WO2018168266A1 - Multi-core fiber - Google Patents

Multi-core fiber Download PDF

Info

Publication number
WO2018168266A1
WO2018168266A1 PCT/JP2018/004228 JP2018004228W WO2018168266A1 WO 2018168266 A1 WO2018168266 A1 WO 2018168266A1 JP 2018004228 W JP2018004228 W JP 2018004228W WO 2018168266 A1 WO2018168266 A1 WO 2018168266A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
core
cores
core fiber
interval
Prior art date
Application number
PCT/JP2018/004228
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 斉藤
竹永 勝宏
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2018512438A priority Critical patent/JP6503513B2/en
Publication of WO2018168266A1 publication Critical patent/WO2018168266A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Definitions

  • the present invention relates to a multi-core fiber.
  • This application claims priority based on Japanese Patent Application No. 2017-051904 filed in Japan on March 16, 2017, the contents of which are incorporated herein by reference.
  • a plurality of modes are propagated in one core, and a signal is placed in each mode.
  • MCF multi-core fiber
  • the number mode fiber is disclosed in Non-Patent Document 1, for example.
  • the MCF is broadly divided into a non-coupled MCF in which each core independently transmits information, and each core (mode) forms a super mode, and information is stored in each super mode.
  • C-MCF Coupled Multicore fiber
  • the C-MCF is one of mode division multiplexing (MDM) transmission fibers as disclosed in Non-Patent Documents 2 and 3, for example.
  • FMF and C-MCF a plurality of modes are propagated to one core.
  • the 2LP mode information is transmitted in three modes of LP 01 , LP 11a and LP 11b .
  • the degenerate modes such as LP 11a and LP 11b are easily mixed due to structural fluctuations in the fiber and disturbances such as torsion and bending applied to the fiber, and thus are not properly identified on the receiving side.
  • digital signal processing such as MIMO (Multiple-input and Multiple-output) is preferably performed, and mixed modes are separated and received.
  • Non-Patent Document 1 discloses a number-mode multi-core fiber in which four cores are arranged in a circle and each core can propagate two LP modes, LP 01 and LP 11 .
  • Non-Patent Document 1 it is possible to suppress the coupling between two LP 11 modes by omitting one LP 11 mode which is degenerated by making the core shape an ellipse and omitting the MIMO processing. It is disclosed.
  • the super mode is not formed.
  • Non-Patent Document 2 by using a coupled MCF in which adjacent cores are arranged at equal intervals, a super mode is formed by adjusting the pitch and arrangement of each core, and DGD of each mode is suppressed.
  • Non-Patent Document 3 discloses a four-core long-distance transmission multi-core fiber (CC-MCF).
  • each mode reduces DGD of a plurality of modes propagating in CC-MCF, reduces the number of taps of MIMO processing calculated with an 8 ⁇ 8 matrix (reducing processing load) Is disclosed.
  • the core that forms the super mode in short-distance transmission can omit the MIMO processing, and mode separation is easy with MIMO processing for a plurality of super modes in long-distance transmission.
  • the structure of the core is not fully disclosed.
  • the present invention has been made in view of the above-described circumstances, and it is possible to omit a MIMO process in short-distance transmission, or a coupled multicore fiber that can be easily mode-separated by MIMO process in long-distance transmission. provide.
  • a first aspect of the present invention is a multi-fiber comprising a plurality of cores arranged in a matrix of m rows ⁇ n columns (m and n are integers of 2 or more) in a cross section in the longitudinal direction of the optical fiber.
  • the distance between two cores adjacent to each other in the column direction is wider than the distance between two cores adjacent to each other in the row direction, and light propagating through the cores in both the row direction and the column direction is stronger. It is configured to combine to form a super mode.
  • the interval between cores adjacent to each other in the row direction may be substantially constant.
  • the interval between cores adjacent to each other in the column direction may be substantially constant.
  • the plurality of cores arranged in a matrix of m rows ⁇ n columns have substantially the same structure. May be.
  • the plurality of cores arranged in a matrix of m rows ⁇ n columns in a predetermined transmission wavelength band.
  • Each may be configured to operate in a single mode.
  • a multicore fiber according to any one of the first to fifth aspects, wherein the propagation constant of the highest supermode that can be transmitted and the refractive index difference of the cladding in a predetermined transmission wavelength band. May be configured to be 0.0005 or more.
  • a difference in propagation constant between mode groups used for transmission is 0.0005 or more in a predetermined transmission wavelength band. It may be configured to be.
  • an interval between cores adjacent to each other in the column direction is equal to an interval between cores adjacent to each other in the row direction. May be approximately ⁇ 3 times.
  • n 2 in the multicore fiber according to any one of the first, third to eighth aspects.
  • An eleventh aspect of the present invention is the multicore fiber according to any one of the first to tenth aspects, wherein the multifiber according to the aspect has m rows ⁇ n columns (m and n are integers of 2 or more). There may be a plurality of regions in which the plurality of cores arranged in a matrix are formed, and the plurality of regions may be arranged such that light propagating through the respective regions is uncoupled.
  • a coupled multi-core fiber that can omit the MIMO processing in short-distance transmission. Or, in long-distance transmission, a coupled multi-core fiber that can be easily mode-separated by MIMO processing can be realized.
  • FIG. 1 is a schematic diagram of a multi-core fiber 1 according to a first embodiment of the present invention. It is sectional drawing perpendicular
  • FEM finite element method
  • FIG. 1A is a schematic diagram illustrating the configuration of the multicore fiber 1 according to the first embodiment of the present invention
  • FIG. 1B is a cross-sectional view perpendicular to the longitudinal direction of the multicore fiber 1.
  • the multi-core fiber 1 includes four cores 2 and a clad 3.
  • the multi-core fiber 1 is a coupled multi-core fiber (C-MCF), and is configured such that light propagating through each core 2 is strongly coupled to form a super mode.
  • C-MCF coupled multi-core fiber
  • the four cores 2 are arranged in 2 rows ⁇ 2 columns in the cross section in the longitudinal direction of the multicore fiber 1.
  • the radius of the core 2 is a.
  • the inter-core distance in the row direction X core-center distance
  • the inter-core distance in the column direction Y is ⁇ 2.
  • the cores are arranged so that ⁇ 1 ⁇ 2 . . That is, the interval between two cores adjacent to each other in the column direction Y is wider than the interval between two cores adjacent to each other in the row direction X.
  • the light propagating through the cores 2 in both the row direction X and the column direction Y is strongly coupled to form a super mode.
  • each core can be made smaller than the two-core coupled MCF by forming the cores 2 by four of 2 rows ⁇ 2 columns. Therefore, when producing a glass rod having the same rod diameter as a base material, the core can be formed long, and the production efficiency can be improved.
  • the clad 3 is a common clad covering the periphery of all the cores 2.
  • the core 2 is configured so that n core > n clad .
  • all the cores 2 are capable of single mode transmission in the transmission band. Moreover, it is preferable that all the cores 2 are substantially the same structure (it is comprised from the core of the same kind).
  • substantially the same structure means that the size, shape, refractive index, and the like are the same so as not to affect the characteristics of the light wave propagating through the core 2.
  • Examples of the medium constituting the core 2 and the clad 3 of the multi-core fiber 1 include quartz glass (silica glass), multicomponent glass, and plastic.
  • quartz glass there are pure quartz glass containing no additive and quartz glass containing the additive.
  • the additive include one or more of Ge, Al, P, B, F, Cl, alkali metal, and the like, and the refractive index can be adjusted by adding them to quartz glass.
  • the wavelength band used for transmission in the multi-core fiber 1 according to the present embodiment is not particularly limited, and examples thereof include C band (1530 to 1565 nm), L band (1565 to 1625 nm) and the like.
  • the normalized frequency v 2 ⁇ a (n core 2 ⁇ n clad 2 ) 1/2 / ⁇ satisfies the single mode operation condition of v ⁇ 2.405.
  • is a wavelength
  • 2 ⁇ / ⁇ is a wave number k 0 .
  • the transmission loss of the higher-order mode of the LP 11 mode or higher may be ⁇ Loss or higher.
  • ⁇ Loss > 0 dB / m, for example, 0.1 dB / m, 0.5 dB / m, 1.0 dB / m, 2.0 dB / m, and the like.
  • the fiber cutoff wavelength ⁇ cc of the fiber include 1530 nm or less, 1260 nm or less, 1000 nm or less.
  • the number and arrangement of the cores 2 are not limited to four of 2 rows ⁇ 2 columns, and m rows ⁇ n columns (m and n are 2 or more depending on the number of modes of light propagating in the multicore fiber 1). It suffices if they are arranged in an integer) matrix. In this case, the distance between the two cores adjacent to each other in the column direction Y is wider than the distance between the two cores adjacent to each other in the row direction X, and all the light propagating through the cores 2 is strongly coupled. What is necessary is just to be comprised so that a mode may be formed. When m ⁇ 3, it is preferable that the interval ( ⁇ 2 ) between adjacent cores in the row direction X is substantially constant.
  • the interval ( ⁇ 2 ) between adjacent cores in the column direction Y is substantially constant.
  • that the interval between the cores is substantially constant means that they are the same so as not to affect the characteristics of the light wave propagating through each core.
  • the interval ( ⁇ 2 ) between the cores 2 adjacent to each other in the column direction Y is preferably approximately ⁇ 3 times the interval ( ⁇ 1 ) between the cores 2 adjacent to each other in the row direction X.
  • a base material a plurality of glass rods of the same diameter are arranged in a close-packed arrangement and drawn, whereby a multi-core fiber having ⁇ 2 of ⁇ 3 times ⁇ 1 can be produced. There is no need to prepare. If ⁇ 2 is ⁇ 3 times ⁇ 1 , as will be described later, a coupled multicore fiber that can omit MIMO processing in short-distance transmission, and a coupled type that can be easily mode-separated by MIMO processing in long-distance transmission. Both multi-core fibers can be realized.
  • ⁇ 1 and ⁇ 2 it is preferable to set the relationship between ⁇ 1 and ⁇ 2 so that the transmission constant of the highest super mode that can be transmitted and the refractive index difference between the cladding 3 is 0.0005 or more in a predetermined transmission wavelength band.
  • ⁇ 1 and ⁇ 2 it is preferable to set the relationship between ⁇ 1 and ⁇ 2 so that a difference in propagation constant between mode groups used for transmission is 0.0005 or more in a predetermined transmission wavelength band.
  • FIGS. 2A and 2B are cross-sectional views perpendicular to the longitudinal direction of multi-core fibers 1A and 1B, respectively, according to a second embodiment.
  • FIG. 2A shows a case where there are two coupled core regions 4 where the cores 2 of 2 rows ⁇ 2 columns are formed
  • FIG. 2B shows four coupled core regions 4 where the cores 2 of 2 rows ⁇ 2 columns are formed. Is the case.
  • the number of coupled core regions 4 where the 2 rows ⁇ 2 columns of cores 2 are formed differs from the multi-core fiber 1. Therefore, in the following description, about the structure which is common in what was already demonstrated, the same code
  • the multi-core fiber 1 ⁇ / b> A has two coupled core regions 4 in which 2 rows ⁇ 2 columns of cores 2 are formed in the clad 3.
  • the two coupled core regions 4 are arranged side by side in the row direction X at a distance so that the lights propagating through the respective regions are not coupled to each other.
  • the multi-core fiber 1 ⁇ / b> A has four coupled core regions 4 in which the cores 2 in 2 rows ⁇ 2 columns are formed in the cladding 3.
  • the four coupled core regions 4 are arranged in a matrix of 2 rows ⁇ 2 columns at a distance from each other so that lights propagating through the respective regions are not coupled to each other.
  • a structure in which a region having a refractive index lower than that of the cladding 3 is provided between the coupling core regions 4 to suppress the coupling between the coupling core regions 4 may be employed.
  • the interval between two cores adjacent to each other in the column direction Y is wider than the interval between two cores adjacent to each other in the row direction X.
  • the light propagating through the cores 2 in both the row direction X and the column direction Y is strongly coupled to form a super mode.
  • region 4 is arrange
  • the multiplicity of the multicore fiber 1A can be set to 4
  • the multiplicity of the multicore fiber 1B can be set to mode multiplicity. Can be set to 8.
  • region 4 it is not limited similarly to the number and arrangement
  • the number and arrangement of the coupled core regions 4 are not limited as long as the light propagating through the respective regions is disposed so as not to be coupled.
  • the MCF of the present invention can be used as a part or all of an optical fiber used for an optical transmission line, an optical waveguide, an optical cable or the like.
  • the optical cable preferably has at least a part of the MCF of the present invention.
  • the configuration of the multi-core fiber 1 that is the 4-core C-MCF described in the first embodiment is used.
  • the propagation constants of the four super modes LP 01 -like mode, LP 11a -like mode, LP 11b -like mode, and LP 21 -like mode are as follows: Is given by
  • ⁇ 0 is a propagation constant at the time of non-coupling
  • ⁇ 1 is a mode coupling coefficient between the cores 2 in the row direction X
  • ⁇ 2 is a mode coupling coefficient between the cores 2 in the column direction Y
  • ⁇ 3 Is a mode coupling coefficient between the diagonal cores 2.
  • the propagation constants of the LP 11b -like mode and the LP 21 -like mode are smaller than the propagation constant of the cladding.
  • the propagation constant of the LP 11a -like mode, which is the highest super mode that can be transmitted, and the refractive index difference of the cladding are sufficiently large, 0.0005 or more, and only the LP 11b -like mode and LP 21 -like mode are used. It was found that cut-off was possible.
  • ⁇ 2 is smaller than about 10 ⁇ m (twice ⁇ 1 )
  • the difference in propagation constant between the LP 01 -like mode and the LP 11a -like mode is also sufficiently large. Mode separation is also considered unnecessary.
  • ⁇ 2 8.66 ⁇ m ( ⁇ 3 times ⁇ 1 )
  • the LP 11b -like mode and the LP 21 -like mode can be cut off and the MIMO process can be omitted.
  • a 4-core C-MCF was fabricated, and S 2 measurement was performed to observe its propagation mode.
  • a 4-core C-MCF having a length of 22 m was measured.
  • Single mode fiber (SMF) was spliced for 4 core C-MCF excitation. Calculated at the wavelength 1.55 .mu.m, LP 01 effective area of -like mode and LP 11a -like mode (A eff), respectively 177 .mu.m 2, since it is 165 .mu.m 2, greater SMF of A eff than normal SMF (Wavelength 1.55 ⁇ m) was used.
  • NIR near-infrared
  • TLS tunable laser source
  • FIG. 4 shows a Fourier transform result of the spectrum of the recorded image.
  • Two peaks of differential group delay (DGD) at 0 ps and 86 ps (3.91 ns / km) are clearly observed.
  • the beam profiles at the two peaks indicate that both the LP 01 -like mode and the LP 11a -like mode have propagated. Since the high order LP 01 -like mode and the high order LP 11a -like mode are not observed, they are considered to be below the cutoff wavelength.
  • the multipath interference (MPI) of LP 11a -like mode obtained by calculating the Fourier transform was ⁇ 26.5 dB.
  • the crosstalk (XT) between two propagation modes was measured by performing impulse response (IR) measurement.
  • the IR of a 1 km long 4-core C-MCF was measured using a vector network analyzer equipped with an optical modulator and a photodetector (PD). The TLS and the optical modulator are connected to the PMF.
  • FIG. 6 shows IR measurement results at a wavelength of 1.55 ⁇ m.
  • the LP 01 -like mode appears.
  • the XT between the LP 01 -like mode and the LP 11a -like mode appears in a “step” state when the value of the standardized DGD is between 0 and 1.
  • DGD between the two modes is 3.93ns / km, it is found to be consistent with results obtained by S 2 measurements.
  • FIG. 6 The broken line in FIG. 6 represents a fitting curve calculated by a theoretical IR model. From FIG. 6, the power coupling coefficient was estimated to be about 4.1 ⁇ 10 ⁇ 6 / m. Therefore, XT is estimated to be about ⁇ 24 dB / km.
  • FIG. 7 shows the result of measuring XT three times in the wavelength band of the C + L band. The measured XT was less than -23 dB / km throughout the C + L band. It can be seen that the XT is sufficiently low to realize short-distance transmission that does not require MIMO processing. From the above results, it can be seen that short distance transmission that does not require MIMO processing is possible according to the present embodiment.
  • the FEM electric field distribution is shown. From the FEM electric field distribution shown in FIG. 8B and FIG. 8C, the cores are strongly coupled in the configuration of this embodiment, and a super mode of LP 01 -like mode and LP 11a -like mode can be formed. I understood it.
  • Table 1 below shows the results of comparing the characteristics at a wavelength of 1550 nm using a 2-core type (2 rows ⁇ 1 column) C-MCF having an effective refractive index difference of the same level as that of this example as a comparative example. Show.
  • FIG. 9 shows (a) the refractive index distribution of each core in the comparative example, (b) the FEM electric field distribution in the LP 01 -like mode, (c) the FEM electric field distribution in the LP 11a -like mode, and (d) the next mode.
  • the FEM electric field distribution is shown.
  • the next mode is generated by combining the LP 11 modes of the respective cores.
  • the super mode generated by combining higher-order modes of each core is compared with the super mode generated by combining each core only in the fundamental mode because the node of the electromagnetic field distribution exists at the center of each core. It becomes difficult to excite and receive the mode using an input / output device such as a fan-in / fan-out device.
  • the total area of the core portion is smaller than that of the comparative example, so that when a glass rod having the same rod diameter is produced as a base material, the core can be formed longer, and the production efficiency can be improved. it can.
  • FIG. 11 shows the relationship between the supermode propagation constant n eff calculated by both the method (FEM) and the inter-core distance ⁇ 2 in the column direction Y.
  • ⁇ 2 is 1.6 times or more of ⁇ 1
  • a mode group composed of LP 01 -like mode and LP 11a -like mode, LP 11b -like mode, and LP 21 -like mode are used. It is considered that it can be handled as transmission of two mode groups with the configured mode group. Therefore, the MIMO processing can be performed separately for the two modes included in each mode group, the matrix size of the MIMO processing can be further reduced, and the load is reduced.
  • ⁇ 2 13.86 ⁇ m ( ⁇ 3 times ⁇ 1 )

