WO2018168530A1 - Lost circulation material and use therefor - Google Patents

Lost circulation material and use therefor Download PDF

Info

Publication number
WO2018168530A1
WO2018168530A1 PCT/JP2018/008065 JP2018008065W WO2018168530A1 WO 2018168530 A1 WO2018168530 A1 WO 2018168530A1 JP 2018008065 W JP2018008065 W JP 2018008065W WO 2018168530 A1 WO2018168530 A1 WO 2018168530A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane resin
filler
isocyanate
sealant
evaluation
Prior art date
Application number
PCT/JP2018/008065
Other languages
French (fr)
Japanese (ja)
Inventor
卓磨 小林
瑞輝 斎藤
浩幸 佐藤
健夫 ▲高▼橋
Original Assignee
株式会社クレハ
独立行政法人石油天然ガス・金属鉱物資源機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ, 独立行政法人石油天然ガス・金属鉱物資源機構 filed Critical 株式会社クレハ
Publication of WO2018168530A1 publication Critical patent/WO2018168530A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/512Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping

Definitions

  • the present invention relates to a sealant for temporarily closing a pit wall and use thereof.
  • the debris generated from the periphery of the drill during the well excavation is transported to the ground surface, the underground pressure is adjusted to maintain the stability of the well, and the collapse of the formation is suppressed.
  • Circulating fluid muddy water or finishing fluid
  • the reservoir that is the production layer is a highly permeable formation, or if natural fractures (cracks) exist in the shale layer, fluid will be lost through the high permeable formation and cracks in the well wall, and circulating mud The volume may decrease or the muddy water column pressure may decrease.
  • the sealant calcium carbonate or the like is generally used.
  • the work time for performing this acid treatment is required, and if the acid treatment is insufficient, the amount of recovered resources may be reduced due to insoluble residues such as calcium carbonate residue as a filler.
  • the decomposition function is decomposed after a predetermined period of time. An eye-catching agent using a degradable material that has disappeared has attracted attention.
  • Patent Document 1 describes a particulate filler including a degradable material for temporarily closing a well.
  • Patent Document 2 describes a sealing agent containing a synthetic resin having a sealing function for a period of 40 days or less at a temperature of 93 ° C. (200 ° F.) to 204 ° C. (400 ° F.).
  • Fractures have various widths, and in particular, a sealant capable of temporarily spotting large fractures having a crack width of, for example, about 3 mm or more in the opening or inside of the fracture. Is required.
  • Patent Document 1 and Patent Document 2 do not describe at all that the filler can temporarily stop such a large fracture.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a sealant or the like that can suitably temporarily seal a large fracture even in a high temperature environment.
  • the sealant according to the present invention is a sealant for sealing a well wall, and the sealant includes pellets and powder formed from a resin composition containing a polyurethane resin,
  • the indentation hardness at 23 ° C. is 37 or more.
  • the present invention provides a sealant that can temporarily seal a large fracture even in a high temperature environment.
  • time-degradable-lost circulation materials are typically used for temporarily closing a well wall in various steps of well drilling (well laying). For purposes, this refers to the material blended into the well fluid.
  • the sealant according to the present embodiment is a pellet and powder (powder) formed from a resin composition containing a polyurethane resin.
  • the pellet has an indentation hardness at 37 ° C. of 37 or more.
  • the resin composition forming the pellets and the resin composition forming the powder may be the same resin composition or different resin compositions.
  • the sealant according to the present embodiment is such that the seal part where the fracture is blocked by the sealant cannot withstand the pressure applied to the seal, deforms or collapses, and the seal is released.
  • a large fracture with a width of about 3 mm can be temporarily stopped even in a high temperature environment of 110 ° C. or more and 200 ° C. or less.
  • the weight ratio of the pellets to the powder in the filler is preferably 5:95 to 60:40, more preferably 10:90 to 55:45, and 15:85 to 50:50. More preferably. When the weight ratio between the pellet and the powder is within this preferable range, a large fracture can be temporarily stopped without a gap.
  • the pellet is a pellet formed of a resin composition containing a polyurethane resin, and the indentation hardness at 23 ° C. is 37 or more.
  • the indentation hardness at 23 ° C. is preferably 37 or more and 98 or less, and more preferably 37 or more and 85 or less.
  • the filler is neither too soft nor too hard, so that a large fracture can be temporarily spotted at a high temperature.
  • the indentation hardness of the pellet is measured using a durometer type D hardness meter of ISO7619 / JIS K 6253. More specifically, a resin composition containing a polyurethane resin is formed into a strand having a diameter of 2.5 mm ⁇ , and the indentation hardness of the strand is measured at 23 ° C. More precisely, in the measurement of indentation hardness, the strand is cut into a length of 3 mm. That is, the indentation hardness defined in the present application is a hardness value of a pellet having a diameter of 2.5 mm ⁇ and a length of 3 mm measured by applying a load of 5 kgf with a durometer type D hardness meter.
  • the dimensions of the pellets used for indentation hardness measurement are those having a longest width of 0.5 mm to 10 mm and a shortest width of 0.5 mm to 10 mm in the projected cross section.
  • the shape of the pellet is typically a cylinder, and may have a cone, ellipsoid, sphere, cuboid, cube, star shape, polyhedron, or a part of them.
  • the pellet is prepared by, for example, melt-kneading an aliphatic isocyanate-based polyurethane resin and an aromatic isocyanate-based polyurethane resin, which are polyurethane resins, and appropriately molding or pulverizing the obtained resin composition by a known molding method. Can do.
  • blending a crosslinking agent with a resin composition it is good to melt-knead the polyurethane resin which mix
  • the heating temperature and time during the melt-kneading may be appropriately adjusted in consideration of the melting point of the aliphatic isocyanate-based polyurethane resin and aromatic isocyanate-based polyurethane resin and the reaction temperature of the crosslinking agent.
  • the pellets contained in the filler are obtained by appropriately pelletizing the resin composition obtained by melt kneading by a known method.
  • the pellets may be heat-treated at a predetermined temperature for a predetermined time before the test, if necessary, in order to remove mechanical strain during molding and stabilize the indentation hardness.
  • the powder is a powder contained in the filler and is formed from a resin composition.
  • the resin composition may be the same resin composition as the resin composition forming the pellet.
  • the powder may be obtained by pulverizing pellets into powder by freeze pulverization. Thereby, a powder having a small median diameter of particles formed from the resin composition can be obtained.
  • the powder preferably has a median diameter (50% D) of 80 ⁇ m or more and 800 ⁇ m or less, and the larger the median diameter of the powder, the larger the median diameter of the powder at the opening or inside of the fracture. preferable.
  • a sealing agent that can be temporarily stopped without gaps in the sealing portion even when the width of the fracture of a large fracture is about 1 mm to 3 mm. it can.
  • the shape of the particles of the powder is not limited, but may be spherical, scaly, ellipsoidal, prismatic, rod-like, star-shaped, polygonal, and fibrous (short fibers). Further, it may be porous with small pores. Moreover, the combination of what differs in a shape and the thing from which a particle size differs may be sufficient.
  • the resin composition is a main material of pellets and powder contained in the filler, and includes a polyurethane resin.
  • Polyurethane resin generally refers to a polymer compound derived from an isocyanate compound regardless of the presence or absence of a urethane bond. Specifically, it is a polymer compound composed of a chemical bond such as a urethane bond, and in some cases a urea bond or an amide bond. Examples of the polyurethane resin include a thermoplastic polyurethane resin and a thermosetting polyurethane resin.
  • thermoplastic polyurethane resin and the thermosetting polyurethane resin can be formed from an aliphatic isocyanate-based polyurethane resin and an aromatic isocyanate-based polyurethane resin. Therefore, in the present specification, when simply described as “polyurethane resin”, the “polyurethane resin” includes “thermoplastic polyurethane resin” and “thermosetting polyurethane resin”, and “aliphatic isocyanate-based polyurethane resin”. And the meaning of “aromatic isocyanate-based polyurethane resin”.
  • the thermoplastic polyurethane resin is a polyurethane resin that can be repeatedly melted by heating, and is a polyurethane resin having a branched structure among aliphatic isocyanate-based polyurethane resins and aromatic isocyanate-based polyurethane resins. Although it may be, it is more preferably a polyurethane resin having a linear structure.
  • thermosetting polyurethane resin is a polyurethane resin obtained by curing a molten prepolymer by heating. More specifically, it is a polyurethane resin that can be obtained by crosslinking a thermoplastic polyurethane resin or a polyurethane resin prepolymer with a crosslinking agent. Examples of the thermosetting polyurethane resin include those obtained by molding methods such as the following (i) to (iii).
  • Millable gum mold processing method For example, a hydroxyl group-terminated prepolymer having a skeleton such as polyester polyol and a structure derived from aliphatic isocyanate or aromatic isocyanate is generated, and a crosslinking agent is kneaded by roll kneading, It is obtained by heating in a mold and allowing the crosslinking to proceed.
  • Cast mold forming method For example, an isocyanate group-terminated prepolymer having a skeleton such as polyester polyol and a structure derived from aliphatic isocyanate or aromatic isocyanate is generated, and a crosslinking agent is added thereto.
  • thermoplastic polyurethane resin pellet is melted by heating and obtained through extrusion molding or injection molding.
  • a partially crosslinked polyurethane resin can be obtained by adding a cross-linking agent as necessary at the time of melting.
  • crosslinking can be advanced by heat-treating a thermoplastic polyurethane resin to which a crosslinking agent has been added at a predetermined temperature for a predetermined time as required, and the hardness can be adjusted.
  • the indentation hardness of the pellet formed from the resin composition is (1) combined use of a plurality of polyurethane resins, (2) crosslinking of the polyurethane resin with a crosslinking agent, and heat treatment of the polyurethane resin to which the crosslinking agent is added (3) It is adjusted by crosslinking of the polyurethane resin by electron beam irradiation and (4) blending of the filler.
  • the indentation hardness of the pellets can be adjusted by using a plurality of polyurethane resins having different hardnesses.
  • the polyurethane resin for adjusting the hardness of the resin composition includes an aliphatic isocyanate polyurethane resin and an aromatic isocyanate polyurethane resin.
  • the aliphatic isocyanate-based polyurethane resin generally has a low hardness and a high decomposition rate.
  • the aromatic isocyanate-based polyurethane resin has a higher hardness and a slower decomposition rate than the aliphatic isocyanate-based polyurethane resin.
  • the weight ratio of the aliphatic isocyanate-based polyurethane resin to the aromatic isocyanate-based polyurethane resin is preferably in the range of 80:20 to 0: 100, more preferably in the range of 70:30 to 0: 100. 60:40 to 0: 100 is more preferable. Thereby, it can adjust suitably so that the indentation hardness of a resin composition may exist in a predetermined range. Therefore, a sealant capable of temporarily closing the well wall in a high temperature environment of 110 ° C. to 200 ° C. can be suitably produced.
  • the seal retention time is equal to the retention time of the aliphatic isocyanate-based polyurethane resin having a low hardness and the hardness. It is a time between the high-value aromatic isocyanate-based polyurethane resin and the sealing maintenance time.
  • the eye-keeping time refers to the time when the eye-catching portion where the large fracture is eye-catching with the eye-stopping agent cannot withstand the pressure applied to the eye-opening, and is deformed or collapsed until the eye-opening is released. It means the time. The reason why it cannot withstand the pressure is, for example, that the strength over time of the resin composition contained in the filler is lowered.
  • the sealant it is possible to adjust the seal keeping time by changing the mixing ratio of the aliphatic isocyanate polyurethane resin and the aromatic isocyanate polyurethane resin. That is, it is possible to adjust the eye keeping time suitable for the situation when drilling a well.
  • the weight ratio of the prepolymer including a structure derived from aliphatic isocyanate to the prepolymer including a structure derived from aromatic isocyanate is 80:
  • the indentation hardness of the resin composition may be adjusted by mixing so as to be in the range of 20 to 0: 100 and allowing the crosslinking to proceed with a crosslinking agent described later (millable gum mold forming method or cast mold forming method) ).
  • the aliphatic isocyanate-based polyurethane resin is a polyurethane resin having a structure derived from an acyclic or cyclic aliphatic isocyanate. That is, in this specification, “aliphatic isocyanate-based polyurethane resin” is defined by the fact that the isocyanate for producing the polyurethane resin is “aliphatic isocyanate”. That is, the “aliphatic isocyanate-based polyurethane resin” is not defined by whether or not a skeleton such as a polyester skeleton constituting the main chain of the polyurethane resin has an “aliphatic” hydrocarbon skeleton.
  • the aliphatic isocyanate-based polyurethane resin is a polyurethane resin produced using an aliphatic isocyanate, and the aliphatic isocyanate typically includes an aliphatic diisocyanate.
  • the aliphatic diisocyanate include hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), norbornane diisocyanate (NBDI), hydrogenated xylylene diisocyanate (H6XDI), and dicyclohexylmethane diisocyanate.
  • aliphatic diisocyanate and an isocyanurate compound (trimer) of these aliphatic diisocyanates may be used in combination with the aliphatic isocyanate-based polyurethane resin.
  • the aliphatic isocyanate is more preferably hexamethylene diisocyanate (HDI).
  • generated using hexamethylene diisocyanate (HDI) may be called a hexamethylene diisocyanate type polyurethane resin (HDI type polyurethane resin).
  • Examples of the skeleton constituting the main chain of the aliphatic isocyanate-based polyurethane resin include a polyether skeleton, a polyester skeleton, a polyether ester skeleton, and a poly (meth) acrylate skeleton. These skeletons are aliphatic isocyanate-based polyurethanes. It may coexist as the main chain of the resin. Among these, from the viewpoint that desired hardness and hydrolyzability can be obtained, the skeleton constituting the main chain of the aliphatic isocyanate-based polyurethane resin is either or both of a polyester skeleton and a polyether ester skeleton. Is preferred.
  • a polyol containing a polyester skeleton or a polyether ester skeleton is called a polyester polyol.
  • an aromatic isocyanate-based polyurethane resin suitable as a sealant can be obtained by reacting a polyester polyol with an aromatic isocyanate.
  • the polyester skeleton is not limited, but is formed by ring-opening polymerization of glycolide, ⁇ -acetolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, and the like.
  • Skeletons dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, sebacic acid, and phthalic acid, and ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,6- It may be a skeleton formed by condensation with a diol such as hexanediol, or a skeleton formed by combining these.
  • dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, sebacic acid, and phthalic acid
  • ethylene glycol propylene glycol
  • 1,3-propanediol 1,4-butanediol
  • 1,6- It may be a skeleton formed by condensation with a diol such as hexanediol, or a skeleton formed by combining these.
  • the polyether ester skeleton can be a copolymer of a polyether constituent unit having 1 to 6 carbon atoms in the repeating unit and a polyester constituent unit having 2 to 20 carbon atoms in the repeating unit.
  • examples of the polyether constituent unit include polyacetal, polyethylene glycol, and polytetramethylene glycol
  • examples of the polyester constituent unit include the above-described polyester skeleton.
  • the weight average molecular weight of the aliphatic isocyanate polyurethane resin is preferably 10,000 or more and 250,000 or less, more preferably 50,000 or more and 200,000 or less, 100,000 or more, Most preferably, it is 150,000 or less.
  • a filler having an appropriate hydrolyzability can be obtained.
  • aliphatic isocyanate-based polyurethane resin typically, those represented by the following chemical formula (I) are preferable.
  • n 1 is an integer of 20 to 130.
  • Examples of the aliphatic isocyanate-based polyurethane resin include Pandex (registered trademark) T-R3080 manufactured by DIC Covestro Polymer Co., Ltd.
  • the isocyanate-terminated, hydroxyl-terminated or carboxyl-terminated prepolymer that can form these aliphatic isocyanate-based polyurethane resins can be suitably used to obtain a thermosetting polyurethane resin.
  • An aromatic isocyanate-based polyurethane resin is a polyurethane resin having a structure derived from an isocyanate having an aromatic ring. That is, in this specification, the “aromatic isocyanate-based polyurethane resin” is defined by the fact that the isocyanate for producing the polyurethane resin is “aromatic isocyanate”. That is, the “aromatic isocyanate-based polyurethane resin” is not defined by whether or not a skeleton such as a polyester skeleton constituting the main chain of the polyurethane resin has an “aromatic” hydrocarbon skeleton.
  • the aromatic isocyanate-based polyurethane resin is a polyurethane resin produced using an aromatic isocyanate, and typically an aromatic diisocyanate is exemplified as the aromatic isocyanate.
  • the aromatic diisocyanate include diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), and naphthalene diisocyanate (NDI).
  • aromatic diisocyanate and the isocyanurate compound (trimer) of these aromatic diisocyanates may be used together in the aromatic isocyanate polyurethane resin.
  • the aromatic isocyanate is more preferably diphenylmethane diisocyanate (MDI).
  • MDI diphenylmethane diisocyanate
  • an aromatic isocyanate polyurethane resin produced using diphenylmethane diisocyanate (MDI) may be referred to as diphenylmethane diisocyanate polyurethane resin (MDI polyurethane resin).
  • the skeleton constituting the main chain of the aromatic isocyanate polyurethane resin is, for example, the same as the skeleton constituting the main chain of the aliphatic isocyanate polyurethane resin, the polyether skeleton, the polyester skeleton, the polyester polyol skeleton, the polyether ester skeleton, and Examples thereof include a poly (meth) acrylate skeleton, and these skeletons may coexist as a main chain of the aromatic isocyanate polyurethane resin.
  • the skeleton constituting the main chain of the aromatic isocyanate-based polyurethane resin is either or both of a polyester skeleton and a polyether ester skeleton.
  • a polyol containing a polyester skeleton or a polyether ester skeleton is called a polyester polyol and contains at least an ester skeleton.
  • a polyurethane resin is obtained.
  • the polyester skeleton is not limited, but is formed by ring-opening polymerization of glycolide, ⁇ -acetolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, and the like.
  • Skeletons dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, sebacic acid, and phthalic acid, and ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,6- It may be a skeleton formed by condensation with a diol such as hexanediol, or a skeleton formed by combining these.
  • dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, sebacic acid, and phthalic acid
  • ethylene glycol propylene glycol
  • 1,3-propanediol 1,4-butanediol
  • 1,6- It may be a skeleton formed by condensation with a diol such as hexanediol, or a skeleton formed by combining these.
  • the polyester polyol skeleton may be a copolymer of a polyether constituent unit having 1 to 6 carbon atoms in the repeating unit and a polyester constituent unit having 2 to 20 carbon atoms in the repeating unit.
  • examples of the polyether constituent unit include polyacetal, polyethylene glycol, and polytetramethylene glycol
  • examples of the polyester constituent unit include the above-described polyester skeleton.
  • the weight average molecular weight of the aromatic isocyanate-based polyurethane resin is preferably 5,000 or more and 100,000 or less, more preferably 10,000 or more and 70,000 or less, 15,000 or more, Most preferably, it is 50,000 or less.
  • a filler having an appropriate hydrolyzability can be obtained.
  • aromatic isocyanate-based polyurethane resin typically, those represented by the following chemical formula (II) are preferable.
  • n 2 is an integer of 5 to 40.
  • Examples of the product of the MDI polyurethane resin represented by the chemical formula (II) include Pandex (registered trademark) T-5070 manufactured by DIC Covestro Polymer Co., Ltd.
  • an isocyanate-terminated, hydroxyl-terminated or carboxyl-terminated prepolymer capable of forming these aromatic isocyanate-based polyurethane resins can be suitably used to obtain a thermosetting polyurethane resin.
  • the filler suppresses the indentation hardness at 23 ° C. of pellets formed from the resin composition by blending the resin composition with a crosslinking agent.
  • the crosslinking agent is preferably at least one crosslinking agent selected from the group consisting of a polyfunctional isocyanate compound, a monomer having an ethylenically unsaturated group, a polyvalent amine, a polyhydric alcohol, and a polyfunctional epoxy compound.
  • a network-like crosslinked structure can be formed in a polyurethane resin by a combination of these. For this reason, the hardness of a resin composition can be prepared suitably.
  • a crosslinking agent may be added to an aliphatic isocyanate type polyurethane resin and an aromatic isocyanate type polyurethane resin (thermoplastic molding method), and in addition to the prepolymer for forming these polyurethane resins. Also good (millable gum mold processing and cast mold processing).
  • the resin composition may contain a polyfunctional isocyanate compound as a crosslinking agent.
  • the polyfunctional isocyanate compound is a functional group having active hydrogen present at the terminal or main chain of the polyurethane resin when one or both of an aliphatic isocyanate polyurethane resin and an aromatic isocyanate polyurethane resin is melt-kneaded. Crosslink to the base (thermoplastic molding process).
  • polyfunctional isocyanate compound examples include the above-mentioned aliphatic diisocyanates and aromatic diisocyanates, and isocyanurates formed from these aliphatic diisocyanates or aromatic diisocyanates.
  • the polyfunctional isocyanate compound has an allophanate bond with a urethane bond in which an isocyanate group is present in the main chain of the polyurethane resin, as shown in the following general formula (III).
  • the polyfunctional isocyanate can form the urea bond and the burette bond.
  • the polyfunctional isocyanate compound also crosslinks the main chain of one polyurethane resin and the main chain of another polyurethane resin via the polyfunctional isocyanate compound by such a burette bond.
  • the weight ratio of the aliphatic isocyanate polyurethane resin before addition to the crosslinking agent is in the range of 99.8: 0.2 to 50:50.
  • the hardness of the crosslinked aliphatic isocyanate polyurethane resin can be further increased. Therefore, it is possible to obtain a sealant capable of temporarily closing the pores more suitably in a high temperature environment.
  • a crosslinking agent is added to the prepolymer of the aliphatic isocyanate polyurethane resin, the weight ratio between the prepolymer and the crosslinking agent is in the range of 99.8: 0.2 to 50:50. It is preferable to add a cross-linking agent to (millable gum mold forming method). That is, the preferable range of the weight ratio between the prepolymer and the crosslinking agent is in accordance with the preferable range of the weight ratio between the aliphatic isocyanate polyurethane resin and the crosslinking agent.
  • the weight ratio of the aromatic isocyanate polyurethane resin before addition to the crosslinking agent is in the range of 100: 0 to 50:50. It is preferable to add a crosslinking agent. It is preferable to add so that the weight ratio of the aromatic isocyanate polyurethane resin and the crosslinking agent is in the range of 99.7: 0.3 to 60:40, and 99.6: 0.4 to 70:30. It is more preferable to add so that it may become this range.
  • the hardness of the cross-linked aromatic isocyanate-based polyurethane resin becomes higher, and the pores can be more appropriately temporarily spotted at a high temperature.
  • a crosslinking agent is added to the prepolymer of the aromatic isocyanate polyurethane resin, the crosslinking agent is added so that the weight ratio of the prepolymer to the crosslinking agent is in the range of 100: 0 to 50:50. It is preferable to add (millable gum mold forming method). That is, the preferable range of the weight ratio between the prepolymer and the crosslinking agent conforms to the preferable range of the weight ratio between the aromatic isocyanate polyurethane resin and the crosslinking agent.
  • polyfunctional isocyanate compounds may be present in the filler in an unreacted state.
  • a monomer having an ethylenically unsaturated group can be used.
  • Examples of monomers having an ethylenically unsaturated group include triallyl isocyanurate (TAIC), ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipentaerythritol tris. (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc. are mentioned.
  • TAIC triallyl isocyanurate
  • Method dipentaerythritol hexa (meth) acrylate, etc.
  • Such a cross-linking agent having an ethylenically unsaturated group can be cross-linked by, for example, using in combination with
  • the resin composition is pulverized and irradiated with an electron beam. Adjust the hardness of the object.
  • the crosslinking agent having an ethylenically unsaturated group contained in the resin composition can also be crosslinked with the main chain of the polyurethane resin while polymerizing each other.
  • the electron beam irradiation dose is, for example, preferably 5 kGy or more and 150 kGy or less, more preferably 10 kGy or more and 120 kGy or less, and further preferably 20 kGy or more and 100 kGy or less.
  • polyhydric amine and polyhydric alcohol As the crosslinking agent, for example, polyhydric amine or polyhydric alcohol can be used.
  • the polyvalent amine or polyhydric alcohol crosslinks by reacting with the isocyanate group remaining at the end of the polyurethane during melt-kneading with the polyurethane resin.
  • a cross-linked structure is formed via a newly formed amide bond or ester bond by causing an ester exchange reaction with an ester group present in the main chain. can do.
  • the hardness of the polyurethane resin composition is suitable by using a polyvalent amine or a polyhydric alcohol in combination with the polyfunctional isocyanate compound described above. Can be prepared.
  • the polyvalent amine and the polyhydric alcohol are also crosslinking agents that crosslink the isocyanate group-terminated prepolymer (cast mold forming method).
  • polyvalent amine examples include 3,3'-dichlorobenzidine, 4,4'-methylenebis-2-chloroaniline, and trimethylenebis (4-aminobenzoate).
  • polyhydric alcohol examples include ethylene glycol, propylene glycol, 2,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, and 2, Alkylene glycols such as 2,4-trimethyl-1,3-pentanediol, diethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polyoxyalkylene glycols such as polytetramethylene glycol, and bisphenols such as bisphenol A Etc. can be used.
  • trimethylolethane, trimethylolpropane, glycerin, pentaerythritol and the like can be used in combination as trivalent or higher alcohols.
  • Polyfunctional epoxy compound A polyfunctional epoxy compound can be used for a crosslinking agent, for example.
  • the polyfunctional epoxy compound crosslinks by reacting with the hydroxyl group remaining at the end of the polyurethane during melt kneading with the polyurethane resin.
  • a crosslinked structure can be formed by reacting with a carboxyl group present at the terminal.
  • a polyurethane resin composition in a polyurethane resin having no terminal hydroxyl group or carboxyl group, or in a polyurethane resin existing only in a trace amount, a polyurethane resin composition can be obtained by using a polyfunctional epoxy compound in combination with the above-mentioned polyvalent amine or polyhydric alcohol.
  • the hardness of an object can be adjusted suitably.
  • polyfunctional epoxy compound examples include tris (2,3-epoxypropyl) isocyanurate and poly (glycidyl methacrylate).
  • the polyurethane resin to which the crosslinking agent has been added can be further heat treated to adjust the hardness of the polyurethane resin.
  • the polyurethane resin to which the crosslinking agent is added can be carried out by holding at a predetermined temperature for a predetermined time.
  • the atmosphere during the heat treatment may be performed in air or in an inert gas such as nitrogen, or under reduced pressure, as necessary.
  • the hardness of the resin composition may be adjusted by irradiating the melt-extruded resin composition with an electron beam to cut or crosslink the main chain of the polyurethane resin.
  • the resin composition may or may not contain a crosslinking agent.
  • the electron beam irradiation dose is, for example, preferably 5 kGy or more and 150 kGy or less, more preferably 10 kGy or more and 120 kGy or less, and further preferably 20 kGy or more and 100 kGy or less.
  • the value of the electron beam irradiation dose is too small, the hardness of the polyurethane resin composition is not sufficiently high, and when the value of the irradiation dose is too large, the polyurethane resin main chain is more than necessary. It is cut and the hardness decreases.
  • a sealing material capable of suitably temporarily closing the pores is obtained.
  • the filler may contain a filler.
  • the filler include organic or inorganic fibrous reinforcing materials and granular or powder reinforcing materials, and these can be used alone or in combination of two or more.
  • fibrous reinforcing material examples include glass fibers, carbon fibers, asbestos fibers, silica fibers, alumina fibers, zirconia fibers, boron nitride fibers, silicon nitride fibers, boron fibers, and potassium titanate fibers, and the like, stainless steel And metal fiber materials such as aluminum, titanium, copper and brass, and high melting point organic fiber materials such as aramid fiber, kenaf fiber, polyamide, fluororesin, polyester resin and acrylic resin.
  • Granular or powdery reinforcing materials include mica, silica, talc, alumina, kaolin, calcium sulfate, calcium carbonate, titanium oxide, ferrite, clay, glass powder, zinc oxide, nickel carbonate, iron oxide, quartz powder, magnesium carbonate And barium sulfate.
  • the filler may be treated with a bundling material or a surface treatment agent as necessary.
  • the filler When the filler is added to the resin composition, the filler is preferably added so that the content of the filler in the resin composition is 2% by weight or more and 30% by weight or less. It is more preferable to add so that it may become 4 wt% or more and 20 wt% or less.
  • the content of the filler is too small, the hardness of the polyurethane resin composition is not sufficiently high, and when the content of the filler is too large, the filler remains even after decomposition of the polyurethane resin. If you do this, you may not be able to fully unlock the eyes.
  • a strong alkaline well fluid including a filler containing the resin composition, a xanthan gum, a shale stabilizer, and the like ( Even when muddy water is used, for example, a large fracture having a width of 0.5 mm or more and 10 mm or less can be suitably observed.
  • the size (diameter, length, etc.) of the filler may be in a range that does not significantly affect the particle size of the filler, and may be, for example, 1 ⁇ m or more and 3,000 ⁇ m or less, 3 ⁇ m or more, 000 ⁇ m or less is preferable, and 5 ⁇ m or more and 500 ⁇ m or less is more preferable.
  • the sealant according to the present embodiment can further contain various compounding agents that are usually added in the sealant as long as the purpose of the present embodiment is not impaired.
  • various additives such as a decomposition accelerator, an antioxidant, and a decomposition inhibitor. These various additives can be used alone or in combination of two or more.
  • the sealant may contain a decomposition accelerator.
  • a decomposition accelerator accelerates
  • examples of the decomposition accelerator include lactones such as glycolide and lactide, acid anhydrides such as 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), diethyl oxalate, and the like.
  • lactones such as glycolide and lactide
  • acid anhydrides such as 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), diethyl oxalate, and the like.
  • the content of the decomposition accelerator in the resin composition is, for example, preferably 0.1% by weight to 20% by weight, more preferably 0.3% by weight to 15% by weight, and more preferably 0.5% by weight to 10% by weight. % Or less is more preferable. According to the preferable range described above, the decomposition promoting effect is sufficient because the content of the decomposition accelerator is not too small. Moreover, since there is not too much content, initial hardness does not fall and sufficient eye keeping time can be obtained.
  • the well fluid according to the present embodiment includes the above-described sealant.
  • the well fluid is not particularly limited, and for example, muddy water can be used.
  • the sealant according to the present embodiment may have a dispersibility and wettability in muddy water, especially in a muddy water, compared to a starch derivative or the like which is one of dehydration reducing agents contained in muddy water.
  • the high dispersibility of the sealant in the well treatment fluid is effective for efficiently locating large fractures, and a tool for injecting the well treatment fluid into the well (for example, a drill and its surroundings). This also contributes to prevention of clogging caused by the sealant in the member.
  • the well fluid is preferably an aqueous mud.
  • the well fluid according to the present embodiment is the type and physical properties of the resin composition contained in the sealant depending on the environment in the wellbore that uses the well fluid, particularly the temperature or pressure of the high temperature environment.
  • the composition including additives and the like, shape, size, and the like can be appropriately selected and combined. Therefore, the sealant according to the present embodiment may use different materials or combinations of materials.
  • the content of the aforementioned filler in the well fluid according to the present embodiment is not particularly limited, and is usually 1% by weight to 20% by weight, and preferably 5% by weight to 15% by weight.
  • the well fluid according to the present embodiment can contain various compounding agents that are usually added in the well fluid, in addition to the above-described sealant, in a range that does not impair the purpose of the present embodiment.
  • inorganic weighting agents such as barite (BaSO 4 ) and calcium carbonate, alkali metal halides such as NaCl, KCl and CaCl 2 or alkaline earth metal halides (salts), clay swelling inhibitors, or solid-free specific gravity
  • Organic colloid agents such as regulators, AMPS polymers, xanthan gum, guar gum and carboxymethyl cellulose (CMC), inorganic colloid agents (clays, etc.), dispersed anti-powder agents, surfactants, pH regulators, etc.
  • Anti-mudging agents, conversion agents, antifoaming agents, lubricants, antiseptics, bactericides, anticorrosion agents, etc. are mentioned, and contain them at a concentration according to the environment in the wellbore where the well fluid is used. Can do.
  • the above-described sealant is used as a well such as a shale layer for producing well drilling in a reservoir section using a drill, shale gas / oil, or the like. Can be used in excavation.
  • the fluid of the filler containing the filler according to the present embodiment is introduced into the well prior to flowing the well fluid into the well hole. It may be allowed to flow.
  • the type, physical properties, composition, shape, and size of the resin composition contained in the sealant are determined. It can select suitably and can combine.
  • the sealant according to an embodiment of the present invention is a sealant that seals a well wall, and the sealant includes pellets and powder formed from a resin composition containing a polyurethane resin, The pellet is characterized by an indentation hardness at 23 ° C. of 37 or more.
  • the indentation hardness at 23 ° C. of the pellet is preferably 98 or less.
  • the polyurethane resin is preferably at least one of an aliphatic isocyanate-based polyurethane resin and an aromatic isocyanate-based polyurethane resin.
  • the aliphatic isocyanate constituting the aliphatic isocyanate-based polyurethane resin is hexamethylene diisocyanate, isophorone diisocyanate, norbornane diisocyanate, hydrogenated xylylene diisocyanate, and dicyclohexyl. Preference is given to at least one aliphatic isocyanate selected from the group consisting of methane diisocyanate.
  • the aromatic isocyanate constituting the aromatic isocyanate-based polyurethane resin is selected from the group consisting of diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and naphthalene diisocyanate. Preferably it is at least one aromatic isocyanate selected.
  • At least one of the aliphatic isocyanate polyurethane resin and the aromatic isocyanate polyurethane resin includes a polyester skeleton.
  • the resin composition further includes a crosslinking agent
  • the content of the crosslinking agent in the resin composition is preferably 0.2% by weight or more and 50% by weight or less.
  • the crosslinking agent is a group consisting of a polyfunctional isocyanate compound, a monomer having an ethylenically unsaturated group, a polyvalent amine, a polyhydric alcohol, and a polyfunctional epoxy compound.
  • a cross-linking agent selected from:
  • the resin composition further includes a filler, and the content of the filler in the resin composition is 2 wt% or more and 30 wt% or less. It is preferable.
  • the filler is preferably an organic or inorganic fibrous reinforcing material.
  • the weight ratio of the pellets to the powder is preferably 5:95 to 60:40.
  • a well fluid according to an embodiment of the present invention is characterized by including the above-mentioned sealant.
  • the well excavation method according to an embodiment of the present invention is characterized in that the sealing is performed temporarily using the above-mentioned sealing agent.
  • sealants were prepared under the following conditions.
  • the HDI polyurethane resin and the cross-linking agent in the polyethylene bag were stirred for 3 minutes by handshaking with a polyethylene bag to obtain a resin composition as a mixture (blend).
  • the blend was melt kneaded at a temperature of 230 ° C. for 5 minutes and melt extruded from a die using the following kneading extruder.
  • evaluation fluid (hereinafter also referred to as evaluation mud)]
  • evaluation filler and each component of Table 1 below were mixed at a weight ratio shown in Table 1 to prepare an evaluation mud.
  • the sodium chloride in the 10 weight% sodium chloride aqueous solution in Table 1 is a pure chemical company make.
  • the AMPS polymer is Driscal (registered trademark) -D manufactured by Ternite Co., Ltd.
  • Cross-linked starch is Terpolymer DX manufactured by Ternite Co., Ltd.
  • the oxygen scavenger is Ternite (registered trademark) OS-5 manufactured by Ternite Co., Ltd.
  • FIG. 1 is a diagram schematically showing a plug tester used for a test for evaluating the performance of plugging evaluation mud water.
  • the initial sealing property means that by applying pressure from above, it is confirmed whether or not the sealing agent can form a cake layer on the pores of the slot disk. If it was confirmed, it was judged that there was an initial sealing ability.
  • the plug tester was heated from 23 ° C. to 120 ° C. and held with a pressure of 200 psi from above. After raising the temperature, a pressure of 500 psi was applied to the plug tester from above. As a result, a pressure of 500 psi was applied to the slot disk from above.
  • the slot disk has a rectangular hole having a width of 1 mm and a length of 20 mm, and water is transmitted from the container through the hole. Therefore, the amount of water permeated from the filter every predetermined time was measured.
  • the permeation recovery point (the point where the temporary sealing was released) was set, and the sealing test was completed.
  • the time until the water permeation recovery point is reached after the start of the eye stop test is set as the eye end maintenance time, and when the eye end maintenance time is 1 hour or more and 960 hours (40 days) or less, the eye end evaluation is " “A”, and otherwise, the evaluation was “B”.
  • the measurement of the mesh maintenance time is interrupted every 12 hours, and the following (1) to (3) are performed. Repeated.
  • (1) In an autoclave container different from the container shown in FIG. 1, the muddy water for evaluation retained in advance from the start of the sealing test at 120 ° C. was taken out from the autoclave container.
  • the composition of the evaluation muddy water is the same as that of the evaluation muddy water in Table 1.
  • (2) The sealing agent was filtered off from the extracted muddy water for evaluation and washed with water. Since this sealant is held at 120 ° C. from the start of the seal, the sealant deteriorates with time in the container shown in FIG.
  • the sealing maintenance time at 120 ° C. was 120 hours as shown in Table 3.
  • Example 2 An MDI polyurethane resin having a polycaprolactone skeleton was used in place of the HDI polyurethane resin, these were not subjected to heat treatment, and were not irradiated with an electron beam, as in Example 1. Pellets and powders were made.
  • the MDI polyurethane resin Pandex (registered trademark) T-5070 manufactured by DIC Covestro Polymer Co., Ltd. having a durometer type D hardness of 60 at 23 ° C. was used.
  • the indentation hardness (hardness) of the pellet at 23 ° C. was 68.
  • the median diameter (50% D) of the powder was 334 ⁇ m.
  • Example 2 Pellets and powder were mixed in the same weight ratio as in Example 1 to prepare an evaluation filler. Further, an evaluation muddy water was produced from the obtained sealing agent for evaluation in the same manner as in Example 1, and a sealing test was performed at 120 ° C. using a slot disk having a width of 1 mm in the same manner as in Example 1. As shown in Table 3, the maintenance time at 120 ° C. was 224 hours.
  • Example 3 In Example 3, MDI was used as a cross-linking agent, 10% by weight of the cross-linking agent was added to the MDI polyurethane resin, and the pellet was treated in the same manner as in Example 1 except that it was heat-treated in the same manner as in Example 1. And powder was produced.
  • the method for adding the crosslinking agent was as follows. That is, first, 1800 g of MDI polyurethane resin was weighed and put into a polyethylene bag. Further, 200 g of MDI as a cross-linking agent was weighed and put into the polyethylene bag. After the addition of the cross-linking agent, the MDI polyurethane resin and the cross-linking agent in the polyethylene bag were stirred for 3 minutes by handshaking with a polyethylene bag to obtain a blend. The melt extrusion after obtaining the blend was carried out in the same manner as in the above examples.
  • the indentation hardness of the pellet at 23 ° C. was 73.
  • the median diameter (50% D) of the powder was 402 ⁇ m.
  • the pellets and the powder were similarly mixed at the same weight ratio as in the above-described Examples to produce an evaluation filler.
  • An evaluation muddy water was produced from the obtained sealing agent for evaluation in the same manner as in the above-described example, and a sealing test was performed at 120 ° C. using a slot disk having a width of 1 mm in the same manner as in the above-described example. .
  • the maintenance time at 120 ° C. was 672 hours.
  • Example 4 In Example 4, pellets and powder were prepared in the same manner as in Example 3 except that the addition amount of the crosslinking agent was changed from 10% by weight to 20% by weight.
  • the indentation hardness of the pellet at 23 ° C. was 73.
  • the median diameter (50% D) of the powder was 203 ⁇ m.
  • Pellets and powder were mixed at a weight ratio of 40:60 to produce a sealant for evaluation.
  • An evaluation muddy water was prepared from the evaluation sealant in the same manner as in the above-described example, and a seal test was performed at 149 ° C. using a slot disk having a width of 1 mm in the same manner as in the above-described example. As shown in Table 3, the maintenance time at 149 ° C. was 3 hours.
  • Example 5 In Example 5, pellets and powder were prepared in the same manner as in Example 4 except that the addition amount of the crosslinking agent was changed from 20% by weight to 30% by weight.
  • the indentation hardness of the pellet at 23 ° C. was 71.
  • the median diameter (50% D) of the powder was 146 ⁇ m.
  • Example 4 Pellets and powder were mixed at the same weight ratio as in Example 4 to produce an evaluation filler. From the obtained evaluation sealant, an evaluation muddy water was prepared in the same manner as in the above-described example, and a seal test was performed at 149 ° C. using a slot disk having a width of 1 mm in the same manner as in the above-described example. It was. As shown in Table 3, the maintenance time at 149 ° C. was 4 hours.
  • Example 6 pellets and powder were prepared in the same manner as in Example 2 except that the resin composition used as the base further includes the above-mentioned HDI polyurethane resin in addition to the above MDI polyurethane resin.
  • the indentation hardness of the pellet at 23 ° C. was 38.
  • the median diameter (50% D) of the powder was 352 ⁇ m.
  • Pellets and powder were mixed at a weight ratio of 40:60 to produce a sealant for evaluation.
  • an evaluation muddy water was prepared in the same manner as in the above-described example, and a seal test was performed at 110 ° C. using a slot disk having a width of 1 mm in the same manner as in the above-described example. It was.
  • the maintenance time at 110 ° C. was 2 hours.
  • Example 7 In Example 7, except that the slot disk width in the plug tester was changed from 1 mm to 3 mm, an evaluation sealant and an evaluation muddy water were produced under the same conditions as in Example 3, and the same as in the above example. The sealing test was conducted at 120 ° C. by the above method.
  • the maintenance time at 120 ° C. was 168 hours.
  • Example 8 a sealing agent for evaluation and a muddy water for evaluation were prepared under the same conditions as in Example 7 except that a sealing test was performed at 149 ° C. instead of 120 ° C., and the sealing was performed using a slot disk having a width of 3 mm. Evaluation was performed. As shown in Table 3, the eye keeping time at 149 ° C. was 2 hours.
  • Example 9 a sealant for evaluation was prepared in the same manner as in Example 3 except that the pellet and powder were further irradiated with 20 kGy of an electron beam.
  • the indentation hardness of the pellet at 23 ° C. was 74, and the median diameter (50% D) of the powder was 448 ⁇ m.
  • An evaluation muddy water was produced from the obtained evaluation sealant in the same manner as in the above-described Examples, and the evaluation was performed at 120 ° C. using a slot disk having a width of 3 mm. As shown in Table 3, the maintenance time at 120 ° C. was 4 hours.
  • Example 10 a sealant for evaluation was prepared in the same manner as in Example 9 except that the pellet and powder were irradiated with 60 kGy instead of 20 kGy.
  • the indentation hardness of the pellet at 23 ° C. was 74, and the median diameter (50% D) of the powder was 402 ⁇ m.
  • An evaluation muddy water was produced from the obtained evaluation sealant in the same manner as in the above-described Examples, and the evaluation was performed at 120 ° C. using a slot disk having a width of 3 mm. As shown in Table 3, the maintenance time at 120 ° C. was 336 hours.
  • Example 11 In Example 11, instead of mixing pellets and powder at a weight ratio of 20:80, an evaluation filler was prepared in the same manner as in Example 10, except that the mixture was mixed at a weight ratio of 40:60.
  • An evaluation muddy water was produced from the obtained evaluation sealant in the same manner as in the above-described Examples, and the evaluation was performed at 120 ° C. using a slot disk having a width of 3 mm. As shown in Table 3, the maintenance time at 120 ° C. was 336 hours.
  • Example 12 a sealing agent for evaluation and a muddy water for evaluation were prepared under the same conditions as in Example 10 except that a sealing test was performed at 149 ° C. instead of 120 ° C., and the sealing was performed using a slot disk having a width of 3 mm. Evaluation was performed. As shown in Table 3, the maintenance time at 149 ° C. was 7 hours.
  • Example 13 a sealant for evaluation was prepared in the same manner as in Example 12 except that 100 kGy was irradiated instead of 60 kGy of the electron beam to the pellets and powder.
  • the indentation hardness of the pellet at 23 ° C. was 74, and the median diameter (50% D) of the powder was 685 ⁇ m.
  • An evaluation muddy water was produced from the obtained evaluation sealant by the same method as in the above-described example, and the evaluation was performed at 149 ° C. using a slot disk having a width of 3 mm. As shown in Table 3, the maintenance time at 149 ° C. was 5 hours.
  • Example 14 In Example 14, pellets and powder were prepared in the same manner as in Example 12 except that the addition amount of the crosslinking agent was changed from 10% by weight to 20% by weight.
  • the indentation hardness of the pellet at 23 ° C. was 75.
  • the median diameter (50% D) of the powder was 534 ⁇ m.
  • Example 12 Pellets and powder were mixed at the same weight ratio as in Example 12 to produce an evaluation filler. From the obtained evaluation sealant, an evaluation muddy water was prepared in the same manner as in the above-described example, and a seal test was performed at 149 ° C. using a slot disk having a width of 3 mm in the same manner as in the above-described example. It was. As shown in Table 3, the maintenance time at 149 ° C. was 4 hours.
  • Example 15 a sealant for evaluation was prepared in the same manner as in Example 14 except that the pellet and powder were irradiated with 100 kGy instead of 60 kGy.
  • the indentation hardness at 23 ° C. of the pellet was 73, and the median diameter (50% D) of the powder was 580 ⁇ m.
  • An evaluation muddy water was produced from the obtained evaluation sealant by the same method as in the above-described example, and the evaluation was performed at 149 ° C. using a slot disk having a width of 3 mm. As shown in Table 3, the maintenance time at 149 ° C. was 4 hours.
  • Example 16 ⁇ Example 16>
  • TAIC triallyl isocyanate
  • MDI methyl methacrylate
  • the addition amount of the crosslinking agent was changed from 10% by weight to 0.476% by weight ( ⁇ 0.5% by weight).
  • the indentation hardness of the pellet at 23 ° C. was 63, and the median diameter (50% D) of the powder was 291 ⁇ m.
  • An evaluation muddy water was produced from the obtained evaluation sealant by the same method as in the above-described example, and the evaluation was performed at 149 ° C. using a slot disk having a width of 3 mm. As shown in Table 3, the maintenance time at 149 ° C. was 3 hours.
  • Example 17 [Manufacture of sealants for evaluation] (Manufacture of pellets)
  • 1,900 g of the above-mentioned MDI polyurethane resin was weighed and put into a polyethylene bag.
  • 100 g of 03JAFT592S manufactured by Owens Corning Co., Ltd., glass fiber (GF) having a diameter (D) of 10 ⁇ m and an aspect ratio (L / D) of 30 was weighed and put into the polyethylene bag. That is, 5% by weight of a filler was added to the MDI polyurethane resin.
  • the MDI polyurethane resin in the polyethylene bag and the filler were stirred for 3 minutes by handshaking with a polyethylene bag to obtain a blend. After obtaining the blend, it was melt-extruded in the same manner as in the above examples to obtain pellets.
  • the indentation hardness of the pellet at 23 ° C. was 58.
  • Example 17 powder was produced under the same conditions as in Example 3. As shown in Table 3, the median diameter (50% D) of the powder was 402 ⁇ m.
  • evaluation fluid (hereinafter also referred to as evaluation mud)]
  • evaluation mud Manufacture of evaluation fluid (hereinafter also referred to as evaluation mud)
  • the obtained sealant for evaluation and each component of Table 2 below were mixed at a weight ratio shown in Table 2 to prepare a xanthan gum evaluation muddy water as an evaluation muddy water.
  • the xanthan gum in Table 2 is MI L. L. C. This is DUO-VIS PLUS.
  • the shale stabilizer is MI L.I. L. C. ULTRAHIB made by
  • the disinfectant is MI L.I. L. C. SAFE-CIDE made.
  • Cross-linked starch is terpolymer DX manufactured by Ternite Co., Ltd.
  • Example 18 GF-containing powder obtained by pulverizing part of the pellets of Example 17 instead of powder obtained by adding 10% by weight of a MDI crosslinking agent to the MDI-based polyurethane resin. Except that was used, pellets and powder were obtained in the same manner as in Example 17.
  • the median diameter (50% D) of the powder was 171 ⁇ m.
  • Pellets and powder were mixed at a weight ratio of 40:60 to produce a sealant for evaluation.
  • a muddy water for xanthan gum evaluation was produced in the same manner as in Example 17, and a sealing test was performed at 120 ° C. using a slot disk having a width of 3 mm in the same manner as in the above-mentioned Examples. It was.
  • the maintenance time at 120 ° C. was 72 hours.
  • Comparative Example 1 In Comparative Example 1, pellets and powder were prepared in the same manner as in Example 1 except that no crosslinking agent was added to the HDI polyurethane resin, the pellet was not heat-treated, and no electron beam was irradiated.
  • the indentation hardness of the pellet at 23 ° C. was 31.
  • the median diameter (50% D) of the powder was 337 ⁇ m.
  • Example 2 Pellets and powder were mixed in the same weight ratio as in Example 1 to prepare an evaluation filler.
  • An evaluation muddy water was produced from the obtained sealing agent for evaluation in the same manner as in Example 1, and a sealing test was performed at 110 ° C. using a slot disk having a width of 1 mm in the same manner as in Example 1.
  • the maintenance time at 110 ° C. was 0 hour.
  • Comparative Example 2 an evaluation filler was prepared in the same manner as Comparative Example 1 except that the pellets and powder were mixed at a weight ratio of 40:60 instead of being mixed at a weight ratio of 20:80.
  • An evaluation mud was prepared from the obtained sealant for evaluation by the same method as in Comparative Example 1, and the seal evaluation was performed at 110 ° C. using a slot disk having a width of 1 mm. As shown in Table 4, the maintenance time at 110 ° C. was 0 hour.
  • Comparative Example 3 An evaluation sealant and an evaluation muddy water were prepared under the same conditions as in Comparative Example 2 except that a sealing test was performed at 120 ° C. instead of 110 ° C., and a slot disk having a width of 1 mm was used. An eye-opening evaluation was performed. As shown in Table 4, the maintenance time at 120 ° C. was 0 hour.
  • HDI TPU and MDI TPU refer to HDI polyurethane resin and MDI polyurethane resin, respectively.
  • the filler is made of pellets and powder of a resin composition containing a polyurethane resin, and the long pieces of the pellets are larger than 0.8 mm, and the pellets at 23 ° C.
  • the indentation hardness is 37 or more and the median diameter (50% D) of the powder is 800 ⁇ m or less, the pores have a width of 1 mm or 3 mm at a high temperature of 110 ° C., 120 ° C., and 149 ° C. It has been found that a large fracture can be suitably temporarily observed.
  • the pellets contain GF as a filler, so that the pores are 3 mm at a high temperature of 120 ° C. It turns out that a large fracture with a width can be temporarily spotted.
  • a pellet and powder are included, and the pellet and the powder are a resin composition including a polyurethane resin, the long piece of the pellet is larger than 0.8 mm, and the median diameter of the powder Even when (50% D) is 800 ⁇ m or less, as long as the indentation hardness of the pellet at 23 ° C. is less than 37, regardless of the weight ratio of the pellet and the powder, the sealing test temperature, etc., the sealing maintenance time was 0 hours, and it was found that it has no sealing function.
  • the present invention can be used as a sealant and well fluid for temporarily closing a large fracture in a high temperature environment such as a deep well.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Sealing Material Composition (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Provided is a lost circulation material capable of temporarily sealing wide fractures even in a high temperature environment. Specifically provided is a lost circulation material for sealing the walls of a well, wherein the lost circulation material contains pellets and a powder that are each formed from a resin composition comprising a polyurethane resin, and the pellets have an indentation hardness of at least 37 at 23°C.

