WO2018168550A1 - All-solid secondary battery and production method therefor, and solid electrolyte sheet for all-solid secondary battery, and positive electrode active material sheet for all-solid secondary battery - Google Patents

All-solid secondary battery and production method therefor, and solid electrolyte sheet for all-solid secondary battery, and positive electrode active material sheet for all-solid secondary battery Download PDF

Info

Publication number
WO2018168550A1
WO2018168550A1 PCT/JP2018/008327 JP2018008327W WO2018168550A1 WO 2018168550 A1 WO2018168550 A1 WO 2018168550A1 JP 2018008327 W JP2018008327 W JP 2018008327W WO 2018168550 A1 WO2018168550 A1 WO 2018168550A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
secondary battery
positive electrode
active material
electrode active
Prior art date
Application number
PCT/JP2018/008327
Other languages
French (fr)
Japanese (ja)
Inventor
真二 今井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019505893A priority Critical patent/JP6948382B2/en
Publication of WO2018168550A1 publication Critical patent/WO2018168550A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/107Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all solid secondary battery and a method of manufacturing the same.
  • the present invention also relates to a solid electrolyte sheet for an all solid secondary battery and a positive electrode active material sheet for an all solid secondary battery.
  • a lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and is capable of charging and discharging by reciprocating lithium ions between the two electrodes.
  • an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery.
  • the organic electrolyte is liable to leak, and there is a possibility that a short circuit may occur inside the battery due to overcharging or overdischarging, and there is a need for further improvement in reliability and safety. Under such circumstances, development of an all-solid secondary battery using non-combustible inorganic solid electrolytes in place of organic electrolytes is in progress.
  • all of the negative electrode, electrolyte and positive electrode are solid, which can greatly improve the safety and reliability of the battery using organic electrolyte solution, and also can extend the life. It will be.
  • Patent Document 1 describes a technique in which a single sulfur is excessively added to a solid electrolyte layer to inhibit the growth of dendrite by the single sulfur.
  • the solid electrolyte layer is formed using a mixture in which single sulfur is uniformly dispersed in solid electrolyte powder, the solid electrolyte layer is formed of a mixture of single sulfur powder and solid electrolyte powder.
  • Patent Document 1 aims at preventing the growth of the dendrite from the negative electrode to the positive electrode.
  • expansion and contraction of the active material is repeated by repeating charge and discharge of the all solid secondary battery, and the battery capacity is lowered by the dendrite gradually protruding from the end of the battery element It turns out that there is a case. Then, it has been found that the protruding dendrite may cause a short circuit with the positive electrode and the battery outer package.
  • the all-solid battery is subjected to crushing load and the battery outer package is deformed and cracks or the like occur in the battery outer package, water gradually gradually gradually flows from the end of the negative electrode layer or the positive electrode layer to the inside.
  • a sulfide-based electrolyte is used as the solid electrolyte, there is a concern that water and the electrolyte react to generate toxic hydrogen sulfide.
  • dendrites such as metallic lithium can be prevented from gradually sticking out from the electrode end to suppress a decrease in battery capacity, and all short circuits due to contact between dendrite and a positive electrode or battery outer body can be prevented. It is an object of the present invention to provide a solid secondary battery and a method of manufacturing the same. Further, according to the present invention, even when a crack or the like is generated in the battery outer package due to the crush load being applied to the all solid battery, the generation of hydrogen sulfide (H 2 S) can be effectively prevented by the intrusion of water.
  • H 2 S hydrogen sulfide
  • the phenomenon that dendrite deposited and grown from the negative electrode due to repeated charging and discharging flows out from the end of the battery is at least a specific inorganic insulation of the battery end. It can be effectively blocked by coating with a coating. As a result, it has been found that a decrease in battery capacity can be suppressed and an internal short circuit can be sufficiently suppressed. In addition, it has been conceived that the coating of the battery end can prevent the entry of moisture into the electrolyte even when a crack or the like is generated in the battery outer package. It has been found that the generation of hydrogen sulfide can be suppressed. The present invention has been further studied based on these findings and has been completed.
  • An all solid secondary battery having battery element members comprising: The battery component member has at least a negative electrode current collector, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector, The all-solid-state secondary battery which covers the edge part of the said battery element member at least the edge part of the said battery element member, and the inorganic insulating coating which has a Young's modulus at 25 degreeC 1 GPa or more is distribute
  • the all-solid-state secondary battery as described in [1] which has the battery exterior body by which the said battery element member is inserted in the inside.
  • the above-mentioned inorganic insulating covering includes the inorganic insulating particles and a melt-solidified insulating inorganic material which is solid at 100 ° C. and melts in a temperature range of 200 ° C. or less.
  • the inorganic insulating covering is a solid electrolyte sheet for an all solid secondary battery having a Young's modulus at 25 ° C. of 1 GPa or more.
  • the above-mentioned inorganic insulating covering includes an organic binder, The solid electrolyte sheet for an all-solid secondary battery according to any one of [9] to [11].
  • the said inorganic insulating covering is a positive electrode active material sheet for an all solid secondary battery having a Young's modulus at 25 ° C. of 1 GPa or more.
  • [15] [14] The positive electrode active material sheet for an all-solid secondary battery according to [14], wherein the inorganic insulating covering includes inorganic insulating particles and an insulating inorganic material which is solid at 100 ° C. and melts at 200 ° C. or less.
  • the said inorganic insulation coating body is a positive electrode active material sheet for all the solid secondary batteries as described in [15] or [16] containing an organic binder.
  • a numerical range represented using “to” means a range including the numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the all solid secondary battery of the present invention can effectively prevent the outgrowth of dendrite from the end of the battery element member during charge and discharge to suppress the reduction of the battery capacity, and further, the dendrite and the positive electrode or battery outer package It is possible to prevent a short circuit due to contact with the Furthermore, even if a crushing load is applied to the all solid secondary battery and a crack or the like is generated in the battery, the generation of hydrogen sulfide (H 2 S) can be suppressed.
  • H 2 S hydrogen sulfide
  • the protrusion of the dendrite from the end of the battery element member is effectively prevented at the time of charging to suppress the decrease of the battery capacity, and the dendrite and the positive electrode or the battery exterior It is possible to obtain an all solid secondary battery that prevents a short circuit with the body. Furthermore, even when a crushing load is applied to the all solid secondary battery and a crack or the like is generated in the battery, it is possible to obtain an all solid secondary battery in which the generation of hydrogen sulfide (H 2 S) is suppressed. Furthermore, the solid electrolyte sheet for all solid secondary batteries and the positive electrode active material sheet for all solid secondary batteries of the present invention can be suitably used as a member (layer) of the all solid secondary battery of the present invention.
  • FIG. 1 is a longitudinal sectional view schematically showing a basic configuration of a general all-solid secondary battery.
  • FIG. 3 is a longitudinal sectional view schematically showing a cylindrical all solid secondary battery according to a preferred embodiment of the present invention and an enlarged sectional view of a portion A in FIG. 2.
  • the battery element member end is covered with the inorganic insulating covering, and the inorganic insulating covering effectively prevents the growth of dendrites that are going to protrude from the battery element member end. can do.
  • insulation refers to having electronic insulation, that is, the property of not letting electrons pass.
  • the material when referring to “insulation”, “insulation” or “electronic insulation”, the material preferably has a conductivity of 10 ⁇ 9 S (Siemens) / cm or less at a measurement temperature of 25 ° C.
  • FIG. 1 shows the basic configuration of a general all-solid secondary battery.
  • the all-solid secondary battery 10 of the present embodiment is viewed from the negative electrode side, the negative electrode current collector 1, the negative electrode active material layer 2, the solid electrolyte layer 3, the positive electrode active material layer 4 and the positive electrode current collector It has a structure in which the bodies 5 are stacked in this order. Adjacent layers in each layer are in direct contact with each other. According to the above structure, at the time of charge, electrons (e ⁇ ) are supplied to the negative electrode side, and at the same time, the alkali metal or alkaline earth metal constituting the positive electrode active material is ionized.
  • the ionized ions move (conduct) through the solid electrolyte layer 3 and are accumulated in the negative electrode.
  • lithium ions Li +
  • the above-mentioned alkali metal ion or alkaline earth metal ion accumulated in the negative electrode is returned to the positive electrode side, and supplies electrons to the operating portion 6.
  • a light bulb is employed at the operation site 6 and is turned on by discharge.
  • the solid electrolyte layer 3 and the negative electrode current collector 1 be in direct contact with each other without the negative electrode active material layer 2.
  • a phenomenon in which part of alkali metal ions or alkaline earth metal ions accumulated in the negative electrode during charging is combined with electrons and deposited as metal on the surface of the negative electrode current collector is utilized. That is, the all solid secondary battery of this embodiment causes the metal deposited on the negative electrode surface to function as a negative electrode active material layer.
  • metallic lithium is said to have a theoretical capacity of 10 times or more as compared with graphite generally used as a negative electrode active material.
  • the all solid secondary battery having no negative electrode active material layer means that the negative electrode active material layer is not formed in the layer formation step in battery manufacture. Then, as described above, the negative electrode active material layer is formed between the solid electrolyte layer and the negative electrode current collector by charging.
  • the cylindrical all solid secondary battery 30 realizes the layer configuration shown in FIG. 1 in a cylindrical form.
  • power generation elements having the layer configuration shown in FIG. 1 as a basic unit are arranged in a laminated manner around the axis 22, and the battery element member 21 is formed by this laminated body. Is configured. That is, the battery element member 21 includes at least the negative electrode current collector 21 d, the solid electrolyte layer 21 a, the positive electrode active material layer 21 c, and the positive electrode current collector 21 b.
  • the battery element member 21 includes at least the negative electrode current collector 21 d, the solid electrolyte layer 21 a, the positive electrode active material layer 21 c, and the positive electrode current collector 21 b.
  • the power generation element in which the negative electrode current collector 21d, the negative electrode active material layer 21e, the solid electrolyte layer 21a, the positive electrode active material layer 21c and the positive electrode current collector 21b are laminated in this order is multilayered. It is In this cylindrical all solid secondary battery 30, two power generation elements in contact with each other share one current collector. That is, a negative electrode active material layer is provided on both sides of one current collector, and a positive electrode active material layer is provided on both sides of one current collector. Furthermore, the cylindrical all solid secondary battery 30 may be provided with a battery cover 23 which becomes a battery outer package if necessary.
  • the inorganic insulating covering 24 which covers at least the end of the battery element member 21 and which has a Young's modulus at 25 ° C. of 1 GPa or more is disposed. Furthermore, the positive electrode current collector 21b of the battery element member 21 is connected to the battery positive electrode through the positive electrode tab 25 electrically connected, and the negative electrode current collector 21d of the battery element member 21 is electrically connected the negative electrode tab 27. It is connected to the battery negative electrode 28 via the same.
  • the thicknesses of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer are not particularly limited.
  • the thickness of each layer is preferably 10 to 1000 ⁇ m, and more preferably 20 ⁇ m or more and less than 500 ⁇ m, in consideration of general battery dimensions.
  • the positive electrode active material layer and the negative electrode active material layer may be collectively referred to as an electrode layer.
  • the positive electrode active material layer contains a positive electrode active material
  • the negative electrode active material layer contains a negative electrode active material.
  • active material or “electrode active material” may be used simply to indicate either the positive electrode active material or the negative electrode active material, or to indicate both.
  • the solid electrolyte layer usually does not contain a positive electrode active material and / or a negative electrode active material.
  • the inorganic solid electrolyte constituting the solid electrolyte layer or the combination of the inorganic solid electrolyte constituting the solid electrolyte layer and the active material is referred to as an inorganic solid electrolyte material.
  • the inorganic insulating covering has inorganic insulating particles and an insulating inorganic material.
  • the insulating inorganic material is an inorganic material having electronic insulating properties and being solid at 100 ° C. (that is, having a melting point of over 100 ° C.), and having physical properties such as heat melting in a temperature range of 200 ° C. or less. “To thermally melt in a temperature range of 200 ° C. or less” means to thermally melt in a temperature range of 200 ° C. or less at 1 atm. By using this insulating inorganic material, it can be easily heated to a temperature at which the insulating inorganic material melts.
  • the molten insulating inorganic material spreads so as to cover the end of the battery element member.
  • the inorganic insulating covering is formed using a hot-melt coagulant of an insulating inorganic material which is heat-melted in a solid state at 100 ° C. and at a temperature of 200 ° C. or less. It is a thing.
  • the inorganic insulating coating is preferably made of a material harder than dendrite in the solid state in order to prevent the growth of dendrite. Therefore, in the present invention, the Young's modulus of the inorganic insulating covering is 1 GPa or more, and preferably 4 to 400 GPa. Sulfur and / or modified sulfur, iodine, a mixture of iodine and sulfur, etc. may be mentioned as the above-mentioned insulating inorganic material constituting the above-mentioned inorganic insulating covering, and sulfur and / or modified sulfur can be suitably used. . Sulfur which can be used as the insulating inorganic material means elemental sulfur itself.
  • the reformed sulfur is obtained by kneading the sulfur and the modifier.
  • pure sulfur and an olefin-based polymer which is a reforming additive can be kneaded to obtain a modified sulfur in which a part of the sulfur is reformed into a sulfur polymer.
  • modified sulfur may contain an organic polymer
  • modified sulfur shall be contained in an inorganic material in this invention. The presence of sulfur or modified sulfur in the inorganic insulating coating can more effectively block dendrites (alkali metals or alkaline earth metals) that have been grown on the inorganic insulating coating.
  • the reaction product when dendrite and sulfur come in contact, dendrite and sulfur react.
  • a reaction of 2Li + S ⁇ Li 2 S occurs, and the growth of dendrite stops in the inorganic insulating covering.
  • the reaction product also coexists in the inorganic insulating coating.
  • This reaction product is an electron-insulating compound harder than dendrite metal, and thus can prevent dendrite growth. That is, it is also preferable that the said inorganic insulation coating body is a form containing the compound containing the alkali metal and / or the compound containing alkaline-earth metal which arose by said reaction.
  • the volume of the inorganic insulating covering is expanded, and an effect of closing a slight gap between particles in the inorganic insulating covering or between the inorganic insulating covering and the battery element member can be expected. Therefore, the inorganic insulating covering can reliably cover the end of the battery element member.
  • the content of the insulating inorganic material in the inorganic insulating covering is preferably 5 to 50% by mass, more preferably 10 to 50% by mass, and still more preferably 10 to 20% by mass.
  • the inorganic insulating covering may contain an organic binder.
  • an organic binder By containing an organic binder, the binding property of particles can be enhanced, and a more coherent layer structure can be obtained, which is preferable.
  • Organic binder An organic polymer is mentioned as said organic binder.
  • organic binder made of a resin described below is preferably used.
  • fluorine-containing resin examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
  • hydrocarbon-based thermoplastic resin examples include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile-butadiene rubber, polybutadiene, and polyisoprene.
  • acrylic resin various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of monomers constituting these resins (preferably, copolymers of acrylic acid and methyl acrylate) may be mentioned.
  • copolymers (copolymers) with other vinyl monomers are also suitably used.
  • a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile and styrene can be mentioned.
  • the copolymer may be either a statistical copolymer or a periodic copolymer, and a block copolymer is preferred.
  • other resins include polyurethane resin, polyurea resin, polyamide resin, polyimide resin, polyester resin, polyether resin, polycarbonate resin, and cellulose derivative resin. One of these may be used alone, or two or more of these may be used in combination.
  • the above-mentioned resin is selected as the above-mentioned organic binder for the suppression of exfoliation from the current collector and the improvement of the cycle life by the binding of the solid interface, which exhibit strong binding properties. That is, at least one selected from the group consisting of an acrylic resin, a polyurethane resin, a polyurea resin, a polyimide resin, a fluorine-containing resin, and a hydrocarbon-based thermoplastic resin is preferable.
  • the organic binder preferably has a polar group in order to enhance wettability and adsorption to the particle surface.
  • the polar group is preferably a monovalent group containing a hetero atom, for example, a monovalent group containing a structure in which a hydrogen atom is bonded to any of an oxygen atom, a nitrogen atom and a sulfur atom, and a specific example is a carboxy group Examples include hydroxy, amino, phosphate and sulfo.
  • the average particle diameter of the organic binder is preferably 10 nm to 30 ⁇ m, and more preferably 10 to 1000 nm.
  • the inorganic insulating covering contains an organic binder
  • the content of the organic binder in the inorganic insulating covering is preferably 0.5 to 6% by mass, and more preferably 1 to 3% by mass.
  • the inorganic insulating covering preferably contains, in addition to the insulating inorganic material, inorganic insulating particles different from the insulating inorganic material.
  • the inorganic insulating particles also have the function of blocking the growth of dendrites.
  • Examples of the inorganic insulating particles include aluminum oxide, zirconium oxide, silicon oxide, zeolite, cubic boron nitride, hexagonal boron nitride, and cerium oxide.
  • the inorganic insulating particles are usually fine particles, and the volume average particle diameter thereof is preferably 1 ⁇ m or less, more preferably 700 nm or less.
  • the content of the inorganic insulating particles is preferably 50 to 90% by mass, and more preferably 70 to 85% by mass.
  • the solid electrolyte layer of the present invention contains an inorganic solid electrolyte material.
  • the inorganic solid electrolyte material constituting the solid electrolyte layer is an inorganic solid electrolyte, or a mixture of an inorganic solid electrolyte and an active material, and is usually made of an inorganic solid electrolyte.
  • the preferred form of the inorganic solid electrolyte is described below. The active material will be described later.
  • the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of transferring ions in its inside.
  • An organic solid electrolyte (a polymer electrolyte represented by polyethylene oxide (PEO) or the like, an organic electrolyte represented by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) or the like because it does not contain an organic substance as a main ion conductive material It is clearly distinguished from electrolyte salt).
  • PEO polyethylene oxide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • electrolyte salt since the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions.
  • inorganic electrolyte salts LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.
  • the inorganic solid electrolyte is not particularly limited as long as it has ion conductivity of a metal belonging to periodic group 1 or 2 and is generally non-electron conductive.
  • the inorganic solid electrolyte has the ion conductivity of a metal belonging to Group 1 or 2 of the periodic table.
  • a solid electrolyte material to be applied to this type of product can be appropriately selected and used.
  • the inorganic solid electrolyte generally (i) a sulfide-based inorganic solid electrolyte and / or (ii) an oxide-based inorganic solid electrolyte is used.
  • the sulfide-based inorganic solid electrolyte contains a sulfur atom (S), has ion conductivity of a metal belonging to periodic group 1 or 2 and is an electron. Those having insulating properties are preferred.
  • the sulfide-based inorganic solid electrolyte contains at least Li, S and P as elements and preferably has lithium ion conductivity, but depending on the purpose or case, other than Li, S and P. It may contain an element.
  • a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (I) can be mentioned.
  • L a1 M b1 P c1 S d1 A e1 formula (I)
  • L represents an element selected from Li, Na and K, and Li is preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 represent composition ratios of respective elements, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10. Further, a1 is preferably 1 to 9, and more preferably 1.5 to 7.5. b1 is preferably 0 to 3. Furthermore, 2.5 to 10 is preferable, and 3.0 to 8.5 is more preferable. Further, 0 to 5 is preferable, and 0 to 3 is more preferable.
  • composition ratio of each element can be controlled by adjusting the compounding amount of the raw material compound at the time of producing a sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be non-crystalline (glass) or crystallized (glass-ceramicized), or only part of it may be crystallized.
  • a Li—P—S-based glass containing Li, P and S, or a Li—P—S-based glass ceramic containing Li, P and S can be used.
  • the sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), single phosphorus, single sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, It can be produced by the reaction of at least two or more of LiI, LiBr, LiCl) and sulfides of elements represented by the above M (for example, SiS 2 , SnS, GeS 2 ).
  • Li 2 S lithium sulfide
  • phosphorus sulfide for example, diphosphorus pentasulfide (P 2 S 5 )
  • single phosphorus single sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide lithium halide
  • Li halide for example, It can be produced by the reaction of at least two or more of LiI, LiBr,
  • the ratio of Li 2 S to P 2 S 5 in the Li-P-S-based glass and Li-P-S-based glass ceramic is preferably a molar ratio of Li 2 S: P 2 S 5 of 60:40 to 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be made high.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. There is no particular upper limit, but it is practical to be 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , and Li 2 S-LiBr-P 2 S 5 can be mentioned.
  • the Li 2 S-Li 2 O- P 2 S 5, Li 2 S-Li 3 PO 4 -P 2 S 5, Li 2 S-P 2 S 5 -P 2 O 5, Li 2 S-P 2 S 5 -SiS 2, Li 2 S-P 2 S 5 -SiS 2 -LiCl, Li 2 S-P 2 S 5 -SnS, include Li 2 S-P 2 S 5 -Al 2 S 3.
  • Li 2 S-SiS 2 Li 2 S-Al 2 S 3 , Li 2 S-SiS 2 -Al 2 S 3 , Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -Li 4 SiO 4, Li 2 S-SiS 2 -Li 3 PO 4, Li 10 GeP 2 S 12, and the like.
  • an amorphization method can be mentioned.
  • any of mechanical milling method, solution method and melting and quenching method can be mentioned. These methods can be processed at normal temperature, and can simplify the manufacturing process.
  • oxide-based inorganic solid electrolyte contains an oxygen atom (O) and has ion conductivity of a metal belonging to Periodic Table Group 1 or 2 and And compounds having electron insulating properties are preferred.
  • Li xb La yb Zr z Mbb mb O nb Mbb is at least one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, Sn, etc.
  • Xb is 5 ⁇ xb ⁇ 10
  • yb is 1 ⁇ yb ⁇ 4
  • zb is 1 ⁇ zb ⁇ 4
  • mb is 0 ⁇ mb ⁇ 2
  • nb is 5 ⁇ nb ⁇ 20.
  • Li xc B yc M cc z c O nc (M cc is at least one or more elements selected from C, S, Al, Si, Ga, Ge, In, Sn, etc., and xc is 0 ⁇ xc ⁇ 5, yc is 0 ⁇ yc ⁇ 1, zc is 0 ⁇ zc ⁇ 1, and nc satisfies 0 ⁇ nc ⁇ 6, and xc + yc + zc + nc ⁇ 0.
  • Li, P and O phosphorus compounds containing Li, P and O.
  • Li 3 PO 4 lithium phosphate