Abstract

This multi-core fiber is provided with a plurality of cores arranged in the form of a matrix of m rows and n columns (where, m and n are integers of two or more) in a longitudinal section of an optical fiber, wherein the distance between two neighboring cores in a column direction is greater than that between two neighboring cores in a row direction. The multi-core fiber is configured so that light beams, which propagate along each of the cores in both the row and column directions, strongly couple to each other to form a super mode.

Description

マルチコアファイバMulti-core fiber
 本発明は、マルチコアファイバに関する。
 本願は、2017年3月16日に、日本に出願された特願2017-051904号に基づき優先権を主張し、これらの内容をここに援用する。
The present invention relates to a multi-core fiber.
This application claims priority based on Japanese Patent Application No. 2017-051904 filed in Japan on March 16, 2017, the contents of which are incorporated herein by reference.
 近年の通信トラフィックの増大に対処するため、更なる通信(伝送)容量の増大が求められている。しかし、従来の光通信に用いられるシングルモードファイバ(SMF)を用いた光通信システムでは、容量の増大に対する限界が予想されている。その限界を超えるための技術として、空間多重の研究開発が盛んに行われている。 In order to cope with the recent increase in communication traffic, further increase in communication (transmission) capacity is required. However, in an optical communication system using a single mode fiber (SMF) used for conventional optical communication, a limit to an increase in capacity is expected. Spatial multiplexing research and development has been actively conducted as a technology to overcome this limitation.
 空間多重を実現する光ファイバとして、1つのコア内に複数のモードを伝搬させ、それぞれのモードに信号を載せることで容量の増大を図った数モードファイバ(FMF)と、複数のコアのそれぞれに信号を載せることで容量の増大を図ったマルチコアファイバ(MCF)とがある。数モードファイバについては例えば非特許文献1に開示される。
 また、MCFには、大きく分けて、各コアが独立して情報を伝送させる非結合型MCFと、各コア(のモード)が結合することによってスーパーモードを形成し、それぞれのスーパーモードに情報を伝送させる結合型MCF(C-MCF:Coupled Multicore fiber)との2種類がある。C-MCFは、例えば非特許文献2及び3に開示されるようなモード多重伝送(MDM:Mode Division Multiplexing)伝送用ファイバの一つである。
As an optical fiber that realizes spatial multiplexing, a plurality of modes are propagated in one core, and a signal is placed in each mode. There is a multi-core fiber (MCF) whose capacity is increased by placing a signal. The number mode fiber is disclosed in Non-Patent Document 1, for example.
In addition, the MCF is broadly divided into a non-coupled MCF in which each core independently transmits information, and each core (mode) forms a super mode, and information is stored in each super mode. There are two types of coupled MCF (C-MCF: Coupled Multicore fiber) to be transmitted. The C-MCF is one of mode division multiplexing (MDM) transmission fibers as disclosed in Non-Patent Documents 2 and 3, for example.
 FMFやC-MCFでは、1つのコアに複数のモードを伝搬する。例えば、2LPモードの場合,LP01,LP11a,LP11bの3モードに情報を乗せて発信する。ここで、LP11a,LP11bのように縮退しているモードは、ファイバ中の構造揺らぎや、ファイバに加わるねじれや曲げなどの外乱によって、容易に混ざってしまうため、受信側で適切に識別されない場合がある。長距離伝送の場合は、MIMO(Multiple-input and Multiple-output)等のディジタル信号処理を行い、混ざったモードを分離して受信することが好ましい。しかしながら、データセンター等での短距離伝送の場合では、コスト等の観点からこのような処理は省略できることが好ましい。また、長距離伝送の場合でも、群遅延時間差(DGD:Differential Group Delay)の低減などによってMIMO処理の負荷を削減することが求められる。 In FMF and C-MCF, a plurality of modes are propagated to one core. For example, in the case of the 2LP mode, information is transmitted in three modes of LP 01 , LP 11a and LP 11b . Here, the degenerate modes such as LP 11a and LP 11b are easily mixed due to structural fluctuations in the fiber and disturbances such as torsion and bending applied to the fiber, and thus are not properly identified on the receiving side. There is a case. In the case of long-distance transmission, digital signal processing such as MIMO (Multiple-input and Multiple-output) is preferably performed, and mixed modes are separated and received. However, in the case of short distance transmission in a data center or the like, it is preferable that such processing can be omitted from the viewpoint of cost and the like. Even in the case of long-distance transmission, it is required to reduce the load of MIMO processing by reducing a group delay time difference (DGD: Differential Group Delay).
 非特許文献1では、4つのコアが円形配列され、それぞれのコアがLP01とLP11との2つのLPモードを伝搬可能である数モードマルチコアファイバが開示されている。非特許文献1では、コアの形状を楕円形にして、縮退している片方のLP11モードをカットオフさせることで、2つのLP11モード間の結合を抑制し、MIMO処理を省略することが開示されている。なお、非特許文献1では、各コアが独立した伝送路となるため、スーパーモードは形成されない。
 非特許文献2では、隣接するコアが等間隔で配置される結合型MCFを用いて、各コアのピッチと配置を調整することで、スーパーモードを形成し、また各モードのDGDを抑制することが開示されている。
 非特許文献3では、4コア型の長距離伝送用の結合型マルチコアファイバ(CC-MCF)が開示されている。非特許文献3においては、CC-MCFを伝搬する複数のモードのDGDを低減し、8×8の行列で演算するMIMO処理のタップ数を削減して(処理の負荷を低減して)各モードを分離することが開示されている。
Non-Patent Document 1 discloses a number-mode multi-core fiber in which four cores are arranged in a circle and each core can propagate two LP modes, LP 01 and LP 11 . In Non-Patent Document 1, it is possible to suppress the coupling between two LP 11 modes by omitting one LP 11 mode which is degenerated by making the core shape an ellipse and omitting the MIMO processing. It is disclosed. In Non-Patent Document 1, since each core is an independent transmission path, the super mode is not formed.
In Non-Patent Document 2, by using a coupled MCF in which adjacent cores are arranged at equal intervals, a super mode is formed by adjusting the pitch and arrangement of each core, and DGD of each mode is suppressed. Is disclosed.
Non-Patent Document 3 discloses a four-core long-distance transmission multi-core fiber (CC-MCF). In Non-Patent Document 3, each mode reduces DGD of a plurality of modes propagating in CC-MCF, reduces the number of taps of MIMO processing calculated with an 8 × 8 matrix (reducing processing load) Is disclosed.
 しかしながら、上記のいずれの文献においても、短距離伝送においてスーパーモードを形成するコアがMIMO処理を省略可能な構成や、長距離伝送において複数存在するスーパーモードに対してMIMO処理でモード分離が容易なコアの構成については十分に開示されていない。 However, in any of the above documents, the core that forms the super mode in short-distance transmission can omit the MIMO processing, and mode separation is easy with MIMO processing for a plurality of super modes in long-distance transmission. The structure of the core is not fully disclosed.
 本発明は、上述した事情に鑑みてなされたものであって、短距離伝送においてMIMO処理を省略可能であり、もしくは、長距離伝送においてはMIMO処理で容易にモード分離可能な結合型マルチコアファイバを提供する。 The present invention has been made in view of the above-described circumstances, and it is possible to omit a MIMO process in short-distance transmission, or a coupled multicore fiber that can be easily mode-separated by MIMO process in long-distance transmission. provide.
 本発明の第1態様は、マルチファイバであって、光ファイバの長手方向における断面において、m行×n列(m,nは2以上の整数)のマトリックス状に配置された複数のコアを備え、行方向において互いに隣り合う2つのコア同士の間隔より列方向において互いに隣り合う2つのコア同士の間隔の方が広く、前記行方向及び前記列方向の両方向において各コアを伝搬する光同士が強結合してスーパーモードを形成するように構成される。 A first aspect of the present invention is a multi-fiber comprising a plurality of cores arranged in a matrix of m rows × n columns (m and n are integers of 2 or more) in a cross section in the longitudinal direction of the optical fiber. The distance between two cores adjacent to each other in the column direction is wider than the distance between two cores adjacent to each other in the row direction, and light propagating through the cores in both the row direction and the column direction is stronger. It is configured to combine to form a super mode.
 本発明の第2態様は、上記第1態様に係るマルチコアファイバにおいて、n≧3の場合に、前記行方向において互いに隣り合うコア同士の間隔が実質的に一定であってもよい。 In the second aspect of the present invention, in the multi-core fiber according to the first aspect, when n ≧ 3, the interval between cores adjacent to each other in the row direction may be substantially constant.
 本発明の第3態様は、上記第1又は第2態様に係るマルチコアファイバにおいて、m≧3の場合に、前記列方向において互いに隣り合うコア同士の間隔が実質的に一定であってもよい。 In the third aspect of the present invention, in the multi-core fiber according to the first or second aspect, when m ≧ 3, the interval between cores adjacent to each other in the column direction may be substantially constant.
 本発明の第4態様は、上記第1~第3態様のいずれか一態様に係るマルチコアファイバにおいて、m行×n列のマトリックス状に配置された前記複数のコアが実質的に同一構造であってもよい。 According to a fourth aspect of the present invention, in the multicore fiber according to any one of the first to third aspects, the plurality of cores arranged in a matrix of m rows × n columns have substantially the same structure. May be.
 本発明の第5態様は、上記第1~第4態様のいずれか一態様に係るマルチコアファイバにおいて、所定の伝送波長帯域において、m行×n列のマトリックス状に配置された前記複数のコアがそれぞれシングルモードで動作するように構成されてもよい。 According to a fifth aspect of the present invention, in the multicore fiber according to any one of the first to fourth aspects, the plurality of cores arranged in a matrix of m rows × n columns in a predetermined transmission wavelength band. Each may be configured to operate in a single mode.
 本発明の第6態様は、上記第1~第5態様のいずれか一態様に係るマルチコアファイバにおいて、所定の伝送波長帯域において、伝送可能な最高次のスーパーモードの伝搬定数とクラッドの屈折率差が0.0005以上であるように構成されてもよい。 According to a sixth aspect of the present invention, there is provided a multicore fiber according to any one of the first to fifth aspects, wherein the propagation constant of the highest supermode that can be transmitted and the refractive index difference of the cladding in a predetermined transmission wavelength band. May be configured to be 0.0005 or more.
 本発明の第7態様は、上記第1~第5態様のいずれか一態様に係るマルチコアファイバにおいて、所定の伝送波長帯域において、伝送に用いるモード群間の伝搬定数の差が0.0005以上であるように構成されてもよい。 According to a seventh aspect of the present invention, in the multicore fiber according to any one of the first to fifth aspects, a difference in propagation constant between mode groups used for transmission is 0.0005 or more in a predetermined transmission wavelength band. It may be configured to be.
