィン樹脂全質量に対して、95%以上含むことをいい、好ましくは99質量%以上含む。ポリエチレンの種類としては、強度の観点から高密度ポリエチレンを主成分とすることが好ましい。また、高密度ポリエチレンの重量平均分子量(以下、Mwという)の下限は、好ましくは1×10以上、より好ましくは2×10以上であることが好ましい。高密度ポリエチレンのMwの上限は、好ましくは8×10以下、より好ましくは7×10以下である。高密度ポリエチレンのMwが上記範囲であれば、製膜の安定性と最終的に得られる突刺強度とを両立することができる。
1. Polyolefin multilayer microporous membrane (1) First microporous layer The first microporous layer a is composed of a first polyolefin resin containing polyethylene and polypropylene. The first polyolefin resin is preferably composed mainly of polypropylene and polyethylene. In this specification, having polypropylene and polyethylene as main components means that polypropylene and polyethylene are contained in an amount of 95% or more, preferably 99% by mass or more, based on the total mass of the first polyolefin resin. As a kind of polyethylene, it is preferable that a high density polyethylene is a main component from a viewpoint of strength. The lower limit of the weight average molecular weight (hereinafter referred to as Mw) of the high-density polyethylene is preferably 1 × 10 5 or more, more preferably 2 × 10 5 or more. The upper limit of the Mw of the high density polyethylene is preferably 8 × 10 5 or less, more preferably 7 × 10 5 or less. When the Mw of the high-density polyethylene is in the above range, the stability of the film formation and the finally obtained puncture strength can both be achieved.
 また、ポリオレフィン多層微多孔膜1’においては、第1の微多孔層aにポリプロピレンを含有することが重要である。第1の微多孔層aにポリプロピレンを添加した場合、ポリオレフィン多層微多孔膜1’と多孔層2との剥離強度(密着性)をより向上させ、かつ、電池用セパレータとして用いた場合にメルトダウン温度をより向上させることができる。ポリプロピレンの種類は、単独重合体のほかに、ブロック共重合体、ランダム共重合体も使用することができる。ブロック共重合体、ランダム共重合体には、プロピレン以外の他のα-オレフィンとの共重合体成分を含有することができ、当該他のα-オレフィンとしては、エチレンが好ましい。 In the polyolefin multilayer microporous membrane 1 ′, it is important that the first microporous layer a contains polypropylene. When polypropylene is added to the first microporous layer a, the peel strength (adhesiveness) between the polyolefin multilayer microporous membrane 1 'and the porous layer 2 is further improved, and when used as a battery separator, meltdown The temperature can be further improved. As the type of polypropylene, a block copolymer and a random copolymer can be used in addition to the homopolymer. The block copolymer and random copolymer can contain a copolymer component with an α-olefin other than propylene, and ethylene is preferable as the other α-olefin.
 ポリプロピレンのMwの下限は、5×10以上が好ましく、より好ましくは6.5×10以上、さらに好ましくは、8×10以上である。ポリプロピレンのMwが上記の範囲であると、シート形成時にポリプロピレンの分散性が悪化することなく、膜厚が均一な膜を得ることができる。なお、ポリプロピレンのMwの上限は、特に限定されないが、例えば、2×10以下である。 The lower limit of Mw of polypropylene is preferably 5 × 10 5 or more, more preferably 6.5 × 10 5 or more, and still more preferably 8 × 10 5 or more. When the Mw of the polypropylene is within the above range, a film having a uniform film thickness can be obtained without deteriorating the dispersibility of the polypropylene during sheet formation. In addition, although the upper limit of Mw of a polypropylene is not specifically limited, For example, it is 2 * 10 < 6 > or less.
 ポリプロピレンの含有量は、第1のポリオレフィン樹脂の全質量に対して10質量%以上、50質量%以下であることが好ましい。ポリプロピレンの含有量が50質量%を超えるとイオン透過性が悪化する恐れがある。ポリプロピレンの含有量の下限は、15質量%以上であることが好ましく、さらに好ましくは20質量%以上である。ポリプロピレンの含有量が上記範囲である場合、ポリオレフィン多層微多孔膜1’と多孔層2との優れた密着性と、良好なメルトダウン特性及びイオン透過性とを両立させることができる。 The content of polypropylene is preferably 10% by mass or more and 50% by mass or less with respect to the total mass of the first polyolefin resin. When the content of polypropylene exceeds 50% by mass, ion permeability may be deteriorated. The lower limit of the polypropylene content is preferably 15% by mass or more, and more preferably 20% by mass or more. When the content of polypropylene is in the above range, both excellent adhesion between the polyolefin multilayer microporous membrane 1 ′ and the porous layer 2, and good meltdown characteristics and ion permeability can be achieved.
 (2)第2の微多孔層
 第2の微多孔層bは、ポリエチレン樹脂のみからなる。本明細書において、ポリエチレン樹脂のみからなるとはポリエチレン樹脂が99質量%以上であることをいう。これは外来異物由来のコンタミ成分や、原料樹脂あるいはポリオレフィン微多孔膜製造工程におけるラインや装置に付着した汚れが剥離して、膜中に混入する場合があるためである。
(2) Second microporous layer The second microporous layer b is made of only a polyethylene resin. In this specification, being made of only a polyethylene resin means that the polyethylene resin is 99% by mass or more. This is because contaminants derived from foreign substances and dirt adhering to the raw resin or polyolefin microporous membrane manufacturing process lines and equipment may be peeled off and mixed into the membrane.
 第2の微多孔層bに用いられるポリエチレンの種類としては、密度が0.94g/cmを越えるような高密度ポリエチレン、密度が0.93~0.94g/cmの範囲の中密度ポリエチレン、密度が0.93g/cmより低い低密度ポリエチレン、直鎖状低密度ポリエチレン、超高分子量ポリエチレン等が挙げられるが、強度の観点より、高密度ポリエチレンと超高分子量ポリエチレンを含有することが好ましい。ポリエチレンは、エチレンの単独重合体のみならず、他のα-オレフィンを少量含有する共重合体であってもよい。α-オレフィンとしてはプロピレン、ブテン-1、ヘキセン-1、ペンテン-1、4-メチルペンテン-1、オクテン、酢酸ビニル、メタクリル酸メチル、スチレン等が挙げられる。ポリオレフィン多層微多孔膜1’においては、特に共押出法により製造する場合は、各層の粘度差などにより幅方向の物性ムラの制御が困難となることがあるが、第2の微多孔層bに超高分子量ポリエチレンを使用することによって、膜全体の分子ネットワークが強固となるために不均一変形が起こりにくく、物性の均一性にすぐれる多層微多孔膜1を得ることができる。 The type of polyethylene used in the second microporous layer b, high density polyethylene such as density exceeding 0.94 g / cm 3, density polyethylene in the range density of 0.93 ~ 0.94g / cm 3 , Low density polyethylene having a density lower than 0.93 g / cm 3 , linear low density polyethylene, ultrahigh molecular weight polyethylene, and the like. From the viewpoint of strength, high density polyethylene and ultra high molecular weight polyethylene may be contained. preferable. The polyethylene may be not only an ethylene homopolymer but also a copolymer containing a small amount of another α-olefin. Examples of the α-olefin include propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, octene, vinyl acetate, methyl methacrylate, styrene and the like. In the case of the polyolefin multilayer microporous membrane 1 ′, particularly when it is produced by a coextrusion method, it may be difficult to control uneven physical properties in the width direction due to a difference in viscosity between the layers. By using ultrahigh molecular weight polyethylene, the molecular network of the entire membrane is strengthened, so that non-uniform deformation hardly occurs and the multilayer microporous membrane 1 having excellent physical property uniformity can be obtained.
 ここで、高密度ポリエチレンの重量平均分子量(以下、Mwという)は、1×10以上、より好ましくは2×10以上であることが好ましい。高密度ポリエチレンの重量平均分子量の上限は好ましくは8×10、より好ましくは7×10である。高密度ポリエチレンのMwが上記範囲であれば、製膜の安定性と最終的に得られる突刺強度とを両立することができる。 Here, the weight average molecular weight (hereinafter referred to as Mw) of the high density polyethylene is preferably 1 × 10 5 or more, more preferably 2 × 10 5 or more. The upper limit of the weight average molecular weight of the high density polyethylene is preferably 8 × 10 5 , more preferably 7 × 10 5 . When the Mw of the high-density polyethylene is in the above range, the stability of the film formation and the finally obtained puncture strength can both be achieved.
 また、超高分子量ポリエチレンのMwは、1×10以上4×10未満であることが好ましい。Mwが1×10以上4×10未満の超高分子量ポリエチレンを使用することで、孔およびフィブリルを微細化することができ、突刺強度を高めることが可能となる。また、超高分子量ポリエチレンのMwが4×10以上であると、溶融物の粘度が高くなりすぎるために、口金(ダイ)から樹脂を押し出せないなど製膜工程において不具合が出る場合がある。 The Mw of the ultra high molecular weight polyethylene is preferably 1 × 10 6 or more and less than 4 × 10 6 . By using ultra high molecular weight polyethylene having an Mw of 1 × 10 6 or more and less than 4 × 10 6 , the pores and fibrils can be miniaturized and the puncture strength can be increased. In addition, when the Mw of the ultra high molecular weight polyethylene is 4 × 10 6 or more, the viscosity of the melt becomes too high, and thus there may be a problem in the film forming process such that the resin cannot be extruded from the die. .
 超高分子量ポリエチレンの含有量は、第2の微多孔層bを構成するポリエチレン樹脂全体100質量%に対して、下限が5質量%以上であることが好ましく、より好ましくは18質量%以上である。超高分子量ポリエチレンの含有量の上限は、ポリエチレン樹脂全体100質量%に対して、45質量%以下であることが好ましく、より好ましくは40質量%以下である。超高分子量ポリエチレンの含有量が上記範囲であると、突刺強度と透気抵抗度の両立が得られやすくなる。また、超高分子量ポリエチレンの含有量が上記好ましい範囲内であると、ポリオレフィン多層微多孔膜1’の厚さを薄膜化させた場合であっても、十分な引っ張り強度が得られる。ポリオレフィン多層微多孔膜1’の引っ張り強度は100MPa以上が好ましい。引っ張り強度の上限は特に定めない。 The content of the ultrahigh molecular weight polyethylene is preferably 5% by mass or more, more preferably 18% by mass or more, with respect to 100% by mass of the entire polyethylene resin constituting the second microporous layer b. . The upper limit of the content of ultrahigh molecular weight polyethylene is preferably 45% by mass or less, more preferably 40% by mass or less, based on 100% by mass of the entire polyethylene resin. When the content of the ultrahigh molecular weight polyethylene is in the above range, it is easy to obtain both puncture strength and air resistance. Further, when the content of the ultrahigh molecular weight polyethylene is within the above preferable range, sufficient tensile strength can be obtained even when the thickness of the polyolefin multilayer microporous membrane 1 ′ is reduced. The tensile strength of the polyolefin multilayer microporous membrane 1 'is preferably 100 MPa or more. There is no particular upper limit on the tensile strength.
 第1の微多孔層aのポリオレフィン樹脂、及び第2の微多孔層bのポリエチレン樹脂の重量平均分子量(Mw)と数平均分子量(Mn)の比である分子量分布(Mw/Mn)は、それぞれ5~200の範囲内であることが好ましく、10~100であることがより好ましい。Mw/Mnの範囲が上記好ましい範囲であると、製造工程において、ポリオレフィンの溶液の押出が容易であり、さらにポリオレフィン多層微多孔膜1’の厚さをより薄膜化させた場合でも、十分な機械的強度が得られる。Mw/Mnは、分子量分布の尺度として用いられるものであり、例えば、単一物からなるポリオレフィン樹脂の場合、この値が大きい程、分子量分布の幅が大きい。単一物からなるポリオレフィン樹脂のMw/Mnは、ポリオレフィンの多段重合により適宜調整することができる。また、ポリオレフィン樹脂の混合物のMw/Mnは、各成分の分子量や混合割合を調整することにより適宜調整することができる。 The molecular weight distribution (Mw / Mn) which is the ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polyolefin resin of the first microporous layer a and the polyethylene resin of the second microporous layer b is respectively It is preferably in the range of 5 to 200, more preferably 10 to 100. When the range of Mw / Mn is the above preferable range, it is easy to extrude the polyolefin solution in the production process, and even when the thickness of the polyolefin multilayer microporous membrane 1 'is further reduced, sufficient machinery can be obtained. Strength is obtained. Mw / Mn is used as a measure of molecular weight distribution. For example, in the case of a polyolefin resin composed of a single substance, the larger this value, the wider the molecular weight distribution. Mw / Mn of a single polyolefin resin can be appropriately adjusted by multistage polymerization of polyolefin. Moreover, Mw / Mn of the mixture of polyolefin resin can be suitably adjusted by adjusting the molecular weight and mixing ratio of each component.
 (3)ポリオレフィン多層微多孔膜
 ポリオレフィン多層微多孔膜1’の膜厚は、特に限定されないが、下限が、3μm以上、より好ましくは5μm以上、さらに好ましくは7μm以上であり、上限が、電池の高容量化の観点から16μm以下、より好ましくは12μm以下である。ポリオレフィン多層微多孔膜1’の膜厚が上記好ましい範囲である場合、実用的な膜強度と孔閉塞機能を保有させることができ、今後、進むと予想される電池の高容量化により適する。すなわち、本実施形態の電池用セパレータ10は、ポリオレフィン微多孔膜1の厚さが薄くても、セパレータ10のポリオレフィン多層微多孔膜1’と多孔層2との層間、及び、セパレータ10と電極間との接着性に優れることができ、セパレータ10を薄膜化した際、その効果がより明確に発揮される。
(3) Polyolefin multilayer microporous membrane The thickness of the polyolefin multilayer microporous membrane 1 ′ is not particularly limited, but the lower limit is 3 μm or more, more preferably 5 μm or more, and even more preferably 7 μm or more. From the viewpoint of increasing the capacity, it is 16 μm or less, more preferably 12 μm or less. When the film thickness of the polyolefin multilayer microporous membrane 1 ′ is in the above preferred range, practical membrane strength and pore blocking function can be retained, which is more suitable for increasing the capacity of the battery, which is expected to advance in the future. That is, the battery separator 10 of the present embodiment has the polyolefin microporous membrane 1 having a small thickness, the separator 10 between the polyolefin multilayer microporous membrane 1 'and the porous layer 2, and between the separator 10 and the electrode. And when the separator 10 is thinned, the effect is more clearly exhibited.
 ここで、第2の微多孔層bの厚み比率は、ポリオレフィン多層微多孔膜1’の全層(全体)に対して、30%以上、90%以下であることが好ましい。下限はより好ましくは40%以上であり、上限はより好ましくは80%以下である。第2の微多孔層bの厚み比率が上記範囲内である場合、メルトダウン特性と、セパレータの使用範囲における透過性の安定性ならびに突刺強度のバランスとを良好な範囲とすることができる。 Here, the thickness ratio of the second microporous layer b is preferably 30% or more and 90% or less with respect to the entire layer (the whole) of the polyolefin multilayer microporous membrane 1 ′. The lower limit is more preferably 40% or more, and the upper limit is more preferably 80% or less. When the thickness ratio of the second microporous layer b is within the above range, the meltdown characteristics, the stability of the permeability in the usage range of the separator, and the balance of the puncture strength can be in a favorable range.
 ポリオレフィン多層微多孔膜1’を構成する第1の微多孔層および第2の微多孔層には、本発明の効果を損なわない範囲において、それぞれ、酸化防止剤、熱安定剤や帯電防止剤、紫外線吸収剤、さらにはブロッキング防止剤や充填材、あるいは核剤等の各種添加剤を含有させてもよい。特に、ポリオレフィン樹脂の熱履歴による酸化劣化を抑制する目的で、酸化防止剤を添加することが好ましい。酸化防止剤や熱安定剤の種類および添加量を適宜選択することはポリオレフィン多層微多孔膜1’の特性の調整又は増強として重要である。なお、本明細書において、これらの添加剤の添加量は、上記の第1のポリオレフィン樹脂及びポリエチレン樹脂の含有量には含めない。 In the first microporous layer and the second microporous layer constituting the polyolefin multilayer microporous membrane 1 ′, an antioxidant, a heat stabilizer, an antistatic agent, Various additives such as an ultraviolet absorber, an antiblocking agent, a filler, or a nucleating agent may be contained. In particular, it is preferable to add an antioxidant for the purpose of suppressing oxidative deterioration due to the thermal history of the polyolefin resin. Appropriate selection of the type and amount of antioxidants and heat stabilizers is important for adjusting or enhancing the properties of the polyolefin multilayer microporous membrane 1 '. In addition, in this specification, the addition amount of these additives is not included in content of said 1st polyolefin resin and polyethylene resin.
 また、ポリオレフィン多層微多孔膜1’には、実質的に無機粒子を含まないことが好ましい。「実質的に無機粒子を含まず」とは、例えばケイ光X線分析で無機元素を定量した場合に50ppm以下、好ましくは10ppm以下、最も好ましくは検出限界以下となる含有量を意味する。これは積極的に粒子をポリオレフィン微多孔膜に添加させなくても、外来異物由来のコンタミ成分や、原料樹脂あるいはポリオレフィン微多孔膜製造工程におけるラインや装置に付着した汚れが剥離して、膜中に混入する場合があるためである。 Further, it is preferable that the polyolefin multilayer microporous membrane 1 ′ does not substantially contain inorganic particles. “Substantially free of inorganic particles” means, for example, a content of 50 ppm or less, preferably 10 ppm or less, most preferably the detection limit or less when inorganic elements are quantified by fluorescent X-ray analysis. Even if particles are not positively added to the polyolefin microporous membrane, contaminants derived from foreign substances and raw material resin or dirt attached to the line and equipment in the polyolefin microporous membrane manufacturing process are peeled off. It is because it may be mixed in.
 ポリオレフィン多層微多孔膜1’の透気抵抗度は、その上限が300sec/100cmAir以下、好ましくは200sec/100cmAir以下、より好ましくは150sec/100cmAir以下である。ポリオレフィン多層微多孔膜1’の透気抵抗度の下限は、50sec/100cmAir以上、好ましくは70sec/100cmAir以上、より好ましくは100sec/100cmAir以上である。 The air resistance of this multi-layer, microporous polyolefin membrane 1 'has an upper limit of 300 sec / 100 cm 3 Air or less, preferably 200 sec / 100 cm 3 Air, more preferably at most 150 sec / 100 cm 3 Air. The lower limit of the air resistance of the multi-layer, microporous polyolefin membrane 1 ', 50 sec / 100 cm 3 Air or more, preferably 70 sec / 100 cm 3 Air or more, more preferably 100 sec / 100 cm 3 Air or more.
 ポリオレフィン多層微多孔膜1’の空孔率は、上限が好ましくは70%以下、より好ましくは60%以下、さらに好ましくは55%以下である。空孔率の下限は、好ましくは30%以上、より好ましくは35%以上、さらに好ましくは40%以上である。透気抵抗度および空孔率が上記好ましい範囲であると、十分な電池の充放電特性、特にイオン透過性(充放電作動電圧)および電池の寿命(電解液の保持量と密接に関係する)において十分であり、電池としての機能を十分に発揮することができ、十分な機械的強度と絶縁性が得られることで充放電時に短絡が起こる可能性が低くなる。 The upper limit of the porosity of the polyolefin multilayer microporous membrane 1 ′ is preferably 70% or less, more preferably 60% or less, and even more preferably 55% or less. The lower limit of the porosity is preferably 30% or more, more preferably 35% or more, and further preferably 40% or more. When the air permeability resistance and the porosity are within the above preferred ranges, sufficient battery charge / discharge characteristics, particularly ion permeability (charge / discharge operating voltage) and battery life (closely related to the amount of electrolyte retained) In this case, the function as a battery can be sufficiently exerted, and sufficient mechanical strength and insulation can be obtained, so that the possibility of a short circuit during charge / discharge is reduced.
 ポリオレフィン多層微多孔膜1’の平均孔径は、孔閉塞性能に大きく影響を与えるため、好ましくは0.01μm以上1.0μm以下、より好ましくは0.05μm以上0.5μm以下、さらに好ましくは0.1μm以上0.3μm以下である。ポリオレフィン多層微多孔膜1’の平均孔径が上記好ましい範囲であると、孔閉塞現象の温度に対する応答が緩慢になることもなく、昇温速度による孔閉塞温度がより高温側にシフトすることもない。 Since the average pore diameter of the polyolefin multilayer microporous membrane 1 ′ greatly affects the pore closing performance, it is preferably 0.01 μm or more and 1.0 μm or less, more preferably 0.05 μm or more and 0.5 μm or less, and still more preferably 0.8. 1 μm or more and 0.3 μm or less. When the average pore diameter of the polyolefin multilayer microporous membrane 1 ′ is within the above preferred range, the response to the temperature of the pore clogging phenomenon does not become slow, and the pore clogging temperature due to the temperature rise rate does not shift to a higher temperature side. .
 2.ポリオレフィン多層微多孔膜の製造方法
 ポリオレフィン多層微多孔膜の製造方法としては、上述した特性を有するポリオレフィン多層微多孔膜1’が製造できれば、特に限定されず、従来公知の方法を用いることができ、例えば、日本国特許第2132327号および日本国特許第3347835号の明細書、国際公開2006/137540号等に記載された方法を用いることができる。
2. Production method of polyolefin multilayer microporous membrane The production method of polyolefin multilayer microporous membrane is not particularly limited as long as the polyolefin multilayer microporous membrane 1 'having the above-described properties can be produced, and conventionally known methods can be used. For example, the methods described in the specifications of Japanese Patent No. 2132327 and Japanese Patent No. 3347835, International Publication No. 2006/137540, and the like can be used.
 ポリオレフィン多層微多孔膜1’の製造方法としては、下記の工程(1)~(8)を含むことが好ましい。
(1)ポリプロピレンを含む第1のポリオレフィン樹脂と成膜用溶剤とを溶融混練し、第1のポリオレフィン樹脂溶液を調製する工程
(2)ポリエチレン樹脂と成膜用溶剤とを溶融混練し、第2のポリオレフィン樹脂溶液を調製する工程
(3)第1及び第2のポリオレフィン樹脂溶液を共押出し、シート状に形成した後、冷却して押し出し成形体を得る工程
(4)押し出し成形体を延伸(第1の延伸工程)し、ゲル状多層シートを得る工程
(5)ゲル状多層シートから成膜用溶剤を除去し、多層シートを得る工程
(6)多層シートを乾燥し、第1延伸多層シートを得る工程
(7)第1延伸多層シートを延伸し第2延伸多層シートを得る工程
(8)第2延伸多層シートを熱処理し、ポリオレフィン多層微多孔膜を得る工程。
The method for producing the polyolefin multilayer microporous membrane 1 ′ preferably includes the following steps (1) to (8).
(1) Step of preparing a first polyolefin resin solution by melt-kneading a first polyolefin resin containing polypropylene and a film-forming solvent (2) Melting and kneading a polyethylene resin and a film-forming solvent; Step (3) of preparing the polyolefin resin solution (3) Steps of coextruding the first and second polyolefin resin solutions to form a sheet and then cooling to obtain an extruded product (4) Stretching the extruded product (first (1) stretching step) to obtain a gel-like multilayer sheet (5) removing the film-forming solvent from the gel-like multilayer sheet and obtaining the multilayer sheet (6) drying the multilayer sheet, Step of obtaining (7) Step of drawing the first stretched multilayer sheet to obtain a second stretched multilayer sheet (8) Step of heat treating the second stretched multilayer sheet to obtain a polyolefin multilayer microporous membrane.
