WO2018168643A1 - Method for producing ioflupane - Google Patents

Method for producing ioflupane Download PDF

Info

Publication number
WO2018168643A1
WO2018168643A1 PCT/JP2018/008984 JP2018008984W WO2018168643A1 WO 2018168643 A1 WO2018168643 A1 WO 2018168643A1 JP 2018008984 W JP2018008984 W JP 2018008984W WO 2018168643 A1 WO2018168643 A1 WO 2018168643A1
Authority
WO
WIPO (PCT)
Prior art keywords
radioactive
labeled
aqueous solution
iodine
radioactive iodine
Prior art date
Application number
PCT/JP2018/008984
Other languages
French (fr)
Japanese (ja)
Inventor
正人 外山
恵美 梅原
友博 木野
森田 武
伸介 大畑
Original Assignee
日本メジフィジックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本メジフィジックス株式会社 filed Critical 日本メジフィジックス株式会社
Priority to JP2019505938A priority Critical patent/JP7241013B2/en
Priority to CN201880027329.3A priority patent/CN110582494A/en
Publication of WO2018168643A1 publication Critical patent/WO2018168643A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D451/00Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof
    • C07D451/02Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof containing not further condensed 8-azabicyclo [3.2.1] octane or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane; Cyclic acetals thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se

Definitions

  • the present invention relates to a method for producing ioflupan.
  • [ 123 I] ioflupan ( 123 I) has a high affinity for the dopamine transporter (DAT) in the synapse of striatal dopaminergic neurons, and therefore, a line of ataxia disorder in which nigrostriatal dopamine neurons degenerate.
  • DAT dopamine transporter
  • the DAT distribution density in the striatum can be visualized by single photon emission tomography (SPECT), and is used for the diagnosis of Parkinson's disease and other Parkinson's syndrome, which are the above-mentioned ataxia, and dementia with Lewy bodies.
  • SPECT single photon emission tomography
  • the tropane compound described in Patent Document 1 is known as a tropane compound that is a similar compound to [ 123 I] ioflupan.
  • the synthesis time is shortened and the prescription time is simplified. Therefore, after the radioactive iodine labeling reaction, it has been reported that the reaction solution is purified by HPLC using a compact column and an aqueous ethanol solution with a retention time of 5 to 6 minutes (Non-patent Document 3).
  • Non-Patent Documents 1 and 2 have a problem in that methanol having low safety is used in consideration of application to humans. Therefore, by adopting a method that uses safer ethanol as an eluent, it has been approved as a pharmaceutical in 34 countries or regions (as of July 2013), and it has been filed in Japan since 2014. It is sold by people.
  • Non-Patent Document 3 and Patent Document 1 do not disclose or suggest any problems relating to the mass production of [ 123I ] ioflupan.
  • the present invention has been made in view of the above circumstances, without reducing the quality, and to provide a process for producing a large amount [123 I] Iofurupan.
  • the present inventors obtained [ 123 I] ioflupan by using a high-performance liquid chromatography (HPLC) method using a reaction column obtained by radiolabeling reaction with a column having a large diameter.
  • HPLC high-performance liquid chromatography
  • the radioactive iodide ion used in the step (a) has a radioactivity of 200 GBq or more at the start of the step (a)
  • the method (b) provides a method for producing radioiodine-labeled ioflupan, wherein a reverse phase column having a diameter of 7 mm or more is used and an aqueous ethanol solution is used as an eluent.
  • R is a trialkylstannyl substituent having 1 to 6 carbon atoms in the alkyl chain or a triphenylstannyl substituent.
  • X is a radioactive isotope of iodine.
  • the reaction solution obtained by the radiolabeling reaction is purified by HPLC using a column having a large diameter, the concentration of radioactivity in the column is suppressed and the productivity is improved. Can do.
  • the term “ioflupan” refers to methyl (1R, 2S, 3S, 5S) -8- (3-fluorophenyl) -3- (4-iodophenyl) -8-azabicyclo [3. 2.1] A compound called octane-2-carboxylate or N- ⁇ -fluoropropyl-2 ⁇ -carbomethoxy-3 ⁇ - (4-iodophenyl) nortropane.
  • Radioiodination step In the radioiodination step (a) of the present invention, the labeling precursor compound represented by the general formula (1) is reacted with a radioiodide ion to perform a radioiodination reaction, whereby the general formula (2) To obtain a radioactive iodine-labeled compound represented by the formula:
  • R is preferably a trialkylstannyl substituent having 1 to 6 carbon atoms in the alkyl chain, and is a trimethylstannyl substituent or triethylstannyl substituent. More preferred are groups, tripropylstannyl groups and tributylstannyl groups.
  • the labeling precursor compound can be synthesized using, for example, the methods described in Non-Patent Documents 1 and 2 above.
  • the reaction between the labeled precursor compound and the radioactive iodide ion is preferably performed in a suitable solvent in the presence of an oxidizing agent.
  • radioactive iodide ions include ions such as 123 I, 124 I, 125 I, and 131 I. Of these, 123 I is preferable.
  • the radioiodide ion has a radioactivity of 200 GBq or more at the start of the radioiodination step (a), but the method of the present invention provides high yield even when the radioiodination step (a) is started at 400 GBq or more. Radioiodine labeled ioflupan can be produced at a high rate.
  • the upper limit of the radioactivity amount of radioactive iodide ions is not particularly limited, for example, it is 3500 GBq or less, and 2000 GBq or less is practical.
  • the radioactive iodide ion may be a salt having a counter ion.
  • the counter ion include an alkali metal ion and an alkaline earth metal.
  • the salt containing an iodide ion include sodium iodide (NaI), potassium iodide (KI), and ammonium iodide (NH 4 I ), Iodates of amines such as cesium iodide (CsI), lithium iodide (LiI), triethylamine hydroiodide (Et 3 N HI), quaternary such as tetrabutylammonium iodide (Bu 4 NI)
  • An ammonium salt can be exemplified, and among these, radioactive sodium iodide is preferable.
  • any solvent conventionally used for radioiodination reaction may be used.
  • Acidic solutions such as hydrochloric acid, trifluoroacetic acid, sulfuric acid and acetic acid, alcohol solvents such as ethanol; ether solvents such as tetrahydrofuran (THF); Examples include polar solvents selected from acetonitrile and the like, halogen solvents such as methylene chloride, and nonpolar solvents selected from toluene and the like.
  • These acidic liquids, polar solvents and nonpolar solvents can be used singly or in combination of two or more. When using a polar solvent and a nonpolar solvent, it is preferable to add and use the acidic liquid illustrated above, and the acidic buffer of phosphoric acid and phosphoric acid.
  • oxidizing agent examples include N-chlorosuccinimide and hydrogen peroxide.
  • the concentration of the labeled precursor compound in the solvent is not particularly limited, but is preferably 0.3 mg / mL or more from the viewpoint of improving the yield of radioactive iodine-labeled ioflupan, 0.3 to 0.8 mg / mL It is more preferable that
  • the reaction between the labeled precursor compound and radioactive iodide ions is preferably performed in the presence of non-radioactive iodide ions.
  • the concentration of non-radioactive iodide ions is not limited, but from the viewpoint of improving the yield of radioactive iodine-labeled ioflupan, it is preferably 0.015 mg / mL or more, and 0.015-0.04 mg / mL. It is more preferable that
  • the amount of the reaction solution in the radioiodination reaction is not particularly limited, but is, for example, 1 to 5 mL.
  • the temperature at the time of the reaction between the labeling precursor compound and iodide ion is not particularly limited, but is preferably 10 to 120 ° C, more preferably 15 to 40 ° C.
  • the reaction time between the labeling precursor compound and the radioactive iodide ion is not particularly limited, but is preferably 5 to 30 minutes.
  • reaction vessel for performing the radioactive iodine labeling reaction a glass vessel or a plastic vessel resistant to a solvent can be used.
  • a heater For example, a block heater and an air heater are used.