 本発明の第8態様は、上記第1~第7態様のいずれか一態様に係るマルチコアファイバにおいて、前記列方向において互いに隣り合うコア同士の間隔が、前記行方向において互いに隣り合うコア同士の間隔のおよそ√3倍であってもよい。 According to an eighth aspect of the present invention, in the multicore fiber according to any one of the first to seventh aspects, an interval between cores adjacent to each other in the column direction is equal to an interval between cores adjacent to each other in the row direction. May be approximately √3 times.
 本発明の第9態様は、上記第1、第3~第8態様のいずれか一態様に係るマルチコアファイバにおいて、n=2であってもよい。
 本発明の第10態様は、上記第1、第2、第4~第8態様のいずれか一態様に係るマルチコアファイバにおいて、m=2であってもよい。
According to a ninth aspect of the present invention, n = 2 in the multicore fiber according to any one of the first, third to eighth aspects.
A tenth aspect of the present invention may be m = 2 in the multicore fiber according to any one of the first, second, and fourth to eighth aspects.
 本発明の第11態様は、上記第1~第10態様のいずれか一態様に係るマルチコアファイバにおいて、上記態様に係るマルチファイバが、m行×n列(m,nは2以上の整数)のマトリックス状に配置された前記複数のコアが形成される領域を複数有し、前記複数の領域は、それぞれの領域を伝搬する光同士がそれぞれ非結合となるように配置されてもよい。 An eleventh aspect of the present invention is the multicore fiber according to any one of the first to tenth aspects, wherein the multifiber according to the aspect has m rows × n columns (m and n are integers of 2 or more). There may be a plurality of regions in which the plurality of cores arranged in a matrix are formed, and the plurality of regions may be arranged such that light propagating through the respective regions is uncoupled.
 本発明の上記態様によれば、短距離伝送においてはMIMO処理を省略可能な結合型マルチコアファイバを実現できる。もしくは、長距離伝送においてはMIMO処理で容易にモード分離可能な結合型マルチコアファイバを実現できる。 According to the above aspect of the present invention, it is possible to realize a coupled multi-core fiber that can omit the MIMO processing in short-distance transmission. Or, in long-distance transmission, a coupled multi-core fiber that can be easily mode-separated by MIMO processing can be realized.
本発明の第1実施形態に係るマルチコアファイバ1の模式図である。1 is a schematic diagram of a multi-core fiber 1 according to a first embodiment of the present invention. 本発明の第1実施形態に係るマルチコアファイバ1の長手方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the longitudinal direction of the multi-core fiber 1 which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るマルチコアファイバ1Aの長手方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the longitudinal direction of 1 A of multi-core fibers which concern on 2nd Embodiment of this invention. 本発明の第2実施形態に係るマルチコアファイバ1Bの長手方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the longitudinal direction of the multi-core fiber 1B which concerns on 2nd Embodiment of this invention. 第1実施例における、(1)式及び有限要素法(FEM)の両方で算出したスーパーモードの伝搬定数neffと列方向Yのコア間距離Λとの関係を示すグラフである。It is a graph which shows the relationship between the propagation constant neff of the super mode calculated by both (1) Formula and the finite element method (FEM) and the inter-core distance Λ 2 in the column direction Y in the first embodiment. 記録された画像のスペクトルのフーリエ変換結果を示すグラフである。It is a graph which shows the Fourier-transform result of the spectrum of the recorded image. 図4の2つのピークにおけるビームプロファイルである。It is a beam profile in two peaks of FIG. インパルス応答測定結果を示すグラフである。It is a graph which shows an impulse response measurement result. C+Lバンド内の波長で、XTを3回測定した結果を示すグラフである。It is a graph which shows the result of having measured XT 3 times at the wavelength in a C + L band. 第1実施例において、Λ=8.66μmとした際の、(a)は各コアの屈折率分布を示し、(b)はLP01-likeモードのFEM電界分布を示し、(c)はLP11a-likeモードのFEM電界分布である。In the first example, when Λ 2 = 8.66 μm, (a) shows the refractive index distribution of each core, (b) shows the F 01 electric field distribution of LP 01 -like mode, and (c) shows It is a FEM electric field distribution of LP 11a -like mode. 比較例において、(a)は各コアの屈折率分布を示し、(b)はLP01-likeモードのFEM電界分布を示し、(c)はLP11a-likeモードのFEM電界分布を示し、(d)は次のモードのFEM電界分布である。In the comparative example, (a) shows the refractive index distribution of each core, (b) shows the FEM electric field distribution of LP 01 -like mode, (c) shows the FEM electric field distribution of LP 11a -like mode, d) is the FEM electric field distribution in the next mode. 第2実施例における、(1)式及び有限要素法(FEM)の両方で算出したスーパーモードの伝搬定数neffと列方向Yのコア間距離Λとの関係を示すグラフである。It is a graph which shows the relationship between the propagation constant neff of the super mode calculated by both (1) Formula and the finite element method (FEM) and the inter-core distance Λ 2 in the column direction Y in the second embodiment.
 以下、好適な実施形態に基づき、図面を参照して本発明を説明する。なお、以下に示す実施形態は、発明の趣旨をより良く理解させるために、例を挙げて説明するものであり、特に指定のない限り、本発明を限定しない。また、以下の説明に用いる図面は、本発明の特徴を分かりやすくするために、便宜上、要部となる部分を拡大している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、本発明の特徴を分かりやすくするために、便宜上、省略した部分がある。 Hereinafter, based on a preferred embodiment, the present invention will be described with reference to the drawings. The following embodiments are described by way of example in order to better understand the gist of the invention, and the present invention is not limited unless otherwise specified. In addition, in the drawings used in the following description, in order to make the features of the present invention easier to understand, the main part may be enlarged for convenience, and the dimensional ratios of the respective components are the same as the actual ones. Not necessarily. In addition, in order to make the features of the present invention easier to understand, some parts are omitted for convenience.
第1実施形態
 本発明の第1実施形態に係るマルチコアファイバ1の構成について、図1A、図1Bを用いて説明する。図1Aは、本発明の第1実施形態に係るマルチコアファイバ1の構成を示す模式図であり、図1Bはマルチコアファイバ1の長手方向に垂直な断面図である。
1st Embodiment The structure of the multi-core fiber 1 which concerns on 1st Embodiment of this invention is demonstrated using FIG. 1A and FIG. 1B. FIG. 1A is a schematic diagram illustrating the configuration of the multicore fiber 1 according to the first embodiment of the present invention, and FIG. 1B is a cross-sectional view perpendicular to the longitudinal direction of the multicore fiber 1.
 図1A、図1Bに示すように、本実施形態に係るマルチコアファイバ1は、4つのコア2と、クラッド3とで構成される。
 マルチコアファイバ1は、結合型マルチコアファイバ(C-MCF)であり、各コア2を伝搬する光同士が強結合してスーパーモードを形成するように構成される。
As shown in FIGS. 1A and 1B, the multi-core fiber 1 according to this embodiment includes four cores 2 and a clad 3.
The multi-core fiber 1 is a coupled multi-core fiber (C-MCF), and is configured such that light propagating through each core 2 is strongly coupled to form a super mode.
 4つのコア2は、マルチコアファイバ1の長手方向における断面において2行×2列に配列される。図1Bに示すように、コア2の半径はaである。行方向Xのコア間距離(コア中心間距離)はΛ、列方向Yのコア間距離はΛであり、本実施形態ではΛ<Λとなるように各コアが配列されている。つまり、行方向Xにおいて互いに隣り合う2つのコア同士の間隔より列方向Yにおいて互いに隣り合う2つのコア同士の間隔の方が広い。そして、行方向X及び列方向Yの両方向において各コア2を伝搬する光同士が強結合してスーパーモードを形成するように構成される。
 このようにコアを配置することで、短距離伝送(例えば、100m以上10km以下の伝送)においてはMIMO処理を省略可能な結合型マルチコアファイバを実現できる。また長距離伝送(例えば、数10km以上の伝送)においてはMIMO処理で容易にモード分離可能な結合型マルチコアファイバを実現できる。
 もしくは、コア2を2行×2列の4つで形成することで、2コア型結合MCFよりも各コアを小さくできる。そのため、同じロッド径のガラスロッドを母材として作製する場合はコアを長く形成することができ、作製効率を向上することができる。
The four cores 2 are arranged in 2 rows × 2 columns in the cross section in the longitudinal direction of the multicore fiber 1. As shown in FIG. 1B, the radius of the core 2 is a. The inter-core distance in the row direction X (core-center distance) is Λ 1 , and the inter-core distance in the column direction Y is Λ 2. In this embodiment, the cores are arranged so that Λ 12 . . That is, the interval between two cores adjacent to each other in the column direction Y is wider than the interval between two cores adjacent to each other in the row direction X. The light propagating through the cores 2 in both the row direction X and the column direction Y is strongly coupled to form a super mode.
By arranging the cores in this way, it is possible to realize a coupled multi-core fiber that can omit the MIMO process in short-distance transmission (for example, transmission of 100 to 10 km). In long-distance transmission (for example, transmission of several tens of kilometers or more), a coupled multi-core fiber that can be easily mode-separated by MIMO processing can be realized.
Alternatively, each core can be made smaller than the two-core coupled MCF by forming the cores 2 by four of 2 rows × 2 columns. Therefore, when producing a glass rod having the same rod diameter as a base material, the core can be formed long, and the production efficiency can be improved.
 クラッド3すべてのコア2の周囲を覆う共通のクラッドである。コア2の屈折率をncoreとし、クラッド3の屈折率をncladとすると、コア2のncore>ncladとなるように構成される。 The clad 3 is a common clad covering the periphery of all the cores 2. When the refractive index of the core 2 is n core and the refractive index of the clad 3 is n clad , the core 2 is configured so that n core > n clad .
 本実施形態において、すべてのコア2が、伝送帯域においてシングルモード伝送が可能であることが好ましい。またコア2は、すべて実質的に同一構造である(同種のコアから構成されている)ことが好ましい。ここで、実質的に同一構造とは、コア2を伝搬する光波の特性に影響がない程度に大きさ、形状、屈折率などが同一であることをいう。このようにコア2を形成することで各コアを伝搬する光が結合しやすくなり、スーパーモードの形成が容易になる。 In this embodiment, it is preferable that all the cores 2 are capable of single mode transmission in the transmission band. Moreover, it is preferable that all the cores 2 are substantially the same structure (it is comprised from the core of the same kind). Here, substantially the same structure means that the size, shape, refractive index, and the like are the same so as not to affect the characteristics of the light wave propagating through the core 2. By forming the core 2 in this manner, light propagating through the cores can be easily coupled, and the super mode can be easily formed.