 ポリオレフィン多層微多孔膜1’の製造方法は、例えば、工程(3)において、特定の条件下、第1及び第2のポリオレフィン樹脂溶液を、多層ダイにより同時に押出し、多層シートを形成することが好ましい。これにより、各層間の密着性に優れ、かつ、電池用セパレータとして用いた場合、メルトダウン温度と機械的強度、透気抵抗度及び空孔率に優れ、かつ最大孔径が小さいポリオレフィン多層微多孔膜1を製造することができる。これらの特性は、単層のポリオレフィン微多孔膜1では達成し得ない。また、工程(1)及び工程(2)において、上述した樹脂材料を使用した上で、工程(4)及び工程(7)において、後述する適切な温度条件で延伸することによって、薄い膜厚でも良好な空孔率、及び微細孔構造の制御が達成できる。 In the production method of the polyolefin multilayer microporous membrane 1 ′, for example, in the step (3), it is preferable that the first and second polyolefin resin solutions are simultaneously extruded by a multilayer die under a specific condition to form a multilayer sheet. . Thereby, when used as a battery separator, it has excellent meltdown temperature, mechanical strength, air permeability resistance and porosity, and a polyolefin multi-layer microporous membrane having a small maximum pore diameter. 1 can be manufactured. These characteristics cannot be achieved by the single-layer polyolefin microporous membrane 1. Further, in the step (1) and the step (2), after using the above-described resin material, in the step (4) and the step (7), the film is stretched under an appropriate temperature condition to be described later. Good porosity and fine pore structure control can be achieved.
 以下、各工程についてそれぞれ説明する。 Hereinafter, each step will be described.
 工程(1)及び工程(2):第1及び第2のポリオレフィン樹脂溶液の調製工程
 まず、第1のポリオレフィン樹脂及びポリエチレン樹脂に、それぞれ適当な成膜用溶剤を添加した後、溶融混練し、第1及び第2のポリオレフィン樹脂溶液をそれぞれ調製する。溶融混練方法として、例えば日本国特許第2132327号および日本国特許第3347835号の明細書に記載の二軸押出機を用いる方法を利用することができる。溶融混練方法は公知であるので説明を省略する。
Step (1) and Step (2): Preparation Steps of First and Second Polyolefin Resin Solution First, an appropriate film-forming solvent is added to the first polyolefin resin and polyethylene resin, respectively, and then melt-kneaded. First and second polyolefin resin solutions are prepared, respectively. As a melt-kneading method, for example, a method using a twin-screw extruder described in the specifications of Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. Since the melt-kneading method is well-known, description is abbreviate | omitted.
 第1又は第2のポリオレフィン樹脂溶液中、第1又は第2のポリオレフィン樹脂と、成膜用溶剤との配合割合は、特に限定されないが、第1又は第2のポリオレフィン樹脂20~30質量部に対して、成膜溶剤70~80質量部であることが好ましい。第1又は第2のポリオレフィン樹脂の割合が上記範囲内であると、第1又は第2のポリオレフィン樹脂溶液を押し出す際にダイ出口でスウェルやネックインが防止でき、押出し成形体(ゲル状成形体)の成形性及び自己支持性が良好となる。 The mixing ratio of the first or second polyolefin resin and the film-forming solvent in the first or second polyolefin resin solution is not particularly limited, but is 20 to 30 parts by mass of the first or second polyolefin resin. On the other hand, the film forming solvent is preferably 70 to 80 parts by mass. When the ratio of the first or second polyolefin resin is within the above range, swell and neck-in can be prevented at the die outlet when the first or second polyolefin resin solution is extruded, and an extruded molded body (gel-shaped molded body) ) And formability and self-supporting property are improved.
 工程(3):押し出し成形体の形成工程
 次に、第1及び第2のポリオレフィン樹脂溶液をそれぞれ押出機から1つのダイに送給し、そこで両溶液を層状に組合せ、シート状に押し出す。
Step (3): Extrusion Forming Step Next, the first and second polyolefin resin solutions are respectively fed from an extruder to one die, where the two solutions are combined in layers and extruded into a sheet.
 押出方法はフラットダイ法及びインフレーション法のいずれでもよい。いずれの方法でも、溶液を別々のマニホールドに供給して、多層用ダイのリップ入口で層状に積層する方法(多数マニホールド法)、又は溶液を予め層状の流れにしてダイに供給する方法(ブロック法)を用いることができる。多数マニホールド法及びブロック法自体は公知であるので、それらの詳細な説明は省略する。多層用フラットダイのギャップは0.1~5mmである。押出し温度は140~250℃好ましく、押出速度は0.2~15m/分が好ましい。第1及び第2のポリオレフィン樹脂溶液の各押出量を調節することにより、第1及び第2の微多孔層の膜厚比を調節することができる。 The extrusion method may be either a flat die method or an inflation method. In either method, the solution is supplied to separate manifolds and stacked in layers at the lip inlet of a multilayer die (multiple manifold method), or the solution is supplied to the die in a layered flow in advance (block method) ) Can be used. Since the multi-manifold method and the block method itself are known, a detailed description thereof will be omitted. The gap of the multi-layer flat die is 0.1 to 5 mm. The extrusion temperature is preferably 140 to 250 ° C., and the extrusion speed is preferably 0.2 to 15 m / min. By adjusting the extrusion amounts of the first and second polyolefin resin solutions, the film thickness ratio of the first and second microporous layers can be adjusted.
 押出方法としては、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に開示の方法を利用することができる。 As the extrusion method, for example, methods disclosed in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used.
 次いで、得られた積層押出し成形体を冷却することにより押し出し成形体を形成する。形成体の形成方法として、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に開示の方法を利用することができる。冷却は少なくともゲル化温度までは50℃/分以上の速度で行うのが好ましい。冷却は30℃以下まで行うのが好ましい。冷却により、成膜用溶剤によって分離された第1及び第2のポリオレフィンのミクロ相を固定化することができる。冷却速度が上記範囲内であると結晶化度が適度な範囲に保たれ、延伸に適した押し出し成形体となる。冷却方法としては冷風、冷却水等の冷媒に接触させる方法、冷却ロールに接触させる方法等を用いることができるが、冷媒で冷却したロールに接触させて冷却させることが好ましい。 Next, an extruded molded body is formed by cooling the obtained laminated extruded molded body. As a forming method of the formed body, for example, methods disclosed in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. Cooling is preferably performed at a rate of 50 ° C./min or more at least up to the gelation temperature. Cooling is preferably performed to 30 ° C. or lower. By cooling, the microphases of the first and second polyolefins separated by the film-forming solvent can be fixed. When the cooling rate is within the above range, the crystallinity is maintained in an appropriate range, and an extruded product suitable for stretching is obtained. As a cooling method, a method of contacting with a cooling medium such as cold air or cooling water, a method of contacting with a cooling roll, or the like can be used, but it is preferable that the cooling is performed by contacting with a roll cooled with a cooling medium.
 工程(4)第1の延伸工程
 次に、得られた押し出し成形体を少なくとも一軸方向に延伸(第一の延伸)して、ゲル状多層シートを得る。押し出し成形体は、成膜用溶剤を含むので、均一に延伸できる。押し出し成形体は、加熱後、テンター法、ロール法、インフレーション法、又はこれらの組合せにより所定の倍率で延伸するのが好ましい。延伸は、一軸延伸でも二軸延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸、逐次延伸及び多段延伸(例えば同時二軸延伸及び逐次延伸の組合せ)のいずれでもよい。
Step (4) First Stretching Step Next, the obtained extruded molded body is stretched at least in a uniaxial direction (first stretching) to obtain a gel-like multilayer sheet. Since the extruded product contains a film-forming solvent, it can be stretched uniformly. The extruded body is preferably stretched at a predetermined ratio after heating by a tenter method, a roll method, an inflation method, or a combination thereof. The stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. In the case of biaxial stretching, any of simultaneous biaxial stretching, sequential stretching and multistage stretching (for example, a combination of simultaneous biaxial stretching and sequential stretching) may be used.
 本工程における延伸倍率(面積延伸倍率)は、一軸延伸の場合、2倍以上が好ましく、3倍以上30倍以下がより好ましい。二軸延伸の場合、9倍以上が好ましく、16倍以上がより好ましく、25倍以上が特に好ましい。また、長手及び横手方向(MD及びTD方向)のいずれでも3倍以上が好ましく、MD方向とTD方向での延伸倍率は、互いに同じでも異なってもよい。延伸倍率を9倍以上とすると、突刺強度の向上が期待できる。なお、本工程における延伸倍率とは、本工程直前の微多孔膜を基準として、次工程に供される直前の微多孔膜の面積延伸倍率のことをいう。延伸温度は90℃以上130℃以下が好ましく、より好ましくは110℃以上120℃以下、さらに好ましくは114℃以上117℃以下である。 In the case of uniaxial stretching, the stretching ratio (area stretching ratio) in this step is preferably 2 times or more, and more preferably 3 times or more and 30 times or less. In the case of biaxial stretching, 9 times or more is preferable, 16 times or more is more preferable, and 25 times or more is particularly preferable. Further, it is preferably 3 times or more in both the longitudinal direction and the transverse direction (MD and TD directions), and the draw ratios in the MD direction and the TD direction may be the same or different. When the draw ratio is 9 times or more, improvement of puncture strength can be expected. In addition, the draw ratio in this process means the area draw ratio of the microporous film immediately before being used for the next process on the basis of the microporous film immediately before this process. The stretching temperature is preferably 90 ° C. or higher and 130 ° C. or lower, more preferably 110 ° C. or higher and 120 ° C. or lower, and still more preferably 114 ° C. or higher and 117 ° C. or lower.
 なお、所望の物性に応じて、膜厚方向に温度分布を設けて延伸してもよく、これにより一層機械的強度に優れた多層微多孔膜が得られる。その方法の詳細は日本国特許第3347854号に記載されている。 Depending on the desired physical properties, the film may be stretched by providing a temperature distribution in the film thickness direction, whereby a multilayer microporous film having further excellent mechanical strength can be obtained. Details of the method are described in Japanese Patent No. 3347854.
 工程(5):成膜用溶剤の除去
 次に、ゲル状多層シートから成膜用溶剤を除去し、多層シートを得る。成膜用溶剤の除去(洗浄)は、洗浄溶媒を用いて行う。ゲル状多層シート中、第1及び第2のポリオレフィン相は成膜用溶剤相と相分離しているので、成膜用溶剤を除去すると、多孔質の膜が得られる。得られる多孔質の膜は、微細な三次元網目構造を形成するフィブリルからなり、三次元的に不規則に連通する孔(空隙)を有する。洗浄溶媒およびこれを用いた成膜用溶剤の除去方法は公知であるので説明を省略する。例えば日本国特許第2132327号明細書や特開2002-256099号公報に開示の方法を利用することができる。
Step (5): Removal of film-forming solvent Next, the film-forming solvent is removed from the gel-like multilayer sheet to obtain a multilayer sheet. Removal (cleaning) of the film-forming solvent is performed using a cleaning solvent. In the gel-like multilayer sheet, the first and second polyolefin phases are phase-separated from the film-forming solvent phase. Therefore, when the film-forming solvent is removed, a porous film is obtained. The obtained porous film is composed of fibrils forming a fine three-dimensional network structure, and has pores (voids) that communicate irregularly three-dimensionally. Since the cleaning solvent and the method for removing the film-forming solvent using the same are known, the description thereof is omitted. For example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent Application Laid-Open No. 2002-256099 can be used.
 工程(6):乾燥
 次に、多層シートを乾燥し、第1延伸多層シートを得る。乾燥は、多層微多孔膜を100質量%(乾燥重量)として、残存洗浄溶媒が5質量%以下になるまで行うのが好ましく、3質量%以下になるまで行うのがより好ましい。残存洗浄溶媒が上記範囲内であると、後述する第2の延伸工程及び熱処理工程を行ったときに多層微多孔膜の空孔率が維持され、透過性の悪化が抑制される。乾燥温度は、好ましくは50℃以上80℃以下である。
Step (6): Drying Next, the multilayer sheet is dried to obtain a first stretched multilayer sheet. Drying is preferably carried out until the residual cleaning solvent is 5% by mass or less, more preferably 3% by mass or less, with the multilayer microporous membrane being 100% by mass (dry weight). When the residual cleaning solvent is within the above range, the porosity of the multilayer microporous membrane is maintained when the second stretching step and heat treatment step described below are performed, and deterioration of permeability is suppressed. The drying temperature is preferably 50 ° C. or higher and 80 ° C. or lower.
 工程(7):第2の延伸工程
 次に、第1延伸多層シートを延伸(第2の延伸)し、第2延伸多層シートを得る。乾燥後の第1延伸多層シートは、少なくとも一軸方向に延伸することが好ましい。第1延伸多層シートの延伸は、加熱しながら上記と同様にテンター法等により行うことができる。延伸は一軸延伸でも二軸延伸でもよい。二軸延伸の場合、同時二軸延伸及び逐次延伸のいずれでもよい。
Step (7): Second Stretching Step Next, the first stretched multilayer sheet is stretched (second stretch) to obtain a second stretched multilayer sheet. The first stretched multilayer sheet after drying is preferably stretched in at least a uniaxial direction. The first stretched multilayer sheet can be stretched by the tenter method or the like while heating. The stretching may be uniaxial stretching or biaxial stretching. In the case of biaxial stretching, either simultaneous biaxial stretching or sequential stretching may be used.
 本工程における延伸温度は、特に限定されないが、通常90~135℃であり、より好ましくは95~130℃である。 The stretching temperature in this step is not particularly limited, but is usually 90 to 135 ° C, more preferably 95 to 130 ° C.
 本工程における第1延伸多層シートの延伸の一軸方向への延伸倍率(面積延伸倍率)は、下限が1.0倍以上であるのが好ましく、より好ましくは1.1倍以上、さらに好ましくは1.2倍以上である。また、上限が1.8倍以下とするのが好ましい。一軸延伸の場合、MD方向又はTD方向に1.0~2.0倍とする。二軸延伸の場合、面積延伸倍率は、下限が1.0倍以上であるのが好ましく、より好ましくは1.1倍以上、さらに好ましくは1.2倍以上である。上限は、3.5倍以下が好適であり、MD方向及びTD方向に各々1.0~2.0倍とし、MD方向とTD方向での延伸倍率が互いに同じでも異なってもよい。なお、本工程における延伸倍率とは、第1延伸多層シートを基準として、次工程に供される直前の第2延伸多層シートの延伸倍率のことをいう。 The lower limit of the stretching ratio (area stretching ratio) in the uniaxial direction of stretching of the first stretched multilayer sheet in this step is preferably 1.0 times or more, more preferably 1.1 times or more, and further preferably 1 .2 times or more. The upper limit is preferably 1.8 times or less. In the case of uniaxial stretching, it is 1.0 to 2.0 times in the MD direction or TD direction. In the case of biaxial stretching, the lower limit of the area stretching ratio is preferably 1.0 times or more, more preferably 1.1 times or more, and still more preferably 1.2 times or more. The upper limit is preferably 3.5 times or less, and 1.0 to 2.0 times in each of the MD direction and the TD direction, and the draw ratios in the MD direction and the TD direction may be the same or different. In addition, the draw ratio in this process means the draw ratio of the 2nd extending | stretching multilayer sheet just before using for the following process on the basis of a 1st extending | stretching multilayer sheet.
 工程(8):熱処理
 次に、第2延伸多層シートを熱処理して、ポリオレフィン多層微多孔膜1’を得る。第2延伸多層シートを熱処理することにより、結晶が安定化し、ラメラが均一化される。熱処理方法としては、熱固定処理及び/又は熱緩和処理を用いることができる。熱固定処理とは、膜の寸法が変わらないように保持しながら加熱する熱処理である。熱緩和処理とは、膜を加熱中にMD方向やTD方向に熱収縮させる熱処理である。熱固定処理は、テンター方式又はロール方式により行うのが好ましい。例えば、熱緩和処理方法としては特開2002-256099号公報に開示の方法があげられる。熱処理温度は第2延伸多層シートの第2の延伸温度の±5℃の範囲内がより好ましく、±3℃の範囲内が特に好ましい。
Step (8): Heat Treatment Next, the second stretched multilayer sheet is heat treated to obtain a polyolefin multilayer microporous membrane 1 ′. By heat-treating the second stretched multilayer sheet, the crystals are stabilized and the lamella is made uniform. As the heat treatment method, heat setting treatment and / or heat relaxation treatment can be used. The heat setting treatment is a heat treatment in which heating is performed while keeping the dimensions of the film unchanged. The thermal relaxation treatment is a heat treatment that heat-shrinks the film in the MD direction or the TD direction during heating. The heat setting treatment is preferably performed by a tenter method or a roll method. For example, as a thermal relaxation treatment method, a method disclosed in Japanese Patent Application Laid-Open No. 2002-256099 can be given. The heat treatment temperature is more preferably within the range of ± 5 ° C. of the second stretching temperature of the second stretched multilayer sheet, and particularly preferably within the range of ± 3 ° C.
 3.多孔層
 多孔層2は、二種類のフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(VdF-HFP)と、無機粒子とを含む。以下、多孔層2を構成する各成分について以下に説明する。
3. Porous layer The porous layer 2 contains two types of vinylidene fluoride-hexafluoropropylene copolymers (VdF-HFP) and inorganic particles. Hereinafter, each component which comprises the porous layer 2 is demonstrated below.
 [フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)]
 フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)(以下、単に共重合体(A)と略記する場合がある。)は、フッ化ビニリデン単位とヘキサフルオロプロピレン単位とを含む共重合体であり、後述するように、親水基を含む。共重合体(A)における、ヘキサフルオロプロピレン単位の含有量は、その下限が0.3mol%であり、好ましくは0.5mol%である。ヘキサフルオロプロピレン単位の含有量が上記範囲より小さい場合、ポリマー結晶性が高くなり、セパレータの電解液に対する膨潤度が低くなるため、セパレータと電極との接着性が低下し、電解液注入後の電極とセパレータとの接着性(湿潤時曲げ強さ)が十分に得られないことがある。一方、ヘキサフルオロプロピレン単位の含有量は、その上限が5.0mol%であり、より好ましくは2.5mol%である。ヘキサフルオロプロピレン単位の含有量が上記範囲を超える場合、セパレータが電解液に対して膨潤しすぎてしまい湿潤時曲げ強さが低下することがある。
[Vinylidene fluoride-hexafluoropropylene copolymer (A)]
The vinylidene fluoride-hexafluoropropylene copolymer (A) (hereinafter sometimes simply referred to as copolymer (A)) is a copolymer containing vinylidene fluoride units and hexafluoropropylene units. As described later, it contains a hydrophilic group. The lower limit of the content of hexafluoropropylene units in the copolymer (A) is 0.3 mol%, preferably 0.5 mol%. When the content of the hexafluoropropylene unit is smaller than the above range, the polymer crystallinity becomes high and the degree of swelling of the separator with respect to the electrolytic solution decreases, so that the adhesion between the separator and the electrode decreases, and the electrode after injection of the electrolytic solution In some cases, sufficient adhesion between the separator and the separator (wet strength when wet) cannot be obtained. On the other hand, the upper limit of the content of hexafluoropropylene units is 5.0 mol%, more preferably 2.5 mol%. When the content of the hexafluoropropylene unit exceeds the above range, the separator may swell excessively with respect to the electrolytic solution, and the bending strength when wet may be reduced.
 共重合体(A)の重量平均分子量は、その下限が90万であり、好ましくは100万である。一方、共重合体(A)の重量平均分子量は、上限が200万であり、より好ましくは150万である。共重合体(A)の重量平均分子量が上記範囲内である場合、多孔層を形成する工程において、共重合体(A)を溶媒に溶解させる時間が極端に長くならず、生産効率を上げることができたり、電解液に膨潤した際に適度なゲル強度を維持でき、湿潤時曲げ強さが向上させたりすることができる。なお、共重合体(A)の重量平均分子量は、ゲル・パーミエーション・クロマトグラフィによるポリスチレン換算値である。 The lower limit of the weight average molecular weight of the copolymer (A) is 900,000, preferably 1,000,000. On the other hand, the upper limit of the weight average molecular weight of the copolymer (A) is 2 million, more preferably 1.5 million. When the weight average molecular weight of the copolymer (A) is within the above range, in the step of forming the porous layer, the time for dissolving the copolymer (A) in the solvent is not extremely long, and the production efficiency is increased. Can maintain an appropriate gel strength when swollen in the electrolyte, and can improve the bending strength when wet. In addition, the weight average molecular weight of a copolymer (A) is a polystyrene conversion value by a gel permeation chromatography.
 共重合体(A)は、親水基を有する。共重合体(A)は、親水基を有することで電極表面に存在する活物質や電極中のバインダー成分とより強固に接着することが可能となる。この理由は特に限定されないが、水素結合により接着力が向上するためと推測される。親水基としては、例えば、ヒドロキシル基、カルボン酸基、スルホン酸基、およびこれらの塩などが挙げられる。これらの中でも、特に、カルボン酸基、カルボン酸エステルが好ましい。 The copolymer (A) has a hydrophilic group. Since the copolymer (A) has a hydrophilic group, the copolymer (A) can be more firmly bonded to the active material existing on the electrode surface and the binder component in the electrode. The reason for this is not particularly limited, but it is presumed that the adhesive force is improved by hydrogen bonding. Examples of the hydrophilic group include a hydroxyl group, a carboxylic acid group, a sulfonic acid group, and salts thereof. Among these, carboxylic acid groups and carboxylic acid esters are particularly preferable.
 共重合体(A)に親水基を導入する方法としては、公知の方法を用いることがき、例えば、共重合体(A)の合成の際に、無水マレイン酸、マレイン酸、マレイン酸エステル、マレイン酸モノメチルエステル等の親水基を有する単量体を共重合させることにより主鎖に導入する方法や、グラフト化により側鎖として導入する方法などを用いることができる。親水基変性率は、FT-IR、NMR、定量滴定などで測定できる。例えば、カルボン酸基の場合、FT-IRを用いてホモポリマーを基準としてC-H伸縮振動とカルボキシル基のC=O伸縮振動の吸収強度比から求めることができる。 As a method for introducing a hydrophilic group into the copolymer (A), a known method can be used. For example, in the synthesis of the copolymer (A), maleic anhydride, maleic acid, maleic ester, malein A method of introducing a monomer having a hydrophilic group such as acid monomethyl ester into the main chain by copolymerization or a method of introducing it as a side chain by grafting can be used. The hydrophilic group modification rate can be measured by FT-IR, NMR, quantitative titration or the like. For example, in the case of a carboxylic acid group, it can be determined from the absorption intensity ratio of C—H stretching vibration and C═O stretching vibration of a carboxyl group based on a homopolymer using FT-IR.