  • LiPON in which part of oxygen of lithium phosphate is replaced by nitrogen
  • LiPOD 1 LiPOD 1
  • LiA 1 ON LiA 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.
  • the particle size (volume average particle size) of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • grains is performed in the following procedures.
  • the inorganic solid electrolyte particles are diluted with water (heptane for water labile substances) in a 20 ml sample bottle to dilute a 1% by weight dispersion.
  • the diluted dispersed sample is irradiated with 1 kHz ultrasound for 10 minutes, and used immediately thereafter for the test.
  • the positive electrode active material layer 4 contains the inorganic solid electrolyte described above and a positive electrode active material. The preferable form of a positive electrode active material is demonstrated.
  • the positive electrode active material is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element capable of being complexed with Li such as sulfur, a complex of sulfur and a metal, or the like. Among them, it is preferable to use a transition metal oxide as the positive electrode active material, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu and V) Are more preferred.
  • an element M b (an element of Group 1 (Ia) other than lithium, an element of Group 1 (Ia) of the metal periodic table, an element of Group 2 (IIa), Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P or B may be mixed.
  • the mixing amount is preferably 0 to 30 mol% with respect to the amount (100 mol%) of the transition metal element M a . It is more preferable to be synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2.
  • transition metal oxide examples include a transition metal oxide having a (MA) layered rock salt type structure, a transition metal oxide having a (MB) spinel type structure, a (MC) lithium-containing transition metal phosphate compound, (MD And the like) lithium-containing transition metal halogenated phosphoric acid compounds and (ME) lithium-containing transition metal silicate compounds.
  • MA transition metal oxide having a
  • MB transition metal oxide having a (MB) spinel type structure
  • MC lithium-containing transition metal phosphate compound
  • MD And the like lithium-containing transition metal halogenated phosphoric acid compounds
  • ME lithium-containing transition metal silicate compounds.
  • transition metal oxides having a layered rock salt type structure LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (lithium nickel cobalt aluminate [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobaltate [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( And lithium manganese nickelate).
  • LiCoO 2 lithium cobaltate [LCO]
  • LiNi 2 O 2 lithium nickelate
  • LiNi 0.85 Co 0.10 Al 0. 05 O 2 lithium nickel cobalt aluminate [NCA]
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 lithium nickel manganese cobaltate [NMC]
  • LiNi 0.5 Mn 0.5 O 2 And lithium manganese nickelate
  • transition metal oxides having a (MB) spinel structure include LiMn 2 O 4 (LMO), LiCoMnO 4, Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 and the like.
  • (MC) lithium-containing transition metal phosphate compounds include olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4 etc. And cobalt salts of monoclinic Nasacon-type vanadium phosphate such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And cobalt fluoride phosphates.
  • Li 2 FePO 4 F such fluorinated phosphorus iron salt
  • Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And cobalt fluoride phosphates.
  • the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 and Li 2 CoSiO 4 .
  • transition metal oxides having a (MA) layered rock salt type structure are preferred, and LCO, LMO, NCA or NMC are more preferred.
  • the shape of the positive electrode active material is not particularly limited, but is preferably in the form of particles.
  • the volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 ⁇ m. In order to make the positive electrode active material have a predetermined particle diameter, a usual pulverizer or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after washing with water, an acidic aqueous solution, an alkaline aqueous solution and an organic solvent.
  • the volume average particle size (sphere-equivalent average particle size) of the positive electrode active material particles can be measured using a laser diffraction / scattering type particle size distribution measuring apparatus LA-920 (trade name, manufactured by HORIBA).
  • the positive electrode active materials may be used alone or in combination of two or more.
  • the mass (mg) (area weight) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be determined appropriately depending on the designed battery capacity.
  • the content of the positive electrode active material in the positive electrode active material layer is not particularly limited, and is preferably 10 to 95% by mass, more preferably 30 to 90% by mass, still more preferably 50 to 85% by mass, and 55 to 80% by mass Is particularly preferred.
  • the negative electrode active material layer 2 contains the above-mentioned inorganic solid electrolyte and a negative electrode active material. As described above, it is also preferable that the all-solid-state secondary battery of the present invention does not form the negative electrode active material layer in advance. The preferable form of a negative electrode active material is demonstrated.
  • the negative electrode active material be capable of reversibly storing and releasing lithium ions.
  • the material is not particularly limited as long as it has the above-mentioned characteristics.
  • the materials include carbonaceous materials, metal oxides such as tin oxide, silicon oxides, metal complex oxides, lithium alone such as lithium and lithium aluminum alloys, and lithium and alloys such as Sn, Si, Al and In.
  • the metal etc. which can be formed are mentioned.
  • carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of reliability.
  • a metal complex oxide it is preferable that lithium can be occluded and released.
  • the material is not particularly limited, but it is preferable in view of high current density charge and discharge characteristics that titanium and / or lithium is contained as a component.
  • the carbonaceous material used as the negative electrode active material is a material substantially consisting of carbon.
  • various kinds of synthesis such as petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor grown graphite etc.), and PAN (polyacrylonitrile) resin and furfuryl alcohol resin etc.
  • the carbonaceous material which baked resin can be mentioned.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber and activated carbon fiber
  • Mention may also be made of mesophase microspheres, graphite whiskers and flat graphite.
  • an amorphous oxide is particularly preferable, and chalcogenide which is a reaction product of a metal element and an element of Periodic Group 16 is also preferably used.
  • amorphous as used herein means an X-ray diffraction method using a CuK ⁇ ray having a broad scattering band having a peak in the region of a diffraction angle 2 ⁇ of 20 ° to 40 °, and is a crystalline diffraction. It may have a line.
  • amorphous oxides of semimetal elements and chalcogenides are more preferable.
  • one or a combination of two or more thereof selected from elements of groups 13 (IIIA) to 15 (VA) of the periodic table, Al, Ga, Si, Sn, Ge, Pb, Sb and Bi And oxides consisting of and chalcogenides are preferred.
  • preferred amorphous oxides and chalcogenides include Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 . They may also be complex oxides with lithium oxide, such as Li 2 SnO 2 .
  • the negative electrode active material also preferably contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics because the volume fluctuation at the time of lithium ion absorption and release is small, and the deterioration of the electrode is suppressed, and lithium ion secondary It is preferable at the point which the lifetime improvement of a battery is attained.
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • a Si-based negative electrode it is also preferable to apply a Si-based negative electrode.
  • a Si negative electrode can store more Li ions than a carbon negative electrode (graphite, acetylene black, etc.). That is, the storage amount of Li ions per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery operating time can be extended.
  • the shape of the negative electrode active material is not particularly limited, but is preferably in the form of particles.
  • the particle diameter (volume average particle diameter) of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
  • a usual pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling flow jet mill, a sieve and the like are suitably used.
  • wet pulverization in the presence of water or an organic solvent such as methanol can also be carried out as necessary. It is preferable to carry out classification in order to obtain a desired particle size.
  • the classification method is not particularly limited, and a sieve, an air classifier or the like can be used as required. Classification can be used both dry and wet.
  • the volume average particle size of the negative electrode active material particles can be measured by the same method as the above-mentioned method of measuring the volume average particle size of the positive electrode active material.
  • the negative electrode active materials may be used alone or in combination of two or more.
  • the mass (mg) (area weight) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. It can be determined appropriately depending on the designed battery capacity.
  • the content of the negative electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 80% by mass, and more preferably 20 to 80% by mass, with respect to 100% by mass of the solid content.
  • the electrode surface containing the positive electrode active material or the negative electrode active material may be surface-treated with sulfur or phosphorus.
  • the particle surface of the positive electrode active material or the negative electrode active material may be subjected to surface treatment with an actinic ray or active gas (such as plasma) before and after the surface coating.
  • a lithium salt, a conductive support agent, and a binder are preferably used for the solid electrolyte layer, the positive electrode active material layer and the negative electrode active material layer, It is also preferable that a dispersant and the like be included.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electron conductors.
  • one or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
  • aluminum, aluminum alloy, stainless steel, nickel and titanium as materials for forming a positive electrode current collector, aluminum or stainless steel surface treated with carbon, nickel, titanium or silver (a thin film is formed are preferred. Among these, aluminum and an aluminum alloy are more preferable.
  • the negative electrode current collector in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium etc., carbon, nickel, titanium or silver is treated on the surface of aluminum, copper, copper alloy or stainless steel It is preferable that Among them, aluminum, copper, copper alloy and stainless steel are more preferable.
  • the shape of the current collector is usually in the form of a film sheet, but a net, a punch, a lath body, a porous body, a foam, a molded body of a fiber group and the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m. Further, it is also preferable to make the current collector surface uneven by surface treatment.
  • each layer of the negative electrode current collector is appropriately interposed or disposed between or outside each layer of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer and the positive electrode current collector.
  • Each layer may be composed of a single layer or multiple layers.
  • compositions for positive electrode containing the component which comprises a positive electrode active material layer is apply
  • a composition containing at least the inorganic solid electrolyte material is applied onto the positive electrode active material layer to form a solid electrolyte layer.
  • the entire solid having a structure in which the solid electrolyte layer is sandwiched between the positive electrode active material layer and the negative electrode active material layer Get a secondary battery.
  • these battery element members are packed in a housing which is to be a battery outer package.
  • the mixture of the insulating inorganic material and the inorganic insulating particles described above is disposed at the end of the battery element member in the housing.
  • the insulating inorganic material is heated to a temperature at which it melts (preferably 200 ° C. or less), and the insulating inorganic material melt is spread among the particles constituting the mixture to the end of the battery element member Form an inorganic insulating covering.
  • each layer is reversed, a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to produce an all solid secondary battery.
  • a laminate of a two-layer structure consisting of a substrate / anode active material layer and a laminate of a three-layer structure consisting of a substrate / a cathode active material layer / a solid electrolyte layer are prepared, and these are superposed to form the present invention.
  • the positive electrode collection It may be provided only at the end of the current collector, the end of the positive electrode active material layer, and the end of the solid charge lipid layer.
  • composition for positive electrode containing the component which comprises a positive electrode active material layer is apply
  • a composition containing at least the inorganic solid electrolyte material is applied onto the positive electrode active material layer to form a solid electrolyte layer.
  • a mixture of the above-described insulating inorganic material and inorganic insulating particles is disposed at both ends of the solid electrolyte layer.
  • the mixture may be formed up to the substrate end and / or the end of the positive electrode active material layer.
  • the insulating inorganic material is heated to a temperature at which it melts (preferably 200 ° C. or less), and the insulating inorganic material melt is spread over the end of the inorganic solid electrolyte material, and also among the particles constituting the mixture.
  • an inorganic insulating covering is formed on the end of the solid electrolyte layer, the end of the positive electrode active material layer and the end of the solid electrolyte layer, or the end of the positive electrode current collector, the end of the positive electrode active material layer, and the end of the solid charge lipid layer Do.
  • a composition containing a component for forming a negative electrode active material layer is applied as a negative electrode material to form a negative electrode active material layer.
  • An all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer by overlapping a negative electrode current collector (metal foil) on the negative electrode active material layer Can. If necessary, it can be enclosed in a case that will be a battery outer package to obtain a desired all-solid secondary battery.
  • a solid electrolyte sheet having an inorganic insulating covering at an end, and / or a positive electrode active material sheet having an inorganic insulating covering at an end, which will be described later, are prepared in advance. Can also be made into the all solid secondary battery of the present invention.
  • the heating for melting the insulating inorganic material is performed immediately after the mixture is placed at the end of interest.
  • the present invention is not limited to this embodiment. That is, heating may be performed at any stage of the manufacturing process of the all-solid secondary battery, as long as the mixture is used and disposed at the desired end.
  • the step of disposing the mixture at the target end may be performed at a temperature higher than the melting temperature of the insulating inorganic material, in which case it is necessary to separately provide a heating step for melting the insulating inorganic material. It may not be.
  • the method of forming the solid electrolyte layer and the active material layer is not particularly limited, and can be appropriately selected.
  • application preferably wet application
  • spray application preferably spin coating application
  • dip coating dip coating
  • slit application stripe application and bar coating application
  • a drying process may be performed after application, or a drying process may be performed after multi-layer application.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C. or more, more preferably 60 ° C. or more, and still more preferably 80 ° C. or more. 300 degrees C or less is preferable, 250 degrees C or less is more preferable, and 200 degrees C or less is still more preferable.
  • the (C) dispersion medium can be removed to be in a solid state. Moreover, it is preferable because the temperature is not excessively high and the members of the all solid secondary battery are not damaged. Thereby, in the all solid secondary battery, excellent overall performance can be exhibited, and good binding can be obtained.
  • a hydraulic cylinder press machine etc. are mentioned as a pressurization method.
  • the pressure is not particularly limited, and in general, the pressure is preferably in the range of 50 to 1,500 MPa.
  • the applied solid electrolyte composition may be heated simultaneously with pressurization.
  • the heating temperature is not particularly limited, and generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • the pressurization may be performed in a state where the coating solvent or the dispersion medium is dried in advance, or may be performed in a state where the solvent or the dispersion medium remains.
  • the atmosphere during pressurization is not particularly limited, and may be under air, under dry air (dew point ⁇ 20 ° C. or less), under inert gas (eg, in argon gas, in helium gas, in nitrogen gas).
  • the pressing time may be high pressure for a short time (for example, within several hours), or may be medium pressure for a long time (one day or more).
  • a restraint (screw tightening pressure or the like) of the all-solid secondary battery can also be used to keep applying medium pressure.
  • the pressing pressure may be uniform or different with respect to a pressure receiving portion such as a sheet surface.
  • the press pressure can be changed according to the area and film thickness of the pressure-receiving portion. It is also possible to change the same site in stages with different pressures.
  • the press surface may be smooth or roughened.
  • the battery is formed in a sheet shape, and the battery sheet is formed into a cylindrical shape in which the battery sheet is wound in a roll shape around the axial center, and pressure is applied in the axial direction from the outermost layer of the cylindrical battery. You can also.
  • the all-solid secondary battery produced as described above is preferably subjected to initialization after production or before use.
  • the method of initialization is not particularly limited. For example, initial charging and discharging may be performed in a state where the press pressure is increased, and then the pressure may be released until the general working pressure of the all solid secondary battery is reached.
  • the all solid secondary battery of the present invention can be applied to various applications.
  • it is mounted in an electronic device.
  • the electronic devices include laptop computers, pen-based personal computers, mobile personal computers, electronic book players, mobile phones, cordless handsets, pagers, handy terminals, mobile fax machines, mobile copying machines, mobile printers and the like. It is also installed in audio and visual equipment such as headphone stereos, video movies, LCD TVs, portable CD players, mini disc players, portable tape recorders, radios and the like.
  • audio and visual equipment such as headphone stereos, video movies, LCD TVs, portable CD players, mini disc players, portable tape recorders, radios and the like.
  • handy cleaners, electric shavers, transceivers, electronic organizers, desk-top computers, memory cards, backup power supplies, etc. may be mentioned.
  • Other consumer products include automobiles, electric vehicles, motors, lighting devices, toys, game machines, road conditioners, watches, strobes, cameras, medical devices (pace makers, hearing aids, shoulder machines, etc.). Furthermore, it can be used for various military and space applications. It can also be combined with a solar cell.
  • the solid electrolyte sheet for the all solid secondary battery of the present invention (hereinafter, also simply referred to as “the electrolyte sheet of the present invention") is suitably used as a member for providing the solid electrolyte layer of the all solid secondary battery of the present invention.
  • the electrolyte sheet of the present invention has a solid electrolyte layer and an inorganic insulating covering that covers both ends of the solid electrolyte layer.
  • the inorganic insulating covering has a Young's modulus of 1 GPa or more. Such inorganic insulating coverings include those described above.
  • the positive electrode active material sheet for all solid secondary batteries of the present invention (hereinafter, also simply referred to as “the positive electrode active material sheet of the present invention") is a member for providing the positive electrode active material layer of the all solid secondary battery of the present invention It can be used suitably. That is, the positive electrode active material sheet of the present invention has an inorganic insulating covering that covers both ends of the positive electrode active material layer. This inorganic insulating covering has a Young's modulus of 1 GPa or more. Such inorganic insulating coverings include those described above.
  • the solid electrolyte sheet can be produced, for example, as follows. A composition containing the above-mentioned inorganic solid electrolyte material is applied on a substrate (for example, metal foil to be a negative electrode current collector) to form a solid electrolyte layer, and a solid electrolyte sheet for an all solid secondary battery is produced. . Next, a mixture of the above-mentioned insulating inorganic material and inorganic insulating particles is disposed on both ends of the solid electrolyte layer by application. The above mixture may be formed up to the end of the substrate. Then, the insulating inorganic material is heated to a temperature at which it melts (preferably 200 ° C.
  • the said positive electrode active material sheet can be produced as follows, for example.
  • the composition (composition for positive electrode) containing the component which comprises a positive electrode active material layer is apply
  • a mixture of the above-described insulating inorganic material and inorganic insulating particles is disposed on both ends of the positive electrode active material layer by application.
  • the above mixture may be formed up to the end of the substrate.
  • the insulating inorganic material is heated to a temperature at which it melts (preferably 200 ° C. or less), and the insulating inorganic material melt is distributed to the end of the positive electrode active material layer, and is dispersed among the particles constituting the mixture.
  • an inorganic insulating covering is formed at the end of the positive electrode active material layer.
  • the application of the mixture of insulating inorganic materials can be performed, for example, using a dispersion of a mixture of particles of sulfur and aluminum oxide (alumina) dispersed in toluene.
  • composition for a positive electrode containing a component constituting the positive electrode active material obtained above on a 20 ⁇ m thick aluminum foil serving as a current collector by a conventional method is combined with 2% by mass of a baker type applicator C. for 2 hours to dry the positive electrode composition.
  • the composition for a positive electrode layer dried to a predetermined density was pressurized (600 MPa, 1 minute) while heating (120 ° C.).
  • a positive electrode sheet for an all solid secondary battery having a positive electrode active material with a thickness of 110 ⁇ m was produced.
  • the inorganic solid electrolyte prepared according to the above-mentioned reference example 1 was dispersed in toluene at normal temperature together with 2% by mass of a binder to obtain a coating liquid having a solid content of 20% by mass.
  • the coating solution was applied on a positive electrode at a normal temperature by bar coating and heated at 120 ° C. for drying to obtain a solid electrolyte layer having a width of 50 mm and a film thickness of 100 ⁇ m.
  • a 50 mm wide stainless steel (SUS) foil serving as a negative electrode current collector was stacked on the solid electrolyte layer to form a laminate sheet for an all solid secondary battery.
  • SUS stainless steel
  • a commercially available insulating separator (50 mm in width) is stacked on the outer periphery of the positive electrode current collector of this laminate sheet, and wound around the outer periphery of a stainless steel cylindrical shaft core so that the current collector does not short circuit. It was packed in a stainless steel cylindrical battery case of 1 mm and length 65 mm.
  • the cylindrical axis is a cylinder with a diameter of 18 mm, a thickness of 0.1 mm and a length of 65 mm with slits (length 9 mm, width 0.1 mm, spacing between slits 1 mm) so that it can be broken by internal pressure It is. Thereafter, a stainless steel, 5 mm thick reinforced cylindrical cover was fitted to the outside of the cylindrical battery case.
  • the activated carbon is filled in the cylindrical shaft core, compressed with a pressure of 24 Pa from both sides of the cylindrical shaft core by a press machine, the slit width of the cylindrical shaft core is expanded, and the diameter of the cylindrical shaft core is increased.
  • a predetermined restraint pressure was applied to the laminate between the outer case and the cylindrical shaft core.
  • the negative electrode current collector was electrically connected to the battery case, and the positive electrode current collector was electrically connected to the shaft so that the current could be taken out.
  • the mixture obtained in Reference Example 2 was placed at both ends of the battery element member located between the cylindrical shaft core and the outer case, compressed using a press at a pressure of 24 Pa, and pressed.
  • the laminate in the state of being covered with the insulation coating was heated on a hot plate at 150 ° C. for 30 minutes to thermally melt the filler sulfur. After that, natural cooling was performed to seal the case, and an all solid secondary battery having an inorganic insulating covering was obtained.
  • the inorganic insulating coating after natural cooling had a Young's modulus at 25 ° C. of 50 GPa.
  • arranges an inorganic insulator coating body for comparison was obtained.
  • the charge and discharge conditions were a temperature of 30 ° C. in a measurement environment, a current density of 0.09 mA / cm 2 (corresponding to 0.05 C), and a charge and discharge under constant current conditions of 4.2 V.