 マルチコアファイバ1のコア2及びクラッド3を構成する媒質としては、石英系ガラス(シリカガラス)、多成分ガラス、プラスチック等が挙げられる。石英系ガラスとしては、添加物を含まない純石英ガラスと、添加物を含む石英系ガラスがある。添加物としては、Ge,Al,P,B,F,Cl,アルカリ金属等の1種又は2種以上が挙げられ、これらを石英系ガラスに添加することにより屈折率を調整することができる。 Examples of the medium constituting the core 2 and the clad 3 of the multi-core fiber 1 include quartz glass (silica glass), multicomponent glass, and plastic. As the quartz glass, there are pure quartz glass containing no additive and quartz glass containing the additive. Examples of the additive include one or more of Ge, Al, P, B, F, Cl, alkali metal, and the like, and the refractive index can be adjusted by adding them to quartz glass.
 本実施形態に係るマルチコアファイバ1で伝送に使用される波長帯域は、特に限定されないが、Cバンド(1530~1565nm)、Lバンド(1565~1625nm)等が挙げられる。使用波長帯域でシングルモード動作する条件としては、正規化周波数v=2πa(ncore -nclad 1/2/λとして、v≦2.405のシングルモード動作条件を満たすことが好ましい。比屈折率差Δ=(ncore -nclad )/(2ncore )が0.05%以上で、C+Lバンドでv≦2.405が成り立つコア半径の上限はおおよそ13μmである。それぞれのコア半径でv≦2.405が成り立つΔの値は自動的に決めることができる。なお、λは波長であり、2π/λは波数kである。
 また、v≧2.405となるようなaあるいはΔにおいては、LP11モード以上の高次モードの伝送損失がαLoss以上であってもよい。このとき、αLoss>0dB/mであり、例えば0.1dB/m、0.5dB/m、1.0dB/m、2.0dB/m等が挙げられる。ファイバのケーブルカットオフ波長λccとしては、例えば1530nm以下、1260nm以下、1000nm以下等が挙げられる。
The wavelength band used for transmission in the multi-core fiber 1 according to the present embodiment is not particularly limited, and examples thereof include C band (1530 to 1565 nm), L band (1565 to 1625 nm) and the like. As a condition for the single mode operation in the used wavelength band, it is preferable that the normalized frequency v = 2πa (n core 2 −n clad 2 ) 1/2 / λ satisfies the single mode operation condition of v ≦ 2.405. The upper limit of the core radius at which the relative refractive index difference Δ = (n core 2 −n clad 2 ) / (2n core 2 ) is 0.05% or more and v ≦ 2.405 is established in the C + L band is approximately 13 μm. The value of Δ for which v ≦ 2.405 is established for each core radius can be automatically determined. Note that λ is a wavelength, and 2π / λ is a wave number k 0 .
In addition, in a or Δ such that v ≧ 2.405, the transmission loss of the higher-order mode of the LP 11 mode or higher may be α Loss or higher. At this time, α Loss > 0 dB / m, for example, 0.1 dB / m, 0.5 dB / m, 1.0 dB / m, 2.0 dB / m, and the like. Examples of the fiber cutoff wavelength λ cc of the fiber include 1530 nm or less, 1260 nm or less, 1000 nm or less.
 なお、コア2の数及び配置は2行×2列の4つに限定されず、マルチコアファイバ1中を伝搬する光のモード数等に応じてm行×n列(m及びnは2以上の整数)のマトリックス状に配置されていればよい。この場合、行方向Xにおいて互いに隣り合う2つのコア同士の間隔より列方向Yにおいて互いに隣り合う2つのコア同士の間隔の方が広く、各コア2を伝搬する光同士がすべて強結合してスーパーモードを形成するように構成されていればよい。
 またm≧3である場合、行方向Xにおいて互いに隣り合うコア同士の間隔(Λ)が実質的に一定であることが好ましい。また、n≧3である場合、列方向Yにおいて互いに隣り合うコア同士の間隔(Λ)が実質的に一定であることが好ましい。ここで、コア同士の間隔が実質的に一定とは、各コアを伝搬する光波の特性に影響がない程度に同一であることをいう。行方向Xや列方向Yの間隔を実質的に一定にすることで、スーパーモードの分布が各コアにほぼ均等に広がるため、マルチコアファイバ同士の接続などの際に好ましい。
The number and arrangement of the cores 2 are not limited to four of 2 rows × 2 columns, and m rows × n columns (m and n are 2 or more depending on the number of modes of light propagating in the multicore fiber 1). It suffices if they are arranged in an integer) matrix. In this case, the distance between the two cores adjacent to each other in the column direction Y is wider than the distance between the two cores adjacent to each other in the row direction X, and all the light propagating through the cores 2 is strongly coupled. What is necessary is just to be comprised so that a mode may be formed.
When m ≧ 3, it is preferable that the interval (Λ 2 ) between adjacent cores in the row direction X is substantially constant. When n ≧ 3, it is preferable that the interval (Λ 2 ) between adjacent cores in the column direction Y is substantially constant. Here, that the interval between the cores is substantially constant means that they are the same so as not to affect the characteristics of the light wave propagating through each core. By making the interval in the row direction X and the column direction Y substantially constant, the distribution of the super mode spreads almost uniformly in each core, which is preferable when connecting multi-core fibers.
 また列方向Yにおいて互いに隣り合うコア2同士の間隔(Λ)が、行方向Xにおいて互いに隣り合うコア2同士の間隔(Λ)のおよそ√3倍であることが好ましい。この場合、母材として、複数の同径のガラスロッドを最密充填配列して線引きすることで、ΛがΛの√3倍のマルチコアファイバを作製でき、複数種の径のガラスロッドを用意する必要がない。また、ΛがΛの√3倍であれば、後述するように短距離伝送においてMIMO処理を省略可能な結合型マルチコアファイバ、及び長距離伝送においてMIMO処理で容易にモード分離可能な結合型マルチコアファイバのどちらも実現できる。 In addition, the interval (Λ 2 ) between the cores 2 adjacent to each other in the column direction Y is preferably approximately √3 times the interval (Λ 1 ) between the cores 2 adjacent to each other in the row direction X. In this case, as a base material, a plurality of glass rods of the same diameter are arranged in a close-packed arrangement and drawn, whereby a multi-core fiber having Λ 2 of √3 times Λ 1 can be produced. There is no need to prepare. If Λ 2 is √3 times Λ 1 , as will be described later, a coupled multicore fiber that can omit MIMO processing in short-distance transmission, and a coupled type that can be easily mode-separated by MIMO processing in long-distance transmission. Both multi-core fibers can be realized.
 また、所定の伝送波長帯域において、伝送可能な最高次のスーパーモードの伝搬定数とクラッド3の屈折率差が0.0005以上となるようにΛとΛとの関係を設定することが好ましい。
 このようにコア同士の間隔を設定することで、必要ないモードのみを確実にカットオフすることができ、より確実にMIMO処理を省略することができる。
In addition, it is preferable to set the relationship between Λ 1 and Λ 2 so that the transmission constant of the highest super mode that can be transmitted and the refractive index difference between the cladding 3 is 0.0005 or more in a predetermined transmission wavelength band. .
By setting the interval between the cores in this way, only unnecessary modes can be cut off reliably, and the MIMO processing can be omitted more reliably.
 また、所定の伝送波長帯域において、伝送に用いるモード群間の伝搬定数の差が0.0005以上となるようにΛとΛとの関係を設定することが好ましい。
 このようにコア同士の間隔を設定することで、各モード群に含まれる少数のモードに対して別々にMIMO処理を行うことができ、MIMO処理の負荷をより削減することができる。さらに、各モード群がそれぞれ1つのモードのみを含むように定義する場合には、上記の関係を設定することでMIMO処理が不要となる。
In addition, it is preferable to set the relationship between Λ 1 and Λ 2 so that a difference in propagation constant between mode groups used for transmission is 0.0005 or more in a predetermined transmission wavelength band.
By setting the interval between the cores in this way, it is possible to separately perform MIMO processing for a small number of modes included in each mode group, and it is possible to further reduce the load of the MIMO processing. Furthermore, when each mode group is defined so as to include only one mode, MIMO processing is not required by setting the above relationship.
第2実施形態
 図2A、図2Bは第2実施形態に係る、それぞれマルチコアファイバ1A、1Bの長手方向に垂直な断面図を示す。図2Aは2行×2列のコア2が形成される結合コア領域4が2つある場合であり、図2Bは2行×2列のコア2が形成される結合コア領域4が4つある場合である。
 なお、マルチコアファイバ1A、1Bでは、マルチコアファイバ1に対して2行×2列のコア2が形成される結合コア領域4の数が異なる。そのため、以降の説明において、すでに説明したものと共通する構成については、同一の符号を付して重複する説明を省略する。
Second Embodiment FIGS. 2A and 2B are cross-sectional views perpendicular to the longitudinal direction of multi-core fibers 1A and 1B, respectively, according to a second embodiment. FIG. 2A shows a case where there are two coupled core regions 4 where the cores 2 of 2 rows × 2 columns are formed, and FIG. 2B shows four coupled core regions 4 where the cores 2 of 2 rows × 2 columns are formed. Is the case.
In the multi-core fibers 1 </ b> A and 1 </ b> B, the number of coupled core regions 4 where the 2 rows × 2 columns of cores 2 are formed differs from the multi-core fiber 1. Therefore, in the following description, about the structure which is common in what was already demonstrated, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
 図2Aでは、マルチコアファイバ1Aが、クラッド3中に2行×2列のコア2が形成される結合コア領域4を2つ有する。2つの結合コア領域4は、それぞれの領域を伝搬する光同士がそれぞれ非結合となるように距離を空けて行方向Xに並べて配置される。
 また、同様に図2Bでは、マルチコアファイバ1Aが、クラッド3中に2行×2列のコア2が形成される結合コア領域4を4つ有する。4つの結合コア領域4は、それぞれの領域を伝搬する光同士がそれぞれ非結合となるようにそれぞれ距離を空けて2行×2列のマトリックス状に配置される。また、各結合コア領域4の間にクラッド3よりも屈折率の低い領域を設けて結合コア領域4間の結合を抑えるような構造としても良い。
In FIG. 2A, the multi-core fiber 1 </ b> A has two coupled core regions 4 in which 2 rows × 2 columns of cores 2 are formed in the clad 3. The two coupled core regions 4 are arranged side by side in the row direction X at a distance so that the lights propagating through the respective regions are not coupled to each other.
Similarly, in FIG. 2B, the multi-core fiber 1 </ b> A has four coupled core regions 4 in which the cores 2 in 2 rows × 2 columns are formed in the cladding 3. The four coupled core regions 4 are arranged in a matrix of 2 rows × 2 columns at a distance from each other so that lights propagating through the respective regions are not coupled to each other. Further, a structure in which a region having a refractive index lower than that of the cladding 3 is provided between the coupling core regions 4 to suppress the coupling between the coupling core regions 4 may be employed.