Description

目止剤及びその利用Sealants and their use
 本発明は、坑壁を一時的に目止めするための目止剤及びその利用に関する。 The present invention relates to a sealant for temporarily closing a pit wall and use thereof.
 在来型石油坑井から産出される石油及びガス、並びに、近年注目を浴びているシェールガス及びシェールオイル等の炭化水素資源は、一般的には油及びガスを多く含む岩石層に穿孔掘削した井戸(坑井)を通じて生産される。 Oil and gas produced from conventional oil wells and hydrocarbon resources such as shale gas and shale oil, which have been attracting attention in recent years, are generally drilled into rock layers rich in oil and gas. Produced through wells.
 坑井の掘削、仕上げ作業には、坑井掘進中のドリル周辺から生じる堀屑を地表へ運搬したり、地下の圧力を調節して坑内の安定を保ち、地層崩壊を抑制したり、坑井内を冷却するために、循環流体(泥水又は仕上げ流体)が使用される。 For excavation and finishing work of the well, the debris generated from the periphery of the drill during the well excavation is transported to the ground surface, the underground pressure is adjusted to maintain the stability of the well, and the collapse of the formation is suppressed. Circulating fluid (muddy water or finishing fluid) is used to cool the air.
 ここで、生産層である貯留層が高浸透性地層であったり、シェール層に天然のフラクチャー(亀裂)が存在したりすると、高浸透性地層や坑壁の亀裂を通して流体が流失し、循環泥水量が減少したり、泥水柱圧力が低下したりすることがある。 Here, if the reservoir that is the production layer is a highly permeable formation, or if natural fractures (cracks) exist in the shale layer, fluid will be lost through the high permeable formation and cracks in the well wall, and circulating mud The volume may decrease or the muddy water column pressure may decrease.
 その結果、坑井内の不安定化、掘削及び処理作業効率の低下、並びに、貯留層内に残存した流体による貯留層の生産障害を引き起こしてしまう虞があるだけでなく、高機能で高価な流体の流出による掘削コストの増大を招くことがある。そこで、流体の流出を極力抑制するために、分解可能な目止剤を用いて坑壁を一時的に目止めする方法が用いられている。 As a result, there is a risk of not only destabilizing the borehole, lowering the efficiency of excavation and processing work, and causing the production failure of the reservoir due to the fluid remaining in the reservoir, but also a highly functional and expensive fluid Excavation costs may increase due to spillage. Therefore, in order to suppress the outflow of the fluid as much as possible, a method of temporarily closing the pit wall using a decomposable sealant is used.
 目止剤としては、一般的に炭酸カルシウム等が用いられているが、生産に移行する際には、酸処理によって目止剤である炭酸カルシウムを分解させる必要がある。この酸処理を行うための作業時間が必要となるうえ、酸処理が不十分だと目止剤である炭酸カルシウムの残存物等の不溶解性残渣物により資源回収量が低減する虞がある。 As the sealant, calcium carbonate or the like is generally used. However, when shifting to production, it is necessary to decompose calcium carbonate as the sealant by acid treatment. The work time for performing this acid treatment is required, and if the acid treatment is insufficient, the amount of recovered resources may be reduced due to insoluble residues such as calcium carbonate residue as a filler.
 そこで、酸処理に要する作業時間を短縮しつつ酸処理コストを削減し、目止剤が残存することによる資源回収量の低減を防止するために、所定期間が経過すると分解して目止め機能が消失する分解性材料を用いた目止剤が注目されている。 Therefore, in order to reduce the acid treatment cost while shortening the work time required for the acid treatment, and to prevent the reduction of the resource recovery amount due to the remaining of the filler, the decomposition function is decomposed after a predetermined period of time. An eye-catching agent using a degradable material that has disappeared has attracted attention.
 特許文献1には、坑井を一時的に目止めするための分解性材料を含む粒子状等の目止剤が記載されている。 Patent Document 1 describes a particulate filler including a degradable material for temporarily closing a well.
 特許文献2には、温度93℃(200度F)~204℃(400度F)において、40日以下の期間の目止め機能を有する合成樹脂含有の目止剤が記載されている。 Patent Document 2 describes a sealing agent containing a synthetic resin having a sealing function for a period of 40 days or less at a temperature of 93 ° C. (200 ° F.) to 204 ° C. (400 ° F.).
米国特許出願公開第2008/0200352号公報US Patent Application Publication No. 2008/0200352 国際公開WO2015/072317号公報International Publication WO2015 / 072317
 生産が進むにつれて生ずる個々の坑井における石油ガス可採量の減少及び年々増加するエネルギー消費の増大に伴い、石油の開発は容易な場所からより厳しい条件の場所へと移り、気象条件の厳しい極地や海洋の大水深坑井開発領域での高深度坑井掘削等が求められている。特に、坑井の高深度化につれて、坑井の敷設条件が厳しくなり、例えば、地中約3000mを超える高深度では、場所によっては約110℃以上の高温環境となる。そこで、このような高温環境下においても、一時目止めすることができる目止剤が求められている。 With the decrease in oil and gas yield in individual wells and the increase in energy consumption that increases year by year as production progresses, oil development moves from easy to more severe conditions, and polar conditions with severe weather conditions. There is also a need for deep drilling in the deep water well development area of the ocean. In particular, as the depth of the well is increased, the conditions for laying the well become stricter. For example, at a high depth exceeding about 3000 m in the ground, a high temperature environment of about 110 ° C. or more is obtained depending on the location. Therefore, a sealant that can be temporarily stopped even under such a high temperature environment is demanded.
 また、フラクチャーには、種々の幅があり、なかでも、フラクチャーの開孔部又は内部における、裂け目の幅が、例えば、3mm以上程度の大きなフラクチャーを一時的に目止めすることができる目止剤が求められている。 Fractures have various widths, and in particular, a sealant capable of temporarily spotting large fractures having a crack width of, for example, about 3 mm or more in the opening or inside of the fracture. Is required.
 しかしながら、特許文献1及び特許文献2には、目止剤が、このような大きなフラクチャーを一時目止めすることができることについて何ら記載されていない。 However, Patent Document 1 and Patent Document 2 do not describe at all that the filler can temporarily stop such a large fracture.
 本発明は、上記課題に鑑みられたものであり、その目的は、高温環境下でも大きなフラクチャーを好適に一時目止めすることができる目止剤等を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a sealant or the like that can suitably temporarily seal a large fracture even in a high temperature environment.
 上記の課題を解決するために、本発明者が鋭意検討した結果、以下の本発明に達した。 In order to solve the above-mentioned problems, the present inventors have intensively studied, and as a result, have reached the following present invention.
 本発明に係る目止剤は、坑壁を目止めする目止剤であって、上記目止剤は、ポリウレタン樹脂を含む樹脂組成物から形成されたペレット及び粉体を含み、該ペレットは、23℃における押し込み硬度が37以上であることを特徴とする。 The sealant according to the present invention is a sealant for sealing a well wall, and the sealant includes pellets and powder formed from a resin composition containing a polyurethane resin, The indentation hardness at 23 ° C. is 37 or more.
 本発明は、高温環境下でも幅の大きなフラクチャーを一時目止めすることができる目止剤等を提供する。 DETAILED DESCRIPTION OF THE INVENTION The present invention provides a sealant that can temporarily seal a large fracture even in a high temperature environment.
本発明の一実施形態に係る目止剤による目止め試験に用いられるプラグ試験機を概略的に示す図である。It is a figure which shows roughly the plug testing machine used for the sealing test by the sealing agent which concerns on one Embodiment of this invention.
 以下、本発明の一実施形態について、詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail.
 <目止剤>
 本実施形態において、時限分解性目止剤(Time degradable-lost circulation materials)とは、典型的には、坑井掘削(坑井の敷設)の諸工程において、坑壁を一時的に目止めする目的で、坑井流体に配合される材料をいう。
<Closing agent>
In the present embodiment, time-degradable-lost circulation materials are typically used for temporarily closing a well wall in various steps of well drilling (well laying). For purposes, this refers to the material blended into the well fluid.
 本実施形態に係る目止剤は、ポリウレタン樹脂を含む樹脂組成物から形成されたペレット及び粉体(パウダー)である。ここで、ペレットは、23℃における押し込み硬度が37以上である。また、ペレットを形成する樹脂組成物と粉体を形成する樹脂組成物とは同じ樹脂組成物であってもよく、異なる樹脂組成物であってもよい。 The sealant according to the present embodiment is a pellet and powder (powder) formed from a resin composition containing a polyurethane resin. Here, the pellet has an indentation hardness at 37 ° C. of 37 or more. Further, the resin composition forming the pellets and the resin composition forming the powder may be the same resin composition or different resin compositions.
 これにより、本実施形態に係る目止剤は、目止剤でフラクチャーを目止めした目止め部が、当該目止めにかかる圧力に耐えられず、変形又は崩壊し、目止めが解除されるまでの時間(目止め維持時間)を、110℃以上200℃以下において、例えば、1時間以上960時間(40日間)以下の範囲にすることができる。これにより、目止め中に坑井内外で行う各種作業時間を確保しつつ、各種作業が終了するまでに目止めを解除することができる。 Thereby, the sealant according to the present embodiment is such that the seal part where the fracture is blocked by the sealant cannot withstand the pressure applied to the seal, deforms or collapses, and the seal is released. Can be set in the range of 1 hour to 960 hours (40 days), for example, at 110 ° C. or higher and 200 ° C. or lower. Thereby, it is possible to release the seal before various operations are completed while securing various work times to be performed inside and outside the well during the seal.
 また、本実施形態に係る目止剤によれば、例えば、110℃以上200℃以下の高温環境下でも、幅が3mm程度の大きなフラクチャーを一時目止めすることができる。 In addition, according to the sealant according to the present embodiment, for example, a large fracture with a width of about 3 mm can be temporarily stopped even in a high temperature environment of 110 ° C. or more and 200 ° C. or less.
 目止剤におけるペレットと粉体との重量比は、5:95~60:40であることが好ましく、10:90~55:45であることがより好ましく、15:85~50:50であることがさらに好ましい。ペレットと粉体との重量比がこの好ましい範囲にあることで、大きなフラクチャーを隙間なく好適に一時目止めすることができる。 The weight ratio of the pellets to the powder in the filler is preferably 5:95 to 60:40, more preferably 10:90 to 55:45, and 15:85 to 50:50. More preferably. When the weight ratio between the pellet and the powder is within this preferable range, a large fracture can be temporarily stopped without a gap.
 〔ペレット〕
 ペレットは、ポリウレタン樹脂を含む樹脂組成物によって形成されるペレットであって、23℃における押し込み硬度は37以上である。23℃における押し込み硬度は、37以上98以下であることが好ましく、37以上85以下であることがより好ましい。23℃におけるペレットの押し込み硬度が、37以上であるとき、目止剤は、柔らかすぎず、硬すぎもしないため、高温下において、好適に大きなフラクチャーを一時目止めすることができる。
〔pellet〕
The pellet is a pellet formed of a resin composition containing a polyurethane resin, and the indentation hardness at 23 ° C. is 37 or more. The indentation hardness at 23 ° C. is preferably 37 or more and 98 or less, and more preferably 37 or more and 85 or less. When the indentation hardness of the pellet at 23 ° C. is 37 or more, the filler is neither too soft nor too hard, so that a large fracture can be temporarily spotted at a high temperature.
 本願ではペレットの押し込み硬度は、ISO7619/JIS K 6253のデュロメータタイプD硬度計を用いて測定する。より具体的には、ポリウレタン樹脂を含む樹脂組成物を直径2.5mmφのストランド状に形成し、23℃において当該ストランドの押し込み硬度を測定する。より厳密には、押し込み硬度の測定において、ストランドは、長さ3mmに切断されている。すなわち、本願で定義する押し込み硬度は、デュロメータタイプD硬度計によって5kgfの荷重を加えて測定された直径2.5mmφ、長さ3mmのペレットの硬度の値である。 In the present application, the indentation hardness of the pellet is measured using a durometer type D hardness meter of ISO7619 / JIS K 6253. More specifically, a resin composition containing a polyurethane resin is formed into a strand having a diameter of 2.5 mmφ, and the indentation hardness of the strand is measured at 23 ° C. More precisely, in the measurement of indentation hardness, the strand is cut into a length of 3 mm. That is, the indentation hardness defined in the present application is a hardness value of a pellet having a diameter of 2.5 mmφ and a length of 3 mm measured by applying a load of 5 kgf with a durometer type D hardness meter.
 押し込み硬度測定に用いるペレットの寸法は、投影断面において最も長い幅が0.5mm以上10mm以下、最も短い幅が0.5mm以上10mm以下のものである。また、ペレットの形状は、典型的には、円柱体であり、その他、円錐体、楕円体、球体、直方体、立方体、星形状、多面体又はそれらの一部を成す形状を有するものであり得る。 The dimensions of the pellets used for indentation hardness measurement are those having a longest width of 0.5 mm to 10 mm and a shortest width of 0.5 mm to 10 mm in the projected cross section. The shape of the pellet is typically a cylinder, and may have a cone, ellipsoid, sphere, cuboid, cube, star shape, polyhedron, or a part of them.
 ペレットは、例えば、ポリウレタン樹脂である脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂等を溶融混練し、得られた樹脂組成物を公知の成形方法により適宜成形又は粉砕することによって作製することができる。なお、樹脂組成物に架橋剤を配合する場合、架橋剤を配合したポリウレタン樹脂を溶融混練するとよい。 The pellet is prepared by, for example, melt-kneading an aliphatic isocyanate-based polyurethane resin and an aromatic isocyanate-based polyurethane resin, which are polyurethane resins, and appropriately molding or pulverizing the obtained resin composition by a known molding method. Can do. In addition, when mix | blending a crosslinking agent with a resin composition, it is good to melt-knead the polyurethane resin which mix | blended the crosslinking agent.
 溶融混練時の加熱温度及び時間は、脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂の融点、及び架橋剤の反応温度を考慮して適宜調整するとよい。目止材に含まれるペレットは、溶融混練して得られた樹脂組成物を、適宜公知の方法によってペレット化することで得られる。また、ペレットは試験前に必要に応じて、成形加工時の機械的歪を除去し押し込み硬度を安定化させるために所定温度で所定時間熱処理してもよい。 The heating temperature and time during the melt-kneading may be appropriately adjusted in consideration of the melting point of the aliphatic isocyanate-based polyurethane resin and aromatic isocyanate-based polyurethane resin and the reaction temperature of the crosslinking agent. The pellets contained in the filler are obtained by appropriately pelletizing the resin composition obtained by melt kneading by a known method. In addition, the pellets may be heat-treated at a predetermined temperature for a predetermined time before the test, if necessary, in order to remove mechanical strain during molding and stabilize the indentation hardness.
 〔粉体〕
 粉体は、目止剤に含まれる粉体であり、樹脂組成物から形成されている。ここで、樹脂組成物は、ペレットを形成する樹脂組成物と同じ樹脂組成物であり得る。一例として、粉体は、凍結粉砕によってペレットを粉体状に粉砕したものであり得る。これによって、樹脂組成物から形成される粒子のメディアン径が小さな粉体を得ることができる。
〔powder〕
The powder is a powder contained in the filler and is formed from a resin composition. Here, the resin composition may be the same resin composition as the resin composition forming the pellet. As an example, the powder may be obtained by pulverizing pellets into powder by freeze pulverization. Thereby, a powder having a small median diameter of particles formed from the resin composition can be obtained.
 粉体は、メディアン径(50%D)が、80μm以上800μm以下であることが好ましく、フラクチャーの開孔部又は内部における、裂け目の幅が広い程、粉体のメディアン径はより大きい方がより好ましい。これにより、ペレットと混合することによって、大きなフラクチャーの裂け目の幅が、1mm~3mm程度であっても、目止め部の隙間がなく好適に一時目止めすることができる目止剤を得ることができる。 The powder preferably has a median diameter (50% D) of 80 μm or more and 800 μm or less, and the larger the median diameter of the powder, the larger the median diameter of the powder at the opening or inside of the fracture. preferable. Thus, by mixing with pellets, it is possible to obtain a sealing agent that can be temporarily stopped without gaps in the sealing portion even when the width of the fracture of a large fracture is about 1 mm to 3 mm. it can.
 粉体の粒子の形状は、限定されるものではないが、球形状、鱗片状、楕円体状、角柱状、棒状、星形状、多角体状及び繊維状(短繊維)等であってもよく、小孔を有する多孔質状であってもよい。また、これらのうち、形状が異なるものの組み合わせ、及び粒径が異なるものの組み合わせであってもよい。 The shape of the particles of the powder is not limited, but may be spherical, scaly, ellipsoidal, prismatic, rod-like, star-shaped, polygonal, and fibrous (short fibers). Further, it may be porous with small pores. Moreover, the combination of what differs in a shape and the thing from which a particle size differs may be sufficient.
 〔樹脂組成物〕
 樹脂組成物は、目止剤に含まれるペレット及び粉体の主たる材料であり、ポリウレタン樹脂を含んでいる。
(Resin composition)
The resin composition is a main material of pellets and powder contained in the filler, and includes a polyurethane resin.
 ポリウレタン樹脂は、一般的にはウレタン結合の有無によらず、イソシアネート化合物から誘導される高分子化合物を指す。具体的にはウレタン結合、場合によってはウレア結合又はアミド結合等の化学結合から構成される高分子化合物である。ポリウレタン樹脂としては、例えば、熱可塑性ポリウレタン樹脂、及び熱硬化性ポリウレタン樹脂を挙げることができる。 Polyurethane resin generally refers to a polymer compound derived from an isocyanate compound regardless of the presence or absence of a urethane bond. Specifically, it is a polymer compound composed of a chemical bond such as a urethane bond, and in some cases a urea bond or an amide bond. Examples of the polyurethane resin include a thermoplastic polyurethane resin and a thermosetting polyurethane resin.
 熱可塑性ポリウレタン樹脂及び熱硬化性ポリウレタン樹脂は、脂肪族イソシアネート系ポリウレタン樹脂、及び芳香族イソシアネート系ポリウレタン樹脂から形成され得る。よって、本明細書において、単に「ポリウレタン樹脂」と記載する場合、当該「ポリウレタン樹脂」には、「熱可塑性ポリウレタン樹脂」及び「熱硬化性ポリウレタン樹脂」、並びに、「脂肪族イソシアネート系ポリウレタン樹脂」、及び「芳香族イソシアネート系ポリウレタン樹脂」の意味を包含する。 The thermoplastic polyurethane resin and the thermosetting polyurethane resin can be formed from an aliphatic isocyanate-based polyurethane resin and an aromatic isocyanate-based polyurethane resin. Therefore, in the present specification, when simply described as “polyurethane resin”, the “polyurethane resin” includes “thermoplastic polyurethane resin” and “thermosetting polyurethane resin”, and “aliphatic isocyanate-based polyurethane resin”. And the meaning of “aromatic isocyanate-based polyurethane resin”.
 なお、熱可塑性ポリウレタン樹脂は、加熱により繰り返し溶融状態とすることが可能なポリウレタン樹脂であり、脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂のうち、分枝状の構造を有するポリウレタン樹脂であってもよいが、直鎖状の構造を有するポリウレタン樹脂であることがより好ましい。 The thermoplastic polyurethane resin is a polyurethane resin that can be repeatedly melted by heating, and is a polyurethane resin having a branched structure among aliphatic isocyanate-based polyurethane resins and aromatic isocyanate-based polyurethane resins. Although it may be, it is more preferably a polyurethane resin having a linear structure.
 また、熱硬化性ポリウレタン樹脂とは、溶融状態のプレポリマーを加熱により硬化させて得られるポリウレタン樹脂である。より具体的には、熱可塑性ポリウレタン樹脂又はポリウレタン樹脂のプレポリマーを架橋剤によって架橋することによって得ることができるポリウレタン樹脂である。なお、熱硬化性ポリウレタン樹脂は、以下の(i)~(iii)のような成形加工法によって得られるものを挙げることができる。
(i)ミラブルガム型成形加工法
 例えば、ポリエステルポリオール等の骨格と、脂肪族イソシアネート又は芳香族イソシアネートに由来する構造とを備えたヒドロキシル基末端プレポリマーを生成し、ロール練りで架橋剤を練り込み、鋳型に入れて加熱し、架橋を進行させることで得られる。
(ii)キャスト型成形加工法
 例えば、ポリエステルポリオール等の骨格と、脂肪族イソシアネート又は芳香族イソシアネートに由来する構造とを備えたイソシアネート基末端プレポリマーを生成し、これに架橋剤を添加した後の液状の混合物を型に注ぎ、末端を鎖延長または架橋により連結させることで得られる。
(iii)熱可塑型成形加工法
 例えば、熱可塑性ポリウレタン樹脂のペレットを加熱により溶融させ、押出成形または射出成形を経て得られる。また、溶融の際に必要に応じて架橋剤を添加すれば部分架橋したポリウレタン樹脂が得られる。また、架橋剤を添加した熱可塑性ポリウレタン樹脂を必要に応じ所定温度で所定時間熱処理することにより架橋を進行させることができ、硬度の調整ができる。
The thermosetting polyurethane resin is a polyurethane resin obtained by curing a molten prepolymer by heating. More specifically, it is a polyurethane resin that can be obtained by crosslinking a thermoplastic polyurethane resin or a polyurethane resin prepolymer with a crosslinking agent. Examples of the thermosetting polyurethane resin include those obtained by molding methods such as the following (i) to (iii).
(I) Millable gum mold processing method For example, a hydroxyl group-terminated prepolymer having a skeleton such as polyester polyol and a structure derived from aliphatic isocyanate or aromatic isocyanate is generated, and a crosslinking agent is kneaded by roll kneading, It is obtained by heating in a mold and allowing the crosslinking to proceed.
(Ii) Cast mold forming method For example, an isocyanate group-terminated prepolymer having a skeleton such as polyester polyol and a structure derived from aliphatic isocyanate or aromatic isocyanate is generated, and a crosslinking agent is added thereto. It is obtained by pouring a liquid mixture into a mold and connecting the ends by chain extension or crosslinking.
(Iii) Thermoplastic Molding Process For example, a thermoplastic polyurethane resin pellet is melted by heating and obtained through extrusion molding or injection molding. In addition, a partially crosslinked polyurethane resin can be obtained by adding a cross-linking agent as necessary at the time of melting. Moreover, crosslinking can be advanced by heat-treating a thermoplastic polyurethane resin to which a crosslinking agent has been added at a predetermined temperature for a predetermined time as required, and the hardness can be adjusted.
 〔硬度の調整〕
 ここで、樹脂組成物から形成されるペレットの押し込み硬度は、(1)複数のポリウレタン樹脂の併用、(2)架橋剤によるポリウレタン樹脂の架橋、及び架橋剤を添加したポリウレタン樹脂の熱処理(3)電子線照射によるポリウレタン樹脂の架橋、及び、(4)充填剤の配合によって調整される。
[Adjustment of hardness]
Here, the indentation hardness of the pellet formed from the resin composition is (1) combined use of a plurality of polyurethane resins, (2) crosslinking of the polyurethane resin with a crosslinking agent, and heat treatment of the polyurethane resin to which the crosslinking agent is added (3) It is adjusted by crosslinking of the polyurethane resin by electron beam irradiation and (4) blending of the filler.
 (1)複数のポリウレタン樹脂の併用
 一実施形態において、ペレットの押し込み硬度は、硬度が異なる複数のポリウレタン樹脂を併用することによって調整することができる。
(1) Combination use of a plurality of polyurethane resins In one embodiment, the indentation hardness of the pellets can be adjusted by using a plurality of polyurethane resins having different hardnesses.
 樹脂組成物の硬度を調整するためのポリウレタン樹脂には、脂肪族イソシアネート系ポリウレタン樹脂と、芳香族イソシアネート系ポリウレタン樹脂とが挙げられる。ここで、脂肪族イソシアネート系ポリウレタン樹脂は、一般的に硬度が低く、分解速度が速い。また、芳香族イソシアネート系ポリウレタン樹脂は、脂肪族イソシアネート系ポリウレタン樹脂より硬度が高く、分解速度が遅い。 The polyurethane resin for adjusting the hardness of the resin composition includes an aliphatic isocyanate polyurethane resin and an aromatic isocyanate polyurethane resin. Here, the aliphatic isocyanate-based polyurethane resin generally has a low hardness and a high decomposition rate. In addition, the aromatic isocyanate-based polyurethane resin has a higher hardness and a slower decomposition rate than the aliphatic isocyanate-based polyurethane resin.
 脂肪族イソシアネート系ポリウレタン樹脂と、芳香族イソシアネート系ポリウレタン樹脂との重量比は、80:20~0:100の範囲であることが好ましく、70:30~0:100の範囲であることがより好ましく、60:40~0:100の範囲であることがさらに好ましい。これにより、樹脂組成物の押し込み硬度が所定の範囲内になるように好適に調整することができる。よって、110℃~200℃という高温環境下において、坑壁を一時的に目止めすることができる目止剤を好適に製造することができる。 The weight ratio of the aliphatic isocyanate-based polyurethane resin to the aromatic isocyanate-based polyurethane resin is preferably in the range of 80:20 to 0: 100, more preferably in the range of 70:30 to 0: 100. 60:40 to 0: 100 is more preferable. Thereby, it can adjust suitably so that the indentation hardness of a resin composition may exist in a predetermined range. Therefore, a sealant capable of temporarily closing the well wall in a high temperature environment of 110 ° C. to 200 ° C. can be suitably produced.
