WO2018168833A1 - Multilayer carbon nanotubes, method for producing multilayer carbon nanotubes, liquid dispersion, resin composition, and coating film - Google Patents

Multilayer carbon nanotubes, method for producing multilayer carbon nanotubes, liquid dispersion, resin composition, and coating film Download PDF

Info

Publication number
WO2018168833A1
WO2018168833A1 PCT/JP2018/009672 JP2018009672W WO2018168833A1 WO 2018168833 A1 WO2018168833 A1 WO 2018168833A1 JP 2018009672 W JP2018009672 W JP 2018009672W WO 2018168833 A1 WO2018168833 A1 WO 2018168833A1
Authority
WO
WIPO (PCT)
Prior art keywords
walled carbon
carbon nanotube
catalyst
resin
registered trademark
Prior art date
Application number
PCT/JP2018/009672
Other languages
French (fr)
Japanese (ja)
Inventor
雄 森田
増田 幹
茂紀 井上
信之 名畑
渡辺 克己
Original Assignee
東洋インキScホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017049759A external-priority patent/JP6380588B1/en
Priority claimed from JP2017243686A external-priority patent/JP7052336B2/en
Application filed by 東洋インキScホールディングス株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to KR1020197027876A priority Critical patent/KR102394357B1/en
Priority to CN201880017332.7A priority patent/CN110418766B/en
Publication of WO2018168833A1 publication Critical patent/WO2018168833A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to multi-walled carbon nanotubes and a method for producing multi-walled carbon nanotubes. More specifically, the present invention relates to multi-walled carbon nanotubes, a resin composition containing multi-walled carbon nanotubes and a resin, a dispersion thereof, and a coating film excellent in jet blackness coated with the same.
  • Carbon nanotube is a cylindrical carbon material having an outer diameter of several nanometers to several tens of nanometers. Carbon nanotubes have high electrical conductivity and mechanical strength. For this reason, carbon nanotubes are expected to be used in a wide range of fields including electronic engineering and energy engineering as functional materials. Examples of functional materials include fuel cells, electrodes, electromagnetic shielding materials, conductive resins, field emission display (FED) members, and various gas storage materials such as hydrogen.
  • functional materials include fuel cells, electrodes, electromagnetic shielding materials, conductive resins, field emission display (FED) members, and various gas storage materials such as hydrogen.
  • Carbon black is used as the color material instead of carbon nanotubes.
  • carbon black is used in order to obtain a jet black resin coated product, film, or molded product. Carbon black is uniformly dispersed in a resin solution or a solid resin.
  • a color material made of carbon black tends to have a high lightness (L * ) (that is, gray / white). Further, the chromaticity (a * , b * ) is in the plus direction (+ a * : red, + b * : yellow).
  • L * , a *, and b * represent values in the L * a * b * color system defined by JIS Z8781-4. For this reason, it has been difficult for carbon black to express jet blackness such as so-called “piano black” and “wet crow wings”.
  • the color tone of a molded product using carbon black tends to change depending on the primary particle diameter of carbon black. Specifically, when carbon black having a small primary particle diameter is used, bluishness is exhibited while blackness is lowered. Thus, in the conventional black color material, there is a trade-off relationship between blackness and blueness. For this reason, it was difficult to reproduce a color tone having a bluish color and a high blackness, that is, a jet black color tone.
  • Patent Documents 3, 4 and 5 relate to adjustment of blackness of a color material made of carbon black.
  • adjusting the blackness for example, colloidal characteristics such as the particle size and aggregate size of carbon black are changed. Further, surface treatment such as ozone oxidation and nitric acid oxidation is applied to the carbon black. With this process, the dispersion state in the dispersion is controlled.
  • Patent Documents 6 and 7 are investigating a laminate of carbon nanotubes in order to solve these problems. However, in these means, it is necessary to form a layer so that the gloss of the resin composition containing carbon nanotubes can be obtained. Further, in Patent Document 8, carbon nanotubes as jet-black pigments are also studied, but the outer diameter is large and jet-black properties when used as a coating film are insufficient. Furthermore, development of single-walled carbon nanotubes and double-walled carbon nanotubes having a small outer diameter has been promoted, but it has been difficult to disperse and it has been difficult to achieve a sufficient jet black feeling.
  • Patent Document 9 by making the catalyst finer, the entanglement at the time of carbon nanotube synthesis is suppressed, thereby widening the voids inside the carbon nanotube aggregate structure and producing carbon nanotubes with excellent dispersibility in the resin. is doing.
  • carbon nanotubes having a small outer diameter could not be obtained efficiently.
  • the problem to be solved by the present invention is to solve the above-mentioned conventional problems, and to provide a multi-walled carbon nanotube and a method for synthesizing the multi-walled carbon nanotube from which a resin composition having high jetness is obtained.
  • the present invention relates to a multi-walled carbon nanotube characterized by satisfying the following requirements (1) and (2).
  • the average outer diameter of the multi-walled carbon nanotube is 10 nm or less.
  • the standard deviation of the outer diameter of the multi-walled carbon nanotube is 4 nm or less.
  • X ⁇ 2 ⁇ is 2.5 nm ⁇ X ⁇ 2 ⁇ ⁇ 15, where X is the average outer diameter of the multi-walled carbon nanotube and ⁇ is the standard deviation of the outer diameter of the multi-walled carbon nanotube. .5 nm is satisfied.
  • One embodiment of the above-mentioned multi-walled carbon nanotube is G / G when the maximum peak intensity in the range of 1560 to 1600 cm ⁇ 1 is G and the maximum peak intensity in the range of 1310 to 1350 cm ⁇ 1 is D in the Raman spectrum.
  • the D ratio is 2.0 or less, preferably 1.0 or less.
  • the method for producing a multi-walled carbon nanotube of the present invention includes the following steps. (1) An active ingredient containing at least one selected from cobalt, nickel and iron and a catalyst carrier containing at least one selected from magnesium, aluminum and silicon are mixed and / or pulverized and calcined. Step for obtaining catalyst (2) Step for obtaining multi-walled carbon nanotube by bringing the catalyst into contact with a carbon source containing at least one selected from hydrocarbon and alcohol under heating
  • the carbon source contains a hydrocarbon
  • the production amount of the multi-walled carbon nanotube per 1 g of the carbon nanotube synthesis catalyst is Y (g)
  • the contact reaction time of the catalyst for carbon nanotube synthesis and the hydrocarbon is Z (min)
  • Y / Z (g / min) satisfies 1.5 ⁇ Y / Z ⁇ 2.7. Adjust catalyst amount and / or hydrocarbon flow rate.
  • the hydrocarbon is ethylene
  • the dispersion of the present invention contains the multi-walled carbon nanotube of the present invention and a dispersant.
  • the resin composition of the present invention contains the multi-walled carbon nanotube of the present invention and a resin.
  • the coating film of the present invention is formed by the resin composition of the present invention.
  • the multi-walled carbon nanotube of the present invention By using the multi-walled carbon nanotube of the present invention, a resin composition excellent in jetness can be obtained. Therefore, it is possible to use the multi-walled carbon nanotube and the method for producing the multi-walled carbon nanotube of the present invention in various applications that require high jetness.
  • FIG. 1 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes when 300 multi-walled carbon nanotubes are arbitrarily observed using the transmission electron microscope obtained in Example 1.
  • FIG. 2 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes when 300 multi-walled carbon nanotubes are arbitrarily observed using the transmission electron microscope obtained in Example 4.
  • FIG. 3 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes when 300 multi-walled carbon nanotubes are arbitrarily observed using the transmission electron microscope obtained in Comparative Example 1.
  • FIG. 1 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes when 300 multi-walled carbon nanotubes are arbitrarily observed using the transmission electron microscope obtained in Example 1.
  • FIG. 2 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes when 300 multi-walled carbon nanotubes are arbitrarily observed using the transmission
  • FIG. 4 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes when 300 multi-walled carbon nanotubes are arbitrarily observed using the transmission electron microscope obtained in Comparative Example 2.
  • FIG. 5 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes when 300 multi-walled carbon nanotubes are arbitrarily observed using the transmission electron microscope obtained in Comparative Example 3.
  • FIG. 6 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes when 300 multi-walled carbon nanotubes are arbitrarily observed using the transmission electron microscope obtained in Comparative Example 4.
  • FIG. 5 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes when 300 multi-walled carbon nanotubes are arbitrarily observed using the transmission electron microscope obtained in Comparative Example 3.
  • FIG. 6 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes when 300 multi-walled carbon nanotubes are arbitr
  • FIG. 7 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes when 300 carbon nanotubes were arbitrarily observed using a transmission electron microscope for the multi-walled carbon nanotubes obtained in Example 12. is there.
  • FIG. 8 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes obtained by observing 300 carbon nanotubes arbitrarily using a transmission electron microscope for the multi-walled carbon nanotubes obtained in Example 13. is there.
  • the multi-walled carbon nanotube (A) has a shape obtained by winding planar graphite into a cylindrical shape.
  • the multi-walled carbon nanotube (A) may be a mixture of single-walled carbon nanotubes.
  • Single-walled carbon nanotubes have a structure in which a single layer of graphite is wound.
  • the multi-walled carbon nanotube (A) has a structure in which two or more layers of graphite are wound.
  • the side wall of the multi-walled carbon nanotube (A) may not have a graphite structure.
  • a carbon nanotube having a sidewall having an amorphous structure can be used as the multi-walled carbon nanotube (A).
  • the shape of the multi-walled carbon nanotube (A) is not limited. Examples of such a shape include various shapes including a needle shape, a cylindrical tube shape, a fish bone shape (fishbone or cup laminated type), a trump shape (platelet), and a coil shape. In this embodiment, the shape of the multi-walled carbon nanotube (A) is preferably a needle shape or a cylindrical tube shape.
  • the multi-walled carbon nanotube (A) may be a single shape or a combination of two or more shapes.
  • Examples of the multi-walled carbon nanotube (A) include graphite whiskers, filamentous carbon, graphite fibers, ultrafine carbon tubes, carbon tubes, carbon fibrils, carbon microtubes, and carbon nanofibers. It is not limited.
  • the multi-walled carbon nanotube (A) may have a single form or a combination of two or more kinds.
  • the average outer diameter of the multi-walled carbon nanotube (A) of the present embodiment is 10 nm or less, and the standard deviation of the outer diameter is 4 nm or less.
  • the average outer diameter of the multi-walled carbon nanotube (A) is preferably 3 to 10 nm, more preferably 4 to 10 nm, and further preferably 4 to 8 nm, from the viewpoint of ease of dispersion and hue. preferable.
  • the standard deviation of the outer diameter of the multi-walled carbon nanotube (A) may be 4 nm or less, and from the viewpoint of ease of dispersion and hue, it is preferably 3 nm or less, more preferably 2.5 nm or less. Further, the standard deviation of the outer diameter is preferably 0.7 nm or more, and more preferably 1.4 nm or more. Further, when the average outer diameter of the carbon nanotube is X [nm] and the standard deviation of the outer diameter of the carbon nanotube is ⁇ [nm], a resin composition having high jetness can be obtained, so that X ⁇ ⁇ [nm] is 5.0 nm ⁇ X ⁇ ⁇ ⁇ 14.0 nm is preferable.
  • X ⁇ 2 ⁇ [nm] is 2.0 nm ⁇ X ⁇ 2 ⁇ ⁇ 17.0 nm, and 2.5 nm ⁇ X ⁇ 2 ⁇ ⁇ 15. 5 nm is more preferable, and 3.0 nm ⁇ X ⁇ 2 ⁇ ⁇ 12.0 nm is still more preferable.
  • the outer diameter and average outer diameter of the multi-walled carbon nanotube (A) are obtained as follows. First, the multi-walled carbon nanotube (A) is observed and imaged with a transmission electron microscope. Next, in the observation photograph, arbitrary 300 multi-walled carbon nanotubes (A) are selected, and the respective outer diameters are measured. Next, the average outer diameter (nm) of the multi-walled carbon nanotube (A) is calculated as the number average of outer diameters.
  • the fiber length of the multi-walled carbon nanotube (A) of the present embodiment is preferably from 0.1 to 150 ⁇ m, more preferably from 1 to 10 ⁇ m, from the viewpoint of ease of dispersion and hue.
  • the carbon purity of the multi-walled carbon nanotube (A) is represented by the carbon atom content (% by mass) in the multi-walled carbon nanotube (A).
  • the carbon purity is preferably 85% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more with respect to 100% by mass of the multi-walled carbon nanotube (A).
  • the multi-walled carbon nanotube (A) usually exists as secondary particles.
  • the shape of the secondary particles may be, for example, a state in which multi-walled carbon nanotubes (A) that are general primary particles are intertwined in a complicated manner.
  • An aggregate of the multi-walled carbon nanotubes (A) may be used.
  • Secondary particles, which are aggregates of linear multi-walled carbon nanotubes (A) are easier to loosen than those intertwined.
  • the linear thing has a good dispersibility compared with the thing intertwined, it can be utilized suitably as a multi-walled carbon nanotube (A).
  • the multi-walled carbon nanotube (A) may be a carbon nanotube subjected to surface treatment.
  • the multi-walled carbon nanotube (A) may be a carbon nanotube derivative provided with a functional group represented by a carboxyl group.
  • a multi-walled carbon nano-nanotube (A) in which a substance typified by an organic compound, a metal atom, or fullerene is included can also be used.
  • the multi-walled carbon nanotube (A) of the present embodiment is preferably a carbon nanotube having a relatively small number of layers.
  • the half width of the multi-walled carbon nanotube (A) is obtained as follows. First, the multi-walled carbon nanotubes (A) are packed in a predetermined sample holder so that the surface is flat, set in a powder X-ray diffraction analyzer, and measured by changing the irradiation angle of the X-ray source from 5 ° to 80 °. . For example, CuK ⁇ rays are used as the X-ray source. The step width is 0.010 ° and the measurement time is 1.0 second. The multi-walled carbon nanotube (A) can be evaluated by reading the diffraction angle 2 ⁇ at which the peak appears.
  • a peak is usually detected when 2 ⁇ is around 26 °, and this is known to be a peak due to interlayer diffraction.
  • the multi-walled carbon nanotube (A) also has a graphite structure, a peak due to graphite interlayer diffraction is detected in the vicinity thereof.
  • the carbon nanotube has a cylindrical structure, its value is different from that of graphite.
  • a peak appears at a position where the value 2 ⁇ is 25 ° ⁇ 2 °, so that it can be determined that a composition having a multilayer structure is included instead of a single layer.
  • the peak appearing at this position is a peak due to interlayer diffraction of the multilayer structure
  • the number of layers of the multilayer carbon nanotube (A) can be determined. Since the single-walled carbon nanotube has only one layer, a peak does not appear at a position of 25 ° ⁇ 2 ° with the single-walled carbon nanotube alone. However, even single-walled carbon nanotubes are not 100% single-walled carbon nanotubes, and when multi-walled carbon nanotubes or the like are mixed, a peak may appear at a position where 2 ⁇ is 25 ° ⁇ 2 °. .
  • the layer structure can also be analyzed from the half width of the 25 ° ⁇ 2 ° peak detected by powder X-ray diffraction analysis. That is, it is considered that the number of multi-walled carbon nanotubes (A) is larger as the half width of this peak is smaller. Conversely, it is considered that the larger the half width of this peak, the smaller the number of carbon nanotube layers.
  • the multi-walled carbon nanotube (A) of the present embodiment has a maximum peak intensity in the range of 1560 to 1600 cm ⁇ 1 in the Raman spectrum as G and a maximum peak intensity in the range of 1310 to 1350 cm ⁇ 1 as D.
  • the G / D ratio is preferably 4.9 to 0.3, more preferably 2.0 to 0.3, and still more preferably 1.0 to 0.5.
  • the G / D ratio of the multi-walled carbon nanotube (A) is determined by Raman spectroscopy.
  • the Raman shift observed in the vicinity of 1590 cm ⁇ 1 in the Raman spectrum is called a G band derived from graphite, and the Raman shift observed in the vicinity of 1350 cm ⁇ 1 is called a D band derived from defects in amorphous carbon or graphite.
  • the wave number of Raman spectroscopic analysis may vary depending on the measurement conditions, the wave number specified here is specified as wave number ⁇ 10 cm ⁇ 1 .
  • the multi-walled carbon nanotube (A) is not particularly limited as long as the average outer diameter of the multi-walled carbon nanotube is 10 nm or less and the standard deviation of the outer diameter is 4 nm or less.
  • Carbon nanotubes manufactured in (1) may be used.
  • the multi-walled carbon nanotube (A) can be generally produced by a laser ablation method, an arc discharge method, a thermal CVD method, a plasma CVD method and a combustion method.
  • the multi-walled carbon nanotube (A) can be produced by causing a carbon source to contact with a catalyst at 500 to 1000 ° C. in an atmosphere having an oxygen concentration of 1% by volume or less.
  • a method including the following steps is preferable as the method for producing the multi-walled carbon nanotube (A).
  • any conventionally known source gas can be used as the carbon source.
  • hydrocarbon, carbon monoxide, alcohol, etc. are mentioned, It can use individually by 1 type or in combination of 2 or more types.
  • the carbon source preferably includes one or more selected from hydrocarbons and alcohols, and more preferably includes hydrocarbons.
  • the hydrocarbon include methane, propane, butane, acetylene, etc. Among them, ethylene is preferable.
  • the multi-walled carbon nanotube (A) When ethylene is used as the carbon source, it is preferable to produce the multi-walled carbon nanotube (A) by contacting the carbon source with the catalyst at 600 to 800 ° C. in an atmosphere having an oxygen concentration of 1% by volume or less. More preferably, the multi-walled carbon nanotube (A) is produced by reacting a carbon source with a catalyst at 650 to 750 ° C.
  • the amount of hydrocarbon may be appropriately changed according to the size of the reaction vessel and the amount of catalyst in the reaction vessel.
  • the amount of carbon nanotubes produced per gram of catalyst is Y (g), and the contact reaction time of the catalyst and hydrocarbon is determined. It is preferable to adjust the catalyst amount and / or the hydrocarbon flow rate so that Y / Z (g / min) satisfies 1.5 ⁇ Y / Z ⁇ 2.7 when Z (min) is set.
  • the source gas and the catalyst may contact with each other in an atmosphere having an oxygen concentration of 1% by volume or less.
  • the raw material gas may be contacted with the catalyst.
  • the atmosphere having an oxygen concentration of 1% by volume or less is not particularly limited, but an atmosphere of an inert gas typified by a rare gas such as argon gas and a nitrogen gas is preferable.
  • the reducing gas used for the activation of the catalyst hydrogen or ammonia can be used, but is not limited thereto.
  • hydrogen is particularly preferable.
  • the catalyst various conventionally known metals can be used. Specifically, it is a metal oxide obtained by mixing and / or pulverizing an active ingredient typified by cobalt, nickel or iron and a catalyst carrier typified by magnesium, aluminum or silicon. In particular, a metal oxide obtained by mixing and / or grinding a metal containing cobalt as an active component and magnesium as a catalyst support is preferable.
  • cobalt as the active component and magnesium as the catalyst support, it is easy to obtain multi-walled carbon nanotubes having an average outer diameter of 10 nm or less and a standard deviation of the outer diameter of 4 nm or less.
  • the catalyst carrier contains magnesium, preferably exhibits adsorption and catalytic activity, and can carry a catalyst metal on the surface of the catalyst carrier, and may be organic or inorganic.
  • magnesium compounds can be used as the catalyst support magnesium.
  • magnesium acetate tetrahydrate, magnesium hydroxide, or magnesium oxide is preferable to use.
  • the catalyst support in addition to magnesium, for example, silicon oxide, aluminum, basic aluminum acetate, aluminum bromide, aluminum chloride, aluminum hydroxide, aluminum lactate, aluminum oxide, zeolite, titanium oxide, zirconium, calcium oxide, oxidation It is preferable that titanium etc. are included.
  • catalytic activity can be improved by combining organic substances such as magnesium acetate and aluminum acetate with inorganic substances such as silicon oxide, aluminum oxide, zeolite, titanium oxide, zirconium, and magnesium oxide.
  • magnesium acetate tetrahydrate is used for the catalyst support, it is preferable to combine silicon oxide, zeolite, and aluminum oxide. Particularly preferred are silicon oxide and zeolite.
  • Examples of the silicon oxide, zeolite, and aluminum oxide used for the catalyst carrier include AEROSIL (registered trademark) 50, AEROSIL (registered trademark) 130, AEROSIL (registered trademark) 200, and AEROSIL (registered trademark) manufactured by Nippon Aerosil Co., Ltd. (Trademark) 300, AEROSIL (registered trademark) 380, AEROXIDE (registered trademark) AluC, AEROXIDE (registered trademark) TiO2P25, Alumina C10W, C20, C40, C50, C500 manufactured by Nippon Light Metal Co., Ltd.
  • the content of silica and aluminum in the catalyst support is preferably 1 to 50 mol%, more preferably 1 to 25 mol%, when the magnesium content is 100 mol%.
  • the bulk density of silica or aluminum in the catalyst support is preferably 0.04 to 0.5 g / mL. When silica is used, it is more preferably 0.04 to 0.1 g / mL.
  • the bulk density is a bulk density before performing a treatment for reducing the volume such as deaeration and granulation, and is a value obtained by measurement according to JIS-K-5101.
  • the BET specific surface area of silica or alumina of the catalyst support is preferably 50 to 1000 m 2 / g, more preferably 150 to 350 m 2 / g.
  • the catalyst carrier preferably contains a cocatalyst having a function of enhancing the catalytic action of the catalyst.
  • a cocatalyst having a function of enhancing the catalytic action of the catalyst.
  • manganese, molybdenum, and tungsten are included. Particularly preferred are manganese and molybdenum.
  • the content of the promoter in the catalyst carrier is preferably 5 to 100 mol%, more preferably 5 to 30 mol%, when the magnesium content is 100 mol%.
  • manganese salt or molybdenum salt used for the catalyst carrier can be used as the manganese salt or molybdenum salt used for the catalyst carrier.
  • the raw materials for the catalyst carrier are mixed uniformly. Mixing may be wet or dry, but when using a water-insoluble salt, dry mixing is preferred. When the raw materials are mixed in a wet manner, it is preferable to mix after drying in the range of 100 to 200 ° C.
  • the catalyst carrier is preferably low in moisture.
  • the water content is preferably 5% by mass or less, and preferably 3% by mass or less.
  • the amount of water in the catalyst carrier can be measured using, for example, a heat drying moisture meter (MS-70, A & D Corporation).
  • the catalyst carrier preferably has a small particle size.
  • D50 ( ⁇ m) is preferably 1.0 to 10.0 ⁇ m, and more preferably 1.0 to 5.0 ⁇ m.
  • D90 ( ⁇ m) is preferably 5.0 to 70.0 ⁇ m, and more preferably 5.0 to 20.0 ⁇ m.
  • the particle size distributions D50 ( ⁇ m) and D90 ( ⁇ m) of the catalyst carrier are obtained as follows. First, the particle size distribution of the catalyst carrier is measured by a laser diffraction dry particle size distribution measuring device. In the measurement results, the particle size when the cumulative distribution is 50 vol% can be calculated as D50 ( ⁇ m), and the particle size when the cumulative distribution is 90 vol% can be calculated as D90 ( ⁇ m).
  • a method for reducing the particle size of the catalyst carrier various conventionally known methods can be used. Among these, it is preferable to use a pulverizer that can apply a compressive force, an impact force, a shearing force, and a frictional force to the catalyst carrier.
  • a pulverizer is a device that applies a force such as compressive force, impact force, shear force or friction force to a sample to refine the sample.
  • Equipment for miniaturization includes mortar, pin mill, hammer mill, pulverizer, attritor, jet mill, cutter mill, ball mill, bead mill, colloid mill, conical mill, disc mill, edge mill, one dark lasher, vibration mill, ultrasonic homogenizer, etc.
  • Preferred are an attritor, a pin mill, a hammer mill, a jet mill, a cutter mill, a ball mill, a bead mill, a one-dark lasher, and a vibration mill, which are easily composited, mechanically alloyed and amorphized.
  • Particularly preferable are an attritor, a ball mill, a bead mill, and a vibration mill using beads as a grinding medium.
  • Various conventionally known beads can be used as the grinding media.
  • steel beads, zirconia beads, alumina beads, and glass beads are used as the grinding media.
  • steel beads having high specific gravity or zirconia beads having high hardness are preferable to use steel beads having high specific gravity or zirconia beads having high hardness.
  • beads having a diameter of 1 to 10 mm from the viewpoint of workability. More preferably, 2-5 mm beads are used.
  • the catalyst is preferably prepared by uniformly mixing and / or pulverizing the active component, the catalyst carrier and the promoter component.
  • Various conventionally known methods can be used as the mixing and / or grinding method. Examples of the mixing and / or pulverizing apparatus include the same ones as described above.
  • the catalyst is preferably made into an oxide by mixing and pulverizing an active component, a catalyst carrier and a metal salt as a promoter component, followed by firing in air.
  • the firing temperature varies depending on the oxygen concentration at the time of firing, but is preferably 300 to 900 ° C., more preferably 300 to 750 ° C. in the presence of oxygen.
  • the catalyst is preferably calcined and then pulverized to a solid particle size of 50 ⁇ m or less, more preferably less than 20 ⁇ m.
  • a homogenous catalyst can be obtained by pulverizing the solid and making the particle diameter uniform.
  • the resin composition (B) of this embodiment contains at least a multi-walled carbon nanotube (A) and a resin (C).
  • the resin composition of this embodiment can be suitably used for forming a coating film with high jetness by containing the multi-walled carbon nanotube (A) of the present invention.
  • the equipment used for performing such processing is not particularly limited.
  • paint conditioner manufactured by Red Devil
  • ball mill ball mill
  • sand mill (“Dyno mill” manufactured by Shinmaru Enterprises)
  • attritor pearl mill
  • DCP mill ultrasonic homogenizer
  • MODEL 450DA manufactured by BRANSON
  • coball mill basket mill
  • homomixer homogenizer
  • homogenizer (“CLEAMIX” manufactured by M Technique)
  • wet jet mill (“GENUS PY” manufactured by Genus, “Nanomizer manufactured by Nanomizer) "), Hoover Mahler, 3 roll mills and extruders.
  • a high-speed stirrer can be used to obtain the resin composition (B).
  • the high-speed stirrer include, but are not limited to, homodisper (manufactured by PRIMIX), fillmix (manufactured by PRIMIX), dissolver (manufactured by Inoue Seisakusho) and hyper HS (manufactured by Ashizawa Finetech).
  • Resin (C) The resin (C) is selected from natural resins and synthetic resins. Resin (C) may be a single resin. As the resin (C), two or more kinds of resins may be selected from natural resins and synthetic resins. Two or more kinds of resins can be used in combination.
  • Natural resins include, but are not limited to, natural rubber, gelatin, rosin, shellac, polysaccharides and gilsonite.
  • Synthetic resins include phenolic resin, alkyd resin, petroleum resin, vinyl resin, olefin resin, synthetic rubber, polyester resin, polyamide resin, acrylic resin, styrene resin, epoxy resin, melamine resin, polyurethane resin, amino resin, Examples include, but are not limited to, amide resins, imide resins, fluorine resins, vinylidene fluoride resins, vinyl chloride resins, ABS resins, polycarbonates, silicone resins, nitrocellulose, rosin-modified phenol resins, and rosin-modified polyamide resins.
  • At least one of an acrylic resin and a polyester resin is included from the viewpoint of light resistance. At this time, it is preferable that at least one of acrylic resin and polyester resin is also contained in the base coating material.
  • the water-soluble resin used in the resin composition (B) of the present embodiment is preferably a water-soluble resin having an acid value of 20 to 70 mgKOH / g and a hydroxyl value of 20 to 160 mgKOH / g.
  • polyester resin, acrylic resin, and polyurethane resin are particularly preferably used as the water-soluble resin.
  • the polyester resin is a resin using polyhydric alcohol and polybasic acid as raw materials.
  • the acid value of the polyester resin is 20 to 70 mgKOH / g, preferably 25 to 60 mgKOH / g, particularly preferably 30 to 55 mgKOH / g.
  • the hydroxyl value of the polyester resin is 20 to 160 mgKOH / g, preferably 80 to 130 mgKOH / g.
  • an acid value means the mass (mg) of potassium hydroxide required in order to neutralize 1 g of resin.
  • the hydroxyl value refers to the mass (mg) of potassium hydroxide required to react the hydroxyl group of the resin with phthalic anhydride and neutralize 1 g of the resin with the acid required for the reaction.
  • the acid value and hydroxyl value of the resin can be measured according to the method of JIS K0070.
  • the water-soluble polyester resin can be easily obtained by a known esterification reaction.
  • the water-soluble polyester resin is a resin produced using a polyhydric alcohol and a polybasic acid as raw materials.
  • the raw material may be a compound constituting a normal polyester resin. You may add fats and oils to water-soluble polyester resin as needed.
  • polyhydric alcohol examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, diethylene glycol, Examples include, but are not limited to, propylene glycol, neopentyl glycol, triethylene glycol, hydrogenated bisphenol A, glycerin, trimethylol ethane, trimethylol propane, pentaerythritol and dipentaerythritol. These polyhydric alcohols may be used alone or in combination of two or more.
  • polybasic acid examples include phthalic anhydride, isophthalic acid, terephthalic acid, succinic anhydride, adipic acid, azelaic acid, sebacic acid, maleic anhydride, fumaric acid, itaconic acid and trimellitic anhydride. However, it is not limited to these. These polybasic acids may be used alone or in combination of two or more.
  • the fats and oils include soybean oil, coconut oil, safflower oil, bran oil, castor oil, persimmon oil, linseed oil and tall oil, and fatty acids obtained therefrom. It is not limited.
  • the acrylic resin is a resin made from a vinyl monomer.
  • the acid value of the acrylic resin is 20 to 70 mgKOH / g, preferably 22 to 50 mgKOH / g, particularly preferably 23 to 40 mgKOH / g.
  • the acrylic resin is a water-soluble resin having a hydroxyl value of 20 to 160 mgKOH / g, preferably 80 to 150 mgKOH / g.
  • the water-soluble acrylic resin can be easily obtained by a known solution polymerization method or other methods.
  • the water-soluble acrylic resin is a resin produced using a vinyl monomer as a raw material.
  • the raw material may be a compound constituting a normal acrylic resin.
  • the organic peroxide is used as an initiator for the polymerization reaction.
  • vinyl monomers include ethylenically unsaturated carboxylic acids represented by acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid; methyl, ethyl, propyl, butyl, isobutyl, tertiary butyl, Alkyl esters of acrylic acid or methacrylic acid represented by 2-ethylhexyl, lauryl, cyclohexyl, stearyl; acrylics represented by 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, polyethylene glycol having a molecular weight of 1000 or less Hydroxyalkyl esters of acid or methacrylic acid; amides of acrylic acid or methacrylic acid; or alkyl ethers thereof include, but are not limited to.
  • Examples include, but are not limited to, acrylamide, methacrylamide, N-methylol acrylamide, diacetone acrylamide, diacetone methacrylamide, N-methoxymethyl acrylamide, N-methoxymethyl methacrylamide and N-butoxymethyl acrylamide.
  • glycidyl (meth) acrylate having an epoxy group can be mentioned.
  • monomers containing a tertiary amino group include, but are not limited to, N, N-dimethylaminoethyl (meth) acrylate and N, N-diethylaminoethyl (meth) acrylate.
  • aromatic monomers represented by styrene, ⁇ -methylstyrene, vinyltoluene and vinylpyridine; acrylonitrile; methacrylonitrile; vinyl acetate; and mono- or dialkyl esters of maleic acid or fumaric acid It is not limited to.
  • Organic peroxides include, for example, acyl peroxides (eg, benzoyl peroxide), alkyl hydroperoxides (eg, t-butyl hydroperoxide and p-methane hydroperoxide), and dialkyl peroxides ( Examples thereof include, but are not limited to, di-t-butyl peroxide.
  • acyl peroxides eg, benzoyl peroxide
  • alkyl hydroperoxides eg, t-butyl hydroperoxide and p-methane hydroperoxide
  • dialkyl peroxides examples thereof include, but are not limited to, di-t-butyl peroxide.
  • the polyurethane resin is a resin made from polyol and polyisocyanate.
  • the acid value of the polyurethane resin is 20 to 70 mgKOH / g, preferably 22 to 50 mgKOH / g, particularly preferably 23 to 35 mgKOH / g.
  • the hydroxyl value of the polyurethane resin is 20 to 160 mgKOH / g, preferably 25 to 50 mgKOH / g.
  • the water-soluble polyurethane resin can be easily obtained by addition polymerization of polyol and polyisocyanate.
  • the raw material may be a polyol and a polyisocyanate constituting an ordinary polyurethane resin.
  • Polyols include, but are not limited to, polyester polyols, polyether polyols, and acrylic polyols.
  • Polyisocyanates include phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, bisphenylene diisocyanate, naphthylene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, cyclopentylene diisocyanate, cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, dicyclohexylmethane diisocyanate.
  • Water-soluble polyester resin, acrylic resin, and polyurethane resin are rendered water-soluble by neutralization with a basic substance.
  • a basic substance of the quantity which can neutralize 40 mol% or more of the acidic group contained in water-soluble resin.
  • the basic substance include ammonia, dimethylamine, trimethylamine, diethylamine, triethylamine, propylamine, triethanolamine, N-methylethanolamine, N-aminoethylethanolamine, N-methyldiethanolamine, morpholine, monoisopropanol.
  • Examples include, but are not limited to amines, diisopropanolamine, and dimethylethanolamine.
  • the number average molecular weight of the water-soluble resin is not particularly limited.
  • the number average molecular weight is preferably 500 to 50,000, more preferably 800 to 25,000, and particularly preferably 1,000 to 12,000.
  • the resin (C) is classified into a curable type and a lacquer type.
  • a curable resin is preferably used.
  • the curable resin (C) is used with an amino resin typified by melamine resin or a crosslinking agent typified by (block) polyisocyanate compound amine compound, polyamide compound and polyvalent carboxylic acid. After the resin (C) and the cross-linking agent are mixed, the curing reaction proceeds by being heated or at room temperature.
  • resin of the type which does not have curability as resin for film-forming it can also use together with resin of the type which has curability.
  • the resin composition (B) of this embodiment should just contain the said multi-walled carbon nanotube (A) and resin (C) at least, and may contain another component as needed. is there. Examples of other components include a dispersant and a solvent.
  • a surfactant As the dispersant, a surfactant, a resin-type dispersant, or an organic pigment derivative can be used. Surfactants are mainly classified into anionic, cationic, nonionic and amphoteric. Depending on the properties required for the dispersion of the multi-walled carbon nanotube (A), a suitable type of dispersant can be appropriately used in a suitable blending amount. A preferable dispersant is a resin-type dispersant.
  • an anionic surfactant the kind is not particularly limited.
  • sodium dodecylbenzenesulfonate sodium laurate sulfate, polyoxyethylene lauryl ether sodium sulfate, polyoxyethylene nonylphenyl ether sulfate ester salt, and sodium salt of ⁇ -naphthalenesulfonic acid formalin condensate.
  • sodium dodecylbenzenesulfonate sodium laurate sulfate
  • polyoxyethylene lauryl ether sodium sulfate polyoxyethylene nonylphenyl ether sulfate ester salt
  • sodium salt of ⁇ -naphthalenesulfonic acid formalin condensate sodium dodecylbenzenesulfonate
  • sodium laurate sulfate polyoxyethylene lauryl ether sodium sulfate
  • polyoxyethylene nonylphenyl ether sulfate ester salt sodium salt of ⁇ -naphthalenesulfonic acid formalin condensate.
  • examples of the cationic surfactant include alkylamine salts and quaternary ammonium salts. Specifically, stearylamine acetate, trimethyl cocoammonium chloride, trimethyl tallow ammonium chloride, dimethyl dioleyl ammonium chloride, methyl oleyl diethanol chloride, tetramethyl ammonium chloride, lauryl pyridinium chloride, lauryl pyridinium bromide, lauryl pyridinium disulfate, cetyl pyridinium bromide , 4-alkylmercaptopyridine, poly (vinylpyridine) -dodecyl bromide and dodecylbenzyltriethylammonium chloride.
  • amphoteric surfactants include, but are not limited to, aminocarboxylates.
  • Nonionic surfactants include, but are not limited to, polyoxyethylene alkyl ethers, polyoxyalkylene derivatives, polyoxyethylene phenyl ethers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, and alkyl allyl ethers. Specific examples include, but are not limited to, polyoxyethylene lauryl ether, sorbitan fatty acid ester, and polyoxyethylene octyl phenyl ether.
  • the selected surfactant is not limited to a single surfactant. For this reason, it is also possible to use 2 or more types of surfactant in combination. For example, a combination of an anionic surfactant and a nonionic surfactant, or a combination of a cationic surfactant and a nonionic surfactant can be used.
  • the blending amount at that time is preferably set to a suitable blending amount for each surfactant component.
  • a combination a combination of an anionic surfactant and a nonionic surfactant is preferable.
  • the anionic surfactant is preferably a polycarboxylate.
  • the nonionic surfactant is preferably polyoxyethylene phenyl ether.
  • resin-type dispersant examples include polyurethane; polyacrylate ester of polyacrylate; unsaturated polyamide, polycarboxylic acid, polycarboxylic acid (partial) amine salt, polycarboxylic acid ammonium salt, and polycarboxylic acid alkylamine salt.
  • Oil-based dispersant water-soluble such as (meth) acrylic acid-styrene copolymer, (meth) acrylic acid- (meth) acrylic ester copolymer, styrene-maleic acid copolymer, polyvinyl alcohol and polyvinylpyrrolidone Resin or water-soluble polymer compound; Ester resin; modified polyacrylate resin, ethylene oxide / propylene oxide addition compound; and phosphate ester-based resin used but not limited thereto. These can be used alone or in admixture of two or more, but are not necessarily limited thereto.
  • resin type dispersants having an acidic functional group such as polycarboxylic acid are preferable. This is because such a resin-type dispersant reduces the viscosity of the dispersion composition with a small addition amount and increases the spectral transmittance of the dispersion composition.
  • the resin-type dispersant is preferably used in an amount of about 3 to 300% by mass with respect to the multi-walled carbon nanotube (A). From the viewpoint of film formability, it is more preferable to use about 5 to 100% by mass.
  • resin-type dispersants include ANTI-TERRA (registered trademark) -U / U100, ANTI-TERRA (registered trademark) -204, ANTI-TERRA (registered trademark) -250 *, DISPERBYK (by Big Chemie Japan) Registered trademark), DISPERBYK (registered trademark) -102, DISPERBYK (registered trademark) -103, DISPERBYK (registered trademark) -106, DISPERBYK (registered trademark) -108, DISPERBYK (registered trademark) -109, DISPERBYK (registered trademark)- 110/111, DISPERBYK (registered trademark) -118 *, DISPERBYK (registered trademark) -140, DISPERBYK (registered trademark) -142, DISPERBYK (registered trademark) -145, DISPERBYK (registered trademark)-
  • organic pigment derivative examples include an organic dye derivative having an acidic functional group represented by the following general formula (2) and a triazine derivative having an acidic functional group represented by the following general formula (1).
  • Q 1 an organic dye residue, an anthraquinone residue, an optionally substituted heterocyclic ring, or an optionally substituted aromatic ring
  • R 1 —O—R 2 , —NH —R 2 , halogen group, —X 1 —R 2 , —X 2 —Y 1 —Z 1
  • R 2 represents a hydrogen atom or an alkyl group or alkenyl group which may have a substituent
  • X 1 -NH -, - O -, - CONH -, - SO 2 NH -, - CH 2 NH -, - CH 2 NHCOCH 2 NH- or -X 3 -Y 1 -X 4 -
  • X 3 and X 4 each independently represents —NH— or —O—.
  • X 2 -CONH -, - SO 2 NH -, - CH 2 NH -, - NHCO- or -NHSO 2 - Y 1 : an alkylene group having 1 to 20 carbon atoms which may have a substituent, an alkenylene group which may have a substituent, or an arylene group which may have a substituent Z 1 :- SO 3 M, —COOM (M represents one equivalent of a monovalent to trivalent cation)
  • the general formula (1) phthalocyanine as organic colorant residue dye in to Q 1, azo dyes, quinacridone dyes, dioxazine dyes, anthrapyrimidine pigments, anthanthrone pigments, indanthrone pigments, flavanthrone And pigments or dyes such as trichromatic pigments and triphenylmethane pigments.
  • heterocyclic ring or aromatic ring in Q 1 of the general formula (1) examples include thiophene, furan, pyridine, pyrazole, pyrrole, imidazole, isoindoline, isoindolinone, benzimidazolone, benzthiazole, benztriazole, and indole.
  • phthalocyanine as organic pigment residue at Q 2 (2) dyes, azo dyes, quinacridone dyes, dioxazine dyes, anthrapyrimidine pigments, anthanthrone pigments, indanthrone pigments, flavanthrone And pigments or dyes such as dyes, perylene dyes, perinone dyes, thioindico dyes, isoindolinone dyes, and triphenylmethane dyes.
  • Resin composition (B) may contain a solvent.
  • a solvent any of an aqueous solvent and an organic solvent can be used.
  • An aqueous solvent is water or a solvent containing water.
  • a water-soluble liquid can be used.
  • water-soluble liquids include, for example, acetaldehyde, propylene oxide, acetone, pyridine, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, acetic acid, propionic acid, acrylic acid, ethylene glycol, glycerin and the like.
  • the water-soluble flammable liquid represented is mentioned.
  • organic solvents organic solvents having a boiling point of 50 to 250 ° C. are easy to use. Such an organic solvent is excellent in workability during coating and drying before and after curing.
  • Specific examples of the solvent include alcohol solvents typified by methanol, ethanol and isopropyl alcohol; ketone solvents typified by acetone, butyl diglycol acetate and MEK (methyl ethyl ketone); typified by ethyl acetate and butyl acetate.
  • Ester solvents such as dibutyl ether, ethylene glycol, and monobutyl ether; and dipolar aprotic solvents such as N-methyl-2-pyrrolidone, but are not limited thereto. These solvents can be used alone or in admixture of two or more.
  • Aromatic hydrocarbon solvents represented by toluene, xylene, Solvesso # 100 (manufactured by TonenGeneral) and Solvesso # 150 (manufactured by TonenGeneral); aliphatic carbonization represented by hexane, heptane, octane and decane Hydrogen solvents; or amide solvents represented by cellosolve acetate, ethyl cellosolve, and butyl cellosolve can also be used. These solvents can also be used alone or in admixture of two or more.
  • an additive can be appropriately blended with the solvent as necessary within a range not impairing the object of the present embodiment.
  • additives include pigments, wetting and penetrating agents, anti-skinning agents, ultraviolet absorbers, antioxidants, crosslinking agents, preservatives, antifungal agents, viscosity modifiers, pH adjusters, leveling agents, and antifoaming agents. However, it is not limited to these.
  • the coating film of the present embodiment is a coating film formed from the resin composition (B) of the present embodiment, and includes a multi-walled carbon nanotube (A) and a resin (C). Although the base material (E) is provided under this coating film (D), you may remove a base material after coating film (D) preparation.
  • the coating film (D) of this embodiment has high jetness by including the multi-walled carbon nanotube (A).
  • the coating film (D) of this embodiment can be formed by applying the resin composition (B) by a general technique.
  • Specific techniques include wet coating methods including casting, spin coating, dip coating, bar coating, spraying, blade coating, slit die coating, gravure coating, reverse coating, screen printing, mold coating, print transfer, and inkjet. Can be, but is not limited to.
  • a coating film can be formed by coating the resin composition (B) on the substrate (E) by the above technique.
  • the addition rate of the multi-walled carbon nanotube (A) in a coating film (D) is preferably in the range of 0.1 to 30% by mass, more preferably 1 to 25% by mass, and still more preferably 2 to 15% by mass. In particular, if the addition rate is within such a range, a coating film having excellent jetness can be obtained.
  • carbon black can be added to the coating film (D) in addition to the multi-walled carbon nanotube (A).
  • Specific examples of carbon black include ketjen black, acetylene black, furnace black and channel black.
  • Carbon black may be by-produced when producing a synthesis gas containing hydrogen and carbon monoxide by partially oxidizing a hydrocarbon typified by naphtha in the presence of hydrogen and oxygen. Carbon black may be obtained by oxidizing or reducing such a by-product. The above is not intended to limit the carbon black according to the present invention. These carbon blacks may be used alone or in combination of two or more.
  • carbon black having an average particle diameter of 20 nm or less and a DBP oil absorption of 80 mL / 100 g or less is preferably used.
  • the DBP oil absorption represents the amount (mL) of dibutyl phthalate (DBP) that can be contained per 100 g of carbon black.
  • the DBP oil absorption is a measure for quantifying the structure of carbon black.
  • the structure is a complex aggregated form due to chemical or physical bonding between carbon black particles.
  • the average particle diameter of carbon black is obtained in the same manner as the outer diameter of the multi-walled carbon nanotube (A). Specifically, carbon black is observed and imaged with a transmission electron microscope. Next, in the observation photograph, arbitrary 300 carbon blacks are selected, and the respective particle sizes are measured. Next, the average particle diameter (nm) of carbon black is calculated as the number average of the particle diameter.
  • the amount of carbon black used is preferably 1 to 25 parts by mass, more preferably 1 to 10 parts by mass, and still more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the multi-walled carbon nanotube (A).
  • the film thickness of the coating film (D) is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more.
  • a clear layer may be further formed on the coating film (D).
  • a coating film (D) having gloss, light resistance and jetness is obtained.
  • the lightness (L) exhibited by the coating film (D) is preferably 5.7 or less, more preferably 5.5 or less, still more preferably 5.3 or less, and 5.2 or less. It is particularly preferred.
  • This lightness (L) is obtained by measuring using a color difference meter. The measurement is performed on the surface of the coating film (D) from the side on which the coating film (D) is formed.
  • a color difference meter you may use NIPPONDENSHOKU Co., Ltd. and SpectroColorMeterSE6000.
  • the 60 ° specular gloss of the coating film (D) is preferably 60 or more, more preferably 80 or more, and even more preferably 85 or more.
  • a gloss meter GM-26D manufactured by Murakami Color Research Laboratory may be used as the gloss meter.
  • the base material (E) used in order to form the coating film (D) in this embodiment is not specifically limited.
  • the material of the substrate (E) metals represented by iron, aluminum and copper or alloys thereof; inorganic materials represented by glass, cement and concrete; polyethylene resin, polypropylene resin, ethylene-vinyl acetate copolymer Resin, polyamide resin, acrylic resin, vinylidene chloride resin, polycarbonate resin, polyurethane resin and epoxy resin represented by plastics; plastic materials represented by various FRPs; wood; and fiber materials (including paper and cloth) Examples include, but are not limited to, natural or synthetic materials.
  • metals such as iron, aluminum and copper or their alloys are preferred.
  • a resin containing a pigment typified by carbon black and carbon nanotubes is also preferable.
  • the shape of the substrate (E) may be a plate shape, a film shape, a sheet shape, or a molded body shape.
  • an injection molding method such as an insert injection molding method, an in-mold molding method, an overmold molding method, a two-color injection molding method, a core back injection molding method, and a sandwich injection molding method; Typified by extrusion, multilayer extrusion, coextrusion and extrusion coating; and multilayer blow molding, multilayer calendering, multilayer press molding, slush molding and melt casting.
  • Other molding methods can be used.
  • Multi-walled carbon nanotube (CNT) dispersion F
  • the preparation method of the resin composition (B) of this embodiment mentioned above is not specifically limited, As one method, the method of preparing CNT dispersion liquid (F) and adding resin to the said CNT dispersion liquid (F) is mentioned. Can be mentioned.
  • the CNT dispersion liquid (F) contains at least the multi-walled carbon nanotube (A) and a dispersant, and usually further contains a solvent.
  • the dispersion liquid (F) does not contain the resin (C).
  • the CNT dispersion liquid (F) it is preferable to perform a treatment of dispersing the multi-walled carbon nanotubes (A) in a solvent.
  • the equipment used for performing such processing is not particularly limited.
  • paint conditioner manufactured by Red Devil
  • ball mill ball mill
  • sand mill (“Dyno mill” manufactured by Shinmaru Enterprises)
  • attritor pearl mill
  • DCP mill ultrasonic homogenizer
  • MODEL 450DA manufactured by BRANSON
  • coball mill basket mill
  • homomixer homogenizer
  • homogenizer (“CLEAMIX” manufactured by M Technique)
  • wet jet mill (“GENUS PY” manufactured by Genus, “Nanomizer manufactured by Nanomizer)
  • Hoover Mahler 3 roll mills, and extruders.
  • a surfactant As the dispersant that the CNT dispersion liquid (F) has, a surfactant, a resin-type dispersant, or an organic pigment derivative can be used.
  • Surfactants are mainly classified into anionic, cationic, nonionic and amphoteric.
  • a preferable dispersant is a resin-type dispersant. Since the specific example of a dispersing agent is the same as that of what was demonstrated by the said resin composition (B), description here is abbreviate
  • CNTs were placed on a Raman microscope (XploRA, manufactured by Horiba, Ltd.), and measurement was performed using a laser wavelength of 532 nm.
  • the measurement conditions were an acquisition time of 60 seconds, an integration count of 2 times, a neutral density filter of 10%, an objective lens magnification of 20 times, a diffraction grating score of 1200 lines / minute, a confocal hole 500, and a slit width of 100 ⁇ m.
  • CNTs for measurement were collected on a slide glass and flattened using a spatula.
  • the maximum peak intensity is G in the range of 1560 to 1600 cm ⁇ 1 in the spectrum
  • the maximum peak intensity is D in the range of 1310 to 1350 cm ⁇ 1
  • the ratio of G / D is the G / The D ratio was used.
  • CNTs were installed in an X-ray diffractometer (Ultima 2100, manufactured by Rigaku Corporation) and operated from 1.5 ° to 80 ° for analysis.
  • the X-ray source is CuK ⁇ ray.
  • the step width was 0.01 ° and the measurement time was 1.0 second.
  • ⁇ Preparation of CNT dispersion> Weigh 0.2 g of carbon nanotubes in a 450 mL SM sample bottle (manufactured by Sansho Co., Ltd.) and 0.2 g of polyvinylpyrrolidone (manufactured by Tokyo Chemical Industry Co., Ltd.) as a resin-type dispersant, add 200 mL of isopropyl alcohol, Using a sonic homogenizer (Advanced Digital Sonifer (registered trademark), MODEL 450DA, manufactured by BRANSON), dispersion treatment was carried out at 50% amplitude for 5 minutes under ice cooling to prepare a CNT dispersion.
  • a sonic homogenizer Advanced Digital Sonifer (registered trademark), MODEL 450DA, manufactured by BRANSON
  • FIGS. 1 to 8 are graphs showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes of Examples 1, 4 and 12 to 13 and Comparative Examples 1 to 4 described later.
  • Catalyst for CNT synthesis (A) Weigh 60 parts of cobalt hydroxide, 138 parts of magnesium acetate tetrahydrate, and 16.2 parts of manganese acetate in a heat-resistant container and dry them at a temperature of 170 ⁇ 5 ° C. for 1 hour using an electric oven. After evaporating, the SPEED dial was adjusted to 3 using a pulverizer (One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.), and pulverized for 1 minute. Then, using a pulverizer (One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.), adjust the SPPED dial to 2 and mix for 30 seconds for each pulverized powder.
  • a pulverizer One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.
  • Catalyst precursor for CNT synthesis (A) was made. Then, after transferring the catalyst precursor for CNT synthesis (A) to a heat-resistant container, using a muffle furnace (FO510, manufactured by Yamato Scientific Co., Ltd.), and firing for 30 minutes in an air atmosphere at 450 ⁇ 5 ° C., The catalyst for CNT synthesis (A) was obtained by pulverization in a mortar.
  • a muffle furnace (FO510, manufactured by Yamato Scientific Co., Ltd.)
  • CNT synthesis catalyst (B) 60 parts of cobalt hydroxide, 138 parts of magnesium acetate tetrahydrate and 8.1 parts of manganese carbonate were weighed in a heat-resistant container and dried using an electric oven at a temperature of 170 ⁇ 5 ° C. for 1 hour. After evaporating, the SPEED dial was adjusted to 3 using a pulverizer (One Dark Rusher WC-3, Osaka Chemical Co., Ltd.) and pulverized for 1 minute. Then, using a pulverizer (One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.), adjust the SPEED dial to 2 and mix for 30 seconds to pulverize each pulverized powder.
  • a pulverizer One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.
  • Catalyst precursor for CNT synthesis (B) was made. Then, after transferring the catalyst precursor for CNT synthesis (B) to a heat-resistant container, using a muffle furnace (FO510, manufactured by Yamato Scientific Co., Ltd.), and firing for 30 minutes in an air atmosphere at 450 ⁇ 5 ° C., A CNT synthesis catalyst (B) was obtained by pulverization in a mortar.
  • a muffle furnace (FO510, manufactured by Yamato Scientific Co., Ltd.
  • Catalyst for CNT synthesis (C) Weigh 60 parts of cobalt hydroxide, 138 parts of magnesium acetate tetrahydrate, 16.2 parts of manganese carbonate, and 4.0 parts of zeolite (HSZ-940HOA, manufactured by Tosoh Corporation) in a heat-resistant container. After drying for 1 hour at a temperature of 170 ⁇ 5 ° C. and evaporating moisture, the SPEED dial was adjusted to 3 using a pulverizer (One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.). Milled for minutes.
  • a pulverizer One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.
  • Catalyst for CNT synthesis 60 parts of cobalt hydroxide, 138 parts of magnesium acetate tetrahydrate, 16.2 parts of manganese carbonate, 4.0 parts of Aerosil (AEOSIL (registered trademark) 200, manufactured by Nippon Aerosil Co., Ltd.) are weighed in a heat-resistant container. After drying for 1 hour at a temperature of 170 ⁇ 5 ° C. using an electric oven to evaporate the moisture, the SPEED dial is set to 3 using a pulverizer (One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.). Adjust and grind for 1 minute.
  • AEOSIL registered trademark
  • Catalyst for CNT synthesis (E) Weigh 60 parts of cobalt hydroxide, 166 parts of magnesium acetate tetrahydrate, 16.2 parts of manganese carbonate, and 4.0 parts of Aerosil (AEOSIL (registered trademark) 200, manufactured by Nippon Aerosil Co., Ltd.) in a heat-resistant container. After drying for 1 hour at a temperature of 170 ⁇ 5 ° C. using an electric oven to evaporate the moisture, the SPEED dial is set to 3 using a pulverizer (One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.). Adjust and grind for 1 minute.
  • AEOSIL registered trademark
  • CNT synthesis catalyst (F) 60 parts of cobalt hydroxide, 138 parts of magnesium acetate tetrahydrate and 16.2 parts of manganese acetate are weighed in one heat-resistant container and dried at 170 ⁇ 5 ° C. for 1 hour using an electric oven. After evaporating the water, the particle size was made uniform through 80 mesh to prepare a catalyst precursor (F) for CNT synthesis.
  • the catalyst precursor for CNT synthesis (F) was transferred to a heat-resistant container, and after using a muffle furnace (FO510, manufactured by Yamato Scientific Co., Ltd.) and calcined for 30 minutes in an air atmosphere at 450 ⁇ 5 ° C., A CNT synthesis catalyst (F) was obtained by pulverization in a mortar.
  • a muffle furnace (FO510, manufactured by Yamato Scientific Co., Ltd.) and calcined for 30 minutes in an air atmosphere at 450 ⁇ 5 ° C.
  • Example 1 Production of CNT (A) 2.0 g of the CNT synthesis catalyst (A) was sprayed on the center of a horizontal reaction tube capable of being pressurized and heated by an external heater and having an internal volume of 10 L. A quartz glass bakeware was installed. Exhaust was performed while injecting nitrogen gas, the air in the reaction tube was replaced with nitrogen gas, and the atmosphere in the horizontal reaction tube was adjusted to an oxygen concentration of 1 vol% or less. Subsequently, it heated with the external heater and it heated until the center temperature in a horizontal type reaction tube became 680 degreeC. After reaching 680 ° C., propane gas as a carbon source was introduced into the reaction tube at a flow rate of 2 L / min, and contact reaction was performed for 1 hour. After completion of the reaction, the gas in the reaction tube was replaced with nitrogen gas, the gas in the reaction tube was replaced with nitrogen gas, and the temperature of the reaction tube was cooled to 100 ° C. or less to obtain CNT (A). .
  • CNT (H) to (I) Multi-walled carbon nanotubes (NC7000, manufactured by Nanosil Corporation) were designated as CNT (H), and multi-walled carbon nanotubes (Flotube 9000, produced by Cano Corporation) were designated as CNT (I).
  • Table 1 shows the evaluation results of CNTs (A) to (I).
  • the average outer diameter of CNT was expressed as X, and the standard deviation of the CNT outer diameter was expressed as ⁇ .
  • Example 6 Production of CNT resin composition and coating film 5.6 g of CNT (A), resin type dispersant (DISPERBYK (registered trademark) -111, manufactured by BYK Chemie, nonvolatile content 100%) 11.2 g as a dispersant , 48.8 g of Solvesso 150 (manufactured by TonenGeneral Sekiyu KK), 73.5 g of toluene, 73.5 g of xylene, and 48.8 g of butyl acetate as a solvent are added to a plastic container (Descup 1L, manufactured by Tokyo Glass Instrument Co., Ltd.) (TK KHOMODERS MODEL2.5, manufactured by Primix Co., Ltd.) was used, and the mixture was stirred for 5 minutes at a rotation speed of 1500 rpm.
  • a plastic container Descup 1L, manufactured by Tokyo Glass Instrument Co., Ltd.
  • TK KHOMODERS MODEL2.5 manufactured by Primix Co., Ltd.
  • CNT coarse dispersion (A) 100 parts of this CNT coarse dispersion (A) and 175 parts of zirconia beads (bead diameter 1.0 mm ⁇ ) are charged into a 200 mL SM sample bottle (manufactured by Sansho Co., Ltd.) and dispersed for 3 hours using a paint conditioner manufactured by Red Devil. Processing was performed to obtain a CNT dispersion (A).
  • the CNT resin composition (A) was spray-coated on one side so that the film thickness after drying was 20 ⁇ m. Spray coating was performed using an air spray gun (W-61-2G manufactured by Anest Iwata). The coated PET film was allowed to stand at room temperature for 30 minutes and then dried at 140 ⁇ 5 ° C. for 30 minutes to produce a CNT coating film (A).
  • Example 7 to 10 Comparative Examples 5 to 8 CNT resin compositions (B) to (I), CNT dispersions (B) to (I), and CNT coating film (B) by the same method as in Example 6 except that the CNTs listed in Table 2 were changed. To (I) were obtained.
  • Table 3 shows the evaluation results of the CNT coating films produced in Examples 6 to 10 and Comparative Examples 5 to 8.
  • the jet blackness evaluation criteria were as follows. When the lightness (L) of the coating film is 5.5 or less and the 60 ° specular gloss is 80 or more ++ (excellent), the brightness (L) of the coating film is 5.7 or less and the 60 ° specular gloss is 80 or more (good) ), A lightness (L) of the coating film exceeding 5.7 or a 60 ° specular gloss of less than 80 was defined as “-” (bad).
  • Table 4 shows the evaluation results of the CB coating film produced in Comparative Example 9.
  • the jet blackness evaluation criteria were as follows. When the lightness (L) of the coating film is 5.5 or less and the 60 ° specular gloss is 80 or more ++ (excellent), the brightness (L) of the coating film is 5.7 or less and the 60 ° specular gloss is 80 or more (good) ), A lightness (L) of the coating film exceeding 5.7 or a 60 ° specular gloss of less than 80 was defined as “-” (bad).
  • the coating films of Examples 6 to 10 using the multi-walled carbon nanotubes of Examples 1 to 5 having an average outer diameter of 10 nm or less and a standard deviation of the outer diameter of 4 nm or less are as follows: It was revealed that the lightness was particularly low and the jet blackness was superior to the coating films of Comparative Examples 5 to 8 using multi-walled carbon nanotubes having a large outer diameter and Comparative Example 9 using carbon nanoblack.
  • Example of production of catalyst for CNT synthesis A catalyst carrier for CNT synthesis, a cobalt composition, and a catalyst for CNT synthesis used in each of Examples and Comparative Examples described later were prepared by the following methods.
  • Magnesium acetate dry pulverized product 45.8 parts, manganese carbonate 8.1 parts, silicon oxide (SiO 2 , made by Nippon Aerosil Co., Ltd .: AEROSIL (registered trademark) 200), steel beads (bead diameter 2.0 mm ⁇ ) 200
  • AEROSIL registered trademark
  • the part was charged into an SM sample bottle (manufactured by Sansho Co., Ltd.), and pulverized and mixed for 30 minutes using a paint conditioner manufactured by Red Devil. Thereafter, using a stainless steel sieve, the pulverized and mixed powder and the steel beads (bead diameter 2.0 mm ⁇ ) were separated to obtain a catalyst support for CNT synthesis.
  • a pulverizer One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.
  • the catalyst precursor for CNT synthesis is transferred to a heat-resistant container, baked in a muffle furnace (FO510, manufactured by Yamato Scientific Co., Ltd.) for 30 minutes in an air atmosphere at 450 ⁇ 5 ° C., and then pulverized in a mortar A catalyst for CNT synthesis was obtained.
  • a muffle furnace (FO510, manufactured by Yamato Scientific Co., Ltd.) for 30 minutes in an air atmosphere at 450 ⁇ 5 ° C.
  • Example 11 Production of CNT (J) Quartz glass bakeware in which 1 g of the CNT synthesis catalyst was dispersed in the central part of a horizontal reaction tube capable of being pressurized and heated by an external heater and having an internal volume of 10 L Was installed. Evacuation was performed while injecting nitrogen gas, the air in the reaction tube was replaced with nitrogen gas, and heating was performed until the atmospheric temperature in the horizontal reaction tube reached 710 ° C. After reaching 710 ° C., ethylene gas as hydrocarbon was introduced into the reaction tube at a flow rate of 2 L / min, and contact reaction was performed for 7 minutes. After completion of the reaction, the gas in the reaction tube was replaced with nitrogen gas, and the reaction tube was cooled to 100 ° C. or lower and taken out to obtain CNT (J).
  • Example 12 to 16 CNTs (K) to (O) were obtained in the same manner as in Example 11 except that the catalyst amount, temperature, and reaction time listed in Table 5 were changed.
  • Table 8 shows the evaluation results of the CNTs produced in Examples 11 to 21.
  • Example 22 Preparation of CNT resin composition and coating film 5.6 g of CNT (K), 11.2 g of resin type dispersant (DISPERBYK (registered trademark) -111, manufactured by BYK Chemie, nonvolatile content 100%) as a dispersant , 48.8 g of Solvesso 150 (manufactured by TonenGeneral Sekiyu KK), 73.5 g of toluene, 73.5 g of xylene, and 48.8 g of butyl acetate as a solvent are added to a plastic container (Descup 1L, manufactured by Tokyo Glass Instrument Co., Ltd.) (TK KHOMODERS MODEL2.5, manufactured by Primix Co., Ltd.) was used, and the mixture was stirred for 5 minutes at a rotation speed of 1500 rpm.
  • a plastic container Descup 1L, manufactured by Tokyo Glass Instrument Co., Ltd.
  • TK KHOMODERS MODEL2.5 manufactured by Primix Co., Ltd.
  • TK HOMOMIXER MARKII MODEL2.5 manufactured by Primix Co., Ltd.
  • a dispersion treatment was performed for 5 minutes at a rotational speed of 5000 rpm to obtain a CNT coarse dispersion (K).
  • 100 parts of the CNT coarse dispersion (K) and 175 parts of zirconia beads (bead diameter 1.0 mm ⁇ ) are charged into a 200 mL SM sample bottle (manufactured by Sansho Co., Ltd.) and dispersed for 3 hours using a paint conditioner manufactured by Red Devil. Processing was performed to obtain a CNT dispersion A.
  • the CNT resin composition (K) was spray-coated on one side so that the film thickness after drying was 20 ⁇ m. Spray coating was performed using an air spray gun (W-61-2G manufactured by Anest Iwata). The coated PET film was allowed to stand at room temperature for 30 minutes and then dried at 140 ⁇ 5 ° C. for 30 minutes to produce a CNT coating film (K).
  • Example 23 A CNT resin composition (L) to (U), a CNT dispersion (L) to (U), a CNT coating film (L) in the same manner as in Example 22 except that the CNTs listed in Table 9 were changed. To (U) was obtained.
  • Table 10 shows the evaluation results of the CNT coating films produced in Examples 22 to 32.
  • the lightness (L) of the coating film is 5.2 or less and the 60 ° specular gloss is 80 or more +++ (excellent), and the brightness (L) of the coating film is 5.3 or less and the 60 ° specular gloss is 60 °.
  • the average outer diameter is 10 nm or less
  • the standard deviation of the outer diameter is 4 nm or less

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Provided are: multilayer carbon nanotubes which make it possible to produce a resin composition having high blackness; and a method for synthesizing multilayer carbon nanotubes. Multilayer carbon nanotubes characterized by satisfying the requirements (1) and (2): (1) the average outer diameter of the multilayer carbon nanotubes is 10 nm or less; and (2) the standard deviation of the outer diameters of the multilayer carbon nanotube is 4 nm or less.