 マルチコアファイバ1A、1Bにおいては、結合コア領域4では、行方向Xにおいて互いに隣り合う2つのコア同士の間隔より列方向Yにおいて互いに隣り合う2つのコア同士の間隔の方が広い。そして、行方向X及び列方向Yの両方向において各コア2を伝搬する光同士が強結合してスーパーモードを形成するように構成される。そして、それぞれの結合コア領域4は、それぞれの領域を伝搬する光同士がそれぞれ非結合となるように互いに距離を空けて配置される。
 このような構成を有することにより、1本のマルチコアファイバに対するモード多重度を増加させることができる。例えば、各結合コア領域4を伝搬可能なモードがLP01-likeモード,LP11a-likeモードである場合、マルチコアファイバ1Aではモード多重度を4にすることができ、マルチコアファイバ1Bではモード多重度を8にすることができる。
In the multicore fibers 1A and 1B, in the coupled core region 4, the interval between two cores adjacent to each other in the column direction Y is wider than the interval between two cores adjacent to each other in the row direction X. The light propagating through the cores 2 in both the row direction X and the column direction Y is strongly coupled to form a super mode. And each coupling | bonding core area | region 4 is arrange | positioned mutually spaced apart so that the light which propagates each area | region may each become non-coupling | bonding.
By having such a configuration, the mode multiplicity for one multicore fiber can be increased. For example, when the modes capable of propagating through each coupled core region 4 are the LP 01 -like mode and the LP 11a -like mode, the multiplicity of the multicore fiber 1A can be set to 4, and the multiplicity of the multicore fiber 1B can be set to mode multiplicity. Can be set to 8.
 なお、結合コア領域4を構成するコア2の数及び配置については第1実施形態のコア2の数及び配置と同様に限定されない。
 また、結合コア領域4の数及び配置は、それぞれの領域を伝搬する光同士が非結合となるように配置されていれば限定されない。
In addition, about the number and arrangement | positioning of the core 2 which comprise the joint core area | region 4, it is not limited similarly to the number and arrangement | positioning of the core 2 of 1st Embodiment.
Further, the number and arrangement of the coupled core regions 4 are not limited as long as the light propagating through the respective regions is disposed so as not to be coupled.
 以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
 本発明のMCFは、光伝送路、光導波路、光ケーブル等に使用される光ファイバの一部又は全部として用いることができる。光ケーブルは、本発明のMCFを少なくとも一部に有することが好ましい。
As mentioned above, although this invention has been demonstrated based on suitable embodiment, this invention is not limited to the above-mentioned embodiment, A various change is possible in the range which does not deviate from the summary of this invention.
The MCF of the present invention can be used as a part or all of an optical fiber used for an optical transmission line, an optical waveguide, an optical cable or the like. The optical cable preferably has at least a part of the MCF of the present invention.
 以下、実施例を用いて本発明を具体的に説明する。なお、本発明は、本実施例のみに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. In addition, this invention is not limited only to a present Example.
 実施例では、上述の第1実施形態に記載される4コアC-MCFであるマルチコアファイバ1の構成を用いた。すべてのコア2が同種でかつシングルモード動作するように構成した場合、4つのスーパーモードLP01-likeモード、LP11a-likeモード、LP11b-likeモード、LP21-likeモードの伝搬定数は以下の式で与えられる。 In the examples, the configuration of the multi-core fiber 1 that is the 4-core C-MCF described in the first embodiment is used. When all cores 2 are configured to be of the same type and operate in a single mode, the propagation constants of the four super modes LP 01 -like mode, LP 11a -like mode, LP 11b -like mode, and LP 21 -like mode are as follows: Is given by
 ここで、βは非結合時の伝搬定数であり、κ1は行方向Xのコア2間のモード結合係数であり、κは列方向Yのコア2間のモード結合係数であり、κは対角のコア2間のモード結合係数である。 Here, β 0 is a propagation constant at the time of non-coupling, κ 1 is a mode coupling coefficient between the cores 2 in the row direction X, κ 2 is a mode coupling coefficient between the cores 2 in the column direction Y, and κ 3 Is a mode coupling coefficient between the diagonal cores 2.
第1実施例
 スーパーモードの伝搬定数neffと列方向Yのコア間距離Λとの関係からLP11b-likeモード、LP21-likeモードがカットオフとなる構成を調査した。
 コア半径a=2.5μm、比屈折率差Δ=0.35%、nclad=1.45、Λ=5.0μm、伝搬する光の波長を1550nmとして、上記(1)式及び有限要素法(FEM)の両方で算出したスーパーモードの伝搬定数neffと列方向Yのコア間距離Λとの関係を図3に示す。
First Example The configuration in which the LP 11b -like mode and the LP 21 -like mode are cut off from the relationship between the propagation constant n eff of the super mode and the inter-core distance Λ 2 in the column direction Y was investigated.
When the core radius a = 2.5 μm, the relative refractive index difference Δ = 0.35%, n clad = 1.45, Λ 1 = 5.0 μm, the wavelength of propagating light is 1550 nm, the above formula (1) and the finite element FIG. 3 shows the relationship between the supermode propagation constant n eff calculated by both the method (FEM) and the inter-core distance Λ 2 in the column direction Y.
 図3に示すように、上記(1)式を用いた結果と有限要素法(FEM)を用いた結果はおおよそ一致した。なお、完全に一致しない理由としては、強結合時を考慮していないことや上記(1)式が単純な2コアモデルの結合係数の計算を用いたことが挙げられる。
 図3からわかるように、ΛとΛとの差が広くなるほど、LP01-likeモードとLP11a-likeモードとの伝搬定数neffの差は小さくなった。一方、ΛとΛとの差が広くなるほど、LP11a-likeモードとLP11b-likeモードとの伝搬定数neffの差は大きくなった。そして、Λがおよそ8μm(Λの1.6倍)以上でLP11b-likeモード及びLP21-likeモードの伝搬定数がクラッドの伝搬定数より小さくなった。またこのとき、伝送可能な最高次のスーパーモードであるLP11a-likeモードの伝搬定数とクラッドの屈折率差が0.0005以上と十分大きく、LP11b-likeモード及びLP21-likeモードのみをカットオフ可能であることがわかった。さらに特に、Λが10μm(Λの2倍)程度より小さければ、LP01-likeモードとLP11a-likeモードとの伝搬定数の差も十分に大きく短距離伝送であればMIMO処理等によるモードの分離も不要であると考えられる。特に、Λ=8.66μm(Λの√3倍)の場合、LP11b-likeモード及びLP21-likeモードについてカットオフできかつMIMO処理も省略可能である。Λ=√3Λであれば、7つの同径のガラスロッドを最密充填配列して線引きすることで作製可能であり、製造上のメリットもあり好ましいことがわかった。
As shown in FIG. 3, the result using the above equation (1) and the result using the finite element method (FEM) are almost the same. Note that the reasons for the inconsistency are that the strong coupling is not taken into account and the calculation of the coupling coefficient of the two-core model in which the above equation (1) is simple.
As can be seen from FIG. 3, the wider the difference between Λ 1 and Λ 2 , the smaller the difference in the propagation constant n eff between the LP 01 -like mode and the LP 11a -like mode. On the other hand, as the difference between Λ 1 and Λ 2 becomes wider, the difference in the propagation constant n eff between the LP 11a -like mode and the LP 11b -like mode increases. When Λ 2 is about 8 μm (1.6 times Λ 1 ) or more, the propagation constants of the LP 11b -like mode and the LP 21 -like mode are smaller than the propagation constant of the cladding. At this time, the propagation constant of the LP 11a -like mode, which is the highest super mode that can be transmitted, and the refractive index difference of the cladding are sufficiently large, 0.0005 or more, and only the LP 11b -like mode and LP 21 -like mode are used. It was found that cut-off was possible. More particularly, if Λ 2 is smaller than about 10 μm (twice Λ 1 ), the difference in propagation constant between the LP 01 -like mode and the LP 11a -like mode is also sufficiently large. Mode separation is also considered unnecessary. In particular, when Λ 2 = 8.66 μm (√3 times Λ 1 ), the LP 11b -like mode and the LP 21 -like mode can be cut off and the MIMO process can be omitted. If Λ 2 = √3Λ 1, it can be produced by drawing the glass rods having the same diameter in a close-packed arrangement with close packing, and it has been found to be preferable because of manufacturing advantages.
 図3の構造(Λ=8.66μm)に基づいて、4コアC-MCFを作製し、その、伝播モードを観察するために、S測定を行った。ここでは、22mの長さの4コアC-MCFを測定した。4コアC-MCFの励振のために、シングルモードファイバ(SMF)を接合した。波長1.55μmにおいて計算した、LP01-likeモードとLP11a-likeモードの実効断面積(Aeff)は、それぞれ177μm、165μmであることから、通常のSMFよりもAeffの大きいSMF(波長1.55μm)を用いた。
 近視野画像は、波長可変レーザー(TLS:tunable laser source)を用いた波長掃引(1.953GHzの波長間隔で、1.547μm~1.553μm)中に、近赤外(NIR:near-infrared)カメラを用いて記録した。TLSとカメラは、コンピュータで同時に制御した。
Based on the structure of FIG. 3 (Λ 2 = 8.66 μm), a 4-core C-MCF was fabricated, and S 2 measurement was performed to observe its propagation mode. Here, a 4-core C-MCF having a length of 22 m was measured. Single mode fiber (SMF) was spliced for 4 core C-MCF excitation. Calculated at the wavelength 1.55 .mu.m, LP 01 effective area of -like mode and LP 11a -like mode (A eff), respectively 177 .mu.m 2, since it is 165 .mu.m 2, greater SMF of A eff than normal SMF (Wavelength 1.55 μm) was used.
Near-field image is near-infrared (NIR) during wavelength sweep using a tunable laser source (TLS: 1.547 μm to 1.553 μm at a wavelength interval of 1.953 GHz). Recorded using camera. The TLS and camera were controlled simultaneously by a computer.
 図4に記録された画像のスペクトルのフーリエ変換結果を示す。0ps及び86ps(3.91ns/km)における群遅延時間差(DGD:differential group delay)の2つのピークが明瞭に観察される。図5に示すように、2つのピークにおけるビームプロファイルは、LP01-likeモードとLP11a-likeモードが共に伝播したことを示している。高次LP01-likeモードと高次LP11a-likeモードは観察されないため、それらはカットオフ波長を下回っていると考えられる。フーリエ変換を計算することで得られた、LP11a-likeモードのマルチパス干渉(MPI:multi-pass interference)は、-26.5dBであった。
 さらに、図6に示すように、2つの伝播モード間のクロストーク(XT)を、インパルス応答(IR)測定を行うことで測定した。
FIG. 4 shows a Fourier transform result of the spectrum of the recorded image. Two peaks of differential group delay (DGD) at 0 ps and 86 ps (3.91 ns / km) are clearly observed. As shown in FIG. 5, the beam profiles at the two peaks indicate that both the LP 01 -like mode and the LP 11a -like mode have propagated. Since the high order LP 01 -like mode and the high order LP 11a -like mode are not observed, they are considered to be below the cutoff wavelength. The multipath interference (MPI) of LP 11a -like mode obtained by calculating the Fourier transform was −26.5 dB.
Furthermore, as shown in FIG. 6, the crosstalk (XT) between two propagation modes was measured by performing impulse response (IR) measurement.