  • the purification step (b) of the present invention is a step of purifying the radioactive iodine-labeled compound represented by the general formula (2) from the reaction solution obtained in the step (a) by the HPLC (high performance liquid chromatography) method. Specifically, the reaction solution is packed in a reverse-phase column with an appropriate eluent and then eluted from the reverse-phase column, and the eluate having a retention time at which the radioactive iodine-labeled compound is eluted is collected. And isolating the radioactive iodine-labeled compound.
  • the present invention uses a reverse phase column having a diameter of 7 mm or more as the column and an ethanol aqueous solution as the eluent, thereby eluting the radioactive iodine-labeled compound with a retention time of 12 minutes or less. It is characterized in that it makes it possible.
  • the column temperature during HPLC is preferably 10 to 30 ° C.
  • a reverse phase column having an inner diameter of 7 mm or more is used as the reverse phase column, and a reverse phase column having an inner diameter of 7 to 30 mm is more preferably used.
  • the length of the reverse phase column is preferably 50 to 200 mm, more preferably 60 to 170 mm from the viewpoint of shortening the holding time and reducing the pressure loss.
  • the silyl group is selected from n-ethyl group, n-butyl group, n-octyl group, n-octadecylsilyl group, phenyl group, cyanopropyl group, trimethylsilyl group, and triacontyl group.
  • Such reverse phase columns are commercially available from, for example, Waters, Phenomenex, Nomura Chemical, Tosoh, Shiseido, YMC.
  • One column may be used alone, or two or more columns may be linked and used.
  • the first column is shorter than the subsequent columns, and after removing non-radioactive inorganic substances from the reaction solution and concentrating, eluting and purifying You may make it function as a pretreatment column for introducing into a column.
  • the length of the pretreatment column is preferably 10 to 50 mm, more preferably 10 to 20 mm, from the viewpoint of efficiency of concentration.
  • the second column preferably functions as a purification column and is longer than the pretreatment column.
  • the length of the purification column is preferably 50 to 150 mm, more preferably 100 to 150 mm.
  • the eluent used in the present invention contains ethanol and water, and a mixture of ethanol and a buffered aqueous solution or an aqueous solution of an alkali metal salt of a weak acid is preferable.
  • a buffer aqueous solution phosphate buffer, acetate buffer, citrate buffer, tartaric acid buffer, borate buffer and the like can be used, and among these, acetate buffer is preferable.
  • These buffers can be prepared from a conjugate acid and a conjugate base.
  • an acetate buffer can be prepared from an aqueous solution in which acetic acid and sodium acetate are mixed.
  • aqueous solution of the alkali metal salt of the weak acid an aqueous solution of an alkali metal salt of a weak acid such as phosphoric acid, acetic acid, citric acid, tartaric acid, boric acid (for example, sodium salt or potassium salt) is used.
  • a sodium acetate aqueous solution is preferred.
  • the pH of the buffered aqueous solution or the aqueous solution of the alkali metal salt of the weak acid is preferably set so that the elution peak of the radioactive iodine-labeled ioflupan is shortened and the reproducibility is improved.
  • the degree of separation between iodine-labeled ioflupan and impurities is improved. Moreover, since it can reduce the damage of a reverse phase column by setting it as pH12 or less, it is more preferable. More preferably, the pH is 4.5 to 8.6.
  • the ethanol concentration in the eluent is preferably 30 to 75% by volume, more preferably 50 to 70% by volume, based on 100% by volume of ethanol and the buffered aqueous solution.
  • a solution containing ethanol from the viewpoint of further reducing the radiolysis of radioiodine labeled ioflupan. More preferably, by preparing the ethanol concentration to be 20% by volume or less and performing HPLC, radiolysis of radioactive iodine-labeled ioflupan can be suppressed without affecting the separation conditions.
  • the eluate eluted in the step (b) is usually a high concentration as it is, from the viewpoint of further reducing the radiolysis of radioactive iodine-labeled ioflupan, an appropriate concentration can be obtained with an appropriate diluent at the time of recovery to the recovery container. It is preferable to dilute to a concentration of 10 GBq / mL or less at the time of elution.
  • the diluent include a diluent containing ethanol and / or a buffered aqueous solution. As this buffer aqueous solution, what was mentioned above as what can be used for an eluent can be used.
  • the diluent is preferably a mixed solution of ethanol and acetate buffer, and more preferably the same as the eluent. Dilution may be performed by directly storing the eluate containing the iodine-labeled compound eluted from the reverse phase column in a collection container in which the dilute solution is previously stored.
  • the radioiodine labeled ioflupan obtained in the present invention is finally prepared in various dosage forms such as injections and provided as a preparation.
  • a preparation is generally provided in the form of an aqueous solution containing the radioiodine-labeled compound of the above general formula (2), and the aqueous solution diluted with the diluent may be further diluted as necessary, physiologically or pharmaceutically
  • additives that are chemically or chemically acceptable.
  • additives examples of additives that can be included include stabilizers, pH adjusters, physiological saline, and solubilizers. Such an additive may be added in advance to the diluent.
  • the pH range generally used is pH 2 to 10, preferably pH 4 to 8, particularly preferably pH 4 to 6.
  • the radioiodine labeled ioflupan obtained in the present invention can be used as an imaging agent used for various diagnoses in the brain, specifically, in ataxia diseases in which striatal dopamine neurons degenerate. It can be suitably used as an imaging agent for diagnosis by SPECT such as certain Parkinson's disease and other Parkinson's syndrome and dementia with Lewy bodies.
  • an absolute ethanol solution of N- ⁇ -fluoropropyl-2 ⁇ -carbomethoxy-3 ⁇ - (4-trimethylstannylphenyl) nortropane (hereinafter SnFP-CT), 50% of 30% hydrogen peroxide, 40 ⁇ L of 25% sulfuric acid, and After adding 50 ⁇ L of 0.2 mol / L sodium acetate aqueous solution and stirring at room temperature for 10 minutes or more, 150 ⁇ L of 30% sodium pyrosulfite aqueous solution and 250 ⁇ L of 0.2 mol / L sodium acetate aqueous solution were added to quench the reaction. In Examples 4 to 6, ethanol was added so that the ethanol concentration was 18% by volume.
  • Examples 1 to 6 were subjected to high performance liquid chromatography under conditions A below and Comparative Example 1 was under conditions B below to separate and purify ioflupan ( 123 I).
  • Examples 1 to 3 In Comparative Example 1, a recovery container containing 5 mL of acetic acid / sodium acetate buffer solution, and in Examples 4 to 6, 75 mL of acetic acid / sodium acetate buffer solution and 5 mL of ethanol were maintained so as to be maintained at 10 GBq / mL or less at the time of elution. was eluted into a collection container containing ioflupan to obtain an ioflupan ( 123 I) fraction.
  • Iofurupan (123 I) and Iofurupan standard solution 1 Take appropriate amount of mixed sample solution in 1, ethyl acetate / acetone / triethylamine mixture (57: 43: 1) as the developing solvent, to about the lower end of the thin layer plate
  • the general test method for the drug base was tested by thin layer chromatography, developed about 10 cm from the original line, and then the radioactivity on the thin layer was measured using a chromatogram scanner. It was measured.
  • the thin layer plate was prepared using silica gel for thin layer chromatography (with fluorescent agent).
  • SOS is the production start time of Ioflupan ( 123 I).
  • the production start time is the time when the preparation of [ 123 I] iodide ion was completed in the above (a) labeling step and the concentration was started at 120 ° C. Further, the yield is obtained by attenuation correction.
  • the expiration date is 34 to 35 hours after the start of the production. ND indicates that data is not acquired.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