Description

多層カーボンナノチューブ、多層カーボンナノチューブの製造方法、分散液、樹脂組成物、および塗膜Multi-walled carbon nanotube, method for producing multi-walled carbon nanotube, dispersion, resin composition, and coating film
 本発明は、多層カーボンナノチューブおよび多層カーボンナノチューブの製造方法に関する。さらに詳しくは、多層カーボンナノチューブ、多層カーボンナノチューブと樹脂を含む樹脂組成物およびその分散液、それを塗布した漆黒性に優れた塗膜に関する。 The present invention relates to multi-walled carbon nanotubes and a method for producing multi-walled carbon nanotubes. More specifically, the present invention relates to multi-walled carbon nanotubes, a resin composition containing multi-walled carbon nanotubes and a resin, a dispersion thereof, and a coating film excellent in jet blackness coated with the same.
 カーボンナノチューブは外径が数ナノメートルから数十ナノメートルの筒状炭素材料である。カーボンナノチューブは高い導電性及び機械的強度を有する。このためカーボンナノチューブは機能性材料として、電子工学及びエネルギー工学を含む幅広い分野への利用が期待されている。機能性材料の例は、燃料電池、電極、電磁波シールド材、導電性樹脂、電界放出ディスプレー(FED)用部材、水素を始めとする各種ガスの吸蔵材料等である。 Carbon nanotube is a cylindrical carbon material having an outer diameter of several nanometers to several tens of nanometers. Carbon nanotubes have high electrical conductivity and mechanical strength. For this reason, carbon nanotubes are expected to be used in a wide range of fields including electronic engineering and energy engineering as functional materials. Examples of functional materials include fuel cells, electrodes, electromagnetic shielding materials, conductive resins, field emission display (FED) members, and various gas storage materials such as hydrogen.
 一方、上記機能性材料の開発例として、カーボンナノチューブを色材として使用した例は少ない。色材にはカーボンナノチューブに代えてカーボンブラックが用いられる。例えば特許文献1及び2に示されるように、漆黒性の樹脂塗工物、フィルム、成形物を得るため、カーボンブラックが用いられる。カーボンブラックは樹脂溶液や固形樹脂に均一に分散させられる。 On the other hand, as examples of the development of the functional material, there are few examples using carbon nanotubes as a coloring material. Carbon black is used as the color material instead of carbon nanotubes. For example, as disclosed in Patent Documents 1 and 2, carbon black is used in order to obtain a jet black resin coated product, film, or molded product. Carbon black is uniformly dispersed in a resin solution or a solid resin.
 しかし、カーボンブラックからなる色材は、明度(L)が高い傾向にある(すなわち灰色・白)。また、色度(a、b)がプラス方向(+a:赤、+b:黄)となる。ここで、L、a及びbは、JIS Z8781-4で規定されるL表色系における値を表わす。このためカーボンブラックは、いわゆる「ピアノブラック」や「カラスの濡れ羽色」といった漆黒性を表現することが困難であった。 However, a color material made of carbon black tends to have a high lightness (L * ) (that is, gray / white). Further, the chromaticity (a * , b * ) is in the plus direction (+ a * : red, + b * : yellow). Here, L * , a *, and b * represent values in the L * a * b * color system defined by JIS Z8781-4. For this reason, it has been difficult for carbon black to express jet blackness such as so-called “piano black” and “wet crow wings”.
 また、カーボンブラックを使用した成形物の色調は、カーボンブラックの一次粒子径に依存して変化する傾向にある。具体的には、一次粒子径が小さなカーボンブラックを使用すると、青味を呈する一方で黒度が低下する。このように、従来の黒色の色材では黒度と青味がトレードオフの関係にある。このため、青味があって、かつ黒度が高い色調、すなわち漆黒の色調を再現することは困難であった。 Also, the color tone of a molded product using carbon black tends to change depending on the primary particle diameter of carbon black. Specifically, when carbon black having a small primary particle diameter is used, bluishness is exhibited while blackness is lowered. Thus, in the conventional black color material, there is a trade-off relationship between blackness and blueness. For this reason, it was difficult to reproduce a color tone having a bluish color and a high blackness, that is, a jet black color tone.
 特許文献3、4及び5は、カーボンブラックからなる色材の黒度の調整に関する。黒度の調整に際しては、例えばカーボンブラックの粒径や凝集粒サイズ等のコロイダル特性を変更する。またオゾン酸化、硝酸酸化といった表面処理をカーボンブラックに施す。かかる処理により、分散体中での分散状態を制御する。 Patent Documents 3, 4 and 5 relate to adjustment of blackness of a color material made of carbon black. In adjusting the blackness, for example, colloidal characteristics such as the particle size and aggregate size of carbon black are changed. Further, surface treatment such as ozone oxidation and nitric acid oxidation is applied to the carbon black. With this process, the dispersion state in the dispersion is controlled.
 また、フタロシアニンブルー等の有機顔料をカーボンブラックに添加する方法も知られる。かかる方法により色材は黒色に加えて青味を呈することができる。しかし、色材中の有機顔料の添加に伴い黒度が低下する。このため、かかる色材を含む成形体を直射日光下で観察すると、成形体上に赤味が浮いて観察される。この問題は、いわゆるブロンズ現象の発生として認識されている。 Also known is a method of adding an organic pigment such as phthalocyanine blue to carbon black. By this method, the color material can exhibit a bluish color in addition to black. However, the blackness decreases with the addition of the organic pigment in the coloring material. For this reason, when the molded object containing such a coloring material is observed under direct sunlight, a reddish color is observed on the molded object. This problem is recognized as the occurrence of a so-called bronze phenomenon.
 特許文献6および7はこれらの課題を解決するために、カーボンナノチューブの積層体を検討している。しかし、これらの手段においてはカーボンナノチューブを含む樹脂組成物の光沢が得られるように、層形成する必要があった。また、特許文献8では、漆黒性顔料としてのカーボンナノチューブも検討されているが、外径が大きく、塗膜にした際の漆黒性が不十分であった。さらに、外径の小さい単層カーボンナノチューブや二層カーボンナノチューブ等の開発が進められているが、分散が難しく、十分な漆黒感を出すことが困難であった。 Patent Documents 6 and 7 are investigating a laminate of carbon nanotubes in order to solve these problems. However, in these means, it is necessary to form a layer so that the gloss of the resin composition containing carbon nanotubes can be obtained. Further, in Patent Document 8, carbon nanotubes as jet-black pigments are also studied, but the outer diameter is large and jet-black properties when used as a coating film are insufficient. Furthermore, development of single-walled carbon nanotubes and double-walled carbon nanotubes having a small outer diameter has been promoted, but it has been difficult to disperse and it has been difficult to achieve a sufficient jet black feeling.
 また、特許文献9では、触媒を微細化することにより、カーボンナノチューブ合成時の絡み合いを抑制することで、カーボンナノチューブ凝集体構造内部の空隙を広げ、樹脂への分散性に優れたカーボンナノチューブを製造している。しかしながら、外径の小さなカーボンナノチューブを効率良く得ることはできなかった。 Further, in Patent Document 9, by making the catalyst finer, the entanglement at the time of carbon nanotube synthesis is suppressed, thereby widening the voids inside the carbon nanotube aggregate structure and producing carbon nanotubes with excellent dispersibility in the resin. is doing. However, carbon nanotubes having a small outer diameter could not be obtained efficiently.
特開2001-179176号公報JP 2001-179176 A 特開2004-098033号公報JP 2004-098033 A 特開平6-122834号公報Japanese Patent Laid-Open No. 6-122834 特開平6-136287号公報JP-A-6-136287 特開2008-285632号公報JP 2008-285632 A 特開2016-13680号公報Japanese Unexamined Patent Publication No. 2016-13680 特開2016-22664号公報Japanese Patent Laid-Open No. 2016-22664 特開2015-229706号公報Japanese Patent Laid-Open No. 2015-229706 特開2008-173608号公報JP 2008-173608 A
 本発明が解決しようとする課題は、上記従来の問題を解決するためのものであり、漆黒性の高い樹脂組成物が得られる多層カーボンナノチューブおよび多層カーボンナノチューブの合成方法を提供することである。 The problem to be solved by the present invention is to solve the above-mentioned conventional problems, and to provide a multi-walled carbon nanotube and a method for synthesizing the multi-walled carbon nanotube from which a resin composition having high jetness is obtained.
 本発明者らは、鋭意研究の結果、特定の多層カーボンナノチューブによって上記課題が解決できることを見出した。 As a result of intensive studies, the present inventors have found that the above problems can be solved by specific multi-walled carbon nanotubes.
 すなわち、本発明は、下記(1)および(2)要件を満たすことを特徴とする、多層カーボンナノチューブに関する。
(1)多層カーボンナノチューブの平均外径が10nm以下であること
(2)多層カーボンナノチューブの外径の標準偏差が4nm以下であること
That is, the present invention relates to a multi-walled carbon nanotube characterized by satisfying the following requirements (1) and (2).
(1) The average outer diameter of the multi-walled carbon nanotube is 10 nm or less. (2) The standard deviation of the outer diameter of the multi-walled carbon nanotube is 4 nm or less.
 上記多層カーボンナノチューブの一実施形態は、粉末X線回折分析において、回折角2θ=25°±2°にピークが存在し、そのピークの半価幅が3°以上5°以下である。 In one embodiment of the multi-walled carbon nanotube, a powder X-ray diffraction analysis has a peak at a diffraction angle 2θ = 25 ° ± 2 °, and the half width of the peak is 3 ° or more and 5 ° or less.
 上記多層カーボンナノチューブの別の一実施形態は、粉末X線回折分析において、回折角2θ=25°±2°にピークが存在し、そのピークの半価幅が5°を超えて5.5°以下である。 Another embodiment of the multi-walled carbon nanotube has a peak at a diffraction angle 2θ = 25 ° ± 2 ° in a powder X-ray diffraction analysis, and the half width of the peak exceeds 5.5 ° to 5.5 °. It is as follows.
 上記多層カーボンナノチューブの一実施形態は、多層カーボンナノチューブの平均外径をX、多層カーボンナノチューブの外径の標準偏差をσとした際に、X±2σが、2.5nm≦X±2σ≦15.5nmを満たす。 In one embodiment of the multi-walled carbon nanotube, X ± 2σ is 2.5 nm ≦ X ± 2σ ≦ 15, where X is the average outer diameter of the multi-walled carbon nanotube and σ is the standard deviation of the outer diameter of the multi-walled carbon nanotube. .5 nm is satisfied.
 上記多層カーボンナノチューブの一実施形態は、ラマンスペクトルにおいて1560~1600cm-1の範囲内での最大ピーク強度をG、1310~1350cm-1の範囲内での最大ピーク強度をDとした際にG/D比が2.0以下、好ましくは1.0以下である。 One embodiment of the above-mentioned multi-walled carbon nanotube is G / G when the maximum peak intensity in the range of 1560 to 1600 cm −1 is G and the maximum peak intensity in the range of 1310 to 1350 cm −1 is D in the Raman spectrum. The D ratio is 2.0 or less, preferably 1.0 or less.
 本発明の多層カーボンナノチューブの製造方法は、以下の工程を含む。
(1)コバルト、ニッケルおよび鉄より選択される1種以上を含む活性成分と、マグネシウム、アルミニウム及び珪素より選択される1種以上を含む触媒担持体とを、混合および/または粉砕した後に焼成し、触媒を得る工程
(2)前記触媒を加熱下、炭化水素およびアルコールより選択される1種以上を含む炭素源と接触させて、多層カーボンナノチューブを得る工程
The method for producing a multi-walled carbon nanotube of the present invention includes the following steps.
(1) An active ingredient containing at least one selected from cobalt, nickel and iron and a catalyst carrier containing at least one selected from magnesium, aluminum and silicon are mixed and / or pulverized and calcined. Step for obtaining catalyst (2) Step for obtaining multi-walled carbon nanotube by bringing the catalyst into contact with a carbon source containing at least one selected from hydrocarbon and alcohol under heating
 上記多層カーボンナノチューブの製造方法の一実施形態は、前記工程(2)において、前記炭素源が炭化水素を含み、前記カーボンナノチューブ合成用触媒1g当たりの多層カーボンナノチューブの生成量をY(g)、前記カーボンナノチューブ合成用触媒と前記炭化水素の接触反応時間をZ(分)とした際に、Y/Z(g/分)が、1.5 ≦Y/Z≦2.7を満たすように、触媒量および/または炭化水素の流量を調節する。 In one embodiment of the method for producing a multi-walled carbon nanotube, in the step (2), the carbon source contains a hydrocarbon, and the production amount of the multi-walled carbon nanotube per 1 g of the carbon nanotube synthesis catalyst is Y (g), When the contact reaction time of the catalyst for carbon nanotube synthesis and the hydrocarbon is Z (min), Y / Z (g / min) satisfies 1.5 ≦ Y / Z ≦ 2.7. Adjust catalyst amount and / or hydrocarbon flow rate.
 上記多層カーボンナノチューブの製造方法の一実施形態は、前記炭化水素がエチレンである。 In one embodiment of the method for producing a multi-walled carbon nanotube, the hydrocarbon is ethylene.
 本発明の分散液は、前記本発明の多層カーボンナノチューブと、分散剤とを含有する。 The dispersion of the present invention contains the multi-walled carbon nanotube of the present invention and a dispersant.
 本発明の樹脂組成物は、前記本発明の多層カーボンナノチューブと、樹脂とを含有する。 The resin composition of the present invention contains the multi-walled carbon nanotube of the present invention and a resin.
 また、本発明の塗膜は、前記本発明の樹脂組成物により形成されたものである。 Moreover, the coating film of the present invention is formed by the resin composition of the present invention.
 本発明の多層カーボンナノチューブを使用することにより、漆黒性に優れた樹脂組成物が得られる。よって、高い漆黒性が求められる様々な用途において、本発明の多層カーボンナノチューブおよび多層カーボンナノチューブの製造方法を使用することが可能である。 By using the multi-walled carbon nanotube of the present invention, a resin composition excellent in jetness can be obtained. Therefore, it is possible to use the multi-walled carbon nanotube and the method for producing the multi-walled carbon nanotube of the present invention in various applications that require high jetness.
図1は、実施例1で得られた透過型電子顕微鏡を用いて、任意に300本の多層カーボンナノチューブを観察した際の多層カーボンナノチューブの外径と本数の関係を示すグラフである。FIG. 1 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes when 300 multi-walled carbon nanotubes are arbitrarily observed using the transmission electron microscope obtained in Example 1. 図2は、実施例4で得られた透過型電子顕微鏡を用いて、任意に300本の多層カーボンナノチューブを観察した際の多層カーボンナノチューブの外径と本数の関係を示すグラフである。FIG. 2 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes when 300 multi-walled carbon nanotubes are arbitrarily observed using the transmission electron microscope obtained in Example 4. 図3は、比較例1で得られた透過型電子顕微鏡を用いて、任意に300本の多層カーボンナノチューブを観察した際の多層カーボンナノチューブの外径と本数の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes when 300 multi-walled carbon nanotubes are arbitrarily observed using the transmission electron microscope obtained in Comparative Example 1. 図4は、比較例2で得られた透過型電子顕微鏡を用いて、任意に300本の多層カーボンナノチューブを観察した際の多層カーボンナノチューブの外径と本数の関係を示すグラフである。FIG. 4 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes when 300 multi-walled carbon nanotubes are arbitrarily observed using the transmission electron microscope obtained in Comparative Example 2. 図5は、比較例3で得られた透過型電子顕微鏡を用いて、任意に300本の多層カーボンナノチューブを観察した際の多層カーボンナノチューブの外径と本数の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes when 300 multi-walled carbon nanotubes are arbitrarily observed using the transmission electron microscope obtained in Comparative Example 3. 図6は、比較例4で得られた透過型電子顕微鏡を用いて、任意に300本の多層カーボンナノチューブを観察した際の多層カーボンナノチューブの外径と本数の関係を示すグラフである。FIG. 6 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes when 300 multi-walled carbon nanotubes are arbitrarily observed using the transmission electron microscope obtained in Comparative Example 4. 図7は、実施例12で得られた多層カーボンナノチューブについて、透過型電子顕微鏡を用いて、任意に300本のカーボンナノチューブを観察した際の多層カーボンナノチューブの外径と本数の関係を示すグラフである。FIG. 7 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes when 300 carbon nanotubes were arbitrarily observed using a transmission electron microscope for the multi-walled carbon nanotubes obtained in Example 12. is there. 図8は、実施例13で得られた多層カーボンナノチューブについて、透過型電子顕微鏡を用いて、任意に300本のカーボンナノチューブを観察した際の多層カーボンナノチューブの外径と本数の関係を示すグラフである。FIG. 8 is a graph showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes obtained by observing 300 carbon nanotubes arbitrarily using a transmission electron microscope for the multi-walled carbon nanotubes obtained in Example 13. is there.
 以下、本発明の多層カーボンナノチューブ、分散液、樹脂組成物およびその塗膜について詳しく説明する。
(1)多層カーボンナノチューブ(A)
 多層カーボンナノチューブ(A)は、平面的なグラファイトを円筒状に巻いた形状を有している。多層カーボンナノチューブ(A)は単層カーボンナノチューブが混在するものであってもよい。単層カーボンナノチューブは一層のグラファイトが巻かれた構造を有する。多層カーボンナノチューブ(A)は、二又は三以上の層のグラファイトが巻かれた構造を有する。また、多層カーボンナノチューブ(A)の側壁はグラファイト構造でなくともよい。例えば、アモルファス構造を有する側壁を備えるカーボンナノチューブを多層カーボンナノチューブ(A)として用いることもできる。
Hereinafter, the multi-walled carbon nanotube, the dispersion, the resin composition and the coating film thereof according to the present invention will be described in detail.
(1) Multi-walled carbon nanotube (A)
The multi-walled carbon nanotube (A) has a shape obtained by winding planar graphite into a cylindrical shape. The multi-walled carbon nanotube (A) may be a mixture of single-walled carbon nanotubes. Single-walled carbon nanotubes have a structure in which a single layer of graphite is wound. The multi-walled carbon nanotube (A) has a structure in which two or more layers of graphite are wound. Further, the side wall of the multi-walled carbon nanotube (A) may not have a graphite structure. For example, a carbon nanotube having a sidewall having an amorphous structure can be used as the multi-walled carbon nanotube (A).
 多層カーボンナノチューブ(A)の形状は限定されない。かかる形状としては、針状、円筒チューブ状、魚骨状(フィッシュボーン又はカップ積層型)、トランプ状(プレートレット)及びコイル状を含む様々な形状が挙げられる。本実施形態において多層カーボンナノチューブ(A)の形状は、中でも、針状、又は、円筒チューブ状であることが好ましい。多層カーボンナノチューブ(A)は、単独の形状、または2種以上の形状の組合せであってもよい。 The shape of the multi-walled carbon nanotube (A) is not limited. Examples of such a shape include various shapes including a needle shape, a cylindrical tube shape, a fish bone shape (fishbone or cup laminated type), a trump shape (platelet), and a coil shape. In this embodiment, the shape of the multi-walled carbon nanotube (A) is preferably a needle shape or a cylindrical tube shape. The multi-walled carbon nanotube (A) may be a single shape or a combination of two or more shapes.
 また、多層カーボンナノチューブ(A)の形態は、例えば、グラファイトウィスカー、フィラメンタスカーボン、グラファイトファイバー、極細炭素チューブ、カーボンチューブ、カーボンフィブリル、カーボンマイクロチューブ及びカーボンナノファイバーを挙げることができるが、これらに限定されない。多層カーボンナノチューブ(A)は、これらの単独の形態又は二種以上を組み合わせられた形態を有していてもよい。 Examples of the multi-walled carbon nanotube (A) include graphite whiskers, filamentous carbon, graphite fibers, ultrafine carbon tubes, carbon tubes, carbon fibrils, carbon microtubes, and carbon nanofibers. It is not limited. The multi-walled carbon nanotube (A) may have a single form or a combination of two or more kinds.
 本実施形態の多層カーボンナノチューブ(A)の平均外径は10nm以下であり、外径の標準偏差が4nm以下である。多層カーボンナノチューブ(A)がこのような特定の外径を有することにより、漆黒性の高い樹脂組成物が得られる。
 多層カーボンナノチューブ(A)の平均外径は、分散の容易さや色相の観点から、中でも、3~10nmであることが好ましく、4~10nmであることがより好ましく、4~8nmであることがさらに好ましい。
 多層カーボンナノチューブ(A)の外径の標準偏差は4nm以下であればよく、分散の容易さや色相の観点から、中でも、3nm以下であることが好ましく、2.5nm以下であることがより好ましい。また、外径の標準偏差は、0.7nm以上が好ましく、1.4nm以上がより好ましい。
 またカーボンナノチューブの平均外径をX[nm]、カーボンナノチューブの外径の標準偏差をσ[nm]とした時に、漆黒性の高い樹脂組成物が得られる点から、X±σ[nm]が、5.0nm≦X±σ≦14.0nmであることが好ましい。
 また、漆黒性の高い樹脂組成物が得られる点から、X±2σ[nm]が、2.0nm≦X±2σ≦17.0nmであることが好ましく、2.5nm≦X±2σ≦15.5nmであることがより好ましく、3.0nm≦X±2σ≦12.0nmであることがさらに好ましい。
The average outer diameter of the multi-walled carbon nanotube (A) of the present embodiment is 10 nm or less, and the standard deviation of the outer diameter is 4 nm or less. When the multi-walled carbon nanotube (A) has such a specific outer diameter, a resin composition having high jetness can be obtained.
The average outer diameter of the multi-walled carbon nanotube (A) is preferably 3 to 10 nm, more preferably 4 to 10 nm, and further preferably 4 to 8 nm, from the viewpoint of ease of dispersion and hue. preferable.
The standard deviation of the outer diameter of the multi-walled carbon nanotube (A) may be 4 nm or less, and from the viewpoint of ease of dispersion and hue, it is preferably 3 nm or less, more preferably 2.5 nm or less. Further, the standard deviation of the outer diameter is preferably 0.7 nm or more, and more preferably 1.4 nm or more.
Further, when the average outer diameter of the carbon nanotube is X [nm] and the standard deviation of the outer diameter of the carbon nanotube is σ [nm], a resin composition having high jetness can be obtained, so that X ± σ [nm] is 5.0 nm ≦ X ± σ ≦ 14.0 nm is preferable.
Moreover, it is preferable that X ± 2σ [nm] is 2.0 nm ≦ X ± 2σ ≦ 17.0 nm, and 2.5 nm ≦ X ± 2σ ≦ 15. 5 nm is more preferable, and 3.0 nm ≦ X ± 2σ ≦ 12.0 nm is still more preferable.
 多層カーボンナノチューブ(A)の外径および平均外径は次のように求められる。まず透過型電子顕微鏡によって、多層カーボンナノチューブ(A)を観測するとともに撮像する。次に観測写真において、任意の300本の多層カーボンナノチューブ(A)を選び、それぞれの外径を計測する。次に外径の数平均として多層カーボンナノチューブ(A)の平均外径(nm)を算出する。 The outer diameter and average outer diameter of the multi-walled carbon nanotube (A) are obtained as follows. First, the multi-walled carbon nanotube (A) is observed and imaged with a transmission electron microscope. Next, in the observation photograph, arbitrary 300 multi-walled carbon nanotubes (A) are selected, and the respective outer diameters are measured. Next, the average outer diameter (nm) of the multi-walled carbon nanotube (A) is calculated as the number average of outer diameters.
 本実施形態の多層カーボンナノチューブ(A)の繊維長は、分散の容易さの観点及び色相の観点から、0.1~150μmが好ましく、1~10μmがより好ましい。 The fiber length of the multi-walled carbon nanotube (A) of the present embodiment is preferably from 0.1 to 150 μm, more preferably from 1 to 10 μm, from the viewpoint of ease of dispersion and hue.
 多層カーボンナノチューブ(A)の炭素純度は多層カーボンナノチューブ(A)中の炭素原子の含有率(質量%)で表される。炭素純度は多層カーボンナノチューブ(A)100質量%に対して、85質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましい。 The carbon purity of the multi-walled carbon nanotube (A) is represented by the carbon atom content (% by mass) in the multi-walled carbon nanotube (A). The carbon purity is preferably 85% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more with respect to 100% by mass of the multi-walled carbon nanotube (A).
 本実施形態では、多層カーボンナノチューブ(A)は、通常二次粒子として存在している。この二次粒子の形状は、例えば一般的な一次粒子である多層カーボンナノチューブ(A)が複雑に絡み合っている状態でもよい。多層カーボンナノチューブ(A)を直線状にしたものの集合体であってもよい。直線状の多層カーボンナノチューブ(A)の集合体である二次粒子は、絡み合っているものと比べるとほぐれ易い。また直線状のものは、絡み合っているものに比べると分散性が良いので多層カーボンナノチューブ(A)として好適に利用できる。 In this embodiment, the multi-walled carbon nanotube (A) usually exists as secondary particles. The shape of the secondary particles may be, for example, a state in which multi-walled carbon nanotubes (A) that are general primary particles are intertwined in a complicated manner. An aggregate of the multi-walled carbon nanotubes (A) may be used. Secondary particles, which are aggregates of linear multi-walled carbon nanotubes (A), are easier to loosen than those intertwined. Moreover, since the linear thing has a good dispersibility compared with the thing intertwined, it can be utilized suitably as a multi-walled carbon nanotube (A).
 多層カーボンナノチューブ(A)は、表面処理を行ったカーボンナノチューブでもよい。また多層カーボンナノチューブ(A)は、カルボキシル基に代表される官能基を付与させたカーボンナノチューブ誘導体であってもよい。また、有機化合物、金属原子、又はフラーレンに代表される物質を内包させた多層カーボンナノナノチューブ(A)も用いることができる。 The multi-walled carbon nanotube (A) may be a carbon nanotube subjected to surface treatment. The multi-walled carbon nanotube (A) may be a carbon nanotube derivative provided with a functional group represented by a carboxyl group. In addition, a multi-walled carbon nano-nanotube (A) in which a substance typified by an organic compound, a metal atom, or fullerene is included can also be used.
 本実施形態の多層カーボンナノチューブ(A)は、比較的層数の少ないカーボンナノチューブであることが好ましい。特に粉末X線回折分析を行った時に回折角2θ=25°±2°にピークが存在し、そのピークの半価幅が3°以上5.5°以下であることが好ましく、5°を超えて5.5°以下であることがより好ましい。このような比較的層数の少ない多層カーボンナノチューブ(A)を用いることにより、明度が低く、鏡面光沢が向上するため、漆黒性の高い塗膜を得ることができる。
 多層カーボンナノチューブ(A)の層構成は下記方法で粉末X線回折分析することにより解析することができる。
The multi-walled carbon nanotube (A) of the present embodiment is preferably a carbon nanotube having a relatively small number of layers. In particular, when a powder X-ray diffraction analysis is performed, a peak exists at a diffraction angle 2θ = 25 ° ± 2 °, and the half width of the peak is preferably 3 ° or more and 5.5 ° or less, and more than 5 °. More preferably, the angle is 5.5 ° or less. By using such a multi-walled carbon nanotube (A) having a relatively small number of layers, the lightness is low and the specular gloss is improved, so that a coating film with high jetness can be obtained.
The layer structure of the multi-walled carbon nanotube (A) can be analyzed by powder X-ray diffraction analysis by the following method.
 多層カーボンナノチューブ(A)の半価幅は次のように求められる。まず、多層カーボンナノチューブ(A)を所定のサンプルホルダーに表面が平らになるように詰め、粉末X線回折分析装置にセットし、5°から80°までX線源の照射角度を変化させ測定する。X線源としては例えばCuKα線が用いられる。ステップ幅は0.010°、計測時間は1.0秒である。その時にピークが現れる回折角2θを読み取ることで多層カーボンナノチューブ(A)の評価が可能である。グラファイトでは通常2θが26°付近にピークが検出され、これが層間回折によるピークであることが知られている。多層カーボンナノチューブ(A)もグラファイト構造を有するため、この付近にグラファイト層間回折によるピークが検出される。ただし、カーボンナノチューブは円筒構造であるために、その値はグラファイトとは異なってくる。その値2θが25°±2°の位置にピークが出現することで単層ではなく、多層構造を有している組成物を含んでいることが判断できる。この位置に出現するピークは多層構造の層間回折によるピークであるため、多層カーボンナノチューブ(A)の層数を判断することが可能となる。単層カーボンナノチューブは層数が1枚しかないので、単層カーボンナノチューブのみでは25°±2°の位置にピークは出現しない。しかしながら、単層カーボンナノチューブであっても、100%単層カーボンナノチューブということはなく、多層カーボンナノチューブ等が混入している場合は2θが25°±2°の位置にピークが出現する場合がある。 The half width of the multi-walled carbon nanotube (A) is obtained as follows. First, the multi-walled carbon nanotubes (A) are packed in a predetermined sample holder so that the surface is flat, set in a powder X-ray diffraction analyzer, and measured by changing the irradiation angle of the X-ray source from 5 ° to 80 °. . For example, CuKα rays are used as the X-ray source. The step width is 0.010 ° and the measurement time is 1.0 second. The multi-walled carbon nanotube (A) can be evaluated by reading the diffraction angle 2θ at which the peak appears. In graphite, a peak is usually detected when 2θ is around 26 °, and this is known to be a peak due to interlayer diffraction. Since the multi-walled carbon nanotube (A) also has a graphite structure, a peak due to graphite interlayer diffraction is detected in the vicinity thereof. However, since the carbon nanotube has a cylindrical structure, its value is different from that of graphite. A peak appears at a position where the value 2θ is 25 ° ± 2 °, so that it can be determined that a composition having a multilayer structure is included instead of a single layer. Since the peak appearing at this position is a peak due to interlayer diffraction of the multilayer structure, the number of layers of the multilayer carbon nanotube (A) can be determined. Since the single-walled carbon nanotube has only one layer, a peak does not appear at a position of 25 ° ± 2 ° with the single-walled carbon nanotube alone. However, even single-walled carbon nanotubes are not 100% single-walled carbon nanotubes, and when multi-walled carbon nanotubes or the like are mixed, a peak may appear at a position where 2θ is 25 ° ± 2 °. .
 多層カーボンナノチューブ(A)は2θが25°±2°の位置にピークが出現する。また粉末X線回折分析により検出される25°±2°のピークの半価幅からも層構成を解析することができる。すなわち、このピークの半価幅が小さいほど多層カーボンナノチューブ(A)の層数が多いと考えられる。逆にこのピークの半価幅が大きいほど、カーボンナノチューブの層数が少ないと考えられる。 In the multi-walled carbon nanotube (A), a peak appears at a position where 2θ is 25 ° ± 2 °. The layer structure can also be analyzed from the half width of the 25 ° ± 2 ° peak detected by powder X-ray diffraction analysis. That is, it is considered that the number of multi-walled carbon nanotubes (A) is larger as the half width of this peak is smaller. Conversely, it is considered that the larger the half width of this peak, the smaller the number of carbon nanotube layers.
 本実施形態の多層カーボンナノチューブ(A)は、ラマンスペクトルにおいて1560~1600cm-1の範囲内での最大ピーク強度をG、1310~1350cm-1の範囲内での最大ピーク強度をDとした際に、G/D比が、4.9~0.3であることが好ましく、2.0~0.3であることがより好ましく、1.0~0.5であることがさらに好ましい。多層カーボンナノチューブ(A)のG/D比はラマン分光分析法により求められる。 The multi-walled carbon nanotube (A) of the present embodiment has a maximum peak intensity in the range of 1560 to 1600 cm −1 in the Raman spectrum as G and a maximum peak intensity in the range of 1310 to 1350 cm −1 as D. The G / D ratio is preferably 4.9 to 0.3, more preferably 2.0 to 0.3, and still more preferably 1.0 to 0.5. The G / D ratio of the multi-walled carbon nanotube (A) is determined by Raman spectroscopy.