 ここで、目止剤が、脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂を含んでいる場合、目止め維持時間は、硬度の低い脂肪族イソシアネート系ポリウレタン樹脂の目止め維持時間と、硬度の高い芳香族イソシアネート系ポリウレタン樹脂の目止め維持時間との間の時間となる。なお、ここでいう目止め維持時間とは、目止剤で大きなフラクチャーを目止めした目止め部が、当該目止めにかかる圧力に耐えられず、変形又は崩壊し、目止めが解除されるまでの時間のことをいう。圧力に耐えられなくなる理由としては、例えば、目止剤に含まれる上述の樹脂組成物の経時的な強度が低下することが挙げられる。 Here, when the sealant contains an aliphatic isocyanate-based polyurethane resin and an aromatic isocyanate-based polyurethane resin, the seal retention time is equal to the retention time of the aliphatic isocyanate-based polyurethane resin having a low hardness and the hardness. It is a time between the high-value aromatic isocyanate-based polyurethane resin and the sealing maintenance time. Note that the eye-keeping time here refers to the time when the eye-catching portion where the large fracture is eye-catching with the eye-stopping agent cannot withstand the pressure applied to the eye-opening, and is deformed or collapsed until the eye-opening is released. It means the time. The reason why it cannot withstand the pressure is, for example, that the strength over time of the resin composition contained in the filler is lowered.
 したがって、目止剤において、脂肪族イソシアネート系ポリウレタン樹脂と、芳香族イソシアネート系ポリウレタン樹脂との混合割合を変更することによって、目止め維持時間を調整することが可能となる。すなわち、坑井掘削するときの状況に適した目止め維持時間に調整することができる。 Therefore, in the sealant, it is possible to adjust the seal keeping time by changing the mixing ratio of the aliphatic isocyanate polyurethane resin and the aromatic isocyanate polyurethane resin. That is, it is possible to adjust the eye keeping time suitable for the situation when drilling a well.
 なお、例えば、樹脂組成物として熱硬化性ポリウレタン樹脂を採用する場合、脂肪族イソシアネートに由来する構造を含むプレポリマーと、芳香族イソシアネートに由来する構造を含むプレポリマーとの重量比を、80:20~0:100の範囲になるように混合し、後述する架橋剤によって架橋を進行させることで、樹脂組成物の押し込み硬度を調整してもよい(ミラブルガム型成形加工法又はキャスト型成形加工法)。 For example, when a thermosetting polyurethane resin is employed as the resin composition, the weight ratio of the prepolymer including a structure derived from aliphatic isocyanate to the prepolymer including a structure derived from aromatic isocyanate is 80: The indentation hardness of the resin composition may be adjusted by mixing so as to be in the range of 20 to 0: 100 and allowing the crosslinking to proceed with a crosslinking agent described later (millable gum mold forming method or cast mold forming method) ).
 〔脂肪族イソシアネート系ポリウレタン樹脂〕
 脂肪族イソシアネート系ポリウレタン樹脂は、非環式又は環式の脂肪族イソシアネートに由来する構造を有するポリウレタン樹脂である。つまり、本明細書中において、「脂肪族イソシアネート系ポリウレタン樹脂」とは、ポリウレタン樹脂を生成するためのイソシアネートが「脂肪族イソシアネート」であることによって規定される。つまり、「脂肪族イソシアネート系ポリウレタン樹脂」とは、ポリウレタン樹脂の主鎖を構成するポリエステル骨格等の骨格が「脂肪族」炭化水素骨格を有しているか否かによって規定されない。
[Aliphatic isocyanate-based polyurethane resin]
The aliphatic isocyanate-based polyurethane resin is a polyurethane resin having a structure derived from an acyclic or cyclic aliphatic isocyanate. That is, in this specification, “aliphatic isocyanate-based polyurethane resin” is defined by the fact that the isocyanate for producing the polyurethane resin is “aliphatic isocyanate”. That is, the “aliphatic isocyanate-based polyurethane resin” is not defined by whether or not a skeleton such as a polyester skeleton constituting the main chain of the polyurethane resin has an “aliphatic” hydrocarbon skeleton.
 脂肪族イソシアネート系ポリウレタン樹脂は、脂肪族イソシアネートを用いて生成されるポリウレタン樹脂であり、脂肪族イソシアネートには、典型的には、脂肪族ジイソシアネートが挙げられる。ここで、脂肪族ジイソシアネートには、例えば、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、ノルボルナンジイソシアネート(NBDI)、水添キシリレンジイソシアネート(H6XDI)、及びジシクロヘキシルメタンジイソシアネート等が挙げられる。また、脂肪族イソシアネート系ポリウレタン樹脂には、脂肪族ジイソシアネートと、これら脂肪族ジイソシアネートのイソシアヌレート化合物(三量体)とが併用されていてもよい。なかでも、脂肪族イソシアネートは、ヘキサメチレンジイソシアネート(HDI)であることがより好ましい。なお、本明細書中において、ヘキサメチレンジイソシアネート(HDI)を用いて生成された脂肪族イソシアネート系ポリウレタン樹脂のことを、ヘキサメチレンジイソシアネート系ポリウレタン樹脂(HDI系ポリウレタン樹脂)と称することもある。 The aliphatic isocyanate-based polyurethane resin is a polyurethane resin produced using an aliphatic isocyanate, and the aliphatic isocyanate typically includes an aliphatic diisocyanate. Here, examples of the aliphatic diisocyanate include hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), norbornane diisocyanate (NBDI), hydrogenated xylylene diisocyanate (H6XDI), and dicyclohexylmethane diisocyanate. In addition, aliphatic diisocyanate and an isocyanurate compound (trimer) of these aliphatic diisocyanates may be used in combination with the aliphatic isocyanate-based polyurethane resin. Among these, the aliphatic isocyanate is more preferably hexamethylene diisocyanate (HDI). In addition, in this specification, the aliphatic isocyanate type polyurethane resin produced | generated using hexamethylene diisocyanate (HDI) may be called a hexamethylene diisocyanate type polyurethane resin (HDI type polyurethane resin).
 脂肪族イソシアネート系ポリウレタン樹脂の主鎖を構成する骨格は、例えば、ポリエーテル骨格、ポリエステル骨格、ポリエーテルエステル骨格、及びポリ(メタ)アクリレート骨格等が挙げられ、これらの骨格は脂肪族イソシアネート系ポリウレタン樹脂の主鎖として併存してよい。なかでも、所望の硬度及び加水分解性を得ることができるという観点から、脂肪族イソシアネート系ポリウレタン樹脂の主鎖を構成する骨格は、ポリエステル骨格、及びポリエーテルエステル骨格の何れか又は両方であることが好ましい。特に、ポリエステル骨格、又はポリエーテルエステル骨格を含むポリオールはポリエステルポリオールと呼ばれ、例えば、ポリエステルポリオールと芳香族イソシアネートを反応させることで、目止剤として好適な芳香族イソシアネート系ポリウレタン樹脂が得られる。 Examples of the skeleton constituting the main chain of the aliphatic isocyanate-based polyurethane resin include a polyether skeleton, a polyester skeleton, a polyether ester skeleton, and a poly (meth) acrylate skeleton. These skeletons are aliphatic isocyanate-based polyurethanes. It may coexist as the main chain of the resin. Among these, from the viewpoint that desired hardness and hydrolyzability can be obtained, the skeleton constituting the main chain of the aliphatic isocyanate-based polyurethane resin is either or both of a polyester skeleton and a polyether ester skeleton. Is preferred. In particular, a polyol containing a polyester skeleton or a polyether ester skeleton is called a polyester polyol. For example, an aromatic isocyanate-based polyurethane resin suitable as a sealant can be obtained by reacting a polyester polyol with an aromatic isocyanate.
 ここで、ポリエステル骨格は、限定されるものではないが、グリコリド、α-アセトラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、及びε-カプロラクトン等を開環重合することによって形成される骨格、シュウ酸、コハク酸、アジピン酸、セバシン酸、及びフタル酸等のジカルボン酸と、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、及び1,6-ヘキサンジオール等のジオールとを縮合して形成される骨格、又はこれらを組み合わせて形成される骨格であり得る。 Here, the polyester skeleton is not limited, but is formed by ring-opening polymerization of glycolide, α-acetolactone, β-propiolactone, γ-butyrolactone, δ-valerolactone, ε-caprolactone, and the like. Skeletons, dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, sebacic acid, and phthalic acid, and ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,6- It may be a skeleton formed by condensation with a diol such as hexanediol, or a skeleton formed by combining these.
 また、ポリエーテルエステル骨格は、繰り返し単位における炭素数1~6のポリエーテル構成単位と、繰り返し単位における炭素数2~20のポリエステル構成単位との共重合体であり得る。ここで、ポリエーテル構成単位としては、例えば、ポリアセタール、ポリエチレングリコール、及び、ポリテトラメチレングリコール等が挙げられ、ポリエステル構成単位としては上述のポリエステル骨格が挙げられる。 The polyether ester skeleton can be a copolymer of a polyether constituent unit having 1 to 6 carbon atoms in the repeating unit and a polyester constituent unit having 2 to 20 carbon atoms in the repeating unit. Here, examples of the polyether constituent unit include polyacetal, polyethylene glycol, and polytetramethylene glycol, and examples of the polyester constituent unit include the above-described polyester skeleton.
 また、脂肪族イソシアネート系ポリウレタン樹脂の重量平均分子量は、10,000以上、250,000以下であることが好ましく、50,000以上、200,000以下であることがより好ましく、100,000以上、150,000以下であることが最も好ましい。脂肪族イソシアネート系ポリウレタン樹脂の重量平均分子量が、10,000以上、250,000以下であれば、適度な加水分解性を備えた目止剤を得ることができる。 The weight average molecular weight of the aliphatic isocyanate polyurethane resin is preferably 10,000 or more and 250,000 or less, more preferably 50,000 or more and 200,000 or less, 100,000 or more, Most preferably, it is 150,000 or less. When the weight average molecular weight of the aliphatic isocyanate-based polyurethane resin is 10,000 or more and 250,000 or less, a filler having an appropriate hydrolyzability can be obtained.
 脂肪族イソシアネート系ポリウレタン樹脂は、典型的には、以下の化学式(I)に示されるものが好ましい。 As the aliphatic isocyanate-based polyurethane resin, typically, those represented by the following chemical formula (I) are preferable.
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
 ここで、化学式(I)において、mは1以上10以下の整数であり、nは20以上130以下の整数である。 Here, in the chemical formula (I), m 1 is an integer of 1 to 10, and n 1 is an integer of 20 to 130.
 脂肪族イソシアネート系ポリウレタン樹脂の製品としては、例えば、ディーアイシーコベストロポリマー株式会社製のパンデックス(登録商標)T-R3080等を挙げることができる。 Examples of the aliphatic isocyanate-based polyurethane resin include Pandex (registered trademark) T-R3080 manufactured by DIC Covestro Polymer Co., Ltd.
 また、これら脂肪族イソシアネート系ポリウレタン樹脂を形成することができるイソシアネート末端、若しくは水酸基末端又はカルボキシル基末端のプレポリマーは、熱硬化型ポリウレタン樹脂を得るために好適に使用することができる。 Also, the isocyanate-terminated, hydroxyl-terminated or carboxyl-terminated prepolymer that can form these aliphatic isocyanate-based polyurethane resins can be suitably used to obtain a thermosetting polyurethane resin.
 〔芳香族イソシアネート系ポリウレタン樹脂〕
 芳香族イソシアネート系ポリウレタン樹脂は、芳香環を有しているイソシアネートに由来する構造を有するポリウレタン樹脂である。つまり、本明細書中において、「芳香族イソシアネート系ポリウレタン樹脂」とは、ポリウレタン樹脂を生成するためのイソシアネートが「芳香族イソシアネート」であることによって規定される。つまり、「芳香族イソシアネート系ポリウレタン樹脂」とは、ポリウレタン樹脂の主鎖を構成するポリエステル骨格等の骨格が「芳香族」炭化水素骨格を有しているか否かによって規定されない。
[Aromatic isocyanate-based polyurethane resin]
An aromatic isocyanate-based polyurethane resin is a polyurethane resin having a structure derived from an isocyanate having an aromatic ring. That is, in this specification, the “aromatic isocyanate-based polyurethane resin” is defined by the fact that the isocyanate for producing the polyurethane resin is “aromatic isocyanate”. That is, the “aromatic isocyanate-based polyurethane resin” is not defined by whether or not a skeleton such as a polyester skeleton constituting the main chain of the polyurethane resin has an “aromatic” hydrocarbon skeleton.
 芳香族イソシアネート系ポリウレタン樹脂は、芳香族イソシアネートを用いて生成されるポリウレタン樹脂であり、芳香族イソシアネートには、典型的には、芳香族ジイソシアネートが挙げられる。ここで、芳香族ジイソシアネートには、例えば、ジフェニルメタンジイソシアネート(MDI)、トリレンジイソシアネート(TDI)、キシリレンジイソシアネート(XDI)、及びナフタレンジイソシアネート(NDI)等が挙げられる。また、芳香族イソシアネート系ポリウレタン樹脂には、芳香族ジイソシアネートと、これら芳香族ジイソシアネートのイソシアヌレート化合物(三量体)とが併用されていてもよい。なかでも、芳香族イソシアネートは、ジフェニルメタンジイソシアネート(MDI)であることがより好ましい。なお、本明細書中において、ジフェニルメタンジイソシアネート(MDI)を用いて生成された芳香族イソシアネート系ポリウレタン樹脂のことを、ジフェニルメタンジイソシアネート系ポリウレタン樹脂(MDI系ポリウレタン樹脂)と称することもある。 The aromatic isocyanate-based polyurethane resin is a polyurethane resin produced using an aromatic isocyanate, and typically an aromatic diisocyanate is exemplified as the aromatic isocyanate. Here, examples of the aromatic diisocyanate include diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), and naphthalene diisocyanate (NDI). Moreover, aromatic diisocyanate and the isocyanurate compound (trimer) of these aromatic diisocyanates may be used together in the aromatic isocyanate polyurethane resin. Of these, the aromatic isocyanate is more preferably diphenylmethane diisocyanate (MDI). In the present specification, an aromatic isocyanate polyurethane resin produced using diphenylmethane diisocyanate (MDI) may be referred to as diphenylmethane diisocyanate polyurethane resin (MDI polyurethane resin).
 芳香族イソシアネート系ポリウレタン樹脂の主鎖を構成する骨格は、例えば、脂肪族イソシアネート系ポリウレタン樹脂の主鎖を構成する骨格と同じく、ポリエーテル骨格、ポリエステル骨格、ポリエステルポリオール骨格、ポリエーテルエステル骨格、及びポリ(メタ)アクリレート骨格等が挙げられ、これらの骨格は芳香族イソシアネート系ポリウレタン樹脂の主鎖として併存してよい。なかでも、所望の硬度及び加水分解性を得ることができるという観点から、芳香族イソシアネート系ポリウレタン樹脂の主鎖を構成する骨格は、ポリエステル骨格、及びポリエーテルエステル骨格の何れか又は両方であることが好ましい。特に、ポリエステル骨格、又はポリエーテルエステル骨格を含むポリオールはポリエステルポリオールと呼ばれ、少なくともエステル骨格を含み、例えば、ポリエステルポリオールと芳香族イソシアネートとを反応させることで、目止剤として好適な芳香族イソシアネート系ポリウレタン樹脂が得られる。 The skeleton constituting the main chain of the aromatic isocyanate polyurethane resin is, for example, the same as the skeleton constituting the main chain of the aliphatic isocyanate polyurethane resin, the polyether skeleton, the polyester skeleton, the polyester polyol skeleton, the polyether ester skeleton, and Examples thereof include a poly (meth) acrylate skeleton, and these skeletons may coexist as a main chain of the aromatic isocyanate polyurethane resin. Among these, from the viewpoint that desired hardness and hydrolyzability can be obtained, the skeleton constituting the main chain of the aromatic isocyanate-based polyurethane resin is either or both of a polyester skeleton and a polyether ester skeleton. Is preferred. In particular, a polyol containing a polyester skeleton or a polyether ester skeleton is called a polyester polyol and contains at least an ester skeleton. For example, an aromatic isocyanate suitable as a sealant by reacting a polyester polyol and an aromatic isocyanate. A polyurethane resin is obtained.
 ここで、ポリエステル骨格は、限定されるものではないが、グリコリド、α-アセトラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、及びε-カプロラクトン等を開環重合することによって形成される骨格、シュウ酸、コハク酸、アジピン酸、セバシン酸、及びフタル酸等のジカルボン酸と、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、及び1,6-ヘキサンジオール等のジオールとを縮合して形成される骨格、又はこれらを組み合わせて形成される骨格であり得る。 Here, the polyester skeleton is not limited, but is formed by ring-opening polymerization of glycolide, α-acetolactone, β-propiolactone, γ-butyrolactone, δ-valerolactone, ε-caprolactone, and the like. Skeletons, dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, sebacic acid, and phthalic acid, and ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,6- It may be a skeleton formed by condensation with a diol such as hexanediol, or a skeleton formed by combining these.
 また、ポリエステルポリオール骨格は、繰り返し単位における炭素数1~6のポリエーテル構成単位と、繰り返し単位における炭素数2~20のポリエステル構成単位との共重合体であり得る。ここで、ポリエーテル構成単位としては、例えば、ポリアセタール、ポリエチレングリコール及びポリテトラメチレングリコール等が挙げられ、ポリエステル構成単位としては上述のポリエステル骨格が挙げられる。 The polyester polyol skeleton may be a copolymer of a polyether constituent unit having 1 to 6 carbon atoms in the repeating unit and a polyester constituent unit having 2 to 20 carbon atoms in the repeating unit. Here, examples of the polyether constituent unit include polyacetal, polyethylene glycol, and polytetramethylene glycol, and examples of the polyester constituent unit include the above-described polyester skeleton.
 また、芳香族イソシアネート系ポリウレタン樹脂の重量平均分子量は、5,000以上、100,000以下であることが好ましく、10,000以上、70,000以下であることがより好ましく、15,000以上、50,000以下であることが最も好ましい。芳香族イソシアネート系ポリウレタン樹脂の重量平均分子量が、5,000以上、100,000以下であれば、適度な加水分解性を備えた目止剤を得ることができる。 The weight average molecular weight of the aromatic isocyanate-based polyurethane resin is preferably 5,000 or more and 100,000 or less, more preferably 10,000 or more and 70,000 or less, 15,000 or more, Most preferably, it is 50,000 or less. When the weight average molecular weight of the aromatic isocyanate-based polyurethane resin is 5,000 or more and 100,000 or less, a filler having an appropriate hydrolyzability can be obtained.
 芳香族イソシアネート系ポリウレタン樹脂は、典型的には、以下の化学式(II)に示されるものが好ましい。 As the aromatic isocyanate-based polyurethane resin, typically, those represented by the following chemical formula (II) are preferable.
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
 ここで、化学式(II)において、mは1以上10以下の整数であり、nは5以上40以下の整数である。 Here, in the chemical formula (II), m 2 is an integer of 1 to 10, and n 2 is an integer of 5 to 40.
 化学式(II)に示されるMDI系ポリウレタン樹脂の製品としては、例えば、ディーアイシーコベストロポリマー株式会社製のパンデックス(登録商標)T-5070等を挙げることができる。 Examples of the product of the MDI polyurethane resin represented by the chemical formula (II) include Pandex (registered trademark) T-5070 manufactured by DIC Covestro Polymer Co., Ltd.
 また、これら芳香族イソシアネート系ポリウレタン樹脂を形成することができるイソシアネート末端、若しくは水酸基末端又はカルボキシル基末端のプレポリマーは、熱硬化型ポリウレタン樹脂を得るために好適に使用することができる。 In addition, an isocyanate-terminated, hydroxyl-terminated or carboxyl-terminated prepolymer capable of forming these aromatic isocyanate-based polyurethane resins can be suitably used to obtain a thermosetting polyurethane resin.
 (2)架橋剤による架橋
 一実施形態において、目止剤は、樹脂組成物に架橋剤を配合することにより、樹脂組成物から形成されるペレットの23℃における押し込み硬度を調整する。
(2) Crosslinking with a crosslinking agent In one embodiment, the filler suppresses the indentation hardness at 23 ° C. of pellets formed from the resin composition by blending the resin composition with a crosslinking agent.
 架橋剤としては、多官能イソシアネート化合物、エチレン系不飽和基を有するモノマー、多価アミン、多価アルコール、及び多官能エポキシ化合物からなる群から選択される少なくとも1つの架橋剤であることが好ましい。また、これらの複数の組み合わせにより、ポリウレタン樹脂中において網目状の架橋構造を形成することができる。このため、樹脂組成物の硬度を好適に調製することができる。 The crosslinking agent is preferably at least one crosslinking agent selected from the group consisting of a polyfunctional isocyanate compound, a monomer having an ethylenically unsaturated group, a polyvalent amine, a polyhydric alcohol, and a polyfunctional epoxy compound. Moreover, a network-like crosslinked structure can be formed in a polyurethane resin by a combination of these. For this reason, the hardness of a resin composition can be prepared suitably.
 なお、架橋剤は、上述の通り、脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂に加えてもよく(熱可塑型成形加工法)、これらポリウレタン樹脂を形成するためのプレポリマーに加えてもよい(ミラブルガム型成形加工法及びキャスト型成形加工法)。 In addition, as above-mentioned, a crosslinking agent may be added to an aliphatic isocyanate type polyurethane resin and an aromatic isocyanate type polyurethane resin (thermoplastic molding method), and in addition to the prepolymer for forming these polyurethane resins. Also good (millable gum mold processing and cast mold processing).
 (2.1)多官能イソシアネート化合物
 樹脂組成物は、架橋剤として多官能イソシアネート化合物を含み得る。多官能イソシアネート化合物は、脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂のうちの何れか一方又は両方を溶融混練するときに、これらポリウレタン樹脂の末端又は主鎖に存在する活性水素を有する官能基に架橋する(熱可塑型成形加工法)。
(2.1) Polyfunctional isocyanate compound The resin composition may contain a polyfunctional isocyanate compound as a crosslinking agent. The polyfunctional isocyanate compound is a functional group having active hydrogen present at the terminal or main chain of the polyurethane resin when one or both of an aliphatic isocyanate polyurethane resin and an aromatic isocyanate polyurethane resin is melt-kneaded. Crosslink to the base (thermoplastic molding process).
 多官能イソシアネート化合物としては、例えば、上述の脂肪族ジイソシアネート、及び芳香族ジイソシアネート、並びに、これら脂肪族ジイソシアネート又は芳香族ジイソシアネートから形成されるイソシアヌレートが挙げられる。 Examples of the polyfunctional isocyanate compound include the above-mentioned aliphatic diisocyanates and aromatic diisocyanates, and isocyanurates formed from these aliphatic diisocyanates or aromatic diisocyanates.
 多官能イソシアネート化合物は、一例として、下記一般式(III)に示すように、イソシアネート基がポリウレタン樹脂の主鎖に存在するウレタン結合とアロファネート結合する。 As an example, the polyfunctional isocyanate compound has an allophanate bond with a urethane bond in which an isocyanate group is present in the main chain of the polyurethane resin, as shown in the following general formula (III).
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
 これによって、1つのポリウレタン樹脂の主鎖と、別のポリウレタン樹脂の主鎖とを多官能イソシアネート化合物を介して架橋する。なお、ポリウレタン樹脂が尿素結合を有している場合、多官能イソシアネートは、当該尿素結合とビューレット結合とを形成し得る。このような、ビューレット結合によっても、多官能イソシアネート化合物は、1つのポリウレタン樹脂の主鎖と、別のポリウレタン樹脂の主鎖とを多官能イソシアネート化合物を介して架橋する。 This crosslinks the main chain of one polyurethane resin and the main chain of another polyurethane resin via the polyfunctional isocyanate compound. When the polyurethane resin has a urea bond, the polyfunctional isocyanate can form the urea bond and the burette bond. The polyfunctional isocyanate compound also crosslinks the main chain of one polyurethane resin and the main chain of another polyurethane resin via the polyfunctional isocyanate compound by such a burette bond.
 架橋剤を脂肪族イソシアネート系ポリウレタン樹脂に添加する場合には、添加前の脂肪族イソシアネート系ポリウレタン樹脂と、架橋剤との重量比が、99.8:0.2~50:50の範囲となるように架橋剤を添加することが好ましい。脂肪族イソシアネート系ポリウレタン樹脂と、架橋剤との重量比が、99.7:0.3~60:40の範囲となるように添加することがより好ましく、99.6:0.4~70:30の範囲となるように添加することがさらに好ましい。上述の範囲で架橋剤を添加することにより、架橋した脂肪族イソシアネート系ポリウレタン樹脂の硬度をより高くすることができる。よって、高温環境下において、より好適に細孔を一時目止めすることができる目止剤を得ることができる。なお、脂肪族イソシアネート系ポリウレタン樹脂のプレポリマーに架橋剤を添加する場合には、該プレポリマーと、架橋剤との重量比は、99.8:0.2~50:50の範囲となるように架橋剤を添加することが好ましい(ミラブルガム型成形加工法)。つまり、該プレポリマーと、架橋剤との重量比の好ましい範囲は、脂肪族イソシアネート系ポリウレタン樹脂と、架橋剤との重量比の好ましい範囲に準じている。 When the crosslinking agent is added to the aliphatic isocyanate polyurethane resin, the weight ratio of the aliphatic isocyanate polyurethane resin before addition to the crosslinking agent is in the range of 99.8: 0.2 to 50:50. Thus, it is preferable to add a crosslinking agent. It is more preferable to add the aliphatic isocyanate polyurethane resin and the crosslinking agent so that the weight ratio is in the range of 99.7: 0.3 to 60:40, and 99.6: 0.4 to 70: More preferably, it is added so as to be in the range of 30. By adding a crosslinking agent in the above range, the hardness of the crosslinked aliphatic isocyanate polyurethane resin can be further increased. Therefore, it is possible to obtain a sealant capable of temporarily closing the pores more suitably in a high temperature environment. When a crosslinking agent is added to the prepolymer of the aliphatic isocyanate polyurethane resin, the weight ratio between the prepolymer and the crosslinking agent is in the range of 99.8: 0.2 to 50:50. It is preferable to add a cross-linking agent to (millable gum mold forming method). That is, the preferable range of the weight ratio between the prepolymer and the crosslinking agent is in accordance with the preferable range of the weight ratio between the aliphatic isocyanate polyurethane resin and the crosslinking agent.