Provided is a method for producing [123I] ioflupane in a large quantity without deteriorating the quality thereof. The method is a method for producing radioactive-iodine-labeled ioflupane, comprising the steps of (a) reacting a labeling precursor compound with a radioactive iodide ion to produce a radioactive-iodine-labeled compound and (b) purifying the radioactive-iodine-labeled compound produced in step (a) by a high performance liquid chromatography (HPLC) method, wherein the amount of the radioactivity of the radioactive iodide ion used in step (a) is 200 GBq or more at the start time of step (a) and step (b) is carried out using a reverse phase column having a diameter of 7 mm or more and using an aqueous ethanol solution as an eluent.

Description

イオフルパンの製造方法Ioflupan production method
 本発明は、イオフルパンの製造方法に関する。 The present invention relates to a method for producing ioflupan.
 [123I]イオフルパン(123I)は、線条体ドパミン性ニューロンのシナプスにおけるドパミントランスポーター(DAT)に高い親和性を有するため、黒質線条体ドパミン神経細胞が変性する運動失調疾患の線条体におけるDAT分布密度を単一光子放射断層撮影(SPECT)により可視化することができ、上記運動失調疾患であるパーキンソン病及びその他のパーキンソン症候群並びにレビー小体型認知症の診断に用いられている。 [ 123 I] ioflupan ( 123 I) has a high affinity for the dopamine transporter (DAT) in the synapse of striatal dopaminergic neurons, and therefore, a line of ataxia disorder in which nigrostriatal dopamine neurons degenerate. The DAT distribution density in the striatum can be visualized by single photon emission tomography (SPECT), and is used for the diagnosis of Parkinson's disease and other Parkinson's syndrome, which are the above-mentioned ataxia, and dementia with Lewy bodies.
 [123I]イオフルパンの製造方法として、例えば、[123I]イオフルパンの放射性標識前駆体であるトリメチルスズ体を放射性ヨウ化物と反応させた後、4.6mm×300mmのC18カラムを使用し、溶離液としてメタノール/水/トリエチルアミン混液を用い、得られた反応液を保持時間10分でHPLC精製して標識化合物である[123I]イオフルパンを得ることは従来知られている(非特許文献1及び2)。 As a method for producing [ 123 I] ioflupan, for example, a trimethyltin body, which is a radiolabeled precursor of [ 123 I] ioflupan, was reacted with radioiodide and then eluted using a 4.6 mm × 300 mm C18 column. It is known in the art to obtain a labeled compound [ 123 I] ioflupan by HPLC purification of the resulting reaction solution with a retention time of 10 minutes using a methanol / water / triethylamine mixture as the solution (Non-patent Documents 1 and 2).
 一方、[123I]イオフルパンの類似化合物であるトロパン化合物として特許文献1記載のものが知られているが、例えば、[123I]β-CITについては、合成時間を短縮し、処方時間を単純化するため、放射性ヨウ素標識反応後、反応液をコンパクトなカラムとエタノール水溶液を用い保持時間5~6分でHPLC精製することが報告されている(非特許文献3)。 On the other hand, the tropane compound described in Patent Document 1 is known as a tropane compound that is a similar compound to [ 123 I] ioflupan. For example, for [ 123 I] β-CIT, the synthesis time is shortened and the prescription time is simplified. Therefore, after the radioactive iodine labeling reaction, it has been reported that the reaction solution is purified by HPLC using a compact column and an aqueous ethanol solution with a retention time of 5 to 6 minutes (Non-patent Document 3).
国際公開WO95/01184公報International Publication WO95 / 01184
 しかしながら、上記非特許文献1及び2に記載の方法では、ヒトへの適用を考慮すると、安全性の低いメタノールを使用する点が、問題であった。このため、より安全性の高いエタノールを溶離液として使用する方法を採用することで、34の国又は地域で医薬品として薬事承認されており(2013年7月現在)、日本においても2014年より出願人により販売されている。 However, the methods described in Non-Patent Documents 1 and 2 have a problem in that methanol having low safety is used in consideration of application to humans. Therefore, by adopting a method that uses safer ethanol as an eluent, it has been approved as a pharmaceutical in 34 countries or regions (as of July 2013), and it has been filed in Japan since 2014. It is sold by people.
 しかしながら、生産性向上のため製造に使用する放射能量を多くすると、[123I]イオフルパンの安定性が低下し、薬事承認された規格を満たさなくなるおそれがあることが本発明者らの知見により明らかとなった。なお、上記非特許文献3及び特許文献1には、こうした[123I]イオフルパンの大量製造に関する問題点については、何ら開示も示唆もされていない。 However, it is clear from the knowledge of the present inventors that if the amount of radioactivity used for production is increased to improve productivity, the stability of [ 123I ] ioflupan may be reduced and the standard approved by the Pharmaceutical Affairs may not be satisfied. became. Note that Non-Patent Document 3 and Patent Document 1 do not disclose or suggest any problems relating to the mass production of [ 123I ] ioflupan.
 本発明は上記事情に鑑みてなされたものであり、品質を低下させることなく、大量に[123I]イオフルパンを製造できる方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, without reducing the quality, and to provide a process for producing a large amount [123 I] Iofurupan.
 本発明者等は、上記課題を解決するために鋭意検討した結果、放射性標識反応により得られた反応液を直径の大きなカラムを用いた高速液体クロマトグラフィー(HPLC)法にて[123I]イオフルパンを精製することにより、カラム内における放射能の濃縮を抑制し、製造開始時において200GBq以上の放射能を使用した場合においても、[123I]イオフルパンの放射化学的純度規格を担保できることを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors obtained [ 123 I] ioflupan by using a high-performance liquid chromatography (HPLC) method using a reaction column obtained by radiolabeling reaction with a column having a large diameter. In addition, it was found that the radiochemical purity standard of [ 123 I] ioflupan can be ensured even when 200 GBq or more of radioactivity is used at the start of production, by suppressing the concentration of radioactivity in the column, The present invention has been completed.
 したがって、本発明の一態様によれば、
(a)下記一般式(1)で表わされる標識前駆体化合物と放射性ヨウ化物イオンとを反応させて、下記一般式(2)で表わされる放射性ヨウ素標識化合物を得る工程と、
(b)前記工程(a)で得られた前記放射性ヨウ素標識化合物を高速液体クロマトグラフィー(HPLC)法により精製する工程と、を含み、
前記工程(a)で用いる放射性ヨウ化物イオンの放射能量が前記工程(a)の開始時において200GBq以上であり、
前記工程(b)は、直径7mm以上の逆相カラムを用い、溶離液としてエタノール水溶液を用いて行われる、放射性ヨウ素標識イオフルパンの製造方法が提供される。
Figure JPOXMLDOC01-appb-C000003
Thus, according to one aspect of the invention,
(A) reacting a labeled precursor compound represented by the following general formula (1) with a radioiodide ion to obtain a radioactive iodine labeled compound represented by the following general formula (2);
(B) purifying the radioactive iodine-labeled compound obtained in the step (a) by a high performance liquid chromatography (HPLC) method,
The radioactive iodide ion used in the step (a) has a radioactivity of 200 GBq or more at the start of the step (a),
The method (b) provides a method for producing radioiodine-labeled ioflupan, wherein a reverse phase column having a diameter of 7 mm or more is used and an aqueous ethanol solution is used as an eluent.
Figure JPOXMLDOC01-appb-C000003
(上記一般式(1)中、Rはアルキル鎖の炭素数が1~6であるトリアルキルスタニル置換基、または、トリフェニルスタニル置換基である。)
Figure JPOXMLDOC01-appb-C000004
(In the above general formula (1), R is a trialkylstannyl substituent having 1 to 6 carbon atoms in the alkyl chain or a triphenylstannyl substituent.)
Figure JPOXMLDOC01-appb-C000004
(上記一般式(2)中、Xはヨウ素の放射性同位体である。) (In the general formula (2), X is a radioactive isotope of iodine.)
 本発明によれば、放射性標識反応により得られた反応液を直径の大きなカラムを用いてHPLC精製することとしたので、カラム内の放射能濃度の濃縮を抑制して、生産性を向上させることができる。 According to the present invention, since the reaction solution obtained by the radiolabeling reaction is purified by HPLC using a column having a large diameter, the concentration of radioactivity in the column is suppressed and the productivity is improved. Can do.
 本明細書中において「イオフルパン」という用語は、IUPAC名称でメチル(1R,2S,3S,5S)-8-(3-フルオロフェニル)-3-(4-ヨードフェニル)-8-アザビシクロ[3.2.1]オクタン-2-カルボキシラート、又は、N-ω-フルオロプロピル-2β-カルボメチキシ-3β-(4-ヨードフェニル)ノルトロパンと呼ばれる化合物を意味する。 In this specification, the term “ioflupan” refers to methyl (1R, 2S, 3S, 5S) -8- (3-fluorophenyl) -3- (4-iodophenyl) -8-azabicyclo [3. 2.1] A compound called octane-2-carboxylate or N-ω-fluoropropyl-2β-carbomethoxy-3β- (4-iodophenyl) nortropane.
 [(a)放射性ヨウ化工程]
 本発明の放射性ヨウ化工程(a)では、上記一般式(1)で表わされる標識前駆体化合物と放射性ヨウ化物イオンとを反応させて放射性ヨウ化反応を行うことにより、上記一般式(2)で表わされる放射性ヨウ素標識化合物を得る。
[(A) Radioiodination step]
In the radioiodination step (a) of the present invention, the labeling precursor compound represented by the general formula (1) is reacted with a radioiodide ion to perform a radioiodination reaction, whereby the general formula (2) To obtain a radioactive iodine-labeled compound represented by the formula:
 上記一般式(1)で表わされる標識前駆体化合物中、Rはアルキル鎖の炭素数が1~6であるトリアルキルスタニル置換基であることが好ましく、トリメチルスタニル置換基、トリエチルスタニル置換基、トリプロピルスタニル基及びトリブチルスタニル基がより好ましい。 In the labeling precursor compound represented by the above general formula (1), R is preferably a trialkylstannyl substituent having 1 to 6 carbon atoms in the alkyl chain, and is a trimethylstannyl substituent or triethylstannyl substituent. More preferred are groups, tripropylstannyl groups and tributylstannyl groups.
 上記標識前駆体化合物は、例えば、上記非特許文献1及び2に記載された方法を用いて合成することができる。 The labeling precursor compound can be synthesized using, for example, the methods described in Non-Patent Documents 1 and 2 above.
 上記標識前駆体化合物と放射性ヨウ化物イオンとの反応は、酸化剤存在下に適当な溶媒中で行うことが好ましい。放射性ヨウ化物イオンとしては、123I、124I、125I、131I等のイオンが例示できるが、このうち、123Iが好ましい。放射性ヨウ化物イオンの放射能量は、放射性ヨウ化工程(a)の開始時において200GBq以上とするが、本発明の方法は、放射性ヨウ化工程(a)の開始時において400GBq以上としても、高収率で放射性ヨウ素標識イオフルパンを製造することができる。放射性ヨウ化物イオンの放射能量の上限は、特に制限されないが、例えば、3500GBq以下であり、2000GBq以下が実用的である。 The reaction between the labeled precursor compound and the radioactive iodide ion is preferably performed in a suitable solvent in the presence of an oxidizing agent. Examples of radioactive iodide ions include ions such as 123 I, 124 I, 125 I, and 131 I. Of these, 123 I is preferable. The radioiodide ion has a radioactivity of 200 GBq or more at the start of the radioiodination step (a), but the method of the present invention provides high yield even when the radioiodination step (a) is started at 400 GBq or more. Radioiodine labeled ioflupan can be produced at a high rate. Although the upper limit of the radioactivity amount of radioactive iodide ions is not particularly limited, for example, it is 3500 GBq or less, and 2000 GBq or less is practical.
 また、放射性ヨウ化物イオンは、対イオンを有する塩であってもよい。対イオンには、例えば、アルカリ金属イオンやアルカリ土類金属が挙げられるが、ヨウ化物イオンを含む塩としては、ヨウ化ナトリウム(NaI)、ヨウ化カリウム(KI)、ヨウ化アンモニウム(NHI)、ヨウ化セシウム(CsI)、ヨウ化リチウム(LiI)、トリエチルアミンヨウ化水素酸塩(EtN HI)などのアミンのヨウ素酸塩、テトラブチルアンモニウムヨージド(BuNI)などの四級アンモニウム塩などが例示できるが、このうち、放射性ヨウ化ナトリウムが好ましい。 Further, the radioactive iodide ion may be a salt having a counter ion. Examples of the counter ion include an alkali metal ion and an alkaline earth metal. Examples of the salt containing an iodide ion include sodium iodide (NaI), potassium iodide (KI), and ammonium iodide (NH 4 I ), Iodates of amines such as cesium iodide (CsI), lithium iodide (LiI), triethylamine hydroiodide (Et 3 N HI), quaternary such as tetrabutylammonium iodide (Bu 4 NI) An ammonium salt can be exemplified, and among these, radioactive sodium iodide is preferable.
 溶媒としては、放射性ヨウ素化反応に従来使用されているものであればよく、塩酸、トルフルオロ酢酸、硫酸、酢酸等の酸性液、エタノールなどのアルコール系溶媒;テトラヒドロフラン(THF)などのエーテル系溶媒;アセトニトリル等から選択される極性溶媒、塩化メチレンなどのハロゲン系溶媒;トルエンなどから選択される非極性溶媒が例示できる。これらの酸性液、極性溶媒及び非極性溶媒は、一種又は二種以上組み合わせて用いることができる。極性溶媒及び非極性溶媒を使用する場合は、上記例示した酸性液や、リン酸、リン酸の酸性緩衝液を添加して用いることが好ましい。 As the solvent, any solvent conventionally used for radioiodination reaction may be used. Acidic solutions such as hydrochloric acid, trifluoroacetic acid, sulfuric acid and acetic acid, alcohol solvents such as ethanol; ether solvents such as tetrahydrofuran (THF); Examples include polar solvents selected from acetonitrile and the like, halogen solvents such as methylene chloride, and nonpolar solvents selected from toluene and the like. These acidic liquids, polar solvents and nonpolar solvents can be used singly or in combination of two or more. When using a polar solvent and a nonpolar solvent, it is preferable to add and use the acidic liquid illustrated above, and the acidic buffer of phosphoric acid and phosphoric acid.
 酸化剤としては、N-クロロこはく酸イミド、過酸化水素などが例示できる。 Examples of the oxidizing agent include N-chlorosuccinimide and hydrogen peroxide.
 溶媒中の上記標識前駆体化合物の濃度は特に限定されないが、放射性ヨウ素標識イオフルパンの収率を向上させる観点から、0.3mg/mL以上であることが好ましく、0.3~0.8mg/mLであることがより好ましい。 The concentration of the labeled precursor compound in the solvent is not particularly limited, but is preferably 0.3 mg / mL or more from the viewpoint of improving the yield of radioactive iodine-labeled ioflupan, 0.3 to 0.8 mg / mL It is more preferable that
 上記標識前駆体化合物と放射性ヨウ化物イオンとの反応は、非放射性ヨウ化物イオンの存在下に実行することが好ましい。この場合、非放射性ヨウ化物イオンの濃度は、限定されないが、放射性ヨウ素標識イオフルパンの収率を向上させる観点から、0.015mg/mL以上であることが好ましく、0.015~0.04mg/mLであることがより好ましい。 The reaction between the labeled precursor compound and radioactive iodide ions is preferably performed in the presence of non-radioactive iodide ions. In this case, the concentration of non-radioactive iodide ions is not limited, but from the viewpoint of improving the yield of radioactive iodine-labeled ioflupan, it is preferably 0.015 mg / mL or more, and 0.015-0.04 mg / mL. It is more preferable that
 放射性ヨウ化反応における反応液の液量は、特に限定されないが、例えば、1~5mLとする。 The amount of the reaction solution in the radioiodination reaction is not particularly limited, but is, for example, 1 to 5 mL.
 上記標識前駆体化合物とヨウ化物イオンとの反応の際の温度は、特に限定されないが、10~120℃であることが好ましく、15~40℃であることがより好ましい。 The temperature at the time of the reaction between the labeling precursor compound and iodide ion is not particularly limited, but is preferably 10 to 120 ° C, more preferably 15 to 40 ° C.
 上記標識前駆体化合物と放射性ヨウ化物イオンとの反応時間は、特に限定されないが、5~30分であることが好ましい。 The reaction time between the labeling precursor compound and the radioactive iodide ion is not particularly limited, but is preferably 5 to 30 minutes.
 上記放射性ヨウ素標識反応を行う反応容器としては、ガラス容器あるいは溶媒に耐性のあるプラスチック容器を用いることができる。加熱器としては、特に限定されないが、例えば、ブロックヒーターやエアヒーターが用いられる。 As a reaction vessel for performing the radioactive iodine labeling reaction, a glass vessel or a plastic vessel resistant to a solvent can be used. Although it does not specifically limit as a heater, For example, a block heater and an air heater are used.
 [精製工程(b)]
 本発明の精製工程(b)は、前記工程(a)で得られた反応液から上記一般式(2)で表わされる放射性ヨウ素標識化合物をHPLC(高速液体クロマトグラフィー)法により精製する工程であるが、具体的には、上記反応液を適当な溶離液とともに逆相カラムに充填した後、逆相カラムから溶出させ、上記放射性ヨウ素標識化合物が溶出する保持時間の溶出液を分取することにより、上記放射性ヨウ素標識化合物を単離する工程である。
[Purification step (b)]
The purification step (b) of the present invention is a step of purifying the radioactive iodine-labeled compound represented by the general formula (2) from the reaction solution obtained in the step (a) by the HPLC (high performance liquid chromatography) method. Specifically, the reaction solution is packed in a reverse-phase column with an appropriate eluent and then eluted from the reverse-phase column, and the eluate having a retention time at which the radioactive iodine-labeled compound is eluted is collected. And isolating the radioactive iodine-labeled compound.
 本発明は、この精製工程(b)において、上記カラムとして直径7mm以上の逆相カラムを用い、上記溶離液としてエタノール水溶液を用いることにより、12分以内の保持時間で放射性ヨウ素標識化合物を溶出させることを可能にした点に特徴を有する。HPLC実行時のカラムの温度は、10~30℃であることが好ましい。 In the purification step (b), the present invention uses a reverse phase column having a diameter of 7 mm or more as the column and an ethanol aqueous solution as the eluent, thereby eluting the radioactive iodine-labeled compound with a retention time of 12 minutes or less. It is characterized in that it makes it possible. The column temperature during HPLC is preferably 10 to 30 ° C.