 ラマン分光分析法で使用するレーザー波長は種々あるが、ここでは532nmおよび632nmを利用する。ラマンスペクトルにおいて1590cm-1付近に見られるラマンシフトは、グラファイト由来のGバンドと呼ばれ、1350cm-1付近に見られるラマンシフトはアモルファスカーボンやグラファイトの欠陥に由来のDバンドと呼ばれる。このG/D比が高いカーボンナノチューブほど、グラファイト化度が高い。 Although there are various laser wavelengths used in the Raman spectroscopic analysis, 532 nm and 632 nm are used here. The Raman shift observed in the vicinity of 1590 cm −1 in the Raman spectrum is called a G band derived from graphite, and the Raman shift observed in the vicinity of 1350 cm −1 is called a D band derived from defects in amorphous carbon or graphite. The higher the G / D ratio, the higher the degree of graphitization.
 またラマンスペクトルの150~350cm-1はRBM(ラジアルブリージングモード)と呼ばれ、この領域に観測されるピークはカーボンナノチューブの外径と次のような相関があり、カーボンナノチューブの外径を見積もることが可能である。カーボンナノチューブの外径をd(nm)、ラマンシフトをν(cm-1)とすると、d=248/νが成り立つ。これから勘案すると波長532nmのラマン分光分析で140cm-1、160cm-1、180cm-1、210cm-1、270cm-1、320cm-1にピークが観測されることは、つまり1.77nm、1.55nm、1.38nm、1.18nm、0.92nm、0.78nmの外径を有するカーボンナノチューブの存在を示唆している。 The Raman spectrum of 150 to 350 cm -1 is called RBM (radial breathing mode), and the peak observed in this region has the following correlation with the outer diameter of the carbon nanotube, and the outer diameter of the carbon nanotube is estimated. Is possible. If the outer diameter of the carbon nanotube is d (nm) and the Raman shift is ν (cm −1 ), d = 248 / ν holds. 140cm -1 in Raman spectroscopic analysis of wavelength 532nm Considering now, 160cm -1, 180cm -1, 210cm -1, 270cm -1, the peak at 320 cm -1 is observed, i.e. 1.77nm, 1.55nm , 1.38 nm, 1.18 nm, 0.92 nm, and 0.78 nm, suggesting the presence of carbon nanotubes.
 測定条件によってラマン分光分析の波数は変動することがあるため、ここで規定する波数は波数±10cm-1で規定するものとする。 Since the wave number of Raman spectroscopic analysis may vary depending on the measurement conditions, the wave number specified here is specified as wave number ± 10 cm −1 .
[多層カーボンナノチューブ(A)の製造方法]
 本実施形態において多層カーボンナノチューブ(A)は、多層カーボンナノチューブの平均外径が10nm以下であり、当該外径の標準偏差が4nm以下となる製造方法であれば特に限定されず、どのような方法で製造したカーボンナノチューブでもよい。多層カーボンナノチューブ(A)は一般にレーザーアブレーション法、アーク放電法、熱CVD法、プラズマCVD法及び燃焼法で製造できる。また例えば、酸素濃度が1体積%以下の雰囲気中、500~1000℃にて、炭素源を触媒と接触反応させることで多層カーボンナノチューブ(A)を製造することができる。
[Method for producing multi-walled carbon nanotube (A)]
In the present embodiment, the multi-walled carbon nanotube (A) is not particularly limited as long as the average outer diameter of the multi-walled carbon nanotube is 10 nm or less and the standard deviation of the outer diameter is 4 nm or less. Carbon nanotubes manufactured in (1) may be used. The multi-walled carbon nanotube (A) can be generally produced by a laser ablation method, an arc discharge method, a thermal CVD method, a plasma CVD method and a combustion method. For example, the multi-walled carbon nanotube (A) can be produced by causing a carbon source to contact with a catalyst at 500 to 1000 ° C. in an atmosphere having an oxygen concentration of 1% by volume or less.
 本実施形態においては、前記多層カーボンナノチューブ(A)の製造方法として、以下の工程を含む方法が好ましい。
(1)コバルトと、マグネシウムを含む金属塩とを、混合および/または粉砕した後に焼成し、カーボンナノチューブ合成用触媒を得る工程
(2)前記カーボンナノチューブ合成用触媒を加熱下、炭化水素およびアルコールより選択される1種以上を含む炭素源と接触させて、多層カーボンナノチューブを得る工程
In the present embodiment, a method including the following steps is preferable as the method for producing the multi-walled carbon nanotube (A).
(1) Step of obtaining a catalyst for carbon nanotube synthesis by mixing and / or pulverizing cobalt and a metal salt containing magnesium, and (2) heating the carbon nanotube synthesis catalyst from hydrocarbon and alcohol under heating. A step of obtaining a multi-walled carbon nanotube by contacting with a carbon source containing one or more selected types
 上記炭素源となる原料ガスは、従来公知の任意のものを使用できる。例えば、炭化水素、一酸化炭素、アルコールなどが挙げられ、1種単独で、又は2種以上を組み合わせて用いることができる。本実施形態において炭素源は、中でも、炭化水素およびアルコールより選択される1種以上を含むことが好ましく、炭化水素を含むことがより好ましい。炭化水素としては、例えば、メタン、プロパン、ブタン、アセチレンなどが挙げられ、中でも、エチレンであることが好ましい。 Any conventionally known source gas can be used as the carbon source. For example, hydrocarbon, carbon monoxide, alcohol, etc. are mentioned, It can use individually by 1 type or in combination of 2 or more types. In the present embodiment, the carbon source preferably includes one or more selected from hydrocarbons and alcohols, and more preferably includes hydrocarbons. Examples of the hydrocarbon include methane, propane, butane, acetylene, etc. Among them, ethylene is preferable.
 炭素源として、エチレンを用いた場合、酸素濃度が1体積%以下の雰囲気中、600~800℃にて、炭素源を触媒と接触反応させることで多層カーボンナノチューブ(A)を製造することが好ましく、650~750℃にて炭素源を触媒と接触反応させることで多層カーボンナノチューブ(A)を製造することがさらに好ましい。 When ethylene is used as the carbon source, it is preferable to produce the multi-walled carbon nanotube (A) by contacting the carbon source with the catalyst at 600 to 800 ° C. in an atmosphere having an oxygen concentration of 1% by volume or less. More preferably, the multi-walled carbon nanotube (A) is produced by reacting a carbon source with a catalyst at 650 to 750 ° C.
 炭化水素の量は反応容器の大きさや反応容器内の触媒量に応じて適宜変更すればよいが、触媒1g当たりのカーボンナノチューブの生成量をY(g)、触媒と炭化水素の接触反応時間をZ(分)とした際に、Y/Z(g/分)が、1.5≦Y/Z≦2.7を満たすように触媒量および/または炭化水素の流量を調節することが好ましい。 The amount of hydrocarbon may be appropriately changed according to the size of the reaction vessel and the amount of catalyst in the reaction vessel. The amount of carbon nanotubes produced per gram of catalyst is Y (g), and the contact reaction time of the catalyst and hydrocarbon is determined. It is preferable to adjust the catalyst amount and / or the hydrocarbon flow rate so that Y / Z (g / min) satisfies 1.5 ≦ Y / Z ≦ 2.7 when Z (min) is set.
 必要に応じて、触媒を還元性ガス雰囲気下で活性化した後、酸素濃度1体積%以下の雰囲気中、原料ガスと触媒とを接触反応させることが好ましい。また還元性ガスと共に、原料ガスを触媒と接触反応させてもよい。酸素濃度1体積%以下の雰囲気は特に制限されないが、アルゴンガスのような希ガス及び窒素ガスに代表される不活性ガスの雰囲気が好ましい。触媒の活性化に使用する還元性ガスとしては、水素又はアンモニアを用いることができるが、これらに限定されない。還元性ガスとしては特に水素が好ましい。 If necessary, after activating the catalyst in a reducing gas atmosphere, it is preferable to cause the source gas and the catalyst to contact with each other in an atmosphere having an oxygen concentration of 1% by volume or less. In addition to the reducing gas, the raw material gas may be contacted with the catalyst. The atmosphere having an oxygen concentration of 1% by volume or less is not particularly limited, but an atmosphere of an inert gas typified by a rare gas such as argon gas and a nitrogen gas is preferable. As the reducing gas used for the activation of the catalyst, hydrogen or ammonia can be used, but is not limited thereto. As the reducing gas, hydrogen is particularly preferable.
 触媒としては、従来公知の様々な金属を使用することができる。具体的には、コバルト、ニッケル又は鉄に代表される活性成分と、マグネシウム、アルミニウム又は珪素に代表される触媒担持体とを混合および/または粉砕することで得られる金属酸化物である。特に、活性成分としてコバルト、触媒担持体としてマグネシウムを含む金属とを混合および/または粉砕することで得られる金属酸化物が好ましい。活性成分としてコバルト、触媒担持体としてマグネシウムを使用することで、平均外径が10nm以下、外径の標準偏差が4nm以下の多層カーボンナノチューブが得られやすい。 As the catalyst, various conventionally known metals can be used. Specifically, it is a metal oxide obtained by mixing and / or pulverizing an active ingredient typified by cobalt, nickel or iron and a catalyst carrier typified by magnesium, aluminum or silicon. In particular, a metal oxide obtained by mixing and / or grinding a metal containing cobalt as an active component and magnesium as a catalyst support is preferable. By using cobalt as the active component and magnesium as the catalyst support, it is easy to obtain multi-walled carbon nanotubes having an average outer diameter of 10 nm or less and a standard deviation of the outer diameter of 4 nm or less.
 活性成分として、具体的には、クエン酸鉄(III)アンモニウム、硫酸アンモニウム鉄(II)六水和物、塩化鉄(III)六水和物、塩化鉄(II)四水和物、クエン酸鉄(III)n水和物、硝酸鉄(III)九水和物、シュウ酸鉄(II)二水和物、酸化鉄(III)、水酸化コバルト、酢酸コバルト(II)四水和物、塩基性炭酸コバルト(II)、塩化コバルト(II)、塩化コバルト(II)六水和物、硝酸コバルト(II)六水和物、酸化コバルト(II)、酸化コバルト(II, III)、ステアリン酸コバルト(II)、硫酸コバルト(II)七水和物、硫化コバルト(II)、酢酸コバルト(II)、硫酸ニッケル(II)アンモニウム六水和物、酢酸ニッケル(II)四水和物、塩化ニッケル(II)、塩化ニッケル(II)六水和物、水酸化ニッケル(II)、硝酸ニッケル(II)六水和物、酸化ニッケル(II)、硫酸ニッケル(II)六水和物等が挙げられる。特に好ましいのは、水酸化コバルト、酢酸コバルト(II)四水和物、クエン酸鉄(III)n水和物、硝酸鉄(III)九水和物である。これらの活性成分は2種以上を組み合わせてもよい。 As active ingredients, specifically, iron (III) ammonium citrate, iron (II) ammonium sulfate hexahydrate, iron (III) chloride hexahydrate, iron (II) chloride tetrahydrate, iron citrate (III) n hydrate, iron (III) nitrate nonahydrate, iron (II) oxalate dihydrate, iron (III) oxide, cobalt hydroxide, cobalt acetate (II) tetrahydrate, base Cobalt (II) carbonate, cobalt (II) chloride, cobalt (II) chloride hexahydrate, cobalt nitrate (II) hexahydrate, cobalt (II) oxide, cobalt oxide (II, III), cobalt stearate (II), cobalt sulfate (II) heptahydrate, cobalt sulfide (II), cobalt acetate (II), nickel sulfate (II) ammonium hexahydrate, nickel acetate (II) tetrahydrate, nickel chloride ( II), nickel chloride (II) hexahydrate, nickel hydroxide (II), nickel nitrate (II) hexahydrate, nitric oxide Examples include nickel (II) and nickel (II) sulfate hexahydrate. Particularly preferred are cobalt hydroxide, cobalt (II) acetate tetrahydrate, iron (III) citrate n hydrate, and iron (III) nitrate nonahydrate. Two or more of these active ingredients may be combined.
 触媒担持体は、マグネシウムを含んでおり、吸着や触媒活性を示し、触媒担持体の表面に触媒金属を担持できるものが好ましく、有機物でも無機物でも良い。 The catalyst carrier contains magnesium, preferably exhibits adsorption and catalytic activity, and can carry a catalyst metal on the surface of the catalyst carrier, and may be organic or inorganic.
 触媒担持体のマグネシウムとしては従来公知のマグネシウム化合物を使用することができる。例えば、マグネシウム、塩化マグネシウム、水酸化マグネシウム、酸化マグネシウム、硫酸マグネシウム、酢酸マグネシウム四水和物、塩基性炭酸マグネシウム、塩化マグネシウム六水和物である。特に、酢酸マグネシウム四水和物、水酸化マグネシウム、酸化マグネシウムを使用することが好ましい。 Conventionally known magnesium compounds can be used as the catalyst support magnesium. For example, magnesium, magnesium chloride, magnesium hydroxide, magnesium oxide, magnesium sulfate, magnesium acetate tetrahydrate, basic magnesium carbonate, magnesium chloride hexahydrate. In particular, it is preferable to use magnesium acetate tetrahydrate, magnesium hydroxide, or magnesium oxide.
 触媒担持体としては、マグネシウムの他、例えば、酸化珪素、アルミニウム、塩基性酢酸アルミニウム、臭化アルミニウム、塩化アルミニウム、水酸化アルミニウム、乳酸アルミニウム、酸化アルミニウム、ゼオライト、酸化チタン、ジルコニウム、酸化カルシウム、酸化チタンなどを含むことが好ましい。融点の異なる2種の原料を組み合わせることで、触媒作製時に粒子同士の融着を防ぐことができる。例えば、酢酸マグネシウムや酢酸アルミニウム等の有機物と酸化珪素、酸化アルミニウム、ゼオライト、酸化チタン、ジルコニウム、酸化マグネシウム等の無機物と組み合わせることで、触媒活性を向上させることができる。特に、触媒担持体に、酢酸マグネシウム四水和物を使用する場合、酸化珪素、ゼオライト、酸化アルミニウムを組み合わせることが好ましい。特に好ましくは、酸化珪素やゼオライトである。 As the catalyst support, in addition to magnesium, for example, silicon oxide, aluminum, basic aluminum acetate, aluminum bromide, aluminum chloride, aluminum hydroxide, aluminum lactate, aluminum oxide, zeolite, titanium oxide, zirconium, calcium oxide, oxidation It is preferable that titanium etc. are included. By combining two kinds of raw materials having different melting points, fusion of particles can be prevented at the time of catalyst preparation. For example, catalytic activity can be improved by combining organic substances such as magnesium acetate and aluminum acetate with inorganic substances such as silicon oxide, aluminum oxide, zeolite, titanium oxide, zirconium, and magnesium oxide. In particular, when magnesium acetate tetrahydrate is used for the catalyst support, it is preferable to combine silicon oxide, zeolite, and aluminum oxide. Particularly preferred are silicon oxide and zeolite.
 触媒担持体に使用する酸化珪素、ゼオライト、酸化アルミニウムとしては、例えば、エボニック グループの日本アエロジル社製のAEROSIL(登録商標)50、AEROSIL(登録商標)130、AEROSIL(登録商標)200、AEROSIL(登録商標)300、AEROSIL(登録商標)380、AEROXIDE(登録商標)AluC、AEROXIDE(登録商標)TiO2P25、日本軽金属社製のアルミナC10W、C20、C40、C50、C500、東ソー社製のBeta型ゼオライトである940HOA、980HOA、Mordenite型ゼオライトである640HOA、690HOA、Y型ゼオライトである320HOA、331HSA、350HUA、360HUA、385HUA、390HUAを使用することが好ましい。中でも、AEROSIL(登録商標)が好ましい。 Examples of the silicon oxide, zeolite, and aluminum oxide used for the catalyst carrier include AEROSIL (registered trademark) 50, AEROSIL (registered trademark) 130, AEROSIL (registered trademark) 200, and AEROSIL (registered trademark) manufactured by Nippon Aerosil Co., Ltd. (Trademark) 300, AEROSIL (registered trademark) 380, AEROXIDE (registered trademark) AluC, AEROXIDE (registered trademark) TiO2P25, Alumina C10W, C20, C40, C50, C500 manufactured by Nippon Light Metal Co., Ltd. 940HOA, 980HOA, Mordenite type zeolite 640HOA, 690HOA, Y type zeolite 320HOA, 331HSA, 350HUA, 360HUA, 385HUA, 390H It is preferable to use the A. Among these, AEROSIL (registered trademark) is preferable.
 触媒担持体中のシリカやアルミニウムの含有量は、マグネシウムの含有量を100モル%とした場合、1~50モル%であることが好ましく、1~25モル%であることがさらに好ましい。 The content of silica and aluminum in the catalyst support is preferably 1 to 50 mol%, more preferably 1 to 25 mol%, when the magnesium content is 100 mol%.
 触媒担持体中のシリカやアルミニウムの嵩密度は0.04~0.5g/mLであることが好ましい。シリカを使用する場合は、0.04~0.1g/mLであることがさらに好ましい。 The bulk density of silica or aluminum in the catalyst support is preferably 0.04 to 0.5 g / mL. When silica is used, it is more preferably 0.04 to 0.1 g / mL.
 嵩密度とは、脱気や造粒等の嵩を低下させる処理を行う前の嵩密度であり、JIS-K-5101に準拠した測定による値である。 The bulk density is a bulk density before performing a treatment for reducing the volume such as deaeration and granulation, and is a value obtained by measurement according to JIS-K-5101.
 触媒担持体のシリカやアルミナのBET比表面積は50~1000m/gであることが好ましく、150~350m/gであることがさらに好ましい。 The BET specific surface area of silica or alumina of the catalyst support is preferably 50 to 1000 m 2 / g, more preferably 150 to 350 m 2 / g.
 触媒担持体は触媒の触媒作用を強化する働きを有する助触媒が含まれていることが好ましい。例えば、マンガン、モリブデン、タングステンが含まれていることが好ましい。特に好ましいのはマンガンやモリブデンである。これらを触媒担持体中に含ませることで、触媒活性や触媒寿命を向上させることができる。これらの助触媒は単体であっても複数含んでも良い。 The catalyst carrier preferably contains a cocatalyst having a function of enhancing the catalytic action of the catalyst. For example, it is preferable that manganese, molybdenum, and tungsten are included. Particularly preferred are manganese and molybdenum. By including these in the catalyst carrier, the catalyst activity and the catalyst life can be improved. These promoters may be used alone or in combination.
 触媒担持体中の助触媒の含有量は、マグネシウムの含有量を100モル%とした場合、5~100モル%であることが好ましく、5~30モル%であることがさらに好ましい。 The content of the promoter in the catalyst carrier is preferably 5 to 100 mol%, more preferably 5 to 30 mol%, when the magnesium content is 100 mol%.
 触媒担持体に使用するマンガン塩やモリブデン塩として、従来公知の様々な塩を使用することができる。例えば、酢酸マンガン(II)四水和物、炭酸マンガン(II) n水和物、塩化マンガン(II)四水和物、硝酸マンガン(II)六水和物、酸化マンガン(IV)、硫酸マンガン(II)五水和物、モリブデン酸アンモニウム、モリブデン、モリブデン酸カリウム、七モリブデン酸六アンモニウム四水和物、塩化モリブデン(V)、酸化モリブデン(VI)、硫化モリブデン(IV)、タングステン酸アンモニウムパラ五水和物、タングステン酸カリウム、タングステン(VI)酸ナトリウム二水和物、タングステン、酸化タングステン(VI)などが挙げられる。特に、酢酸マンガン(II)四水和物、炭酸マンガン(II) n水和物、モリブデン酸アンモニウム、酸化モリブデン(VI)が好ましい。 Various conventionally known salts can be used as the manganese salt or molybdenum salt used for the catalyst carrier. For example, manganese acetate (II) tetrahydrate, manganese carbonate (II) n hydrate, manganese chloride (II) tetrahydrate, manganese nitrate (II) hexahydrate, manganese (IV) oxide, manganese sulfate (II) pentahydrate, ammonium molybdate, molybdenum, potassium molybdate, hexaammonium hexamolybdate tetrahydrate, molybdenum chloride (V), molybdenum oxide (VI), molybdenum sulfide (IV), ammonium tungstate para Examples include pentahydrate, potassium tungstate, sodium tungsten (VI) dihydrate, tungsten, and tungsten (VI) oxide. In particular, manganese (II) acetate tetrahydrate, manganese (II) carbonate n-hydrate, ammonium molybdate, and molybdenum (VI) oxide are preferable.
 触媒担持体の原料は均一に混合されることが好ましい。混合は湿式であっても乾式であっても良いが、水に不溶性の塩を使用する場合は乾式の混合が好ましい。湿式で原料を混合した場合は100~200℃の範囲で乾燥した後、混合することが好ましい。 It is preferable that the raw materials for the catalyst carrier are mixed uniformly. Mixing may be wet or dry, but when using a water-insoluble salt, dry mixing is preferred. When the raw materials are mixed in a wet manner, it is preferable to mix after drying in the range of 100 to 200 ° C.
 触媒担持体は水分が少ないことが好ましい。触媒担持体を100質量%とした時、水分が5質量%以下であることが好ましく、3質量%以下であることが好ましい。触媒担持体中の水分量は、例えば、加熱乾燥式水分計(MS-70、株式会社エー・アンド・デイ社)を使用して測定することができる。 The catalyst carrier is preferably low in moisture. When the catalyst support is 100% by mass, the water content is preferably 5% by mass or less, and preferably 3% by mass or less. The amount of water in the catalyst carrier can be measured using, for example, a heat drying moisture meter (MS-70, A & D Corporation).
 触媒担持体の粒子径は小さいものが好ましい。具体的には粒度分布はD50(μm)が1.0~10.0μmであることが好ましく、1.0~5.0μmであることがさらに好ましい。また、D90(μm)が5.0~70.0μmであることが好ましく、5.0~20.0μmであることがさらに好ましい。 The catalyst carrier preferably has a small particle size. Specifically, in the particle size distribution, D50 (μm) is preferably 1.0 to 10.0 μm, and more preferably 1.0 to 5.0 μm. Further, D90 (μm) is preferably 5.0 to 70.0 μm, and more preferably 5.0 to 20.0 μm.
 触媒担持体の粒度分布D50(μm)、D90(μm)は次のように求められる。まず、レーザー回折式乾式粒度分布測定装置によって触媒担持体の粒度分布を測定する。測定結果における累積分布50vol%の時の粒径をD50(μm)、累積分布90vol%の時の粒径をD90(μm)として算出することができる。 The particle size distributions D50 (μm) and D90 (μm) of the catalyst carrier are obtained as follows. First, the particle size distribution of the catalyst carrier is measured by a laser diffraction dry particle size distribution measuring device. In the measurement results, the particle size when the cumulative distribution is 50 vol% can be calculated as D50 (μm), and the particle size when the cumulative distribution is 90 vol% can be calculated as D90 (μm).
 触媒担持体の粒子径を小さくする方法としては、従来公知の様々な方法を使用することができる。その中でも、圧縮力、衝撃力、せん断力や摩擦力を触媒担持体に加えることができる粉砕機を使用することが好ましい。 As a method for reducing the particle size of the catalyst carrier, various conventionally known methods can be used. Among these, it is preferable to use a pulverizer that can apply a compressive force, an impact force, a shearing force, and a frictional force to the catalyst carrier.
 粉砕機とは圧縮力、衝撃力、せん断力や摩擦力などの力を試料に加えて試料を微細化する装置である。微細化するための装置としては乳鉢、ピンミル、ハンマーミル、パルペライザー、アトライター、ジェットミル、カッターミル、ボールミル、ビーズミル、コロイドミル、コニカルミル、ディスクミル、エッジミル、ワンダークラッシャー、振動ミル、超音波ホモジナイザー等の粉砕機を使用することができる。好ましくは、触媒粒子の複合化、メカニカルアロイングおよびアモルファス化が進みやすいアトライター、ピンミル、ハンマーミル、ジェットミル、カッターミル、ボールミル、ビーズミル、ワンダークラッシャー、振動ミルである。特に好ましくは、粉砕メディアとしてビーズを用いるアトライター、ボールミル、ビーズミル、振動ミルである。 A pulverizer is a device that applies a force such as compressive force, impact force, shear force or friction force to a sample to refine the sample. Equipment for miniaturization includes mortar, pin mill, hammer mill, pulverizer, attritor, jet mill, cutter mill, ball mill, bead mill, colloid mill, conical mill, disc mill, edge mill, one dark lasher, vibration mill, ultrasonic homogenizer, etc. Can be used. Preferred are an attritor, a pin mill, a hammer mill, a jet mill, a cutter mill, a ball mill, a bead mill, a one-dark lasher, and a vibration mill, which are easily composited, mechanically alloyed and amorphized. Particularly preferable are an attritor, a ball mill, a bead mill, and a vibration mill using beads as a grinding medium.
 粉砕メディアとしてのビーズは従来公知の様々なものを使用することができる。例えば、スチールビーズ、ジルコニアビーズ、アルミナビーズ、ガラスビーズである。中でも、比重の大きいスチールビーズや硬度の高いジルコニアビーズを使用することが好ましい。 Various conventionally known beads can be used as the grinding media. For example, steel beads, zirconia beads, alumina beads, and glass beads. Among them, it is preferable to use steel beads having high specific gravity or zirconia beads having high hardness.
 ビーズの径は従来公知の様々なものを使用することができるが、作業性の観点から直径1~10mmのビーズを使用することが好ましい。2~5mmのビーズを使用することがさらに好ましい。 Although various conventionally known beads can be used, it is preferable to use beads having a diameter of 1 to 10 mm from the viewpoint of workability. More preferably, 2-5 mm beads are used.
 触媒は活性成分と触媒担持体と助触媒成分とを均一に混合および/または粉砕して作製されることが好ましい。混合および/または粉砕の方法としては、従来公知の様々な方法を使用することができる。混合および/または粉砕の装置としては前述の粉砕機と同様のものが挙げられる。 The catalyst is preferably prepared by uniformly mixing and / or pulverizing the active component, the catalyst carrier and the promoter component. Various conventionally known methods can be used as the mixing and / or grinding method. Examples of the mixing and / or pulverizing apparatus include the same ones as described above.
 触媒は活性成分と触媒担持体と助触媒成分となる金属塩を混合および粉砕した後、空気中で焼成し、酸化物とされることが好ましい。 The catalyst is preferably made into an oxide by mixing and pulverizing an active component, a catalyst carrier and a metal salt as a promoter component, followed by firing in air.
 焼成温度は焼成時の酸素濃度によっても異なるが、酸素存在下、300~900℃であることが好ましく、300~750℃であることがより好ましい。 The firing temperature varies depending on the oxygen concentration at the time of firing, but is preferably 300 to 900 ° C., more preferably 300 to 750 ° C. in the presence of oxygen.
 触媒は焼成後、固形物を粉砕し粒子径D50を50μm以下にすることが好ましく、20μm未満にすることがより好ましい。固形物を粉砕し、粒子径を揃えることによって、均質な触媒が得られる。 The catalyst is preferably calcined and then pulverized to a solid particle size of 50 μm or less, more preferably less than 20 μm. A homogenous catalyst can be obtained by pulverizing the solid and making the particle diameter uniform.
(2)樹脂組成物(B)
 本実施形態の樹脂組成物(B)は少なくとも多層カーボンナノチューブ(A)と樹脂(C)とを含む。本実施形態の樹脂組成物は、前記本発明の多層カーボンナノチューブ(A)を含有することにより、漆黒性の高い塗膜を形成するために好適に用いることができる。
(2) Resin composition (B)
The resin composition (B) of this embodiment contains at least a multi-walled carbon nanotube (A) and a resin (C). The resin composition of this embodiment can be suitably used for forming a coating film with high jetness by containing the multi-walled carbon nanotube (A) of the present invention.
 本実施形態の樹脂組成物(B)を得るには、多層カーボンナノチューブ(A)及び樹脂(C)を溶媒中に分散させる処理を行うことが好ましい。かかる処理を行うために使用される機材は特に限定されない。機材として例えば、ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノーミル」)、アトライター、パールミル(アイリッヒ社製「DCPミル」)、超音波ホモジナイザー(Advanced Digital Sonifer(登録商標)、MODEL 450DA、BRANSON社製)、コボールミル、バスケットミル、ホモミキサー、ホモジナイザー(エム・テクニック社製「クレアミックス」)、湿式ジェットミル(ジーナス社製「ジーナスPY」、ナノマイザー社製「ナノマイザー」)、フーバーマーラー、3本ロールミル、及びエクストルーダーが挙げられる。 In order to obtain the resin composition (B) of the present embodiment, it is preferable to perform a treatment of dispersing the multi-walled carbon nanotube (A) and the resin (C) in a solvent. The equipment used for performing such processing is not particularly limited. For example, paint conditioner (manufactured by Red Devil), ball mill, sand mill ("Dyno mill" manufactured by Shinmaru Enterprises), attritor, pearl mill ("DCP mill" manufactured by Eirich), ultrasonic homogenizer (Advanced Digital Sonifier ( (Registered trademark), MODEL 450DA, manufactured by BRANSON), coball mill, basket mill, homomixer, homogenizer (“CLEAMIX” manufactured by M Technique), wet jet mill (“GENUS PY” manufactured by Genus, “Nanomizer manufactured by Nanomizer) "), Hoover Mahler, 3 roll mills and extruders.
 また、樹脂組成物(B)を得るために高速攪拌機を使用することもできる。高速攪拌機として、例えば、ホモディスパー(PRIMIX社製)、フィルミックス(PRIMIX社製)、ディゾルバー(井上製作所社製)及びハイパーHS(アシザワ・ファインテック社製)が挙げられるが、これらに限定されない。 Further, a high-speed stirrer can be used to obtain the resin composition (B). Examples of the high-speed stirrer include, but are not limited to, homodisper (manufactured by PRIMIX), fillmix (manufactured by PRIMIX), dissolver (manufactured by Inoue Seisakusho) and hyper HS (manufactured by Ashizawa Finetech).
樹脂(C)
 樹脂(C)は、天然樹脂及び合成樹脂から選ばれる。樹脂(C)は単独の樹脂でもよい。樹脂(C)として天然樹脂及び合成樹脂から二種以上の樹脂を選択してもよい。二種以上の樹脂は組み合わせて使用することができる。
Resin (C)
The resin (C) is selected from natural resins and synthetic resins. Resin (C) may be a single resin. As the resin (C), two or more kinds of resins may be selected from natural resins and synthetic resins. Two or more kinds of resins can be used in combination.
 天然樹脂としては、天然ゴム、ゼラチン、ロジン、セラック、多糖類及びギルソナイトが挙げられるが、これらに限定されない。また、合成樹脂としては、フェノール樹脂、アルキッド樹脂、石油樹脂、ビニル系樹脂、オレフィン樹脂、合成ゴム、ポリエステル樹脂、ポリアミド樹脂、アクリル樹脂、スチレン樹脂、エポキシ樹脂、メラミン樹脂、ポリウレタン樹脂、アミノ樹脂、アミド樹脂、イミド樹脂、フッ素系樹脂、フッ化ビニリデン樹脂、塩化ビニル樹脂、ABS樹脂、ポリカーボネート、シリコーン系樹脂、ニトロセルロース、ロジン変性フェノール樹脂及びロジン変性ポリアミド樹脂が挙げられるがこれらに限定されない。 Natural resins include, but are not limited to, natural rubber, gelatin, rosin, shellac, polysaccharides and gilsonite. Synthetic resins include phenolic resin, alkyd resin, petroleum resin, vinyl resin, olefin resin, synthetic rubber, polyester resin, polyamide resin, acrylic resin, styrene resin, epoxy resin, melamine resin, polyurethane resin, amino resin, Examples include, but are not limited to, amide resins, imide resins, fluorine resins, vinylidene fluoride resins, vinyl chloride resins, ABS resins, polycarbonates, silicone resins, nitrocellulose, rosin-modified phenol resins, and rosin-modified polyamide resins.
 これらの樹脂のうち、耐光性の観点からアクリル樹脂及びポリエステル樹脂の少なくともいずれか一方が含まれていることが好ましい。また、この時、ベース塗料にもアクリル樹脂及びポリエステル樹脂の少なくともいずれか一方が含まれていることが好ましい。 Among these resins, it is preferable that at least one of an acrylic resin and a polyester resin is included from the viewpoint of light resistance. At this time, it is preferable that at least one of acrylic resin and polyester resin is also contained in the base coating material.
 本実施形態の樹脂組成物(B)に用いられる水溶性樹脂としては、酸価が20~70mgKOH/gであるとともに、水酸基価が20~160mgKOH/gである水溶性樹脂が好ましい。具体的には、ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂が特に水溶性樹脂として好適に用いられる。 The water-soluble resin used in the resin composition (B) of the present embodiment is preferably a water-soluble resin having an acid value of 20 to 70 mgKOH / g and a hydroxyl value of 20 to 160 mgKOH / g. Specifically, polyester resin, acrylic resin, and polyurethane resin are particularly preferably used as the water-soluble resin.
 ポリエステル樹脂は、多価アルコール及び多塩基酸を原料として用いた樹脂である。ポリエステル樹脂の酸価は20~70mgKOH/g、好ましくは25~60mgKOH/g、特に好ましくは30~55mgKOH/gである。ポリエステル樹脂の水酸基価は20~160mgKOH/g、好ましくは80~130mgKOH/gである。 The polyester resin is a resin using polyhydric alcohol and polybasic acid as raw materials. The acid value of the polyester resin is 20 to 70 mgKOH / g, preferably 25 to 60 mgKOH / g, particularly preferably 30 to 55 mgKOH / g. The hydroxyl value of the polyester resin is 20 to 160 mgKOH / g, preferably 80 to 130 mgKOH / g.
 本実施形態において、酸価とは樹脂1gを中和するために必要な水酸化カリウムの質量(mg)をいう。また水酸基価とは樹脂の水酸基と無水フタル酸とを反応させ、その反応に要した酸を、該樹脂1gを中和するために必要な水酸化カリウムの質量(mg)をいう。
 なお、本実施形態において、樹脂の酸価及び水酸基価の測定はJIS K0070の方法に準じて行うことができる。
In this embodiment, an acid value means the mass (mg) of potassium hydroxide required in order to neutralize 1 g of resin. The hydroxyl value refers to the mass (mg) of potassium hydroxide required to react the hydroxyl group of the resin with phthalic anhydride and neutralize 1 g of the resin with the acid required for the reaction.