Abstract

Provided are: an all-solid secondary battery having a battery element member, wherein the battery element member has at least a negative electrode collector, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode collector, and an end of the battery element member is provided with an inorganic insulative coating body which at least covers said end of the battery element member and which has a Young's modulus of 1 GPa or more at 25°C; a production method for such a battery; a solid electrolyte sheet for an all-solid secondary battery; and a positive electrode mixture material layer for an all-solid secondary battery.

Description

全固体二次電池及びその製造方法、並びに全固体二次電池用固体電解質シート及び全固体二次電池用正極活物質シートAll-solid secondary battery, method for producing the same, solid electrolyte sheet for all-solid secondary battery, and positive electrode active material sheet for all-solid secondary battery
 本発明は、全固体二次電池及びその製造方法に関する。また本発明は、全固体二次電池用固体電解質シート及び全固体二次電池用正極活物質シートに関する。 The present invention relates to an all solid secondary battery and a method of manufacturing the same. The present invention also relates to a solid electrolyte sheet for an all solid secondary battery and a positive electrode active material sheet for an all solid secondary battery.
 リチウムイオン二次電池は、負極と、正極と、負極と正極との間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充電と放電を可能とした蓄電池である。リチウムイオン二次電池には従来から、電解質として有機電解液が用いられてきた。しかし有機電解液は液漏れを生じやすく、また、過充電、過放電により電池内部で短絡が生じ発火するおそれもあり、信頼性と安全性のさらなる向上が求められている。
 このような状況下、有機電解液に代えて、不燃性の無機固体電解質を用いた全固体二次電池の開発が進められている。全固体二次電池は負極、電解質及び正極のすべてが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。
A lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and is capable of charging and discharging by reciprocating lithium ions between the two electrodes. . Conventionally, an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery. However, the organic electrolyte is liable to leak, and there is a possibility that a short circuit may occur inside the battery due to overcharging or overdischarging, and there is a need for further improvement in reliability and safety.
Under such circumstances, development of an all-solid secondary battery using non-combustible inorganic solid electrolytes in place of organic electrolytes is in progress. In all solid secondary batteries, all of the negative electrode, electrolyte and positive electrode are solid, which can greatly improve the safety and reliability of the battery using organic electrolyte solution, and also can extend the life. It will be.
 リチウムイオン二次電池は、充電時には正極から負極へと電子が移動し、同時に正極を構成するリチウム酸化物等からリチウムイオンが放出され、このリチウムイオンは電解質を通って負極へと到達して負極に溜め込まれる。こうして負極に溜め込まれたリチウムイオンの一部は電子を取り込み金属リチウムとして析出する現象が生じる。この金属リチウムの析出物が充放電の繰り返しによりデンドライト状に成長してしまうと、やがて正極へと達し、内部短絡が生じて二次電池として機能しなくなってしまう。デンドライトは非常に細く、電解質として固体を用いる全固体二次電池においても、固体電解質層に生じた亀裂ないしピンホール等を通って成長しうる。したがって、全固体二次電池においてもデンドライトの成長を阻止することは、電池を長寿命化する上で重要である。
 デンドライトによる内部短絡の問題に対処すべく特許文献1には、固体電解質層中に単体硫黄を過剰に添加し、デンドライトの成長を単体硫黄により阻止する技術が記載されている。特許文献1記載の技術では、固体電解質粉末に単体硫黄を均一に分散させた混合物を用いて固体電解質層を形成しているため、この固体電解質層は単体硫黄粉末と固体電解質粉末との混合物からなる形態である。
In the lithium ion secondary battery, electrons move from the positive electrode to the negative electrode during charging, and at the same time lithium ions are released from lithium oxide or the like constituting the positive electrode, and the lithium ions reach the negative electrode through the electrolyte and Stored in In this way, a part of lithium ions stored in the negative electrode takes in electrons and precipitates as metal lithium. When the metal lithium precipitates grow in a dendritic shape due to repeated charge and discharge, they eventually reach the positive electrode, causing an internal short circuit and failing to function as a secondary battery. Dendrite is very thin and can grow through cracks or pinholes or the like in the solid electrolyte layer even in an all solid secondary battery using a solid as an electrolyte. Therefore, preventing growth of dendrite even in the all solid secondary battery is important for prolonging the life of the battery.
In order to address the problem of internal short circuiting due to dendrite, Patent Document 1 describes a technique in which a single sulfur is excessively added to a solid electrolyte layer to inhibit the growth of dendrite by the single sulfur. In the technology described in Patent Document 1, since the solid electrolyte layer is formed using a mixture in which single sulfur is uniformly dispersed in solid electrolyte powder, the solid electrolyte layer is formed of a mixture of single sulfur powder and solid electrolyte powder. Form.
国際公開第2011/010552号International Publication No. 2011/010552
 上記特許文献1記載の技術は、デンドライトの負極から正極に向けた成長を阻止することを目的としている。しかし本発明者が検討を重ねた結果、全固体二次電池は充放電を繰り返すことにより、活物質の膨張収縮が繰り返され、デンドライトが電池要素端部から徐々にはみ出ることによって電池容量が低下する場合があることがわかってきた。そして、はみ出たデンドライトが、正極や電池外装体と短絡する懸念もあることがわかってきた。
 また本発明者は、全固体電池が圧壊加重を受けて電池外装体が変形し、電池外装体にクラック等が生じた際に、負極層や正極層の端部から内部へと徐々に水分が混入しうることにも着目するに至った。固体電解質として硫化物系電解質を用いた場合には、水分と電解質とが反応し、毒性を有する硫化水素が発生する懸念がある。
The technique described in Patent Document 1 aims at preventing the growth of the dendrite from the negative electrode to the positive electrode. However, as a result of repeated investigations by the present inventor, expansion and contraction of the active material is repeated by repeating charge and discharge of the all solid secondary battery, and the battery capacity is lowered by the dendrite gradually protruding from the end of the battery element It turns out that there is a case. Then, it has been found that the protruding dendrite may cause a short circuit with the positive electrode and the battery outer package.
In the present inventors, when the all-solid battery is subjected to crushing load and the battery outer package is deformed and cracks or the like occur in the battery outer package, water gradually gradually flows from the end of the negative electrode layer or the positive electrode layer to the inside. We also focused on the possibility of contamination. When a sulfide-based electrolyte is used as the solid electrolyte, there is a concern that water and the electrolyte react to generate toxic hydrogen sulfide.
 本発明は、金属リチウム等のデンドライトが電極端部から徐々にはみ出ることを阻止して、電池容量の低下を抑え、また、デンドライトと正極ないし電池外装体との接触による短絡を防ぐことができる全固体二次電池及びその製造方法を提供することを課題とする。また本発明は、全固体電池に圧壊加重が加わるなどして電池外装体にクラック等が生じた場合でも、水分の侵入を効果的に防いで硫化水素(HS)の発生を抑えることができる全固体二次電池及びその製造方法を提供することを課題とする。また本発明は、上記全固体二次電池を得ることを可能とする全固体二次電池用固体電解質シート及び全固体二次電池用正極活物質シートを提供することを課題とする。 In the present invention, dendrites such as metallic lithium can be prevented from gradually sticking out from the electrode end to suppress a decrease in battery capacity, and all short circuits due to contact between dendrite and a positive electrode or battery outer body can be prevented. It is an object of the present invention to provide a solid secondary battery and a method of manufacturing the same. Further, according to the present invention, even when a crack or the like is generated in the battery outer package due to the crush load being applied to the all solid battery, the generation of hydrogen sulfide (H 2 S) can be effectively prevented by the intrusion of water. It is an object of the present invention to provide an all-solid secondary battery that can Another object of the present invention is to provide a solid electrolyte sheet for an all solid secondary battery and a positive electrode active material sheet for an all solid secondary battery, which make it possible to obtain the all solid secondary battery.
 本発明者は上記課題に鑑み鋭意検討を重ねた結果、充放電の繰り返しにより負極から析出して成長してくるデンドライトが電池端部からはみ出してくる現象を、少なくとも電池端部を特定の無機絶縁被覆体で被覆することにより効果的に阻止することができる。その結果、電池容量の低下を抑えることができ、また内部短絡を十分に抑制できることを見出した。また、この電池端部の被覆によって、電池外装体にクラック等が生じた場合にも、電解質への水分の侵入を阻止することができるとの着想に至った。硫化水素の発生を抑えることができることを見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。 As a result of intensive studies conducted by the inventor in view of the above problems, the phenomenon that dendrite deposited and grown from the negative electrode due to repeated charging and discharging flows out from the end of the battery is at least a specific inorganic insulation of the battery end. It can be effectively blocked by coating with a coating. As a result, it has been found that a decrease in battery capacity can be suppressed and an internal short circuit can be sufficiently suppressed. In addition, it has been conceived that the coating of the battery end can prevent the entry of moisture into the electrolyte even when a crack or the like is generated in the battery outer package. It has been found that the generation of hydrogen sulfide can be suppressed. The present invention has been further studied based on these findings and has been completed.
 すなわち、上記の課題は以下の手段により解決された。
〔1〕
 電池要素部材を有する全固体二次電池であって、
 上記電池要素部材は、少なくとも負極集電体、固体電解質層、正極活物質層及び正極集電体を有し、
 上記電池要素部材の端部に、少なくとも上記電池要素部材の端部を被覆していて、25℃におけるヤング率が1GPa以上である無機絶縁被覆体が配されている、全固体二次電池。
〔2〕
 上記電池要素部材が内部に挿入されている電池外装体を有する〔1〕に記載の全固体二次電池。
〔3〕
 上記無機絶縁被覆体は、無機絶縁粒子と、100℃において固体であり、200℃以下の温度領域において溶融する絶縁性無機材料の溶融凝固体からなる〔1〕又は〔2〕に記載の全固体二次電池。
〔4〕
 上記無機絶縁被覆体は、有機バインダーを含む、〔3〕に記載の全固体二次電池。
〔5〕
 上記無機絶縁粒子は、体積平均粒子径が1μm以下の酸化アルミニウムである、〔3〕又は〔4〕に記載の全固体二次電池。
〔6〕
 上記絶縁性無機材料は、硫黄及び/又は改質硫黄を含む、〔1〕~〔5〕のいずれか一つに記載の全固体二次電池。
〔7〕
 上記無機絶縁被覆体が、充放電時に負極端部から成長する金属リチウムの成長を阻止する、〔1〕~〔6〕のいずれか一つに記載の全固体二次電池。
〔8〕
 電池外装体内に、少なくとも負極集電体と、固体電解質層と、正極活物質層と、正極集電体とを含む電池要素部材を配する工程と、
 上記電池外装体内の空間に、無機絶縁粒子と、100℃において固体であり200℃以下の温度領域において溶融する絶縁性無機材料とを上記電池要素部材の端部に配する工程と、
 200℃以下の温度領域において上記電池外装体を加熱して、上記無機絶縁被覆体を溶融し、次いで凝固させて、上記電池要素部材の端部を被覆する工程とを含む、〔1〕~〔7〕のいずれか一つに記載の全固体二次電池の製造方法。
〔9〕
 〔1〕~〔7〕のいずれか一つに記載の全固体二次電池に用いる固体電解質シートであって、
 固体電解質層と、この固体電解質層の端部を被覆した無機絶縁被覆体とを有し、
 上記無機絶縁被覆体は、25℃におけるヤング率が1GPa以上である全固体二次電池用固体電解質シート。
〔10〕
 上記無機絶縁被覆体は、無機絶縁粒子と、100℃において固体であり、200℃以下の温度領域において溶融する絶縁性無機材料の溶融凝固体とからなる〔9〕に記載の全固体二次電池用固体電解質シート。
〔11〕
 上記絶縁性無機材料は、硫黄及び/又は改質硫黄を含む、〔10〕に記載の全固体二次電池用固体電解質シート。
〔12〕
 上記無機絶縁被覆体は、有機バインダーを含む、〔9〕~〔11〕のいずれか一つに記載の全固体二次電池用固体電解質シート。
〔13〕
 上記無機絶縁粒子は、酸化アルミニウムである、〔10〕~〔12〕のいずれか一つに記載の全固体二次電池用固体電解質シート。
〔14〕
 〔1〕~〔7〕のいずれか一つに記載の全固体二次電池に用いられる正極活物質シートであって、
 正極活物質層と、この正極活物質層の両端部を被覆する無機絶縁被覆体を有し、
 上記無機絶縁被覆体は、25℃におけるヤング率が1GPa以上である、全固体二次電池用正極活物質シート。
〔15〕
 上記無機絶縁被覆体は、無機絶縁粒子と、100℃において固体であり、200℃以下にて溶融する絶縁性無機材料を含む、〔14〕に記載の全固体二次電池用正極活物質シート。
〔16〕
 上記絶縁性無機材料は、硫黄及び/又は改質硫黄を含む、〔15〕に記載の全固体二次電池用正極合材層。
〔17〕
 上記無機絶縁被覆体は、有機バインダーを含む、〔15〕又は〔16〕に記載の全固体二次電池用正極活物質シート。
〔18〕
 上記無機絶縁粒子は、酸化アルミニウムである、〔15〕~〔17〕のいずれか一つに記載の全固体二次電池用正極活物質シート。
That is, the above-mentioned subject was solved by the following means.
[1]
An all solid secondary battery having battery element members, comprising:
The battery component member has at least a negative electrode current collector, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector,
The all-solid-state secondary battery which covers the edge part of the said battery element member at least the edge part of the said battery element member, and the inorganic insulating coating which has a Young's modulus at 25 degreeC 1 GPa or more is distribute | arranged.
[2]
The all-solid-state secondary battery as described in [1] which has the battery exterior body by which the said battery element member is inserted in the inside.
[3]
The above-mentioned inorganic insulating covering includes the inorganic insulating particles and a melt-solidified insulating inorganic material which is solid at 100 ° C. and melts in a temperature range of 200 ° C. or less. [1] or [2] Secondary battery.
[4]
The all-solid secondary battery according to [3], wherein the inorganic insulating covering contains an organic binder.
[5]
The all-solid secondary battery according to [3] or [4], wherein the inorganic insulating particles are aluminum oxide having a volume average particle size of 1 μm or less.
[6]
The all-solid secondary battery according to any one of [1] to [5], wherein the insulating inorganic material contains sulfur and / or reformed sulfur.
[7]
The all-solid secondary battery according to any one of the above [1] to [6], wherein the inorganic insulating covering prevents growth of metallic lithium growing from the negative electrode end during charge and discharge.
[8]
Placing a battery element member including at least a negative electrode current collector, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector in the battery case;
Arranging inorganic insulating particles and an insulating inorganic material which is solid at 100 ° C. and melts in a temperature range of 200 ° C. or less in an end portion of the battery element member in a space in the battery case;
And C. heating the battery casing in a temperature range of 200 ° C. or less to melt and then solidify the inorganic insulating covering to cover the end of the battery element member [1] to [1] The manufacturing method of the all-solid-state secondary battery as described in any one of 7].
[9]
It is a solid electrolyte sheet used for the all-solid-state secondary battery as described in any one of [1]-[7],
A solid electrolyte layer, and an inorganic insulating coating covering the end of the solid electrolyte layer,
The inorganic insulating covering is a solid electrolyte sheet for an all solid secondary battery having a Young's modulus at 25 ° C. of 1 GPa or more.
[10]
The all-solid secondary battery according to [9], wherein the inorganic insulating covering comprises inorganic insulating particles and a melt-solidified insulating inorganic material which is solid at 100 ° C. and melts in a temperature range of 200 ° C. or less Solid electrolyte sheet.
[11]
[10] The solid electrolyte sheet for an all solid secondary battery according to [10], wherein the insulating inorganic material comprises sulfur and / or modified sulfur.
[12]
The above-mentioned inorganic insulating covering includes an organic binder, The solid electrolyte sheet for an all-solid secondary battery according to any one of [9] to [11].
[13]
The solid electrolyte sheet for all solid secondary battery according to any one of [10] to [12], wherein the inorganic insulating particles are aluminum oxide.
[14]
It is a positive electrode active material sheet for use in the all solid secondary battery according to any one of [1] to [7],
A positive electrode active material layer, and an inorganic insulating covering covering both ends of the positive electrode active material layer;
The said inorganic insulating covering is a positive electrode active material sheet for an all solid secondary battery having a Young's modulus at 25 ° C. of 1 GPa or more.
[15]
[14] The positive electrode active material sheet for an all-solid secondary battery according to [14], wherein the inorganic insulating covering includes inorganic insulating particles and an insulating inorganic material which is solid at 100 ° C. and melts at 200 ° C. or less.
[16]
[15] The positive electrode mixture layer for an all solid secondary battery according to [15], wherein the insulating inorganic material contains sulfur and / or modified sulfur.
[17]
The said inorganic insulation coating body is a positive electrode active material sheet for all the solid secondary batteries as described in [15] or [16] containing an organic binder.
[18]
The positive electrode active material sheet for an all solid secondary battery according to any one of [15] to [17], wherein the inorganic insulating particles are aluminum oxide.
 本発明において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 In the present invention, a numerical range represented using “to” means a range including the numerical values described before and after “to” as the lower limit value and the upper limit value.
 本発明の全固体二次電池は、充放電時における電池要素部材端部からのデンドライトのはみだしを効果的に阻止して電池容量の低下を抑えることができ、また、デンドライトと正極ないし電池外装体との接触による短絡を防ぐことができる。更に全固体二次電池に圧壊加重が加わり、電池にクラック等が生じた場合であっても、硫化水素(HS)の発生を抑えることができる。
 また本発明の全固体二次電池の製造方法によれば、充電時に電池要素部材端部からのデンドライトのはみだしを効果的に阻止して電池容量の低下を抑え、また、デンドライトと正極ないし電池外装体との短絡を防ぐ全固体二次電池を得ることができる。更に全固体二次電池に圧壊加重が加わり、電池にクラック等が生じた場合でも、硫化水素(HS)の発生を抑えた全固体二次電池を得ることができる。
 更に、本発明の全固体二次電池用固体電解質シート及び全固体二次電池用正極活物質シートは、本発明の全固体二次電池の部材(層)として好適に用いることができる。
The all solid secondary battery of the present invention can effectively prevent the outgrowth of dendrite from the end of the battery element member during charge and discharge to suppress the reduction of the battery capacity, and further, the dendrite and the positive electrode or battery outer package It is possible to prevent a short circuit due to contact with the Furthermore, even if a crushing load is applied to the all solid secondary battery and a crack or the like is generated in the battery, the generation of hydrogen sulfide (H 2 S) can be suppressed.
Further, according to the manufacturing method of the all solid secondary battery of the present invention, the protrusion of the dendrite from the end of the battery element member is effectively prevented at the time of charging to suppress the decrease of the battery capacity, and the dendrite and the positive electrode or the battery exterior It is possible to obtain an all solid secondary battery that prevents a short circuit with the body. Furthermore, even when a crushing load is applied to the all solid secondary battery and a crack or the like is generated in the battery, it is possible to obtain an all solid secondary battery in which the generation of hydrogen sulfide (H 2 S) is suppressed.
Furthermore, the solid electrolyte sheet for all solid secondary batteries and the positive electrode active material sheet for all solid secondary batteries of the present invention can be suitably used as a member (layer) of the all solid secondary battery of the present invention.
 本発明の上記及び他の特徴及び利点は、下記の記載及び添付の図面からより明らかになるであろう。 The above and other features and advantages of the present invention will become more apparent from the following description and the accompanying drawings.
一般的な全固体二次電池の基本構成を模式化して示す縦断面図である。FIG. 1 is a longitudinal sectional view schematically showing a basic configuration of a general all-solid secondary battery. 本発明の好ましい実施形態に係る円筒型全固体二次電池を模式化して示す縦断面図及び図2中のA部拡大断面図である。FIG. 3 is a longitudinal sectional view schematically showing a cylindrical all solid secondary battery according to a preferred embodiment of the present invention and an enlarged sectional view of a portion A in FIG. 2.
 本発明の全固体二次電池は、電池要素部材端部が無機絶縁被覆体によって被覆されており、この無機絶縁被覆体によって電池要素部材端部からはみ出そうとするデンドライトの成長を効果的に阻止することができる。本発明において「絶縁」とは、電子絶縁性を有すること、すなわち電子を通過させない性質をいう。また本発明において、「絶縁」、「絶縁性」もしくは「電子絶縁性」という場合、電気伝導率が、測定温度25℃において10-9S(ジーメンス)/cm以下の材料であることが好ましい。
 以下、本発明の好ましい一実施形態について図1~2を参照して説明する。
In the all solid secondary battery of the present invention, the battery element member end is covered with the inorganic insulating covering, and the inorganic insulating covering effectively prevents the growth of dendrites that are going to protrude from the battery element member end. can do. In the present invention, "insulation" refers to having electronic insulation, that is, the property of not letting electrons pass. Further, in the present invention, when referring to “insulation”, “insulation” or “electronic insulation”, the material preferably has a conductivity of 10 −9 S (Siemens) / cm or less at a measurement temperature of 25 ° C.
Hereinafter, a preferred embodiment of the present invention will be described with reference to FIGS.
[全固体二次電池]
 図1に一般的な全固体二次電池の基本構成を示す。図1に示すように、本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4及び正極集電体5を、この順に積層した構造を有する。各層において隣接する層同士は直に接触している。
 上記構造によって、充電時には、負極側に電子(e)が供給され、同時に正極活物質を構成するアルカリ金属又はアルカリ土類金属がイオン化する。イオン化したイオンは、固体電解質層3を通過(伝導)して移動し、負極に蓄積される。例えば、リチウムイオン二次電池においては負極にリチウムイオン(Li)が蓄積される。
 放電時には、負極に蓄積された上記のアルカリ金属イオン又はアルカリ土類金属イオンが正極側に戻され、作動部位6に電子を供給する。図示例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。
[All solid secondary battery]
FIG. 1 shows the basic configuration of a general all-solid secondary battery. As shown in FIG. 1, the all-solid secondary battery 10 of the present embodiment is viewed from the negative electrode side, the negative electrode current collector 1, the negative electrode active material layer 2, the solid electrolyte layer 3, the positive electrode active material layer 4 and the positive electrode current collector It has a structure in which the bodies 5 are stacked in this order. Adjacent layers in each layer are in direct contact with each other.
According to the above structure, at the time of charge, electrons (e ) are supplied to the negative electrode side, and at the same time, the alkali metal or alkaline earth metal constituting the positive electrode active material is ionized. The ionized ions move (conduct) through the solid electrolyte layer 3 and are accumulated in the negative electrode. For example, in a lithium ion secondary battery, lithium ions (Li + ) are accumulated at the negative electrode.
At the time of discharge, the above-mentioned alkali metal ion or alkaline earth metal ion accumulated in the negative electrode is returned to the positive electrode side, and supplies electrons to the operating portion 6. In the illustrated example, a light bulb is employed at the operation site 6 and is turned on by discharge.