 共重合体(A)の親水基の含有量は、その下限が好ましくは0.1mol%であり、より好ましくは0.3mol%である。一方、親水基の含有量の上限は5.0mol%が好ましく、より好ましくは4.0mol%である。親水基の含有量が5.0mol%を超える場合、ポリマー結晶性が低くなりすぎ、電解液に対する膨潤度が高くなり湿潤時曲げ強さが悪化する。また、親水基の含有量が上記範囲内である場合、多孔層2に含まれる無機粒子と、共重合体(A)との親和性が増し、短絡耐性の向上、及び、無機粒子の脱落を抑制する効果も奏する。この理由は特に限定されないが、多孔層2の主成分である親水基を有する共重合体(A)と無機粒子によって、多孔層2の膜強度が増すことによるものと推察される。多孔層2におけるフッ化ビニリデン-ヘキサフルオロプロピレン共重合体の親水基の定量は、IR(赤外吸収スペクトル)法、NMR(核磁気共鳴)法等により求めることができる。 The lower limit of the hydrophilic group content of the copolymer (A) is preferably 0.1 mol%, more preferably 0.3 mol%. On the other hand, the upper limit of the hydrophilic group content is preferably 5.0 mol%, more preferably 4.0 mol%. When the content of the hydrophilic group exceeds 5.0 mol%, the polymer crystallinity becomes too low, the degree of swelling with respect to the electrolytic solution becomes high, and the bending strength when wet is deteriorated. Further, when the content of the hydrophilic group is within the above range, the affinity between the inorganic particles contained in the porous layer 2 and the copolymer (A) is increased, the short circuit resistance is improved, and the inorganic particles are removed. It also has an inhibitory effect. Although this reason is not specifically limited, it is guessed that the film | membrane intensity | strength of the porous layer 2 increases with the copolymer (A) which has a hydrophilic group which is the main component of the porous layer 2, and an inorganic particle. The quantification of the hydrophilic group of the vinylidene fluoride-hexafluoropropylene copolymer in the porous layer 2 can be determined by IR (infrared absorption spectrum) method, NMR (nuclear magnetic resonance) method or the like.
 共重合体(A)は、特性を損なわない範囲で、フッ化ビニリデン、ヘキサフルオロプロピレン、及び、親水基を有する単量体以外の、他の単量体をさらに重合した共重合体であってもよい。他の単量体として、例えば、テトラフルオロエチレン、トリフルオロエチレン、トリクロロエチレン、フッ化ビニル等の単量体が挙げられる。 The copolymer (A) is a copolymer obtained by further polymerizing other monomers other than vinylidene fluoride, hexafluoropropylene, and a monomer having a hydrophilic group, as long as the characteristics are not impaired. Also good. Examples of other monomers include monomers such as tetrafluoroethylene, trifluoroethylene, trichloroethylene, and vinyl fluoride.
 共重合体(A)の構造、分子量を上記範囲内とすることで、セパレータ10は、非水電解質二次電池に用いた場合、非水電解液に対して親和性が高く、化学的、物理的な安定性が高く、湿潤時曲げ強さを発現し、高温下での使用にも電解液との親和性が十分維持される。 By setting the structure and molecular weight of the copolymer (A) within the above ranges, the separator 10 has a high affinity for the nonaqueous electrolyte when used in a nonaqueous electrolyte secondary battery, and is chemically and physically Stability is high, it exhibits bending strength when wet, and the affinity with the electrolyte is sufficiently maintained even when used at high temperatures.
 [フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)]
 フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)(以下、単に共重合体(B)と略記する場合がある。)は、フッ化ビニリデン単位とヘキサフルオロプロピレン単位とを含む共重合体である。共重合体(B)における、ヘキサフルオロプロピレンの含有量は、5.0mol%を超え、より好ましくは6.0mol%以上であり、さらに好ましくは7.0mol%以上である。ヘキサフルオロプロピレン単位の含有量が5.0mol%以下である場合、乾燥時のセパレータと電極との接着性(乾燥時剥離力)が十分に得られない場合がある。一方、その上限は、8.0mol%であり、より好ましくは7.5mol%である。また、ヘキサフルオロプロピレン単位の含有量が8.0mol%を超える場合、電解液に対して膨潤しすぎてしまい湿潤時曲げ強さが低下することがある。なお、共重合体(B)は、親水基を含んでもよいが、含まなくてもよい。
[Vinylidene fluoride-hexafluoropropylene copolymer (B)]
The vinylidene fluoride-hexafluoropropylene copolymer (B) (hereinafter sometimes simply referred to as copolymer (B)) is a copolymer containing vinylidene fluoride units and hexafluoropropylene units. . The content of hexafluoropropylene in the copolymer (B) exceeds 5.0 mol%, more preferably 6.0 mol% or more, and even more preferably 7.0 mol% or more. When the content of the hexafluoropropylene unit is 5.0 mol% or less, the adhesion between the separator and the electrode during drying (peeling force during drying) may not be sufficiently obtained. On the other hand, the upper limit is 8.0 mol%, more preferably 7.5 mol%. On the other hand, when the content of the hexafluoropropylene unit exceeds 8.0 mol%, it may swell excessively with respect to the electrolytic solution, and the bending strength when wet may decrease. The copolymer (B) may contain a hydrophilic group or not.
 共重合体(B)は、重量平均分子量が10万以上75万以下である。共重合体(B)の重量平均分子量が上記範囲である場合、非水電解液に対して親和性が高く、化学的、物理的な安定性が高く、乾燥時のセパレータと電極との優れた接着性(乾燥時剥離力)が得られる。この理由は特に限定されないが、乾燥時剥離力を発現するような加熱及び加圧条件下で共重合体(B)は流動性を帯び、電極の多孔層に入り込むことでアンカーとなり、これにより多孔層2と電極との間は強固な接着性を有するためと推測できる。すなわち、電池用セパレータ10において、共重合体(B)は、乾燥時剥離力に寄与し、巻回電極体や積層電極体のたわみ、歪み防止や搬送性の改善に寄与することができる。なお、共重合体(B)は共重合体(A)と異なる樹脂である。 The copolymer (B) has a weight average molecular weight of 100,000 to 750,000. When the weight average molecular weight of the copolymer (B) is in the above range, it has high affinity for the non-aqueous electrolyte, high chemical and physical stability, and excellent separator and electrode during drying. Adhesiveness (peeling force when dried) is obtained. The reason for this is not particularly limited, but the copolymer (B) has fluidity under heating and pressure conditions that develop a peeling force during drying, and becomes an anchor by entering the porous layer of the electrode. It can be presumed that the layer 2 and the electrode have strong adhesiveness. That is, in the battery separator 10, the copolymer (B) contributes to the peeling force at the time of drying, and can contribute to the deflection of the wound electrode body and the laminated electrode body, the prevention of distortion, and the improvement of the transportability. The copolymer (B) is a resin different from the copolymer (A).
 共重合体(B)の重量平均分子量は、その下限が10万であり、好ましくは15万である。共重合体(B)の重量平均分子量が上記範囲の下限値を下回る場合、分子鎖の絡み合い量が少なすぎるため樹脂強度が弱くなり、多孔層2の凝集破壊がおこりやすくなる。一方、共重合体(B)の重量平均分子量は、その上限が好ましくは75万であり、より好ましくは70万である。共重合体(B)の重量平均分子量が上記範囲の上限値を超える場合、乾燥時剥離力を得るために、捲回体の製造工程におけるプレス温度を高くする必要がある。そうするとポリオレフィンを主成分とする微多孔膜は収縮するおそれがある。また、共重合体(B)の重量平均分子量が上記範囲の上限値を超える場合、分子鎖の絡み合い量が増加し、プレス条件下で十分に流動できなくなるおそれがある。 The lower limit of the weight average molecular weight of the copolymer (B) is 100,000, preferably 150,000. When the weight average molecular weight of the copolymer (B) is below the lower limit of the above range, the amount of entanglement of the molecular chains is too small, so that the resin strength becomes weak and the porous layer 2 is liable to cohesive failure. On the other hand, the upper limit of the weight average molecular weight of the copolymer (B) is preferably 750,000, more preferably 700,000. When the weight average molecular weight of a copolymer (B) exceeds the upper limit of the said range, in order to obtain the peeling force at the time of drying, it is necessary to raise the press temperature in the manufacturing process of a winding body. If it does so, there exists a possibility that the microporous film | membrane which has polyolefin as a main component may shrink | contract. Moreover, when the weight average molecular weight of a copolymer (B) exceeds the upper limit of the said range, there exists a possibility that the amount of molecular chain entanglement may increase and it cannot fully flow on press conditions.
 共重合体(B)の融点は、その下限が好ましくは60℃であり、より好ましくは80℃である。一方、共重合体(B)の融点は、その上限値が好ましくは145℃であり、より好ましくは140℃である。なお、ここでいう融点(Tm)とは、示差走査熱量測定(DSC)法で測定された昇温時の吸熱ピークのピークトップの温度である。 The lower limit of the melting point of the copolymer (B) is preferably 60 ° C, more preferably 80 ° C. On the other hand, the upper limit of the melting point of the copolymer (B) is preferably 145 ° C, more preferably 140 ° C. In addition, melting | fusing point (Tm) here is the temperature of the peak top of the endothermic peak at the time of temperature rising measured by the differential scanning calorimetry (DSC) method.
 共重合体(B)は、フッ化ビニリデン単位及びヘキサフルオロプロピレン単位を有する共重合体である。共重合体(B)は、共重合体(A)と同様、懸濁重合法などで得ることができる。共重合体(B)の融点は、フッ化ビニリデン単位からなる部位の結晶性を制御することで調整することができる。例えば、共重合体(B)にフッ化ビニリデン単位以外の単量体が含まれる場合、フッ化ビニリデン単位の割合を制御することで融点を調整できる。フッ化ビニリデン単位以外の単量体は、テトラフルオロエチレン、トリフルオロエチレン、トリクロロエチレン、ヘキサフルオロプロピレン、フッ化ビニル無水マレイン酸、マレイン酸、マレイン酸エステル、マレイン酸モノメチルエステル等を1種類又は2種以上有してもよい。共重合体(B)を重合するときに上記単量体を添加して、共重合により主鎖に導入する方法やグラフト化により側鎖として導入する方法が挙げられる。また、フッ化ビニリデン単位のHead-to-Head結合(-CH-CF-CF-CH-)の割合を制御することで融点を調整してもよい。 The copolymer (B) is a copolymer having a vinylidene fluoride unit and a hexafluoropropylene unit. The copolymer (B) can be obtained by a suspension polymerization method or the like, similar to the copolymer (A). The melting point of the copolymer (B) can be adjusted by controlling the crystallinity of the site composed of vinylidene fluoride units. For example, when the copolymer (B) contains a monomer other than the vinylidene fluoride unit, the melting point can be adjusted by controlling the ratio of the vinylidene fluoride unit. Monomers other than vinylidene fluoride units are tetrafluoroethylene, trifluoroethylene, trichloroethylene, hexafluoropropylene, fluorinated vinyl maleic anhydride, maleic acid, maleic acid ester, maleic acid monomethyl ester, etc. You may have more. Examples thereof include a method in which the monomer is added when the copolymer (B) is polymerized and introduced into the main chain by copolymerization, or a method in which it is introduced as a side chain by grafting. Further, the melting point may be adjusted by controlling the ratio of Head-to-Head bonds (—CH 2 —CF 2 —CF 2 —CH 2 —) of vinylidene fluoride units.
 [共重合体(A)及び共重合体(B)の含有量]
 共重合体(A)の含有量は、共重合体(A)と共重合体(B)の合計重量100質量%に対して、その下限が86質量%であり、より好ましくは88質量%である。共重合体(A)の含有量は、その上限が98質量%であり、より好ましくは97質量%である。また、共重合体(B)の含有量は、共重合体(A)と共重合体(B)の合計重量100質量%に対して、その上限が14質量%であり、好ましくは12質量%である。また、共重合体(B)の含有量は、その下限が2質量%であり、3質量%である。共重合体(A)の含有量及び共重合体(B)の含有量を上記範囲内とする場合、多孔層2は優れた湿潤時曲げ強さと乾燥時剥離力とを高いレベルで両立することができる。
[Contents of Copolymer (A) and Copolymer (B)]
The content of the copolymer (A) is 86% by mass, more preferably 88% by mass, with respect to 100% by mass of the total weight of the copolymer (A) and the copolymer (B). is there. The upper limit of the content of the copolymer (A) is 98% by mass, more preferably 97% by mass. The upper limit of the content of the copolymer (B) is 14% by mass, preferably 12% by mass with respect to 100% by mass of the total weight of the copolymer (A) and the copolymer (B). It is. The lower limit of the content of the copolymer (B) is 2% by mass, which is 3% by mass. When the content of the copolymer (A) and the content of the copolymer (B) are within the above ranges, the porous layer 2 has both excellent bending strength when wet and peeling strength when drying at a high level. Can do.
 なお、多孔層2は、本発明の効果を阻害しない範囲で、共重合体(A)及び共重合体(B)以外の樹脂を含むことができるが、多孔層2を構成する樹脂成分としては、共重合体(A)及び共重合体(B)からなることが好ましい。なお、共重合体(A)及び共重合体(B)以外の樹脂を含む場合、上記共重合体(A)又は上記共重合体(B)の含有量は、多孔層2の樹脂成分100質量%に対する割合とする。 The porous layer 2 can contain a resin other than the copolymer (A) and the copolymer (B) as long as the effects of the present invention are not impaired. The copolymer (A) and the copolymer (B) are preferably used. In addition, when resin other than a copolymer (A) and a copolymer (B) is included, content of the said copolymer (A) or the said copolymer (B) is 100 mass of resin components of the porous layer 2. % As a percentage.
 [無機粒子]
 多孔層2は、無機粒子を含む。多孔層2に粒子を含むことにより、特に短絡耐性を向上させることができ、熱安定性の向上が期待できる。
[Inorganic particles]
The porous layer 2 contains inorganic particles. By including particles in the porous layer 2, the short-circuit resistance can be particularly improved, and an improvement in thermal stability can be expected.
 無機粒子としては、炭酸カルシウム、リン酸カルシウム、非晶性シリカ、結晶性のガラス粒子、カオリン、タルク、二酸化チタン、アルミナ、シリカ-アルミナ複合酸化物粒子、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン、マイカ、ベーマイト、酸化マグネシウムなどが挙げられる。特に、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)のとの親和性の観点から、OH基を多く含む無機粒子が好ましく、具体的にては、二酸化チタン、アルミナ、ベーマイトから選ばれる1種類以上を用いることが好ましい。 Inorganic particles include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass particles, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide particles, barium sulfate, calcium fluoride, lithium fluoride, zeolite , Molybdenum sulfide, mica, boehmite, magnesium oxide and the like. In particular, from the viewpoint of affinity with the vinylidene fluoride-hexafluoropropylene copolymer (A), inorganic particles containing a large amount of OH groups are preferred, and specifically, selected from titanium dioxide, alumina, and boehmite. It is preferable to use more than one type.
 多孔層2に含まれる無機粒子の含有量は、多孔層2の固形分体積を100体積%に対して、上限は80体積%であり、好ましくは70体積%であり、より好ましくは60体積%である。一方、無機粒子の含有量は、その下限は40体積%であり、より好ましくは45体積%であり、さらに好ましくは50体積%であり、もっとも好ましくは51体積%である。なお、多孔層2に含まれる無機粒子の含有量は、共重合体(A)と共重合体(B)の密度を1.77g/cmとして計算して算出した。 The content of the inorganic particles contained in the porous layer 2 is 80% by volume, preferably 70% by volume, more preferably 60% by volume with respect to 100% by volume of the solid content volume of the porous layer 2. It is. On the other hand, the lower limit of the content of inorganic particles is 40% by volume, more preferably 45% by volume, still more preferably 50% by volume, and most preferably 51% by volume. The content of the inorganic particles contained in the porous layer 2 was calculated by calculating the density of the copolymer (A) and the copolymer (B) as 1.77 g / cm 3 .
 一般に、多孔層に接着性を持たない無機粒子が含まれる場合、湿潤時曲げ強さ、乾燥時剥離力が低下する傾向にある。しかし、本実施形態に係る多孔層2は、上述したように、特定のフッ素樹脂を特定の割合で含有することにより、無機粒子を上記範囲で含有した場合、電極に対する高い接着力を有し、湿潤時曲げ強さ、乾燥時剥離力のバランスが良好となり、且つ、優れた短絡耐性を得ることができる。 Generally, when inorganic particles having no adhesiveness are contained in the porous layer, the bending strength when wet and the peeling force when drying tend to decrease. However, as described above, the porous layer 2 according to the present embodiment contains a specific fluororesin in a specific ratio, so that when the inorganic particles are contained in the above range, the porous layer 2 has a high adhesive force to the electrode, The balance between the bending strength when wet and the peeling force when drying is good, and excellent short-circuit resistance can be obtained.
 粒子脱落の観点から、無機粒子の平均粒径はポリオレフィン微多孔膜の平均流量細孔径の1.5倍以上、50倍以下であることが好ましく、より好ましくは2.0倍以上、20倍以下である。平均流量細孔径は、JISK3832やASTMF316-86にならって測定され、例えば、パームポロメーター(PMI社製、CFP-1500A)を用いて、Dry-up、Wet-upの順で測定した。Wet-upには表面張力が既知のPMI社製Galwick(商品名)で十分に浸した微多孔膜に圧力をかけ、空気が貫通し始める圧力から換算される孔径を最大孔径とした。平均流量細孔径については、Dry-up測定で圧力、流量曲線の1/2の傾きを示す曲線と、Wet-up測定の曲線が交わる点の圧力から孔径を換算した。圧力と孔径の換算は下記の数式を用いた。
式:d=C・γ/P
上記式中、「d(μm)」は微多孔膜の孔径、「γ(mN/m)」は液体の表面張力、「P(Pa)」は圧力、「C」は定数である。
From the viewpoint of particle dropout, the average particle size of the inorganic particles is preferably 1.5 times or more and 50 times or less, more preferably 2.0 times or more and 20 times or less of the average flow pore size of the polyolefin microporous membrane. It is. The average flow pore size was measured according to JISK3832 and ASTM F316-86, and for example, measured in the order of Dry-up and Wet-up using a palm porometer (PMI, CFP-1500A). For the wet-up, pressure was applied to a microporous membrane sufficiently immersed in Galwick (trade name) manufactured by PMI with a known surface tension, and the pore size converted from the pressure at which air began to penetrate was defined as the maximum pore size. For the average flow pore size, the pore size was converted from the pressure at the point where the curve showing a 1/2 slope of the pressure / flow curve in the Dry-up measurement and the curve of the Wet-up measurement intersected. The following formula was used for conversion of pressure and pore diameter.
Formula: d = C · γ / P
In the above formula, “d (μm)” is the pore diameter of the microporous membrane, “γ (mN / m)” is the surface tension of the liquid, “P (Pa)” is the pressure, and “C” is a constant.
 セル巻回時の巻き取芯とのすべり性や粒子脱落の観点から、無機粒子の平均粒径は0.3μm~1.8μmが好ましく、より好ましくは0.5μm~1.5μm、さらに好ましくは0.9μm~1.3μmである。粒子の平均粒径はレーザー回折方式や動的光散乱方式の測定装置を使用して測定できる。例えば、超音波プローブを用いて界面活性剤入り水溶液に分散させた粒子を粒度分布測定装置(日機装株式会社製、マイクロトラックHRA)で測定し、体積換算での小粒子側から50%累積された時の粒子径(D50)の値を平均粒径とするのが好ましい。粒子の形状は真球形状、略球形状、板状、針状が挙げられるが特に限定されない。 From the viewpoint of slipperiness with the winding core during cell winding and particle dropping, the average particle size of the inorganic particles is preferably 0.3 μm to 1.8 μm, more preferably 0.5 μm to 1.5 μm, still more preferably. 0.9 μm to 1.3 μm. The average particle diameter of the particles can be measured using a laser diffraction method or dynamic light scattering method measuring device. For example, particles dispersed in an aqueous solution containing a surfactant using an ultrasonic probe were measured with a particle size distribution measuring apparatus (manufactured by Nikkiso Co., Ltd., Microtrac HRA) and accumulated 50% from the small particle side in terms of volume. The value of the particle size (D50) at the time is preferably the average particle size. Examples of the shape of the particles include a true spherical shape, a substantially spherical shape, a plate shape, and a needle shape, but are not particularly limited.
 [多孔層の物性]
 多孔層2の膜厚は、片面当たり0.5μm以上、3μm以下が好ましく、より好ましくは1μm以上、2.5μm以下、さらに好ましくは1μm以上、2μm以下である。片面あたり膜厚が0.5μm以上である場合、電極との高い接着性(湿潤時曲げ強さ、乾燥時剥離力)が確保できる。一方、片面あたり膜厚が3μm以下であれば巻き嵩を抑えることができ、より薄膜化することができ、今後、進むであろう電池の高容量化により適する。
[Physical properties of porous layer]
The film thickness of the porous layer 2 is preferably 0.5 μm or more and 3 μm or less per side, more preferably 1 μm or more and 2.5 μm or less, and further preferably 1 μm or more and 2 μm or less. When the film thickness per side is 0.5 μm or more, high adhesion to the electrode (bending strength when wet, peel strength when drying) can be secured. On the other hand, if the film thickness per side is 3 μm or less, the winding volume can be suppressed and the film can be made thinner, which is more suitable for increasing the capacity of batteries that will be developed in the future.
 多孔層2の空孔率は、30%以上、90%以下が好ましく、より好ましくは40%以上、70%以下である。多孔層2の空孔率を上記範囲内とした場合、セパレータの電気抵抗の上昇を防ぎ、大電流を流すことができ、かつ膜強度を維持できる。 The porosity of the porous layer 2 is preferably 30% or more and 90% or less, more preferably 40% or more and 70% or less. When the porosity of the porous layer 2 is within the above range, an increase in the electrical resistance of the separator can be prevented, a large current can be passed, and the film strength can be maintained.
 3.電池用セパレータの製造方法
 電池用セパレータの製造方法は、特に限定されず、公知の方法を用いて製造することができる。以下、電池用セパレータの製造方法の一例について、説明する。電池用セパレータの製造方法は、以下の工程(1)~(3)を順次含むことができる。
(1)フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)及びフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)を溶媒に溶解したフッ素樹脂溶液を得る工程
(2)フッ素系樹脂溶液に無機粒子を添加し、混合、分散して塗工液を得る工程
(3)塗工液をポリオレフィン微多孔膜に塗布して凝固液に浸漬し、洗浄、乾燥する工程。
3. Manufacturing method of battery separator The manufacturing method of the battery separator is not particularly limited, and can be manufactured using a known method. Hereinafter, an example of a method for manufacturing a battery separator will be described. The battery separator manufacturing method can include the following steps (1) to (3) in sequence.