In this embodiment, the acid value and hydroxyl value of the resin can be measured according to the method of JIS K0070.
 水溶性ポリエステル樹脂は、公知のエステル化反応によって容易に得ることができる。水溶性ポリエステル樹脂は、多価アルコール及び多塩基酸を原料として製造された樹脂である。原料は通常のポリエステル樹脂を構成する化合物でよい。必要に応じ水溶性ポリエステル樹脂に油脂類を追加してもよい。 The water-soluble polyester resin can be easily obtained by a known esterification reaction. The water-soluble polyester resin is a resin produced using a polyhydric alcohol and a polybasic acid as raw materials. The raw material may be a compound constituting a normal polyester resin. You may add fats and oils to water-soluble polyester resin as needed.
 上記多価アルコールとしては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、トリエチレングリコール、水素化ビスフェノールA、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリトリット及びジペンタエリトリットが挙げられるがこれらに限定されない。これらの多価アルコールを単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 上記多塩基酸としては、例えば、無水フタル酸、イソフタル酸、テレフタル酸、無水コハク酸、アジピン酸、アゼライン酸、セバシン酸、無水マレイン酸、フマル酸、イタコン酸及び無水トリメリット酸が挙げられるが、これらに限定されない。これらの多塩基酸は単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 また、上記油脂類としては、例えば、大豆油、椰子油、サフラワー油、ぬか油、ひまし油、きり油、あまに油及びトール油、並びにこれらから得られる脂肪酸を挙げることができるが、これらに限定されない。
Examples of the polyhydric alcohol include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, diethylene glycol, Examples include, but are not limited to, propylene glycol, neopentyl glycol, triethylene glycol, hydrogenated bisphenol A, glycerin, trimethylol ethane, trimethylol propane, pentaerythritol and dipentaerythritol. These polyhydric alcohols may be used alone or in combination of two or more.
Examples of the polybasic acid include phthalic anhydride, isophthalic acid, terephthalic acid, succinic anhydride, adipic acid, azelaic acid, sebacic acid, maleic anhydride, fumaric acid, itaconic acid and trimellitic anhydride. However, it is not limited to these. These polybasic acids may be used alone or in combination of two or more.
Examples of the fats and oils include soybean oil, coconut oil, safflower oil, bran oil, castor oil, persimmon oil, linseed oil and tall oil, and fatty acids obtained therefrom. It is not limited.
 前記アクリル樹脂は、ビニル系モノマーを原料とする樹脂である。アクリル樹脂の酸価は、20~70mgKOH/g、好ましくは22~50mgKOH/g、特に好ましくは23~40mgKOH/gである。アクリル樹脂の水酸基価は20~160mgKOH/g、好ましくは80~150mgKOH/gの水溶性樹脂である。 The acrylic resin is a resin made from a vinyl monomer. The acid value of the acrylic resin is 20 to 70 mgKOH / g, preferably 22 to 50 mgKOH / g, particularly preferably 23 to 40 mgKOH / g. The acrylic resin is a water-soluble resin having a hydroxyl value of 20 to 160 mgKOH / g, preferably 80 to 150 mgKOH / g.
 水溶性アクリル樹脂は、公知の溶液重合法又はその他の方法によって、容易に得ることができる。水溶性アクリル樹脂はビニル系モノマーを原料として製造された樹脂である。原料は通常のアクリル樹脂を構成する化合物でよい。また上記方法において有機過酸化物は重合反応の開始剤として用いられる。 The water-soluble acrylic resin can be easily obtained by a known solution polymerization method or other methods. The water-soluble acrylic resin is a resin produced using a vinyl monomer as a raw material. The raw material may be a compound constituting a normal acrylic resin. In the above method, the organic peroxide is used as an initiator for the polymerization reaction.
 ビニル系モノマーとしては、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸に代表されるエチレン性不飽和カルボン酸類;メチル、エチル、プロピル、ブチル、イソブチル、ターシャリーブチル、2-エチルヘキシル、ラウリル、シクロヘキシル、ステアリルに代表される、アクリル酸又はメタクリル酸のアルキルエステル類;2-ヒドロキシエチル、2-ヒドロキシプロピル、3-ヒドロキシプロピル、分子量1000以下のポリエチレングリコールに代表されるアクリル酸又はメタクリル酸のヒドロキシアルキルエステル類;アクリル酸又はメタクリル酸のアミド類;又はそれらのアルキルエーテル類が挙げられるが、これらに限定されない。例えば、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミド、ジアセトンメタクリルアミド、N-メトキシメチルアクリルアミド、N-メトキシメチルメタクリルアミド及びN-ブトキシメチルアクリルアミドが挙げられるが、これらに限定されない。 Examples of vinyl monomers include ethylenically unsaturated carboxylic acids represented by acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid; methyl, ethyl, propyl, butyl, isobutyl, tertiary butyl, Alkyl esters of acrylic acid or methacrylic acid represented by 2-ethylhexyl, lauryl, cyclohexyl, stearyl; acrylics represented by 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, polyethylene glycol having a molecular weight of 1000 or less Hydroxyalkyl esters of acid or methacrylic acid; amides of acrylic acid or methacrylic acid; or alkyl ethers thereof include, but are not limited to. Examples include, but are not limited to, acrylamide, methacrylamide, N-methylol acrylamide, diacetone acrylamide, diacetone methacrylamide, N-methoxymethyl acrylamide, N-methoxymethyl methacrylamide and N-butoxymethyl acrylamide.
 更に、エポキシ基を持つグリシジル(メタ)アクリレートが挙げられる。また第3級アミノ基を含むモノマー類も挙げられる。例えば、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレートが挙げられるが、これらに限定されない。この他、スチレン、α-メチルスチレン、ビニルトルエン及びビニルピリジンに代表される芳香族モノマー;アクリロニトリル;メタクリロニトリル;酢酸ビニル;並びにマレイン酸又はフマル酸のモノ又はジアルキルエステル類が挙げられるが、これらに限定されない。有機過酸化物としては、例えば、アシルパーオキシド類(例えば、過酸化ベンゾイル)、アルキルヒドロパーオキシド類(例えば、t-ブチルヒドロパーオキシド及びp-メタンヒドロパーオキシド)、並びにジアルキルパーオキシド類(例えば、ジ-t-ブチルパーオキシド)が挙げられるが、これらに限定されない。 Furthermore, glycidyl (meth) acrylate having an epoxy group can be mentioned. Also included are monomers containing a tertiary amino group. Examples thereof include, but are not limited to, N, N-dimethylaminoethyl (meth) acrylate and N, N-diethylaminoethyl (meth) acrylate. In addition, aromatic monomers represented by styrene, α-methylstyrene, vinyltoluene and vinylpyridine; acrylonitrile; methacrylonitrile; vinyl acetate; and mono- or dialkyl esters of maleic acid or fumaric acid, It is not limited to. Organic peroxides include, for example, acyl peroxides (eg, benzoyl peroxide), alkyl hydroperoxides (eg, t-butyl hydroperoxide and p-methane hydroperoxide), and dialkyl peroxides ( Examples thereof include, but are not limited to, di-t-butyl peroxide.
 前記ポリウレタン樹脂は、ポリオール及びポリイソシアネートを原料とする樹脂である。ポリウレタン樹脂の酸価は、20~70mgKOH/g、好ましくは22~50mgKOH/g、特に好ましくは23~ 35mgKOH/gである。ポリウレタン樹脂の水酸基価は20~160mgKOH/g、好ましくは25~50mgKOH/gである。 The polyurethane resin is a resin made from polyol and polyisocyanate. The acid value of the polyurethane resin is 20 to 70 mgKOH / g, preferably 22 to 50 mgKOH / g, particularly preferably 23 to 35 mgKOH / g. The hydroxyl value of the polyurethane resin is 20 to 160 mgKOH / g, preferably 25 to 50 mgKOH / g.
 水溶性ポリウレタン樹脂は、ポリオール及びポリイソシアネートを付加重合することによって、容易に得ることができる。原料は通常のポリウレタン樹脂を構成するポリオール及びポリイソシアネートでよい。 The water-soluble polyurethane resin can be easily obtained by addition polymerization of polyol and polyisocyanate. The raw material may be a polyol and a polyisocyanate constituting an ordinary polyurethane resin.
 ポリオールとしては、ポリエステルポリオール、ポリエーテルポリオール及びアクリルポリオールが挙げられるが、これらに限定されない。また、ポリイソシアネートとしては、フェニレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、ビスフェニレンジイソシアネート、ナフチレンジイソシアネート、ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、シクロペンチレンジイソシアネート、シクロへキシレンジイソシアネート、メチルシクロへキシレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレンジイソシアネート、エチルエチレンジイソシアネート及びトリメチルヘキサンジイソシアネートが挙げられるが、これらに限定されない。 Polyols include, but are not limited to, polyester polyols, polyether polyols, and acrylic polyols. Polyisocyanates include phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, bisphenylene diisocyanate, naphthylene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, cyclopentylene diisocyanate, cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, dicyclohexylmethane diisocyanate. , Trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, propylene diisocyanate, ethylethylene diisocyanate, and trimethylhexane diisocyanate, but are not limited thereto.
 水溶性のポリエステル樹脂、アクリル樹脂及びポリウレタン樹脂は、塩基性物質で中和することにより水溶性が付与される。この際、水溶性樹脂に含まれている酸性基の40モル%以上を中和できる量の塩基性物質を用いることが好ましい。上記の塩基性物質としては、例えば、アンモニア、ジメチルアミン、トリメチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、トリエタノールアミン、N-メチルエタノールアミン、N-アミノエチルエタノールアミン、N-メチルジエタノールアミン、モルホリン、モノイソプロパノールアミン、ジイソプロパノールアミン及びジメチルエタノールアミンが挙げられるが、これらに限定されない。 Water-soluble polyester resin, acrylic resin, and polyurethane resin are rendered water-soluble by neutralization with a basic substance. Under the present circumstances, it is preferable to use the basic substance of the quantity which can neutralize 40 mol% or more of the acidic group contained in water-soluble resin. Examples of the basic substance include ammonia, dimethylamine, trimethylamine, diethylamine, triethylamine, propylamine, triethanolamine, N-methylethanolamine, N-aminoethylethanolamine, N-methyldiethanolamine, morpholine, monoisopropanol. Examples include, but are not limited to amines, diisopropanolamine, and dimethylethanolamine.
 水溶性樹脂の数平均分子量は特に制限されない。数平均分子量は500~50,000が好ましく、800~25,000がより好ましく、1,000~12,000が特に好ましい。 The number average molecular weight of the water-soluble resin is not particularly limited. The number average molecular weight is preferably 500 to 50,000, more preferably 800 to 25,000, and particularly preferably 1,000 to 12,000.
 また、樹脂(C)は硬化性を有するタイプとラッカータイプとに分類される。本実施形態では硬化性を有するタイプの樹脂が好適に使用される。硬化性を有するタイプの樹脂(C)は、メラミン樹脂に代表されるアミノ樹脂又は(ブロック)ポリイソシアネート化合物アミン系化合物、ポリアミド系化合物及び多価カルボン酸に代表される架橋剤とともに使用される。樹脂(C)及び架橋剤は混合された後、加熱されることで又は常温におかれることで硬化反応が進行する。また、硬化性を有しないタイプの樹脂を塗膜形成用樹脂とするとともに、硬化性を有するタイプの樹脂と併用することもできる。 Also, the resin (C) is classified into a curable type and a lacquer type. In the present embodiment, a curable resin is preferably used. The curable resin (C) is used with an amino resin typified by melamine resin or a crosslinking agent typified by (block) polyisocyanate compound amine compound, polyamide compound and polyvalent carboxylic acid. After the resin (C) and the cross-linking agent are mixed, the curing reaction proceeds by being heated or at room temperature. Moreover, while using resin of the type which does not have curability as resin for film-forming, it can also use together with resin of the type which has curability.
 本実施形態の樹脂組成物(B)は、少なくとも前記多層カーボンナノチューブ(A)と、樹脂(C)とを含有すればよく、必要に応じて、更に他の成分を含有してもよいものである。
 他の成分としては、例えば、分散剤や、溶媒などが挙げられる。
The resin composition (B) of this embodiment should just contain the said multi-walled carbon nanotube (A) and resin (C) at least, and may contain another component as needed. is there.
Examples of other components include a dispersant and a solvent.
 分散剤としては、界面活性剤、樹脂型分散剤または有機顔料誘導体を使用することができる。界面活性剤は主にアニオン性、カチオン性、ノニオン性及び両性に分類される。多層カーボンナノチューブ(A)の分散に要求される特性に応じて適宜好適な種類の分散剤を、好適な配合量で使用することができる。分散剤として好ましいのは樹脂型分散剤である。 As the dispersant, a surfactant, a resin-type dispersant, or an organic pigment derivative can be used. Surfactants are mainly classified into anionic, cationic, nonionic and amphoteric. Depending on the properties required for the dispersion of the multi-walled carbon nanotube (A), a suitable type of dispersant can be appropriately used in a suitable blending amount. A preferable dispersant is a resin-type dispersant.
 アニオン性界面活性剤を選択する場合、その種類は特に限定されない。具体的には脂肪酸塩、ポリスルホン酸塩、ポリカルボン酸塩、アルキル硫酸エステル塩、アルキルアリールスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルアリールエーテル硫酸塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルリン酸スルホン酸塩、グリセロールボレイト脂肪酸エステル及びポリオキシエチレングリセロール脂肪酸エステルが挙げられるが、これらに限定されない。さらに、具体的にはドデシルベンゼンスルホン酸ナトリウム、ラウリル酸硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸エステル塩及びβ-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩が挙げられるが、これらに限定されない。 When selecting an anionic surfactant, the kind is not particularly limited. Specifically, fatty acid salt, polysulfonate, polycarboxylate, alkyl sulfate ester salt, alkylaryl sulfonate, alkylnaphthalene sulfonate, dialkyl sulfonate, dialkyl sulfosuccinate, alkyl phosphate, polyoxy Examples include ethylene alkyl ether sulfate, polyoxyethylene alkyl aryl ether sulfate, naphthalene sulfonic acid formalin condensate, polyoxyethylene alkyl phosphoric acid sulfonate, glycerol borate fatty acid ester and polyoxyethylene glycerol fatty acid ester. It is not limited to. Specific examples include sodium dodecylbenzenesulfonate, sodium laurate sulfate, polyoxyethylene lauryl ether sodium sulfate, polyoxyethylene nonylphenyl ether sulfate ester salt, and sodium salt of β-naphthalenesulfonic acid formalin condensate. However, it is not limited to these.
 またカチオン性界面活性剤としては、アルキルアミン塩類及び第四級アンモニウム塩類がある。具体的にはステアリルアミンアセテート、トリメチルヤシアンモニウムクロリド、トリメチル牛脂アンモニウムクロリド、ジメチルジオレイルアンモニウムクロリド、メチルオレイルジエタノールクロリド、テトラメチルアンモニウムクロリド、ラウリルピリジニウムクロリド、ラウリルピリジニウムブロマイド、ラウリルピリジニウムジサルフェート、セチルピリジニウムブロマイド、4-アルキルメルカプトピリジン、ポリ(ビニルピリジン)-ドデシルブロマイド及びドデシルベンジルトリエチルアンモニウムクロリドが挙げられるが、これらに限定されない。また両性界面活性剤としては、アミノカルボン酸塩が挙げられるが、これらに限定されない。 In addition, examples of the cationic surfactant include alkylamine salts and quaternary ammonium salts. Specifically, stearylamine acetate, trimethyl cocoammonium chloride, trimethyl tallow ammonium chloride, dimethyl dioleyl ammonium chloride, methyl oleyl diethanol chloride, tetramethyl ammonium chloride, lauryl pyridinium chloride, lauryl pyridinium bromide, lauryl pyridinium disulfate, cetyl pyridinium bromide , 4-alkylmercaptopyridine, poly (vinylpyridine) -dodecyl bromide and dodecylbenzyltriethylammonium chloride. Examples of amphoteric surfactants include, but are not limited to, aminocarboxylates.
 またノニオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシアルキレン誘導体、ポリオキシエチレンフェニルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル及びアルキルアリルエーテルが挙げられるが、これらに限定されない。具体的にはポリオキシエチレンラウリルエーテル、ソルビタン脂肪酸エステル及びポリオキシエチレンオクチルフェニルエーテルが挙げられるが、これらに限定されない。 Nonionic surfactants include, but are not limited to, polyoxyethylene alkyl ethers, polyoxyalkylene derivatives, polyoxyethylene phenyl ethers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, and alkyl allyl ethers. Specific examples include, but are not limited to, polyoxyethylene lauryl ether, sorbitan fatty acid ester, and polyoxyethylene octyl phenyl ether.
 選択される界面活性剤は単独の界面活性剤に限定されない。このため二種以上の界面活性剤を組み合わせて使用することも可能である。例えばアニオン性界面活性剤及びノニオン性界面活性剤の組み合わせ、又はカチオン性界面活性剤及びノニオン性界面活性剤の組み合わせが利用できる。その際の配合量は、それぞれの界面活性剤成分に対して好適な配合量とすることが好ましい。組み合わせとしてはアニオン性界面活性剤及びノニオン性界面活性剤の組み合わせが好ましい。アニオン性界面活性剤はポリカルボン酸塩であることが好ましい。ノニオン性界面活性剤はポリオキシエチレンフェニルエーテルであることが好ましい。 The selected surfactant is not limited to a single surfactant. For this reason, it is also possible to use 2 or more types of surfactant in combination. For example, a combination of an anionic surfactant and a nonionic surfactant, or a combination of a cationic surfactant and a nonionic surfactant can be used. The blending amount at that time is preferably set to a suitable blending amount for each surfactant component. As a combination, a combination of an anionic surfactant and a nonionic surfactant is preferable. The anionic surfactant is preferably a polycarboxylate. The nonionic surfactant is preferably polyoxyethylene phenyl ether.
 また樹脂型分散剤として具体的には、ポリウレタン;ポリアクリレートのポリカルボン酸エステル;不飽和ポリアミド、ポリカルボン酸、ポリカルボン酸(部分)アミン塩、ポリカルボン酸アンモニウム塩、ポリカルボン酸アルキルアミン塩、ポリシロキサン、長鎖ポリアミノアマイドリン酸塩及び水酸基含有ポリカルボン酸エステル並びにこれらの変性物;低級アルキレンイミンの重合体及び遊離のカルボキシル基を有するポリエステルとの反応により形成されたアミド又はその塩の油性分散剤;(メタ)アクリル酸-スチレン共重合体、(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体、スチレン-マレイン酸共重合体、ポリビニルアルコール及びポリビニルピロリドンに代表される水溶性樹脂又は水溶性高分子化合物;ポリエステル系樹脂;変性ポリアクリレート系樹脂;エチレンオキサイド/プロピレンオキサイド付加化合物;並びにリン酸エステル系樹脂が用いられるが、これらに限定されない。これらは単独又は二種以上を混合して用いることができるが、必ずしもこれらに限定されるものではない。 Specific examples of the resin-type dispersant include polyurethane; polyacrylate ester of polyacrylate; unsaturated polyamide, polycarboxylic acid, polycarboxylic acid (partial) amine salt, polycarboxylic acid ammonium salt, and polycarboxylic acid alkylamine salt. , Polysiloxanes, long-chain polyaminoamide phosphates and hydroxyl group-containing polycarboxylic acid esters and modified products thereof; amides formed by reaction with lower alkyleneimine polymers and polyesters having free carboxyl groups or salts thereof Oil-based dispersant: water-soluble such as (meth) acrylic acid-styrene copolymer, (meth) acrylic acid- (meth) acrylic ester copolymer, styrene-maleic acid copolymer, polyvinyl alcohol and polyvinylpyrrolidone Resin or water-soluble polymer compound; Ester resin; modified polyacrylate resin, ethylene oxide / propylene oxide addition compound; and phosphate ester-based resin used but not limited thereto. These can be used alone or in admixture of two or more, but are not necessarily limited thereto.
 上記分散剤のうち、ポリカルボン酸のような酸性官能基を有する樹脂型分散剤が好ましい。これは、かかる樹脂型分散剤が、少ない添加量で分散組成物の粘度を低下させ、また分散組成物の分光透過率を高めることによる。樹脂型分散剤は、多層カーボンナノチューブ(A)に対して3~300質量%程度使用することが好ましい。また成膜性の観点から5~100質量%程度使用することがより好ましい。 Among the above dispersants, resin type dispersants having an acidic functional group such as polycarboxylic acid are preferable. This is because such a resin-type dispersant reduces the viscosity of the dispersion composition with a small addition amount and increases the spectral transmittance of the dispersion composition. The resin-type dispersant is preferably used in an amount of about 3 to 300% by mass with respect to the multi-walled carbon nanotube (A). From the viewpoint of film formability, it is more preferable to use about 5 to 100% by mass.
 市販の樹脂型分散剤としては、ビックケミー・ジャパン社製のANTI-TERRA(登録商標)-U/U100、ANTI-TERRA(登録商標)―204、ANTI-TERRA(登録商標)―250*、DISPERBYK(登録商標)、DISPERBYK(登録商標)-102、DISPERBYK(登録商標)-103、DISPERBYK(登録商標)-106、DISPERBYK(登録商標)-108、DISPERBYK(登録商標)-109、DISPERBYK(登録商標)-110/111、DISPERBYK(登録商標)-118*、DISPERBYK(登録商標)-140、DISPERBYK(登録商標)-142、DISPERBYK(登録商標)-145、DISPERBYK(登録商標)-161、DISPERBYK(登録商標)-162/163、DISPERBYK(登録商標)-164、DISPERBYK(登録商標)-167、DISPERBYK(登録商標)-168、DISPERBYK(登録商標)-170/171、DISPERBYK(登録商標)-174、DISPERBYK(登録商標)-180、DISPERBYK(登録商標)-182、DISPERBYK(登録商標)-184、DISPERBYK(登録商標)-185、DISPERBYK(登録商標)-187、DISPERBYK(登録商標)-190、DISPERBYK(登録商標)-191、DISPERBYK(登録商標)-192、DISPERBYK(登録商標)-193、DISPERBYK(登録商標)-194N*、DISPERBYK(登録商標)-198*、DISPERBYK(登録商標)-199*、DISPERBYK(登録商標)-2000、DISPERBYK(登録商標)-2001、DISPERBYK(登録商標)-2008、DISPERBYK(登録商標)-2009、DISPERBYK(登録商標)-2010、DISPERBYK(登録商標)-2012*、DISPERBYK(登録商標)-2013*、DISPERBYK(登録商標)-2015、DISPERBYK(登録商標)-2022*、DISPERBYK(登録商標)-2025、DISPERBYK(登録商標)-2050、DISPERBYK(登録商標)-2096、DISPERBYK(登録商標)-2150、DISPERBYK(登録商標)-2152*、DISPERBYK(登録商標)-2155、DISPERBYK(登録商標)-2163、DISPERBYK(登録商標)-2164、DISPERBYK(登録商標)-2200*、BYK(登録商標)-P104/P104S、BYK(登録商標)-P105、BYK(登録商標)-9076、BYK(登録商標)-9077、BYK(登録商標)-220S、日本ルーブリゾール社製SOLSPERSE-3000、5000、9000、11200、12000、13240、13650、13940、16000、17000、18000、20000、21000、24000GR、26000、27000、28000、32000、32500、32550、32600、33000、34750、35100、35200、36000、36600、37500、38500、39000、41000、41090、43000、44000、46000、47000、53095、55000、56000、71000及び76500、BASF社製のDispex(登録商標)UltraPA4550、Dispex(登録商標)UltraPA4560、Dispex(登録商標)UltraPX4575、Dispex(登録商標)UltraPX4585、Efka(登録商標)FA4608、Efka(登録商標)FA4620、Efka(登録商標)FA4644、Efka(登録商標)FA4654、Efka(登録商標)FA4663、Efka(登録商標)FA4665、Efka(登録商標)FA4666、Efka(登録商標)FA4672、Efka(登録商標)FA4673、Efka(登録商標)PA4400、Efka(登録商標)PA4401、Efka(登録商標)PA4403、Efka(登録商標)PA4450、Efka(登録商標)PU4063、Efka(登録商標)PX4300、Efka(登録商標)PX4310、Efka(登録商標)PX4320、Efka(登録商標)PX4330、Efka(登録商標)PX4340、Efka(登録商標)PX4700、Efka(登録商標)PX4701、Efka(登録商標)PX4731、Efka(登録商標)PX4732、Dispex(登録商標)UltraPA4550、Efka(登録商標)PA4560、Efka(登録商標)PX4575、Efka(登録商標)PX4585、Efka(登録商標)FA4600、Efka(登録商標)FA4601、Efka(登録商標)FA4608、Efka(登録商標)FA4620、Efka(登録商標)FA4644、Efka(登録商標)FA4654、Efka(登録商標)FA4663、Efka(登録商標)FA4665、Efka(登録商標)FA4666、Efka(登録商標)FA4672、Efka(登録商標)FA4673、Efka(登録商標)PA4400、Efka(登録商標)PA4401、Efka(登録商標)PA4403、Efka(登録商標)PA4450、Efka(登録商標)PU4063、Efka(登録商標)PX4300、Efka(登録商標)PX4310、Efka(登録商標)PX4320、Efka(登録商標)PX4330、Efka(登録商標)PX4340、Efka(登録商標)PX4700、Efka(登録商標)PX4701、Efka(登録商標)PX4731、Efka(登録商標)PX4732、共栄社化学社製のフローレンDOPA-15B、フローレンDOPA-15BHFS、フローレンDOPA-17HF、フローレンDOPA-22、フローレンDOPA-35、フローレンG-700、フローレンG-820XF、フローレンGW-1500、フローレンG-100SF、フローレンAF-1000、フローレンAF-1005、フローレンKDG-2400、フローレンD-90並びに味の素ファインテクノ社製のアジスパーPA111、PN411、PB821、PB822、PB824、PB881が挙げられるが、これらに限定されない。 Commercially available resin-type dispersants include ANTI-TERRA (registered trademark) -U / U100, ANTI-TERRA (registered trademark) -204, ANTI-TERRA (registered trademark) -250 *, DISPERBYK (by Big Chemie Japan) Registered trademark), DISPERBYK (registered trademark) -102, DISPERBYK (registered trademark) -103, DISPERBYK (registered trademark) -106, DISPERBYK (registered trademark) -108, DISPERBYK (registered trademark) -109, DISPERBYK (registered trademark)- 110/111, DISPERBYK (registered trademark) -118 *, DISPERBYK (registered trademark) -140, DISPERBYK (registered trademark) -142, DISPERBYK (registered trademark) -145, DISPERBYK (registered trademark)- 61, DISPERBYK (registered trademark) -162/163, DISPERBYK (registered trademark) -164, DISPERBYK (registered trademark) -167, DISPERBYK (registered trademark) -168, DISPERBYK (registered trademark) -170/171, DISPERBYK (registered trademark) ) -174, DISPERBYK (registered trademark) -180, DISPERBYK (registered trademark) -182, DISPERBYK (registered trademark) -184, DISPERBYK (registered trademark) -185, DISPERBYK (registered trademark) -187, DISPERBYK (registered trademark)- 190, DISPERBYK (registered trademark) -191, DISPERBYK (registered trademark) -192, DISPERBYK (registered trademark) -193, DISPERBYK (registered trademark) -194N * DISPERBYK (R) -198 *, DISPERBYK (R) -199 *, DISPERBYK (R) -2000, DISPERBYK (R) -2001, DISPERBYK (R) -2008, DISPERBYK (R) -2009, DISPERBYK (registered trademark) -2010, DISPERBYK (registered trademark) -2012 *, DISPERBYK (registered trademark) -2013 *, DISPERBYK (registered trademark) -2015, DISPERBYK (registered trademark) -2022 *, DISPERBYK (registered trademark) -2025 DISPERBYK (R) -2050, DISPERBYK (R) -2096, DISPERBYK (R) -2150, DISPERBYK (R) -2152 *, DISPERBYK (registered trademark) -2155, DISPERBYK (registered trademark) -2163, DISPERBYK (registered trademark) -2164, DISPERBYK (registered trademark) -2200 *, BYK (registered trademark) -P104 / P104S, BYK (registered) Trademark) -P105, BYK (registered trademark) -9076, BYK (registered trademark) -9077, BYK (registered trademark) -220S, SOLPERSE-3000, 5000, 9000, 11200, 12000, 13240, 13650, manufactured by Nippon Lubrizol Corporation 13940, 16000, 17000, 18000, 20000, 21000, 24000GR, 26000, 27000, 28000, 32000, 32500, 32550, 32600, 33000, 34750, 35 00, 35200, 36000, 36600, 37500, 38500, 39000, 41000, 41090, 43000, 44000, 46000, 47000, 53095, 55000, 56000, 71000 and 76500, Dispex (registered trademark) UltraPA4550, Dispex (registered by BASF) (Trademark) UltraPA4560, Dispex (registered trademark) UltraPX4575, Dispex (registered trademark) UltraPX4585, Efka (registered trademark) FA4608, Efka (registered trademark) FA4620, Efka (registered trademark) FA4644, Efka (registered trademark) FA4654, Efk ) FA4663, Efka (registered trademark) FA4665, Efka (registered trademark) FA4666, Efka (Registered trademark) FA4672, Efka (registered trademark) FA4673, Efka (registered trademark) PA4400, Efka (registered trademark) PA4401, Efka (registered trademark) PA4403, Efka (registered trademark) PA4450, Efka (registered trademark) PU4063, Efka (registered trademark) (Trademark) PX4300, Efka (registered trademark) PX4310, Efka (registered trademark) PX4320, Efka (registered trademark) PX4330, Efka (registered trademark) PX4340, Efka (registered trademark) PX4700, Efka (registered trademark) PX4701, Efka (registered trademark) ) PX4731, Efka (registered trademark) PX4732, Dispex (registered trademark) UltraPA4550, Efka (registered trademark) PA4560, Efka (registered trademark) PX4575, Efka (registered trademark) PX4585, Efka (registered trademark) FA4600, Efka (registered trademark) FA4601, Efka (registered trademark) FA4608, Efka (registered trademark) FA4620, Efka (registered trademark) FA4644, Efka (registered trademark) FA4654, Efka (registered trademark) ) FA4663, Efka (registered trademark) FA4665, Efka (registered trademark) FA4666, Efka (registered trademark) FA4672, Efka (registered trademark) FA4673, Efka (registered trademark) PA4400, Efka (registered trademark) PA4401, Efka (registered trademark) PA4403, Efka (registered trademark) PA4450, Efka (registered trademark) PU4063, Efka (registered trademark) PX4300, Efka (registered trademark) PX4310, Efka (registered trademark) PX4320, E ka (registered trademark) PX4330, Efka (registered trademark) PX4340, Efka (registered trademark) PX4700, Efka (registered trademark) PX4701, Efka (registered trademark) PX4731, Efka (registered trademark) PX4732, Kyoeisha Chemical Co., Ltd. 15B, FLOREN DOPA-15BHFS, FLOREN DOPA-17HF, FLOREN DOPA-22, FLOREN DOPA-35, FLOREN G-700, FLOREN G-820XF, FLOREN GW-1500, FLOREN G-100SF, FLOREN AF-1000, FLOREN AF- 1005, Floren KDG-2400, Floren D-90, and Ajinomoto Finetechno Ajisper PA111, PN411, PB821, PB822, PB824, PB 81 including but not limited to.
 有機顔料誘導体としては下記一般式(2)で表される酸性官能基を有する有機色素誘導体及び、下記一般式(1)で表される酸性官能基を有するトリアジン誘導体が挙げられる。 Examples of the organic pigment derivative include an organic dye derivative having an acidic functional group represented by the following general formula (2) and a triazine derivative having an acidic functional group represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中の記号は下記の意味を表す。
:有機色素残基、またはアントラキノン残基、または置換基を有していてもよい複素環、または置換基を有していてもよい芳香族環
:-O-R、-NH-R、ハロゲン基、-X-R、-X-Y-Z(Rは水素原子または置換基を有していてもよいアルキル基、アルケニル基を表す。)
:-NH-、-O-、-CONH-、-SONH-、-CHNH-、-CHNHCOCHNH-または-X-Y-X-(X及びXはそれぞれ独立に-NH-または-O-を表す。)
:-CONH-、-SONH-、-CHNH-、-NHCO-または-NHSO
:炭素数1~20で構成された置換基を有してもよいアルキレン基、あるいは置換基を有してもよいアルケニレン基、あるいは置換基を有してもよいアリーレン基
:-SOM、-COOM(Mは1~3価のカチオンの1当量を表す。)
The symbol in a formula represents the following meaning.
Q 1 : an organic dye residue, an anthraquinone residue, an optionally substituted heterocyclic ring, or an optionally substituted aromatic ring R 1 : —O—R 2 , —NH —R 2 , halogen group, —X 1 —R 2 , —X 2 —Y 1 —Z 1 (R 2 represents a hydrogen atom or an alkyl group or alkenyl group which may have a substituent)
X 1: -NH -, - O -, - CONH -, - SO 2 NH -, - CH 2 NH -, - CH 2 NHCOCH 2 NH- or -X 3 -Y 1 -X 4 - ( X 3 and X 4 each independently represents —NH— or —O—.
X 2: -CONH -, - SO 2 NH -, - CH 2 NH -, - NHCO- or -NHSO 2 -
Y 1 : an alkylene group having 1 to 20 carbon atoms which may have a substituent, an alkenylene group which may have a substituent, or an arylene group which may have a substituent Z 1 :- SO 3 M, —COOM (M represents one equivalent of a monovalent to trivalent cation)