 また、本発明の全固体二次電池は、負極活物質層2を有さずに、固体電解質層3と負極集電体1とが直に接する形態とすることも好ましい。この形態の全固体二次電池では、充電時に負極に蓄積したアルカリ金属イオン又はアルカリ土類金属イオンの一部が電子と結合し、金属として負極集電体表面に析出する現象を利用する。すなわち、この形態の全固体二次電池は、負極表面に析出した金属を負極活物質層として機能させる。例えば金属リチウムは、負極活物質として汎用されている黒鉛に比べて10倍以上の理論容量を有するとされている。したがって、負極に金属リチウムを析出させてこの析出した金属リチウムに固体電解質層を押しつけた形態とすることにより、集電体表面に金属リチウムの層を形成することができ、高容量、高エネルギー密度の二次電池を実現することが可能になるとされる。
 また、負極活物質層を取り除いた形態の全固体二次電池は、電池の厚さが薄くなるために、電池をロール状に巻いた形態とする場合には、固体電解質層の亀裂等の発生をより抑えることが可能になる利点もある。また、巻き数を増やすことができるため、電池容量を増加させることができる。
 なお、本発明において負極活物質層を有しない形態の全固体二次電池とは、あくまで電池製造における層形成工程において負極活物質層を形成しないことを意味する。そして、上記の通り、充電により固体電解質層と負極集電体との間に負極活物質層が形成されるものである。
In the all solid secondary battery of the present invention, it is also preferable that the solid electrolyte layer 3 and the negative electrode current collector 1 be in direct contact with each other without the negative electrode active material layer 2. In the all solid secondary battery of this embodiment, a phenomenon in which part of alkali metal ions or alkaline earth metal ions accumulated in the negative electrode during charging is combined with electrons and deposited as metal on the surface of the negative electrode current collector is utilized. That is, the all solid secondary battery of this embodiment causes the metal deposited on the negative electrode surface to function as a negative electrode active material layer. For example, metallic lithium is said to have a theoretical capacity of 10 times or more as compared with graphite generally used as a negative electrode active material. Therefore, by depositing metallic lithium on the negative electrode and pressing the deposited metallic lithium against the solid electrolyte layer, a layer of metallic lithium can be formed on the surface of the current collector, resulting in high capacity and high energy density. It will be possible to realize a secondary battery.
Further, in the all solid secondary battery in a form in which the negative electrode active material layer is removed, when the battery is in a form of a roll and the battery is thin, generation of cracks or the like in the solid electrolyte layer occurs. There is also an advantage that it is possible to reduce the In addition, since the number of turns can be increased, the battery capacity can be increased.
In the present invention, the all solid secondary battery having no negative electrode active material layer means that the negative electrode active material layer is not formed in the layer formation step in battery manufacture. Then, as described above, the negative electrode active material layer is formed between the solid electrolyte layer and the negative electrode current collector by charging.
 図2に示すように、円筒型の全固体二次電池30は、図1に示した層構成を円筒型の形態で実現したものである。円筒型の全固体二次電池30は、図1に示した層構成を基本単位とする発電要素が軸心22の周りに積層状に配されているもので、この積層体によって電池要素部材21が構成されている。すなわち、電池要素部材21は、少なくとも負極集電体21d、固体電解質層21a、正極活物質層21c及び正極集電体21bを有する。なお、図2に示す形態は、負極集電体21d、負極活物質層21e、固体電解質層21a、正極活物質層21c及び正極集電体21bがこの順に積層された発電要素が複層化されたものである。この円筒型の全固体二次電池30において、接する2つの発電要素は集電体1つを共有する形態となる。すなわち、1つの集電体の両面に負極活物質層が設けられ、また1つの集電体の両面に正極活物質層が設けられた形態となる。
 更に、円筒型の全固体二次電池30は、必要により電池外装体となる電池カバー23を備えていてもよい。
 電池カバー23内には、上記電池要素部材21の端部を少なくとも被覆する、25℃におけるヤング率が1GPa以上である無機絶縁被覆体24が配されている。
 更に、電池要素部材21の正極集電体21bは電気的に接続する正極タブ25を介して電池正極に接続され、電池要素部材21の負極集電体21dは電気的に接続する負極タブ27を介して電池負極28に接続されている。
 図2に示した積層構造を成すことにより、高電池容量とすることが可能になる。
As shown in FIG. 2, the cylindrical all solid secondary battery 30 realizes the layer configuration shown in FIG. 1 in a cylindrical form. In the cylindrical all solid secondary battery 30, power generation elements having the layer configuration shown in FIG. 1 as a basic unit are arranged in a laminated manner around the axis 22, and the battery element member 21 is formed by this laminated body. Is configured. That is, the battery element member 21 includes at least the negative electrode current collector 21 d, the solid electrolyte layer 21 a, the positive electrode active material layer 21 c, and the positive electrode current collector 21 b. In the embodiment shown in FIG. 2, the power generation element in which the negative electrode current collector 21d, the negative electrode active material layer 21e, the solid electrolyte layer 21a, the positive electrode active material layer 21c and the positive electrode current collector 21b are laminated in this order is multilayered. It is In this cylindrical all solid secondary battery 30, two power generation elements in contact with each other share one current collector. That is, a negative electrode active material layer is provided on both sides of one current collector, and a positive electrode active material layer is provided on both sides of one current collector.
Furthermore, the cylindrical all solid secondary battery 30 may be provided with a battery cover 23 which becomes a battery outer package if necessary.
In the battery cover 23, the inorganic insulating covering 24 which covers at least the end of the battery element member 21 and which has a Young's modulus at 25 ° C. of 1 GPa or more is disposed.
Furthermore, the positive electrode current collector 21b of the battery element member 21 is connected to the battery positive electrode through the positive electrode tab 25 electrically connected, and the negative electrode current collector 21d of the battery element member 21 is electrically connected the negative electrode tab 27. It is connected to the battery negative electrode 28 via the same.
By forming the laminated structure shown in FIG. 2, it is possible to achieve high battery capacity.
 本発明の全固体二次電池において、正極活物質層、固体電解質層、負極活物質層の厚さは特に限定されない。一般的な電池の寸法を考慮すると、上記各層の厚さは10~1000μmが好ましく、20μm以上500μm未満がより好ましい。 In the all solid secondary battery of the present invention, the thicknesses of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer are not particularly limited. The thickness of each layer is preferably 10 to 1000 μm, and more preferably 20 μm or more and less than 500 μm, in consideration of general battery dimensions.
 本発明において、正極活物質層と負極活物質層とを合わせて電極層と称することがある。正極活物質層には正極活物質が含有され、負極活物質層には負極活物質が含有される。正極活物質及び負極活物質のいずれかを示すのに、あるいは両方を合わせて示すのに、単に活物質又は電極活物質と称することがある。固体電解質層は通常は正極活物質及び/又は負極活物質を含まない。固体電解質層を構成する無機固体電解質、もしくは固体電解質層を構成する無機固体電解質と活物質との組み合わせを無機固体電解質材料という。 In the present invention, the positive electrode active material layer and the negative electrode active material layer may be collectively referred to as an electrode layer. The positive electrode active material layer contains a positive electrode active material, and the negative electrode active material layer contains a negative electrode active material. The term “active material” or “electrode active material” may be used simply to indicate either the positive electrode active material or the negative electrode active material, or to indicate both. The solid electrolyte layer usually does not contain a positive electrode active material and / or a negative electrode active material. The inorganic solid electrolyte constituting the solid electrolyte layer or the combination of the inorganic solid electrolyte constituting the solid electrolyte layer and the active material is referred to as an inorganic solid electrolyte material.
(無機絶縁被覆体)
 上記無機絶縁被覆体は、無機絶縁粒子と、絶縁性無機材料とを有している。絶縁性無機材料としては、電子絶縁性を有し、100℃において固体(すなわち融点が100℃越え)である一方、200℃以下の温度領域において熱溶融する物性をもつ無機材料である。「200℃以下の温度領域において熱溶融する」とは、1気圧下において、200℃以下の温度領域で熱溶融することを意味する。
 この絶縁性無機材料を用いることにより、絶縁性無機材料が溶融する温度まで容易に加熱することができる。この加熱により、溶融した絶縁性無機材料が電池要素部材の端部を被覆するように広がる。それとともに、溶融した絶縁性無機材料を毛細管現象によって電池要素部材内の隙間へと移動させることもできる。その後冷却して絶縁性無機材料を固化させることにより、電池要素部材端部の形状に沿って事実上隙間なく、電子絶縁性材料を被覆した状態を作り出すことができる。
 すなわち、本発明の全固体二次電池において、無機絶縁被覆体は、100℃において固体状態でかつ200℃以下の温度領域で熱溶融する絶縁性無機材料の熱溶融凝固物を用いて形成されたものである。
(Inorganic insulating coating)
The inorganic insulating covering has inorganic insulating particles and an insulating inorganic material. The insulating inorganic material is an inorganic material having electronic insulating properties and being solid at 100 ° C. (that is, having a melting point of over 100 ° C.), and having physical properties such as heat melting in a temperature range of 200 ° C. or less. “To thermally melt in a temperature range of 200 ° C. or less” means to thermally melt in a temperature range of 200 ° C. or less at 1 atm.
By using this insulating inorganic material, it can be easily heated to a temperature at which the insulating inorganic material melts. By this heating, the molten insulating inorganic material spreads so as to cover the end of the battery element member. At the same time, it is also possible to move the molten insulating inorganic material to the gaps in the battery element member by capillary action. Then, by cooling and solidifying the insulating inorganic material, it is possible to create a state in which the electronically insulating material is coated, with virtually no gap along the shape of the battery element member end.
That is, in the all-solid secondary battery of the present invention, the inorganic insulating covering is formed using a hot-melt coagulant of an insulating inorganic material which is heat-melted in a solid state at 100 ° C. and at a temperature of 200 ° C. or less. It is a thing.
 本発明において、無機絶縁被覆体は、デンドライトの成長を阻止するために、固体状態においてデンドライトよりも硬い材料からなることが好ましい。そのため、本発明において無機絶縁被覆体のヤング率は1GPa以上であり、4~400GPaであることが好ましい。
 上記無機絶縁被覆体を構成する上記の絶縁性無機材料として、硫黄及び/又は改質硫黄、ヨウ素、ヨウ素と硫黄の混合物などが挙げられ、硫黄及び/又は改質硫黄を好適に用いることができる。絶縁性無機材料として用いうる硫黄は単体硫黄そのものを意味する。
 また、改質硫黄は、硫黄と改質剤とを混練して得られるものである。例えば、純硫黄と改質添加剤であるオレフィン系ポリマーとを混練し、硫黄の一部を硫黄ポリマーに改質した改質硫黄を得ることができる。なお、改質硫黄は有機ポリマーを含み得るものであるが、本発明において「改質硫黄」は無機材料に含まれるものとする。 無機絶縁被覆体に硫黄ないし改質硫黄が存在することによって、無機絶縁被覆体に対して成長してきたデンドライト(アルカリ金属ないしアルカリ土類金属)をより効果的に阻止することができる。 
In the present invention, the inorganic insulating coating is preferably made of a material harder than dendrite in the solid state in order to prevent the growth of dendrite. Therefore, in the present invention, the Young's modulus of the inorganic insulating covering is 1 GPa or more, and preferably 4 to 400 GPa.
Sulfur and / or modified sulfur, iodine, a mixture of iodine and sulfur, etc. may be mentioned as the above-mentioned insulating inorganic material constituting the above-mentioned inorganic insulating covering, and sulfur and / or modified sulfur can be suitably used. . Sulfur which can be used as the insulating inorganic material means elemental sulfur itself.
Further, the reformed sulfur is obtained by kneading the sulfur and the modifier. For example, pure sulfur and an olefin-based polymer which is a reforming additive can be kneaded to obtain a modified sulfur in which a part of the sulfur is reformed into a sulfur polymer. In addition, although modified sulfur may contain an organic polymer, "modified sulfur" shall be contained in an inorganic material in this invention. The presence of sulfur or modified sulfur in the inorganic insulating coating can more effectively block dendrites (alkali metals or alkaline earth metals) that have been grown on the inorganic insulating coating.
また、デンドライトと硫黄とが接触すると、デンドライトと硫黄とが反応する。例えば金属リチウムのデンドライトと硫黄とが接触すると、2Li+S→LiSの反応が生じ、無機絶縁被覆体においてデンドライトの成長が止まる。この反応によって、無機絶縁被覆体中には反応生成物も共存した状態となる。この反応生成物はデンドライト金属よりも硬い電子絶縁性の化合物であるため、デンドライトの成長を阻止することができる。すなわち、上記無機絶縁被覆体は、上記の反応により生じたアルカリ金属を含む化合物及び/又はアルカリ土類金属を含む化合物を含有する形態であることも好ましい。このような形態をとることにより、無機絶縁被覆体の体積が広がり、無機絶縁被覆体中の粒子間、あるいは無機絶縁被覆体と電池要素部材とのわずかな隙間も塞ぐ効果が期待できる。したがって、無機絶縁被覆体によって、電池要素部材の端部を確実に被覆することができる。
 無機絶縁被覆体中、上記絶縁性無機材料の含有量は5~50質量%が好ましく、10~50質量%がより好ましく、10~20質量%が更に好ましい。
Moreover, when dendrite and sulfur come in contact, dendrite and sulfur react. For example, when metallic lithium dendrite contacts sulfur, a reaction of 2Li + S → Li 2 S occurs, and the growth of dendrite stops in the inorganic insulating covering. By this reaction, the reaction product also coexists in the inorganic insulating coating. This reaction product is an electron-insulating compound harder than dendrite metal, and thus can prevent dendrite growth. That is, it is also preferable that the said inorganic insulation coating body is a form containing the compound containing the alkali metal and / or the compound containing alkaline-earth metal which arose by said reaction. By taking such a form, the volume of the inorganic insulating covering is expanded, and an effect of closing a slight gap between particles in the inorganic insulating covering or between the inorganic insulating covering and the battery element member can be expected. Therefore, the inorganic insulating covering can reliably cover the end of the battery element member.
The content of the insulating inorganic material in the inorganic insulating covering is preferably 5 to 50% by mass, more preferably 10 to 50% by mass, and still more preferably 10 to 20% by mass.
 上記無機絶縁被覆体は、有機バインダーを含有してもよい。有機バインダーを含有することにより、粒子同士の結着性等を高めることができ、よりまとまりのある層構成とすることができるため好ましい。 The inorganic insulating covering may contain an organic binder. By containing an organic binder, the binding property of particles can be enhanced, and a more coherent layer structure can be obtained, which is preferable.
(有機バインダー)
 上記有機バインダーとしては有機ポリマーが挙げられる。例えば、以下に述べる樹脂からなる有機バインダーが好ましく使用される。
(Organic binder)
An organic polymer is mentioned as said organic binder. For example, an organic binder made of a resin described below is preferably used.
 含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合体(PVdF-HFP)が挙げられる。
 炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリル-ブタジエンゴム、ポリブタジエン、ポリイソプレンが挙げられる。
 アクリル樹脂としては、各種の(メタ)アクリルモノマー類、(メタ)アクリルアミドモノマー類、及びこれら樹脂を構成するモノマーの共重合体(好ましくは、アクリル酸とアクリル酸メチルとの共重合体)が挙げられる。
 また、そのほかのビニル系モノマーとの共重合体(コポリマー)も好適に用いられる。例えば、(メタ)アクリル酸メチルとスチレンとの共重合体、(メタ)アクリル酸メチルとアクリロニトリルとの共重合体、(メタ)アクリル酸ブチルとアクリロニトリルとスチレンとの共重合体が挙げられる。本願明細書において、コポリマーは、統計コポリマー及び周期コポリマーのいずれでもよく、ブロックコポリマーが好ましい。
 その他の樹脂としては例えばポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、セルロース誘導体樹脂等が挙げられる。
 これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。
Examples of the fluorine-containing resin include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
Examples of the hydrocarbon-based thermoplastic resin include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile-butadiene rubber, polybutadiene, and polyisoprene.
As the acrylic resin, various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of monomers constituting these resins (preferably, copolymers of acrylic acid and methyl acrylate) may be mentioned. Be
In addition, copolymers (copolymers) with other vinyl monomers are also suitably used. For example, a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile and styrene can be mentioned. In the present specification, the copolymer may be either a statistical copolymer or a periodic copolymer, and a block copolymer is preferred.
Examples of other resins include polyurethane resin, polyurea resin, polyamide resin, polyimide resin, polyester resin, polyether resin, polycarbonate resin, and cellulose derivative resin.
One of these may be used alone, or two or more of these may be used in combination.
 上記有機バインダーは、強い結着性を示す、集電体からの剥離抑制及び、固体界面の結着によるサイクル寿命の向上のため、上述の樹脂が選択される。すなわち、アクリル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリイミド樹脂、含フッ素樹脂及び炭化水素系熱可塑性樹脂からなる群から選択される少なくとも1種であることが好ましい。 The above-mentioned resin is selected as the above-mentioned organic binder for the suppression of exfoliation from the current collector and the improvement of the cycle life by the binding of the solid interface, which exhibit strong binding properties. That is, at least one selected from the group consisting of an acrylic resin, a polyurethane resin, a polyurea resin, a polyimide resin, a fluorine-containing resin, and a hydrocarbon-based thermoplastic resin is preferable.
 上記有機バインダーは、粒子表面への濡れ性や吸着性を高めるため、極性基を有することが好ましい。極性基とは、ヘテロ原子を含む1価の基、例えば、酸素原子、窒素原子及び硫黄原子のいずれかと水素原子が結合した構造を含む1価の基が好ましく、具体例としては、カルボキシ基、ヒドロキシ基、アミノ基、リン酸基及びスルホ基が挙げられる。 The organic binder preferably has a polar group in order to enhance wettability and adsorption to the particle surface. The polar group is preferably a monovalent group containing a hetero atom, for example, a monovalent group containing a structure in which a hydrogen atom is bonded to any of an oxygen atom, a nitrogen atom and a sulfur atom, and a specific example is a carboxy group Examples include hydroxy, amino, phosphate and sulfo.
 上記有機バインダーの平均粒子径は、通常10nm~30μmが好ましく、10~1000nmのナノ粒子がより好ましい。 The average particle diameter of the organic binder is preferably 10 nm to 30 μm, and more preferably 10 to 1000 nm.
 上記有機バインダーの重量平均分子量(Mw)は10,000以上が好ましく、20,000以上がより好ましく、30,000以上が更に好ましい。上限としては、1,000,000以下が好ましく、200,000以下がより好ましく、100,000以下が更に好ましい。
 上記無機絶縁被覆体が有機バインダーを含む場合、無機絶縁被覆体中の有機バインダーの含有量として、0.5~6質量%が好ましく、1~3質量%がより好ましい。
10,000 or more are preferable, as for the weight average molecular weight (Mw) of the said organic binder, 20,000 or more are more preferable, and 30,000 or more are still more preferable. As an upper limit, 1,000,000 or less is preferable, 200,000 or less is more preferable, 100,000 or less is still more preferable.
When the inorganic insulating covering contains an organic binder, the content of the organic binder in the inorganic insulating covering is preferably 0.5 to 6% by mass, and more preferably 1 to 3% by mass.
 本発明において、無機絶縁被覆体は上記絶縁性無機材料の他に、上記絶縁性無機材料とは異なる無機絶縁粒子を含むことが好ましい。この無機絶縁粒子もデンドライトの成長を阻止する作用を有する。この無機絶縁粒子として、例えば、酸化アルミニウム、酸化ジルコニウム、酸化ケイ素、ゼオライト、立方晶窒化ホウ素、六方晶窒化ホウ素、酸化セリウム等を挙げることができる。この無機絶縁粒子は通常は微粒子であり、その体積平均粒子径は1μm以下が好ましく、700nm以下がより好ましい。これらの材料を無機絶縁被覆体内に存在させることにより、熱溶融物が毛細管現象によって無機絶縁被覆体の隙間に染み込みやすくなり、より隙間が少ないデンドライト耐性の高い状態とすることができる。
 無機絶縁被覆体中、無機絶縁粒子の含有量は50~90質量%とすることが好ましく、70~85質量%とすることがより好ましい。
In the present invention, the inorganic insulating covering preferably contains, in addition to the insulating inorganic material, inorganic insulating particles different from the insulating inorganic material. The inorganic insulating particles also have the function of blocking the growth of dendrites. Examples of the inorganic insulating particles include aluminum oxide, zirconium oxide, silicon oxide, zeolite, cubic boron nitride, hexagonal boron nitride, and cerium oxide. The inorganic insulating particles are usually fine particles, and the volume average particle diameter thereof is preferably 1 μm or less, more preferably 700 nm or less. The presence of these materials in the inorganic insulating coating makes it easy for the thermal melt to infiltrate into the gaps of the inorganic insulating coating by capillary action, making it possible to have a high dendrite resistance with less gaps.
In the inorganic insulating covering, the content of the inorganic insulating particles is preferably 50 to 90% by mass, and more preferably 70 to 85% by mass.
(固体電解質層)
 本発明の固体電解質層は、無機固体電解質材料を含む。固体電解質層を構成する無機固体電解質材料は、無機固体電解質であるか、あるいは無機固体電解質と活物質との混合物であり、通常は無機固体電解質からなる。無機固体電解質の好ましい形態について以下に説明する。なお、活物質については後述する。
(Solid electrolyte layer)
The solid electrolyte layer of the present invention contains an inorganic solid electrolyte material. The inorganic solid electrolyte material constituting the solid electrolyte layer is an inorganic solid electrolyte, or a mixture of an inorganic solid electrolyte and an active material, and is usually made of an inorganic solid electrolyte. The preferred form of the inorganic solid electrolyte is described below. The active material will be described later.
 無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点においては、電解液やポリマー中においてカチオン及びアニオンが解離又は遊離している無機電解質塩(LiPF、LiBF、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族又は第2族に属する金属のイオンの伝導性を有するものであれば特に限定されず電子伝導性を有さないものが一般的である。 The inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of transferring ions in its inside. An organic solid electrolyte (a polymer electrolyte represented by polyethylene oxide (PEO) or the like, an organic electrolyte represented by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) or the like because it does not contain an organic substance as a main ion conductive material It is clearly distinguished from electrolyte salt). In addition, since the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions. In this respect, it is also clearly distinguished from inorganic electrolyte salts (LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.) in which cations and anions are dissociated or liberated in the electrolytic solution or polymer. The inorganic solid electrolyte is not particularly limited as long as it has ion conductivity of a metal belonging to periodic group 1 or 2 and is generally non-electron conductive.
 本発明において、無機固体電解質は、周期律表第1族又は第2族に属する金属のイオン伝導性を有する。上記無機固体電解質は、この種の製品に適用される固体電解質材料を適宜選定して用いることができる。無機固体電解質として、一般的には(i)硫化物系無機固体電解質及び/又は(ii)酸化物系無機固体電解質が用いられる。 In the present invention, the inorganic solid electrolyte has the ion conductivity of a metal belonging to Group 1 or 2 of the periodic table. As the inorganic solid electrolyte, a solid electrolyte material to be applied to this type of product can be appropriately selected and used. As the inorganic solid electrolyte, generally (i) a sulfide-based inorganic solid electrolyte and / or (ii) an oxide-based inorganic solid electrolyte is used.
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子(S)を含有し、周期律表第1族又は第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
 例えば下記式(I)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 式(I)
 