(1) A step of obtaining a fluororesin solution in which a vinylidene fluoride-hexafluoropropylene copolymer (A) and a vinylidene fluoride-hexafluoropropylene copolymer (B) are dissolved in a solvent. (2) Inorganic in the fluororesin solution. A step of adding particles, mixing and dispersing to obtain a coating solution (3) A step of applying the coating solution to the polyolefin microporous membrane, immersing it in a coagulation solution, washing and drying.
 工程(1):フッ素樹脂溶液を得る工程
 フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)及びフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)を溶媒に徐々に添加し完全に溶解させる。
Step (1): Step of obtaining a fluororesin solution The vinylidene fluoride-hexafluoropropylene copolymer (A) and the vinylidene fluoride-hexafluoropropylene copolymer (B) are gradually added to a solvent and completely dissolved.
 溶媒はフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)及びフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)を溶解でき、かつ、凝固液と混和しうるものであれば特に限定されない。溶解性、低揮発性の観点から、溶媒はN-メチル-2-ピロリドンが好ましい。 The solvent is not particularly limited as long as it can dissolve the vinylidene fluoride-hexafluoropropylene copolymer (A) and the vinylidene fluoride-hexafluoropropylene copolymer (B) and is miscible with the coagulation liquid. From the viewpoint of solubility and low volatility, the solvent is preferably N-methyl-2-pyrrolidone.
 工程(2):塗工液を得る工程
 塗工液を得るには、無機粒子を十分に分散させることが重要である。具体的には、前記フッ素樹脂溶液を撹拌しながら粒子を添加して一定の時間(例えば、約1時間)ディスパーなどで撹拌することで予備分散し、次いでビーズミルやペイントシェーカーを用いて粒子を分散させる工程(分散工程)を経て、粒子の凝集を減らし、さらに、撹拌羽根のついたスリーワンモータで混合して塗工液を調製する。
Step (2): Step of obtaining a coating solution In order to obtain a coating solution, it is important to sufficiently disperse inorganic particles. Specifically, particles are added while stirring the fluororesin solution and pre-dispersed by stirring with a disper for a certain time (for example, about 1 hour), and then dispersed using a bead mill or paint shaker. Through the step (dispersing step), the aggregation of particles is reduced, and further mixed with a three-one motor with a stirring blade to prepare a coating solution.
 工程(3):塗工液を微多孔膜に塗布し、凝固液に浸漬し、洗浄、乾燥する工程
 微多孔膜に塗工液を塗布し、塗布した微多孔膜を凝固液に浸漬してフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)を相分離させ、三次元網目構造を有する状態で凝固させ、洗浄、乾燥する。これにより微多孔膜と、微多孔膜の表面に多孔層を備えた電池用セパレータが得られる。
Step (3): A step of applying the coating liquid to the microporous film, immersing it in the coagulating liquid, washing and drying, applying the coating liquid to the microporous film, immersing the applied microporous film in the coagulating liquid The vinylidene fluoride-hexafluoropropylene copolymer (A) and the vinylidene fluoride-hexafluoropropylene copolymer (B) are phase-separated, coagulated in a state having a three-dimensional network structure, washed and dried. As a result, a microporous membrane and a battery separator having a porous layer on the surface of the microporous membrane are obtained.
 塗工液を微多孔膜に塗布する方法は、公知の方法でもよく、例えば、ディップ・コート法、リバースロール・コート法、グラビア・コート法、キス・コート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、マイヤーバーコート法、パイプドクター法、ブレードコート法およびダイコート法などが挙げられ、これらの方法を単独あるいは組み合わせることができる。 The method of applying the coating liquid to the microporous film may be a known method, for example, dip coating method, reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method, Examples thereof include an air knife coating method, a Mayer bar coating method, a pipe doctor method, a blade coating method, and a die coating method, and these methods can be used alone or in combination.
 凝固液は水を主成分とすることが好ましく、共重合体(A)、共重合体(B)に対する良溶媒を1~20質量%含む水溶液が好ましく、より好ましくは5~15質量%含有する水溶液である。良溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが挙げられる。凝固液内での浸漬時間は3秒以上とすることが好ましい。上限は制限されないが、10秒もあれば十分である。 The coagulation liquid preferably contains water as a main component, and is preferably an aqueous solution containing 1 to 20% by mass of a good solvent for the copolymer (A) and the copolymer (B), more preferably 5 to 15% by mass. It is an aqueous solution. Examples of the good solvent include N-methyl-2-pyrrolidone, N, N-dimethylformamide, and N, N-dimethylacetamide. The immersion time in the coagulation liquid is preferably 3 seconds or more. The upper limit is not limited, but 10 seconds is sufficient.
 洗浄には水を用いることができる。乾燥は、例えば100℃以下の熱風を用いた乾燥することができる。 Water can be used for cleaning. Drying can be performed using, for example, hot air of 100 ° C. or less.
 4.電池用セパレータ
 本実施形態の電池用セパレータ10は、水系電解液を使用する電池、非水系電解質を使用する電池のいずれにも好適に使用できるが、非水系電解質二次電池により好適に用いることができる。具体的には、ニッケル-水素電池、ニッケル-カドミウム電池、ニッケル-亜鉛電池、銀-亜鉛電池、リチウム二次電池、リチウムポリマー二次電池等の二次電池のセパレータとして好ましく用いることができる。中でも、リチウムイオン二次電池のセパレータとして用いるのが好ましい。
4). Battery Separator The battery separator 10 of the present embodiment can be suitably used for both a battery using an aqueous electrolyte and a battery using a non-aqueous electrolyte, but is preferably used for a non-aqueous electrolyte secondary battery. it can. Specifically, it can be preferably used as a separator for secondary batteries such as nickel-hydrogen batteries, nickel-cadmium batteries, nickel-zinc batteries, silver-zinc batteries, lithium secondary batteries, and lithium polymer secondary batteries. Especially, it is preferable to use as a separator of a lithium ion secondary battery.
 非水系電解質二次電池は、正極と負極がセパレータを介して配置されており、セパレータが電解液(電解質)を含有している。非水系電解質電極の構造は、特に限定されず、従来公知の構造を用いることができ、例えば、円盤状の正極及び負極が対向するように配設された電極構造(コイン型)、平板状の正極及び負極が交互に積層された電極構造(積層型)、積層された帯状の正極及び負極が巻回された電極構造(捲回型)等に有することができる。本実施形態の電池用セパレータは、いずれの電池構造においても、セパレータと電極間で、優れた接着性を有することができる。 In a non-aqueous electrolyte secondary battery, a positive electrode and a negative electrode are arranged via a separator, and the separator contains an electrolytic solution (electrolyte). The structure of the non-aqueous electrolyte electrode is not particularly limited, and a conventionally known structure can be used. For example, an electrode structure (coin type) in which a disk-like positive electrode and a negative electrode are opposed to each other, a flat plate-like structure An electrode structure (stacked type) in which positive and negative electrodes are alternately stacked, an electrode structure in which stacked belt-like positive and negative electrodes are wound (winding type), and the like can be used. The battery separator of this embodiment can have excellent adhesiveness between the separator and the electrode in any battery structure.
 リチウムイオン二次電池等を含む非水系電解質二次電池に使用される、集電体、正極、正極活物質、負極、負極活物質および電解液は、特に限定されず、従来公知の材料を適宜組み合わせて用いることができる。 The current collector, the positive electrode, the positive electrode active material, the negative electrode, the negative electrode active material, and the electrolyte used in the non-aqueous electrolyte secondary battery including a lithium ion secondary battery are not particularly limited, and a conventionally known material is appropriately selected. They can be used in combination.
 なお、電池用セパレータ10は、図1(A)に示すように、ポリオレフィン微多孔膜1の一方の面に多孔質2を積層してもよく、ポリオレフィン微多孔膜1の両方の面に多孔質2を積層してもよい。 As shown in FIG. 1A, the battery separator 10 may be formed by laminating the porous 2 on one surface of the polyolefin microporous membrane 1, and porous on both surfaces of the polyolefin microporous membrane 1. 2 may be laminated.
 5.電池用セパレータの物性
 セパレータ10の湿潤時曲げ強さは、好ましくは4.0N以上であり、より好ましくは5.0N以上であり、さらに好ましくは6.0N以上である。湿潤時曲げ強さの上限値は特に定めないが、例えば、15.0N以下である。湿潤時曲げ強さが上記好ましい範囲内である場合、セパレータと電極との界面での部分的な遊離をより抑制し、電池内部抵抗の増大、電池特性の低下を抑制できる。なお、湿潤時曲げ強さは、後述の実施例に記載の方法により測定することができる。
5). Physical Properties of Battery Separator The wet bending strength of the separator 10 is preferably 4.0 N or more, more preferably 5.0 N or more, and still more preferably 6.0 N or more. The upper limit of the bending strength when wet is not particularly defined, but is, for example, 15.0 N or less. When the bending strength when wet is within the above preferable range, partial release at the interface between the separator and the electrode can be further suppressed, and the increase in battery internal resistance and the decrease in battery characteristics can be suppressed. In addition, the bending strength when wet can be measured by the method described in Examples described later.
 セパレータ10の乾燥時剥離力は、好ましくは2.0N/m以上、より好ましくは5.0N/m以上、さらに好ましくは6.0N/m以上である。乾燥時剥離力の上限値は特に定めないが、例えば、40.0N/m以下である。乾燥時剥離力が上記好ましい範囲内である場合、巻回電極体又は積層電極体を電極体がばらけることなく搬送できることが期待される。なお、乾燥時剥離力は、後述の実施例に記載の方法により測定することができる。 The peeling force when the separator 10 is dried is preferably 2.0 N / m or more, more preferably 5.0 N / m or more, and still more preferably 6.0 N / m or more. Although the upper limit of the peeling force at the time of drying is not particularly defined, it is, for example, 40.0 N / m or less. When the peeling force at the time of drying is within the preferable range, it is expected that the wound electrode body or the laminated electrode body can be transported without the electrode body being scattered. In addition, the peeling force at the time of drying can be measured by the method as described in the below-mentioned Example.
 本実施形態のセパレータ10は、湿潤時曲げ強さと乾燥時剥離力とを高いレベルで両立することができる。セパレータ10は、具体的には、後述の実施例に示されるように、湿潤時曲げ強さが4.0N以上、かつ乾燥時剥離力が2.0N/m以上を満たすことができる。 The separator 10 of the present embodiment can achieve both a high bending strength when wet and a high peel strength when drying. Specifically, the separator 10 can satisfy a bending strength when wet of 4.0 N or more and a peel strength when dry of 2.0 N / m or more, as shown in Examples described later.
 セパレータ10の透気抵抗度の好ましい上限は、350sec/100cmAir、好ましくは250sec/100cmAir、より好ましくは200sec/100cmAirである。下限は50sec/100cmAir、好ましくは70sec/100cmAir、より好ましくは100sec/100cmAirである。 A preferable upper limit of the air resistance of the separator 10 is 350 sec / 100 cm 3 Air, preferably 250 sec / 100 cm 3 Air, and more preferably 200 sec / 100 cm 3 Air. The lower limit is 50 sec / 100 cm 3 Air, preferably 70 sec / 100 cm 3 Air, more preferably 100 sec / 100 cm 3 Air.
 なお、本発明は、上記の実施の形態に限定されるものでなく、その要旨の範囲内で種々変形して実施することができる。 In addition, this invention is not limited to said embodiment, It can implement in various deformation | transformation within the range of the summary.
 以下、本発明を実施例により、さらに詳細に説明するが、本発明の実施態様は、これらの実施例に限定されるものではない。なお、実施例で用いた評価法、分析の各法および材料は、以下の通りである。 Hereinafter, the present invention will be described in more detail by way of examples, but the embodiments of the present invention are not limited to these examples. The evaluation methods, analysis methods and materials used in the examples are as follows.
 (1)膜厚、空孔率、透気抵抗度
 [膜厚]
 接触式膜厚計(株式会社ミツトヨ製“ライトマチック”(登録商標)series318)を使用して、微多孔膜及びセパレータの膜厚を測定した。測定は、超硬球面測定子φ9.5mmを用いて、加重0.01Nの条件で20点を測定し、得られた測定値の平均値を膜厚とした。
(1) Film thickness, porosity, air resistance [film thickness]
Using a contact-type film thickness meter (“Lightmatic” (registered trademark) series 318 manufactured by Mitutoyo Corporation), the film thicknesses of the microporous film and the separator were measured. In the measurement, 20 points were measured under the condition of a weight of 0.01 N using a carbide spherical measuring element φ9.5 mm, and the average value of the obtained measured values was taken as the film thickness.
 [空孔率]
 微多孔膜の重量wとそれと等価な空孔のないポリマーの重量w(幅、長さ、組成の同じポリマー)とを比較した、以下の式によって、測定した。
空孔率(%)=(w-w)/w×100
 [透気抵抗度]
 旭精工(株)社製のデジタル型王研式透気抵抗度試験機EGO1を使用して、本発明のポリオレフィン製積層微多孔膜を測定部にシワが入らないように固定し、JIS P-8117(2009)に従って測定した。試料は5cm角とし、測定点は試料の中央部の1点として、測定値を当該試料の透気抵抗度[秒]とした。同様の測定を任意のフィルム位置から採取した10個の試験片について行い、10個の測定値の平均値を当該ポリオレフィン製積層微多孔膜の透気抵抗度とした(sec/100cm)。
[Porosity]
The weight w 1 of the microporous membrane was compared with the weight w 2 of the polymer without pores equivalent to the weight (a polymer having the same width, length and composition), and the measurement was performed by the following equation.
Porosity (%) = (w 2 −w 1 ) / w 2 × 100
[Air permeability resistance]
Using the digital type Oken type air permeability resistance tester EGO1 manufactured by Asahi Seiko Co., Ltd., the polyolefin laminated microporous membrane of the present invention is fixed so that wrinkles do not enter the measurement part. 8117 (2009). The sample was 5 cm square, the measurement point was one point in the center of the sample, and the measured value was the air resistance [seconds] of the sample. The same measurement was performed on 10 test pieces taken from arbitrary film positions, and the average value of the 10 measured values was defined as the air resistance of the polyolefin microporous membrane (sec / 100 cm 3 ).
 (2)フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)およびフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)の重量平均分子量(Mw)
 以下の条件でゲルパーミエーションクロマトグラフィー(GPC)法により求めた。
・測定装置:Waters Corporation製GPC-150C
・カラム:昭和電工株式会社製shodex KF-806M 2本
・カラム温度:23℃
・溶媒(移動相):0.05M塩化リチウム添加N-メチル-2-ピロリドン(NMP)
・溶媒流速:0.5 ml/分
  ・試料調製:資料2mgに測定溶媒4mLを加え、室温で穏やかに攪拌した(溶解を視認)
・インジェクション量:0.2mL
・検出器:示差屈折率検出器 RI(東ソー製 RI-8020型 感度16)
・検量線:単分散ポリスチレン標準試料を用いて得られた検量線から、所定の換算定数を用いて作成した。
(2) Weight average molecular weight (Mw) of vinylidene fluoride-hexafluoropropylene copolymer (A) and vinylidene fluoride-hexafluoropropylene copolymer (B)
It calculated | required by the gel permeation chromatography (GPC) method on the following conditions.
・ Measurement device: GPC-150C manufactured by Waters Corporation
・ Column: 2 shodex KF-806M manufactured by Showa Denko KK ・ Column temperature: 23 ° C
Solvent (mobile phase): 0.05M lithium chloride added N-methyl-2-pyrrolidone (NMP)
・ Solvent flow rate: 0.5 ml / min ・ Sample preparation: 4 mL of measurement solvent was added to 2 mg of the sample, and gently stirred at room temperature (dissolution was visually confirmed).
・ Injection volume: 0.2mL
・ Detector: Differential refractive index detector RI (RI-8020 type sensitivity 16 manufactured by Tosoh Corporation)
-Calibration curve: Prepared from a calibration curve obtained using a monodisperse polystyrene standard sample, using a predetermined conversion constant.
 (3)融点
 示差走査熱量分析装置(株式会社パーキンエルマー製DSC)にて、測定パンに7mgの樹脂を入れ測定用試料とし、以下の条件にて測定した。初めに昇温、冷却した後、第2回目の昇温時の吸熱ピークのピークトップを融点とした。
・昇温、冷却速度  : ±10℃/min.
・測定温度範囲   : 30~230℃。
(3) Melting point With a differential scanning calorimeter (DSC manufactured by PerkinElmer Co., Ltd.), 7 mg of resin was put in a measurement pan to make a measurement sample, and measurement was performed under the following conditions. After the temperature was first raised and cooled, the peak top of the endothermic peak during the second temperature rise was taken as the melting point.
・ Temperature increase and cooling rate: ± 10 ° C / min.
-Measurement temperature range: 30-230 ° C.
 (4)湿潤時曲げ強さ
 一般に、正極にはフッ素樹脂のバインダーが用いられ、フッ素樹脂を含む多孔層がセパレータ上に備えられている場合、フッ素樹脂同士の相互拡散により接着性が担保されやすい。一方、負極にはフッ素樹脂以外のバインダーが用いられ、フッ素系樹脂の拡散が起きにくいため正極に比べ負極はセパレータとの接着性が得られにくい。そこで、本測定では、以下に述べる湿潤時曲げ強さを測定することにより、セパレータと負極との間の接着性の指標として評価した。
(4) Bending strength when wet Generally, when a fluororesin binder is used for the positive electrode and a porous layer containing the fluororesin is provided on the separator, adhesion is easily secured by mutual diffusion between the fluororesins. . On the other hand, a binder other than a fluororesin is used for the negative electrode, and the diffusion of the fluororesin hardly occurs. Therefore, the negative electrode is less likely to have adhesion with the separator than the positive electrode. Therefore, in this measurement, the wet bending strength described below was measured and evaluated as an index of adhesiveness between the separator and the negative electrode.
 (負極の作製)
 カルボキシメチルセルロースを1.5質量部含む水溶液を人造黒鉛96.5質量部に加えて混合し、さらに固形分として2質量部のスチレンブタジエンラテックスを加えて混合して負極合剤含有スラリーとした。この負極合剤含有スラリーを、厚みが8μmの銅箔からなる負極集電体の両面に均一に塗付して乾燥して負極層を形成し、その後、ロールプレス機により圧縮成形して集電体を除いた負極層の密度を1.5g/cmにして、負極を作製した。
(Preparation of negative electrode)
An aqueous solution containing 1.5 parts by mass of carboxymethylcellulose was added to 96.5 parts by mass of artificial graphite and mixed, and further 2 parts by mass of styrene butadiene latex as a solid content was added and mixed to obtain a negative electrode mixture-containing slurry. This negative electrode mixture-containing slurry is uniformly applied to both surfaces of a negative electrode current collector made of a copper foil having a thickness of 8 μm and dried to form a negative electrode layer. The density of the negative electrode layer excluding the body was 1.5 g / cm 3 to produce a negative electrode.
 (試験用巻回体の作製)
 上記で作製された負極20(機械方向161mm×幅方向30mm)と、作製されたセパレータ10(機械方向160mm×幅方向34mm)を重ね、金属板(長さ300mm、幅25mm、厚さ1mm)を巻き芯としてセパレータ10が内側になるようにセパレータ10と負極20を巻き取り、金属板を引き抜いて試験用巻回体30を得た。試験用巻回体は長さ約34mm×幅約28mmとなった。
(Preparation of test winding)
The negative electrode 20 (machine direction 161 mm × width direction 30 mm) produced above and the produced separator 10 (machine direction 160 mm × width direction 34 mm) are stacked, and a metal plate (length 300 mm, width 25 mm, thickness 1 mm) is laminated. The separator 10 and the negative electrode 20 were wound so that the separator 10 was inside as a winding core, and the metal plate was pulled out to obtain a test winding body 30. The test winding was about 34 mm long and about 28 mm wide.
 (湿潤時曲げ強さの測定方法)
 ポリプロピレンからなるラミネートフィルム(長さ70mm、幅65mm、厚さ0.07mm)2枚を重ね、4辺のうち3辺を溶着した袋状のラミネートフィルム22内に試験用巻回体30を入れた。エチレンカーボネートとエチルメチルカーボネートを体積比3:7で混合した溶媒にLiPFを1mol/Lの割合で溶解させた電解液500μLをグローブボックス中でラミネートフィルム22の開口部から注入し、試験用巻回体30に含浸させ、真空シーラーで開口部の一辺を封止した。
(Method of measuring bending strength when wet)
Two laminated films made of polypropylene (length 70 mm, width 65 mm, thickness 0.07 mm) were stacked, and the test roll 30 was placed in a bag-shaped laminate film 22 in which three of the four sides were welded. . 500 μL of an electrolytic solution in which LiPF 6 was dissolved at a ratio of 1 mol / L in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7 was injected from the opening of the laminate film 22 in a glove box, The rotating body 30 was impregnated, and one side of the opening was sealed with a vacuum sealer.
 次に、ラミネートフィルム22に封入した試験用巻回体30を2枚のガスケット(厚さ1mm、5cm×5cm)で挟み込み、精密加熱加圧装置(新東工業株式会社製、CYPT-10)にて98℃、0.6MPaで2分間加圧し、室温で放冷した。ラミネートフィルム22に封入したまま、加圧後の試験用巻回体30について、万能試験機(株式会社島津製作所製、AGS-J)を用いて湿潤時曲げ強さを測定した。以下、図2を参照して、詳細を記載する。 Next, the test roll 30 enclosed in the laminate film 22 is sandwiched between two gaskets (thickness 1 mm, 5 cm × 5 cm), and placed in a precision heating and pressing apparatus (CYPT-10, manufactured by Shinto Kogyo Co., Ltd.). The mixture was pressurized at 98 ° C. and 0.6 MPa for 2 minutes and allowed to cool at room temperature. With the test roll 30 after being pressurized, the bending strength when wet was measured using a universal testing machine (manufactured by Shimadzu Corporation, AGS-J) while encapsulated in the laminate film 22. Details will be described below with reference to FIG.
 2本のアルミニウム製L字アングル41(厚さ1mm、10mm×10mm、長さ5cm)を90°部分が上になるように平行に、端部をそろえて配置し、90°部分を支点として支点間距離が15mmとなるよう固定した。2本のアルミニウム製L字アングル41の支点間距離の中間である7.5mm地点に試験用巻回体の幅方向の辺(約28mm)の中点を合わせてL字アングル41の長さ方向の辺からはみ出さないように試験用巻回体30を配置した。 Two aluminum L-shaped angles 41 (thickness 1 mm, 10 mm x 10 mm, length 5 cm) are arranged in parallel so that the 90 ° part is on top, with the ends aligned, and the fulcrum with the 90 ° part as a fulcrum The distance was fixed to 15 mm. The length direction of the L-shaped angle 41 by aligning the midpoint of the width direction of the test winding body (about 28 mm) with the 7.5 mm point which is the middle of the distance between the fulcrums of the two aluminum L-shaped angles 41 The test winding body 30 was arranged so as not to protrude from the sides of the test piece.