 光変調器及びフォトディテクタ(PD)を備えるベクトルネットワークアナライザを用いて、1km長の4コアC-MCFのIRを測定した。TLS及び光変調器はPMFに接続されている。4コアC-MCFを励起するために、S測定に用いたものと同じSMFを用いた。図6は、波長1.55μmにおけるIR測定結果を示す。
 規格化DGDの値が0のところでは、LP01-likeモードが現れている。また、LP01-likeモードとLP11a-likeモードの間のXTは、規格化DGDの値が0~1の間で「ステップ」状に現れている。IR測定によって、2つのモード間のDGDは、3.93ns/kmであり、S測定によって得られた結果と一致することがわかる。
The IR of a 1 km long 4-core C-MCF was measured using a vector network analyzer equipped with an optical modulator and a photodetector (PD). The TLS and the optical modulator are connected to the PMF. To excite the 4-core C-MCF, using the same SMF as used for S 2 measurements. FIG. 6 shows IR measurement results at a wavelength of 1.55 μm.
When the value of the standardized DGD is 0, the LP 01 -like mode appears. Further, the XT between the LP 01 -like mode and the LP 11a -like mode appears in a “step” state when the value of the standardized DGD is between 0 and 1. By IR measurement, DGD between the two modes is 3.93ns / km, it is found to be consistent with results obtained by S 2 measurements.
 図6の破線は、理論的なIRのモデルによって計算されたフィッティングカーブを表している。図6から、パワー結合係数は、約4.1×10-6/mであると推定された。従って、XTは約-24dB/kmと見積もられる。
 図7は、C+Lバンドの波長帯域で、XTを3回測定した結果を示す。測定されたXTは、C+Lバンド内全体で、-23dB/km未満であった。MIMO処理が不要な短距離伝送を実現する上で十分低いXTであることがわかる。
 以上の結果により、本実施例によって、MIMO処理が不要な短距離伝送が可能であることがわかる。
The broken line in FIG. 6 represents a fitting curve calculated by a theoretical IR model. From FIG. 6, the power coupling coefficient was estimated to be about 4.1 × 10 −6 / m. Therefore, XT is estimated to be about −24 dB / km.
FIG. 7 shows the result of measuring XT three times in the wavelength band of the C + L band. The measured XT was less than -23 dB / km throughout the C + L band. It can be seen that the XT is sufficiently low to realize short-distance transmission that does not require MIMO processing.
From the above results, it can be seen that short distance transmission that does not require MIMO processing is possible according to the present embodiment.
 図8は、本実施例においてΛ=8.66μmとした際の、(a)各コアの屈折率分布、(b)LP01-likeモードのFEM電界分布、(c)LP11a-likeモードのFEM電界分布を示す。
 図8(b)及び図8(c)に示されるFEM電界分布から、本実施例の構成で各コアが強結合しLP01-likeモード及びLP11a-likeモードのスーパーモードを形成可能であることがわかった。ここで、本実施例と同程度の実効屈折率差を有する2コア型(2行×1列)のC-MCFを比較例として、波長1550nmにおける各特性を比較した結果を以下の表1に示す。
FIG. 8 shows (a) refractive index distribution of each core, (b) LP 01 -like mode FEM electric field distribution, and (c) LP 11a -like mode when Λ 2 = 8.66 μm in this example. The FEM electric field distribution is shown.
From the FEM electric field distribution shown in FIG. 8B and FIG. 8C, the cores are strongly coupled in the configuration of this embodiment, and a super mode of LP 01 -like mode and LP 11a -like mode can be formed. I understood it. Table 1 below shows the results of comparing the characteristics at a wavelength of 1550 nm using a 2-core type (2 rows × 1 column) C-MCF having an effective refractive index difference of the same level as that of this example as a comparative example. Show.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1より、LP01-likeモードならびにLP11a-likeモードの実効断面積は実施例と比較例とでほぼ同等であることが分かる。しかしながら、比較例では次のモードが発生し、その実効屈折率のクラッドとの差は0.0005以上であることが分かる。 From Table 1, it can be seen that the effective cross-sectional areas of the LP 01 -like mode and the LP 11a -like mode are almost the same in the example and the comparative example. However, in the comparative example, the following mode occurs, and it can be seen that the difference between the effective refractive index and the cladding is 0.0005 or more.
 図9は、比較例における(a)各コアの屈折率分布、(b)LP01-likeモードのFEM電界分布、(c)LP11a-likeモードのFEM電界分布、(d)次のモードのFEM電界分布を示す。
 図9(d)に示す通り、次のモードは各コアのLP11モードが結合して生じる。このように各コアの高次モードが結合して生じるスーパーモードは、電磁界分布の節が各コアの中心に存在するために、各コアが基本モードのみで結合して生じるスーパーモードに比べて、ファンイン/ファンアウトデバイスのような入出力デバイスを用いてモードを励振ならびに受光することが難しくなる。加えて、このような高次モードを使用しないように通信システムを構成した場合であっても、入出力部のわずかな軸ずれなどによってこのような高次モードが励振されてしまい、受光側でノイズとなる場合がある。従って、本実施例の構成を用いることで、より安定したモードの励振ならびに受光が行える。さらに、本実施例では比較例に比べてコア部分の総面積が少ないため、同じロッド径のガラスロッドを母材として作製する場合はコアを長く形成することができ、作製効率を向上することができる。
FIG. 9 shows (a) the refractive index distribution of each core in the comparative example, (b) the FEM electric field distribution in the LP 01 -like mode, (c) the FEM electric field distribution in the LP 11a -like mode, and (d) the next mode. The FEM electric field distribution is shown.
As shown in FIG. 9D, the next mode is generated by combining the LP 11 modes of the respective cores. In this way, the super mode generated by combining higher-order modes of each core is compared with the super mode generated by combining each core only in the fundamental mode because the node of the electromagnetic field distribution exists at the center of each core. It becomes difficult to excite and receive the mode using an input / output device such as a fan-in / fan-out device. In addition, even when the communication system is configured not to use such a higher order mode, such a higher order mode is excited by a slight axis misalignment of the input / output unit, etc. There may be noise. Therefore, by using the configuration of this embodiment, more stable mode excitation and light reception can be performed. Furthermore, in this embodiment, the total area of the core portion is smaller than that of the comparative example, so that when a glass rod having the same rod diameter is produced as a base material, the core can be formed longer, and the production efficiency can be improved. it can.
第2実施例
 スーパーモードの伝搬定数neffと列方向Yのコア間距離Λとの関係から4モードを2つのモード群の伝送として扱える構成を調査した。
 コア半径a=4.0μm、比屈折率差Δ=0.35%,nclad=1.45、Λ=8.0μm、伝搬する光の波長を1550nmとして、上記(1)式及び有限要素法(FEM)の両方で算出したスーパーモードの伝搬定数neffと列方向Yのコア間距離Λとの関係を図11に示す。
Second Example From the relationship between the supermode propagation constant n eff and the inter-core distance Λ 2 in the column direction Y, a configuration that can handle four modes as transmission of two mode groups was investigated.
When the core radius a = 4.0 μm, the relative refractive index difference Δ = 0.35%, n clad = 1.45, Λ 1 = 8.0 μm, the wavelength of propagating light is 1550 nm, the above formula (1) and the finite element FIG. 11 shows the relationship between the supermode propagation constant n eff calculated by both the method (FEM) and the inter-core distance Λ 2 in the column direction Y.
 図10に示すように、本実施例でも上記(1)式を用いた結果と有限要素法(FEM)を用いた結果はおおよそ一致した。
 図10からわかるように、ΛとΛとの差が広くなるほど、LP01-likeモードとLP11a-likeモードとの伝搬定数neffの差は小さくなった。また、ΛとΛとの差が広くなるほど、LP11b-likeモードとLP21-likeモードとの伝搬定数neffの差も小さくなった。そして、Λがおよそ13μm(Λの1.6倍)以上で、LP01-likeモードとLP11a-likeモードとの伝搬定数がおおよそ同じになり、LP11b-likeモードとLP21-likeモードとの伝搬定数ともおおよそ同じになった。また、Λがおよそ13μm(Λの1.6倍)以上で、LP11a-likeモードとLP11b-likeモードとの伝搬定数の差が0.0005以上と十分大きくなった。従って、ΛがΛの1.6倍以上であれば、LP01-likeモードとLP11a-likeモードとで構成されるモード群と、LP11b-likeモードとLP21-likeモードとで構成されるモード群との2つのモード群の伝送として扱えると考えられる。従って、各モード群に含まれる2つのモードに対して別々にMIMO処理を行うことができ、MIMO処理の行列サイズをより削減することができ、負荷の削減につながる。特に、Λ=13.86μm(Λの√3倍)の場合、2つのモード群の伝送として扱え、かつ上述のように7つの同径のガラスロッドを最密充填配列して線引きすることで作製可能であり、製造上のメリットもあり好ましいことがわかった。
As shown in FIG. 10, in this example, the result using the above equation (1) and the result using the finite element method (FEM) were almost the same.
As can be seen from FIG. 10, the wider the difference between Λ 1 and Λ 2 , the smaller the difference in the propagation constant n eff between the LP 01 -like mode and the LP 11a -like mode. Further, as the difference between Λ 1 and Λ 2 becomes wider, the difference in the propagation constant n eff between the LP 11b -like mode and the LP 21 -like mode also becomes smaller. When Λ 2 is approximately 13 μm (1.6 times Λ 1 ) or more, the propagation constants of the LP 01 -like mode and the LP 11a -like mode are approximately the same, and the LP 11b -like mode and the LP 21 -like The propagation constant with the mode is almost the same. Further, when Λ 2 is approximately 13 μm (1.6 times Λ 1 ) or more, the difference in propagation constant between the LP 11a -like mode and the LP 11b -like mode is sufficiently large to be 0.0005 or more. Therefore, if Λ 2 is 1.6 times or more of Λ 1, a mode group composed of LP 01 -like mode and LP 11a -like mode, LP 11b -like mode, and LP 21 -like mode are used. It is considered that it can be handled as transmission of two mode groups with the configured mode group. Therefore, the MIMO processing can be performed separately for the two modes included in each mode group, the matrix size of the MIMO processing can be further reduced, and the load is reduced. In particular, when Λ 2 = 13.86 μm (√3 times Λ 1 ), it can be treated as transmission of two mode groups, and as described above, seven glass rods having the same diameter are arranged in a close-packed arrangement and drawn. It was found that it was preferable because of the manufacturing advantages.
 以上、本発明のマルチコアファイバについて説明してきたが、本発明は上記の例に限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜変更可能である。 The multicore fiber of the present invention has been described above. However, the present invention is not limited to the above example, and can be appropriately changed without departing from the spirit of the invention.
 1…マルチコアファイバ、2…コア、3…クラッド、4…結合コア領域 1 ... multi-core fiber, 2 ... core, 3 ... cladding, 4 ... coupled core region