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は更に、1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましい。d1は更に、2.5~10が好ましく、3.0~8.5がより好ましい。e1は更に、0~5が好ましく、0~3がより好ましい。
(I) Sulfide-Based Inorganic Solid Electrolyte The sulfide-based inorganic solid electrolyte contains a sulfur atom (S), has ion conductivity of a metal belonging to periodic group 1 or 2 and is an electron. Those having insulating properties are preferred. The sulfide-based inorganic solid electrolyte contains at least Li, S and P as elements and preferably has lithium ion conductivity, but depending on the purpose or case, other than Li, S and P. It may contain an element.
For example, a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (I) can be mentioned.

L a1 M b1 P c1 S d1 A e1 formula (I)

In the formula, L represents an element selected from Li, Na and K, and Li is preferred. M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge. A represents an element selected from I, Br, Cl and F. a1 to e1 represent composition ratios of respective elements, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10. Further, a1 is preferably 1 to 9, and more preferably 1.5 to 7.5. b1 is preferably 0 to 3. Furthermore, 2.5 to 10 is preferable, and 3.0 to 8.5 is more preferable. Further, 0 to 5 is preferable, and 0 to 3 is more preferable.
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。 The composition ratio of each element can be controlled by adjusting the compounding amount of the raw material compound at the time of producing a sulfide-based inorganic solid electrolyte as described below.
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mによって表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
The sulfide-based inorganic solid electrolyte may be non-crystalline (glass) or crystallized (glass-ceramicized), or only part of it may be crystallized. For example, a Li—P—S-based glass containing Li, P and S, or a Li—P—S-based glass ceramic containing Li, P and S can be used.
The sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), single phosphorus, single sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, It can be produced by the reaction of at least two or more of LiI, LiBr, LiCl) and sulfides of elements represented by the above M (for example, SiS 2 , SnS, GeS 2 ).
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。 The ratio of Li 2 S to P 2 S 5 in the Li-P-S-based glass and Li-P-S-based glass ceramic is preferably a molar ratio of Li 2 S: P 2 S 5 of 60:40 to 90:10, more preferably 68:32 to 78:22. By setting the ratio of Li 2 S to P 2 S 5 in this range, the lithium ion conductivity can be made high. Specifically, the lithium ion conductivity can be preferably 1 × 10 −4 S / cm or more, more preferably 1 × 10 −3 S / cm or more. There is no particular upper limit, but it is practical to be 1 × 10 −1 S / cm or less.
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-Pが挙げられる。またLiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Alが挙げられる。更にLiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Alが挙げられる。また更に、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12、などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法のいずれかを挙げることができる。これらの方法は、常温での処理が可能であり、製造工程の簡略化を図ることができるからである。 Examples of combinations of raw materials are shown below as specific examples of the sulfide-based inorganic solid electrolyte. For example, Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , and Li 2 S-LiBr-P 2 S 5 can be mentioned. The Li 2 S-Li 2 O- P 2 S 5, Li 2 S-Li 3 PO 4 -P 2 S 5, Li 2 S-P 2 S 5 -P 2 O 5, Li 2 S-P 2 S 5 -SiS 2, Li 2 S-P 2 S 5 -SiS 2 -LiCl, Li 2 S-P 2 S 5 -SnS, include Li 2 S-P 2 S 5 -Al 2 S 3. Furthermore Li 2 S-GeS 2, Li 2 S-GeS 2 -ZnS, Li 2 S-Ga 2 S 3, Li 2 S-GeS 2 -Ga 2 S 3, Li 2 S-GeS 2 -P 2 S 5, Li 2 S-GeS 2 -Sb 2 S 5, Li is 2 S-GeS 2 -Al 2 S 3 and the like. Furthermore, Li 2 S-SiS 2 , Li 2 S-Al 2 S 3 , Li 2 S-SiS 2 -Al 2 S 3 , Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -Li 4 SiO 4, Li 2 S-SiS 2 -Li 3 PO 4, Li 10 GeP 2 S 12, and the like. However, the mixing ratio of each raw material does not matter. As a method of synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition, for example, an amorphization method can be mentioned. As the amorphization method, for example, any of mechanical milling method, solution method and melting and quenching method can be mentioned. These methods can be processed at normal temperature, and can simplify the manufacturing process.
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族又は第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
(Ii) Oxide-Based Inorganic Solid Electrolyte The oxide-based inorganic solid electrolyte contains an oxygen atom (O) and has ion conductivity of a metal belonging to Periodic Table Group 1 or 2 and And compounds having electron insulating properties are preferred.
 具体的な化合物例としては、例えば、LixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)が挙げられる。また、LixbLaybZrzbbb mbnb(MbbはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Sn等から選択された少なくとも1種以上の元素であり、xbは5≦xb≦10、ybは1≦yb≦4、zbは1≦zb≦4、mbは0≦mb≦2、及びnbは5≦nb≦20を満たす。)が挙げられる。また、Lixcyccc zcnc(MccはC,S,Al,Si,Ga,Ge,In,Sn等から選択された少なくとも1種以上の元素であり、xcは0≦xc≦5、ycは0≦yc≦1、zcは0≦zc≦1、及びncは0≦nc≦6を満たし、かつxc+yc+zc+nc≠0である。)が挙げられる。更に、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、及び3≦nd≦13)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表し、Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。)が挙げられる。更にまた、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素によって置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。 As a specific compound example, for example, Li xa La ya TiO 3 [xa = 0.3 to 0.7, ya = 0.3 to 0.7] (LLT) can be mentioned. Further, Li xb La yb Zr z Mbb mb O nb ( Mbb is at least one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, Sn, etc. Xb is 5 ≦ xb ≦ 10, yb is 1 ≦ yb ≦ 4, zb is 1 ≦ zb ≦ 4, mb is 0 ≦ mb ≦ 2, and nb is 5 ≦ nb ≦ 20. Further, Li xc B yc M cc z c O nc (M cc is at least one or more elements selected from C, S, Al, Si, Ga, Ge, In, Sn, etc., and xc is 0 ≦ xc ≦ 5, yc is 0 ≦ yc ≦ 1, zc is 0 ≦ zc ≦ 1, and nc satisfies 0 ≦ nc ≦ 6, and xc + yc + zc + nc ≠ 0. Furthermore, Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md O nd (1 ≦ xd ≦ 3,0 ≦ yd ≦ 1,0 ≦ zd ≦ 2,0 ≦ ad ≦ 1,1 ≦ md ≦ 7 and 3 ≦ nd ≦ 13), Li (3-2xe) M ee xe D ee O (xe represents a number of 0 or more and 0.1 or less, M ee represents a divalent metal atom, D ee Represents a halogen atom or a combination of two or more types of halogen atoms. Furthermore, Li xf Si yf O zf (1 ≦ xf ≦ 5, 0 <yf ≦ 3, 1 ≦ zf ≦ 10), Li xg S yg O zg (1 ≦ xg ≦ 3, 0 <yg ≦ 2, 1 ≦ zg ≦ 10), Li 3 BO 3 -Li 2 SO 4 , Li 2 O-B 2 O 3 -P 2 O 5 , Li 2 O-SiO 2 , Li 6 BaLa 2 Ta 2 O 12 , Li 3 PO (4 -3/2 w ) N w (w is <1), Li 3.5 Zn 0.25 GeO 4 having a LISICON (Lithium superionic conductor) type crystal structure, La 0.55 Li 0 having a perovskite type crystal structure .35 TiO 3, NASICON LiTi 2 P 3 O 12 having a (Natrium super ionic conductor) crystal structure, Li 1 + xh + yh Al, Ga) xh (Ti, Ge) 2-xh Si yh P 3-yh O 12 ( provided that, 0 ≦ xh ≦ 1,0 ≦ yh ≦ 1), Li 7 having a garnet-type crystal structure La 3 Zr 2 O 12 (LLZ) and the like. Also desirable are phosphorus compounds containing Li, P and O. For example, lithium phosphate (Li 3 PO 4 ), LiPON in which part of oxygen of lithium phosphate is replaced by nitrogen, LiPOD 1 (D 1 is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr And at least one selected from Nb, Mo, Ru, Ag, Ta, W, Pt, Au and the like. Further, LiA 1 ON (A 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.) and the like can also be preferably used.
 無機固体電解質の粒子径(体積平均粒子径)は特に限定されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、無機固体電解質粒子の平均粒子径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。 The particle size (volume average particle size) of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 μm or more, and more preferably 0.1 μm or more. The upper limit is preferably 100 μm or less, more preferably 50 μm or less. In addition, the measurement of the average particle diameter of inorganic solid electrolyte particle | grains is performed in the following procedures. The inorganic solid electrolyte particles are diluted with water (heptane for water labile substances) in a 20 ml sample bottle to dilute a 1% by weight dispersion. The diluted dispersed sample is irradiated with 1 kHz ultrasound for 10 minutes, and used immediately thereafter for the test. Using this dispersion liquid sample, using a laser diffraction / scattering particle size distribution analyzer LA-920 (manufactured by HORIBA), data acquisition is carried out 50 times using a quartz cell for measurement at a temperature of 25 ° C. Get the diameter. For other detailed conditions, etc., refer to the description in JIS Z 8828: 2013 "Particle diameter analysis-dynamic light scattering method" as necessary. Make five samples per level and adopt the average value.
(正極活物質層)
 上記正極活物質層4は、上述した無機固体電解質と、正極活物質とを含有する。
 正極活物質の好ましい形態について説明する。
(Positive electrode active material layer)
The positive electrode active material layer 4 contains the inorganic solid electrolyte described above and a positive electrode active material.
The preferable form of a positive electrode active material is demonstrated.
-正極活物質-
 上記正極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物や、有機物、硫黄などのLiと複合化できる元素や硫黄と金属の複合物などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P又はBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
-Positive electrode active material-
The positive electrode active material is preferably one that can reversibly insert and release lithium ions. The material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element capable of being complexed with Li such as sulfur, a complex of sulfur and a metal, or the like.
Among them, it is preferable to use a transition metal oxide as the positive electrode active material, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu and V) Are more preferred. Further, in this transition metal oxide, an element M b (an element of Group 1 (Ia) other than lithium, an element of Group 1 (Ia) of the metal periodic table, an element of Group 2 (IIa), Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P or B may be mixed. The mixing amount is preferably 0 to 30 mol% with respect to the amount (100 mol%) of the transition metal element M a . It is more preferable to be synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2.
Specific examples of the transition metal oxide include a transition metal oxide having a (MA) layered rock salt type structure, a transition metal oxide having a (MB) spinel type structure, a (MC) lithium-containing transition metal phosphate compound, (MD And the like) lithium-containing transition metal halogenated phosphoric acid compounds and (ME) lithium-containing transition metal silicate compounds.
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO4、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類ならびにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO及びLiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO、LMO、NCA又はNMCがより好ましい。
As specific examples of transition metal oxides having a layered rock salt type structure, LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (lithium nickel cobalt aluminate [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobaltate [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( And lithium manganese nickelate).
Specific examples of transition metal oxides having a (MB) spinel structure include LiMn 2 O 4 (LMO), LiCoMnO 4, Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 and the like.
Examples of (MC) lithium-containing transition metal phosphate compounds include olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4 etc. And cobalt salts of monoclinic Nasacon-type vanadium phosphate such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
(MD) as the lithium-containing transition metal halogenated phosphate compound, for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And cobalt fluoride phosphates.
Examples of the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 and Li 2 CoSiO 4 .
In the present invention, transition metal oxides having a (MA) layered rock salt type structure are preferred, and LCO, LMO, NCA or NMC are more preferred.
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の体積平均粒子径(球換算平均粒子径)は特に限定されない。例えば、0.1~50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機や分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の体積平均粒子径(球換算平均粒子径)は、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定することができる。 The shape of the positive electrode active material is not particularly limited, but is preferably in the form of particles. The volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 μm. In order to make the positive electrode active material have a predetermined particle diameter, a usual pulverizer or classifier may be used. The positive electrode active material obtained by the firing method may be used after washing with water, an acidic aqueous solution, an alkaline aqueous solution and an organic solvent. The volume average particle size (sphere-equivalent average particle size) of the positive electrode active material particles can be measured using a laser diffraction / scattering type particle size distribution measuring apparatus LA-920 (trade name, manufactured by HORIBA).
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
The positive electrode active materials may be used alone or in combination of two or more.
When forming a positive electrode active material layer, the mass (mg) (area weight) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be determined appropriately depending on the designed battery capacity.
 正極活物質の、正極活物質層中における含有量は、特に限定されず、10~95質量%が好ましく、30~90質量%がより好ましく、50~85質量が更に好ましく、55~80質量%が特に好ましい。 The content of the positive electrode active material in the positive electrode active material layer is not particularly limited, and is preferably 10 to 95% by mass, more preferably 30 to 90% by mass, still more preferably 50 to 85% by mass, and 55 to 80% by mass Is particularly preferred.
(負極活物質層)
 上記負極活物質層2は、上述した無機固体電解質と、負極活物質とを含有する。なお、上述した通り、本発明の全固体二次電池は負極活物質層を予め形成しない形態とすることも好ましい。
 負極活物質の好ましい形態について説明する。
(Anode active material layer)
The negative electrode active material layer 2 contains the above-mentioned inorganic solid electrolyte and a negative electrode active material. As described above, it is also preferable that the all-solid-state secondary battery of the present invention does not form the negative electrode active material layer in advance.
The preferable form of a negative electrode active material is demonstrated.
-負極活物質-
 上記負極活物質は、可逆的にリチウムイオンを貯蔵及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はない。その材料には、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体及びリチウムアルミニウム合金等のリチウム合金、並びに、Sn、Si、Al及びIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵及び放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
-Negative electrode active material-
It is preferable that the negative electrode active material be capable of reversibly storing and releasing lithium ions. The material is not particularly limited as long as it has the above-mentioned characteristics. The materials include carbonaceous materials, metal oxides such as tin oxide, silicon oxides, metal complex oxides, lithium alone such as lithium and lithium aluminum alloys, and lithium and alloys such as Sn, Si, Al and In. The metal etc. which can be formed are mentioned. Among them, carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of reliability. Moreover, as a metal complex oxide, it is preferable that lithium can be occluded and released. The material is not particularly limited, but it is preferable in view of high current density charge and discharge characteristics that titanium and / or lithium is contained as a component.
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類を挙げることができる。また、メソフェーズ微小球体、グラファイトウィスカーならびに平板状の黒鉛等を挙げることもできる。 The carbonaceous material used as the negative electrode active material is a material substantially consisting of carbon. For example, various kinds of synthesis such as petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor grown graphite etc.), and PAN (polyacrylonitrile) resin and furfuryl alcohol resin etc. The carbonaceous material which baked resin can be mentioned. Furthermore, various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber and activated carbon fiber The kind can be mentioned. Mention may also be made of mesophase microspheres, graphite whiskers and flat graphite.
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法において、回折角2θが20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。 As the metal oxide and the metal complex oxide applied as the negative electrode active material, an amorphous oxide is particularly preferable, and chalcogenide which is a reaction product of a metal element and an element of Periodic Group 16 is also preferably used. Be The term "amorphous" as used herein means an X-ray diffraction method using a CuKα ray having a broad scattering band having a peak in the region of a diffraction angle 2θ of 20 ° to 40 °, and is a crystalline diffraction. It may have a line.
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましい。特に、周期律表第13(IIIA)族~15(VA)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb及びBiから選択される1種単独もしくはそれらの2種以上の組み合わせからなる酸化物、ならびにカルコゲナイドが好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb及びSnSiSが挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。 Among the group of compounds consisting of the above amorphous oxides and chalcogenides, amorphous oxides of semimetal elements and chalcogenides are more preferable. In particular, one or a combination of two or more thereof selected from elements of groups 13 (IIIA) to 15 (VA) of the periodic table, Al, Ga, Si, Sn, Ge, Pb, Sb and Bi And oxides consisting of and chalcogenides are preferred. Specific examples of preferred amorphous oxides and chalcogenides include Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 . They may also be complex oxides with lithium oxide, such as Li 2 SnO 2 .
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。 The negative electrode active material also preferably contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics because the volume fluctuation at the time of lithium ion absorption and release is small, and the deterioration of the electrode is suppressed, and lithium ion secondary It is preferable at the point which the lifetime improvement of a battery is attained.