 次に、圧子としてアルミニウム製L字アングル42(厚さ1mm、10mm×10mm、長さ4cm)の長さ方向の辺から試験用巻回体の長さ方向の辺(約34mm)がはみ出さないようにかつ平行にして、試験用巻回体の幅方向の辺の中点にアルミニウム製L字アングル42の90°部分を合わせ、90°部分が下になるようにアルミニウム製L字アングル42を万能試験機のロードセル(ロードセル容量50N)に固定した。3個の試験用巻回体を負荷速度0.5mm/minにて測定し得られた最大試験力の平均値を湿潤時曲げ強度とした。 Next, the length direction side (about 34 mm) of the test winding body does not protrude from the length direction side of the aluminum L-shaped angle 42 (thickness 1 mm, 10 mm × 10 mm, length 4 cm) as an indenter. The 90 ° portion of the aluminum L-shaped angle 42 is aligned with the midpoint of the side in the width direction of the test winding body, and the aluminum L-shaped angle 42 is placed so that the 90 ° portion is down. It was fixed to the load cell (load cell capacity 50N) of the universal testing machine. The average value of the maximum test force obtained by measuring the three test winding bodies at a load speed of 0.5 mm / min was defined as the bending strength when wet.
 (5)乾燥時剥離力
 (負極の作製)
 上記湿潤時曲げ強さの場合と同一の負極20を用いた。
(5) Peeling force during drying (Preparation of negative electrode)
The same negative electrode 20 as in the case of the bending strength when wet was used.
 (剥離試験片の作製)
 上記で作製された負極20(70mm×15mm)と、作製したセパレータ10(機械方向90mm×幅方向20mm)を重ね、これを2枚のガスケット(厚さ0.5mm、95mm×27mm)で挟み込み、精密加熱加圧装置(新東工業株式会社製、CYPT-10)にて90℃、8MPaで2分間加圧し、室温で放冷した。この負極20とセパレータ10との積層体の負極側に幅1cmからなる両面テープを貼りつけ、両面テープのもう一方の面をSUS板(厚さ3mm、長さ150mm×幅50mm)に、セパレータの機械方向とSUS板長さ方向が平行になるよう貼り付けた。これを剥離試験片とした。
(Preparation of peel test piece)
The negative electrode 20 produced above (70 mm × 15 mm) and the produced separator 10 (machine direction 90 mm × width direction 20 mm) are stacked and sandwiched between two gaskets (thickness 0.5 mm, 95 mm × 27 mm), Pressurization was performed at 90 ° C. and 8 MPa for 2 minutes with a precision heating and pressurizing apparatus (CYPT-10, manufactured by Shinto Kogyo Co., Ltd.), and the mixture was allowed to cool at room temperature. A double-sided tape having a width of 1 cm is attached to the negative electrode side of the laminate of the negative electrode 20 and the separator 10, and the other side of the double-sided tape is attached to a SUS plate (thickness 3 mm, length 150 mm × width 50 mm). The pasting was performed so that the machine direction and the SUS plate length direction were parallel. This was made into the peeling test piece.
 (乾燥時剥離力の測定方法)
 万能試験機(株式会社島津製作所製、AGS-J)を用いてセパレータ10をロードセル側チャックに挟み込み、試験速度300mm/分にて180度剥離試験を実施した。剥離試験中のストローク20mmから70mmまでの測定値を平均化した値を剥離試験片の剥離力とした。計3個の剥離試験片を測定し、剥離力の平均値を幅換算した値を乾燥時剥離力(N/m)とした。
(Measurement method of peel strength during drying)
A separator 10 was sandwiched between load cell side chucks using a universal testing machine (AGS-J, manufactured by Shimadzu Corporation), and a 180 degree peel test was performed at a test speed of 300 mm / min. A value obtained by averaging measured values from a stroke of 20 mm to 70 mm during the peel test was defined as the peel strength of the peel test piece. A total of three peel test pieces were measured, and a value obtained by converting the average peel force into a width was defined as a peel force during drying (N / m).
 (6)短絡耐性試験
 短絡耐性の評価は、卓上型精密万能試験機 オートグラフAGS-X(株式会社 島津製作所製)を用いて実施した。まず、図3(A)に示されるように、ポリプロピレン製絶縁体5(厚み0.2mm)、リチウムイオン電池用負極21(総厚:約140μm、基材:銅箔(厚み約9μm)、活物質:人造黒鉛(粒径約30μm)、両面塗工)、セパレータ10、アルミニウム箔4(厚み約0.1mm)を積層したサンプル積層体31を作製した。次に、図3(B)に示されるように、サンプル積層体31を万能試験機の圧縮治具(下側)44に両面テープで固定した。次に、上記サンプル積層体31のアルミニウム箔4、負極21を、コンデンサとクラッド抵抗器からなる回路にケーブルでつないだ。コンデンサは約1.5Vに充電し、サンプル積層体31中のセパレータ、アルミニウム箔4の間に直径約500μmの金属球6(材質:クロム(SUJ-2))を置いた。次に、万能試験機に圧縮治具を取り付け、図3(B)に示されるように両圧縮治具43、44の間に金属球6を含むサンプル積層体31を置いて、速度0.3mm/min.で圧縮し、荷重が100Nに達した時点で試験終了とした。このとき、圧縮荷重変化において変曲点が現れた部分をセパレータの破膜点とし、さらに金属球を介して上記回路が形成され電流が検知された瞬間をショート発生点とした。圧縮によりセパレータが破膜し圧縮応力に変曲点を生じたときの圧縮変位A(t)、および回路に電流が流れた瞬間の圧縮変位B(t)を測定し、次の(式1)で求める数値が1.1以上の場合、電池内に混入した異物によりセパレータが破膜しても、異物表面に塗工層組成物が付着することにより絶縁が保たれることを意味するため、短絡耐性は良好と評価した。一方、(式1)で求める数値が1.0より大きく1.1未満の場合、セパレータの破膜と短絡は同時には起こらないものの、電池部材の捲回にかかる張力や充放電時の電極の膨張に伴う電池内圧上昇においても短絡が生じないためには、ある一定以上の耐性が必要となるため、短絡耐性はやや不良と評価した。(式1)で求める数値が1.0の場合は、セパレータの破膜と同時に短絡が発生しており、塗工層による短絡耐性の向上はみられていないため、短絡耐性は不良と評価した。
B(t)÷A(t)・・・(式1)。
(6) Short-circuit resistance test The short-circuit resistance was evaluated using a desktop precision universal testing machine Autograph AGS-X (manufactured by Shimadzu Corporation). First, as shown in FIG. 3A, a polypropylene insulator 5 (thickness 0.2 mm), a lithium ion battery negative electrode 21 (total thickness: about 140 μm, base material: copper foil (thickness: about 9 μm), active Material: Sample laminate 31 was prepared by laminating artificial graphite (particle size: about 30 μm, double-sided coating), separator 10, and aluminum foil 4 (thickness: about 0.1 mm). Next, as shown in FIG. 3B, the sample laminate 31 was fixed to the compression jig (lower side) 44 of the universal testing machine with double-sided tape. Next, the aluminum foil 4 and the negative electrode 21 of the sample laminate 31 were connected to a circuit composed of a capacitor and a clad resistor with a cable. The capacitor was charged to about 1.5 V, and a metal ball 6 (material: chromium (SUJ-2)) having a diameter of about 500 μm was placed between the separator in the sample laminate 31 and the aluminum foil 4. Next, a compression jig is attached to the universal testing machine, and the sample laminate 31 including the metal balls 6 is placed between both compression jigs 43 and 44 as shown in FIG. / Min. The test was terminated when the load reached 100 N. At this time, the part where the inflection point appeared in the change in compressive load was taken as the film breaking point of the separator, and the moment when the circuit was formed and the current was detected via the metal sphere was taken as the short-circuit occurrence point. The compression displacement A (t) when the separator breaks due to compression and an inflection point occurs in the compression stress, and the compression displacement B (t) at the moment when the current flows through the circuit are measured. If the numerical value obtained in 1.1 is 1.1 or more, even if the separator breaks due to foreign matter mixed in the battery, it means that the insulation is maintained by the coating layer composition adhering to the surface of the foreign matter, Short-circuit resistance was evaluated as good. On the other hand, when the numerical value obtained by (Equation 1) is larger than 1.0 and smaller than 1.1, the film breakage and short circuit of the separator do not occur at the same time, but the tension applied to the battery member or the electrode during charging / discharging In order to prevent a short circuit from occurring even when the internal pressure of the battery increases due to expansion, a certain level of resistance is required. When the numerical value calculated by (Equation 1) is 1.0, a short circuit occurred at the same time as the film breakage of the separator, and no improvement in the short circuit resistance by the coating layer was observed, so the short circuit resistance was evaluated as poor. .
B (t) ÷ A (t) (Formula 1).
 (7)多孔層とポリオレフィン多層微多孔膜の剥離強度(テープ剥離力)
 (剥離試験片の作製)
 実施例、比較例で作製されたセパレータ(機械方向120mm×幅方向25mm)をガラス板の上に空気が入らないように設置した。両面テープ(機械方向100mm×幅方向20mm,清和産業株式会社製,透明フィルム両面テープ SFR-2020)の機械方向とセパレータの機械方向が沿うように両面テープを設置し、その上から重量2kgのゴムローラー(テスター産業製SA-1003-B,手動型,ゴム強度80±5Hs)で5往復処理し圧着させた。この両面テープとセパレータとの積層体のセパレータ側にセロハンテープ(株式会社ニチバン製、セロテープ(登録商標)、植物系、No.405,機械方向100mm×幅方向15mm)を機械方向90mm程度貼り、残りの10mm程度の部位に機械方向120mm×幅方向25mmにカットした紙を貼った。これを2kgゴムローラーで5往復圧着した。両面テープの剥離ライナーをはがしてSUS板(厚さ3mm、長さ150mm×幅50mm)に、セパレータの機械方向とSUS板長さ方向が平行になるよう貼り付け、2kgゴムローラーで2往復処理し圧着させた。これを剥離試験片とした。
(7) Peel strength between the porous layer and polyolefin multilayer microporous membrane (tape peel strength)
(Preparation of peel test piece)
The separators (machine direction: 120 mm × width direction: 25 mm) prepared in Examples and Comparative Examples were installed on a glass plate so that air did not enter. Double-sided tape (machine direction 100mm x width direction 20mm, manufactured by Seiwa Sangyo Co., Ltd., transparent film double-sided tape SFR-2020) is installed so that the machine direction of the separator and the machine direction of the separator are aligned. The sample was subjected to 5 reciprocating treatments using a roller (SA-1003-B, tester industry, manual type, rubber strength 80 ± 5 Hs). A cellophane tape (manufactured by Nichiban Co., Ltd., cello tape (registered trademark), plant-based, No. 405, machine direction: 100 mm × width direction: 15 mm) is pasted on the separator side of the laminate of the double-sided tape and the separator, and the rest is left. A piece of paper cut in a machine direction of 120 mm and a width direction of 25 mm was attached to a site of about 10 mm. This was pressure-bonded 5 times with a 2 kg rubber roller. Remove the release liner from the double-sided tape, attach it to a SUS plate (thickness 3 mm, length 150 mm x width 50 mm) so that the machine direction of the separator and the length direction of the SUS plate are parallel, and reciprocate twice with a 2 kg rubber roller. Crimped. This was made into the peeling test piece.
 (テープ剥離力の測定方法)
 万能試験機(株式会社島津製作所製、AGS-J)を用いてセロハンテープについた機械方向120mm×幅方向25mmにカットした紙をロードセル側チャックに挟み込み、さらにSUS板側をその反対の下部チャックに挟み込み、試験速度100mm/分にて180度剥離試験を実施した。剥離試験中のストローク20mmから70mmまでの測定値を平均化した値を剥離試験片の剥離力とした。計3個の剥離試験片を測定し、剥離力の平均値をテープ剥離力とした。
(Measurement method of tape peeling force)
Using a universal testing machine (AGS-J, manufactured by Shimadzu Corporation), the paper cut on the cellophane tape and cut in the machine direction 120 mm x width direction 25 mm is sandwiched between the load cell side chuck, and the SUS plate side is placed on the opposite lower chuck A 180 degree peel test was carried out at a test speed of 100 mm / min. A value obtained by averaging measured values from a stroke of 20 mm to 70 mm during the peel test was defined as the peel strength of the peel test piece. A total of three peel test pieces were measured, and the average peel force was defined as the tape peel force.
 尚、剥離界面において、ポリオレフィン多層微多孔膜側に多孔層面が残存する場合があるがこの場合も多孔層とポリオレフィン多層微多孔膜の剥離強度として算出した。
多孔層とポリオレフィン多層微多孔膜の剥離強度は好ましくは0.15N/mm以上、より好ましくは0.20N/mm以上、最も好ましくは0.25N/mm以上である。
In this case, the porous layer surface may remain on the polyolefin multilayer microporous membrane side at the peeling interface. In this case, the peel strength between the porous layer and the polyolefin multilayer microporous membrane was calculated.
The peel strength between the porous layer and the polyolefin multilayer microporous membrane is preferably 0.15 N / mm or more, more preferably 0.20 N / mm or more, and most preferably 0.25 N / mm or more.
 (実施例1)
 (1)第1のポリオレフィン樹脂溶液の調製
 Mwが2.0×10のポリプロピレン(PP:融点162℃)20質量%及びMwが5.6×10の高密度ポリチレン(HDPE:密度0.955g/cm、融点135℃)80質量%からなる第1のポリオレフィン樹脂100質量部に、酸化防止剤テトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタン0.2質量部を配合し、混合物を調製した。得られた混合物25質量部を、二軸押出機に投入し、二軸押出機のサイドフィーダーから流動パラフィン[35cst(40℃)]75質量部を供給し、210℃及び250rpmの条件で溶融混練して、第1のポリオレフィン樹脂溶液を調製した。
Example 1
(1) Preparation of First Polyolefin Resin Solution 20% by mass of polypropylene (PP: melting point 162 ° C.) having a Mw of 2.0 × 10 6 and high density polyethylene (HDPE: density of 0.6) having an Mw of 5.6 × 10 5 . To 100 parts by mass of the first polyolefin resin consisting of 80% by mass (955 g / cm 3 , melting point 135 ° C.), the antioxidant tetrakis [methylene-3- (3,5-ditertiarybutyl-4-hydroxyphenyl) -propionate] A mixture was prepared by blending 0.2 part by mass of methane. 25 parts by mass of the obtained mixture was charged into a twin screw extruder, 75 parts by mass of liquid paraffin [35 cst (40 ° C.)] was supplied from the side feeder of the twin screw extruder, and melt kneaded under the conditions of 210 ° C. and 250 rpm. Thus, a first polyolefin resin solution was prepared.
 (2)第2のポリオレフィン樹脂溶液の調製
 Mwが2.0×10の超高分子量ポリエチレン(UHMwPE)40質量%及びMwが5.6×10の高密度ポリチレン(HDPE:密度0.955g/cm)60質量%からなる第2のポリオレフィン樹脂100質量部に、酸化防止剤テトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタン0.2質量部を配合し、混合物を調製した。得られた混合物25質量部を、上記と同タイプの別の二軸押出機に投入し、二軸押出機のサイドフィーダーから流動パラフィン[35cSt(40℃)]75質量部を供給し、上記と同条件で溶融混練して、第2のポリオレフィン樹脂溶液を調製した。
(2) Preparation of second polyolefin resin solution 40% by mass of ultra high molecular weight polyethylene (UHMwPE) having Mw of 2.0 × 10 6 and high density polyethylene (HDPE: density of 0.955 g) having Mw of 5.6 × 10 5 / Cm 3 ) 100 parts by mass of a second polyolefin resin composed of 60% by mass with 0.2 parts by mass of the antioxidant tetrakis [methylene-3- (3,5-ditertiarybutyl-4-hydroxyphenyl) -propionate] methane Parts were blended to prepare a mixture. 25 parts by mass of the obtained mixture was charged into another twin screw extruder of the same type as described above, and 75 parts by mass of liquid paraffin [35 cSt (40 ° C.)] was supplied from the side feeder of the twin screw extruder. A second polyolefin resin solution was prepared by melt-kneading under the same conditions.
 (3)押出
 第1及び第2のポリオレフィン樹脂溶液を、各二軸押出機から三層用Tダイに供給し、第1のポリオレフィン樹脂溶液/第2のポリオレフィン樹脂溶液/第1のポリオレフィン樹脂溶液の層厚比が10/80/10となるように押し出し、30℃に温調した冷却ロールで引き取り速度2m/minで、引き取りながら冷却し、3層の押出し成形体を得た。
(3) Extrusion The first and second polyolefin resin solutions are supplied from each twin-screw extruder to the three-layer T-die, and the first polyolefin resin solution / second polyolefin resin solution / first polyolefin resin solution. The film was extruded so as to have a layer thickness ratio of 10/80/10, and cooled while being drawn at a take-up speed of 2 m / min with a cooling roll adjusted to 30 ° C. to obtain a three-layer extrudate.
 (4)第1の延伸、成膜溶剤の除去、乾燥
 3層の押出し成形体を、テンター延伸機により116℃でMD方向及びTD方向ともに5倍に同時二軸延伸(第1の延伸)し、続いて、25℃に温調した塩化メチレン浴中に浸漬して流動パラフィンを除去した後、60℃に調整された乾燥炉で乾燥して第1延伸多層シートを得た。
(4) First stretching, removal of film-forming solvent, and drying Three-layer extrusion molded body was simultaneously biaxially stretched (first stretching) by 5 times at 116 ° C. in both MD and TD directions by a tenter stretching machine. Subsequently, the paraffin was removed by immersion in a methylene chloride bath adjusted to 25 ° C., and then dried in a drying furnace adjusted to 60 ° C. to obtain a first stretched multilayer sheet.
 (5)第2の延伸、熱固定
 第1延伸多層シートを、バッチ式延伸機を用いて、126℃でTD方向に1.4倍に延伸(第2の延伸)した。次に、この膜をテンター法により、126℃で熱固定処理を行い、厚さ12μm、空孔率46%、透気抵抗度150秒/100ccのポリオレフィン3層微多孔膜Aを得た。
(5) Second stretching and heat setting The first stretched multilayer sheet was stretched 1.4 times (second stretching) in the TD direction at 126 ° C using a batch stretching machine. Next, this membrane was heat-set at 126 ° C. by a tenter method to obtain a polyolefin three-layer microporous membrane A having a thickness of 12 μm, a porosity of 46%, and an air resistance of 150 seconds / 100 cc.
 [フッ化ビニリデン-ヘキサフルオロプロピレン共重合体共重合体(A)]
 共重合体(A)として、以下のように共重合体(A1)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレン及びマレイン酸モノメチルエステルを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレン/マレイン酸モノメチルエステルのモル比が98.0/1.5/0.5となるように共重合体(A1)を合成した。得られた共重合体(A1)の重量平均分子量は150万であった。
[Vinylidene fluoride-hexafluoropropylene copolymer (A)]
As copolymer (A), copolymer (A1) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 98.0 / 1.5 / 0.5 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A1) was synthesized. The weight average molecular weight of the obtained copolymer (A1) was 1,500,000.
 [フッ化ビニリデン-ヘキサフルオロプロピレン共重合体共重合体(B)]
 共重合体(B)として、以下のように共重合体(B1)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレンを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレンのモル比が93.0/7.0となるように共重合体(B1)を合成した。得られた共重合体(B1)の重量平均分子量は30万であった。
[Vinylidene fluoride-hexafluoropropylene copolymer (B)]
As copolymer (B), copolymer (B1) was synthesized as follows. A copolymer (B1) was synthesized by suspension polymerization using vinylidene fluoride and hexafluoropropylene as starting materials so that the molar ratio of vinylidene fluoride / hexafluoropropylene was 93.0 / 7.0. The weight average molecular weight of the obtained copolymer (B1) was 300,000.
 [電池用セパレータの作製]
 共重合体(A1)26.5質量部及び共重合体(B1)3.5質量部と、N-メチル-2-ピロリドン(NMP)600質量部とを混合し、その後、ディスパーで撹拌しながらアルミナ粒子(平均粒径1.1μm、密度4.0g/cc)を多孔層の固形分を100体積%として、51体積%となるように加え、さらに、ディスパーで1時間、2000rpmで予備攪拌した。次いで、ダイノーミル(シンマルエンタープライゼス製ダイノーミルマルチラボ(1.46L容器、充填率80%、φ0.5mmアルミナビーズ))を用いて、流量11kg/hr、周速10m/sの条件下で3回処理し、塗工液(A)を作製した。得られた塗工液(A)を、ポリオレフィン3層微多孔膜Aの両面に、ディップコート法にて等量塗布した。塗布後の膜を、N-メチル-2-ピロリドン(NMP)を10質量%含有する水溶液(凝固液)中に浸漬させ、純水で洗浄した後、50℃で乾燥し、電池用セパレータを得た。電池用セパレータの厚さは15μmであった。
[Preparation of battery separator]
26.5 parts by mass of copolymer (A1) and 3.5 parts by mass of copolymer (B1) and 600 parts by mass of N-methyl-2-pyrrolidone (NMP) were mixed, and then stirred with a disper. Alumina particles (average particle size 1.1 μm, density 4.0 g / cc) were added so that the solid content of the porous layer was 100% by volume to be 51% by volume, and further pre-stirred at 2000 rpm with a disper for 1 hour. . Next, using a dyno mill (Dynomill Multilab (1.46 L container, filling rate 80%, φ0.5 mm alumina beads) made by Shinmaru Enterprises) under the conditions of a flow rate of 11 kg / hr and a peripheral speed of 10 m / s. It processed 3 times and produced the coating liquid (A). The obtained coating liquid (A) was applied to both sides of the polyolefin three-layer microporous membrane A in an equal amount by a dip coating method. The coated film is immersed in an aqueous solution (coagulation solution) containing 10% by mass of N-methyl-2-pyrrolidone (NMP), washed with pure water, and then dried at 50 ° C. to obtain a battery separator. It was. The thickness of the battery separator was 15 μm.
 (実施例2)
 第1のポリオレフィン樹脂溶液の調製において、ポリプロピレンの配合量を10質量%、高密度ポリチレンの配合量を90質量%とした以外は実施例1と同様にして厚さ12μm、空孔率45%、透気抵抗度135秒/100ccのポリオレフィン3層微多孔膜Bを得た。ポリオレフィン3層微多孔膜Bを用いた以外は実施例1と同様にして電池用セパレータを得た。
(Example 2)
In the preparation of the first polyolefin resin solution, the thickness was 12 μm, the porosity was 45%, in the same manner as in Example 1 except that the blending amount of polypropylene was 10% by mass and the blending amount of high-density polyethylene was 90% by mass. A polyolefin three-layer microporous membrane B having an air resistance of 135 seconds / 100 cc was obtained. A battery separator was obtained in the same manner as in Example 1 except that the polyolefin three-layer microporous membrane B was used.
 (実施例3)
 第1のポリオレフィン樹脂溶液の調製において、ポリプロピレンの配合量を45質量%、高密度ポリチレンの配合量を55質量%とした以外は実施例1と同様にして厚さ12μm、空孔率48%、透気抵抗度300秒/100ccのポリオレフィン3層微多孔膜Cを得た。ポリオレフィン3層微多孔膜Cを用いた以外は実施例1と同様にして電池用セパレータを得た。
(Example 3)
In the preparation of the first polyolefin resin solution, the thickness was 12 μm, the porosity was 48%, in the same manner as in Example 1 except that the blending amount of polypropylene was 45 mass% and the blending amount of high-density polyethylene was 55 mass%. A polyolefin three-layer microporous membrane C having an air resistance of 300 seconds / 100 cc was obtained. A battery separator was obtained in the same manner as in Example 1 except that the polyolefin three-layer microporous membrane C was used.
 (実施例4)