 上記一般式(1)のQにおける有機色素残基としてはフタロシアニン系色素、アゾ系色素、キナクリドン系色素、ジオキサジン系色素、アントラピリミジン系色素、アンサンスロン系色素、インダンスロン系色素、フラバンスロン系色素、トリフェニルメタン系色素等の顔料または染料が挙げられる。 The general formula (1) phthalocyanine as organic colorant residue dye in to Q 1, azo dyes, quinacridone dyes, dioxazine dyes, anthrapyrimidine pigments, anthanthrone pigments, indanthrone pigments, flavanthrone And pigments or dyes such as trichromatic pigments and triphenylmethane pigments.
 上記一般式(1)のQにおける複素環または芳香族環としては例えば、チオフェン、フラン、ピリジン、ピラゾール、ピロール、イミダゾール、イソインドリン、イソインドリノン、ベンズイミダゾロン、ベンズチアゾール、ベンズトリアゾール、インドール、キノリン、カルバゾール、アクリジン、ベンゼン、ナフタレン、アントラセン、フルオレン、フェナントレン等が挙げられる。 Examples of the heterocyclic ring or aromatic ring in Q 1 of the general formula (1) include thiophene, furan, pyridine, pyrazole, pyrrole, imidazole, isoindoline, isoindolinone, benzimidazolone, benzthiazole, benztriazole, and indole. Quinoline, carbazole, acridine, benzene, naphthalene, anthracene, fluorene, phenanthrene and the like.
一般式(2)
-(-X-Z
式中の記号は下記の意味を表す。
:有機色素残基またはアントラキノン残基
:直接結合、-NH-、-O-、-CONH-、-SONH-、-CHNH-、-CHNHCOCHNH-または-X-Y-X-(X及びXはそれぞれ独立に-NH-または-O-を表し、Yは置換基を有していてもよいアルキレン基またはアリーレン基を表す。)
:-SOM、-COOM(Mは1~3価のカチオンの1当量を表す。)
n:1~4の整数
General formula (2)
Q 2 -(-X 5 -Z 2 ) n
The symbol in a formula represents the following meaning.
Q 2: organic pigment residue or anthraquinone residue X 5: a direct bond, -NH -, - O -, - CONH -, - SO 2 NH -, - CH 2 NH -, - CH 2 NHCOCH 2 NH- or - X 6 —Y 2 —X 7 — (X 6 and X 7 each independently represent —NH— or —O—, and Y 2 represents an alkylene group or an arylene group which may have a substituent.)
Z 2 : —SO 3 M, —COOM (M represents one equivalent of a monovalent to trivalent cation)
n: an integer from 1 to 4
 上記一般式(2)のQにおける有機色素残基としてはフタロシアニン系色素、アゾ系色素、キナクリドン系色素、ジオキサジン系色素、アントラピリミジン系色素、アンサンスロン系色素、インダンスロン系色素、フラバンスロン系色素、ペリレン系色素、ペリノン系色素、チオインジコ系色素、イソインドリノン系色素、トリフェニルメタン系色素等の顔料または染料が挙げられる。 The general formula phthalocyanine as organic pigment residue at Q 2 (2) dyes, azo dyes, quinacridone dyes, dioxazine dyes, anthrapyrimidine pigments, anthanthrone pigments, indanthrone pigments, flavanthrone And pigments or dyes such as dyes, perylene dyes, perinone dyes, thioindico dyes, isoindolinone dyes, and triphenylmethane dyes.
 樹脂組成物(B)は溶媒を含有してもよい。当該溶媒として、水系溶媒及び有機系溶媒のいずれも用いることができる。 Resin composition (B) may contain a solvent. As the solvent, any of an aqueous solvent and an organic solvent can be used.
 水系溶媒とは水または水を含む溶媒である。水を含む溶媒としては、水溶性液体を使用することができる。具体的な水溶性液体の例としては、例えば、アセトアルデヒド、酸化プロピレン、アセトン、ピリジン、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、酢酸、プロピオン酸、アクリル酸、エチレングリコール、グリセリン等に代表される水溶性の引火性液体が挙げられる。 An aqueous solvent is water or a solvent containing water. As the solvent containing water, a water-soluble liquid can be used. Specific examples of water-soluble liquids include, for example, acetaldehyde, propylene oxide, acetone, pyridine, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, acetic acid, propionic acid, acrylic acid, ethylene glycol, glycerin and the like. The water-soluble flammable liquid represented is mentioned.
 有機系溶媒の中では、沸点が50~250℃の有機系溶媒が用いやすい。かかる有機系溶媒は塗工時の作業性や硬化前後の乾燥性に優れる。具体的な溶媒の例としては、メタノール、エタノール及びイソプロピルアルコールに代表されるアルコール系溶媒;アセトン、ブチルジグリコールアセテート及びMEK(メチルエチルケトン)に代表されるケトン系溶媒;酢酸エチル及び酢酸ブチルに代表されるエステル系溶媒;ジブチルエーテル、エチレングリコール及びモノブチルエーテルに代表されるエーテル系溶媒;並びにN-メチル-2-ピロリドンに代表される双極性非プロトン溶媒が挙げられるが、これらに限定されない。これらの溶媒は、単独あるいは二種以上を混合して用いることもできる。 Among organic solvents, organic solvents having a boiling point of 50 to 250 ° C. are easy to use. Such an organic solvent is excellent in workability during coating and drying before and after curing. Specific examples of the solvent include alcohol solvents typified by methanol, ethanol and isopropyl alcohol; ketone solvents typified by acetone, butyl diglycol acetate and MEK (methyl ethyl ketone); typified by ethyl acetate and butyl acetate. Ester solvents such as dibutyl ether, ethylene glycol, and monobutyl ether; and dipolar aprotic solvents such as N-methyl-2-pyrrolidone, but are not limited thereto. These solvents can be used alone or in admixture of two or more.
 また、トルエン、キシレン、ソルベッソ#100(東燃ゼネラル社製)及びソルベッソ#150(東燃ゼネラル社製)に代表される芳香族炭化水素系溶媒;ヘキサン、ヘプタン、オクタン及びデカンに代表される脂肪族炭化水素系溶媒;又はセロソルブアセテート、エチルセロソルブ、ブチルセロソルブに代表されるアミド系溶媒を用いることもできる。これらの溶媒も単独であるいは二種以上を混合して、用いることができる。 Aromatic hydrocarbon solvents represented by toluene, xylene, Solvesso # 100 (manufactured by TonenGeneral) and Solvesso # 150 (manufactured by TonenGeneral); aliphatic carbonization represented by hexane, heptane, octane and decane Hydrogen solvents; or amide solvents represented by cellosolve acetate, ethyl cellosolve, and butyl cellosolve can also be used. These solvents can also be used alone or in admixture of two or more.
 また前記溶媒には必要に応じて、本実施形態の目的を阻害しない範囲で添加剤を適宜配合することができる。添加剤としては例えば顔料、濡れ浸透剤、皮張り防止剤、紫外線吸収剤、酸化防止剤、架橋剤、防腐剤、防カビ剤、粘度調整剤、pH調整剤、レベリング剤及び消泡剤が挙げられるが、これらに限定されない。 In addition, an additive can be appropriately blended with the solvent as necessary within a range not impairing the object of the present embodiment. Examples of additives include pigments, wetting and penetrating agents, anti-skinning agents, ultraviolet absorbers, antioxidants, crosslinking agents, preservatives, antifungal agents, viscosity modifiers, pH adjusters, leveling agents, and antifoaming agents. However, it is not limited to these.
(3)塗膜(D) (3) Coating film (D)
 本実施形態の塗膜は、前記本実施形態の樹脂組成物(B)により形成された塗膜であって、多層カーボンナノチューブ(A)と樹脂(C)とを含んでなる。かかる塗膜(D)の下には基材(E)が設けられているが、基材は塗膜(D)作製後に取り除いてもよい。
 本実施形態の塗膜(D)は前記多層カーボンナノチューブ(A)を含むことにより高い漆黒性を有する。
The coating film of the present embodiment is a coating film formed from the resin composition (B) of the present embodiment, and includes a multi-walled carbon nanotube (A) and a resin (C). Although the base material (E) is provided under this coating film (D), you may remove a base material after coating film (D) preparation.
The coating film (D) of this embodiment has high jetness by including the multi-walled carbon nanotube (A).
 本実施形態の塗膜(D)は、前記樹脂組成物(B)を一般的な技法で塗布して形成することができる。技法として具体的には、キャスト、スピンコート、ディップコート、バーコート、スプレー、ブレードコート、スリットダイコート、グラビアコート、リバースコート、スクリーン印刷、鋳型塗布、印刷転写、及びインクジェットを含むウエットコート法を挙げることができるが、これらに限定されない。上記技法で樹脂組成物(B)を基材(E)上にコーティングすることにより、塗膜を形成することができる。 The coating film (D) of this embodiment can be formed by applying the resin composition (B) by a general technique. Specific techniques include wet coating methods including casting, spin coating, dip coating, bar coating, spraying, blade coating, slit die coating, gravure coating, reverse coating, screen printing, mold coating, print transfer, and inkjet. Can be, but is not limited to. A coating film can be formed by coating the resin composition (B) on the substrate (E) by the above technique.
 塗膜(D)中の多層カーボンナノチューブ(A)の添加率は、用途に応じて適宜選択すればよい。かかる添加率は好ましくは0.1~30質量%、より好ましくは1~25質量%、更に好ましくは2~15質量%の範囲である。特に添加率が斯かる範囲内にあれば、漆黒性に優れた塗膜が得られる。 What is necessary is just to select suitably the addition rate of the multi-walled carbon nanotube (A) in a coating film (D) according to a use. The addition rate is preferably in the range of 0.1 to 30% by mass, more preferably 1 to 25% by mass, and still more preferably 2 to 15% by mass. In particular, if the addition rate is within such a range, a coating film having excellent jetness can be obtained.
 本発明の目的を阻害しない範囲であれば、塗膜(D)に、多層カーボンナノチューブ(A)に加えてカーボンブラックを添加することができる。カーボンブラックの具体例としては、ケッチェンブラック、アセチレンブラック、ファーネスブラック及びチャンネルブラックが挙げられる。カーボンブラックは、ナフサに代表される炭化水素を水素及び酸素の存在下で部分酸化することで、水素及び一酸化炭素を含む合成ガスを製造する際に副生されるものでもよい。またカーボンブラックは、かかる副生物を酸化又は還元処理したものでもよい。上記は本発明に係るカーボンブラックを限定するものではない。これらのカーボンブラックは、単独で用いてもよく、二種類以上併用しても良い。また、黒度を向上させる視点から、カーボンブラックは平均粒径が20nm以下であり、かつ、DBP吸油量が80mL/100g以下であるものが好ましく使用される。また、本実施形態においてDBP吸油量とは、カーボンブラック100g当りに包含することのできるジブチルフタレート(DBP)の量(mL)を表す。DBP吸油量はカーボンブラックのストラクチャーを定量化するための尺度である。上記ストラクチャーとはカーボンブラック粒子間の化学的ないし物理的結合による複雑な凝集形態である。 In the range not impairing the object of the present invention, carbon black can be added to the coating film (D) in addition to the multi-walled carbon nanotube (A). Specific examples of carbon black include ketjen black, acetylene black, furnace black and channel black. Carbon black may be by-produced when producing a synthesis gas containing hydrogen and carbon monoxide by partially oxidizing a hydrocarbon typified by naphtha in the presence of hydrogen and oxygen. Carbon black may be obtained by oxidizing or reducing such a by-product. The above is not intended to limit the carbon black according to the present invention. These carbon blacks may be used alone or in combination of two or more. From the viewpoint of improving blackness, carbon black having an average particle diameter of 20 nm or less and a DBP oil absorption of 80 mL / 100 g or less is preferably used. In the present embodiment, the DBP oil absorption represents the amount (mL) of dibutyl phthalate (DBP) that can be contained per 100 g of carbon black. The DBP oil absorption is a measure for quantifying the structure of carbon black. The structure is a complex aggregated form due to chemical or physical bonding between carbon black particles.
 カーボンブラックの平均粒径は、多層カーボンナノチューブ(A)の外径と同様に求められる。具体的には、透過型電子顕微鏡によって、カーボンブラックを観測するとともに撮像する。次に観測写真において、任意の300個のカーボンブラックを選び、それぞれの粒径を計測する。次に粒径の数平均としてカーボンブラックの平均粒径(nm)を算出する。 The average particle diameter of carbon black is obtained in the same manner as the outer diameter of the multi-walled carbon nanotube (A). Specifically, carbon black is observed and imaged with a transmission electron microscope. Next, in the observation photograph, arbitrary 300 carbon blacks are selected, and the respective particle sizes are measured. Next, the average particle diameter (nm) of carbon black is calculated as the number average of the particle diameter.
 カーボンブラックの使用量は、多層カーボンナノチューブ(A)100質量部に対して、1~25質量部が好ましく、1~10質量部がより好ましく、1~5質量部がさらに好ましい。 The amount of carbon black used is preferably 1 to 25 parts by mass, more preferably 1 to 10 parts by mass, and still more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the multi-walled carbon nanotube (A).
 塗膜(D)の膜厚は5μm以上であることが好ましく、10μm以上であることがさらに好ましい。 The film thickness of the coating film (D) is preferably 5 μm or more, more preferably 10 μm or more.
 塗膜(D)は、塗膜(D)上にさらにクリア層が形成されてもよい。クリア層が形成されることにより、光沢、耐光性と漆黒性とを備える塗膜(D)が得られる。 In the coating film (D), a clear layer may be further formed on the coating film (D). By forming the clear layer, a coating film (D) having gloss, light resistance and jetness is obtained.
 塗膜(D)の呈する明度(L)は5.7以下であることが好ましく、5.5以下であることがより好ましく、5.3以下であることが更に好ましく、5.2以下であることが特に好ましい。この明度(L)は色差計を用いて測定することによって得られる。測定は塗膜(D)が形成された面の側から塗膜(D)の表面に対して行う。色差計としてNIPPONDENSHOKU社製、SpectroColorMeterSE6000を用いてもよい。 The lightness (L) exhibited by the coating film (D) is preferably 5.7 or less, more preferably 5.5 or less, still more preferably 5.3 or less, and 5.2 or less. It is particularly preferred. This lightness (L) is obtained by measuring using a color difference meter. The measurement is performed on the surface of the coating film (D) from the side on which the coating film (D) is formed. As a color difference meter, you may use NIPPONDENSHOKU Co., Ltd. and SpectroColorMeterSE6000.
 塗膜(D)の60°鏡面光沢は60以上であることが好ましく、80以上であることがより好ましく、85以上であることがさらに好ましい。光沢計として、グロスメーターGM-26D(村上色彩研究所社製)を用いてもよい。 The 60 ° specular gloss of the coating film (D) is preferably 60 or more, more preferably 80 or more, and even more preferably 85 or more. A gloss meter GM-26D (manufactured by Murakami Color Research Laboratory) may be used as the gloss meter.
基材(E)
 本実施形態における塗膜(D)を形成するために用いられる基材(E)は特に限定されない。基材(E)の材質として、鉄、アルミニウム及び銅若しくはこれらの合金に代表される金属類;ガラス、セメント及びコンクリートに代表される無機材料;ポリエチレン樹脂、ポリプロピレン樹脂、エチレン―酢酸ビニル共重合体樹脂、ポリアミド樹脂、アクリル樹脂、塩化ビニリデン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂及びエポキシ樹脂に代表される樹脂類;各種のFRPに代表されるプラスチック材料;木材;並びに繊維材料(紙及び布を含む)に代表される天然材料又は合成材料が挙げられるが、これらに限定されない。
Base material (E)
The base material (E) used in order to form the coating film (D) in this embodiment is not specifically limited. As the material of the substrate (E), metals represented by iron, aluminum and copper or alloys thereof; inorganic materials represented by glass, cement and concrete; polyethylene resin, polypropylene resin, ethylene-vinyl acetate copolymer Resin, polyamide resin, acrylic resin, vinylidene chloride resin, polycarbonate resin, polyurethane resin and epoxy resin represented by plastics; plastic materials represented by various FRPs; wood; and fiber materials (including paper and cloth) Examples include, but are not limited to, natural or synthetic materials.
 上記の材質のうち、鉄、アルミニウム及び銅若しくはこれらの合金類に代表される金属類が好ましい。また、カーボンブラック及びカーボンナノチューブに代表される顔料を含む樹脂も好ましい。 Of the above materials, metals such as iron, aluminum and copper or their alloys are preferred. A resin containing a pigment typified by carbon black and carbon nanotubes is also preferable.
 基材(E)の形状は板状、フィルム状、シート状又は成形体状でも良い。成形体の製造は、例えばインサート射出成形法、インモールド成形法、オーバーモールド成形法、二色射出成形法、コアバック射出成形法及びサンドイッチ射出成形法に代表される射出成形方法;Tダイラミネート成形法、多層インフレーション成形法、共押出成形法及び押出被覆法に代表される押出成形法;並びに多層ブロー成形法、多層カレンダー成形法、多層プレス成形法、スラッシュ成形法及び溶融注型法に代表されるその他の成形法を使用することができる。 The shape of the substrate (E) may be a plate shape, a film shape, a sheet shape, or a molded body shape. For example, an injection molding method such as an insert injection molding method, an in-mold molding method, an overmold molding method, a two-color injection molding method, a core back injection molding method, and a sandwich injection molding method; Typified by extrusion, multilayer extrusion, coextrusion and extrusion coating; and multilayer blow molding, multilayer calendering, multilayer press molding, slush molding and melt casting. Other molding methods can be used.
(4)多層カーボンナノチューブ(CNT)分散液(F)
 前述する本実施形態の樹脂組成物(B)の調製方法は特に限定されないが、一つの方法として、CNT分散液(F)を準備し、当該CNT分散液(F)に樹脂を添加する方法が挙げられる。当該CNT分散液(F)は少なくとも多層カーボンナノチューブ(A)と分散剤を含有し、通常、更に溶媒を含有するものである。なお、分散液(F)は、樹脂(C)を含有しないものである。
(4) Multi-walled carbon nanotube (CNT) dispersion (F)
Although the preparation method of the resin composition (B) of this embodiment mentioned above is not specifically limited, As one method, the method of preparing CNT dispersion liquid (F) and adding resin to the said CNT dispersion liquid (F) is mentioned. Can be mentioned. The CNT dispersion liquid (F) contains at least the multi-walled carbon nanotube (A) and a dispersant, and usually further contains a solvent. The dispersion liquid (F) does not contain the resin (C).
 CNT分散液(F)を得るには、多層カーボンナノチューブ(A)を溶媒中に分散させる処理を行うことが好ましい。かかる処理を行うために使用される機材は特に限定されない。機材として例えば、ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノーミル」)、アトライター、パールミル(アイリッヒ社製「DCPミル」)、超音波ホモジナイザー(Advanced Digital Sonifer(登録商標)、MODEL 450DA、BRANSON社製)、コボールミル、バスケットミル、ホモミキサー、ホモジナイザー(エム・テクニック社製「クレアミックス」)、湿式ジェットミル(ジーナス社製「ジーナスPY」、ナノマイザー社製「ナノマイザー」)、フーバーマーラー、3本ロールミル、及びエクストルーダーが挙げられるが、これらに限定されない。 In order to obtain the CNT dispersion liquid (F), it is preferable to perform a treatment of dispersing the multi-walled carbon nanotubes (A) in a solvent. The equipment used for performing such processing is not particularly limited. For example, paint conditioner (manufactured by Red Devil), ball mill, sand mill ("Dyno mill" manufactured by Shinmaru Enterprises), attritor, pearl mill ("DCP mill" manufactured by Eirich), ultrasonic homogenizer (Advanced Digital Sonifier ( (Registered trademark), MODEL 450DA, manufactured by BRANSON), coball mill, basket mill, homomixer, homogenizer (“CLEAMIX” manufactured by M Technique), wet jet mill (“GENUS PY” manufactured by Genus, “Nanomizer manufactured by Nanomizer) )), Hoover Mahler, 3 roll mills, and extruders.
 CNT分散液(F)が有する分散剤としては、界面活性剤、樹脂型分散剤または有機顔料誘導体を使用することができる。界面活性剤は主にアニオン性、カチオン性、ノニオン性及び両性に分類される。分散剤として好ましいのは樹脂型分散剤である。分散剤の具体例は、前記樹脂組成物(B)で説明したものと同様であるため、ここでの説明は省略する。
 また、CNT分散液(F)に含まれる溶媒は、前記樹脂組成物(B)で説明したものと同様であるため、ここでの説明は省略する。
As the dispersant that the CNT dispersion liquid (F) has, a surfactant, a resin-type dispersant, or an organic pigment derivative can be used. Surfactants are mainly classified into anionic, cationic, nonionic and amphoteric. A preferable dispersant is a resin-type dispersant. Since the specific example of a dispersing agent is the same as that of what was demonstrated by the said resin composition (B), description here is abbreviate | omitted.
Moreover, since the solvent contained in the CNT dispersion liquid (F) is the same as that described in the resin composition (B), description thereof is omitted here.
 以上のような多層カーボンナノチューブ(A)を用いた樹脂組成物(B)および塗膜(D)は漆黒性が良好であることがわかった。 It was found that the resin composition (B) and the coating film (D) using the multi-walled carbon nanotube (A) as described above have good jetness.
 漆黒性が良好である理由は、外径が小さく揃った多層カーボンナノチューブ(A)は一般的なカーボンナノチューブと比較し、カーボンナノチューブ間に働く相互作用が強くなり、強固にバンドルを形成、保持するためと考えられる。そのため、比表面積が小さくなり、溶媒や分散剤への濡れ性が向上する。また、分散後の樹脂組成物(B)や塗膜(D)においても、カーボンナノチューブの配向を保ちやすく、光閉じ込め効果が大きい。 The reason why the jetness is good is that multi-walled carbon nanotubes (A) with a small outer diameter are stronger in interaction between carbon nanotubes than in general carbon nanotubes, and form and hold bundles firmly. This is probably because of this. Therefore, the specific surface area is reduced, and the wettability to the solvent and the dispersant is improved. Moreover, also in the resin composition (B) and coating film (D) after dispersion | distribution, it is easy to maintain the orientation of a carbon nanotube, and the light confinement effect is large.
 以下に実施例を挙げて、本発明をさらに具体的に説明する。本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。実施例中、特に断わりのない限り「部」とは「質量部」を、「%」とは「質量%」をそれぞれ意味する。また、「カーボンナノチューブ」を「CNT」、「カーボンブラック」を「CB」と略記することがある。 The present invention will be described more specifically with reference to the following examples. The present invention is not limited to the following examples as long as the gist thereof is not exceeded. In Examples, unless otherwise specified, “part” means “part by mass” and “%” means “mass%”. Further, “carbon nanotube” may be abbreviated as “CNT”, and “carbon black” may be abbreviated as “CB”.
<物性の測定方法>
 後述の各実施例及び比較例において使用されたCNTまたはCNT塗膜の物性は、以下の方法により測定した。
<Method of measuring physical properties>
The physical properties of the CNTs or CNT coatings used in the examples and comparative examples described later were measured by the following methods.
<CNTのラマン分光分析>
 ラマン顕微鏡(XploRA、株式会社堀場製作所社製)にCNTを設置し、532nmのレーザー波長を用いて測定を行った。測定条件は取り込み時間60秒、積算回数2回、減光フィルタ10%、対物レンズの倍率20倍、回折格子の刻線数1200本/分、コンフォーカスホール500、スリット幅100μmとした。測定用のCNTはスライドガラス上に分取し、スパチュラを用いて平坦化した。得られたピークの内、スペクトルで1560~1600cm-1の範囲内で最大ピーク強度をG、1310~1350cm-1の範囲内で最大ピーク強度をDとし、G/Dの比をCNTのG/D比とした。
<Raman spectroscopic analysis of CNT>
CNTs were placed on a Raman microscope (XploRA, manufactured by Horiba, Ltd.), and measurement was performed using a laser wavelength of 532 nm. The measurement conditions were an acquisition time of 60 seconds, an integration count of 2 times, a neutral density filter of 10%, an objective lens magnification of 20 times, a diffraction grating score of 1200 lines / minute, a confocal hole 500, and a slit width of 100 μm. CNTs for measurement were collected on a slide glass and flattened using a spatula. Among the obtained peaks, the maximum peak intensity is G in the range of 1560 to 1600 cm −1 in the spectrum, the maximum peak intensity is D in the range of 1310 to 1350 cm −1 , and the ratio of G / D is the G / The D ratio was used.
<CNTの粉末X線回折分析>
 X線回折装置(Ultima2100、株式会社リガク社製)にCNTを設置し、1.5°から80°まで操作し、分析を行った。X線源はCuKα線である。ステップ幅は0.01°、計測時間は1.0秒であった。この時得られる回折角2θ=25°±2°に出現するプロットをそれぞれ11点単純移動平均し、そのピークの半価幅をCNTの半価幅とした。
<Powder X-ray diffraction analysis of CNT>
CNTs were installed in an X-ray diffractometer (Ultima 2100, manufactured by Rigaku Corporation) and operated from 1.5 ° to 80 ° for analysis. The X-ray source is CuKα ray. The step width was 0.01 ° and the measurement time was 1.0 second. The plots appearing at the diffraction angle 2θ = 25 ° ± 2 ° obtained at this time were each subjected to a simple moving average of 11 points, and the half width of the peak was defined as the half width of the CNT.
<CNT分散液の調製>
 450mLのSMサンプル瓶(株式会社三商社製)にカーボンナノチューブ0.2g、樹脂型分散剤としてポリビニルピロリドン(東京化成工業株式会社社製)0.2gを量りとり、イソプロピルアルコール200mLを加えて、超音波ホモジナイザー(Advanced Digital Sonifer(登録商標)、MODEL 450DA、BRANSON社製)を使用し、振幅50%で5分間氷冷下分散処理を行い、CNT分散液を調製した。
<Preparation of CNT dispersion>
Weigh 0.2 g of carbon nanotubes in a 450 mL SM sample bottle (manufactured by Sansho Co., Ltd.) and 0.2 g of polyvinylpyrrolidone (manufactured by Tokyo Chemical Industry Co., Ltd.) as a resin-type dispersant, add 200 mL of isopropyl alcohol, Using a sonic homogenizer (Advanced Digital Sonifer (registered trademark), MODEL 450DA, manufactured by BRANSON), dispersion treatment was carried out at 50% amplitude for 5 minutes under ice cooling to prepare a CNT dispersion.
<CNTの透過型電子顕微鏡分析>
 CNT分散液を適宜希釈しコロジオン膜上に数μL滴下し、室温で乾燥させた後、直接透過型電子顕微鏡(H-7650、株式会社日立製作所社製)を用いて、観察した。観察は5万倍の倍率で、視野内に10本以上のCNTが含まれる写真を複数撮り、任意に抽出した300本のCNTの外径を測定し、その平均値をCNTの平均外径(nm)とした。標準偏差は測定した300本のCNTの外径を母集団として算出した。
 なお参考として、図1~図8に、後述する実施例1、実施例4、実施例12~13、及び比較例1~4の多層カーボンナノチューブの外径と本数の関係を示すグラフを示す。
<Transmission electron microscope analysis of CNT>
The CNT dispersion was appropriately diluted, dropped by several μL onto the collodion membrane, dried at room temperature, and then observed using a direct transmission electron microscope (H-7650, manufactured by Hitachi, Ltd.). Observations were taken at a magnification of 50,000 times, taking a plurality of photographs containing 10 or more CNTs in the field of view, measuring the outer diameters of 300 CNTs arbitrarily extracted, and calculating the average value of the average outer diameters of CNTs ( nm). The standard deviation was calculated using the measured outer diameter of 300 CNTs as a population.
For reference, FIGS. 1 to 8 are graphs showing the relationship between the outer diameter and the number of multi-walled carbon nanotubes of Examples 1, 4 and 12 to 13 and Comparative Examples 1 to 4 described later.
<CNT塗膜の明度(L)の測定方法>
 CNT塗膜について、CNT樹脂組成物が塗工された面から、色差計(NIPONDENSHOKU社製、SpectroColorMeterSE6000)を用いて明度(L)を測定した。
<Measurement method of lightness (L) of CNT coating film>
About the CNT coating film, the lightness (L) was measured from the surface on which the CNT resin composition was applied using a color difference meter (manufactured by NIPONDENSHOKU, SpectroColorMeterSE6000).
<CNT塗膜の光沢測定>
 CNT塗膜について、CNT樹脂組成物が塗工された面から、JIS Z8741に準じてグロスメーターGM-26D(村上色彩研究所社製)で60°鏡面光沢を測定した。
<Gloss measurement of CNT coating film>
With respect to the CNT coating film, the 60 ° specular gloss was measured with a gloss meter GM-26D (Murakami Color Research Co., Ltd.) according to JIS Z8741 from the surface coated with the CNT resin composition.
[第1実施例群]
<CNT合成用触媒の製造例>
 後述の各実施例及び比較例において使用されたCNT合成用触媒は以下の方法により作製した。
[First Example Group]
<Example of production of catalyst for CNT synthesis>
The CNT synthesis catalyst used in each of the examples and comparative examples described later was prepared by the following method.
 CNT合成用触媒(A)
 水酸化コバルト60部、酢酸マグネシウム・四水和物138部、酢酸マンガン16.2部をそれぞれ耐熱性容器に秤取り、電気オーブンを用いて、170±5℃の温度で1時間乾燥させて水分を蒸発させた後、粉砕機(ワンダークラッシャーWC-3、大阪ケミカル株式会社製)を用いて、SPEEDのダイヤルを3に調整し、1分間粉砕した。その後、粉砕したそれぞれの粉末を粉砕機(ワンダークラッシャーWC-3、大阪ケミカル株式会社製)を用いて、SPPEDのダイヤルを2に調整し、30秒間混合してCNT合成用触媒前駆体(A)を作製した。そして、CNT合成用触媒前駆体(A)を耐熱性容器に移し替え、マッフル炉(FO510、ヤマト科学株式会社製)を使用し、空気雰囲気、450±5℃の条件で30分間焼成した後、乳鉢で粉砕してCNT合成用触媒(A)を得た。
Catalyst for CNT synthesis (A)
Weigh 60 parts of cobalt hydroxide, 138 parts of magnesium acetate tetrahydrate, and 16.2 parts of manganese acetate in a heat-resistant container and dry them at a temperature of 170 ± 5 ° C. for 1 hour using an electric oven. After evaporating, the SPEED dial was adjusted to 3 using a pulverizer (One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.), and pulverized for 1 minute. Then, using a pulverizer (One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.), adjust the SPPED dial to 2 and mix for 30 seconds for each pulverized powder. Catalyst precursor for CNT synthesis (A) Was made. Then, after transferring the catalyst precursor for CNT synthesis (A) to a heat-resistant container, using a muffle furnace (FO510, manufactured by Yamato Scientific Co., Ltd.), and firing for 30 minutes in an air atmosphere at 450 ± 5 ° C., The catalyst for CNT synthesis (A) was obtained by pulverization in a mortar.
 CNT合成用触媒(B)
 水酸化コバルト60部、酢酸マグネシウム・四水和物138部、炭酸マンガン8.1部をそれぞれ耐熱性容器に秤取り、電気オーブンを用いて、170±5℃の温度で1時間乾燥させて水分を蒸発させた後、粉砕機(ワンダークラッシャーWC-3、大阪ケミカル株式会社製)を用いてSPEEDのダイヤルを3に調整し、1分間粉砕した。その後、粉砕したそれぞれの粉末を粉砕機(ワンダークラッシャーWC-3、大阪ケミカル株式会社製)を用いて、SPEEDのダイヤルを2に調整し、30秒間混合してCNT合成用触媒前駆体(B)を作製した。そして、CNT合成用触媒前駆体(B)を耐熱性容器に移し替え、マッフル炉(FO510、ヤマト科学株式会社製)を使用し、空気雰囲気、450±5℃の条件で30分間焼成した後、乳鉢で粉砕してCNT合成用触媒(B)を得た。
CNT synthesis catalyst (B)
60 parts of cobalt hydroxide, 138 parts of magnesium acetate tetrahydrate and 8.1 parts of manganese carbonate were weighed in a heat-resistant container and dried using an electric oven at a temperature of 170 ± 5 ° C. for 1 hour. After evaporating, the SPEED dial was adjusted to 3 using a pulverizer (One Dark Rusher WC-3, Osaka Chemical Co., Ltd.) and pulverized for 1 minute. Then, using a pulverizer (One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.), adjust the SPEED dial to 2 and mix for 30 seconds to pulverize each pulverized powder. Catalyst precursor for CNT synthesis (B) Was made. Then, after transferring the catalyst precursor for CNT synthesis (B) to a heat-resistant container, using a muffle furnace (FO510, manufactured by Yamato Scientific Co., Ltd.), and firing for 30 minutes in an air atmosphere at 450 ± 5 ° C., A CNT synthesis catalyst (B) was obtained by pulverization in a mortar.
 CNT合成用触媒(C)