 本発明においては、Si系の負極を適用することもまた好ましい。一般的にSi負極は、炭素負極(黒鉛、アセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。 In the present invention, it is also preferable to apply a Si-based negative electrode. In general, a Si negative electrode can store more Li ions than a carbon negative electrode (graphite, acetylene black, etc.). That is, the storage amount of Li ions per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery operating time can be extended.
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の粒子径(体積平均粒子径)は、0.1~60μmが好ましい。所定の粒子径にするには、通常の粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル及び旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、もしくはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式及び湿式ともに用いることができる。負極活物質粒子の体積平均粒子径は、前述の正極活物質の体積平均粒子径の測定方法と同様の方法により測定することができる。 The shape of the negative electrode active material is not particularly limited, but is preferably in the form of particles. The particle diameter (volume average particle diameter) of the negative electrode active material is preferably 0.1 to 60 μm. In order to obtain a predetermined particle size, a usual pulverizer or classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling flow jet mill, a sieve and the like are suitably used. At the time of pulverization, wet pulverization in the presence of water or an organic solvent such as methanol can also be carried out as necessary. It is preferable to carry out classification in order to obtain a desired particle size. The classification method is not particularly limited, and a sieve, an air classifier or the like can be used as required. Classification can be used both dry and wet. The volume average particle size of the negative electrode active material particles can be measured by the same method as the above-mentioned method of measuring the volume average particle size of the positive electrode active material.
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
The negative electrode active materials may be used alone or in combination of two or more.
When forming a negative electrode active material layer, the mass (mg) (area weight) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. It can be determined appropriately depending on the designed battery capacity.
 負極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形分100質量%において、10~80質量%であることが好ましく、20~80質量%がより好ましい。 The content of the negative electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 80% by mass, and more preferably 20 to 80% by mass, with respect to 100% by mass of the solid content.
 正極活物質又は負極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。また、正極活物質又は負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理が施されていても良い。 The electrode surface containing the positive electrode active material or the negative electrode active material may be surface-treated with sulfur or phosphorus. In addition, the particle surface of the positive electrode active material or the negative electrode active material may be subjected to surface treatment with an actinic ray or active gas (such as plasma) before and after the surface coating.
 本発明の全固体二次電池において、固体電解質層、正極活物質層及び負極活物質層には、リチウム塩、導電助剤、バインダー(上記無機絶縁被覆体に含まれ得る有機バインダーが好ましい)、分散剤等が含まれていることも好ましい。 In the all solid secondary battery of the present invention, a lithium salt, a conductive support agent, and a binder (preferably an organic binder which can be contained in the above-mentioned inorganic insulating covering) are preferably used for the solid electrolyte layer, the positive electrode active material layer and the negative electrode active material layer, It is also preferable that a dispersant and the like be included.
〔集電体(金属箔)〕
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましい。その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム、銅、銅合金又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましい。その中でも、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
[Current collector (metal foil)]
The positive electrode current collector 5 and the negative electrode current collector 1 are preferably electron conductors.
In the present invention, one or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
In addition to aluminum, aluminum alloy, stainless steel, nickel and titanium as materials for forming a positive electrode current collector, aluminum or stainless steel surface treated with carbon, nickel, titanium or silver (a thin film is formed Are preferred. Among these, aluminum and an aluminum alloy are more preferable.
As materials for forming the negative electrode current collector, in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium etc., carbon, nickel, titanium or silver is treated on the surface of aluminum, copper, copper alloy or stainless steel It is preferable that Among them, aluminum, copper, copper alloy and stainless steel are more preferable.
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚さは、特に限定されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
The shape of the current collector is usually in the form of a film sheet, but a net, a punch, a lath body, a porous body, a foam, a molded body of a fiber group and the like can also be used.
The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm. Further, it is also preferable to make the current collector surface uneven by surface treatment.
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層や部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。 In the present invention, functional layers, members and the like are appropriately interposed or disposed between or outside each layer of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer and the positive electrode current collector. You may Each layer may be composed of a single layer or multiple layers.
<全固体二次電池の製造方法>
 本発明の全固体二次電池の製造方法の一例を以下に示すが、本発明の全固体二次電池の製造方法はこれらの形態に限定されるものではない。
(電池要素部材の端部全体を無機絶縁被覆体で被覆する態様)
 基材(例えば、集電体となる金属箔)上に、正極活物質層を構成する成分を含む組成物(正極用組成物)を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、正極活物質層の上に、少なくとも上記無機固体電解質材料を含有する組成物を塗布して固体電解質層を形成する。
 その後、固体電解質層の上に、負極活物質層、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得る。ついで、これらの電池要素部材を電池外装体となる筐体に詰める。
 次いで、筺体内の、上記電池要素部材の端部に、上述した絶縁性無機材料と無機絶縁粒子の混合物を配する。次いで絶縁性無機材料が熱溶融する温度(好ましくは200℃以下)まで加熱し、絶縁性無機材料の溶融物を、上記混合物を構成する粒子間に行き渡らせて、上記電池要素部材の端部に無機絶縁被覆体を形成する。
<Method of manufacturing all solid secondary battery>
Although an example of the manufacturing method of the all-solid-state secondary battery of this invention is shown below, the manufacturing method of the all-solid-state secondary battery of this invention is not limited to these forms.
(Aspect in which the entire end of the battery element member is covered with an inorganic insulating coating)
The composition (composition for positive electrode) containing the component which comprises a positive electrode active material layer is apply | coated on a base material (for example, metal foil used as a collector), a positive electrode active material layer is formed, and all-solid secondary A battery positive electrode sheet is produced. Next, a composition containing at least the inorganic solid electrolyte material is applied onto the positive electrode active material layer to form a solid electrolyte layer.
After that, by stacking the negative electrode active material layer and the negative electrode current collector (metal foil) on the solid electrolyte layer, the entire solid having a structure in which the solid electrolyte layer is sandwiched between the positive electrode active material layer and the negative electrode active material layer Get a secondary battery. Then, these battery element members are packed in a housing which is to be a battery outer package.
Next, the mixture of the insulating inorganic material and the inorganic insulating particles described above is disposed at the end of the battery element member in the housing. Then, the insulating inorganic material is heated to a temperature at which it melts (preferably 200 ° C. or less), and the insulating inorganic material melt is spread among the particles constituting the mixture to the end of the battery element member Form an inorganic insulating covering.
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。また、基材/負極活物質層からなる2層構造の積層体と、基材/正極活物質層/固体電解質層からなる3層構造の積層体とを調製し、これらを重ねあわせて本発明の全固体二次電池を得ることもできる。また基材/正極活物質層からなる2層構造の積層体と、基材/負極活物質層/固体電解質層からなる3層構造の積層体とを調製し、これらを重ねあわせて電池要素部材を得ることもできる。 In addition, the formation method of each layer is reversed, a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to produce an all solid secondary battery. You can also In addition, a laminate of a two-layer structure consisting of a substrate / anode active material layer and a laminate of a three-layer structure consisting of a substrate / a cathode active material layer / a solid electrolyte layer are prepared, and these are superposed to form the present invention. It is also possible to obtain an all solid secondary battery of In addition, a laminate of a two-layer structure consisting of a base material / a positive electrode active material layer and a laminate of a three-layer structure consisting of a base material / a negative electrode active material layer / a solid electrolyte layer are prepared, You can also get
 また、以下のように無機絶縁被覆体を、(a)固体電荷脂質層の端部のみ、(b)正極活物質層の端部と固体電荷脂質層の端部のみ、もしくは(c)正極集電体の端部と正極活物質層の端部と固体電荷脂質層の端部のみに設けた形態とすることもできる。これらの形態も本発明の全固体二次電池の形態として好ましい。
(電池要素部材の端部の一部を無機絶縁被覆体で被覆する態様)
 基材(例えば、集電体となる金属箔)上に、正極活物質層を構成する成分を含む組成物(正極用組成物)を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、正極活物質層の上に、少なくとも上記無機固体電解質材料を含有する組成物を塗布して固体電解質層を形成する。更に、固体電解質層の両端に上述した絶縁性無機材料と無機絶縁粒子の混合物を配する。上記混合物は、基材端部及び/又は正極活物質層の端部にまで形成してもよい。次いで絶縁性無機材料が熱溶融する温度(好ましくは200℃以下)まで加熱し、絶縁性無機材料の溶融物を無機固体電解質材料の端部に行き渡らせ、また上記混合物を構成する粒子間に行き渡らせる。そして、固体電解質層端部、もしくは正極活物質層端部と固体電解質層端部、もしくは正極集電体端部と正極活物質層端部と固体電荷脂質層端部に無機絶縁被覆体を形成する。
 その後、固体電解質層の上に、負極用材料として、負極活物質層を形成する成分を含有する組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを電池外装体となる筐体に封入して所望の全固体二次電池とすることができる。
In addition, as described below, (a) only the end of the solid charge lipid layer, (b) only the end of the positive electrode active material layer and the end of the solid charge lipid layer, or (c) the positive electrode collection It may be provided only at the end of the current collector, the end of the positive electrode active material layer, and the end of the solid charge lipid layer. These forms are also preferable as the form of the all-solid secondary battery of the present invention.
(Aspect of covering a part of the end of the battery element member with the inorganic insulating coating)
The composition (composition for positive electrode) containing the component which comprises a positive electrode active material layer is apply | coated on a base material (for example, metal foil used as a collector), a positive electrode active material layer is formed, and all-solid secondary A battery positive electrode sheet is produced. Next, a composition containing at least the inorganic solid electrolyte material is applied onto the positive electrode active material layer to form a solid electrolyte layer. Furthermore, a mixture of the above-described insulating inorganic material and inorganic insulating particles is disposed at both ends of the solid electrolyte layer. The mixture may be formed up to the substrate end and / or the end of the positive electrode active material layer. Then, the insulating inorganic material is heated to a temperature at which it melts (preferably 200 ° C. or less), and the insulating inorganic material melt is spread over the end of the inorganic solid electrolyte material, and also among the particles constituting the mixture. Let Then, an inorganic insulating covering is formed on the end of the solid electrolyte layer, the end of the positive electrode active material layer and the end of the solid electrolyte layer, or the end of the positive electrode current collector, the end of the positive electrode active material layer, and the end of the solid charge lipid layer Do.
Then, on the solid electrolyte layer, a composition containing a component for forming a negative electrode active material layer is applied as a negative electrode material to form a negative electrode active material layer. An all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer by overlapping a negative electrode current collector (metal foil) on the negative electrode active material layer Can. If necessary, it can be enclosed in a case that will be a battery outer package to obtain a desired all-solid secondary battery.
 更に、後述する、端部に無機絶縁被覆体を有する固体電解質シート、及び/又は端部に無機絶縁被覆体を有する正極活物質シートを予め用意しておき、これらのシートを用いて電池要素部材を作製し、本発明の全固体二次電池とすることもできる。 Furthermore, a solid electrolyte sheet having an inorganic insulating covering at an end, and / or a positive electrode active material sheet having an inorganic insulating covering at an end, which will be described later, are prepared in advance. Can also be made into the all solid secondary battery of the present invention.
 上記絶縁性無機材料を溶融させるための加熱は、上記の例では、上記混合物を目的の端部に配した直後に行っている。また本発明はこの実施形態に限定されない。すなわち、上記混合物を用いて目的の端部に配した後であれば、全固体二次電池の製造工程のどの段階で加熱してもよい。また、上記混合物を目的の端部に配する工程を上記絶縁性無機材料の溶融温度以上の温度で行うこともでき、この場合は絶縁性無機材料を溶融させるための加熱工程を別途設ける必要がない場合もある。 In the above example, the heating for melting the insulating inorganic material is performed immediately after the mixture is placed at the end of interest. Also, the present invention is not limited to this embodiment. That is, heating may be performed at any stage of the manufacturing process of the all-solid secondary battery, as long as the mixture is used and disposed at the desired end. Alternatively, the step of disposing the mixture at the target end may be performed at a temperature higher than the melting temperature of the insulating inorganic material, in which case it is necessary to separately provide a heating step for melting the insulating inorganic material. It may not be.
(各層の形成方法)
 本発明の全固体二次電池の製造において、固体電解質層及び活物質層の形成方法は特に限定されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布及びバーコート塗布が挙げられる。
 このとき、塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に限定されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。このような温度範囲で加熱することで、(C)分散媒を除去し、固体状態にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性を得ることができる。
(How to form each layer)
In the production of the all-solid secondary battery of the present invention, the method of forming the solid electrolyte layer and the active material layer is not particularly limited, and can be appropriately selected. For example, application (preferably wet application), spray application, spin coating application, dip coating, slit application, stripe application and bar coating application can be mentioned.
At this time, a drying process may be performed after application, or a drying process may be performed after multi-layer application. The drying temperature is not particularly limited. The lower limit is preferably 30 ° C. or more, more preferably 60 ° C. or more, and still more preferably 80 ° C. or more. 300 degrees C or less is preferable, 250 degrees C or less is more preferable, and 200 degrees C or less is still more preferable. By heating in such a temperature range, the (C) dispersion medium can be removed to be in a solid state. Moreover, it is preferable because the temperature is not excessively high and the members of the all solid secondary battery are not damaged. Thereby, in the all solid secondary battery, excellent overall performance can be exhibited, and good binding can be obtained.
 作製した全固体二次電池は、加圧することが好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては、特に限定されず、一般的には50~1500MPaの範囲であることが好ましい。
 また、塗布した固体電解質組成物は、加圧と同時に加熱してもよい。加熱温度としては、特に限定されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。
 加圧は塗布溶媒又は分散媒をあらかじめ乾燥させた状態で行ってもよいし、溶媒又は分散媒が残存している状態で行ってもよい。
It is preferable to pressurize the produced all solid secondary battery. A hydraulic cylinder press machine etc. are mentioned as a pressurization method. The pressure is not particularly limited, and in general, the pressure is preferably in the range of 50 to 1,500 MPa.
The applied solid electrolyte composition may be heated simultaneously with pressurization. The heating temperature is not particularly limited, and generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
The pressurization may be performed in a state where the coating solvent or the dispersion medium is dried in advance, or may be performed in a state where the solvent or the dispersion medium remains.
 加圧中の雰囲気としては、特に限定されず、大気下、乾燥空気下(露点-20℃以下)及び不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積や膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
The atmosphere during pressurization is not particularly limited, and may be under air, under dry air (dew point −20 ° C. or less), under inert gas (eg, in argon gas, in helium gas, in nitrogen gas).
The pressing time may be high pressure for a short time (for example, within several hours), or may be medium pressure for a long time (one day or more). In the case of an all-solid secondary battery other than the all-solid secondary battery sheet, for example, a restraint (screw tightening pressure or the like) of the all-solid secondary battery can also be used to keep applying medium pressure.
The pressing pressure may be uniform or different with respect to a pressure receiving portion such as a sheet surface.
The press pressure can be changed according to the area and film thickness of the pressure-receiving portion. It is also possible to change the same site in stages with different pressures.
The press surface may be smooth or roughened.
 また、電池をシート状に形成し、この電池シートを軸心の外周にロール状に巻いた状態とした円筒型とし、この円筒型電池の最外層から軸心方向に圧力をかける形態とすることもできる。 In addition, the battery is formed in a sheet shape, and the battery sheet is formed into a cylindrical shape in which the battery sheet is wound in a roll shape around the axial center, and pressure is applied in the axial direction from the outermost layer of the cylindrical battery. You can also.
(初期化)
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化の方法は特に限定されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより行うことができる。
(Initialize)
The all-solid secondary battery produced as described above is preferably subjected to initialization after production or before use. The method of initialization is not particularly limited. For example, initial charging and discharging may be performed in a state where the press pressure is increased, and then the pressure may be released until the general working pressure of the all solid secondary battery is reached.
<全固体二次電池の用途>
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載される。電子機器としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンターなどが挙げられる。また、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ポータブルCDプレーヤー、ミニディスクプレーヤー、携帯テープレコーダー、ラジオ等の音響、映像機器に搭載される。更に搭載機器として、ハンディークリーナー、電気シェーバー、トランシーバー、電子手帳、卓上電子計算機、メモリーカード、バックアップ電源などが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