 共重合体(B)として、以下のように共重合体(B2)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレンを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレンのモル比が94.5/5.5となるように共重合体(B2)を合成した。得られた共重合体(B2)の重量平均分子量は28万であった。塗工液の作製において、共重合体(B1)を共重合体(B2)に替えた塗工液(B)を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 4
As copolymer (B), copolymer (B2) was synthesized as follows. A copolymer (B2) was synthesized by suspension polymerization using vinylidene fluoride and hexafluoropropylene as starting materials so that the molar ratio of vinylidene fluoride / hexafluoropropylene was 94.5 / 5.5. The weight average molecular weight of the obtained copolymer (B2) was 280,000. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (B) in which the copolymer (B1) was replaced with the copolymer (B2) was used in the preparation of the coating liquid.
 (実施例5)
 共重合体(B)として、以下のように共重合体(B3)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレンを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレンのモル比が92.0/8.0となるように共重合体(B3)を合成した。得られた共重合体(B3)の重量平均分子量は35万であった。塗工液の作製において、共重合体(B1)を共重合体(B3)に替えた塗工液(C)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Example 5)
As the copolymer (B), a copolymer (B3) was synthesized as follows. A copolymer (B3) was synthesized by suspension polymerization using vinylidene fluoride and hexafluoropropylene as starting materials so that the molar ratio of vinylidene fluoride / hexafluoropropylene was 92.0 / 8.0. The weight average molecular weight of the obtained copolymer (B3) was 350,000. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (C) in which the copolymer (B1) was replaced with the copolymer (B3) was used in the preparation of the coating liquid.
 (実施例6)
 共重合体(A)として、以下のように共重合体(A2)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレン及びマレイン酸モノメチルエステルを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレン/マレイン酸モノメチルエステルのモル比が99.0/0.5/0.5となるように共重合体(A2)を合成した。得られた共重合体(A2)の重量平均分子量は140万であった。塗工液の作製において、共重合体(A1)を共重合体(A2)に替えた塗工液(D)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Example 6)
As copolymer (A), copolymer (A2) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 99.0 / 0.5 / 0.5 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A2) was synthesized. The weight average molecular weight of the obtained copolymer (A2) was 1,400,000. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (D) in which the copolymer (A1) was replaced with the copolymer (A2) was used in the preparation of the coating liquid.
 (実施例7)
 共重合体(A)として、以下のように共重合体(A3)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレン及びマレイン酸モノメチルエステルを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレン/マレイン酸モノメチルエステルのモル比が95.0/4.5/0.5となるように共重合体(A3)を合成した。得られた共重合体(A3)の重量平均分子量は170万であった。塗工液の作製において、共重合体(A1)を共重合体(A3)に替えた塗工液(E)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Example 7)
As copolymer (A), copolymer (A3) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 95.0 / 4.5 / 0.5 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A3) was synthesized. The weight average molecular weight of the obtained copolymer (A3) was 1,700,000. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (E) in which the copolymer (A1) was replaced with the copolymer (A3) was used in the preparation of the coating liquid.
 (実施例8)
 共重合体(A)として、以下のように共重合体(A4)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレン及びマレイン酸モノメチルエステルを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレン/マレイン酸モノメチルエステルのモル比が98.0/1.5/0.5となるように共重合体(A4)を合成した。得られた共重合体(A4)の重量平均分子量は190万であった。塗工液の作製において、共重合体(A1)を共重合体(A4)に替えた塗工液(F)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Example 8)
As copolymer (A), copolymer (A4) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 98.0 / 1.5 / 0.5 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A4) was synthesized. The weight average molecular weight of the obtained copolymer (A4) was 1,900,000. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (F) in which the copolymer (A1) was replaced with the copolymer (A4) was used in the preparation of the coating liquid.
 (実施例9)
 塗工液の作製において、共重合体(A1)と共重合体(B1)の配合比を共重合体(A1)28.0質量部、共重合体(B1)2.0質量部とした塗工液(G)を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 9
In the preparation of the coating liquid, the blending ratio of the copolymer (A1) and the copolymer (B1) was 28.0 parts by mass of the copolymer (A1) and 2.0 parts by mass of the copolymer (B1). A battery separator was obtained in the same manner as in Example 1 except that the working liquid (G) was used.
 (実施例10)
 塗工液の作製において、アルミナ粒子の含有量を多孔層の固形分を100体積%として、40体積%になるようにし、共重合体(A1)35.2質量部、共重合体(B1)4.7質量部かつ、NMPを900質量部に変えた塗工液(H)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Example 10)
In the preparation of the coating liquid, the content of alumina particles was set to 40% by volume with the solid content of the porous layer being 100% by volume, and 35.2 parts by mass of the copolymer (A1) and the copolymer (B1). A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (H) in which 4.7 parts by mass and NMP was changed to 900 parts by mass was used.
 (実施例11)
 塗工液の作製において、アルミナ粒子の含有量を多孔層の固形分を100体積%として、75体積%になるようにし、共重合体(A1)11.4質量部、共重合体(B1)1.5質量部かつ、NMPを300質量部に変えた塗工液(I)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Example 11)
In the preparation of the coating liquid, the content of alumina particles is 75% by volume with the solid content of the porous layer being 100% by volume, and 11.4 parts by mass of copolymer (A1) and copolymer (B1). A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (I) in which 1.5 parts by mass and NMP was changed to 300 parts by mass was used.
 (実施例12)
 共重合体(A)として、以下のように共重合体(A5)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレン及びマレイン酸モノメチルエステルを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレン/マレイン酸モノメチルエステルのモル比が98.4/1.5/0.1となるように共重合体(A5)を合成した。得られた共重合体(A5)の重量平均分子量は150万であった。塗工液の作製において、共重合体(A1)を共重合体(A5)に替えた塗工液(J)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Example 12)
As copolymer (A), copolymer (A5) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 98.4 / 1.5 / 0.1 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A5) was synthesized. The weight average molecular weight of the obtained copolymer (A5) was 1,500,000. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (J) was used instead of the copolymer (A5) in the preparation of the coating liquid.
 (実施例13)
 共重合体(A)として、以下のように共重合体(A6)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレン及びマレイン酸モノメチルエステルを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレン/マレイン酸モノメチルエステルのモル比が94.5/1.5/4.0となるように共重合体(A6)を合成した。得られた共重合体(A6)の重量平均分子量は150万であった。塗工液の作製において、共重合体(A1)を共重合体(A6)に替えた塗工液(K)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Example 13)
As copolymer (A), copolymer (A6) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 94.5 / 1.5 / 4.0 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A6) was synthesized. The weight average molecular weight of the obtained copolymer (A6) was 1,500,000. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (K) in which the copolymer (A1) was replaced with the copolymer (A6) was used in the preparation of the coating liquid.
 (実施例14)
 第1及び第2のポリオレフィン樹脂溶液の押し出し量を調整し、層厚比が10/80/10、厚さ7μm、空孔率37%、透気抵抗度120秒/100cmのポリオレフィン3層微多孔膜Dを得た。ポリオレフィン3層微多孔膜Dを用いた以外は実施例1と同様にして電池用セパレータを得た。電池用セパレータの厚さは10μmであった。
(Example 14)
The amount of extrusion of the first and second polyolefin resin solutions was adjusted, and a polyolefin three-layer fine layer having a layer thickness ratio of 10/80/10, a thickness of 7 μm, a porosity of 37%, and an air resistance of 120 seconds / 100 cm 3 A porous membrane D was obtained. A battery separator was obtained in the same manner as in Example 1 except that the polyolefin three-layer microporous membrane D was used. The thickness of the battery separator was 10 μm.
 (実施例15)
 第1及び第2のポリオレフィン樹脂溶液の押し出し量を調整し、層厚比が10/80/10、厚さ16μm、空孔率45%、透気抵抗度200秒/100cmのポリオレフィン3層微多孔膜Eを得た。ポリオレフィン3層微多孔膜Eを用いた以外は実施例1と同様にして電池用セパレータを得た。電池用セパレータの厚さは19μmであった。
(Example 15)
The amount of extrusion of the first and second polyolefin resin solutions was adjusted, and the layer thickness ratio was 10/80/10, the thickness was 16 μm, the porosity was 45%, and the air permeability resistance was 200 seconds / 100 cm 3. A porous membrane E was obtained. A battery separator was obtained in the same manner as in Example 1 except that the polyolefin three-layer microporous membrane E was used. The thickness of the battery separator was 19 μm.
 (実施例16)
 共重合体(B)として、以下のように共重合体(B4)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレンを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレンのモル比が93.0/7.0となるように共重合体(B4)を合成した。得られた共重合体(B1)の重量平均分子量は70万であった。塗工液の作製において、共重合体(B1)を共重合体(B4)に替えた塗工液(L)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Example 16)
As the copolymer (B), a copolymer (B4) was synthesized as follows. A copolymer (B4) was synthesized by suspension polymerization using vinylidene fluoride and hexafluoropropylene as starting materials so that the molar ratio of vinylidene fluoride / hexafluoropropylene was 93.0 / 7.0. The weight average molecular weight of the obtained copolymer (B1) was 700,000. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (L) in which the copolymer (B1) was replaced with the copolymer (B4) was used in the preparation of the coating liquid.
 (実施例17)
 塗工液の作製において、アルミナ粒子を平均粒径1.0μm、平均厚さ0.4μmの板状ベーマイト粒子(密度3.07g/cm)に替え、共重合体(A1)31.5質量部、共重合体(B1)4.2質量部とした塗工液(M)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Example 17)
In preparation of the coating liquid, the alumina particles are replaced with plate-like boehmite particles (density 3.07 g / cm 3 ) having an average particle diameter of 1.0 μm and an average thickness of 0.4 μm, and the copolymer (A1) 31.5 mass. Battery separator was obtained in the same manner as in Example 1 except that the coating liquid (M) was used in an amount of 4.2 parts by weight of the copolymer (B1).
 (実施例18)
 塗工液の作製において、アルミナ粒子を平均粒径0.4μm、チタニア粒子(密度4.23g/cc)に替え共重合体(A1)25.3質量部、共重合体(B1)3.4質量部とした塗工液(N)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Example 18)
In preparation of the coating liquid, the alumina particles are replaced with an average particle diameter of 0.4 μm, titania particles (density 4.23 g / cc), 25.3 parts by mass of the copolymer (A1), and the copolymer (B1) 3.4. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (N) in mass parts was used.
 (実施例19)
 塗工液の作製において、共重合体(A1)と共重合体(B1)の配合比を共重合体(A1)29.0質量部、共重合体(B1)1.0質量部とした塗工液(O)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Example 19)
In the preparation of the coating solution, the blending ratio of the copolymer (A1) and the copolymer (B1) was 29.0 parts by mass of the copolymer (A1) and 1.0 part by mass of the copolymer (B1). A battery separator was obtained in the same manner as in Example 1 except that the working liquid (O) was used.
 (比較例1)
 第1のポリオレフィン樹脂溶液の調製において、ポリプロピレンを用いず、高密度ポリチレンの配合量を100質量%とした以外は実施例1と同様にして厚さ12μm、空孔率44%、透気抵抗度100秒/100cmのポリオレフィン3層微多孔膜Fを得た。ポリオレフィン3層微多孔膜Fを用いた以外は実施例1と同様にして電池用セパレータを得た。
(Comparative Example 1)
In the preparation of the first polyolefin resin solution, the thickness was 12 μm, the porosity was 44%, and the air resistance was the same as in Example 1 except that polypropylene was not used and the blending amount of the high-density polyethylene was 100% by mass. A polyolefin three-layer microporous membrane F of 100 seconds / 100 cm 3 was obtained. A battery separator was obtained in the same manner as in Example 1 except that the polyolefin three-layer microporous membrane F was used.
 (比較例2)
 第1のポリオレフィン樹脂溶液の調製において、ポリプロピレンの配合量を5質量%、高密度ポリチレンの配合量を95質量%とした以外は実施例1と同様にして厚さ12μm、空孔率45%、透気抵抗度125秒/100cmのポリオレフィン3層微多孔膜Gを得た。ポリオレフィン3層微多孔膜Gを用いた以外は実施例1と同様にして電池用セパレータを得た。
(Comparative Example 2)
In the preparation of the first polyolefin resin solution, the thickness was 12 μm, the porosity was 45%, in the same manner as in Example 1 except that the blending amount of polypropylene was 5 mass% and the blending amount of high-density polyethylene was 95 mass%. A polyolefin three-layer microporous membrane G having an air resistance of 125 sec / 100 cm 3 was obtained. A battery separator was obtained in the same manner as in Example 1 except that the polyolefin three-layer microporous membrane G was used.
 (比較例3)
 第1のポリオレフィン樹脂溶液の調製において、ポリプロピレンの配合量を80質量%、高密度ポリチレンの配合量を20質量%とした以外は実施例1と同様にして厚さ12μm、空孔率37%、透気抵抗度815秒/100cmのポリオレフィン3層微多孔膜Hを得た。ポリオレフィン3層微多孔膜Hを用いた以外は実施例1と同様にして電池用セパレータを得た。
(Comparative Example 3)
In the preparation of the first polyolefin resin solution, the thickness was 12 μm, the porosity was 37%, in the same manner as in Example 1 except that the blending amount of polypropylene was 80% by mass and the blending amount of high-density polyethylene was 20% by mass. A polyolefin three-layer microporous membrane H having an air resistance of 815 sec / 100 cm 3 was obtained. A battery separator was obtained in the same manner as in Example 1 except that the polyolefin three-layer microporous membrane H was used.
 (比較例4)
 塗工液の作製において、共重合体(A1)88.3質量部、共重合体(B1)11.7質量部と、NMP3500質量部を溶解、混合した塗工液(P)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Comparative Example 4)
In preparation of the coating liquid, except that the coating liquid (P) in which 88.3 parts by mass of the copolymer (A1), 11.7 parts by mass of the copolymer (B1) and 3500 parts by mass of NMP were dissolved and mixed was used. Obtained a battery separator in the same manner as in Example 1.
 (比較例5)
 塗工液の作製において、アルミナ粒子を多孔層の固形分を100体積%として、95体積%となるように加え、共重合体(A1)2.0質量部、共重合体(B1)0.3質量部かつ、NMPを250質量部に変えた塗工液(Q)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Comparative Example 5)
In the preparation of the coating liquid, alumina particles were added so that the solid content of the porous layer was 100% by volume to 95% by volume, and 2.0 parts by mass of the copolymer (A1), 0. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (Q) in which 3 parts by mass and NMP was changed to 250 parts by mass was used.
 (比較例6)
 塗工液の作製において、共重合体(A1)と共重合体(B1)の配合比を共重合体(A1)15.0質量部、共重合体(B1)15.0質量部とした塗工液(R)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Comparative Example 6)
In the preparation of the coating liquid, the blending ratio of the copolymer (A1) and the copolymer (B1) was 15.0 parts by mass of the copolymer (A1) and 15.0 parts by mass of the copolymer (B1). A battery separator was obtained in the same manner as in Example 1 except that the working liquid (R) was used.
 (比較例7)
 共重合体(A)として、以下のように共重合体(A7)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレンを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレンのモル比が98.5/1.5となるように共重合体(A7)を合成した。得られた共重合体(A7)の重量平均分子量は150万であった。塗工液の作製において、共重合体(A1)を共重合体(A7)に替えた塗工液(S)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Comparative Example 7)
As copolymer (A), copolymer (A7) was synthesized as follows. A copolymer (A7) was synthesized by suspension polymerization using vinylidene fluoride and hexafluoropropylene as starting materials so that the molar ratio of vinylidene fluoride / hexafluoropropylene was 98.5 / 1.5. The weight average molecular weight of the obtained copolymer (A7) was 1,500,000. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (S) in which the copolymer (A1) was replaced with the copolymer (A7) was used in the preparation of the coating liquid.
 (比較例8)
 塗工液の作製において、共重合体(A)をポリフッ化ビニリデン(重量平均分子量150万)30.0質量部に替え、共重合体(B)を使用しないで調製した塗工液(T)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Comparative Example 8)
In the preparation of the coating liquid, the coating liquid (T) prepared without using the copolymer (B) by replacing the copolymer (A) with 30.0 parts by weight of polyvinylidene fluoride (weight average molecular weight 1,500,000) A battery separator was obtained in the same manner as in Example 1 except that was used.
 (比較例9)
 共重合体(A)として、以下のように共重合体(A8)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレン及びマレイン酸モノメチルエステルを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレン/マレイン酸モノメチルエステルのモル比が98.0/1.5/0.5となるように共重合体(A8)を合成した。得られた共重合体(A8)の重量平均分子量は65万であった。塗工液の作製において、共重合体(A1)を共重合体(A8)に替え、NMPを500質量部に変えた塗工液(U)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Comparative Example 9)
As copolymer (A), copolymer (A8) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 98.0 / 1.5 / 0.5 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A8) was synthesized. The weight average molecular weight of the obtained copolymer (A8) was 650,000. A battery was prepared in the same manner as in Example 1 except that in the preparation of the coating liquid, the copolymer (A1) was replaced with the copolymer (A8) and the coating liquid (U) in which NMP was changed to 500 parts by mass was used. A separator was obtained.
 (比較例10)
 共重合体(B)として、以下のように共重合体(B5)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレンを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレンのモル比が93.0/7.0となるように共重合体(B5)を合成した。得られた共重合体(B5)の重量平均分子量は7万であった。塗工液の作製において、共重合体(B1)を共重合体(B5)に替えた塗工液(V)を用いた以外は実施例1と同様にして電池用セパレータを得た。
(Comparative Example 10)
As copolymer (B), copolymer (B5) was synthesized as follows. A copolymer (B5) was synthesized by suspension polymerization using vinylidene fluoride and hexafluoropropylene as starting materials so that the molar ratio of vinylidene fluoride / hexafluoropropylene was 93.0 / 7.0. The weight average molecular weight of the obtained copolymer (B5) was 70,000. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (V) was used instead of the copolymer (B5) in the preparation of the coating liquid.
 (比較例11)
ポリオレフィン3層微多孔膜Dを用いた以外は比較例1と同様にして電池用セパレータを得た。電池用セパレータの厚さは10μmであった。
(Comparative Example 11)
A battery separator was obtained in the same manner as in Comparative Example 1 except that the polyolefin three-layer microporous membrane D was used. The thickness of the battery separator was 10 μm.
 上記実施例及び比較例で用いたポリオレフィン多層微多孔膜の組成及び特性を表1に示し、多孔層の共重合体(A)及び共重合体(B)の構造、重量平均分子量や、塗工液の組成及び得られた電池用セパレータの特性を表2に示す。 The composition and characteristics of the polyolefin multilayer microporous membrane used in the above Examples and Comparative Examples are shown in Table 1, and the structure of the copolymer (A) and copolymer (B) of the porous layer, the weight average molecular weight, coating The composition of the liquid and the characteristics of the obtained battery separator are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本実施形態の電池用セパレータは、非水電解質二次電池に用いられた際、乾燥時剥離力、湿潤時曲げ強さを満たし、ポリオレフィン多層微多孔膜と多孔層とのセパレータの層間の接着性、及び、セパレータと電極間の接着性に優れ、且つ、短絡耐性に優れる電池用セパレータを提供することができる。したがって、本実施形態の電池用セパレータは、今後、電池(特にラミネート型電池)のより大型化、高容量化が要求された際にも、好適に用いることができる。 The battery separator of the present embodiment, when used in a non-aqueous electrolyte secondary battery, satisfies the peeling force during drying and the bending strength when wet, and the adhesion between the separators of the polyolefin multilayer microporous membrane and the porous layer. And the separator for batteries which is excellent in the adhesiveness between a separator and an electrode, and is excellent in short circuit tolerance can be provided. Therefore, the battery separator according to the present embodiment can be suitably used even when a larger size and a higher capacity of a battery (particularly a laminate type battery) are required in the future.
1…ポリオレフィン微多孔膜
1’…ポリオレフィン多層微多孔膜
a…第1の微多孔層
b…第2の微多孔層
2…多孔層
4…アルミニウム箔
5…樹脂製絶縁体
6…金属球
10…電池用セパレータ
20…負極(接着性評価用)
21…負極(短絡耐性評価用)
22…ラミネートフィルム
30…電極巻回体
31…電極積層体
41…アルミニウム製L字アングル(下側)
42…アルミニウム製L字アングル(上側)
43…圧縮治具(上側)
44…圧縮治具(下側)
 