Claims (11)

  1.  光ファイバの長手方向における断面において、m行×n列(m,nは2以上の整数)のマトリックス状に配置された複数のコアを備え、
     行方向において互いに隣り合う2つのコア同士の間隔より列方向において互いに隣り合う2つのコア同士の間隔の方が広く、
     前記行方向及び前記列方向の両方向において各コアを伝搬する光同士が強結合してスーパーモードを形成するように構成される、マルチコアファイバ。
    A plurality of cores arranged in a matrix of m rows × n columns (m and n are integers of 2 or more) in a cross section in the longitudinal direction of the optical fiber,
    The interval between two cores adjacent to each other in the column direction is wider than the interval between two cores adjacent to each other in the row direction,
    A multi-core fiber configured such that light propagating through each core in both the row direction and the column direction is strongly coupled to form a super mode.
  2.  n≧3の場合に、前記行方向において互いに隣り合うコア同士の間隔が実質的に一定である、請求項1に記載のマルチコアファイバ。 2. The multi-core fiber according to claim 1, wherein an interval between cores adjacent to each other in the row direction is substantially constant when n ≧ 3.
  3.  m≧3の場合に、前記列方向において互いに隣り合うコア同士の間隔が実質的に一定である、請求項1又は2に記載のマルチコアファイバ。 3. The multi-core fiber according to claim 1, wherein when m ≧ 3, an interval between cores adjacent to each other in the column direction is substantially constant.
  4.  m行×n列のマトリックス状に配置された前記複数のコアが実質的に同一構造である、請求項1~3のうちのいずれか一項に記載のマルチコアファイバ。 The multi-core fiber according to any one of claims 1 to 3, wherein the plurality of cores arranged in a matrix of m rows x n columns have substantially the same structure.
  5.  所定の伝送波長帯域において、m行×n列のマトリックス状に配置された前記複数のコアがそれぞれシングルモードで動作するように構成される、請求項1~4のうちのいずれか一項に記載のマルチコアファイバ。 5. The plurality of cores arranged in a matrix of m rows × n columns in a predetermined transmission wavelength band are each configured to operate in a single mode. Multi-core fiber.
  6.  所定の伝送波長帯域において、伝送可能な最高次のスーパーモードの伝搬定数とクラッドの屈折率差が0.0005以上であるように構成される、請求項1~5のうちのいずれか一項に記載のマルチコアファイバ。 The high-order supermode propagation constant that can be transmitted and the refractive index difference of the cladding are 0.0005 or more in a predetermined transmission wavelength band, according to any one of claims 1 to 5. The described multi-core fiber.
  7.  所定の伝送波長帯域において、伝送に用いるモード群間の伝搬定数の差が0.0005以上であるように構成される、請求項1~5のうちのいずれか一項に記載のマルチコアファイバ。 The multi-core fiber according to any one of claims 1 to 5, wherein a difference in propagation constant between mode groups used for transmission is 0.0005 or more in a predetermined transmission wavelength band.
  8.  前記列方向において互いに隣り合うコア同士の間隔が、前記行方向において互いに隣り合うコア同士の間隔のおよそ√3倍である、請求項1~7のうちのいずれか一項に記載のマルチコアファイバ。 The multi-core fiber according to any one of claims 1 to 7, wherein an interval between cores adjacent to each other in the column direction is approximately √3 times an interval between cores adjacent to each other in the row direction.
  9.  n=2である、請求項1及び3~8のうちのいずれか一項に記載のマルチコアファイバ。 The multi-core fiber according to any one of claims 1 and 3 to 8, wherein n = 2.
  10.  m=2である、請求項1,2,及び4~8のうちのいずれか一項に記載のマルチコアファイバ。 The multi-core fiber according to any one of claims 1, 2, and 4 to 8, wherein m = 2.
  11.  m行×n列(m,nは2以上の整数)のマトリックス状に配置された前記複数のコアが形成される領域を複数有し、
     前記複数の領域は、それぞれの領域を伝搬する光同士がそれぞれ非結合となるように配置される、請求項1~10のうちのいずれか一項に記載のマルチコアファイバ。
    a plurality of regions in which the plurality of cores arranged in a matrix of m rows × n columns (m and n are integers of 2 or more) are formed;
    The multi-core fiber according to any one of claims 1 to 10, wherein the plurality of regions are arranged so that light propagating through the respective regions is uncoupled.
PCT/JP2018/004228 2017-03-16 2018-02-07 Multi-core fiber WO2018168266A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018512438A JP6503513B2 (en) 2017-03-16 2018-02-07 Multicore fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017051904 2017-03-16
JP2017-051904 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018168266A1 true WO2018168266A1 (en) 2018-09-20