<Applications of all solid secondary battery>
The all solid secondary battery of the present invention can be applied to various applications. Although there is no limitation in particular in an application aspect, For example, it is mounted in an electronic device. Examples of the electronic devices include laptop computers, pen-based personal computers, mobile personal computers, electronic book players, mobile phones, cordless handsets, pagers, handy terminals, mobile fax machines, mobile copying machines, mobile printers and the like. It is also installed in audio and visual equipment such as headphone stereos, video movies, LCD TVs, portable CD players, mini disc players, portable tape recorders, radios and the like. Further, as mounted devices, handy cleaners, electric shavers, transceivers, electronic organizers, desk-top computers, memory cards, backup power supplies, etc. may be mentioned. Other consumer products include automobiles, electric vehicles, motors, lighting devices, toys, game machines, road conditioners, watches, strobes, cameras, medical devices (pace makers, hearing aids, shoulder machines, etc.). Furthermore, it can be used for various military and space applications. It can also be combined with a solar cell.
 なかでも、高容量かつ高レート放電特性が要求されるアプリケーションに適用することが好ましい。例えば、今後大容量化が予想される蓄電設備等においては高い安全性が必須となり更に電池性能の両立が要求される。また、電気自動車などは高容量の二次電池を搭載し、家庭で日々充電が行われる用途が想定される。本発明によれば、このような使用形態に好適に対応してその優れた効果を発揮することができる。 Among them, application to applications requiring high capacity and high rate discharge characteristics is preferable. For example, in a power storage facility or the like expected to have a large capacity in the future, high safety is essential, and further compatibility of battery performance is required. In addition, electric vehicles and the like are equipped with a high-capacity secondary battery, and are expected to be used for daily charging at home. According to the present invention, it is possible to exhibit the excellent effect by suitably corresponding to such a use form.
[全固体二次電池用固体電解質シート]
 本発明の全固体二次電池用固体電解質シート(以下、単に「本発明の電解質シート」ともいう。)は、本発明の全固体二次電池の固体電解質層を提供する部材として好適に用いることができる。すなわち、本発明の電解質シートは、固体電解質層と、この固体電解質層の両端部を被覆した無機絶縁被覆体とを有するものである。この無機絶縁被覆体は、ヤング率が1GPa以上である。このような無機絶縁被覆体には、前述したものがある。
[Solid electrolyte sheet for all solid secondary battery]
The solid electrolyte sheet for the all solid secondary battery of the present invention (hereinafter, also simply referred to as "the electrolyte sheet of the present invention") is suitably used as a member for providing the solid electrolyte layer of the all solid secondary battery of the present invention. Can. That is, the electrolyte sheet of the present invention has a solid electrolyte layer and an inorganic insulating covering that covers both ends of the solid electrolyte layer. The inorganic insulating covering has a Young's modulus of 1 GPa or more. Such inorganic insulating coverings include those described above.
[全固体二次電池用正極活物質シート]
 本発明の全固体二次電池用正極活物質シート(以下、単に「本発明の正極活物質シート」ともいう。)は、本発明の全固体二次電池の正極活物質層を提供する部材として好適に用いることができる。すなわち、本発明の正極活物質シートは、正極活物質層の両端部を被覆した無機絶縁被覆体を有するものである。この無機絶縁被覆体は、ヤング率が1GPa以上を有するものである。このような無機絶縁被覆体には、前述したものがある。
[Positive Electrode Active Material Sheet for All Solid Secondary Battery]
The positive electrode active material sheet for all solid secondary batteries of the present invention (hereinafter, also simply referred to as "the positive electrode active material sheet of the present invention") is a member for providing the positive electrode active material layer of the all solid secondary battery of the present invention It can be used suitably. That is, the positive electrode active material sheet of the present invention has an inorganic insulating covering that covers both ends of the positive electrode active material layer. This inorganic insulating covering has a Young's modulus of 1 GPa or more. Such inorganic insulating coverings include those described above.
 上記固体電解質シートは、例えば次のように作製することができる。
 基材(例えば、負極集電体となる金属箔)上に、上記無機固体電解質材料を含有する組成物を塗布して固体電解質層を形成し、全固体二次電池用固体電解質シートを作製する。次いで、固体電解質層の両端に上述した絶縁性無機材料と無機絶縁粒子の混合物を塗布により配する。上記混合物は、基材端部にまで形成してもよい。次いで絶縁性無機材料が熱溶融する温度(好ましくは200℃以下)まで加熱し、絶縁性無機材料の溶融物を無機固体電解質材料の端部に行き渡らせ、また上記混合物を構成する粒子間に行き渡らせて、固体電解質層端部に無機絶縁被覆体を形成する。
 また、上記正極活物質シートは、例えば次のように作製することができる。
 基材(例えば、集電体となる金属箔)上に、正極活物質層を構成する成分を含む組成物(正極用組成物)を塗布して正極活物質層を形成し、全固体二次電池用正極活物質シートを作製する。次いで、正極活物質層の両端に上述した絶縁性無機材料と無機絶縁粒子の混合物を塗布により配する。上記混合物は、基材端部にまで形成してもよい。次いで絶縁性無機材料が熱溶融する温度(好ましくは200℃以下)まで加熱し、絶縁性無機材料の溶融物を正極活物質層の端部に行き渡らせ、また上記混合物を構成する粒子間に行き渡らせて、正極活物質層端部に無機絶縁被覆体を形成する。
 絶縁性無機材料の混合物の塗布は、例えば、硫黄と酸化アルミニウム(アルミナ)の粒子の混合物をトルエンで分散させた分散液を使って行うことができる。
The solid electrolyte sheet can be produced, for example, as follows.
A composition containing the above-mentioned inorganic solid electrolyte material is applied on a substrate (for example, metal foil to be a negative electrode current collector) to form a solid electrolyte layer, and a solid electrolyte sheet for an all solid secondary battery is produced. . Next, a mixture of the above-mentioned insulating inorganic material and inorganic insulating particles is disposed on both ends of the solid electrolyte layer by application. The above mixture may be formed up to the end of the substrate. Then, the insulating inorganic material is heated to a temperature at which it melts (preferably 200 ° C. or less), and the insulating inorganic material melt is spread over the end of the inorganic solid electrolyte material, and also among the particles constituting the mixture. Then, an inorganic insulating covering is formed at the end of the solid electrolyte layer.
Moreover, the said positive electrode active material sheet can be produced as follows, for example.
The composition (composition for positive electrode) containing the component which comprises a positive electrode active material layer is apply | coated on a base material (for example, metal foil used as a collector), a positive electrode active material layer is formed, and all-solid secondary A positive electrode active material sheet for battery is produced. Next, a mixture of the above-described insulating inorganic material and inorganic insulating particles is disposed on both ends of the positive electrode active material layer by application. The above mixture may be formed up to the end of the substrate. Next, the insulating inorganic material is heated to a temperature at which it melts (preferably 200 ° C. or less), and the insulating inorganic material melt is distributed to the end of the positive electrode active material layer, and is dispersed among the particles constituting the mixture. Then, an inorganic insulating covering is formed at the end of the positive electrode active material layer.
The application of the mixture of insulating inorganic materials can be performed, for example, using a dispersion of a mixture of particles of sulfur and aluminum oxide (alumina) dispersed in toluene.
 本発明を実施例に基づき更に詳細に説明するが、本発明はこれらの実施形態に限定されるものではない。 The present invention will be described in more detail based on examples, but the present invention is not limited to these embodiments.
[参考例1] 無機固体電解質の合成
 アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入した。LiS及びPはモル比でLiS:P=75:25である。メノウ製乳鉢上において、メノウ製乳棒を用いて、5分間混合した。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、上記混合物全量を投入し、アルゴン雰囲気下で容器を完全に密閉した。フリッチュ社製遊星ボールミルP-7に容器をセットし、25℃で、回転数510rpmで20時間メカニカルミリングを行うことで黄色粉体の硫化物系無機固体電解質(Li/P/Sガラス、以下「LPS」ともいう。)6.2gを得た。
 得られたLPSの体積平均粒子径を、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定した結果、8μmであった。
Reference Example 1 Synthesis of Inorganic Solid Electrolyte Lithium sulfide (Li 2 S, manufactured by Aldrich, purity> 99.98%) 2.42 g, pentasulfide disulphide, in a glove box under an argon atmosphere (dew point −70 ° C.) 3.90 g of phosphorus (P 2 S 5 , manufactured by Aldrich, purity> 99%) was individually weighed and placed in an agate mortar. Li 2 S and P 2 S 5 have a molar ratio of Li 2 S: P 2 S 5 = 75: 25. The mixture was mixed for 5 minutes using a pestle made from agate on a mortar made from agate.
66 zirconia beads with a diameter of 5 mm were charged into a 45 mL container made of zirconia (manufactured by Fritsch), the whole mixture was charged, and the container was completely sealed under an argon atmosphere. A container is set in a Fritsch planetary ball mill P-7, and mechanical milling is performed at 25 ° C. and a rotation number of 510 rpm for 20 hours to obtain a yellow powder sulfide-based inorganic solid electrolyte (Li / P / S glass, hereinafter “ Also referred to as “LPS”.) 6.2 g was obtained.
The volume average particle diameter of the obtained LPS was 8 μm as a result of measurement using a laser diffraction / scattering type particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA).
[参考例2] 硫黄と無機絶縁粒子との混合物の調製
 大気下で、硫黄(S、Aldrich社製、純度>99.98%)1.2g、酸化アルミニウムナノ粒子(Al、純度>99%、粒子サイズ500nm、EMジャパン社製)1.2gをそれぞれ秤量した。それらをメノウ製乳鉢に投入し、メノウ製乳棒を用いて10分間混合した。
Reference Example 2 Preparation of a Mixture of Sulfur and Inorganic Insulating Particles Under the atmosphere, 1.2 g of sulfur (S, manufactured by Aldrich, purity> 99.98%), aluminum oxide nanoparticles (Al 2 O 3 , purity> 99%, particle size 500 nm, 1.2 g manufactured by EM Japan Co., Ltd. were respectively weighed. They were introduced into a mortar made of agate and mixed for 10 minutes using a pestle made of agate.
[製造例] 全固体二次電池の製造
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLPS2.0gと、スチレンブタジエンゴム(商品コード182907、アルドリッチ社製)0.1gと、分散媒としてオクタン22gとを投入した。その後に、この容器をフリッチュ社製遊星ボールミルP-7にセットし、温度25℃で、回転数300rpmで2時間攪拌した。その後、正極活物質LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム)7.9gを容器に投入し、再びこの容器を遊星ボールミルP-7にセットし、温度25℃、回転数100rpmで15分間混合を続けた。このようにして、正極用組成物を得た。
 次に常法により、集電体となる厚み20μmのアルミ箔上に、上記で得られた正極活物質を構成する成分を含む組成物(正極用組成物)をバインダー2質量%とともにベーカー式アプリケーターにより塗布し、80℃2時間加熱して、正極用組成物を乾燥させた。その後、ヒートプレス機を用いて、所定の密度になるように乾燥させた正極層用組成物を加熱(120℃)しながら加圧(600MPa、1分)した。このようにして、膜厚110μmの正極活物質を有する全固体二次電池用正極シートを作製した。
Production Example Production of All-Solid Secondary Battery In a 45 mL container made of zirconia (180 pieces of zirconia beads with a diameter of 5 mm) were charged, and 2.0 g of LPS synthesized above and styrene butadiene rubber (product code 182907, Then, 0.1 g of Aldrich Co., Ltd. and 22 g of octane as a dispersion medium were charged. Thereafter, this container was set in a Fritsch planetary ball mill P-7, and stirred at a temperature of 25 ° C. at a rotational speed of 300 rpm for 2 hours. Thereafter, 7.9 g of the positive electrode active material LiNi 0.85 Co 0.10 Al 0.05 O 2 (lithium nickel cobalt aluminum oxide) is charged into a container, and this container is again set in the planetary ball mill P-7, and the temperature 25 Mixing was continued for 15 minutes at 100 ° C. and 100 ° C. Thus, a composition for a positive electrode was obtained.
Next, a composition (composition for positive electrode) containing a component constituting the positive electrode active material obtained above on a 20 μm thick aluminum foil serving as a current collector by a conventional method is combined with 2% by mass of a baker type applicator C. for 2 hours to dry the positive electrode composition. Thereafter, using a heat press, the composition for a positive electrode layer dried to a predetermined density was pressurized (600 MPa, 1 minute) while heating (120 ° C.). Thus, a positive electrode sheet for an all solid secondary battery having a positive electrode active material with a thickness of 110 μm was produced.
 次いで、上記参考例1によって調整した無機固体電解質を、常温にてトルエン中でバインダー2質量%とともに分散し固形分20質量%の塗布液を得た。この塗布液を、常温にて正極上にバーコート塗布し、120℃に加熱して乾燥し、幅50mm、膜厚100μmの固体電解質層を得た。
 次いで、負極集電体となる、幅50mm、ステンレス(SUS)箔を固体電解質層の上に重ね、全固体二次電池用積層体シートを形成した。
 この積層体シートの正極集電体の外周に、市販の絶縁性セパレータ(幅50mm)を重ね、ステンレス製の円筒軸芯の外周に、集電体が短絡しないよう巻き、直径26mm、厚み0.1mm、長さ65mmのステンレス製の円筒電池ケース内に詰めた。円筒軸心は、直径18mm、厚み0.1mm、長さ65mmの円筒にスリット(長さ9mm、幅0.1mm、スリット間の間隔1mm)を入れ、内部からの圧力で破壊できるようにしたものである。
 その後、円筒電池ケースの外側に、ステンレス製、肉厚5mmの補強円筒カバーをはめた。
Subsequently, the inorganic solid electrolyte prepared according to the above-mentioned reference example 1 was dispersed in toluene at normal temperature together with 2% by mass of a binder to obtain a coating liquid having a solid content of 20% by mass. The coating solution was applied on a positive electrode at a normal temperature by bar coating and heated at 120 ° C. for drying to obtain a solid electrolyte layer having a width of 50 mm and a film thickness of 100 μm.
Then, a 50 mm wide stainless steel (SUS) foil serving as a negative electrode current collector was stacked on the solid electrolyte layer to form a laminate sheet for an all solid secondary battery.
A commercially available insulating separator (50 mm in width) is stacked on the outer periphery of the positive electrode current collector of this laminate sheet, and wound around the outer periphery of a stainless steel cylindrical shaft core so that the current collector does not short circuit. It was packed in a stainless steel cylindrical battery case of 1 mm and length 65 mm. The cylindrical axis is a cylinder with a diameter of 18 mm, a thickness of 0.1 mm and a length of 65 mm with slits (length 9 mm, width 0.1 mm, spacing between slits 1 mm) so that it can be broken by internal pressure It is.
Thereafter, a stainless steel, 5 mm thick reinforced cylindrical cover was fitted to the outside of the cylindrical battery case.
 そして、上記円筒軸芯の中に活性炭を詰め、プレス機で活性炭を円筒軸心の両側から24Paの圧力にて圧縮し、円筒軸芯のスリット幅を広げて、円筒軸芯の直径を増加させた。その直径の増加によって、外装ケースと円筒軸芯の間にある積層体に所定の拘束圧をかけた。
 負極集電体は電池外装ケースと導通させ、正極集電体は軸芯と導通させ、電流を外部に取り出せるようにした。
 円筒軸芯と外装ケースの間にある電池要素部材の両端部に、参考例2で得た混合物を配し、プレス機を用いて24Paの圧力にて圧縮し、押しつけた。
 絶縁被覆体で被覆された状態の積層体を、ホットプレート上で150℃30分間加熱し、充填材である硫黄を熱溶融させた。
 その後、自然冷却して、ケースを封止し、無機絶縁被覆体を有する全固体二次電池を得た。自然冷却後の無機絶縁被覆体は、25℃におけるヤング率が50GPaであった。
 また、比較用に、無機絶縁体被覆体を配す工程を行わない以外は同じ工程で得た、無機絶縁被覆体を有さない全固体二次電池を得た。
Then, the activated carbon is filled in the cylindrical shaft core, compressed with a pressure of 24 Pa from both sides of the cylindrical shaft core by a press machine, the slit width of the cylindrical shaft core is expanded, and the diameter of the cylindrical shaft core is increased. The Due to the increase in the diameter, a predetermined restraint pressure was applied to the laminate between the outer case and the cylindrical shaft core.
The negative electrode current collector was electrically connected to the battery case, and the positive electrode current collector was electrically connected to the shaft so that the current could be taken out.
The mixture obtained in Reference Example 2 was placed at both ends of the battery element member located between the cylindrical shaft core and the outer case, compressed using a press at a pressure of 24 Pa, and pressed.
The laminate in the state of being covered with the insulation coating was heated on a hot plate at 150 ° C. for 30 minutes to thermally melt the filler sulfur.
After that, natural cooling was performed to seal the case, and an all solid secondary battery having an inorganic insulating covering was obtained. The inorganic insulating coating after natural cooling had a Young's modulus at 25 ° C. of 50 GPa.
Moreover, the all-solid-state secondary battery which does not have an inorganic insulation coating body obtained by the same process except not performing the process which distribute | arranges an inorganic insulator coating body for comparison was obtained.
[試験例1]充放電試験
(試験方法)
 上記によって作製した各全固体二次電池を用いて、下記条件により充放電を行い、初回充電容量に対する初回放電容量の割合(放電効率(%)=100×[初回放電容量/初回充電容量])を算出した。
 充放電条件は、測定環境の温度30℃、電流密度0.09mA/cm(0.05Cに相当)、4.2V、一定電流条件における充放電とした。
Test Example 1 Charge / Discharge Test (Test Method)
Charge / discharge is performed under the following conditions using each all solid secondary battery manufactured as described above, and the ratio of the initial discharge capacity to the initial charge capacity (discharge efficiency (%) = 100 × [initial discharge capacity / initial charge capacity]) Was calculated.
The charge and discharge conditions were a temperature of 30 ° C. in a measurement environment, a current density of 0.09 mA / cm 2 (corresponding to 0.05 C), and a charge and discharge under constant current conditions of 4.2 V.
[試験例2]充放電サイクル特性試験
(試験方法)
 上記製造例と同様にして作製した全固体二次電池(無機絶縁被覆体を有するものと、有しないものを1つずつ作製)を用いて、下記条件により充放電サイクル特性試験を行った。そして、充放電サイクルにおける初回放電容量に対する、2サイクルめの放電容量の割合(放電容量維持率(%)=100×[2サイクルめの放電容量/初回放電容量])を算出した。
 充放電条件は、測定環境の温度30℃、電流密度0.09mA/cm(0.05Cに相当)、4.2V、一定電流条件における充放電とした。
 結果を下表に示す。
[Test Example 2] Charge-discharge cycle characteristic test (test method)
The charge / discharge cycle characteristic test was conducted under the following conditions using an all solid secondary battery (made one with an inorganic insulating covering and one without an insulating insulating coating) manufactured in the same manner as the above manufacturing example. Then, the ratio of the discharge capacity in the second cycle to the initial discharge capacity in the charge and discharge cycle (discharge capacity retention ratio (%) = 100 × [discharge capacity in second cycle / initial discharge capacity]) was calculated.
The charge and discharge conditions were a temperature of 30 ° C. in a measurement environment, a current density of 0.09 mA / cm 2 (corresponding to 0.05 C), and a charge and discharge under constant current conditions of 4.2 V.
The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表に示されるように、電池要素部材の端部に無機絶縁被覆体を有することにより、放電効率が高められ、また放電容量維持率も高められることがわかった。 As shown in the above table, it was found that the discharge efficiency is enhanced and the discharge capacity retention rate is also enhanced by having the inorganic insulating covering at the end of the battery element member.
 本願は、2017年3月13日に日本国で特許出願された特願2017-047772に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 The present application claims priority based on Japanese Patent Application No. 2017-047772 filed in Japan on March 13, 2017, the contents of which are incorporated herein by reference. Capture as part.
 10 全固体二次電池
 1 負極集電体
 2 負極活物質層
 3 固体電解質層
 4 正極活物質層
 5 正極集電体
 6 作動部位
 21a 固体電解質層
 21b 正極集電体
 21c 正極活物質層
 21d 負極集電体
 21e 負極活物質層
 22 軸心
 23 電池カバー
 24 無機絶縁被覆体
 25 正極タブ
 26 電極正極
 27 負極タブ
 28 電池負極
10 all solid secondary battery 1 negative electrode current collector 2 negative electrode active material layer 3 solid electrolyte layer 4 positive electrode active material layer 5 positive electrode current collector 6 working region 21a solid electrolyte layer 21b positive electrode current collector 21c positive electrode active material layer 21d negative electrode collection Current collector 21 e negative electrode active material layer 22 axis 23 battery cover 24 inorganic insulating covering 25 positive electrode tab 26 electrode positive electrode 27 negative electrode tab 28 battery negative electrode