 水酸化コバルト60部、酢酸マグネシウム・四水和物138部、炭酸マンガン16.2部、ゼオライト(HSZ-940HOA、東ソー株式会社製)4.0部をそれぞれ耐熱性容器に秤取り、電気オーブンを用いて、170±5℃の温度で1時間乾燥させて水分を蒸発させた後、粉砕機(ワンダークラッシャーWC-3、大阪ケミカル株式会社製)を用いてSPEEDのダイヤルを3に調整し、1分間粉砕した。その後、粉砕したそれぞれの粉末を粉砕機(ワンダークラッシャーWC-3、大阪ケミカル株式会社製)を用いて、SPEEDのダイヤルを2に調整し、30秒間混合してCNT合成用触媒前駆体(C)を作製した。そして、CNT合成用触媒前駆体(C)を耐熱性容器に移し替え、マッフル炉(FO510、ヤマト科学株式会社製)を使用し、空気雰囲気、450±5℃の条件で30分間焼成した後、乳鉢で粉砕してCNT合成用触媒(C)を得た。
Catalyst for CNT synthesis (C)
Weigh 60 parts of cobalt hydroxide, 138 parts of magnesium acetate tetrahydrate, 16.2 parts of manganese carbonate, and 4.0 parts of zeolite (HSZ-940HOA, manufactured by Tosoh Corporation) in a heat-resistant container. After drying for 1 hour at a temperature of 170 ± 5 ° C. and evaporating moisture, the SPEED dial was adjusted to 3 using a pulverizer (One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.). Milled for minutes. Then, using a pulverizer (One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.), adjust the SPEED dial to 2 and mix for 30 seconds to pulverize each pulverized powder. Catalyst precursor for CNT synthesis (C) Was made. Then, after transferring the catalyst precursor for CNT synthesis (C) to a heat-resistant container and using a muffle furnace (FO510, manufactured by Yamato Kagaku Co., Ltd.), firing in an air atmosphere at 450 ± 5 ° C. for 30 minutes, A CNT synthesis catalyst (C) was obtained by pulverization in a mortar.
 CNT合成用触媒(D)
 水酸化コバルト60部、酢酸マグネシウム・四水和物138部、炭酸マンガン16.2部、アエロジル(AEOSIL(登録商標)200、日本アエロジル株式会社製)4.0部をそれぞれ耐熱性容器に秤取り、電気オーブンを用いて、170±5℃の温度で1時間乾燥させて水分を蒸発させた後、粉砕機(ワンダークラッシャーWC-3、大阪ケミカル株式会社製)を用いてSPEEDのダイヤルを3に調整し、1分間粉砕した。その後、粉砕したそれぞれの粉末を粉砕機(ワンダークラッシャーWC-3、大阪ケミカル株式会社製)を用いて、SPEEDのダイヤルを2に調整し、30秒間混合してCNT合成用触媒前駆体(D)を作製した。そして、CNT合成用触媒前駆体(D)を耐熱性容器に移し替え、マッフル炉(FO510、ヤマト科学株式会社製)を使用し、空気雰囲気、450±5℃の条件で30分間焼成した後、乳鉢で粉砕してCNT合成用触媒(D)を得た。
Catalyst for CNT synthesis (D)
60 parts of cobalt hydroxide, 138 parts of magnesium acetate tetrahydrate, 16.2 parts of manganese carbonate, 4.0 parts of Aerosil (AEOSIL (registered trademark) 200, manufactured by Nippon Aerosil Co., Ltd.) are weighed in a heat-resistant container. After drying for 1 hour at a temperature of 170 ± 5 ° C. using an electric oven to evaporate the moisture, the SPEED dial is set to 3 using a pulverizer (One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.). Adjust and grind for 1 minute. Then, using a pulverizer (One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.), adjust the SPEED dial to 2 and mix for 30 seconds to pulverize each pulverized powder. Catalyst precursor for CNT synthesis (D) Was made. Then, the catalyst precursor for CNT synthesis (D) was transferred to a heat-resistant container, and after using a muffle furnace (FO510, manufactured by Yamato Scientific Co., Ltd.) and baked for 30 minutes in an air atmosphere at 450 ± 5 ° C., A CNT synthesis catalyst (D) was obtained by pulverization in a mortar.
 CNT合成用触媒(E)
 水酸化コバルト60部、酢酸マグネシウム・四水和物166部、炭酸マンガン16.2部、アエロジル(AEOSIL(登録商標)200、日本アエロジル株式会社製)4.0部をそれぞれ耐熱性容器に秤取り、電気オーブンを用いて、170±5℃の温度で1時間乾燥させて水分を蒸発させた後、粉砕機(ワンダークラッシャーWC-3、大阪ケミカル株式会社製)を用いてSPEEDのダイヤルを3に調整し、1分間粉砕した。その後、粉砕したそれぞれの粉末を粉砕機(ワンダークラッシャーWC-3、大阪ケミカル株式会社製)を用いて、SPEEDのダイヤルを2に調整し、30秒間混合してCNT合成用触媒前駆体(E)を作製した。そして、CNT合成用触媒前駆体(E)を耐熱性容器に移し替え、マッフル炉(FO510、ヤマト科学株式会社製)を使用し、空気雰囲気、450±5℃の条件で30分間焼成した後、乳鉢で粉砕してCNT合成用触媒(E)を得た。
Catalyst for CNT synthesis (E)
Weigh 60 parts of cobalt hydroxide, 166 parts of magnesium acetate tetrahydrate, 16.2 parts of manganese carbonate, and 4.0 parts of Aerosil (AEOSIL (registered trademark) 200, manufactured by Nippon Aerosil Co., Ltd.) in a heat-resistant container. After drying for 1 hour at a temperature of 170 ± 5 ° C. using an electric oven to evaporate the moisture, the SPEED dial is set to 3 using a pulverizer (One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.). Adjust and grind for 1 minute. Then, using a pulverizer (One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.), adjust the SPEED dial to 2 and mix for 30 seconds to pulverize each pulverized powder. Catalyst precursor for CNT synthesis (E) Was made. Then, the catalyst precursor for CNT synthesis (E) was transferred to a heat-resistant container, and after using a muffle furnace (FO510, manufactured by Yamato Kagaku Co., Ltd.) and calcined for 30 minutes in an air atmosphere at 450 ± 5 ° C., A CNT synthesis catalyst (E) was obtained by pulverization in a mortar.
 CNT合成用触媒(F)
 水酸化コバルト60部、酢酸マグネシウム・四水和物138部、酢酸マンガン16.2部を1つの耐熱性容器に秤取り、電気オーブンを用いて、170±5℃の温度で1時間乾燥させて水分を蒸発させた後、80メッシュを通して粒径を揃えて、CNT合成用触媒前駆体(F)を作製した。そして、CNT合成用触媒前駆体(F)を耐熱性容器に移し替え、マッフル炉(FO510、ヤマト科学株式会社製)を使用し、空気雰囲気、450±5℃の条件で30分間焼成した後、乳鉢で粉砕してCNT合成用触媒(F)を得た。
CNT synthesis catalyst (F)
60 parts of cobalt hydroxide, 138 parts of magnesium acetate tetrahydrate and 16.2 parts of manganese acetate are weighed in one heat-resistant container and dried at 170 ± 5 ° C. for 1 hour using an electric oven. After evaporating the water, the particle size was made uniform through 80 mesh to prepare a catalyst precursor (F) for CNT synthesis. Then, the catalyst precursor for CNT synthesis (F) was transferred to a heat-resistant container, and after using a muffle furnace (FO510, manufactured by Yamato Scientific Co., Ltd.) and calcined for 30 minutes in an air atmosphere at 450 ± 5 ° C., A CNT synthesis catalyst (F) was obtained by pulverization in a mortar.
(実施例1)CNT(A)の作製
 加圧可能で、外部ヒーターで加熱可能な、内容積が10Lの横型反応管の中央部に、前記CNT合成用触媒(A)2.0gを散布した石英ガラス製耐熱皿を設置した。窒素ガスを注入しながら排気を行い、反応管内の空気を窒素ガスで置換し、横型反応管中の雰囲気を酸素濃度1体積%以下とした。次いで、外部ヒーターにて加熱し、横型反応管内の中心温度が680℃になるまで加熱した。680℃に到達した後、炭素源としてプロパンガスを毎分2Lの流速で反応管内に導入し、1時間接触反応させた。反応終了後、反応管内のガスを窒素ガスで置換し、反応管内のガスを窒素ガスで置換し、反応管の温度を100℃以下になるまで冷却し取り出すことで、CNT(A)を得た。
(Example 1) Production of CNT (A) 2.0 g of the CNT synthesis catalyst (A) was sprayed on the center of a horizontal reaction tube capable of being pressurized and heated by an external heater and having an internal volume of 10 L. A quartz glass bakeware was installed. Exhaust was performed while injecting nitrogen gas, the air in the reaction tube was replaced with nitrogen gas, and the atmosphere in the horizontal reaction tube was adjusted to an oxygen concentration of 1 vol% or less. Subsequently, it heated with the external heater and it heated until the center temperature in a horizontal type reaction tube became 680 degreeC. After reaching 680 ° C., propane gas as a carbon source was introduced into the reaction tube at a flow rate of 2 L / min, and contact reaction was performed for 1 hour. After completion of the reaction, the gas in the reaction tube was replaced with nitrogen gas, the gas in the reaction tube was replaced with nitrogen gas, and the temperature of the reaction tube was cooled to 100 ° C. or less to obtain CNT (A). .
(実施例2~5)CNT(B)~(E)の作製
 CNT合成用触媒(A)の替わりに、CNT合成用触媒(B)~(E)を使用すること以外は実施例1と同様な方法により、CNT(B)~(E)を得た。
Examples 2 to 5 Preparation of CNTs (B) to (E) Same as Example 1 except that CNT synthesis catalysts (B) to (E) were used instead of CNT synthesis catalyst (A). Thus, CNTs (B) to (E) were obtained.
(比較例1)CNT(F)の作製
 CNT合成用触媒(A)の替わりに、CNT合成用触媒(F)を使用すること以外は実施例1と同様な方法により、CNT(F)を得た。
Comparative Example 1 Preparation of CNT (F) CNT (F) was obtained in the same manner as in Example 1 except that the CNT synthesis catalyst (F) was used instead of the CNT synthesis catalyst (A). It was.
(比較例2)CNT(G)の作製
 加圧可能で、外部ヒーターで加熱可能な、内容積が10Lの横型反応管の中央部に、前記CNT合成用触媒(F)2.0gを散布した石英ガラス製耐熱皿を設置した。窒素ガスを注入しながら排気を行い、反応管内の空気を窒素ガスで置換し、横型反応管中の雰囲気を酸素濃度1体積%以下とした。次いで、外部ヒーターにて加熱し、横型反応管内の中心温度が680℃になるまで加熱した。680℃に到達した後、炭素源としてエチレンガスを毎分2Lの流速で反応管内に導入し、1時間接触反応させた。反応終了後、反応管内のガスを窒素ガスで置換し、反応管内のガスを窒素ガスで置換し、反応管の温度を100℃以下になるまで冷却し取り出すことで、CNT(G)を得た。
(Comparative Example 2) Production of CNT (G) 2.0 g of the CNT synthesis catalyst (F) was sprayed on the center of a horizontal reaction tube capable of being pressurized and heated by an external heater and having an internal volume of 10 L. A quartz glass bakeware was installed. Exhaust was performed while injecting nitrogen gas, the air in the reaction tube was replaced with nitrogen gas, and the atmosphere in the horizontal reaction tube was adjusted to an oxygen concentration of 1% by volume or less. Subsequently, it heated with the external heater and it heated until the center temperature in a horizontal type reaction tube became 680 degreeC. After reaching 680 ° C., ethylene gas as a carbon source was introduced into the reaction tube at a flow rate of 2 L / min, and contact reaction was performed for 1 hour. After completion of the reaction, the gas in the reaction tube was replaced with nitrogen gas, the gas in the reaction tube was replaced with nitrogen gas, and the temperature of the reaction tube was cooled to 100 ° C. or less to obtain CNT (G). .
(比較例3~4)CNT(H)~(I)
 多層カーボンナノチューブ(NC7000、ナノシル社製)をCNT(H)、多層カーボンナノチューブ(Flotube9000、Cnano社製)をCNT(I)とした。
(Comparative Examples 3 to 4) CNT (H) to (I)
Multi-walled carbon nanotubes (NC7000, manufactured by Nanosil Corporation) were designated as CNT (H), and multi-walled carbon nanotubes (Flotube 9000, produced by Cano Corporation) were designated as CNT (I).
 表1にCNT(A)~(I)の評価結果を示す。CNTの平均外径をX、CNT外径の標準偏差をσと表記した。 Table 1 shows the evaluation results of CNTs (A) to (I). The average outer diameter of CNT was expressed as X, and the standard deviation of the CNT outer diameter was expressed as σ.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例6)CNT樹脂組成物および塗膜の作製
 CNT(A)5.6g、分散剤として樹脂型分散剤(DISPERBYK(登録商標)-111、ビックケミー社製、不揮発分100%)11.2g、溶媒としてソルベッソ150(東燃ゼネラル石油社製)48.8g、トルエン73.5g、キシレン73.5g、酢酸ブチル48.8gをプラスチック容器(デスカップ1L、東京硝子器械株式会社製)に加え、高速攪拌機(T.K.HOMODISPER MODEL2.5、プライミクス株式会社製)を使用し、1500rpmの回転数で5分間撹拌した。その後、高速攪拌機(T.K.HOMOMIXER MARKII MODEL2.5、プライミクス株式会社製)を使用し、5000rpmの回転数で5分間分散処理を行い、CNT粗分散液(A)を得た。このCNT粗分散液(A)100部とジルコニアビーズ(ビーズ径1.0mmφ)175部を200mLのSMサンプル瓶(株式会社三商製)に仕込み、レッドデビル社製ペイントコンディショナーを用いて3時間分散処理を行い、CNT分散液(A)を得た。その後、アクリル樹脂(DIC社製、アクリディック47-712、不揮発分50%)92.6部を加え、高速攪拌機(T.K.HOMODISPER MODEL2.5、プライミクス株式会社製)を使用し、1500rpmの回転数で5分間撹拌した。さらにその後、CNT分散液(A)にメラミン樹脂(DIC社製、スーパーベッカミンL-117-60、不揮発分60%)19.3部を加え、レッドデビル社製ペイントコンディショナーを用いて30分間分散処理を行い、CNT樹脂組成物(A)を得た。ついで、PET(ポリエチレンテレフタレート)フィルム(東レ社製、ルミラー100、T60)を基材として、片面にCNT樹脂組成物(A)を乾燥後の膜厚が20μmになるようにスプレー塗装した。スプレー塗装はエアスプレーガン(アネスト岩田社製W-61-2G)を用いて行った。塗装後のPETフィルムを30分間室温放置した後、140±5℃にて30分間乾燥させ、CNT塗膜(A)を作製した。
(Example 6) Production of CNT resin composition and coating film 5.6 g of CNT (A), resin type dispersant (DISPERBYK (registered trademark) -111, manufactured by BYK Chemie, nonvolatile content 100%) 11.2 g as a dispersant , 48.8 g of Solvesso 150 (manufactured by TonenGeneral Sekiyu KK), 73.5 g of toluene, 73.5 g of xylene, and 48.8 g of butyl acetate as a solvent are added to a plastic container (Descup 1L, manufactured by Tokyo Glass Instrument Co., Ltd.) (TK KHOMODERS MODEL2.5, manufactured by Primix Co., Ltd.) was used, and the mixture was stirred for 5 minutes at a rotation speed of 1500 rpm. Thereafter, using a high-speed stirrer (TKHOMOMIXER MARKII MODEL2.5, manufactured by Primix Co., Ltd.), a dispersion treatment was performed for 5 minutes at a rotational speed of 5000 rpm to obtain a CNT coarse dispersion (A). 100 parts of this CNT coarse dispersion (A) and 175 parts of zirconia beads (bead diameter 1.0 mmφ) are charged into a 200 mL SM sample bottle (manufactured by Sansho Co., Ltd.) and dispersed for 3 hours using a paint conditioner manufactured by Red Devil. Processing was performed to obtain a CNT dispersion (A). Thereafter, 92.6 parts of acrylic resin (DIC Corporation, ACRYDIC 47-712, 50% non-volatile content) was added, and a high-speed stirrer (TK HOMODERS MODEL2.5, Primix Co., Ltd.) was used. The mixture was stirred at the rotation speed for 5 minutes. Further, after that, 19.3 parts of melamine resin (manufactured by DIC, Super Becamine L-117-60, non-volatile content 60%) is added to the CNT dispersion (A), and dispersed for 30 minutes using a paint conditioner manufactured by Red Devil. Processing was performed to obtain a CNT resin composition (A). Next, using a PET (polyethylene terephthalate) film (manufactured by Toray Industries Inc., Lumirror 100, T60) as a base material, the CNT resin composition (A) was spray-coated on one side so that the film thickness after drying was 20 μm. Spray coating was performed using an air spray gun (W-61-2G manufactured by Anest Iwata). The coated PET film was allowed to stand at room temperature for 30 minutes and then dried at 140 ± 5 ° C. for 30 minutes to produce a CNT coating film (A).
(実施例7~10)、(比較例5~8)
 表2に掲載したCNTに変更した以外は、実施例6と同様の方法により、CNT樹脂組成物(B)~(I)、CNT分散液(B)~(I)、CNT塗膜(B)~(I)を得た。
(Examples 7 to 10), (Comparative Examples 5 to 8)
CNT resin compositions (B) to (I), CNT dispersions (B) to (I), and CNT coating film (B) by the same method as in Example 6 except that the CNTs listed in Table 2 were changed. To (I) were obtained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に実施例6~10、比較例5~8で作製したCNT塗膜の評価結果を示す。漆黒性評価基準は以下の通りとした。塗膜の明度(L)が5.5以下かつ60°鏡面光沢が80以上を++(優良)、塗膜の明度(L)が5.7以下かつ60°鏡面光沢が80以上を+(良好)、塗膜の明度(L)が5.7を超えるまたは60°鏡面光沢が80未満を-(不良)とした。 Table 3 shows the evaluation results of the CNT coating films produced in Examples 6 to 10 and Comparative Examples 5 to 8. The jet blackness evaluation criteria were as follows. When the lightness (L) of the coating film is 5.5 or less and the 60 ° specular gloss is 80 or more ++ (excellent), the brightness (L) of the coating film is 5.7 or less and the 60 ° specular gloss is 80 or more (good) ), A lightness (L) of the coating film exceeding 5.7 or a 60 ° specular gloss of less than 80 was defined as “-” (bad).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(比較例9)
CNTの替わりにデグザ社製カーボンブラック(COLOR Black FW-200)を使用した以外は実施例6と同様の方法により、CB樹脂組成物(A)、CB分散液(A)、CB塗膜(A)を得た。
(Comparative Example 9)
A CB resin composition (A), a CB dispersion (A), a CB coating film (A) were prepared in the same manner as in Example 6 except that Degussa carbon black (COLOR Black FW-200) was used instead of CNT. )
 表4に比較例9で作製したCB塗膜の評価結果を示す。漆黒性評価基準は以下の通りとした。塗膜の明度(L)が5.5以下かつ60°鏡面光沢が80以上を++(優良)、塗膜の明度(L)が5.7以下かつ60°鏡面光沢が80以上を+(良好)、塗膜の明度(L)が5.7を超えるまたは60°鏡面光沢が80未満を-(不良)とした。 Table 4 shows the evaluation results of the CB coating film produced in Comparative Example 9. The jet blackness evaluation criteria were as follows. When the lightness (L) of the coating film is 5.5 or less and the 60 ° specular gloss is 80 or more ++ (excellent), the brightness (L) of the coating film is 5.7 or less and the 60 ° specular gloss is 80 or more (good) ), A lightness (L) of the coating film exceeding 5.7 or a 60 ° specular gloss of less than 80 was defined as “-” (bad).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記第1実施例群の結果から、平均外径が10nm以下で、外径の標準偏差が4nm以下である実施例1~5の多層カーボンナノチューブを用いた実施例6~10の塗膜は、外径の大きい多層カーボンナノチューブを用いた比較例5~8や、カーボンナノブラックを用いた比較例9の塗膜よりも、特に明度が低く、優れた漆黒性を有することが明らかとなった。 From the results of the first example group, the coating films of Examples 6 to 10 using the multi-walled carbon nanotubes of Examples 1 to 5 having an average outer diameter of 10 nm or less and a standard deviation of the outer diameter of 4 nm or less are as follows: It was revealed that the lightness was particularly low and the jet blackness was superior to the coating films of Comparative Examples 5 to 8 using multi-walled carbon nanotubes having a large outer diameter and Comparative Example 9 using carbon nanoblack.
[第2実施例群]
<CNT合成用触媒の製造例>
 後述の各実施例及び比較例において使用された、CNT合成用触媒担持体、コバルト組成物、CNT合成用触媒は以下の方法により作製した。
[Second Example Group]
<Example of production of catalyst for CNT synthesis>
A catalyst carrier for CNT synthesis, a cobalt composition, and a catalyst for CNT synthesis used in each of Examples and Comparative Examples described later were prepared by the following methods.
<CNT合成用触媒担持体の作製>
 酢酸マグネシウム4水和物1000部を耐熱性容器に秤取り、電気オーブンを用いて、170±5℃の雰囲気温度で6時間乾燥させた後、粉砕機(サンプルミルKIIW-I型、株式会社ダルトン社製)を用いて、1mmのスクリーンを装着し、粉砕し、酢酸マグネシウム乾燥粉砕品を得た。酢酸マグネシウム乾燥粉砕品45.8部、炭酸マンガン8.1部、酸化珪素(SiO、日本アエロジル社製:AEROSIL(登録商標)200)1.0部、スチールビーズ(ビーズ径2.0mmφ)200部をSMサンプル瓶(株式会社三商製)に仕込み、レッドデビル社製ペイントコンディショナーを用いて、30分間粉砕混合処理を行った。その後、ステンレスふるいを使用し、粉砕混合した粉末とスチールビーズ(ビーズ径2.0mmφ)を分離し、CNT合成用触媒担持体を得た。
<Preparation of CNT synthesis catalyst carrier>
1000 parts of magnesium acetate tetrahydrate was weighed in a heat-resistant container, dried for 6 hours at 170 ± 5 ° C. using an electric oven, and then pulverized (sample mill KIIW-I type, Dalton Co., Ltd.). 1 mm screen was used and pulverized to obtain a magnesium acetate dry pulverized product. Magnesium acetate dry pulverized product 45.8 parts, manganese carbonate 8.1 parts, silicon oxide (SiO 2 , made by Nippon Aerosil Co., Ltd .: AEROSIL (registered trademark) 200), steel beads (bead diameter 2.0 mmφ) 200 The part was charged into an SM sample bottle (manufactured by Sansho Co., Ltd.), and pulverized and mixed for 30 minutes using a paint conditioner manufactured by Red Devil. Thereafter, using a stainless steel sieve, the pulverized and mixed powder and the steel beads (bead diameter 2.0 mmφ) were separated to obtain a catalyst support for CNT synthesis.
<CNT合成用触媒の作製>
 水酸化コバルト(II)30部を耐熱性容器に秤取り、170±5℃の雰囲気温度で2時間乾燥させ、CoHOを含むコバルト組成物を得た。その後、CNT合成用触媒担持体54.9部とコバルト組成物29部を粉砕機(ワンダークラッシャーWC-3、大阪ケミカル株式会社製)に仕込み、標準フタを装着し、SPEEDダイヤルを2に調節し、30秒間粉砕混合し、CNT合成用触媒前駆体を得た。CNT合成用触媒前駆体を耐熱性容器に移し替え、マッフル炉(FO510、ヤマト科学株式会社製)を使用し、空気雰囲気、450±5℃の条件で30分間焼成した後、乳鉢で粉砕してCNT合成用触媒を得た。
<Preparation of CNT synthesis catalyst>
30 parts of cobalt (II) hydroxide was weighed in a heat-resistant container and dried at 170 ± 5 ° C. for 2 hours to obtain a cobalt composition containing CoHO 2 . Thereafter, 54.9 parts of the catalyst carrier for CNT synthesis and 29 parts of the cobalt composition were charged into a pulverizer (One Dark Rusher WC-3, manufactured by Osaka Chemical Co., Ltd.), a standard lid was attached, and the SPEED dial was adjusted to 2. The mixture was pulverized and mixed for 30 seconds to obtain a catalyst precursor for CNT synthesis. The catalyst precursor for CNT synthesis is transferred to a heat-resistant container, baked in a muffle furnace (FO510, manufactured by Yamato Scientific Co., Ltd.) for 30 minutes in an air atmosphere at 450 ± 5 ° C., and then pulverized in a mortar A catalyst for CNT synthesis was obtained.
(実施例11)CNT(J)の作製
 加圧可能で、外部ヒーターで加熱可能な、内容積が10Lの横型反応管の中央部に、前記CNT合成用触媒 1gを散布した石英ガラス製耐熱皿を設置した。窒素ガスを注入しながら排気を行い、反応管内の空気を窒素ガスで置換し、横型反応管中の雰囲気温度が710℃になるまで加熱した。710℃に到達した後、炭化水素としてエチレンガスを毎分2Lの流速で反応管内に導入し、7分間接触反応させた。反応終了後、反応管内のガスを窒素ガスで置換し、反応管の温度を100℃以下になるまで冷却し取り出すことでCNT(J)を得た。
(Example 11) Production of CNT (J) Quartz glass bakeware in which 1 g of the CNT synthesis catalyst was dispersed in the central part of a horizontal reaction tube capable of being pressurized and heated by an external heater and having an internal volume of 10 L Was installed. Evacuation was performed while injecting nitrogen gas, the air in the reaction tube was replaced with nitrogen gas, and heating was performed until the atmospheric temperature in the horizontal reaction tube reached 710 ° C. After reaching 710 ° C., ethylene gas as hydrocarbon was introduced into the reaction tube at a flow rate of 2 L / min, and contact reaction was performed for 7 minutes. After completion of the reaction, the gas in the reaction tube was replaced with nitrogen gas, and the reaction tube was cooled to 100 ° C. or lower and taken out to obtain CNT (J).
(実施例12~16)
 表5に掲載した触媒量、温度、反応時間を変更した以外は実施例11と同様の方法により、CNT(K)~(O)を得た。
(Examples 12 to 16)
CNTs (K) to (O) were obtained in the same manner as in Example 11 except that the catalyst amount, temperature, and reaction time listed in Table 5 were changed.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(実施例17~19)
 表6に掲載した温度、反応時間を変更した以外は実施例11と同様の方法により、CNT(Q)~(S)を得た。
(Examples 17 to 19)
CNTs (Q) to (S) were obtained in the same manner as in Example 11 except that the temperatures and reaction times listed in Table 6 were changed.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(実施例20~21)
 表7に掲載した触媒量、温度、反応時間、炭化水素を変更した以外は実施例11と同様の方法により、CNT(T)および(U)を得た。
(Examples 20 to 21)
CNT (T) and (U) were obtained in the same manner as in Example 11 except that the catalyst amount, temperature, reaction time, and hydrocarbon listed in Table 7 were changed.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に実施例11~21で作製したCNTの評価結果を示す。 Table 8 shows the evaluation results of the CNTs produced in Examples 11 to 21.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(実施例22)CNT樹脂組成物および塗膜の作製
 CNT(K)5.6g、分散剤として樹脂型分散剤(DISPERBYK(登録商標)-111、ビックケミー社製、不揮発分100%)11.2g、溶媒としてソルベッソ150(東燃ゼネラル石油社製)48.8g、トルエン73.5g、キシレン73.5g、酢酸ブチル48.8gをプラスチック容器(デスカップ1L、東京硝子器械株式会社製)に加え、高速攪拌機(T.K.HOMODISPER MODEL2.5、プライミクス株式会社製)を使用し、1500rpmの回転数で5分間撹拌した。その後、高速攪拌機(T.K.HOMOMIXER MARKII MODEL2.5、プライミクス株式会社製)を使用し、5000rpmの回転数で5分間分散処理を行い、CNT粗分散液(K)を得た。このCNT粗分散液(K)100部とジルコニアビーズ(ビーズ径1.0mmφ)175部を200mLのSMサンプル瓶(株式会社三商製)に仕込み、レッドデビル社製ペイントコンディショナーを用いて3時間分散処理を行い、CNT分散液Aを得た。その後、アクリル樹脂(DIC社製、アクリディック47-712、不揮発分50%)92.6部を加え、高速攪拌機(T.K.HOMODISPER MODEL2.5、プライミクス株式会社製)を使用し、1500rpmの回転数で5分間撹拌した。さらにその後、CNT分散液(K)にメラミン樹脂(DIC社製、スーパーベッカミンL-117-60、不揮発分60%)19.3部を加え、レッドデビル社製ペイントコンディショナーを用いて30分間分散処理を行い、CNT樹脂組成物(K)を得た。ついで、PET(ポリエチレンテレフタレート)フィルム(東レ社製、ルミラー100、T60)を基材として、片面にCNT樹脂組成物(K)を乾燥後の膜厚が20μmになるようにスプレー塗装した。スプレー塗装はエアスプレーガン(アネスト岩田社製W-61-2G)を用いて行った。塗装後のPETフィルムを30分間室温放置した後、140±5℃にて30分間乾燥させ、CNT塗膜(K)を作製した。
(Example 22) Preparation of CNT resin composition and coating film 5.6 g of CNT (K), 11.2 g of resin type dispersant (DISPERBYK (registered trademark) -111, manufactured by BYK Chemie, nonvolatile content 100%) as a dispersant , 48.8 g of Solvesso 150 (manufactured by TonenGeneral Sekiyu KK), 73.5 g of toluene, 73.5 g of xylene, and 48.8 g of butyl acetate as a solvent are added to a plastic container (Descup 1L, manufactured by Tokyo Glass Instrument Co., Ltd.) (TK KHOMODERS MODEL2.5, manufactured by Primix Co., Ltd.) was used, and the mixture was stirred for 5 minutes at a rotation speed of 1500 rpm. Thereafter, using a high-speed stirrer (TK HOMOMIXER MARKII MODEL2.5, manufactured by Primix Co., Ltd.), a dispersion treatment was performed for 5 minutes at a rotational speed of 5000 rpm to obtain a CNT coarse dispersion (K). 100 parts of the CNT coarse dispersion (K) and 175 parts of zirconia beads (bead diameter 1.0 mmφ) are charged into a 200 mL SM sample bottle (manufactured by Sansho Co., Ltd.) and dispersed for 3 hours using a paint conditioner manufactured by Red Devil. Processing was performed to obtain a CNT dispersion A. Thereafter, 92.6 parts of acrylic resin (DIC Corporation, ACRYDIC 47-712, 50% non-volatile content) was added, and a high-speed stirrer (TK HOMODERS MODEL2.5, Primix Co., Ltd.) was used. The mixture was stirred at the rotation speed for 5 minutes. Further, after that, 19.3 parts of melamine resin (manufactured by DIC, Super Becamine L-117-60, non-volatile content 60%) is added to the CNT dispersion (K), and dispersed for 30 minutes using a paint conditioner made by Red Devil. Processing was performed to obtain a CNT resin composition (K). Next, using a PET (polyethylene terephthalate) film (manufactured by Toray Industries Inc., Lumirror 100, T60) as a base material, the CNT resin composition (K) was spray-coated on one side so that the film thickness after drying was 20 μm. Spray coating was performed using an air spray gun (W-61-2G manufactured by Anest Iwata). The coated PET film was allowed to stand at room temperature for 30 minutes and then dried at 140 ± 5 ° C. for 30 minutes to produce a CNT coating film (K).
(実施例23~32)
 表9に掲載したCNTに変更した以外は、実施例22と同様の方法により、CNT樹脂組成物(L)~(U)、CNT分散液(L)~(U)、CNT塗膜(L)~(U)を得た。
(Examples 23 to 32)
A CNT resin composition (L) to (U), a CNT dispersion (L) to (U), a CNT coating film (L) in the same manner as in Example 22 except that the CNTs listed in Table 9 were changed. To (U) was obtained.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表10に実施例22~32で作製したCNT塗膜の評価結果を示す。漆黒性評価については、塗膜の明度(L)が5.2以下かつ60°鏡面光沢が80以上を++++(秀)、塗膜の明度(L)が5.3以下かつ60°鏡面光沢が80以上を+++(優)、塗膜の明度(L)が5.5以下かつ60°鏡面光沢が80以上を++(良)、塗膜の明度(L)が5.7以下かつ60°鏡面光沢が80以上を+(可)、塗膜の明度(L)が5.7を超えるまたは60°鏡面光沢が80未満を-(不良)とした。 Table 10 shows the evaluation results of the CNT coating films produced in Examples 22 to 32. For jetness evaluation, the lightness (L) of the coating film is 5.2 or less and the 60 ° specular gloss is 80 or more +++ (excellent), and the brightness (L) of the coating film is 5.3 or less and the 60 ° specular gloss is 60 °. ++ (excellent) when 80 or more, brightness (L) of coating film is 5.5 or less and 60 ° specular gloss is ++ (good) when shining is 80 or more, brightness (L) of coating film is 5.7 or less and 60 ° specular A glossiness of 80 or higher was evaluated as + (possible), and a lightness (L) of the coating film of more than 5.7 or a 60 ° specular gloss of less than 80 was evaluated as-(bad).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 上記第2実施例群の結果から、平均外径が10nm以下で、外径の標準偏差が4nm以下であり、粉末X線回折分析における回折角2θ=25°±2°にピークの半値幅が5°~5.5°である、実施例11~16の多層カーボンナノチューブを用いた実施例22~27の塗膜は、特に優れた漆黒性を有することが明らかとなった。 From the results of the second example group, the average outer diameter is 10 nm or less, the standard deviation of the outer diameter is 4 nm or less, and the half-width of the peak is at a diffraction angle 2θ = 25 ° ± 2 ° in the powder X-ray diffraction analysis. It was revealed that the coating films of Examples 22 to 27 using the multi-walled carbon nanotubes of Examples 11 to 16 having an angle of 5 ° to 5.5 ° have particularly excellent jetness.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiment, but the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
 この出願は、2017年3月15日に出願された特願2017-49759及び2017年12月20日に出願された特願2017-243686を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-49759 filed on March 15, 2017 and Japanese Patent Application No. 2017-243686 filed on December 20, 2017, the entire disclosure of which is incorporated herein by reference. Capture here.