Family

ID=63522010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004228 WO2018168266A1 (en) 2017-03-16 2018-02-07 Multi-core fiber

Country Status (2)

Country Link
JP (1) JP6503513B2 (en)
WO (1) WO2018168266A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022052465A (en) * 2020-09-23 2022-04-04 日本電信電話株式会社 Combined multi-core optical fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150133A (en) * 2010-01-21 2011-08-04 Sumitomo Electric Ind Ltd Multicore optical fiber
US20130039627A1 (en) * 2011-08-12 2013-02-14 University Of Central Florida Research Foundation, Inc. Systems And Methods For Optical Transmission Using Supermodes
JP2015159584A (en) * 2015-04-08 2015-09-03 日本電信電話株式会社 Optical receiver, multicore optical fiber and optical transmission system
WO2017033197A1 (en) * 2015-08-27 2017-03-02 Bar-Ilan University Multi optically-coupled channels module and related methods of computation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150133A (en) * 2010-01-21 2011-08-04 Sumitomo Electric Ind Ltd Multicore optical fiber
US20130039627A1 (en) * 2011-08-12 2013-02-14 University Of Central Florida Research Foundation, Inc. Systems And Methods For Optical Transmission Using Supermodes
JP2015159584A (en) * 2015-04-08 2015-09-03 日本電信電話株式会社 Optical receiver, multicore optical fiber and optical transmission system
WO2017033197A1 (en) * 2015-08-27 2017-03-02 Bar-Ilan University Multi optically-coupled channels module and related methods of computation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIA ET AL.: "Supermodes in Coupled Multi-Core Waveguide Structures", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 22, no. 2, March 2016 (2016-03-01), pages 1 - 12, XP011595716 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022052465A (en) * 2020-09-23 2022-04-04 日本電信電話株式会社 Combined multi-core optical fiber
JP7320788B2 (en) 2020-09-23 2023-08-04 日本電信電話株式会社 Coupled multi-core optical fiber

Also Published As

Publication number Publication date
JP6503513B2 (en) 2019-04-17
JPWO2018168266A1 (en) 2019-03-22

Similar Documents

Publication Publication Date Title
US8503847B2 (en) Method of arranging cores of multi-core fiber
US9103961B2 (en) Systems and methods for optical transmission using supermodes
US6788865B2 (en) Polarization maintaining optical fiber with improved polarization maintaining property
US11480727B2 (en) Multi-core optical fiber
US8948559B2 (en) Multiple LP mode fiber designs for mode division multiplexing
US9121993B2 (en) Multi-core optical fiber and method of optical transmission
US20190056552A1 (en) Optical multiplexing circuit
WO2013021697A1 (en) Multi-core optical fiber and optical transmission system
JP3912009B2 (en) Dispersion compensating fiber
JP6172642B2 (en) Multi-core fiber and optical cable
JP6340342B2 (en) Multi-core fiber
US20180128977A1 (en) Silicon Photonic Device, Optical Polarisation Beam Coupler and Optical Waveguide Coupler
JP2016057631A (en) Optical fiber and optical transmission system
JP2022542439A (en) Polarization maintenance in high ellipticity core fibers with stress-induced birefringence
US10365429B2 (en) Multicore fiber and optical cable
US10277354B1 (en) Efficient mode coupling using ladder fibers
JP6503513B2 (en) Multicore fiber
JP2001318260A (en) Polarized wave maintaining optical fiber
US6512871B2 (en) Dispersion compensating fiber with void pattern in secondary core
JP5117636B1 (en) Optical transmission method
Mukasa et al. Hollow core fiber cable technologies
JP2013097172A (en) Passive optical transmission system and optical fiber for high-intensity transmission for use in the same
Saitoh et al. Demonstration of a rectangularly-arranged strongly-coupled multi-core fiber
US9146359B2 (en) Optical dispersion compensation module using fiber Bragg grating with multiple degrees of freedom for the optical field
JP4960202B2 (en) Optical wavelength multiplexing / demultiplexing circuit

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018512438

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767486

Country of ref document: EP

Kind code of ref document: A1