 また、架橋剤を芳香族イソシアネート系ポリウレタン樹脂に添加する場合には、添加前の芳香族イソシアネート系ポリウレタン樹脂と、架橋剤との重量比が、100:0~50:50の範囲となるように架橋剤を添加することが好ましい。芳香族イソシアネート系ポリウレタン樹脂と、架橋剤との重量比が、99.7:0.3~60:40の範囲となるように添加することが好ましく、99.6:0.4~70:30の範囲となるように添加することがさらに好ましい。上述の範囲で架橋剤を添加することにより、架橋した芳香族イソシアネート系ポリウレタン樹脂の硬度がより高くなり、高温下において、より好適に細孔を一時目止めすることができる。なお、芳香族イソシアネート系ポリウレタン樹脂のプレポリマーに架橋剤を添加する場合には、該プレポリマーと、架橋剤との重量比は、100:0~50:50の範囲となるように架橋剤を添加することが好ましい(ミラブルガム型成形加工法)。つまり、該プレポリマーと、架橋剤との重量比の好ましい範囲は、芳香族イソシアネート系ポリウレタン樹脂と、架橋剤との重量比の好ましい範囲に準じている。 When the crosslinking agent is added to the aromatic isocyanate polyurethane resin, the weight ratio of the aromatic isocyanate polyurethane resin before addition to the crosslinking agent is in the range of 100: 0 to 50:50. It is preferable to add a crosslinking agent. It is preferable to add so that the weight ratio of the aromatic isocyanate polyurethane resin and the crosslinking agent is in the range of 99.7: 0.3 to 60:40, and 99.6: 0.4 to 70:30. It is more preferable to add so that it may become this range. By adding a cross-linking agent within the above-mentioned range, the hardness of the cross-linked aromatic isocyanate-based polyurethane resin becomes higher, and the pores can be more appropriately temporarily spotted at a high temperature. When a crosslinking agent is added to the prepolymer of the aromatic isocyanate polyurethane resin, the crosslinking agent is added so that the weight ratio of the prepolymer to the crosslinking agent is in the range of 100: 0 to 50:50. It is preferable to add (millable gum mold forming method). That is, the preferable range of the weight ratio between the prepolymer and the crosslinking agent conforms to the preferable range of the weight ratio between the aromatic isocyanate polyurethane resin and the crosslinking agent.
 なお、これら多官能イソシアネート化合物のうちの一部は、未反応の状態にて目止剤中に存在し得る。 In addition, some of these polyfunctional isocyanate compounds may be present in the filler in an unreacted state.
 (2.2)エチレン系不飽和基を有するモノマー
 架橋剤には、例えば、エチレン系不飽和基を有するモノマーを用いることができる。
(2.2) Monomer having an ethylenically unsaturated group For the cross-linking agent, for example, a monomer having an ethylenically unsaturated group can be used.
 エチレン系不飽和基を有するモノマーには、例えば、トリアリルイソシアヌレート(TAIC)、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、及び、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。なお、このような、エチレン系不飽和基を有する架橋剤は、例えば、有機過酸化物等のラジカル重合開始剤と併用するか、若しくは、電子線を照射することによって架橋させることができる。例えば、ポリウレタン樹脂に、エチレン系不飽和基を有する架橋剤を配合し、溶融混練することで樹脂組成物を得た後、該樹脂組成物を粉砕し、電子線照射を行なうことで該樹脂組成物の硬度を調整する。このとき、樹脂組成物に含まれるエチレン系不飽和基を有する架橋剤は、互いに重合しつつ、ポリウレタン樹脂の主鎖にも架橋し得る。 Examples of monomers having an ethylenically unsaturated group include triallyl isocyanurate (TAIC), ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipentaerythritol tris. (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc. are mentioned. Such a cross-linking agent having an ethylenically unsaturated group can be cross-linked by, for example, using in combination with a radical polymerization initiator such as an organic peroxide or by irradiating an electron beam. For example, after blending a polyurethane resin with a crosslinking agent having an ethylenically unsaturated group and melt-kneading to obtain a resin composition, the resin composition is pulverized and irradiated with an electron beam. Adjust the hardness of the object. At this time, the crosslinking agent having an ethylenically unsaturated group contained in the resin composition can also be crosslinked with the main chain of the polyurethane resin while polymerizing each other.
 電子線の照射線量としては、例えば、5kGy以上150kGy以下が好ましく、10kGy以上120kGy以下がより好ましく、20kGy以上100kGy以下がさらに好ましい。 The electron beam irradiation dose is, for example, preferably 5 kGy or more and 150 kGy or less, more preferably 10 kGy or more and 120 kGy or less, and further preferably 20 kGy or more and 100 kGy or less.
 (2.3)多価アミン、及び多価アルコール
 架橋剤には、例えば、多価アミン、又は多価アルコールを用いることができる。多価アミン、又は多価アルコールは、ポリウレタン樹脂との溶融混練の際に、ポリウレタン末端に残存するイソシアネート基と反応することにより架橋する。また、ポリエステル骨格、又はポリエーテルエステル骨格を有するポリウレタン樹脂においては、主鎖に存在するエステル基とエステル交換反応を生じることによって、新たに生成したアミド結合、又はエステル結合を介して架橋構造を形成することができる。特に、末端イソシアネート基が存在しない、又は微量にしか存在しないポリウレタン樹脂においては、多価アミン、又は多価アルコールと上述の多官能イソシアネート化合物とを併用することにより、ポリウレタン樹脂組成物の硬度を好適に調製することができる。なお、多価アミン、及び多価アルコールは、イソシアネート基末端のプレポリマーを架橋する架橋剤でもある(キャスト型成形加工法)。
(2.3) Polyhydric amine and polyhydric alcohol As the crosslinking agent, for example, polyhydric amine or polyhydric alcohol can be used. The polyvalent amine or polyhydric alcohol crosslinks by reacting with the isocyanate group remaining at the end of the polyurethane during melt-kneading with the polyurethane resin. In addition, in polyurethane resins having a polyester skeleton or a polyether ester skeleton, a cross-linked structure is formed via a newly formed amide bond or ester bond by causing an ester exchange reaction with an ester group present in the main chain. can do. In particular, in a polyurethane resin in which a terminal isocyanate group does not exist or is present only in a trace amount, the hardness of the polyurethane resin composition is suitable by using a polyvalent amine or a polyhydric alcohol in combination with the polyfunctional isocyanate compound described above. Can be prepared. The polyvalent amine and the polyhydric alcohol are also crosslinking agents that crosslink the isocyanate group-terminated prepolymer (cast mold forming method).
 多価アミンとしては、例えば、3,3’-ジクロロベンジジン、4,4’-メチレンビス-2-クロロアニリン、及び、トリメチレンビス(4-アミノベンゾアート)等が挙げられる。 Examples of the polyvalent amine include 3,3'-dichlorobenzidine, 4,4'-methylenebis-2-chloroaniline, and trimethylenebis (4-aminobenzoate).
 多価アルコールには、例えば、エチレングリコール、プロピレングリコール、2,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、及び、2,2,4-トリメチル-1,3-ペンタンジオール等のアルキレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、及び、ポリテトラメチレングリコール等のポリオキシアルキレングリコール、並びに、ビスフェノールA等のビスフェノール類等を用いることができる。また、三価以上のアルコール類として、トリメチロールエタン、トリメチロールプロパン、グリセリン、及び、ペンタエルスリトール等を併用することができる。 Examples of the polyhydric alcohol include ethylene glycol, propylene glycol, 2,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, and 2, Alkylene glycols such as 2,4-trimethyl-1,3-pentanediol, diethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polyoxyalkylene glycols such as polytetramethylene glycol, and bisphenols such as bisphenol A Etc. can be used. In addition, trimethylolethane, trimethylolpropane, glycerin, pentaerythritol and the like can be used in combination as trivalent or higher alcohols.
 (2.4)多官能エポキシ化合物
 架橋剤には、例えば、多官能エポキシ化合物を用いることができる。多官能エポキシ化合物は、ポリウレタン樹脂との溶融混練の際に、ポリウレタン末端に残存するヒドロキシル基と反応することにより架橋する。また、ポリエステル骨格、又はポリエーテルエステル骨格を有するポリウレタン樹脂においては、末端に存在するカルボキシル基と反応することによって、架橋構造を形成することができる。特に、末端ヒドロキシル基やカルボキシル基が存在しないポリウレタン樹脂、又は微量にしか存在しないポリウレタン樹脂においては、多官能エポキシ化合物と上述の多価アミン、又は多価アルコールとを併用することにより、ポリウレタン樹脂組成物の硬度を好適に調整することができる。
(2.4) Polyfunctional epoxy compound A polyfunctional epoxy compound can be used for a crosslinking agent, for example. The polyfunctional epoxy compound crosslinks by reacting with the hydroxyl group remaining at the end of the polyurethane during melt kneading with the polyurethane resin. In addition, in a polyurethane resin having a polyester skeleton or a polyether ester skeleton, a crosslinked structure can be formed by reacting with a carboxyl group present at the terminal. In particular, in a polyurethane resin having no terminal hydroxyl group or carboxyl group, or in a polyurethane resin existing only in a trace amount, a polyurethane resin composition can be obtained by using a polyfunctional epoxy compound in combination with the above-mentioned polyvalent amine or polyhydric alcohol. The hardness of an object can be adjusted suitably.
 多官能エポキシ化合物としては、例えば、トリス(2,3-エポキシプロピル)イソシアヌレート、及び、ポリ(メタクリル酸グリシジル)等が挙げられる。 Examples of the polyfunctional epoxy compound include tris (2,3-epoxypropyl) isocyanurate and poly (glycidyl methacrylate).
 (2.5)熱処理
 架橋剤を添加したポリウレタン樹脂を、熱処理にすることによりさらに架橋を進めることで、当該ポリウレタン樹脂の硬度を調整することができる。熱処理により架橋を進めるには、架橋剤を添加したポリウレタン樹脂を、所定温度で所定時間保持することにより行うことができる。熱処理時の雰囲気は、必要に応じ、空気中又は窒素等の不活性ガス中、若しくは減圧下で行ってもよい。
(2.5) Heat treatment The polyurethane resin to which the crosslinking agent has been added can be further heat treated to adjust the hardness of the polyurethane resin. In order to advance the crosslinking by the heat treatment, the polyurethane resin to which the crosslinking agent is added can be carried out by holding at a predetermined temperature for a predetermined time. The atmosphere during the heat treatment may be performed in air or in an inert gas such as nitrogen, or under reduced pressure, as necessary.
 (3)電子線照射
 また、溶融押出した樹脂組成物に電子線照射することによって、ポリウレタン樹脂の主鎖を切断、又は架橋することによって、樹脂組成物の硬度を調整してもよい。この場合、樹脂組成物は架橋剤を含んでいてもよく、含んでいなくてもよい。
(3) Electron beam irradiation Further, the hardness of the resin composition may be adjusted by irradiating the melt-extruded resin composition with an electron beam to cut or crosslink the main chain of the polyurethane resin. In this case, the resin composition may or may not contain a crosslinking agent.
 電子線の照射線量としては、例えば、5kGy以上150kGy以下が好ましく、10kGy以上120kGy以下がより好ましく、20kGy以上100kGy以下がさらに好ましい。ここで、電子線の照射線量の値が小さすぎる場合には、ポリウレタン樹脂組成物の硬度が十分に高くならず、照射線量の値が大きすぎる場合には、ポリウレタン樹脂の主鎖が必要以上に切断され硬度が低下する。これに対し、電子線の照射線量が上述の好ましい範囲であるとき、細孔を好適に一時目止めできる目止材が得られる。 The electron beam irradiation dose is, for example, preferably 5 kGy or more and 150 kGy or less, more preferably 10 kGy or more and 120 kGy or less, and further preferably 20 kGy or more and 100 kGy or less. Here, when the value of the electron beam irradiation dose is too small, the hardness of the polyurethane resin composition is not sufficiently high, and when the value of the irradiation dose is too large, the polyurethane resin main chain is more than necessary. It is cut and the hardness decreases. On the other hand, when the irradiation dose of the electron beam is in the above-described preferable range, a sealing material capable of suitably temporarily closing the pores is obtained.
 (4)充填剤の配合
 目止剤は、充填剤を含んでいてもよい。充填材は、有機又は無機の繊維状強化材、及び、顆粒状又は粉末状強化材等を挙げることができ、これらは、単独で、又は、2種類以上を組み合わせて使用することができる。
(4) Blending of filler The filler may contain a filler. Examples of the filler include organic or inorganic fibrous reinforcing materials and granular or powder reinforcing materials, and these can be used alone or in combination of two or more.
 繊維状強化材としては、例えば、ガラス繊維、炭素繊維、アスベスト繊維、シリカ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維及びチタン酸カリ繊維等の無機繊維状物、ステンレス、アルミニウム、チタン、銅及び真鍮等の金属繊維状物、並びに、アラミド繊維、ケナフ繊維、ポリアミド、フッ素樹脂、ポリエステル樹脂及びアクリル樹脂等の高融点有機質繊維状物質等を挙げることができる。 Examples of the fibrous reinforcing material include glass fibers, carbon fibers, asbestos fibers, silica fibers, alumina fibers, zirconia fibers, boron nitride fibers, silicon nitride fibers, boron fibers, and potassium titanate fibers, and the like, stainless steel And metal fiber materials such as aluminum, titanium, copper and brass, and high melting point organic fiber materials such as aramid fiber, kenaf fiber, polyamide, fluororesin, polyester resin and acrylic resin.
 顆粒状又は粉末状強化材としては、マイカ、シリカ、タルク、アルミナ、カオリン、硫酸カルシウム、炭酸カルシウム、酸化チタン、フェライト、クレー、ガラス粉、酸化亜鉛、炭酸ニッケル、酸化鉄、石英粉末、炭酸マグネシウム及び硫酸バリウム等を挙げることができる。充填剤は、必要に応じて、集束材又は表面処理剤により処理されていてもよい。ペレット及び/又は粉体を形成する樹脂組成物に充填剤が含まれていることで、当該樹脂組成物の硬度をより高くすることができる。 Granular or powdery reinforcing materials include mica, silica, talc, alumina, kaolin, calcium sulfate, calcium carbonate, titanium oxide, ferrite, clay, glass powder, zinc oxide, nickel carbonate, iron oxide, quartz powder, magnesium carbonate And barium sulfate. The filler may be treated with a bundling material or a surface treatment agent as necessary. By including a filler in the resin composition that forms the pellets and / or powder, the hardness of the resin composition can be further increased.
 充填剤を樹脂組成物に添加する場合には、樹脂組成物における充填剤の含有量が、2重量%以上30重量%以下となるように添加することが好ましく、3重量%以上25重量%以下となるように添加することがより好ましく、4重量%以上20重量%以下となるように添加することがさらに好ましい。ここで、充填剤の含有量が少なすぎる場合には、ポリウレタン樹脂組成物の硬度が十分に高くならず、充填剤の含有量が多すぎる場合には、ポリウレタン樹脂の分解後も充填剤が残存することで目止めを十分に解除できないことがある。これに対し、樹脂組成物における充填剤の含有量が上述の好ましい範囲であるとき、当該樹脂組成物を含む目止剤と、キサンタンガム及び頁岩安定剤等とを含有する強アルカリ性の坑井流体(泥水)を使用しても、例えば、幅が0.5mm以上10mm以下の大きなフラクチャーを好適に目止めすることができる。 When the filler is added to the resin composition, the filler is preferably added so that the content of the filler in the resin composition is 2% by weight or more and 30% by weight or less. It is more preferable to add so that it may become 4 wt% or more and 20 wt% or less. Here, when the content of the filler is too small, the hardness of the polyurethane resin composition is not sufficiently high, and when the content of the filler is too large, the filler remains even after decomposition of the polyurethane resin. If you do this, you may not be able to fully unlock the eyes. On the other hand, when the content of the filler in the resin composition is in the above-described preferred range, a strong alkaline well fluid (including a filler containing the resin composition, a xanthan gum, a shale stabilizer, and the like ( Even when muddy water is used, for example, a large fracture having a width of 0.5 mm or more and 10 mm or less can be suitably observed.
 充填材の大きさ(径及び長さ等)は、目止剤の粒径に大きく影響を与えない範囲であればよく、例えば、1μm以上3,000μm以下であってもよく、3μm以上1,000μm以下が好ましく、5μm以上500μm以下がより好ましい。 The size (diameter, length, etc.) of the filler may be in a range that does not significantly affect the particle size of the filler, and may be, for example, 1 μm or more and 3,000 μm or less, 3 μm or more, 000 μm or less is preferable, and 5 μm or more and 500 μm or less is more preferable.
 〔樹脂組成物におけるその他の配合剤〕
 本実施形態に係る目止剤は、本実施形態の目的を阻害しない範囲で、目止剤において通常添加される種々の配合剤をさらに含有させることができる。例えば、分解促進剤、酸化防止剤、及び、分解抑制剤等の各種の添加剤を挙げることができる。これら各種の添加剤は、夫々単独で、又は2種以上を組み合わせて使用することができる。
[Other compounding agents in resin composition]
The sealant according to the present embodiment can further contain various compounding agents that are usually added in the sealant as long as the purpose of the present embodiment is not impaired. Examples thereof include various additives such as a decomposition accelerator, an antioxidant, and a decomposition inhibitor. These various additives can be used alone or in combination of two or more.
 (分解促進剤)
 目止剤は、分解促進剤を含んでいてもよい。分解促進剤は、目止剤に含まれる樹脂組成物の分解を促進するものであり、酸及び酸前駆体を挙げることができ、酸前駆体がより好ましい。
(Degradation accelerator)
The sealant may contain a decomposition accelerator. A decomposition accelerator accelerates | stimulates decomposition | disassembly of the resin composition contained in a filler, and can mention an acid and an acid precursor, and an acid precursor is more preferable.
 より具体的には、分解促進剤としては、グリコリド及びラクチド等のラクトン類、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)等の酸無水物、シュウ酸ジエチル等のカルボン酸エステル類、p-トルエンスルホン酸エチル等のスルホン酸エステル類、並びに、リン酸エステル類等が挙げられる。 More specifically, examples of the decomposition accelerator include lactones such as glycolide and lactide, acid anhydrides such as 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), diethyl oxalate, and the like. Carboxylic acid esters, sulfonic acid esters such as ethyl p-toluenesulfonate, and phosphoric acid esters.
 樹脂組成物における分解促進剤の含有量としては、例えば、0.1重量%以上20重量%以下が好ましく、0.3重量%以上15重量%以下がより好ましく、0.5重量%以上10重量%以下がさらに好ましい。上述の好ましい範囲によれば、分解促進剤の含有量が少なすぎないため、分解促進効果が十分である。また、含有量が多すぎないため、初期硬度が低下せず、十分な目止維持時間を得られる。 The content of the decomposition accelerator in the resin composition is, for example, preferably 0.1% by weight to 20% by weight, more preferably 0.3% by weight to 15% by weight, and more preferably 0.5% by weight to 10% by weight. % Or less is more preferable. According to the preferable range described above, the decomposition promoting effect is sufficient because the content of the decomposition accelerator is not too small. Moreover, since there is not too much content, initial hardness does not fall and sufficient eye keeping time can be obtained.
 <坑井流体>
 本実施形態に係る坑井流体は、上述の目止剤を含む。
<Well fluid>
The well fluid according to the present embodiment includes the above-described sealant.
 坑井流体としては、特に限定されないが、例えば、泥水を挙げることができる。 The well fluid is not particularly limited, and for example, muddy water can be used.
 本実施形態に係る目止剤は、泥水の中でも、特に水系の泥水への分散性及び濡れ性が、泥水に含まれる脱水減少剤の一つであるデンプン誘導体等に比べてよい。坑井処理流体において目止剤の分散性が高いことは、大きなフラクチャーを効率良く目止めするために有効であり、坑井処理流体を坑井に注入するためのツール(例えば、ドリル及びその周辺部材等)における目止剤による詰まりを防止することにも寄与する。このため、坑井流体は、なかでも水系の泥水が好ましい。 The sealant according to the present embodiment may have a dispersibility and wettability in muddy water, especially in a muddy water, compared to a starch derivative or the like which is one of dehydration reducing agents contained in muddy water. The high dispersibility of the sealant in the well treatment fluid is effective for efficiently locating large fractures, and a tool for injecting the well treatment fluid into the well (for example, a drill and its surroundings). This also contributes to prevention of clogging caused by the sealant in the member. For this reason, the well fluid is preferably an aqueous mud.
 本実施形態に係る坑井流体は、当該坑井流体を使用する坑井孔内の環境、特に、高温環境の温度又は圧力に応じて、目止剤に含有される樹脂組成物の種類、物性、組成(添加剤等を含む)、形状、及び、大きさ等を適宜選択し、組み合わせることができる。したがって、本実施形態に係る目止剤は、異なる材料又は材料の組み合わせを使用してもよい。 The well fluid according to the present embodiment is the type and physical properties of the resin composition contained in the sealant depending on the environment in the wellbore that uses the well fluid, particularly the temperature or pressure of the high temperature environment. The composition (including additives and the like), shape, size, and the like can be appropriately selected and combined. Therefore, the sealant according to the present embodiment may use different materials or combinations of materials.
 本実施形態に係る坑井流体における上述の目止剤の含有量は、特に限定されず、通常1重量%以上20重量%以下であり、5重量%以上15重量%以下が好ましい。 The content of the aforementioned filler in the well fluid according to the present embodiment is not particularly limited, and is usually 1% by weight to 20% by weight, and preferably 5% by weight to 15% by weight.
 本実施形態に係る坑井流体には上述の目止剤のほか、本実施形態の目的を阻害しない範囲で、坑井流体において通常添加される種々の配合剤を含有させることができる。例えば、バライト(BaSO)及び炭酸カルシウム等の無機系加重剤、NaCl、KCl及びCaCl等のアルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化合物(塩類)の粘土膨潤抑制剤、又はソリッドフリーの比重調整剤、AMPSポリマー、キサンタンガム、グアーガム及びカルボキシメチルセルロース(CMC)等の有機コロイド剤(増粘剤)、無機コロイド剤(粘土類等)、分散解コウ剤、界面活性剤、pH調整剤、他の逸泥防止剤、転換剤、消泡剤、潤滑剤、防腐剤、殺菌剤並びに、防食防止剤等が挙げられ、坑井流体を使用する坑井孔内の環境に応じた濃度で含有させることができる。 The well fluid according to the present embodiment can contain various compounding agents that are usually added in the well fluid, in addition to the above-described sealant, in a range that does not impair the purpose of the present embodiment. For example, inorganic weighting agents such as barite (BaSO 4 ) and calcium carbonate, alkali metal halides such as NaCl, KCl and CaCl 2 or alkaline earth metal halides (salts), clay swelling inhibitors, or solid-free specific gravity Organic colloid agents (thickeners) such as regulators, AMPS polymers, xanthan gum, guar gum and carboxymethyl cellulose (CMC), inorganic colloid agents (clays, etc.), dispersed anti-powder agents, surfactants, pH regulators, etc. Anti-mudging agents, conversion agents, antifoaming agents, lubricants, antiseptics, bactericides, anticorrosion agents, etc. are mentioned, and contain them at a concentration according to the environment in the wellbore where the well fluid is used. Can do.
 <坑井掘削方法>
 本実施形態に係る坑井掘削方法は、上述の目止剤を使用して一時目止めを行う。
<Well drilling method>
The well excavation method according to the present embodiment performs temporary sealing using the above-described sealing agent.
 例えば、本実施形態に係る坑井掘削方法では、上述の目止剤を、例えば、ドリルを使用しての貯留層区間における坑井掘削、シェールガス・オイル等を産出するシェール層等の坑井掘削において使用することができる。また、本実施形態に係る坑井掘削方法では、本実施形態に係る目止剤を含有する目止剤の流体を、坑井流体を坑井孔内に流入させるのに先立って、坑井内に流入させてもよい。 For example, in the well drilling method according to the present embodiment, the above-described sealant is used as a well such as a shale layer for producing well drilling in a reservoir section using a drill, shale gas / oil, or the like. Can be used in excavation. Further, in the well drilling method according to the present embodiment, the fluid of the filler containing the filler according to the present embodiment is introduced into the well prior to flowing the well fluid into the well hole. It may be allowed to flow.
 また、本実施形態に係る目止剤を使用する環境、特に、高温環境の温度又は圧力に応じて、目止剤に含まれる樹脂組成物の種類、物性、組成、形状、及び、大きさを適宜選択し、組み合わせることができる。 In addition, depending on the environment in which the sealant according to this embodiment is used, particularly the temperature or pressure of the high temperature environment, the type, physical properties, composition, shape, and size of the resin composition contained in the sealant are determined. It can select suitably and can combine.
 <まとめ>
 本発明の一実施形態に係る目止剤は、坑壁を目止めする目止剤であって、上記目止剤は、ポリウレタン樹脂を含む樹脂組成物から形成されたペレット及び粉体を含み、該ペレットは、23℃における押し込み硬度が37以上であることを特徴とする。
<Summary>