Claims (12)

  1.  下記(1)および(2)要件を満たすことを特徴とする、多層カーボンナノチューブ。
    (1)多層カーボンナノチューブの平均外径が10nm以下であること
    (2)多層カーボンナノチューブの外径の標準偏差が4nm以下であること
    A multi-walled carbon nanotube characterized by satisfying the following requirements (1) and (2):
    (1) The average outer diameter of the multi-walled carbon nanotube is 10 nm or less. (2) The standard deviation of the outer diameter of the multi-walled carbon nanotube is 4 nm or less.
  2.  粉末X線回折分析において、回折角2θ=25°±2°にピークが存在し、そのピークの半価幅が3°以上5°以下であることを特徴とする、請求項1記載の多層カーボンナノチューブ。 2. The multilayer carbon according to claim 1, wherein a peak exists at a diffraction angle 2θ = 25 ° ± 2 ° in a powder X-ray diffraction analysis, and a half width of the peak is 3 ° or more and 5 ° or less. Nanotubes.
  3.  粉末X線回折分析において、回折角2θ=25°±2°にピークが存在し、そのピークの半価幅が5°を超えて5.5°以下であることを特徴とする、請求項1記載の多層カーボンナノチューブ。 In the powder X-ray diffraction analysis, a peak exists at a diffraction angle 2θ = 25 ° ± 2 °, and the half width of the peak is more than 5 ° and not more than 5.5 °. The multi-walled carbon nanotube described.
  4.  多層カーボンナノチューブの平均外径をX、多層カーボンナノチューブの外径の標準偏差をσとした際に、X±2σが、2.5nm≦X±2σ≦15.5nmを満たすことを特徴とする、請求項1~3のいずれか一項記載の多層カーボンナノチューブ。 X ± 2σ satisfies 2.5 nm ≦ X ± 2σ ≦ 15.5 nm, where X is the average outer diameter of the multi-walled carbon nanotubes, and σ is the standard deviation of the outer diameter of the multi-walled carbon nanotubes, The multi-walled carbon nanotube according to any one of claims 1 to 3.
  5.  ラマンスペクトルにおいて1560~1600cm-1の範囲内での最大ピーク強度をG、1310~1350cm-1の範囲内での最大ピーク強度をDとした際にG/D比が2.0以下であることを特徴とする、請求項1~4のいずれか一項記載の多層カーボンナノチューブ。 G / D ratio is 2.0 or less when the maximum peak intensity in the range of 1560 to 1600 cm −1 is G and the maximum peak intensity in the range of 1310 to 1350 cm −1 is D in the Raman spectrum. The multi-walled carbon nanotube according to any one of claims 1 to 4, wherein:
  6.  ラマンスペクトルにおいて1560~1600cm-1の範囲内での最大ピーク強度をG、1310~1350cm-1の範囲内での最大ピーク強度をDとした際にG/D比が1.0以下であることを特徴とする、請求項1~5のいずれか一項記載の多層カーボンナノチューブ。 G / D ratio is 1.0 or less when the maximum peak intensity in the range of 1560 to 1600 cm −1 is G and the maximum peak intensity in the range of 1310 to 1350 cm −1 is D in the Raman spectrum. The multi-walled carbon nanotube according to any one of claims 1 to 5, wherein
  7.  以下の工程を含む、請求項1~6のいずれか一項記載の多層カーボンナノチューブの製造方法。
    (1)コバルト、ニッケルおよび鉄より選択される1種以上を含む活性成分と、マグネシウム、アルミニウム及び珪素より選択される1種以上を含む触媒担持体とを、混合および/または粉砕した後に焼成し、触媒を得る工程
    (2)前記触媒を加熱下、炭化水素およびアルコールより選択される1種以上を含む炭素源と接触させて、多層カーボンナノチューブを得る工程
    The method for producing a multi-walled carbon nanotube according to any one of claims 1 to 6, comprising the following steps.
    (1) An active ingredient containing at least one selected from cobalt, nickel and iron and a catalyst carrier containing at least one selected from magnesium, aluminum and silicon are mixed and / or pulverized and calcined. Step for obtaining catalyst (2) Step for obtaining multi-walled carbon nanotube by bringing the catalyst into contact with a carbon source containing at least one selected from hydrocarbon and alcohol under heating
  8.  前記工程(2)において、前記炭素源が炭化水素を含み、前記触媒1g当たりの多層カーボンナノチューブの生成量をY(g)、前記触媒と前記炭化水素の接触反応時間をZ(分)とした際に、Y/Z(g/分)が、1.5≦Y/Z≦2.7を満たすように、触媒量および/または炭化水素の流量を調節する、請求項7記載の多層カーボンナノチューブの製造方法。 In the step (2), the carbon source contains hydrocarbons, the production amount of multi-walled carbon nanotubes per gram of the catalyst is Y (g), and the contact reaction time of the catalyst and the hydrocarbons is Z (minutes). The multi-walled carbon nanotube according to claim 7, wherein the amount of catalyst and / or the flow rate of hydrocarbon is adjusted so that Y / Z (g / min) satisfies 1.5 ≦ Y / Z ≦ 2.7. Manufacturing method.
  9.  前記炭化水素がエチレンである、請求項8に記載の多層カーボンナノチューブの製造方法。 The method for producing a multi-walled carbon nanotube according to claim 8, wherein the hydrocarbon is ethylene.
  10.  請求項1~5いずれか一項に記載の多層カーボンナノチューブと、分散剤とを含有する、分散液。 A dispersion containing the multi-walled carbon nanotubes according to any one of claims 1 to 5 and a dispersant.
  11.  請求項1~5いずれか一項に記載の多層カーボンナノチューブと、樹脂とを含有する、樹脂組成物。 A resin composition comprising the multi-walled carbon nanotube according to any one of claims 1 to 5 and a resin.
  12.  請求項11に記載の樹脂組成物より形成された、塗膜。 A coating film formed from the resin composition according to claim 11.
PCT/JP2018/009672 2017-03-15 2018-03-13 Multilayer carbon nanotubes, method for producing multilayer carbon nanotubes, liquid dispersion, resin composition, and coating film WO2018168833A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197027876A KR102394357B1 (en) 2017-03-15 2018-03-13 Multi-walled carbon nanotube, method for producing multi-walled carbon nanotube, dispersion liquid, resin composition, and coating film
CN201880017332.7A CN110418766B (en) 2017-03-15 2018-03-13 Multilayered carbon nanotube, method for producing multilayered carbon nanotube, dispersion liquid, resin composition, and coating film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-049759 2017-03-15
JP2017049759A JP6380588B1 (en) 2017-03-15 2017-03-15 Multi-walled carbon nanotube and method for producing multi-walled carbon nanotube
JP2017-243686 2017-12-20
JP2017243686A JP7052336B2 (en) 2017-12-20 2017-12-20 Manufacturing method of multi-walled carbon nanotubes and multi-walled carbon nanotubes