 本発明では、カラムにおける放射能の濃縮を抑制する観点から、上記逆相カラムとして、内径が7mm以上の逆相カラムが使用され、内径が7~30mmの逆相カラムを使用することがより好ましい。また、この逆相カラムの長さは、保持時間を短縮し、圧力損失を低下させる観点から、50~200mmが好ましく、60~170mmがより好ましい。この逆相カラムの具体例としては、シリル基がn-エチル基、n-ブチル基、n-オクチル基、n-オクタデシルシリル基、フェニル基、シアノプロピル基、トリメチルシリル基、及びトリアコンチル基より選択される官能基、好ましくはn-オクチル基、n-オクタデシルシリル基、及びフェニル基より選択される官能基で修飾された充填剤を用いるものが挙げられる。このような逆相カラムは、例えば、Waters社,Phenomenex社、野村化学、東ソー、資生堂、ワイエムシィなどから商業的に入手することができる。上記カラムは、1本単独で使用しても、2本以上を連結して使用してもよい。例えば、2本以上を連結して使用する場合、最初のカラムとして、それ以降のカラムより長さの短いものを使用し、反応液から非放射性の無機物を除去するとともに濃縮した後、溶出し精製カラムに導入するための前処理カラムとして機能させても良い。前処理カラムの長さは,濃縮の効率化の観点から、10~50mmが好ましく、10~20mmがより好ましい。2本目のカラムは精製カラムとして機能させ、前処理カラムより長いものを使用することが好ましい。精製カラムの長さは、50~150mmが好ましく、100~150mmが好ましい。 In the present invention, from the viewpoint of suppressing the concentration of radioactivity in the column, a reverse phase column having an inner diameter of 7 mm or more is used as the reverse phase column, and a reverse phase column having an inner diameter of 7 to 30 mm is more preferably used. . The length of the reverse phase column is preferably 50 to 200 mm, more preferably 60 to 170 mm from the viewpoint of shortening the holding time and reducing the pressure loss. As a specific example of this reverse phase column, the silyl group is selected from n-ethyl group, n-butyl group, n-octyl group, n-octadecylsilyl group, phenyl group, cyanopropyl group, trimethylsilyl group, and triacontyl group. And a filler using a filler modified with a functional group selected from n-octyl group, n-octadecylsilyl group, and phenyl group. Such reverse phase columns are commercially available from, for example, Waters, Phenomenex, Nomura Chemical, Tosoh, Shiseido, YMC. One column may be used alone, or two or more columns may be linked and used. For example, when two or more are connected and used, the first column is shorter than the subsequent columns, and after removing non-radioactive inorganic substances from the reaction solution and concentrating, eluting and purifying You may make it function as a pretreatment column for introducing into a column. The length of the pretreatment column is preferably 10 to 50 mm, more preferably 10 to 20 mm, from the viewpoint of efficiency of concentration. The second column preferably functions as a purification column and is longer than the pretreatment column. The length of the purification column is preferably 50 to 150 mm, more preferably 100 to 150 mm.
 本発明で使用する溶離液は、エタノールと水とを含むものであり、エタノールと、緩衝水溶液又は弱酸のアルカリ金属塩の水溶液との混液が好ましい。緩衝水溶液としては、リン酸緩衝液、酢酸緩衝液、クエン酸緩衝液、酒石酸緩衝液、ホウ酸緩衝液等が使用できるが、このうち、酢酸緩衝液が好ましい。これら緩衝液は、共役酸と共役塩基とから調製することができ、例えば、酢酸緩衝液は、酢酸と酢酸ナトリウムとを混合した水溶液から調製することができる。また、弱酸のアルカリ金属塩の水溶液としては、リン酸、酢酸、クエン酸、酒石酸、ホウ酸等の弱酸のアルカリ金属塩(例えば、ナトリウム塩やカリウム塩)の水溶液が用いられるが、このうち、酢酸ナトリウム水溶液が好ましい。また、緩衝水溶液又は弱酸のアルカリ金属塩の水溶液のpHは、放射性ヨウ素標識イオフルパンの溶出ピークを短時間にし、再現性を向上させるように設定することが好ましいが、pH4以上とすることで、放射性ヨウ素標識イオフルパンと不純物との分離度が向上することからより好ましい。また、pH12以下とすることで、逆相カラムのダメージを軽減できるため、より好ましい。pHが4.5~8.6であることが更に好ましい。また、溶離液中のエタノール濃度は、エタノールと緩衝水溶液との合計100体積%に対し30~75体積%が好ましく、50~70体積%がより好ましい。 The eluent used in the present invention contains ethanol and water, and a mixture of ethanol and a buffered aqueous solution or an aqueous solution of an alkali metal salt of a weak acid is preferable. As the buffer aqueous solution, phosphate buffer, acetate buffer, citrate buffer, tartaric acid buffer, borate buffer and the like can be used, and among these, acetate buffer is preferable. These buffers can be prepared from a conjugate acid and a conjugate base. For example, an acetate buffer can be prepared from an aqueous solution in which acetic acid and sodium acetate are mixed. Moreover, as the aqueous solution of the alkali metal salt of the weak acid, an aqueous solution of an alkali metal salt of a weak acid such as phosphoric acid, acetic acid, citric acid, tartaric acid, boric acid (for example, sodium salt or potassium salt) is used. A sodium acetate aqueous solution is preferred. Further, the pH of the buffered aqueous solution or the aqueous solution of the alkali metal salt of the weak acid is preferably set so that the elution peak of the radioactive iodine-labeled ioflupan is shortened and the reproducibility is improved. It is more preferable because the degree of separation between iodine-labeled ioflupan and impurities is improved. Moreover, since it can reduce the damage of a reverse phase column by setting it as pH12 or less, it is more preferable. More preferably, the pH is 4.5 to 8.6. The ethanol concentration in the eluent is preferably 30 to 75% by volume, more preferably 50 to 70% by volume, based on 100% by volume of ethanol and the buffered aqueous solution.
 HPLC実行時の放射性ヨウ素標識イオフルパンの試料調製については、放射性ヨウ素標識イオフルパンの放射線分解をより低減する観点から、エタノールを含む溶液として調製することが好ましい。より好ましくは、エタノール濃度が20体積%以下になるように調製し、HPLCを実行することで、分離条件に影響を与えることなく、放射性ヨウ素標識イオフルパンの放射線分解を抑制することができる。 Regarding preparation of a sample of radioiodine labeled ioflupan at the time of HPLC execution, it is preferable to prepare a solution containing ethanol from the viewpoint of further reducing the radiolysis of radioiodine labeled ioflupan. More preferably, by preparing the ethanol concentration to be 20% by volume or less and performing HPLC, radiolysis of radioactive iodine-labeled ioflupan can be suppressed without affecting the separation conditions.
 前記工程(b)で溶出された溶出液は、通常、そのままでは高濃度なので、放射性ヨウ素標識イオフルパンの放射線分解をより低減する観点から、回収容器への回収時に、適当な希釈液で適当な濃度に希釈することが好ましく、溶出時において10GBq/mL以下の濃度に希釈することがより好ましい。希釈液としては、エタノール及び/又は緩衝水溶液を含む希釈液が挙げられる。この緩衝水溶液としては、溶離液に使用できるものとして上記したものを使用できる。希釈液は、エタノールと酢酸緩衝液との混液が好ましく、溶離液と同じものであることがより好ましい。希釈は、上記逆相カラムから溶出されたヨウ素標識化合物を含む溶出液を、予め希釈液を収容させておいた回収容器に直接収容することで行ってもよい。 Since the eluate eluted in the step (b) is usually a high concentration as it is, from the viewpoint of further reducing the radiolysis of radioactive iodine-labeled ioflupan, an appropriate concentration can be obtained with an appropriate diluent at the time of recovery to the recovery container. It is preferable to dilute to a concentration of 10 GBq / mL or less at the time of elution. Examples of the diluent include a diluent containing ethanol and / or a buffered aqueous solution. As this buffer aqueous solution, what was mentioned above as what can be used for an eluent can be used. The diluent is preferably a mixed solution of ethanol and acetate buffer, and more preferably the same as the eluent. Dilution may be performed by directly storing the eluate containing the iodine-labeled compound eluted from the reverse phase column in a collection container in which the dilute solution is previously stored.
 本発明で得られた放射性ヨウ素標識イオフルパンは、最終的には、注射剤等の各種剤形に調製され、製剤として提供される。かかる製剤は、一般に、上記一般式(2)の放射性ヨウ素標識化合物を含有する水溶液の形態で提供され、上記希釈液によって希釈された水溶液を必要に応じて、さらに希釈したり、生理学的、薬学的または化学的に許容可能な各種の添加剤を添加したりして調製される。例えば、注射剤に調製する場合、含有可能な添加剤としては、安定剤、pH調整剤、生理食塩水及び溶解剤等が挙げられる。かかる添加剤は、上記希釈液に予め添加しておいてもよい。 The radioiodine labeled ioflupan obtained in the present invention is finally prepared in various dosage forms such as injections and provided as a preparation. Such a preparation is generally provided in the form of an aqueous solution containing the radioiodine-labeled compound of the above general formula (2), and the aqueous solution diluted with the diluent may be further diluted as necessary, physiologically or pharmaceutically It is prepared by adding various additives that are chemically or chemically acceptable. For example, when preparing an injection, examples of additives that can be included include stabilizers, pH adjusters, physiological saline, and solubilizers. Such an additive may be added in advance to the diluent.
 本発明で得られた放射性ヨウ素標識イオフルパンを注射剤として調製する場合、一般的に用いられるpH範囲はpH2~10であり、好ましくはpH4~8であり、特に好ましくはpH4~6である。 When preparing the radioiodine-labeled ioflupan obtained in the present invention as an injection, the pH range generally used is pH 2 to 10, preferably pH 4 to 8, particularly preferably pH 4 to 6.
 本発明で得られた放射性ヨウ素標識イオフルパンを注射剤として調製した場合、脳内の各種診断に用いるイメージング剤として使用でき、具体的には、質線条体ドパミン神経細胞が変性する運動失調疾患であるパーキンソン病及びその他のパーキンソン症候群並びにレビー小体型認知症等のSPECTによる診断のイメージング剤として好適に使用することができる。 When the radioiodine labeled ioflupan obtained in the present invention is prepared as an injection, it can be used as an imaging agent used for various diagnoses in the brain, specifically, in ataxia diseases in which striatal dopamine neurons degenerate. It can be suitably used as an imaging agent for diagnosis by SPECT such as certain Parkinson's disease and other Parkinson's syndrome and dementia with Lewy bodies.
 以下、実施例を記載して本発明をさらに詳しく説明するが、本発明はこれらの内容に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these contents.
(実施例1~6、比較例1)
(a)標識工程
 124Xe(p,2p)123I反応により得られた123Iに0.1mol/L水酸化ナトリウム水溶液を加え、[123I]ヨウ化ナトリウム溶液を調製した。得られた[123I]ヨウ化ナトリウム溶液に、非放射性ヨウ化ナトリウム(後で示す表1中のNaI)の水溶液を加えた。なお、実施例1~3及び比較例1では、非放射性ヨウ化ナトリウム水溶液の添加前、実施例4~6では、非放射性ヨウ化ナトリウム水溶液の添加後に、120℃で濃縮し、液量を調製した。次いで、N‐ω‐フルオロプロピル-2β-カルボメトキシ-3β-(4-トリメチルスタンニルフェニル)ノルトロパン(以下、SnFP-CT)の無水エタノール溶液、30%過酸化水素50μL,25%硫酸40μL、及び0.2mol/L酢酸ナトリウム水溶液50μLを加えて室温で10分以上かき混ぜた後、30%ピロ亜硫酸ナトリウム水溶液150μL及び0.2mol/L酢酸ナトリウム水溶液250μLを加えて反応をクエンチした。実施例4~6については、エタノール濃度が18体積%となるようにエタノールを添加した。