The sealant according to an embodiment of the present invention is a sealant that seals a well wall, and the sealant includes pellets and powder formed from a resin composition containing a polyurethane resin, The pellet is characterized by an indentation hardness at 23 ° C. of 37 or more.
 また、本発明の一実施形態に係る目止剤において、上記ペレットの23℃における押し込み硬度は、98以下であることが好ましい。 Further, in the sealant according to one embodiment of the present invention, the indentation hardness at 23 ° C. of the pellet is preferably 98 or less.
 また、本発明の一実施形態に係る目止剤において、上記ポリウレタン樹脂は、脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂のうちの少なくとも1つであることが好ましい。 In the sealant according to one embodiment of the present invention, the polyurethane resin is preferably at least one of an aliphatic isocyanate-based polyurethane resin and an aromatic isocyanate-based polyurethane resin.
 また、本発明の一実施形態に係る目止剤において、上記脂肪族イソシアネート系ポリウレタン樹脂を構成している脂肪族イソシアネートは、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、水添キシリレンジイソシアネート、及びジシクロヘキシルメタンジイソシアネートからなる群から選択される少なくとも1つの脂肪族イソシアネートであることが好ましい。 Further, in the sealant according to one embodiment of the present invention, the aliphatic isocyanate constituting the aliphatic isocyanate-based polyurethane resin is hexamethylene diisocyanate, isophorone diisocyanate, norbornane diisocyanate, hydrogenated xylylene diisocyanate, and dicyclohexyl. Preference is given to at least one aliphatic isocyanate selected from the group consisting of methane diisocyanate.
 また、本発明の一実施形態に係る目止剤において、上記芳香族イソシアネート系ポリウレタン樹脂を構成している芳香族イソシアネートは、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、及びナフタレンジイソシアネートからなる群から選択される少なくとも1つの芳香族イソシアネートであることが好ましい。 In the sealant according to one embodiment of the present invention, the aromatic isocyanate constituting the aromatic isocyanate-based polyurethane resin is selected from the group consisting of diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and naphthalene diisocyanate. Preferably it is at least one aromatic isocyanate selected.
 また、本発明の一実施形態に係る目止剤において、上記脂肪族イソシアネート系ポリウレタン樹脂及び上記芳香族イソシアネート系ポリウレタン樹脂のうちの少なくとも1つは、ポリエステル骨格を含んでいることが好ましい。 In the sealant according to one embodiment of the present invention, it is preferable that at least one of the aliphatic isocyanate polyurethane resin and the aromatic isocyanate polyurethane resin includes a polyester skeleton.
 また、本発明の一実施形態に係る目止剤において、上記樹脂組成物は、さらに架橋剤を含み、
 上記樹脂組成物における該架橋剤の含有量は、0.2重量%以上50重量%以下であることが好ましい。
Moreover, in the filler according to one embodiment of the present invention, the resin composition further includes a crosslinking agent,
The content of the crosslinking agent in the resin composition is preferably 0.2% by weight or more and 50% by weight or less.
 また、本発明の一実施形態に係る目止剤において、上記架橋剤は、多官能イソシアネート化合物、エチレン系不飽和基を有するモノマー、多価アミン、多価アルコール、及び多官能エポキシ化合物からなる群から選択される少なくとも1つの架橋剤であることが好ましい。 Moreover, in the sealant according to one embodiment of the present invention, the crosslinking agent is a group consisting of a polyfunctional isocyanate compound, a monomer having an ethylenically unsaturated group, a polyvalent amine, a polyhydric alcohol, and a polyfunctional epoxy compound. Preferably, at least one cross-linking agent selected from:
 また、本発明の一実施形態に係る目止剤において、上記樹脂組成物は、充填剤をさらに含み、上記樹脂組成物における該充填剤の含有量は、2重量%以上30重量%以下であることが好ましい。 Moreover, in the sealant according to one embodiment of the present invention, the resin composition further includes a filler, and the content of the filler in the resin composition is 2 wt% or more and 30 wt% or less. It is preferable.
 また、本発明の一実施形態に係る目止剤において、上記充填剤は、有機又は無機の繊維状強化材であることが好ましい。 In the sealant according to one embodiment of the present invention, the filler is preferably an organic or inorganic fibrous reinforcing material.
 また、本発明の一実施形態に係る目止剤において、上記ペレットと上記粉体との重量比が5:95~60:40であることが好ましい。 In the sealant according to one embodiment of the present invention, the weight ratio of the pellets to the powder is preferably 5:95 to 60:40.
 また、本発明の一実施形態に係る坑井流体は、上記目止剤を含むことを特徴とする。 Further, a well fluid according to an embodiment of the present invention is characterized by including the above-mentioned sealant.
 また、本発明の一実施形態に係る坑井掘削方法は、上記目止剤を使用して一時目止めを行うことを特徴とする。 Moreover, the well excavation method according to an embodiment of the present invention is characterized in that the sealing is performed temporarily using the above-mentioned sealing agent.
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。また、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。 Examples will be shown below, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail. The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the respective technical means disclosed herein are also included in the present invention. It is included in the technical scope of the invention. Moreover, all the literatures described in this specification are used as reference.
 実施例1~18及び比較例1~3について、それぞれ以下に示す条件で目止剤を作製した。 For Examples 1 to 18 and Comparative Examples 1 to 3, sealants were prepared under the following conditions.
 <実施例1>
 〔評価用目止剤の製造〕
 (ペレット及びパウダーの製造)
 まず、ポリブチレンアジペート骨格を有するHDI系ポリウレタン樹脂として、ディーアイシーコベストロポリマー株式会社製のパンデックス(登録商標)T-R3080を1,800g秤量し、ポリエチレン袋に投入した。また、架橋剤としてMDIを200g秤量し、当該ポリエチレン袋に投入した。すなわち、架橋剤を添加後のHDI系ポリウレタン樹脂に対する含有量が10重量%となるように架橋剤を添加した。架橋剤の添加後、ポリエチレン袋を持ってハンドシェイクすることで、ポリエチレン袋内のHDI系ポリウレタン樹脂と架橋剤とを3分間撹拌し、混合物(ブレンド物)としての樹脂組成物を得た。ブレンド物を得た後、以下の混練押出機を使用して、ブレンド物を温度230℃において5分間溶融混練し、ダイスから溶融押出した。
・混練押出機:2D30W2(東洋精機製作所株式会社製)
・スクリューサイズ:直径30mmφ、L/D=30
・スクリュー回転速度:50rpm
・ペレタイザー:型式SCF-150(いすず化工機株式会社製)
 溶融押出して得られたブレンド物をストランドとした後に、ペレタイザーを通して、直径2.5mmφ×長さ3mmのペレットを得た。このように、ペレットの長片の最大長さは3mmだった。
<Example 1>
[Manufacture of sealants for evaluation]
(Manufacture of pellets and powder)
First, as an HDI polyurethane resin having a polybutylene adipate skeleton, 1,800 g of Pandex (registered trademark) T-R3080 manufactured by DIC Covestro Polymer Co., Ltd. was weighed and put into a polyethylene bag. Further, 200 g of MDI as a cross-linking agent was weighed and put into the polyethylene bag. That is, the crosslinking agent was added so that the content with respect to the HDI polyurethane resin after the addition of the crosslinking agent was 10% by weight. After the addition of the cross-linking agent, the HDI polyurethane resin and the cross-linking agent in the polyethylene bag were stirred for 3 minutes by handshaking with a polyethylene bag to obtain a resin composition as a mixture (blend). After obtaining the blend, the blend was melt kneaded at a temperature of 230 ° C. for 5 minutes and melt extruded from a die using the following kneading extruder.
・ Kneading extruder: 2D30W2 (manufactured by Toyo Seiki Seisakusho Co., Ltd.)
・ Screw size: Diameter 30mmφ, L / D = 30
-Screw rotation speed: 50 rpm
-Pelletizer: Model SCF-150 (made by Isuzu Chemical Industries, Ltd.)
After making the blend obtained by melt extrusion into a strand, a pellet having a diameter of 2.5 mmφ × length of 3 mm was obtained through a pelletizer. Thus, the maximum length of the long piece of pellet was 3 mm.
 (熱処理)
 溶融押出して得られたペレットを、高杉製作所株式会社製の熱風強制循環式乾燥機TDH-3を用いて、120℃において12時間熱処理した。
(Heat treatment)
The pellets obtained by melt extrusion were heat-treated at 120 ° C. for 12 hours using a hot air forced circulation dryer TDH-3 manufactured by Takasugi Seisakusho.
 (ペレットに対する電子線の照射)
 日本電子照射サービス株式会社製の電子線照射装置を用いて、熱処理後のペレットに電子線を60kGy照射した。
(Electron beam irradiation to pellets)
Using an electron beam irradiation apparatus manufactured by Nippon Electron Irradiation Service Co., Ltd., the pellets after the heat treatment were irradiated with an electron beam of 60 kGy.
 (押し込み硬度の測定)
 ペレットに電子線を照射した後、硬度計を用いてペレットの硬度を荷重5kgf下で測定した。なお、硬度計としては、テクロック株式会社製のデュロメータタイプD硬度計 GS-720Rを使用した。表3(表3は2分割して表示している。以下、表3-1~表3-2をあわせて表3と称する。)に示す通り、電子線照射後のペレットの23℃における押し込み硬度は38だった。
(Indentation hardness measurement)
After irradiating the pellet with an electron beam, the hardness of the pellet was measured under a load of 5 kgf using a hardness meter. As a hardness meter, a durometer type D hardness meter GS-720R manufactured by Teclock Co., Ltd. was used. As shown in Table 3 (Table 3 is divided into two parts. Tables 3-1 and 3-2 are collectively referred to as Table 3 below), the pellets after electron beam irradiation were pressed at 23 ° C. The hardness was 38.
 (ペレットの粉砕)
 次に、熱処理後のペレットの一部を、以下に示す粉砕機を用いて、液体窒素浸漬による凍結粉砕法により粉砕し、粉体(パウダー)を作製した。ここで、液体窒素中に5分間浸漬して冷却したペレットを125g/minで粉砕機に投入し、それと同時に、液体窒素も粉砕機に投入した。
・粉砕機:イクシードミル EM-1A型(槙野産業株式会社製)
・回転盤:
 ピンディスク直径:160mm
 ピン直径:3.5mm
 ピン長さ:19mm
 本体側ピン本数:178本
 本体側ピン配列:3列
 本体側ピン間隔:3.5mm
 ドア側ピン本数:168本
 ドア側ピン配列:3列
 ドア側ピン間隔:2.5mm
・粉砕回転数:本体側ピンディスク:8000rpm(133Hz)
・ドア側ピンディスク:12000rpm(200Hz)
 (パウダーのメディアン径(50%D)の測定)
 得られたパウダーのメディアン径(50%D)を、レーザ回折式粒子径分布測定装置である、島津製作所株式会社製のSALD3000を用いて測定した。表3に示す通り、パウダーのメディアン径(50%D)は396μmであった。
(Pulverization of pellets)
Next, a part of the pellets after the heat treatment was pulverized by a freeze pulverization method by immersion in liquid nitrogen using a pulverizer shown below to prepare a powder. Here, the pellets immersed in liquid nitrogen for 5 minutes and cooled were charged into a pulverizer at 125 g / min, and at the same time, liquid nitrogen was also charged into the pulverizer.
・ Crusher: Exceed Mill EM-1A type (manufactured by Hadano Industry Co., Ltd.)
・ Turntable:
Pin disc diameter: 160mm
Pin diameter: 3.5mm
Pin length: 19mm
Number of pins on main unit side: 178 Main unit side pin arrangement: 3 rows Main unit side pin spacing: 3.5 mm
Number of door side pins: 168 Door side pin arrangement: 3 rows Door side pin spacing: 2.5 mm
・ Crushing rotation speed: Main body side pin disc: 8000 rpm (133 Hz)
-Door side pin disk: 12000rpm (200Hz)
(Measurement of median diameter of powder (50% D))
The median diameter (50% D) of the obtained powder was measured using a SALD3000 manufactured by Shimadzu Corporation, which is a laser diffraction particle size distribution measuring device. As shown in Table 3, the median diameter (50% D) of the powder was 396 μm.
 (評価用目止剤の製造)
 電子線照射後のペレットを7g、パウダーを28g秤量し、ポリエチレン袋に投入した後、ハンドシェイクで3分間撹拌し、ペレットとパウダーとのブレンド物を得た。このように、ペレットとパウダーとを重量比20:80で混合し、評価用目止剤を得た。
(Manufacture of sealants for evaluation)
7 g of pellets after electron beam irradiation and 28 g of powder were weighed and put into a polyethylene bag, and then stirred for 3 minutes by handshaking to obtain a blend of pellets and powder. Thus, the pellet and the powder were mixed at a weight ratio of 20:80 to obtain an evaluation filler.
 〔評価用流体(以下、評価用泥水ともいう)の製造〕
 得られた評価用目止剤と、以下の表1の各成分とを、表1に示す重量比で混合し、評価用泥水を作製した。
[Manufacture of evaluation fluid (hereinafter also referred to as evaluation mud)]
The obtained evaluation filler and each component of Table 1 below were mixed at a weight ratio shown in Table 1 to prepare an evaluation mud.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 なお、表1における10重量%塩化ナトリウム水溶液における塩化ナトリウムは、純正化学株式会社製である。AMPSポリマーは、株式会社テルナイト製のDriscal(登録商標)-Dである。架橋デンプンは株式会社テルナイト製のテルポリマーDXである。脱酸素剤は、株式会社テルナイト製のテルナイト(登録商標)OS-5である。 In addition, the sodium chloride in the 10 weight% sodium chloride aqueous solution in Table 1 is a pure chemical company make. The AMPS polymer is Driscal (registered trademark) -D manufactured by Ternite Co., Ltd. Cross-linked starch is Terpolymer DX manufactured by Ternite Co., Ltd. The oxygen scavenger is Ternite (registered trademark) OS-5 manufactured by Ternite Co., Ltd.
 〔目止め評価〕
 目止め評価は、図1に示すスロットディスクを含むプラグ試験機(Fann Instrument Company製のFliter Press HPHT 500ML)を用いた目止め試験により行った。目止め試験においては、幅1mm長さ20mmの長方形状の孔隙を有する直径63mm厚み6mmのスロットディスク(材質:SUS304)を使用した。
[Evaluation for closing]
The seal evaluation was performed by a seal test using a plug tester (Flitter Press HPHT 500ML manufactured by Fann Instrument Company) including the slot disk shown in FIG. In the sealing test, a slot disk (material: SUS304) having a diameter of 63 mm and a thickness of 6 mm having a rectangular hole having a width of 1 mm and a length of 20 mm was used.
 以下に、目止め試験について、図1を用いながら説明する。図1は、評価用泥水の閉塞性能を評価する試験に用いられるプラグ試験機を概略的に示した図である。 Hereinafter, the sealing test will be described with reference to FIG. FIG. 1 is a diagram schematically showing a plug tester used for a test for evaluating the performance of plugging evaluation mud water.
 図1に示すように、評価用目止剤を混入した評価用泥水をプラグ試験機に入れた後、プラグ試験機に上から200psiの圧力をかけ、23℃における初期目止め性を確認した。ここでいう初期目止め性は、上から圧力をかけることによって、目止剤がスロットディスクの孔隙の上にケーク層を形成することができるかどうかを確認することを意味し、ケーク層の形成を確認することができた場合には、初期目止め性があると判断した。 As shown in FIG. 1, after putting the evaluation muddy water mixed with the evaluation sealant into the plug tester, a pressure of 200 psi was applied to the plug tester from above, and the initial sealability at 23 ° C. was confirmed. Here, the initial sealing property means that by applying pressure from above, it is confirmed whether or not the sealing agent can form a cake layer on the pores of the slot disk. If it was confirmed, it was judged that there was an initial sealing ability.
 初期目止め性の確認後、プラグ試験機に上から200psiの圧力をかけたまま、23℃から120℃まで昇温し、保持した。昇温後、プラグ試験機に上から500psiの圧力をかけた。これにより、スロットディスクに上から500psiの圧力がかかるようにした。 After confirming the initial sealability, the plug tester was heated from 23 ° C. to 120 ° C. and held with a pressure of 200 psi from above. After raising the temperature, a pressure of 500 psi was applied to the plug tester from above. As a result, a pressure of 500 psi was applied to the slot disk from above.
 500psiに昇圧後、温度及び圧力を保持した状態で目止め試験を開始した。 After the pressure was increased to 500 psi, the sealing test was started while maintaining the temperature and pressure.
 ここで、上述のように、スロットディスクには幅1mm長さ20mmの長方形状の孔隙があり、容器から、当該孔隙を介して、水が透過するようになっている。そこで、所定時間毎のフィルターからの透水量を測定した。 Here, as described above, the slot disk has a rectangular hole having a width of 1 mm and a length of 20 mm, and water is transmitted from the container through the hole. Therefore, the amount of water permeated from the filter every predetermined time was measured.
 所定時間毎の透水量が増大した時点で透水回復点(一時目止めが解除された点)とし、目止め試験を終了した。 When the amount of permeation increased every predetermined time, the permeation recovery point (the point where the temporary sealing was released) was set, and the sealing test was completed.
 目止め試験を開始したときから、透水回復点に達するまでの時間を目止め維持時間とし、当該目止め維持時間が1時間以上960時間(40日間)以下である場合に、目止め評価を「A」とし、それ以外のときに目止め評価を「B」とした。 The time until the water permeation recovery point is reached after the start of the eye stop test is set as the eye end maintenance time, and when the eye end maintenance time is 1 hour or more and 960 hours (40 days) or less, the eye end evaluation is " “A”, and otherwise, the evaluation was “B”.
 なお、120℃における目止め維持時間が12時間以上のものについては、目止め維持時間が12時間経過する毎に、目止め維持時間の測定を中断し、以下の(1)~(3)を繰り返した。
(1)図1に示す容器とは別のオートクレーブ容器中で、予め120℃において目止め試験開始時から保持している評価用泥水を、当該オートクレーブ容器から取り出した。なお、当該評価用泥水の組成は、表1の評価用泥水と同様の組成である。
(2)取り出した評価用泥水から目止剤を濾別し、水洗した。この目止剤は、120℃において目止め開始時から保持しているものであるため、図1に示す容器内の経時劣化し、分解した状態の目止剤と実質的に同程度分解した状態のものであるといえる。
(3)分解した状態の目止剤を用いて新たに評価用泥水を作製し、新たなプラグ試験機の容器に投入した。投入後、目止め維持時間の測定を再開した。このように、12時間毎に、プラグ試験機内の評価用泥水と実質的に同じ評価用泥水をプラグ試験機の容器に投入し、目止め試験を継続した。
In addition, for those having a mesh maintenance time of 12 hours or more at 120 ° C., the measurement of the mesh maintenance time is interrupted every 12 hours, and the following (1) to (3) are performed. Repeated.
(1) In an autoclave container different from the container shown in FIG. 1, the muddy water for evaluation retained in advance from the start of the sealing test at 120 ° C. was taken out from the autoclave container. The composition of the evaluation muddy water is the same as that of the evaluation muddy water in Table 1.
(2) The sealing agent was filtered off from the extracted muddy water for evaluation and washed with water. Since this sealant is held at 120 ° C. from the start of the seal, the sealant deteriorates with time in the container shown in FIG. 1 and is decomposed to the same extent as the sealant in a decomposed state. It can be said that.
(3) A muddy water for evaluation was newly produced using the sealant in a decomposed state, and was put into a container of a new plug tester. After the injection, the measurement of the retention time was resumed. Thus, every 12 hours, the evaluation mud substantially the same as the evaluation mud in the plug tester was put into the container of the plug tester, and the sealing test was continued.
 この方法を用いた場合には、(1)~(3)の繰り返し後に透水回復点が観測された時点において、予め120℃のオートクレーブ容器中で保管した時間と、プラグ試験機における試験再開後から透水回復点が観測されるまでの時間の和を目止め維持時間とした。 When this method is used, when the water permeation recovery point is observed after the repetition of (1) to (3), the time previously stored in the autoclave container at 120 ° C. and the time after the test is restarted in the plug tester. The sum of the time until the permeable recovery point was observed was taken as the maintenance time.
 以上の条件で目止め試験を行った結果、表3に示す通り、120℃における目止め維持時間は120時間だった。 As a result of conducting the sealing test under the above conditions, the sealing maintenance time at 120 ° C. was 120 hours as shown in Table 3.
 <実施例2>
 実施例2では、HDI系ポリウレタン樹脂の代わりに、ポリカプロラクトン骨格を有するMDI系ポリウレタン樹脂を用いて、これらに熱処理を行わず、電子線を照射しなかったこと以外は、実施例1と同様にペレット及びパウダーを作製した。なお、MDI系ポリウレタン樹脂としては、23℃におけるデュロメータタイプD硬度が60のディーアイシーコベストロポリマー株式会社製のパンデックス(登録商標)T-5070を使用した。
<Example 2>
In Example 2, an MDI polyurethane resin having a polycaprolactone skeleton was used in place of the HDI polyurethane resin, these were not subjected to heat treatment, and were not irradiated with an electron beam, as in Example 1. Pellets and powders were made. As the MDI polyurethane resin, Pandex (registered trademark) T-5070 manufactured by DIC Covestro Polymer Co., Ltd. having a durometer type D hardness of 60 at 23 ° C. was used.
 表3に示す通り、ペレットの23℃における押し込み硬度(硬度)は68だった。また、パウダーのメディアン径(50%D)は334μmだった。 As shown in Table 3, the indentation hardness (hardness) of the pellet at 23 ° C. was 68. The median diameter (50% D) of the powder was 334 μm.
 ペレットと、パウダーとを、実施例1と同じ重量比で同様に混合し、評価用目止剤を作製した。また、得られた評価用目止剤から実施例1と同様に評価用泥水を作製し、実施例1と同様の方法で幅1mmのスロットディスクを用いて120℃において目止め試験を行った。表3に示す通り、120℃における目止め維持時間は224時間だった。 Pellets and powder were mixed in the same weight ratio as in Example 1 to prepare an evaluation filler. Further, an evaluation muddy water was produced from the obtained sealing agent for evaluation in the same manner as in Example 1, and a sealing test was performed at 120 ° C. using a slot disk having a width of 1 mm in the same manner as in Example 1. As shown in Table 3, the maintenance time at 120 ° C. was 224 hours.
 <実施例3>
 実施例3では、架橋剤として、MDIを用い、当該架橋剤をMDI系ポリウレタン樹脂に対して10重量%添加し、ペレットに実施例1と同様に熱処理した以外は、実施例2と同様にペレット及びパウダーを作製した。
<Example 3>
In Example 3, MDI was used as a cross-linking agent, 10% by weight of the cross-linking agent was added to the MDI polyurethane resin, and the pellet was treated in the same manner as in Example 1 except that it was heat-treated in the same manner as in Example 1. And powder was produced.
 架橋剤の添加の方法としては、以下のように行った。すなわち、まず、MDI系ポリウレタン樹脂を1800g秤量し、ポリエチレン袋に投入した。また、架橋剤としてMDIを200g秤量し、当該ポリエチレン袋に投入した。架橋剤の添加後、ポリエチレン袋を持ってハンドシェイクすることで、ポリエチレン袋内のMDI系ポリウレタン樹脂と架橋剤とを3分間撹拌し、ブレンド物を得た。ブレンド物を得た後の溶融押出は、上述の実施例と同様に行った。 The method for adding the crosslinking agent was as follows. That is, first, 1800 g of MDI polyurethane resin was weighed and put into a polyethylene bag. Further, 200 g of MDI as a cross-linking agent was weighed and put into the polyethylene bag. After the addition of the cross-linking agent, the MDI polyurethane resin and the cross-linking agent in the polyethylene bag were stirred for 3 minutes by handshaking with a polyethylene bag to obtain a blend. The melt extrusion after obtaining the blend was carried out in the same manner as in the above examples.
 表3に示す通り、ペレットの23℃における押し込み硬度は73だった。また、パウダーのメディアン径(50%D)は402μmだった。 As shown in Table 3, the indentation hardness of the pellet at 23 ° C. was 73. The median diameter (50% D) of the powder was 402 μm.
 ペレットと、パウダーとを、上述の実施例と同じ重量比で同様に混合し、評価用目止剤を作製した。得られた評価用目止剤から上述の実施例と同様に評価用泥水を作製し、上述の実施例と同様の方法で、幅1mmのスロットディスクを用いて120℃において目止め試験を行った。表3に示す通り、120℃における目止め維持時間は672時間だった。 The pellets and the powder were similarly mixed at the same weight ratio as in the above-described Examples to produce an evaluation filler. An evaluation muddy water was produced from the obtained sealing agent for evaluation in the same manner as in the above-described example, and a sealing test was performed at 120 ° C. using a slot disk having a width of 1 mm in the same manner as in the above-described example. . As shown in Table 3, the maintenance time at 120 ° C. was 672 hours.
 <実施例4>
 実施例4では、架橋剤の添加量を10重量%から20重量%に変更した以外は、実施例3と同様にペレット及びパウダーを作製した。
<Example 4>
In Example 4, pellets and powder were prepared in the same manner as in Example 3 except that the addition amount of the crosslinking agent was changed from 10% by weight to 20% by weight.
 表3に示す通り、ペレットの23℃における押し込み硬度は73だった。また、パウダーのメディアン径(50%D)は203μmだった。 As shown in Table 3, the indentation hardness of the pellet at 23 ° C. was 73. The median diameter (50% D) of the powder was 203 μm.