Publications (1)

Publication Number Publication Date
WO2018168833A1 true WO2018168833A1 (en) 2018-09-20

Family

ID=63523504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009672 WO2018168833A1 (en) 2017-03-15 2018-03-13 Multilayer carbon nanotubes, method for producing multilayer carbon nanotubes, liquid dispersion, resin composition, and coating film

Country Status (3)

Country Link
KR (1) KR102394357B1 (en)
CN (1) CN110418766B (en)
WO (1) WO2018168833A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004095A1 (en) * 2018-06-28 2020-01-02 東洋インキScホールディングス株式会社 Carbon nanotube dispersion and usage therefor
JP7004106B1 (en) 2021-07-01 2022-02-10 東洋インキScホールディングス株式会社 Molded body for housing, resin composition used to form it, and masterbatch
JP2023034785A (en) * 2021-08-31 2023-03-13 東洋インキScホールディングス株式会社 Thermoplastic resin composition for electric/electronic packaging material and molding

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145634A (en) * 2005-11-25 2007-06-14 National Institute Of Advanced Industrial & Technology Double-walled carbon nanotube, bulk structure of the same, method and apparatus for producing them, and applications of the nanotube and bulk structure
JP2011148674A (en) * 2009-12-25 2011-08-04 Toray Ind Inc Carbon nanotube-containing composition and method for producing the same
JP2012051765A (en) * 2010-09-02 2012-03-15 Nagoya Univ Carbon nanotube aggregate and manufacturing method
JP2013519515A (en) * 2010-02-16 2013-05-30 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Production of carbon nanotubes
JP2014208328A (en) * 2013-03-29 2014-11-06 東洋インキScホールディングス株式会社 Carbon nanotube synthesis catalyst, carbon nanotube aggregate and method for producing thereof
JP2015062905A (en) * 2009-07-17 2015-04-09 サウスウエスト ナノテクノロジーズ, インコーポレイテッド Catalyst and methods for producing multi-wall carbon nanotubes
JP2017039099A (en) * 2015-08-21 2017-02-23 東洋インキScホールディングス株式会社 Catalyst for carbon nanotube synthesis

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3321850B2 (en) 1992-10-09 2002-09-09 三菱化学株式会社 Carbon black for black pigment
JPH06136287A (en) 1992-10-22 1994-05-17 Nippon Steel Chem Co Ltd Carbon black for color and method for controlling undertone thereof
JP2001179176A (en) 1999-12-27 2001-07-03 Nippon Paint Co Ltd Forming method of deep black multiple coating film and deep black coated material
JP3502082B2 (en) * 2000-02-25 2004-03-02 シャープ株式会社 Electron source, method of manufacturing the same, and display device
JP2004098033A (en) 2002-09-13 2004-04-02 Kansai Paint Co Ltd Method for forming multi-layer black color coating film
JP5194455B2 (en) 2007-01-22 2013-05-08 三菱化学株式会社 Catalyst for producing vapor grown carbon fiber and vapor grown carbon fiber
JP2008285632A (en) 2007-05-21 2008-11-27 Mikuni Color Ltd High jetness carbon black dispersion, process for producing the same, and coating material composition using the high jetness carbon black dispersion
KR20110137839A (en) * 2007-11-30 2011-12-23 도레이 카부시키가이샤 Carbon nanotube assembly and process for producing the same
WO2010101205A1 (en) * 2009-03-04 2010-09-10 東レ株式会社 Composition containing carbon nanotubes, catalyst for producing carbon nanotubes, and aqueous dispersion of carbon nanotubes
RU2414296C1 (en) * 2009-10-29 2011-03-20 Инфра Текнолоджиз Лтд. Catalyst for synthesis of hydrocarbons from co and h2 and preparation method thereof
JP5616943B2 (en) * 2012-02-21 2014-10-29 大日精化工業株式会社 Method for producing conductive resin composition and conductive resin composition
JP2015229706A (en) 2014-06-04 2015-12-21 川研ファインケミカル株式会社 Jet-black pigment using carbon nanotubes
JP5751379B1 (en) 2014-06-12 2015-07-22 東洋インキScホールディングス株式会社 Laminated body
JP5761434B1 (en) 2014-07-22 2015-08-12 東洋インキScホールディングス株式会社 Laminated body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145634A (en) * 2005-11-25 2007-06-14 National Institute Of Advanced Industrial & Technology Double-walled carbon nanotube, bulk structure of the same, method and apparatus for producing them, and applications of the nanotube and bulk structure
JP2015062905A (en) * 2009-07-17 2015-04-09 サウスウエスト ナノテクノロジーズ, インコーポレイテッド Catalyst and methods for producing multi-wall carbon nanotubes
JP2011148674A (en) * 2009-12-25 2011-08-04 Toray Ind Inc Carbon nanotube-containing composition and method for producing the same
JP2013519515A (en) * 2010-02-16 2013-05-30 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Production of carbon nanotubes
JP2012051765A (en) * 2010-09-02 2012-03-15 Nagoya Univ Carbon nanotube aggregate and manufacturing method
JP2014208328A (en) * 2013-03-29 2014-11-06 東洋インキScホールディングス株式会社 Carbon nanotube synthesis catalyst, carbon nanotube aggregate and method for producing thereof
JP2017039099A (en) * 2015-08-21 2017-02-23 東洋インキScホールディングス株式会社 Catalyst for carbon nanotube synthesis

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHAI, SIANG-PIAO ET AL.: "The effect of reduction temperature on Co-Mo/Al2O3 catalysts for carbon nanotubes formation", APPLIED CATALYSIS A: GENERAL, vol. 326, no. 2, 15 July 2007 (2007-07-15), pages 173 - 179, XP022117888, DOI: doi:10.1016/j.apcata.2007.04.020 *
CHEUNG, C. L. ET AL.: "Diameter-Controlled Synthesis of Carbon Nanotubes", THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 106, 16 February 2002 (2002-02-16), pages 2429 - 2433 *
WONG, W. K. ET AL.: "Uniform-diameter, aligned carbon nanotubes from microwave plasma-enhanced chemical vapor deposition", JOURNAL OF APPLIED PHYSICS, vol. 97, 4 April 2005 (2005-04-04), pages 084307 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004095A1 (en) * 2018-06-28 2020-01-02 東洋インキScホールディングス株式会社 Carbon nanotube dispersion and usage therefor
US11923546B2 (en) 2018-06-28 2024-03-05 Toyo Ink Sc Holdings Co., Ltd. Carbon nanotube dispersion and use thereof
JP7004106B1 (en) 2021-07-01 2022-02-10 東洋インキScホールディングス株式会社 Molded body for housing, resin composition used to form it, and masterbatch
JP2023006918A (en) * 2021-07-01 2023-01-18 東洋インキScホールディングス株式会社 Molding for housing, resin composition used for forming the same, and master batch
JP2023034785A (en) * 2021-08-31 2023-03-13 東洋インキScホールディングス株式会社 Thermoplastic resin composition for electric/electronic packaging material and molding
JP7274083B2 (en) 2021-08-31 2023-05-16 東洋インキScホールディングス株式会社 THERMOPLASTIC RESIN COMPOSITION AND MOLDED PRODUCT FOR ELECTRICAL AND ELECTRONIC PACKAGING

Also Published As

Publication number Publication date
KR102394357B1 (en) 2022-05-06
KR20190124744A (en) 2019-11-05
CN110418766B (en) 2022-11-11
CN110418766A (en) 2019-11-05

Similar Documents

Publication Publication Date Title
JP7052336B2 (en) Manufacturing method of multi-walled carbon nanotubes and multi-walled carbon nanotubes
JP6380588B1 (en) Multi-walled carbon nanotube and method for producing multi-walled carbon nanotube
JP2019005721A (en) Catalyst support and catalyst for carbon nanotube synthesis
WO2015190086A1 (en) Resin composition, layered product, and process for producing layered product
WO2018168833A1 (en) Multilayer carbon nanotubes, method for producing multilayer carbon nanotubes, liquid dispersion, resin composition, and coating film
EP3392320A1 (en) Composition for anti-counterfeit ink, anti-counterfeit ink, printed article for counterfeit prevention, and method of producing composition for anti-counterfeit ink
JP6468108B2 (en) Resin composition, laminate and method for producing laminate
JP7140117B2 (en) Anti-counterfeiting ink composition, anti-counterfeiting ink, anti-counterfeiting printed matter, and method for producing anti-counterfeiting ink composition
JP6547438B2 (en) Laminate
TWI787282B (en) Near infrared curable ink composition and method for producing the same, near infrared cured film, and stereolithography
EP3644099B1 (en) Light to heat conversion layer, method for producing same, and donor sheet using said light to heat conversion layer
TWI837092B (en) Light-to-heat conversion layer and method for producing the same, and donor sheet using the light-to-heat conversion layer
JP2009173766A (en) Carbon fiber-containing coating composition and method of preparing same
JP2007231123A (en) Manufacturing process of liquid composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197027876

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18767044

Country of ref document: EP

Kind code of ref document: A1