(Examples 1 to 6, Comparative Example 1)
(A) Labeling step 124 A 0.1 mol / L sodium hydroxide aqueous solution was added to 123 I obtained by Xe (p, 2p) 123 I reaction to prepare a [ 123 I] sodium iodide solution. To the obtained [ 123 I] sodium iodide solution, an aqueous solution of non-radioactive sodium iodide (NaI in Table 1 shown later) was added. In Examples 1 to 3 and Comparative Example 1, before addition of the non-radioactive sodium iodide aqueous solution, in Examples 4 to 6, after addition of the non-radioactive sodium iodide aqueous solution, the solution was concentrated at 120 ° C. did. Next, an absolute ethanol solution of N-ω-fluoropropyl-2β-carbomethoxy-3β- (4-trimethylstannylphenyl) nortropane (hereinafter SnFP-CT), 50% of 30% hydrogen peroxide, 40 μL of 25% sulfuric acid, and After adding 50 μL of 0.2 mol / L sodium acetate aqueous solution and stirring at room temperature for 10 minutes or more, 150 μL of 30% sodium pyrosulfite aqueous solution and 250 μL of 0.2 mol / L sodium acetate aqueous solution were added to quench the reaction. In Examples 4 to 6, ethanol was added so that the ethanol concentration was 18% by volume.
(b)精製工程
 実施例1~6は以下条件Aにて、比較例1は以下条件Bにて、高速液体クロマトグラフィーを行うことでイオフルパン(123I)を分離精製し、実施例1~3及び比較例1では、酢酸・酢酸ナトリウム緩衝液5mLを入れた回収容器、実施例4~6については、溶出時において10GBq/mL以下に維持されるように酢酸・酢酸ナトリウム緩衝液75mLとエタノール5mLを入れた回収容器に溶出させて、イオフルパン(123I)分取液を得た。
<条件A>
プレカラム:XBridge BEH Prep C18(ウォーターズ社製)、5μm、φ10×10mm
カラム:XBridge BEH Prep C18(ウォーターズ社製)、5μm、φ10×100mm
移動相:0.2mol/L酢酸ナトリウム水溶液(pH8.2)/エタノール=33:67
流速:2.0mL/分
検出器:UV230nm
カラム温度:25℃
保持時間:9~11分
<条件B>
プレカラム:Spherisorb ODS2(ウォーターズ社製)、5μm、φ4.6×30mm
カラム:Spherisorb ODS2(ウォーターズ社製)、5μm、φ4.6×250mm
移動相:0.2mol/L酢酸ナトリウム水溶液(pH8.2)/エタノール=33:67
流速:0.6mL/分
検出器:UV230nm
カラム温度:25℃
保持時間:14~17分
(B) Purification step Examples 1 to 6 were subjected to high performance liquid chromatography under conditions A below and Comparative Example 1 was under conditions B below to separate and purify ioflupan ( 123 I). Examples 1 to 3 In Comparative Example 1, a recovery container containing 5 mL of acetic acid / sodium acetate buffer solution, and in Examples 4 to 6, 75 mL of acetic acid / sodium acetate buffer solution and 5 mL of ethanol were maintained so as to be maintained at 10 GBq / mL or less at the time of elution. Was eluted into a collection container containing ioflupan to obtain an ioflupan ( 123 I) fraction.
<Condition A>
Precolumn: XBridge BEH Prep C18 (manufactured by Waters), 5 μm, φ10 × 10 mm
Column: XBridge BEH Prep C18 (manufactured by Waters), 5 μm, φ10 × 100 mm
Mobile phase: 0.2 mol / L sodium acetate aqueous solution (pH 8.2) / ethanol = 33: 67
Flow rate: 2.0 mL / min Detector: UV 230 nm
Column temperature: 25 ° C
Retention time: 9 to 11 minutes <Condition B>
Precolumn: Spherisorb ODS2 (manufactured by Waters), 5 μm, φ4.6 × 30 mm
Column: Spherisorb ODS2 (manufactured by Waters), 5 μm, φ4.6 × 250 mm
Mobile phase: 0.2 mol / L sodium acetate aqueous solution (pH 8.2) / ethanol = 33: 67
Flow rate: 0.6 mL / min Detector: UV 230 nm
Column temperature: 25 ° C
Retention time: 14-17 minutes
(c)製剤化工程
 上記工程(b)で得た分取液に,無水エタノール及び酢酸・酢酸ナトリウム緩衝液を添加して、イオフルパン(123I)の放射能濃度が検定日時(製造開始時刻から27時間後)において74MBq/mL、無水エタノール5.0体積%となるように調整した後、孔径0.22μmのポリエーテルスルホン製メンブランフィルターでろ過し,洗浄・滅菌済み無色ガラス製シリンジ型バイアル(容量2mL)に充填し,洗浄・滅菌済みゴム製ガスケットで打栓した。
(C) Formulation step To the fractionated solution obtained in the above step (b), absolute ethanol and acetic acid / sodium acetate buffer solution are added, and the radioactivity concentration of ioflupan ( 123 I) is determined from the date of assay (from the start of production). (After 27 hours), the mixture was adjusted to 74 MBq / mL and 5.0% by volume of absolute ethanol, filtered through a polyethersulfone membrane filter having a pore diameter of 0.22 μm, and washed and sterilized colorless glass syringe-type vial ( The volume was filled with 2 mL) and plugged with a cleaned and sterilized rubber gasket.
[純度試験及び放射化学的異物評価]
 イオフルパン40mgに99.5%エタノール2.3mL、0.1mol/L酢酸・酢酸ナトリウム水溶液7.3mL及びヨウ化ナトリウム水溶液(ヨウ化ナトリウム1gを水に溶かして100mLとしたもの))0.4mLを加えて溶解し、イオフルパン標準液を調製した。次いで、イオフルパン(123I)及びイオフルパン標準液を1:1で混合した試料溶液を適量とり,酢酸エチル/アセトン/トリエチルアミン混液(57:43:1)を展開溶媒として,薄層板の下端から約30mmの高さの位置を原線としたほか、放薬基一般試験法 薄層クロマトグラフィーにより試験を行い、原線より約10cm展開した後,クロマトグラムスキャナを用いて薄層上の放射能を測定した。薄層上の放射能を測定した結果から、薄層上の総放射能に対するイオフルパン(123I)(Rf=0.5~0.7)の放射能の割合(%)を求めた。なお、薄層板は薄層クロマトグラフィー用シリカゲル(蛍光剤入り)を用いて調製した。
[Purity test and radiochemical contamination evaluation]
40 mL of ioflupan, 2.3 mL of 99.5% ethanol, 7.3 mL of 0.1 mol / L acetic acid / sodium acetate aqueous solution and sodium iodide aqueous solution (1 g of sodium iodide dissolved in water to make 100 mL)) 0.4 mL In addition, it was dissolved to prepare an ioflupan standard solution. Then, Iofurupan (123 I) and Iofurupan standard solution 1: Take appropriate amount of mixed sample solution in 1, ethyl acetate / acetone / triethylamine mixture (57: 43: 1) as the developing solvent, to about the lower end of the thin layer plate In addition to the position of 30 mm height as the original line, the general test method for the drug base was tested by thin layer chromatography, developed about 10 cm from the original line, and then the radioactivity on the thin layer was measured using a chromatogram scanner. It was measured. The results of measuring the radioactivity on the thin layer to determine the percentage of radioactivity Iofurupan to the total radioactivity on the thin layer (123 I) (Rf = 0.5 ~ 0.7) (%). The thin layer plate was prepared using silica gel for thin layer chromatography (with fluorescent agent).
 結果を表1に示す。なお、表1中、SOSは、イオフルパン(123I)の製造開始時刻である。本実施例において製造開始時刻とは、上記(a)標識工程で[123I]ヨウ化物イオンの調製が終了し、120℃で濃縮を開始した時刻である。また、収率は、減衰補正をしたものである。製造直後は、上記(c)製剤化工程を終了した直後であり、有効期限は製造開始の34~35時間後である。NDは、データを取得していないことを表わす。 The results are shown in Table 1. In Table 1, SOS is the production start time of Ioflupan ( 123 I). In this example, the production start time is the time when the preparation of [ 123 I] iodide ion was completed in the above (a) labeling step and the concentration was started at 120 ° C. Further, the yield is obtained by attenuation correction. Immediately after the production is immediately after the completion of the above (c) formulation step, the expiration date is 34 to 35 hours after the start of the production. ND indicates that data is not acquired.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1から、使用する[123I]ヨウ化物イオンの放射能量が製造開始時刻で200GBq以上では、直径が7mm未満のカラムを用いた比較例1の場合、得られたイオフルパン(123I)の放射化学的純度が有効期限前に規格を満たさなくなるおそれがあるのに対し、直径が7mm以上のカラムを用いた実施例1~6では、得られたイオフルパン(123I)の純度が95%以上を維持することができた。また、実施例3~6の結果から、0.3mg/mL以上の標識前駆体化合物を使用することで、使用する[123I]ヨウ化物イオンの放射能量を製造開始時刻で400GBq以上用いた場合においても、イオフルパン(123I)の収率を約50%以上にできた。したがって、本発明の方法により、高い純度のイオフルパンを大量に製造することが可能となることが示された。 From Table 1, in the case of Comparative Example 1 using a column having a diameter of less than 7 mm when the radioactive amount of [ 123 I] iodide ion used is 200 GBq or more at the production start time, the radiation of the obtained Ioflupan ( 123 I) Whereas the chemical purity may not meet the specifications before the expiration date, in Examples 1 to 6 using a column having a diameter of 7 mm or more, the purity of the obtained ioflupan ( 123 I) is 95% or more. Could be maintained. In addition, from the results of Examples 3 to 6, by using a labeled precursor compound of 0.3 mg / mL or more, when the amount of radioactivity of [ 123 I] iodide ion used is 400 GBq or more at the production start time In addition, the yield of ioflupan ( 123 I) could be increased to about 50% or more. Therefore, it was shown that high purity ioflupan can be produced in large quantities by the method of the present invention.
 この出願は、2017年3月17日に出願された日本出願特願2017-052700号を基礎とする優先権を主張し、その開示の総てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-052700 filed on Mar. 17, 2017, the entire disclosure of which is incorporated herein.