DESCRIPTION OF SYMBOLS 1 ... Polyolefin microporous film 1 '... Polyolefin multilayer microporous film a ... 1st microporous layer b ... 2nd microporous layer 2 ... Porous layer 4 ... Aluminum foil 5 ... Resin insulator 6 ... Metal sphere 10 ... Battery separator 20 ... negative electrode (for adhesion evaluation)
21 ... Negative electrode (for short circuit resistance evaluation)
22 ... Laminate film 30 ... Electrode roll 31 ... Electrode laminate 41 ... Aluminum L-shaped angle (lower side)
42 ... Aluminum L-shaped angle (upper side)
43 ... Compression jig (upper side)
44 ... Compression jig (lower side)

Claims (7)

  1.  ポリオレフィン微多孔膜と、前記ポリオレフィン微多孔膜の少なくとも一方の面に多孔層とを備える電池用セパレータであって、
     前記ポリオレフィン微多孔膜は、第1の微多孔層/第2の微多孔層/第1の微多孔層の順に積層した三層構造のポリオレフィン多層微多孔膜からなり、
     前記第1の微多孔層は、ポリエチレンとポリプロピレンを含む第1のポリオレフィン樹脂からなり、且つ、前記ポリプロピレンの含有率が、第1のポリオレフィン樹脂の全質量に対して、10質量%以上、50質量%以下であり、前記第2の微多孔層は、ポリエチレン樹脂のみからなり、
     前記多孔層は、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)と、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)と、無機粒子とを含み、
     前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)は、0.3mol%以上、5.0mol%以下のヘキサフルオロプロピレン単位を有し、重量平均分子量が90万以上、200万以下であり、かつ、親水基を含み、
     前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)は、5.0mol%を超え、8.0mol%以下のヘキサフルオロプロピレン単位を有し、重量平均分子量が10万以上75万以下であり、
     前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)および前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)の合計100質量%に対して、前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)を86質量%以上、98質量%以下含み、前記多孔層中の固形分100体積%に対して、前記無機粒子を40体積%以上、80体積%以下含む、
    電池用セパレータ。
    A separator for a battery comprising a polyolefin microporous membrane and a porous layer on at least one surface of the polyolefin microporous membrane,
    The polyolefin microporous membrane comprises a polyolefin multilayer microporous membrane having a three-layer structure in which the first microporous layer / second microporous layer / first microporous layer are laminated in this order.
    The first microporous layer is made of a first polyolefin resin containing polyethylene and polypropylene, and the content of the polypropylene is 10% by mass or more and 50% by mass with respect to the total mass of the first polyolefin resin. %, And the second microporous layer is made of only polyethylene resin,
    The porous layer includes a vinylidene fluoride-hexafluoropropylene copolymer (A), a vinylidene fluoride-hexafluoropropylene copolymer (B), and inorganic particles,
    The vinylidene fluoride-hexafluoropropylene copolymer (A) has not less than 0.3 mol% and not more than 5.0 mol% of hexafluoropropylene units, and has a weight average molecular weight of not less than 900,000 and not more than 2 million, And includes a hydrophilic group,
    The vinylidene fluoride-hexafluoropropylene copolymer (B) has more than 5.0 mol% and not more than 8.0 mol% hexafluoropropylene units, and has a weight average molecular weight of 100,000 to 750,000,
    The total amount of the vinylidene fluoride-hexafluoropropylene copolymer (A) and the vinylidene fluoride-hexafluoropropylene copolymer (B) is 100% by mass, based on the vinylidene fluoride-hexafluoropropylene copolymer ( A) is contained in an amount of 86% by mass or more and 98% by mass or less, and the inorganic particles are contained in an amount of 40% by volume or more and 80% by volume or less with respect to 100% by volume of the solid content in the porous layer.
    Battery separator.
  2.  前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)は、親水基を0.1mol%以上、5.0mol%以下含む、請求項1に記載の電池用セパレータ。 The battery separator according to claim 1, wherein the vinylidene fluoride-hexafluoropropylene copolymer (A) contains 0.1 mol% or more and 5.0 mol% or less of a hydrophilic group.
  3.  前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)は、融点が60℃以上145℃以下である、請求項1又は2に記載の電池用セパレータ。 The battery separator according to claim 1 or 2, wherein the vinylidene fluoride-hexafluoropropylene copolymer (B) has a melting point of 60 ° C or higher and 145 ° C or lower.
  4.  前記無機粒子が二酸化チタン、アルミナ及びベーマイトから選ばれる1種以上である請求項1~3のいずれか一項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 3, wherein the inorganic particles are at least one selected from titanium dioxide, alumina, and boehmite.
  5.  前記ポリオレフィン多層微多孔膜の厚さが3μm以上、16μm以下である請求項1~4のいずれか一項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 4, wherein the polyolefin multilayer microporous membrane has a thickness of 3 µm to 16 µm.
  6.  正極と、負極と、前記請求項1~5のいずれか一項に記載の電池用セパレータと、を備える電極体。 An electrode body comprising a positive electrode, a negative electrode, and the battery separator according to any one of claims 1 to 5.
  7.  請求項6に記載の電極体と、非水電解質とを備える非水電解質二次電池。
     