 ペレットと、パウダーとを、重量比40:60で混合し、評価用目止剤を作製した。評価用目止剤から、上述の実施例と同様に評価用泥水を作製し、上述の実施例と同様の方法で、幅1mmのスロットディスクを用いて149℃において目止め試験を行った。表3に示す通り、149℃における目止め維持時間は3時間だった。 Pellets and powder were mixed at a weight ratio of 40:60 to produce a sealant for evaluation. An evaluation muddy water was prepared from the evaluation sealant in the same manner as in the above-described example, and a seal test was performed at 149 ° C. using a slot disk having a width of 1 mm in the same manner as in the above-described example. As shown in Table 3, the maintenance time at 149 ° C. was 3 hours.
 <実施例5>
 実施例5では、架橋剤の添加量を20重量%から30重量%に変更した以外は、実施例4と同様にペレット及びパウダーを作製した。
<Example 5>
In Example 5, pellets and powder were prepared in the same manner as in Example 4 except that the addition amount of the crosslinking agent was changed from 20% by weight to 30% by weight.
 表3に示す通り、ペレットの23℃における押し込み硬度は71だった。また、パウダーのメディアン径(50%D)は、146μmだった。 As shown in Table 3, the indentation hardness of the pellet at 23 ° C. was 71. The median diameter (50% D) of the powder was 146 μm.
 ペレットと、パウダーとを、実施例4と同じ重量比で混合し、評価用目止剤を作製した。得られた評価用目止剤から、上述の実施例と同様に評価用泥水を作製し、上述の実施例と同様の方法で、幅1mmのスロットディスクを用いて149℃において目止め試験を行った。表3に示す通り、149℃における目止め維持時間は4時間だった。 Pellets and powder were mixed at the same weight ratio as in Example 4 to produce an evaluation filler. From the obtained evaluation sealant, an evaluation muddy water was prepared in the same manner as in the above-described example, and a seal test was performed at 149 ° C. using a slot disk having a width of 1 mm in the same manner as in the above-described example. It was. As shown in Table 3, the maintenance time at 149 ° C. was 4 hours.
 <実施例6>
 実施例6では、ベースとなる樹脂組成物として、上述のMDI系ポリウレタン樹脂に加え、上述のHDI系ポリウレタン樹脂をさらに含む以外は、実施例2と同様にペレット及びパウダーを作製した。
<Example 6>
In Example 6, pellets and powder were prepared in the same manner as in Example 2 except that the resin composition used as the base further includes the above-mentioned HDI polyurethane resin in addition to the above MDI polyurethane resin.
 より具体的には、上述のMDI系ポリウレタン樹脂を1,000g秤量し、HDI系ポリウレタン樹脂を1,000g秤量し、ポリエチレン袋に投入した。投入後、上述の実施例と同様にハンドシェイクし、MDI系ポリウレタン樹脂と、HDI系ポリウレタン樹脂とを撹拌し、ブレンド物を得た。このように、MDI系ポリウレタン樹脂と、HDI系ポリウレタン樹脂とを重量比50:50で混合した。その後、上述の実施例と同様に、ブレンド物を溶融押出(溶融混練)して、ペレットと、パウダーとを得た。 More specifically, 1,000 g of the above-mentioned MDI polyurethane resin was weighed and 1,000 g of HDI polyurethane resin was weighed and put into a polyethylene bag. After the addition, handshaking was performed in the same manner as in the above-described example, and the MDI polyurethane resin and the HDI polyurethane resin were stirred to obtain a blend. Thus, the MDI polyurethane resin and the HDI polyurethane resin were mixed at a weight ratio of 50:50. Thereafter, the blend was melt-extruded (melt-kneaded) in the same manner as in the above-described example to obtain pellets and powder.
 表3に示す通り、ペレットの23℃における押し込み硬度は38だった。また、パウダーのメディアン径(50%D)は352μmだった。 As shown in Table 3, the indentation hardness of the pellet at 23 ° C. was 38. The median diameter (50% D) of the powder was 352 μm.
 ペレットと、パウダーとを、重量比40:60で混合し、評価用目止剤を作製した。得られた評価用目止剤から、上述の実施例と同様に評価用泥水を作製し、上述の実施例と同様の方法で、幅1mmのスロットディスクを用いて110℃において目止め試験を行った。表3に示す通り、110℃における目止め維持時間は2時間だった。 Pellets and powder were mixed at a weight ratio of 40:60 to produce a sealant for evaluation. From the obtained evaluation sealant, an evaluation muddy water was prepared in the same manner as in the above-described example, and a seal test was performed at 110 ° C. using a slot disk having a width of 1 mm in the same manner as in the above-described example. It was. As shown in Table 3, the maintenance time at 110 ° C. was 2 hours.
 <実施例7>
 実施例7では、プラグ試験機におけるスロットディスクの幅を1mmから3mmに変えた以外は、実施例3と同じ条件で評価用目止剤及び評価用泥水等を作製し、上述の実施例と同様の方法で、120℃において目止め試験を行った。
<Example 7>
In Example 7, except that the slot disk width in the plug tester was changed from 1 mm to 3 mm, an evaluation sealant and an evaluation muddy water were produced under the same conditions as in Example 3, and the same as in the above example. The sealing test was conducted at 120 ° C. by the above method.
 表3に示す通り、120℃における目止め維持時間は168時間だった。 As shown in Table 3, the maintenance time at 120 ° C. was 168 hours.
 <実施例8>
 実施例8では、120℃の代わりに149℃において目止め試験した以外は実施例7と同じ条件で評価用目止剤及び評価用泥水等を作製し、幅3mmのスロットディスクを用いて目止め評価を行った。表3に示す通り、149℃における目止め維持時間は2時間だった。
<Example 8>
In Example 8, a sealing agent for evaluation and a muddy water for evaluation were prepared under the same conditions as in Example 7 except that a sealing test was performed at 149 ° C. instead of 120 ° C., and the sealing was performed using a slot disk having a width of 3 mm. Evaluation was performed. As shown in Table 3, the eye keeping time at 149 ° C. was 2 hours.
 <実施例9>
 実施例9では、ペレット及びパウダーに、さらに電子線を20kGy照射した以外は、実施例3と同様に評価用目止剤を作製した。
<Example 9>
In Example 9, a sealant for evaluation was prepared in the same manner as in Example 3 except that the pellet and powder were further irradiated with 20 kGy of an electron beam.
 表3に示す通り、ペレットの23℃における押し込み硬度は74、パウダーのメディアン径(50%D)は448μmだった。 As shown in Table 3, the indentation hardness of the pellet at 23 ° C. was 74, and the median diameter (50% D) of the powder was 448 μm.
 得られた評価用目止剤から上述の実施例と同様の方法で評価用泥水を作製し、幅3mmのスロットディスクを用いて120℃において目止め評価を行った。表3に示す通り、120℃における目止め維持時間は4時間だった。 An evaluation muddy water was produced from the obtained evaluation sealant in the same manner as in the above-described Examples, and the evaluation was performed at 120 ° C. using a slot disk having a width of 3 mm. As shown in Table 3, the maintenance time at 120 ° C. was 4 hours.
 <実施例10>
 実施例10では、ペレット及びパウダーに電子線を20kGy照射する代わりに、60kGy照射した以外は、実施例9と同様に評価用目止剤を作製した。
<Example 10>
In Example 10, a sealant for evaluation was prepared in the same manner as in Example 9 except that the pellet and powder were irradiated with 60 kGy instead of 20 kGy.
 表3に示す通り、ペレットの23℃における押し込み硬度は74、パウダーのメディアン径(50%D)は402μmだった。 As shown in Table 3, the indentation hardness of the pellet at 23 ° C. was 74, and the median diameter (50% D) of the powder was 402 μm.
 得られた評価用目止剤から上述の実施例と同様の方法で評価用泥水を作製し、幅3mmのスロットディスクを用いて120℃において目止め評価を行った。表3に示す通り、120℃における目止め維持時間は336時間だった。 An evaluation muddy water was produced from the obtained evaluation sealant in the same manner as in the above-described Examples, and the evaluation was performed at 120 ° C. using a slot disk having a width of 3 mm. As shown in Table 3, the maintenance time at 120 ° C. was 336 hours.
 <実施例11>
 実施例11では、ペレットと、パウダーとを重量比20:80で混合する代わりに、重量比40:60で混合する以外は、実施例10と同様に評価用目止剤を作製した。
<Example 11>
In Example 11, instead of mixing pellets and powder at a weight ratio of 20:80, an evaluation filler was prepared in the same manner as in Example 10, except that the mixture was mixed at a weight ratio of 40:60.
 得られた評価用目止剤から上述の実施例と同様の方法で評価用泥水を作製し、幅3mmのスロットディスクを用いて120℃において目止め評価を行った。表3に示す通り、120℃における目止め維持時間は336時間だった。 An evaluation muddy water was produced from the obtained evaluation sealant in the same manner as in the above-described Examples, and the evaluation was performed at 120 ° C. using a slot disk having a width of 3 mm. As shown in Table 3, the maintenance time at 120 ° C. was 336 hours.
 <実施例12>
 実施例12では、120℃の代わりに149℃において目止め試験した以外は実施例10と同じ条件で評価用目止剤及び評価用泥水等を作製し、幅3mmのスロットディスクを用いて目止め評価を行った。表3に示す通り、149℃における目止め維持時間は7時間だった。
<Example 12>
In Example 12, a sealing agent for evaluation and a muddy water for evaluation were prepared under the same conditions as in Example 10 except that a sealing test was performed at 149 ° C. instead of 120 ° C., and the sealing was performed using a slot disk having a width of 3 mm. Evaluation was performed. As shown in Table 3, the maintenance time at 149 ° C. was 7 hours.
 <実施例13>
 実施例13では、ペレット及びパウダーに電子線を60kGy照射する代わりに、100kGy照射した以外は、実施例12と同様に評価用目止剤を作製した。
<Example 13>
In Example 13, a sealant for evaluation was prepared in the same manner as in Example 12 except that 100 kGy was irradiated instead of 60 kGy of the electron beam to the pellets and powder.
 表3に示す通り、ペレットの23℃における押し込み硬度は74、パウダーのメディアン径(50%D)は685μmだった。 As shown in Table 3, the indentation hardness of the pellet at 23 ° C. was 74, and the median diameter (50% D) of the powder was 685 μm.
 得られた評価用目止剤から上述の実施例と同様の方法で評価用泥水を作製し、幅3mmのスロットディスクを用いて149℃において目止め評価を行った。表3に示す通り、149℃における目止め維持時間は5時間だった。 An evaluation muddy water was produced from the obtained evaluation sealant by the same method as in the above-described example, and the evaluation was performed at 149 ° C. using a slot disk having a width of 3 mm. As shown in Table 3, the maintenance time at 149 ° C. was 5 hours.
 <実施例14>
 実施例14では、架橋剤の添加量を10重量%から20重量%に変更した以外は、実施例12と同様にペレット及びパウダーを作製した。
<Example 14>
In Example 14, pellets and powder were prepared in the same manner as in Example 12 except that the addition amount of the crosslinking agent was changed from 10% by weight to 20% by weight.
 表3に示す通り、ペレットの23℃における押し込み硬度は75だった。また、パウダーのメディアン径(50%D)は、534μmだった。 As shown in Table 3, the indentation hardness of the pellet at 23 ° C. was 75. The median diameter (50% D) of the powder was 534 μm.
 ペレットと、パウダーとを、実施例12と同じ重量比で混合し、評価用目止剤を作製した。得られた評価用目止剤から、上述の実施例と同様に評価用泥水を作製し、上述の実施例と同様の方法で、幅3mmのスロットディスクを用いて149℃において目止め試験を行った。表3に示す通り、149℃における目止め維持時間は4時間だった。 Pellets and powder were mixed at the same weight ratio as in Example 12 to produce an evaluation filler. From the obtained evaluation sealant, an evaluation muddy water was prepared in the same manner as in the above-described example, and a seal test was performed at 149 ° C. using a slot disk having a width of 3 mm in the same manner as in the above-described example. It was. As shown in Table 3, the maintenance time at 149 ° C. was 4 hours.
 <実施例15>
 実施例15では、ペレット及びパウダーに電子線を60kGy照射する代わりに、100kGy照射した以外は、実施例14と同様に評価用目止剤を作製した。
<Example 15>
In Example 15, a sealant for evaluation was prepared in the same manner as in Example 14 except that the pellet and powder were irradiated with 100 kGy instead of 60 kGy.
 表3に示す通り、ペレットの23℃における押し込み硬度は73、パウダーのメディアン径(50%D)は580μmだった。 As shown in Table 3, the indentation hardness at 23 ° C. of the pellet was 73, and the median diameter (50% D) of the powder was 580 μm.
 得られた評価用目止剤から上述の実施例と同様の方法で評価用泥水を作製し、幅3mmのスロットディスクを用いて149℃において目止め評価を行った。表3に示す通り、149℃における目止め維持時間は4時間だった。 An evaluation muddy water was produced from the obtained evaluation sealant by the same method as in the above-described example, and the evaluation was performed at 149 ° C. using a slot disk having a width of 3 mm. As shown in Table 3, the maintenance time at 149 ° C. was 4 hours.
 <実施例16>
 実施例16では、架橋剤として、MDIの代わりにトリアリルイソシアネート(TAIC)を用い、当該架橋剤の添加量を10重量%から0.476重量%(≒0.5重量%)に変更した以外は、実施例9と同様に評価用目止剤を作製した。
<Example 16>
In Example 16, triallyl isocyanate (TAIC) was used instead of MDI as a crosslinking agent, and the addition amount of the crosslinking agent was changed from 10% by weight to 0.476% by weight (≈0.5% by weight). Produced a sealing agent for evaluation in the same manner as in Example 9.
 表3に示す通り、ペレットの23℃における押し込み硬度は63、パウダーのメディアン径(50%D)は291μmだった。 As shown in Table 3, the indentation hardness of the pellet at 23 ° C. was 63, and the median diameter (50% D) of the powder was 291 μm.
 得られた評価用目止剤から上述の実施例と同様の方法で評価用泥水を作製し、幅3mmのスロットディスクを用いて149℃において目止め評価を行った。表3に示す通り、149℃における目止め維持時間は3時間だった。 An evaluation muddy water was produced from the obtained evaluation sealant by the same method as in the above-described example, and the evaluation was performed at 149 ° C. using a slot disk having a width of 3 mm. As shown in Table 3, the maintenance time at 149 ° C. was 3 hours.
 <実施例17>
 〔評価用目止剤の製造〕
 (ペレットの製造)
 実施例17では、ペレットを作製するために、まず、上述のMDI系ポリウレタン樹脂を1,900g秤量し、ポリエチレン袋に投入した。また、充填剤として、オーエンス・コーニング株式会社製の03JAFT592S、径(D)10μm、アスペクト比(L/D)30のガラスファイバー(GF)を100g秤量し、当該ポリエチレン袋に投入した。すなわち、MDI系ポリウレタン樹脂に対して5重量%の充填剤を添加した。充填剤の添加後、ポリエチレン袋を持ってハンドシェイクすることで、ポリエチレン袋内のMDI系ポリウレタン樹脂と充填剤とを3分間撹拌し、ブレンド物を得た。ブレンド物を得た後、上述の実施例と同様に溶融押出し、ペレットを得た。
<Example 17>
[Manufacture of sealants for evaluation]
(Manufacture of pellets)
In Example 17, in order to produce pellets, first, 1,900 g of the above-mentioned MDI polyurethane resin was weighed and put into a polyethylene bag. Further, as a filler, 100 g of 03JAFT592S manufactured by Owens Corning Co., Ltd., glass fiber (GF) having a diameter (D) of 10 μm and an aspect ratio (L / D) of 30 was weighed and put into the polyethylene bag. That is, 5% by weight of a filler was added to the MDI polyurethane resin. After the addition of the filler, the MDI polyurethane resin in the polyethylene bag and the filler were stirred for 3 minutes by handshaking with a polyethylene bag to obtain a blend. After obtaining the blend, it was melt-extruded in the same manner as in the above examples to obtain pellets.
 表3に示す通り、ペレットの23℃における押し込み硬度は58だった。 As shown in Table 3, the indentation hardness of the pellet at 23 ° C. was 58.
 (パウダーの製造)
 実施例17では、実施例3と同じ条件でパウダーを作製した。表3に示す通り、パウダーのメディアン径(50%D)は402μmだった。
(Manufacture of powder)
In Example 17, powder was produced under the same conditions as in Example 3. As shown in Table 3, the median diameter (50% D) of the powder was 402 μm.
 (評価用目止剤の製造)
 ペレットを14g、パウダーを21g秤量し、ポリエチレン袋に投入した後、ハンドシェイクで3分間撹拌し、ペレットとパウダーとのブレンド物を得た。このように、ペレットとパウダーとを重量比40:60で混合し、評価用目止剤を得た。
(Manufacture of sealants for evaluation)
14 g of pellets and 21 g of powder were weighed and put into a polyethylene bag, and then stirred for 3 minutes by handshaking to obtain a blend of pellets and powder. Thus, pellets and powder were mixed at a weight ratio of 40:60 to obtain an evaluation filler.
 〔評価用流体(以下、評価用泥水 ともいう)の製造〕
 得られた評価用目止剤と、以下の表2の各成分とを、表2に示す重量比で混合し、評価用泥水として、キサンタンガム評価用泥水を作製した。
[Manufacture of evaluation fluid (hereinafter also referred to as evaluation mud)]
The obtained sealant for evaluation and each component of Table 2 below were mixed at a weight ratio shown in Table 2 to prepare a xanthan gum evaluation muddy water as an evaluation muddy water.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 なお、表2におけるキサンタンガムは、M-I L.L.C.製のDUO-VIS PLUSである。頁岩安定剤は、M-I L.L.C.製のULTRAHIBである。殺菌剤は、M-I L.L.C.製のSAFE-CIDEである。架橋デンプンは、株式会社テルナイト製のテルポリマーDXである。 The xanthan gum in Table 2 is MI L. L. C. This is DUO-VIS PLUS. The shale stabilizer is MI L.I. L. C. ULTRAHIB made by The disinfectant is MI L.I. L. C. SAFE-CIDE made. Cross-linked starch is terpolymer DX manufactured by Ternite Co., Ltd.
 〔目止め評価〕
 実施例1~16の評価用泥水の代わりに、キサンタンガム評価用泥水を用いて、上述の実施例と同様の方法で、幅3mmのスロットディスクを用いて120℃において目止め評価を行った。表3に示す通り、120℃における目止め維持時間は72時間だった。
[Evaluation for closing]
In place of the muddy water for evaluation in Examples 1 to 16, the muddy water for xanthan gum evaluation was used and evaluation was performed at 120 ° C. using a slot disk having a width of 3 mm in the same manner as in the above-described example. As shown in Table 3, the maintenance time at 120 ° C. was 72 hours.
 <実施例18>
 実施例18では、MDI系ポリウレタン樹脂に対して10重量%のMDIの架橋剤を添加して得られたパウダーの代わりに、実施例17のペレットの一部を粉砕して得られたGF入りパウダーを用いた以外は、実施例17と同様にペレット及びパウダーを得た。
<Example 18>
In Example 18, GF-containing powder obtained by pulverizing part of the pellets of Example 17 instead of powder obtained by adding 10% by weight of a MDI crosslinking agent to the MDI-based polyurethane resin. Except that was used, pellets and powder were obtained in the same manner as in Example 17.
 表3に示す通り、パウダーのメディアン径(50%D)は171μmだった。 As shown in Table 3, the median diameter (50% D) of the powder was 171 μm.
 ペレットと、パウダーとを、重量比40:60で混合し、評価用目止剤を作製した。得られた評価用目止剤から、実施例17と同様にキサンタンガム評価用泥水を作製し、上述の実施例と同様の方法で、幅3mmのスロットディスクを用いて120℃において目止め試験を行った。表3に示す通り、120℃における目止め維持時間は72時間だった。 Pellets and powder were mixed at a weight ratio of 40:60 to produce a sealant for evaluation. From the obtained sealing agent for evaluation, a muddy water for xanthan gum evaluation was produced in the same manner as in Example 17, and a sealing test was performed at 120 ° C. using a slot disk having a width of 3 mm in the same manner as in the above-mentioned Examples. It was. As shown in Table 3, the maintenance time at 120 ° C. was 72 hours.
 <比較例1>
 比較例1では、HDI系ポリウレタン樹脂に架橋剤を添加せず、ペレットに熱処理を行わず、電子線を照射しなかったこと以外は、実施例1と同様にペレット及びパウダーを作製した。
<Comparative Example 1>
In Comparative Example 1, pellets and powder were prepared in the same manner as in Example 1 except that no crosslinking agent was added to the HDI polyurethane resin, the pellet was not heat-treated, and no electron beam was irradiated.
 表4に示す通り、ペレットの23℃における押し込み硬度は31だった。また、パウダーのメディアン径(50%D)は337μmだった。 As shown in Table 4, the indentation hardness of the pellet at 23 ° C. was 31. The median diameter (50% D) of the powder was 337 μm.
 ペレットと、パウダーとを、実施例1と同じ重量比で同様に混合し、評価用目止剤を作製した。得られた評価用目止剤から実施例1と同様に評価用泥水を作製し、実施例1と同様の方法で、幅1mmのスロットディスクを用いて110℃において目止め試験を行った。表4に示す通り、110℃における目止め維持時間は0時間だった。 Pellets and powder were mixed in the same weight ratio as in Example 1 to prepare an evaluation filler. An evaluation muddy water was produced from the obtained sealing agent for evaluation in the same manner as in Example 1, and a sealing test was performed at 110 ° C. using a slot disk having a width of 1 mm in the same manner as in Example 1. As shown in Table 4, the maintenance time at 110 ° C. was 0 hour.
 <比較例2>
 比較例2では、ペレットと、パウダーとを重量比20:80で混合する代わりに、重量比40:60で混合する以外は、比較例1と同様に評価用目止剤を作製した。
<Comparative example 2>
In Comparative Example 2, an evaluation filler was prepared in the same manner as Comparative Example 1 except that the pellets and powder were mixed at a weight ratio of 40:60 instead of being mixed at a weight ratio of 20:80.
 得られた評価用目止剤から比較例1と同様の方法で評価用泥水を作製し、幅1mmのスロットディスクを用いて110℃において目止め評価を行った。表4に示す通り、110℃における目止め維持時間は0時間だった。 An evaluation mud was prepared from the obtained sealant for evaluation by the same method as in Comparative Example 1, and the seal evaluation was performed at 110 ° C. using a slot disk having a width of 1 mm. As shown in Table 4, the maintenance time at 110 ° C. was 0 hour.
 <比較例3>
 比較例3では、110℃の代わりに120℃において目止め試験を行った以外は比較例2と同じ条件で評価用目止剤及び評価用泥水等を作製し、幅1mmのスロットディスクを用いて目止め評価を行った。表4に示す通り、120℃における目止め維持時間は0時間だった。
<Comparative Example 3>
In Comparative Example 3, an evaluation sealant and an evaluation muddy water were prepared under the same conditions as in Comparative Example 2 except that a sealing test was performed at 120 ° C. instead of 110 ° C., and a slot disk having a width of 1 mm was used. An eye-opening evaluation was performed. As shown in Table 4, the maintenance time at 120 ° C. was 0 hour.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 なお、表3及び表4におけるHDI系TPU及びMDI系TPUは、それぞれHDI系ポリウレタン樹脂及びMDI系ポリウレタン樹脂を指す。 In Tables 3 and 4, HDI TPU and MDI TPU refer to HDI polyurethane resin and MDI polyurethane resin, respectively.
 表3及び表4から明らかなように、実施例1~16の一時目止剤を用いて目止め試験を行った結果、110℃、120℃、及び、149℃のいずれかの温度において、目止め評価が「A」だった。このことから、実施例1~16のように、目止剤が、ポリウレタン樹脂を含む樹脂組成物のペレット及びパウダーからなり、ペレットの長片は0.8mmよりも大きく、該ペレットの23℃における押し込み硬度は37以上であり、パウダーのメディアン径(50%D)は800μm以下であれば、110℃、120℃、及び、149℃のいずれかの高温において、孔隙が1mm又は3mmの幅を持つ大きなフラクチャーを好適に一時目止めすることができると分かった。 As is apparent from Tables 3 and 4, as a result of conducting a sealing test using the temporary sealants of Examples 1 to 16, the eye was observed at any of 110 ° C., 120 ° C., and 149 ° C. The stop evaluation was “A”. Therefore, as in Examples 1 to 16, the filler is made of pellets and powder of a resin composition containing a polyurethane resin, and the long pieces of the pellets are larger than 0.8 mm, and the pellets at 23 ° C. When the indentation hardness is 37 or more and the median diameter (50% D) of the powder is 800 μm or less, the pores have a width of 1 mm or 3 mm at a high temperature of 110 ° C., 120 ° C., and 149 ° C. It has been found that a large fracture can be suitably temporarily observed.
 また、実施例17及び18のように、評価用泥水が強アルカリ性を示すキサンタンガム評価用泥水であっても、ペレットが充填剤としてGFを含むことで、120℃の高温下において、孔隙が3mmの幅を持つ大きなフラクチャーを一時目止めすることができることが分かった。 Further, as in Examples 17 and 18, even when the evaluation muddy water is xanthan gum evaluation muddy water exhibiting strong alkalinity, the pellets contain GF as a filler, so that the pores are 3 mm at a high temperature of 120 ° C. It turns out that a large fracture with a width can be temporarily spotted.
 一方、比較例1~3のように、ペレットと、パウダーとを含み、ペレット及びパウダーが、ポリウレタン樹脂を含む樹脂組成物であり、ペレットの長片は0.8mmよりも大きく、パウダーのメディアン径(50%D)が800μm以下であっても、ペレットの23℃における押し込み硬度が37未満であれば、ペレットとパウダーとの重量比、及び、目止め試験温度等に係らず、目止め維持時間が0時間であり、目止め機能を有していないことが分かった。 On the other hand, as in Comparative Examples 1 to 3, a pellet and powder are included, and the pellet and the powder are a resin composition including a polyurethane resin, the long piece of the pellet is larger than 0.8 mm, and the median diameter of the powder Even when (50% D) is 800 μm or less, as long as the indentation hardness of the pellet at 23 ° C. is less than 37, regardless of the weight ratio of the pellet and the powder, the sealing test temperature, etc., the sealing maintenance time Was 0 hours, and it was found that it has no sealing function.
 本発明は、高深度の坑井等の高温環境下において、大きなフラクチャーを一時目止めするための目止剤及び坑井流体等に利用することができる。 DETAILED DESCRIPTION OF THE INVENTION The present invention can be used as a sealant and well fluid for temporarily closing a large fracture in a high temperature environment such as a deep well.