Claims (18)

  1.  電池要素部材を有する全固体二次電池であって、
     前記電池要素部材は、少なくとも負極集電体、固体電解質層、正極活物質層及び正極集電体を有し、
     前記電池要素部材の端部に、少なくとも前記電池要素部材の端部を被覆していて、25℃におけるヤング率が1GPa以上である無機絶縁被覆体が配されている、全固体二次電池。
    An all solid secondary battery having battery element members, comprising:
    The battery component member has at least a negative electrode current collector, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector,
    The all-solid-state secondary battery which covers the edge part of the said battery element member at least the edge part of the said battery element member, and the inorganic insulating coating which has a Young's modulus at 25 degreeC 1 GPa or more is distribute | arranged.
  2.  前記電池要素部材が内部に挿入されている電池外装体を有する請求項1に記載の全固体二次電池。 The all-solid-state secondary battery according to claim 1, further comprising a battery case in which the battery element member is inserted.
  3.  前記無機絶縁被覆体は、無機絶縁粒子と、100℃において固体であり、200℃以下の温度領域において溶融する絶縁性無機材料の溶融凝固体からなる請求項1又は2に記載の全固体二次電池。 The all-solid secondary according to claim 1 or 2, wherein the inorganic insulating covering comprises inorganic insulating particles and a melt-solidified insulating inorganic material which is solid at 100 ° C and melts in a temperature range of 200 ° C or less. battery.
  4.  前記無機絶縁被覆体は、有機バインダーを含む、請求項3に記載の全固体二次電池。 The all-solid-state secondary battery according to claim 3, wherein the inorganic insulating covering comprises an organic binder.
  5.  前記無機絶縁粒子は、体積平均粒子径が1μm以下の酸化アルミニウムである、請求項3又は4に記載の全固体二次電池。 The all-solid-state secondary battery according to claim 3, wherein the inorganic insulating particles are aluminum oxide having a volume average particle diameter of 1 μm or less.
  6.  前記絶縁性無機材料は、硫黄及び/又は改質硫黄を含む、請求項1~5のいずれか1項に記載の全固体二次電池。 The all-solid secondary battery according to any one of claims 1 to 5, wherein the insulating inorganic material contains sulfur and / or modified sulfur.
  7.  前記無機絶縁被覆体が、充放電時に負極端部から成長する金属リチウムの成長を阻止する、請求項1~6のいずれか1項に記載の全固体二次電池。 The all-solid secondary battery according to any one of claims 1 to 6, wherein the inorganic insulating covering blocks the growth of metallic lithium that grows from the negative electrode end during charge and discharge.
  8.  電池外装体内に、少なくとも負極集電体と、固体電解質層と、正極活物質層と、正極集電体とを含む電池要素部材を配する工程と、
     前記電池外装体内の空間に、無機絶縁粒子と、100℃において固体であり200℃以下の温度領域において溶融する無機絶縁被覆体を前記電池要素部材の端部に配する工程と、
     200℃以下の温度領域において前記電池外装体を加熱して、前記無機絶縁被覆体を溶融凝固させて、前記電池要素部材の端部を被覆する工程と、を含む請求項1~7のいずれか1項に記載の全固体二次電池の製造方法。
    Placing a battery element member including at least a negative electrode current collector, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector in the battery case;
    Arranging inorganic insulating particles and an inorganic insulating covering which is solid at 100 ° C. and melts in a temperature range of 200 ° C. or less in an end portion of the battery element member in a space in the battery case;
    And heating the battery outer package in a temperature range of 200 ° C. or less to melt and solidify the inorganic insulating covering to cover the end of the battery element member. The manufacturing method of the all-solid-state secondary battery of 1 item.
  9.  請求項1~7のいずれか1項に記載の全固体二次電池に用いられる固体電解質シートであって、
     固体電解質層と、前記固体電解質層の端部を被覆した無機絶縁被覆体とを有し、
     前記無機絶縁被覆体は、25℃におけるヤング率が1GPa以上である全固体二次電池用固体電解質シート。
    A solid electrolyte sheet for use in the all solid secondary battery according to any one of claims 1 to 7, comprising:
    A solid electrolyte layer, and an inorganic insulating coating covering the end of the solid electrolyte layer,
    The inorganic insulating covering is a solid electrolyte sheet for an all solid secondary battery having a Young's modulus at 25 ° C. of 1 GPa or more.
  10.  前記無機絶縁被覆体は、無機絶縁粒子と、100℃において固体であり、200℃以下の温度領域において溶融する絶縁性無機材料の溶融凝固体とからなる請求項9に記載の全固体二次電池用固体電解質シート。 10. The all-solid secondary battery according to claim 9, wherein the inorganic insulating covering comprises inorganic insulating particles and a melt-solidified insulating inorganic material which is solid at 100 ° C. and melts in a temperature range of 200 ° C. or less. Solid electrolyte sheet.
  11.  前記絶縁性無機材料は、硫黄及び/又は改質硫黄を含む、請求項10記載の全固体二次電池用固体電解質シート。 The solid electrolyte sheet for an all solid secondary battery according to claim 10, wherein the insulating inorganic material contains sulfur and / or modified sulfur.
  12.  前記無機絶縁被覆体は、有機バインダーを含む、請求項9~11のいずれか1項に記載の全固体二次電池用固体電解質シート。 The solid electrolyte sheet for an all solid secondary battery according to any one of claims 9 to 11, wherein the inorganic insulating covering comprises an organic binder.
  13.  前記無機絶縁粒子は、酸化アルミニウムである、請求項10~12のいずれか1項に記載の全固体二次電池用固体電解質シート。 The solid electrolyte sheet for an all solid secondary battery according to any one of claims 10 to 12, wherein the inorganic insulating particles are aluminum oxide.
  14.  請求項1~7のいずれか1項に記載の全固体二次電池に用いられる正極活物質シートであって、
     正極活物質層と、前記正極活物質層の両端部を被覆する無機絶縁被覆体を有し、
     前記無機絶縁被覆体は、25℃におけるヤング率が1GPa以上である、全固体二次電池用正極活物質シート。
    It is a positive electrode active material sheet used for the all-solid-state secondary battery of any one of Claims 1-7, Comprising:
    A positive electrode active material layer, and an inorganic insulating covering covering both ends of the positive electrode active material layer,
    The inorganic insulating covering is a positive electrode active material sheet for an all solid secondary battery, having a Young's modulus at 25 ° C. of 1 GPa or more.
  15.  前記無機絶縁被覆体は、無機絶縁粒子と、100℃において固体であり、200℃以下にて溶融する絶縁性無機材料を含む、請求項14に記載の全固体二次電池用正極活物質シート。 The all-solid-state secondary battery positive electrode active material sheet according to claim 14, wherein the inorganic insulating covering includes inorganic insulating particles and an insulating inorganic material which is solid at 100 ° C and melts at 200 ° C or less.
  16.  前記絶縁性無機材料は、硫黄及び/又は改質硫黄を含む、請求項15に記載の全固体二次電池用正極活物質シート。 The positive electrode active material sheet for an all solid secondary battery according to claim 15, wherein the insulating inorganic material contains sulfur and / or modified sulfur.
  17.  前記無機絶縁被覆体は、有機バインダーを含む、請求項15又は16に記載の全固体二次電池用正極活物質シート。 The positive electrode active material sheet for an all solid secondary battery according to claim 15, wherein the inorganic insulating covering contains an organic binder.
  18.  前記無機絶縁粒子は、酸化アルミニウムである、請求項15~17のいずれか1項に記載の全固体二次電池用正極活物質シート。 The positive electrode active material sheet for an all solid secondary battery according to any one of claims 15 to 17, wherein the inorganic insulating particles are aluminum oxide.
PCT/JP2018/008327 2017-03-13 2018-03-05 All-solid secondary battery and production method therefor, and solid electrolyte sheet for all-solid secondary battery, and positive electrode active material sheet for all-solid secondary battery WO2018168550A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019505893A JP6948382B2 (en) 2017-03-13 2018-03-05 All-solid-state secondary battery and its manufacturing method, as well as solid-state electrolyte sheet for all-solid-state secondary battery and positive electrode active material sheet for all-solid-state secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-047772 2017-03-13
JP2017047772 2017-03-13

Publications (1)

Publication Number Publication Date
WO2018168550A1 true WO2018168550A1 (en) 2018-09-20

Family

ID=63523423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008327 WO2018168550A1 (en) 2017-03-13 2018-03-05 All-solid secondary battery and production method therefor, and solid electrolyte sheet for all-solid secondary battery, and positive electrode active material sheet for all-solid secondary battery

Country Status (2)

Country Link
JP (1) JP6948382B2 (en)
WO (1) WO2018168550A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2590373A (en) * 2019-12-11 2021-06-30 Dyson Technology Ltd Energy storage device
JP2022081127A (en) * 2020-11-19 2022-05-31 本田技研工業株式会社 Solid state battery
WO2022190378A1 (en) 2021-03-12 2022-09-15 日産自動車株式会社 All-solid-state battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249265A (en) * 2002-02-22 2003-09-05 Yuasa Corp Polymer electrolyte battery
JP2005005163A (en) * 2003-06-12 2005-01-06 Nissan Motor Co Ltd Bipolar battery
JP2015230812A (en) * 2014-06-04 2015-12-21 セイコーインスツル株式会社 Electrochemical cell
JP2017010627A (en) * 2015-06-17 2017-01-12 セイコーインスツル株式会社 Electrochemical cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103531847B (en) * 2012-07-06 2015-12-16 微宏动力系统(湖州)有限公司 Lithium ion solid battery and synthetic method thereof and synthesizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249265A (en) * 2002-02-22 2003-09-05 Yuasa Corp Polymer electrolyte battery
JP2005005163A (en) * 2003-06-12 2005-01-06 Nissan Motor Co Ltd Bipolar battery
JP2015230812A (en) * 2014-06-04 2015-12-21 セイコーインスツル株式会社 Electrochemical cell
JP2017010627A (en) * 2015-06-17 2017-01-12 セイコーインスツル株式会社 Electrochemical cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2590373A (en) * 2019-12-11 2021-06-30 Dyson Technology Ltd Energy storage device
GB2590373B (en) * 2019-12-11 2022-05-18 Dyson Technology Ltd Energy storage device
JP2022081127A (en) * 2020-11-19 2022-05-31 本田技研工業株式会社 Solid state battery
JP7149317B2 (en) 2020-11-19 2022-10-06 本田技研工業株式会社 solid state battery
WO2022190378A1 (en) 2021-03-12 2022-09-15 日産自動車株式会社 All-solid-state battery

Also Published As

Publication number Publication date
JP6948382B2 (en) 2021-10-13
JPWO2018168550A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
JP6912658B2 (en) All-solid-state secondary battery and its manufacturing method
JP6684901B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet and all solid state secondary battery, and method for producing solid electrolyte containing sheet and all solid state secondary battery
JP6799713B2 (en) Manufacturing method of solid electrolyte sheet, negative electrode sheet for all-solid secondary battery and all-solid secondary battery
WO2019078093A1 (en) Electrode laminate, all-solid laminated secondary cell, and method for manufacturing same
JP7064613B2 (en) Manufacturing method of laminated member for all-solid-state secondary battery and manufacturing method of all-solid-state secondary battery
JP6966502B2 (en) A solid electrolyte sheet, a negative electrode sheet for an all-solid-state secondary battery, an all-solid-state secondary battery, and a method for manufacturing these.
JP6799714B2 (en) Manufacturing method of solid electrolyte sheet, negative electrode sheet for all-solid secondary battery and all-solid secondary battery
JPWO2019054184A1 (en) Manufacturing method of all-solid-state secondary battery, exterior material for all-solid-state secondary battery and all-solid-state secondary battery
WO2020196040A1 (en) All-solid-state lithium ion secondary battery and method for manufacturing same, and negative electrode laminate sheet
JP6948382B2 (en) All-solid-state secondary battery and its manufacturing method, as well as solid-state electrolyte sheet for all-solid-state secondary battery and positive electrode active material sheet for all-solid-state secondary battery
US20200006718A1 (en) All-solid state secondary battery and manufacturing method therefor
JP6665343B2 (en) Inorganic solid electrolyte material, and slurry using the same, solid electrolyte membrane for all solid secondary battery, solid electrolyte sheet for all solid secondary battery, positive electrode active material membrane for all solid secondary battery, for all solid secondary battery Negative electrode active material film, electrode sheet for all-solid secondary battery, all-solid secondary battery, and method for manufacturing all-solid secondary battery
JP7119214B2 (en) All-solid secondary battery and manufacturing method thereof
JP6920413B2 (en) All-solid-state secondary battery and its manufacturing method, and solid-state electrolyte membrane for all-solid-state secondary battery and its manufacturing method
WO2022202901A1 (en) Solid electrolyte layered sheet, all solid secondary battery, and method for producing all solid secondary battery
JPWO2019098299A1 (en) Method for manufacturing solid electrolyte composition, solid electrolyte-containing sheet and all-solid secondary battery, and solid electrolyte-containing sheet and all-solid secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767838

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505893

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767838

Country of ref document: EP

Kind code of ref document: A1