    A nonaqueous electrolyte secondary battery comprising the electrode body according to claim 6 and a nonaqueous electrolyte.
PCT/JP2018/009674 2017-03-17 2018-03-13 Separator for batteries, electrode body and nonaqueous electrolyte secondary battery WO2018168835A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880010166.8A CN110249449B (en) 2017-03-17 2018-03-13 Battery separator, electrode body, and nonaqueous electrolyte secondary battery
KR1020197020050A KR102231395B1 (en) 2017-03-17 2018-03-13 Battery separator, electrode body and non-aqueous electrolyte secondary battery
JP2019506037A JP7330885B2 (en) 2017-03-17 2018-03-13 Battery separator, electrode body and non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-052908 2017-03-17
JP2017052908 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018168835A1 true WO2018168835A1 (en) 2018-09-20

Family

ID=63523159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009674 WO2018168835A1 (en) 2017-03-17 2018-03-13 Separator for batteries, electrode body and nonaqueous electrolyte secondary battery

Country Status (5)

Country Link
JP (1) JP7330885B2 (en)
KR (1) KR102231395B1 (en)
CN (1) CN110249449B (en)
TW (1) TWI744505B (en)
WO (1) WO2018168835A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416470A (en) * 2019-08-07 2019-11-05 江苏厚生新能源科技有限公司 The improved method of battery diaphragm and its preparation process, reduction methylene chloride consumption
CN110571395A (en) * 2019-08-30 2019-12-13 瑞浦能源有限公司 lithium ion battery diaphragm and preparation method thereof
WO2020149294A1 (en) * 2019-01-16 2020-07-23 東レ株式会社 Polyolefin multilayer microporous film and production method therefor
JP2020155208A (en) * 2019-03-18 2020-09-24 帝人株式会社 Separator for non-aqueous secondary battery and non-aqueous secondary battery
CN114709565A (en) * 2022-06-07 2022-07-05 中材锂膜(宁乡)有限公司 Organic/inorganic composite layer porous diaphragm, preparation method thereof and electrochemical device
WO2023002818A1 (en) * 2021-07-19 2023-01-26 東レ株式会社 Polyolefin multilayer microporous membrane, laminated polyolefin multilayer microporous membrane, and battery separator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220108791A (en) * 2020-01-08 2022-08-03 아사히 가세이 가부시키가이샤 Inorganic Coated Layer Crosslinked Separator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307735A (en) * 2000-04-17 2001-11-02 Matsushita Electric Ind Co Ltd Lithium secondary battery
WO2013058368A1 (en) * 2011-10-21 2013-04-25 帝人株式会社 Nonaqueous secondary battery separator and non-aqueous secondary battery
JP2014041818A (en) * 2012-07-25 2014-03-06 Samsung Sdi Co Ltd Separator for lithium secondary battery, and lithium secondary battery including the same
WO2015194667A1 (en) * 2014-06-20 2015-12-23 東レバッテリーセパレータフィルム株式会社 Polyolefin multilayer microporous film, method for producing same, and cell separator
WO2016002567A1 (en) * 2014-06-30 2016-01-07 帝人株式会社 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
WO2016042914A1 (en) * 2014-09-19 2016-03-24 株式会社クレハ Aqueous latex, separator/intermediate layer laminate, and structure for nonaqueous electrolyte secondary batteries
WO2017002947A1 (en) * 2015-07-02 2017-01-05 帝人株式会社 Separator for nonaqueous secondary batteries, nonaqueous secondary battery, and method for manufacturing nonaqueous secondary battery

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342088B2 (en) 1973-09-25 1978-11-09
JP3248570B2 (en) 1997-10-09 2002-01-21 日本電気株式会社 Method for manufacturing semiconductor device
US9431642B2 (en) * 2005-07-15 2016-08-30 Toray Battery Separator Film Co., Ltd. Multi-layer microporous polyolefin membrane and battery separator
CN102356441A (en) * 2009-03-17 2012-02-15 株式会社巴川制纸所 Separator for electrical storage device and method for producing same
JP5427046B2 (en) * 2010-01-14 2014-02-26 日立マクセル株式会社 Non-aqueous electrolyte battery and manufacturing method thereof
US20140315068A1 (en) 2011-10-21 2014-10-23 Teijin Limited Non-aqueous secondary battery separator and non-aqueous secondary battery
WO2013058367A1 (en) 2011-10-21 2013-04-25 帝人株式会社 Nonaqueous secondary battery separator and non-aqueous secondary battery
HUE053039T2 (en) * 2012-03-30 2021-06-28 Toray Industries Multilayered microporous polyolefin film
JP6088759B2 (en) * 2012-06-29 2017-03-01 Jxエネルギー株式会社 Method for producing separator for lithium ion secondary battery
US9385358B2 (en) * 2012-07-25 2016-07-05 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery, and rechargeable lithium battery including the same
US9666847B2 (en) * 2012-09-20 2017-05-30 Celgard, Llc Thin battery separators and methods
CN103441230B (en) * 2013-08-21 2016-03-09 东莞新能源科技有限公司 Organic/inorganic composite porous isolating membrane and preparation method thereof and electrochemical appliance
CN106029380B (en) * 2014-05-30 2017-07-18 东丽电池隔膜株式会社 Polyolefin multilayer microporous membrane and battery separator
US20180047962A1 (en) 2015-03-24 2018-02-15 Teijin Limited Separator for a non-aqueous secondary battery, and non-aqueous secondary battery
CN107925036B (en) * 2015-08-11 2020-12-22 东丽株式会社 Battery separator
JP6143992B1 (en) 2015-11-11 2017-06-07 帝人株式会社 Non-aqueous secondary battery separator and non-aqueous secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307735A (en) * 2000-04-17 2001-11-02 Matsushita Electric Ind Co Ltd Lithium secondary battery
WO2013058368A1 (en) * 2011-10-21 2013-04-25 帝人株式会社 Nonaqueous secondary battery separator and non-aqueous secondary battery
JP2014041818A (en) * 2012-07-25 2014-03-06 Samsung Sdi Co Ltd Separator for lithium secondary battery, and lithium secondary battery including the same
WO2015194667A1 (en) * 2014-06-20 2015-12-23 東レバッテリーセパレータフィルム株式会社 Polyolefin multilayer microporous film, method for producing same, and cell separator
WO2016002567A1 (en) * 2014-06-30 2016-01-07 帝人株式会社 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
WO2016042914A1 (en) * 2014-09-19 2016-03-24 株式会社クレハ Aqueous latex, separator/intermediate layer laminate, and structure for nonaqueous electrolyte secondary batteries
WO2017002947A1 (en) * 2015-07-02 2017-01-05 帝人株式会社 Separator for nonaqueous secondary batteries, nonaqueous secondary battery, and method for manufacturing nonaqueous secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149294A1 (en) * 2019-01-16 2020-07-23 東レ株式会社 Polyolefin multilayer microporous film and production method therefor
CN112512807A (en) * 2019-01-16 2021-03-16 东丽株式会社 Polyolefin multilayer microporous film and method for producing same
EP3912813A4 (en) * 2019-01-16 2022-10-12 Toray Industries, Inc. Polyolefin multilayer microporous film and production method therefor
JP7352196B2 (en) 2019-01-16 2023-09-28 東レ株式会社 Polyolefin multilayer microporous membrane
JP2020155208A (en) * 2019-03-18 2020-09-24 帝人株式会社 Separator for non-aqueous secondary battery and non-aqueous secondary battery
CN110416470A (en) * 2019-08-07 2019-11-05 江苏厚生新能源科技有限公司 The improved method of battery diaphragm and its preparation process, reduction methylene chloride consumption
CN110416470B (en) * 2019-08-07 2022-03-11 江苏厚生新能源科技有限公司 Battery diaphragm, preparation process thereof and improved method for reducing consumption of dichloromethane
CN110571395A (en) * 2019-08-30 2019-12-13 瑞浦能源有限公司 lithium ion battery diaphragm and preparation method thereof
WO2023002818A1 (en) * 2021-07-19 2023-01-26 東レ株式会社 Polyolefin multilayer microporous membrane, laminated polyolefin multilayer microporous membrane, and battery separator
CN114709565A (en) * 2022-06-07 2022-07-05 中材锂膜(宁乡)有限公司 Organic/inorganic composite layer porous diaphragm, preparation method thereof and electrochemical device
CN114709565B (en) * 2022-06-07 2022-09-02 中材锂膜(宁乡)有限公司 Organic/inorganic composite layer porous diaphragm, preparation method thereof and electrochemical device

Also Published As

Publication number Publication date
TW201843866A (en) 2018-12-16
KR20190088567A (en) 2019-07-26
JPWO2018168835A1 (en) 2020-01-16
CN110249449B (en) 2022-03-08
JP7330885B2 (en) 2023-08-22
KR102231395B1 (en) 2021-03-24
TWI744505B (en) 2021-11-01
CN110249449A (en) 2019-09-17

Similar Documents

Publication Publication Date Title
JP7330885B2 (en) Battery separator, electrode body and non-aqueous electrolyte secondary battery
CN107925036B (en) Battery separator
KR102209887B1 (en) Separator for batteries and method for producing same
JP5876629B1 (en) Battery separator and method for producing the same
KR102137377B1 (en) Battery separator and production method therefor
WO2017170289A1 (en) Polyolefin microporous membrane, production method for polyolefin microporous membrane, battery separator, and battery
JP7229775B2 (en) Battery separator, electrode body and non-aqueous electrolyte secondary battery
WO2018164056A1 (en) Polyolefin microporous film
JP6927047B2 (en) Laminated wound body
WO2018164054A1 (en) Polyolefin microporous membrane
TWI715676B (en) Separator for battery and manufacturing method thereof
WO2021065585A1 (en) Microporous polyolefin film, separator for battery, and secondary battery
JP2022053727A (en) Battery separator, electrode body, non-aqueous electrolyte secondary battery, and manufacturing method of battery separator
JP2021082481A (en) Separator for battery, electrode body, nonaqueous electrolyte secondary battery, and method for manufacturing separator for battery
JP2023050126A (en) Polyolefin microporous film, laminate, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019506037

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197020050

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768362

Country of ref document: EP

Kind code of ref document: A1