Claims (9)

  1. (a)下記一般式(1)で表わされる標識前駆体化合物と放射性ヨウ化物イオンとを反応させて、下記一般式(2)で表わされる放射性ヨウ素標識化合物を得る工程と、
    (b)前記工程(a)で得られた前記放射性ヨウ素標識化合物を高速液体クロマトグラフィー法により精製する工程と、を含み、
    前記工程(a)で用いる放射性ヨウ化物イオンの放射能量が前記工程(a)の開始時において200GBq以上であり、
    前記工程(b)は、直径7mm以上の逆相カラムを用い、溶離液としてエタノール水溶液を用いて行われる、放射性ヨウ素標識イオフルパンの製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (上記一般式(1)中、Rはアルキル鎖の炭素数が1~6であるトリアルキルスタニル置換基、または、トリフェニルスタニル置換基である。)
    Figure JPOXMLDOC01-appb-C000002

    (上記一般式(2)中、Xはヨウ素の放射性同位体である。)
    (A) reacting a labeled precursor compound represented by the following general formula (1) with a radioiodide ion to obtain a radioactive iodine labeled compound represented by the following general formula (2);
    (B) purifying the radioactive iodine-labeled compound obtained in the step (a) by high performance liquid chromatography,
    The radioactive iodide ion used in the step (a) has a radioactivity of 200 GBq or more at the start of the step (a),
    The step (b) is a method for producing radioactive iodine-labeled ioflupan, which is performed using a reverse phase column having a diameter of 7 mm or more and using an aqueous ethanol solution as an eluent.
    Figure JPOXMLDOC01-appb-C000001

    (In the above general formula (1), R is a trialkylstannyl substituent having 1 to 6 carbon atoms in the alkyl chain or a triphenylstannyl substituent.)
    Figure JPOXMLDOC01-appb-C000002