Claims (13)

  1.  坑壁を目止めする目止剤であって、
     上記目止剤は、ポリウレタン樹脂を含む樹脂組成物から形成されたペレット及び粉体を含み、
     該ペレットは、23℃における押し込み硬度が37以上であることを特徴とする目止剤。
    A sealant that seals the pit wall,
    The filler includes pellets and powder formed from a resin composition containing a polyurethane resin,
    The pellet has an indentation hardness at 37 ° C. of 37 or more.
  2.  上記ペレットの23℃における押し込み硬度は、98以下であることを特徴とする請求項1に記載の目止剤。 The sealant according to claim 1, wherein the indentation hardness of the pellet at 23 ° C is 98 or less.
  3.  上記ポリウレタン樹脂は、脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂のうちの少なくとも1つであることを特徴とする請求項1又は2に記載の目止剤。 3. The filler according to claim 1, wherein the polyurethane resin is at least one of an aliphatic isocyanate-based polyurethane resin and an aromatic isocyanate-based polyurethane resin.
  4.  上記脂肪族イソシアネート系ポリウレタン樹脂を構成している脂肪族イソシアネートは、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、水添キシリレンジイソシアネート、及びジシクロヘキシルメタンジイソシアネートからなる群から選択される少なくとも1つの脂肪族イソシアネートであることを特徴とする請求項3に記載の目止剤。 The aliphatic isocyanate constituting the aliphatic isocyanate-based polyurethane resin is at least one aliphatic isocyanate selected from the group consisting of hexamethylene diisocyanate, isophorone diisocyanate, norbornane diisocyanate, hydrogenated xylylene diisocyanate, and dicyclohexylmethane diisocyanate. The sealant according to claim 3, wherein
  5.  上記芳香族イソシアネート系ポリウレタン樹脂を構成している芳香族イソシアネートは、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、及びナフタレンジイソシアネートからなる群から選択される少なくとも1つの芳香族イソシアネートであることを特徴とする請求項3又は4に記載の目止剤。 The aromatic isocyanate constituting the aromatic isocyanate-based polyurethane resin is at least one aromatic isocyanate selected from the group consisting of diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and naphthalene diisocyanate. The sealant according to claim 3 or 4.
  6.  上記脂肪族イソシアネート系ポリウレタン樹脂及び上記芳香族イソシアネート系ポリウレタン樹脂のうちの少なくとも1つは、少なくともポリエステル骨格を含んでいることを特徴とする請求項3~5のいずれか1項に記載の目止剤。 The eye stop according to any one of claims 3 to 5, wherein at least one of the aliphatic isocyanate polyurethane resin and the aromatic isocyanate polyurethane resin contains at least a polyester skeleton. Agent.
  7.  上記樹脂組成物は、さらに架橋剤を含み、
     上記樹脂組成物における該架橋剤の含有量は、0.2重量%以上50重量%以下であることを特徴とする請求項1~6のいずれか1項に記載の目止剤。
    The resin composition further includes a crosslinking agent,
    The filler according to any one of claims 1 to 6, wherein the content of the crosslinking agent in the resin composition is 0.2 wt% or more and 50 wt% or less.
  8.  上記架橋剤は、多官能イソシアネート化合物、エチレン系不飽和基を有するモノマー、多価アミン、多価アルコール、及び多官能エポキシ化合物からなる群から選択される少なくとも1つの架橋剤であることを特徴とする請求項7に記載の目止剤。 The cross-linking agent is at least one cross-linking agent selected from the group consisting of a polyfunctional isocyanate compound, a monomer having an ethylenically unsaturated group, a polyvalent amine, a polyhydric alcohol, and a polyfunctional epoxy compound. The sealant according to claim 7.
  9.  上記樹脂組成物は、充填剤をさらに含み、
     上記樹脂組成物における該充填剤の含有量は、2重量%以上30重量%以下であることを特徴とする請求項1~8のいずれか1項に記載の目止剤。
    The resin composition further includes a filler,
    The filler according to any one of claims 1 to 8, wherein the content of the filler in the resin composition is 2 wt% or more and 30 wt% or less.
  10.  上記充填剤は、有機又は無機の繊維状強化材である請求項9に記載の目止剤。 The filler according to claim 9, wherein the filler is an organic or inorganic fibrous reinforcing material.
  11.  上記ペレットと上記粉体との重量比が5:95~60:40であることを特徴とする請求項1~10のいずれか1項に記載の目止剤。 The sealant according to any one of claims 1 to 10, wherein a weight ratio of the pellet to the powder is 5:95 to 60:40.
  12.  請求項1~11のいずれか1項に記載の目止剤を含むことを特徴とする坑井流体。 A well fluid containing the filler according to any one of claims 1 to 11.
  13.  請求項1~11のいずれか1項に記載の目止剤を使用して一時目止めを行うことを特徴とする坑井掘削方法。 A well excavation method characterized by performing temporary sealing using the sealing agent according to any one of claims 1 to 11.
PCT/JP2018/008065 2017-03-16 2018-03-02 Lost circulation material and use therefor WO2018168530A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017051956A JP2020097636A (en) 2017-03-16 2017-03-16 Filler and use thereof
JP2017-051956 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018168530A1 true WO2018168530A1 (en) 2018-09-20