    (In the general formula (2), X is a radioactive isotope of iodine.)
  2.  前記溶離液が、エタノールと酢酸ナトリウムを含む水溶液との混液である、請求項1に記載の放射性ヨウ素標識イオフルパンの製造方法。 The method for producing radioactive iodine-labeled ioflupan according to claim 1, wherein the eluent is a mixed solution of ethanol and an aqueous solution containing sodium acetate.
  3. 前記工程(b)における前記溶離液がエタノールと緩衝水溶液又は弱酸のアルカリ塩を含む水溶液との混液であり、前記緩衝水溶液又は前記弱酸のアルカリ塩を含む水溶液のpHが4~12である、請求項1又は2に記載の製造方法。 The eluent in the step (b) is a mixture of ethanol and a buffered aqueous solution or an aqueous solution containing a weak acid alkali salt, and the pH of the buffered aqueous solution or the aqueous solution containing the weak acid alkali salt is 4 to 12. Item 3. The method according to Item 1 or 2.
  4. 前記工程(a)において、溶媒存在下に、0.3mg/mL以上の前記標識前駆体化合物と前記放射性ヨウ化物イオンとを反応させる、請求項1乃至3の何れか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein in the step (a), 0.3 mg / mL or more of the labeled precursor compound and the radioactive iodide ion are reacted in the presence of a solvent. .
  5. 前記工程(a)において、0.015mg/mL以上の非放射性ヨウ化物イオンの存在下に、前記標識前駆体化合物と前記放射性ヨウ化物イオンとを反応させる、請求項4に記載の製造方法。 The manufacturing method according to claim 4, wherein in the step (a), the labeled precursor compound and the radioactive iodide ion are reacted in the presence of 0.015 mg / mL or more of non-radioactive iodide ion.
  6. 前記工程(a)で用いる放射性ヨウ化物イオンの放射能量が前記工程(a)の開始時において400GBq以上である、請求項4又は5に記載の製造方法。 The production method according to claim 4 or 5, wherein the radioactive iodide ion used in the step (a) has a radioactivity amount of 400 GBq or more at the start of the step (a).
  7. 前記工程(b)で溶出された前記放射性ヨウ素標識化合物を含む溶出液を回収容器に受けるとともに、前記放射性ヨウ素標識化合物を10GBq/mL以下の濃度に希釈する、請求項1~6の何れか1項に記載の製造方法。 The eluate containing the radioactive iodine-labeled compound eluted in the step (b) is received in a collection container, and the radioactive iodine-labeled compound is diluted to a concentration of 10 GBq / mL or less. The production method according to item.
  8. 前記回収容器には、予め前記放射性ヨウ素標識化合物を希釈するための希釈液が収容されており、前記逆相カラムから溶出された前記溶出液を当該回収容器に受けることにより、前記放射性ヨウ素標識化合物を10GBq/mL以下の濃度に希釈する、請求項7に記載の製造方法。 The recovery container contains a diluent for diluting the radioactive iodine labeled compound in advance, and the radioactive iodine labeled compound is received by receiving the eluate eluted from the reverse phase column. Is diluted to a concentration of 10 GBq / mL or less.
  9. 前記工程(b)において、前記工程(a)で得られた放射性ヨウ素標識化合物をエタノール濃度が20体積%以下になるように調製した後、前記高速液体クロマトグラフィー法による精製を実行する、請求項1乃至8何れか1項に記載の製造方法。 In the step (b), after preparing the radioactive iodine-labeled compound obtained in the step (a) so that the ethanol concentration is 20% by volume or less, purification by the high performance liquid chromatography method is performed. The manufacturing method according to any one of 1 to 8.
PCT/JP2018/008984 2017-03-17 2018-03-08 Method for producing ioflupane WO2018168643A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019505938A JP7241013B2 (en) 2017-03-17 2018-03-08 Production method of isoflurane
CN201880027329.3A CN110582494A (en) 2017-03-17 2018-03-08 Process for preparing iodofluoropropane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017052700 2017-03-17
JP2017-052700 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018168643A1 true WO2018168643A1 (en) 2018-09-20

Family

ID=63522975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008984 WO2018168643A1 (en) 2017-03-17 2018-03-08 Method for producing ioflupane

Country Status (3)

Country Link
JP (1) JP7241013B2 (en)
CN (1) CN110582494A (en)
WO (1) WO2018168643A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114487184A (en) * 2022-01-21 2022-05-13 江苏省原子医学研究所 Method for measuring 2 beta-carbomethoxy-3 beta- (4-chlorphenyl) tropane and related substances thereof
CN116399984A (en) * 2023-06-09 2023-07-07 天津辰欣药物研究有限公司 Method for measuring residual quantity of tetrabutylammonium iodide in WXTJ0262 bulk drug by utilizing liquid phase-mass spectrum combined method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503745A (en) * 1992-02-25 1997-04-15 リサーチ バイオケミカルズ リミテッド パートナーシップ Iodinated Neuroprobe for Mapping Monoamine Reuptake Sites

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128118A (en) * 1990-08-09 1992-07-07 Research Triangle Institute Cocaine receptor binding ligands
FI104048B1 (en) * 1997-06-16 1999-11-15 Map Medical Technologies Oy Process for the preparation of radioiodinated receptor substances for in vivo use
GB0922023D0 (en) * 2009-12-17 2010-02-03 Ge Healthcare Ltd Preparation of n-monofluoroalkyl compounds
SI2579902T2 (en) * 2010-06-04 2019-10-30 Life Molecular Imaging Sa Method for production of f-18 labeled amyloid beta ligands

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503745A (en) * 1992-02-25 1997-04-15 リサーチ バイオケミカルズ リミテッド パートナーシップ Iodinated Neuroprobe for Mapping Monoamine Reuptake Sites

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BALDWIN, R. M. ET AL.: "Regional Brain Uptake and Pharmacokinetics of [123I]N-omega)-Fluoroalky 1-2 beta -carboxy-3 beta -(4-iodophenyl) nortropa ne Esters in Baboons", NUCL. MED. BIOL., vol. 22, no. 2, 1995, pages 211 - 219 *
KAMARAINEN, E.-L. ET AL.: "Preparation of [18F] beta -CFT-FP and [11CJ beta -CFT-FP, selective radioligands for visualisation of the dopamine transporter using positron emission tomography (PET", J. LABELLED CPD. RADIOPHARM., vol. 43, no. 12, 2000, pages 1235 - 1244, XP002986950, DOI: doi:10.1002/1099-1344(20001030)43:12<1235::AID-JLCR411>3.0.CO;2-9 *
KATSIFIS, A. ET AL.: "A rapid and efficient preparation of [123I]radiopharmaceuticals using a small HPLC (Rocket) column", APPLIED RADIATION AND ISOTOPES, vol. 64, no. 1, 2006, pages 27 - 31, XP025134863, DOI: doi:10.1016/j.apradiso.2005.06.006 *
NEUMEYER, J. L. ET AL.: "N-omega-Fluoroalkyl Analogs of (1R)-2 beta -Carbomethoxy-3 beta - (4-iodophenyl) -tropane ( beta -CIT) : Radiotracers for Positron Emission Tomography and Single Photon Emission Computed Tomography Imaging of Dopamine Transporters", J. MED. CHEM., vol. 37, no. 11, 1994, pages 1558 - 1561 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114487184A (en) * 2022-01-21 2022-05-13 江苏省原子医学研究所 Method for measuring 2 beta-carbomethoxy-3 beta- (4-chlorphenyl) tropane and related substances thereof
CN114487184B (en) * 2022-01-21 2023-09-22 江苏省原子医学研究所 Method for determining 2 beta-methyl ester-3 beta- (4-chlorophenyl) tropane and related substances thereof
CN116399984A (en) * 2023-06-09 2023-07-07 天津辰欣药物研究有限公司 Method for measuring residual quantity of tetrabutylammonium iodide in WXTJ0262 bulk drug by utilizing liquid phase-mass spectrum combined method
CN116399984B (en) * 2023-06-09 2023-08-15 天津辰欣药物研究有限公司 Method for measuring residual quantity of tetrabutylammonium iodide in WXTJ0262 bulk drug by utilizing liquid phase-mass spectrum combined method

Also Published As

Publication number Publication date
JP7241013B2 (en) 2023-03-16
JPWO2018168643A1 (en) 2020-01-16
CN110582494A (en) 2019-12-17

Similar Documents

Publication Publication Date Title
US20070009432A1 (en) Boat tropanes
CN114835690B (en) Preparation method of liquid composition containing compound I and application of liquid composition in myocardial perfusion PET imaging
JP7241013B2 (en) Production method of isoflurane
JP2009229201A (en) Ga ION ISOLATION METHOD AND APPARATUS USED IN THE METHOD
US8986653B2 (en) Labeled iodinated tropane formulation
US6843979B2 (en) 4-haloethenylphenyl tropane:serotonin transporter imaging agents
JP2001515459A (en) Iodine-labeled neuroprobes for mapping monoamine reuptake sites
US6399042B1 (en) 4-fluoroalkyl-3-halophenyl nortropanes
EP3536686B1 (en) Method for producing a radiopharmaceutical composition
JP7284490B2 (en) Monoamine oxidase B imaging probe
Carpinelli et al. Radiosynthesis of [123I] βCIT, a selective ligand for the study of the dopaminergic and serotoninergic systems in human brain
Kawamura et al. Efficient HPLC separation of [11C] β-CFT or [11C] β-CIT from an N-desmethyl precursor on a semipreparative reversed phase ODS column
JP4941926B2 (en) Diagnostic agent
KR101592291B1 (en) Method for preparing [18F]Fluoro-L-Dopa with high radiochemical and enantiomeric purity
Wilson et al. Synthesis of 3-(C-11-methyl)-nifedipine, a potent Ca/sup++/channel antagonist, for positron emission tomography
KR900007399B1 (en) Process for the preparation of 2-radioactive iodo spiroperidol
Eerselsa et al. Manufacturing of I-123-labelled radiopharmaceuticals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18766725

Country of ref document: EP

Kind code of ref document: A1