Family

ID=63523039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008065 WO2018168530A1 (en) 2017-03-16 2018-03-02 Lost circulation material and use therefor

Country Status (2)

Country Link
JP (1) JP2020097636A (en)
WO (1) WO2018168530A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115044187A (en) * 2022-06-22 2022-09-13 广东安拓普聚合物科技有限公司 Preparation method of oil-soluble polyurethane plugging agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072317A1 (en) * 2013-11-15 2015-05-21 株式会社クレハ Temporary sealing agent for use in well boring
JP2015143458A (en) * 2013-12-27 2015-08-06 株式会社クレハ Diameter-expandable, annular and decomposable seal member for downhole tool, winze digging plug and winze digging method
WO2015133543A1 (en) * 2014-03-07 2015-09-11 株式会社クレハ Well-processing method for bringing seal member for use as downhole tool containing elastic material into contact with well-processing fluid, and inducing collapse of the elastic material
JP2015180795A (en) * 2014-03-07 2015-10-15 株式会社クレハ Sealing member for disintegrating downhole tool, downhole tool and winze excavation method
WO2016047501A1 (en) * 2014-09-22 2016-03-31 株式会社クレハ Composition for well drilling use which comprises reactive metal and degradable resin composition, molded article for well drilling use, and well drilling method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072317A1 (en) * 2013-11-15 2015-05-21 株式会社クレハ Temporary sealing agent for use in well boring
JP2015143458A (en) * 2013-12-27 2015-08-06 株式会社クレハ Diameter-expandable, annular and decomposable seal member for downhole tool, winze digging plug and winze digging method
WO2015133543A1 (en) * 2014-03-07 2015-09-11 株式会社クレハ Well-processing method for bringing seal member for use as downhole tool containing elastic material into contact with well-processing fluid, and inducing collapse of the elastic material
JP2015180795A (en) * 2014-03-07 2015-10-15 株式会社クレハ Sealing member for disintegrating downhole tool, downhole tool and winze excavation method
WO2016047501A1 (en) * 2014-09-22 2016-03-31 株式会社クレハ Composition for well drilling use which comprises reactive metal and degradable resin composition, molded article for well drilling use, and well drilling method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115044187A (en) * 2022-06-22 2022-09-13 广东安拓普聚合物科技有限公司 Preparation method of oil-soluble polyurethane plugging agent

Also Published As

Publication number Publication date
JP2020097636A (en) 2020-06-25

Similar Documents

Publication Publication Date Title
CA2930362C (en) Temporary plugging agent for well drilling
CN107532465A (en) The controlled degradation of elastomer and its purposes in field use
JP6194018B2 (en) Downhole tool or downhole tool member, decomposable resin composition, and hydrocarbon resource recovery method
AU2008245781B2 (en) Use of elastomers to produce gels for treating a wellbore
US9580642B2 (en) Method for improving isolation of flow to completed perforated intervals
JP6114875B2 (en) Degradable rubber member for downhole tool, degradable seal member, degradable protective member, downhole tool, and well drilling method
US8607895B2 (en) Drilling fluid additive for reducing lost circulation in a drilling operation
JP6441649B2 (en) Decomposable sealing member for downhole tool, downhole tool, and well drilling method
US20120190593A1 (en) Permeability blocking with stimuli-responsive microcomposites
US20120061083A1 (en) Wellbore fluid and methods of treating an earthen formation
US10696893B2 (en) Perforation balls and methods of using the same
JPWO2013161755A1 (en) Polyglycolic acid resin short fiber and well treatment fluid
JPWO2013161754A1 (en) Polyglycolic acid resin short fiber for well treatment fluid
US20160264851A1 (en) Aqueous Dispersion and Additives for Fracturing Work
WO2018168530A1 (en) Lost circulation material and use therefor
WO2018168529A1 (en) Lost circulation material and use therefor
WO2017110610A1 (en) Composition, composition for downhole tool, degradable rubber member for downhole tool, downhole tool, and well drilling method
JP2020100676A (en) Filler and use thereof
JP2020100675A (en) Filler and use thereof
JP2016160694A (en) Degradable rubber member for downhole took, downhole tool, and well drilling method
WO2022020595A1 (en) Diverting agents for well stimulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP