WO2018167976A1 - Nanocarbon obtained by removing ammonium ion group from nanocarbon having amino group in molecular skeleton, organic solvent dispersion thereof, and method for producing same - Google Patents

Nanocarbon obtained by removing ammonium ion group from nanocarbon having amino group in molecular skeleton, organic solvent dispersion thereof, and method for producing same Download PDF

Info

Publication number
WO2018167976A1
WO2018167976A1 PCT/JP2017/011047 JP2017011047W WO2018167976A1 WO 2018167976 A1 WO2018167976 A1 WO 2018167976A1 JP 2017011047 W JP2017011047 W JP 2017011047W WO 2018167976 A1 WO2018167976 A1 WO 2018167976A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocarbon
amine
group
solvents
dispersion
Prior art date
Application number
PCT/JP2017/011047
Other languages
French (fr)
Japanese (ja)
Inventor
仁科勇太
Original Assignee
株式会社仁科マテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社仁科マテリアル filed Critical 株式会社仁科マテリアル
Priority to PCT/JP2017/011047 priority Critical patent/WO2018167976A1/en
Publication of WO2018167976A1 publication Critical patent/WO2018167976A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide

Definitions

  • the present invention relates to a nanocarbon, a nanocarbon dispersion, and a method for producing them.
  • nanocarbons have excellent mechanical strength, electrical conductivity, thermal conductivity, thermal stability, etc., so research and development aimed at the use of metal substitutes and lithium ion battery and supercapacitor electrode materials, etc. Is being actively conducted.
  • nanocarbon is difficult to handle because it easily aggregates, and when dispersed in an organic solvent, there are many attempts to suppress aggregation by adding a dispersant to this (see Patent Documents 1 and 2).
  • nanocarbon is dispersed in a base oil by a surfactant (see Patent Document 3).
  • the dispersant itself is an impurity for nanocarbon, and adding this is a trade-off with the risk of impairing the function of the nanocarbon.
  • dispersibility in water is improved by controlling the degree of oxidation of graphite oxide or graphene oxide (see Patent Document 5).
  • these conventional techniques require additives such as dispersants, and when carbon in these dispersed states is observed with an electron microscope, they are not formed into a single layer in an organic solvent. In most cases, they overlap to form a multilayer or an aggregate.
  • the technology to suppress the aggregation of nanocarbon and stably disperse it in the solvent is important.
  • the current technique is generally a technique in which an auxiliary agent such as a dispersant is forcibly dispersed.
  • an auxiliary agent such as a dispersant
  • the dispersion of nanocarbon using a dispersant for example, when this is used to form a thin film by a casting method or the like, the spacing between the nanocarbons increases due to the presence of the dispersant, and the conductivity is increased. To lose.
  • the conventional technique of adding a dispersant is a problem that must be improved by back-to-back with the risk of impairing the function of nanocarbon.
  • the present invention has been made on the basis of the above background art and recognition of its problems. That is, the present invention relates to a highly dispersible nanocarbon that exhibits stable dispersibility in a wide variety of organic solvents including not only polar organic solvents but also nonpolar organic solvents, and this is highly stable as an organic solvent.
  • the object is to provide a dispersed dispersion.
  • the present inventor has obtained a nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, and an amino group in the molecular skeleton and no ammonium ionic group.
  • a nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, and an amino group in the molecular skeleton and no ammonium ionic group.
  • the present inventor has repeatedly studied to chemically modify nanocarbon molecules in order to solve the above problems.
  • acidic functional groups for example, carboxyl groups
  • carboxyl groups on the nanocarbon molecular skeleton react with amines to form ammonium ionic groups, and electrostatic interactions derived from these groups.
  • the present invention was made based on these findings. That is, when a nanocarbon having an amino group is obtained by modifying the nanocarbon with an alkylamine, an ammonium ionic group in which an acidic functional group (for example, a carboxyl group) in the nanocarbon molecule is ionically bonded to the alkylamine is by-produced.
  • nanocarbon obtained by removing ammonium ionic group from nanocarbon having amino group in the molecular skeleton, and nanocarbon having amino group in molecular skeleton and not having ammonium ionic group The above problem has been solved by finding that the action of agglomerating carbon in an organic solvent is significantly suppressed as compared with conventional nanocarbon.
  • the present invention has been found to exhibit stable dispersibility in a wide variety of organic solvents including not only polar organic solvents but also nonpolar organic solvents, without the need for a dispersant or the like. Was completed.
  • a method for providing a dispersion in which nanocarbon is highly stably dispersed in an organic solvent is described below. That is, a nanocarbon obtained by aminating a nanocarbon having an oxygen functional group in the molecular skeleton, and subsequently removing the ammonium ionic group, and an amino group in the molecular skeleton and an ammonium ionic group.
  • the first means for synthesizing nanocarbons that do not have this and the second means for providing a dispersion in which these were dispersed in a wide variety of organic solvents were used.
  • the present invention is a nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, and an amino group in the molecular skeleton and an ammonium ionic group.
  • the present invention relates to non-nanocarbons and dispersions in which these are highly stably dispersed in an organic solvent, and further to a method for producing them.
  • the nanocarbon according to the present invention includes those obtained by removing an ammonium ionic group from nanocarbon having an amino group in the molecular skeleton.
  • the nanocarbon according to the present invention includes a nanocarbon having an amino group in the molecular skeleton and no ammonium ion group.
  • the nanocarbon according to the present invention is graphene oxide obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, or an amino group in the molecular skeleton and an ammonium ionic group.
  • the graphene oxide which does not have may be sufficient.
  • an amine ionic property is obtained by allowing an amine dissolved in a solvent to act on a dispersion of nanocarbon having an oxygen functional group in the molecular skeleton, and subsequently causing an acid to act on the product.
  • a step of removing the group may be included.
  • the nanocarbon dispersed in the dispersion according to the present invention is a nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, an amino group in the molecular skeleton, and ammonium.
  • Nanocarbon without ionic groups, graphene oxide obtained by removing ammonium ionic groups from graphene oxide with amino groups in the molecular skeleton, or ammonium ionic groups with amino groups in the molecular skeleton It may be any of graphene oxide that does not have.
  • an amine ionic property is obtained by allowing an amine dissolved in a solvent to act on a nanocarbon dispersion having an oxygen functional group in the molecular skeleton, and subsequently causing an acid to act on the product.
  • a step of removing the group may be included.
  • the amine that acts on the nanocarbon according to the present invention may be a primary or secondary amine in which the substituent on the nitrogen atom is a hydrocarbon group having 4 to 26 carbon atoms.
  • the amine to be acted on may be a primary or secondary amine in which the substituent on the nitrogen atom is composed of a hydrocarbon group having 4 to 26 carbon atoms.
  • the amine that acts on the nanocarbon used in the nanocarbon dispersion according to the present invention may be a primary or secondary amine in which the substituent on the nitrogen atom is composed of a hydrocarbon group having 4 to 26 carbon atoms.
  • the amine to be actuated may be a primary or secondary amine in which a substituent on a nitrogen atom is composed of a hydrocarbon group having 4 to 26 carbon atoms.
  • the substituent on the nitrogen atom may have an unsaturated bond or an aromatic group in a part of its structure.
  • the amine to be acted on may have a substituent on the nitrogen atom having an unsaturated bond or an aromatic group in a part of its structure.
  • the substituent on the nitrogen atom may have an unsaturated bond or an aromatic group in a part of its structure.
  • the amine to be acted on may have a substituent on a nitrogen atom having an unsaturated bond or an aromatic group in a part of its structure.
  • the amines acting on the nanocarbon according to the present invention are butylamine, hexylamine, aniline, benzylamine, octylamine, phenethylamine, aminoadamantane, dodecylamine, tetradecylamine, hexadecylamine, oleylamine, 2-octyldodecylamine, stearyl.
  • One or two or more amines selected from amine, N-methyloctadecylamine, and polyethylene glycol stearylamine may be used.
  • the acted amine is butylamine, hexylamine, aniline, benzylamine, octylamine, phenethylamine, aminoadamantane, dodecylamine, tetradecylamine, hexadecylamine, oleylamine, 2-octyl.
  • One or two or more amines selected from dodecylamine, stearylamine, N-methyloctadecylamine, and polyethylene glycol stearylamine may be used.
  • the amines that act on the nanocarbon used in the nanocarbon dispersion according to the present invention are butylamine, hexylamine, aniline, benzylamine, octylamine, phenethylamine, aminoadamantane, dodecylamine, tetradecylamine, hexadecylamine, oleylamine, 2 -One or two or more amines selected from octyldodecylamine, stearylamine, N-methyloctadecylamine, polyethylene glycol stearylamine may be used.
  • the amine to be acted on is butylamine, hexylamine, aniline, benzylamine, octylamine, phenethylamine, aminoadamantane, dodecylamine, tetradecylamine, hexadecylamine, oleylamine, 2 -One or two or more amines selected from octyldodecylamine, stearylamine, N-methyloctadecylamine, polyethylene glycol stearylamine may be used.
  • the organic solvent used in the nanocarbon dispersion according to the present invention may have a dielectric constant ( ⁇ ) of 2 or more.
  • the organic solvent in which nanocarbon is dispersed may have a dielectric constant ( ⁇ ) of 2 or more.
  • the organic solvent used in the nanocarbon dispersion according to the present invention may have a viscosity (Pa ⁇ S) at 20 ° C. of 1 ⁇ 10 ⁇ 4 or more.
  • the organic solvent in which nanocarbon is dispersed may have a viscosity (Pa ⁇ S) at 20 ° C. of 1 ⁇ 10 ⁇ 4 or more.
  • Organic solvents used in the nanocarbon dispersion according to the present invention are saturated or unsaturated hydrocarbon solvents such as hexane, petroleum ether, toluene, xylene, light oil, polyolefin, 1-methoxy-2-propanol, ethanol, butanol, Alcohol solvents containing polyhydric alcohols such as 2-ethylhexanol, ethylene glycol, glycerin, ether solvents such as ethyl cellosolve, dimethoxyethane, tetrahydrofuran, cyclopentyl methyl ether, ethyl acetate, butyl acetate, 2-ethylhexyl acetate, acrylic Ester solvents such as methyl acid, methyl methacrylate, halogen solvents such as dichloromethane and trichloroethylene, amide solvents such as formamide, dimethylformamide, dimethylacetamide, acetone, methyl ethyl
  • the organic solvent in which nanocarbon is dispersed is saturated or unsaturated hydrocarbon solvent such as hexane, petroleum ether, toluene, xylene, light oil, polyolefin, 1-methoxy- Alcohol solvents containing polyhydric alcohols such as 2-propanol, ethanol, butanol, 2-ethylhexanol, ethylene glycol, glycerin, ether solvents such as ethyl cellosolve, dimethoxyethane, tetrahydrofuran, cyclopentyl methyl ether, ethyl acetate, butyl acetate , Ester solvents such as 2-ethylhexyl acetate, methyl acrylate and methyl methacrylate, halogen solvents such as dichloromethane and trichloroethylene, amides such as formamide, dimethylformamide and dimethylacetamide
  • hydrocarbon solvent such as hexane, petroleum ether, to
  • a nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, and an amino group in the molecular skeleton and an ammonium ionic group It is possible to provide a non-nanocarbon and an organic solvent dispersion in which they are stably dispersed in an organic solvent of a kind widely including not only a polar organic solvent but also a nonpolar organic solvent.
  • FIG. 1 is an example of a structural formula of graphene oxide obtained by removing an ammonium ionic group and having an amino group according to the present invention.
  • 6 is an infrared spectral absorption spectrum of the graphene oxide used in Example 1.
  • FIG. FIG. 4 is an infrared spectral absorption spectrum of graphene oxide showing that the absorption intensity at a carboxyl group of 1715 cm ⁇ 1 was significantly reduced by the formation of ammonium ionic groups in Comparative Example 2.
  • FIG. 7 shows that the absorption intensity at 2800 to 3000 cm ⁇ 1 presumed to be derived from the introduction of the alkyl group of Example 1 according to the present invention was remarkably increased and 1715 cm presumed to be derived from the re-formation of the carboxyl group.
  • FIG. 2 is an infrared spectral absorption spectrum of graphene oxide indicating that absorption at ⁇ 1 exists.
  • FIG. 3 is a photograph of a graphene oxide dispersion obtained by removing the ammonium ionic groups having amino groups dispersed sufficiently in a single layer state according to the present invention.
  • FIG. 2 is an electron micrograph of graphene oxide obtained by removing the ammonium ionic group having an amino group, which is sufficiently peeled, ie, dispersed in a single layer state according to the present invention. Although two to three layers of graphene oxide can be confirmed, it is thought that they were stacked in the process of dropping on the substrate and drying. In the liquid, all are considered to be dispersed in a single layer.
  • FIG. 3 is a photograph of a graphene oxide dispersion obtained by removing the ammonium ionic groups having amino groups dispersed sufficiently in a single layer state according to the present invention.
  • FIG. 2 is an electron micrograph of graphene
  • FIG. 10 is a diagram showing an example of a method for producing an organic solvent dispersion of graphene oxide having an amino group and obtained by removing an ammonium ionic group according to an embodiment of the present invention.
  • nanocarbons obtained by removing ammonium ionic groups from nanocarbons having amino groups in the molecular skeleton, and those having amino groups in the molecular skeleton and ammonium The present invention was completed by finding that nanocarbons having no ionic group exhibit stable dispersibility in a wide variety of organic solvents including not only polar organic solvents but also nonpolar organic solvents.
  • the present invention relates to a nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, and a nanocarbon having an amino group in the molecular skeleton and no ammonium ionic group.
  • nanocarbons exhibiting highly stable dispersibility in a wide variety of organic solvents and dispersions thereof are provided.
  • the nanocarbon of the present invention does not require additives such as a dispersant when dispersed in an organic solvent. Therefore, there is no possibility that the physical properties and functions inherent to the nanocarbon may be reduced or lost by adding the additive. In addition, there is an advantage in terms of improving economic efficiency and environmental compatibility.
  • a nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton of the present invention, and an amino group in the molecular skeleton and an ammonium ionic group Summarize the production method of non-nanocarbon and its organic solvent dispersion.
  • a nanocarbon dispersion liquid having an oxygen functional group in a molecular skeleton is aminated by adding an amine dissolved in an organic solvent under stirring.
  • one embodiment of the present invention is a nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, or an amino group having an amino group in the molecular skeleton and an ammonium ionic property.
  • the present invention relates to a nanocarbon having no group and a production method thereof.
  • the nanocarbon having an oxygen functional group in the molecular skeleton is a nanocarbon having an oxirane structure in the molecular skeleton.
  • graphene oxide, graphite oxide, oxidized carbon nanotube, or oxidized fullerene (C 60 ) is included.
  • the nanocarbon having an oxygen functional group in the molecular skeleton is a known method using a corresponding graphite, carbon nanotube, fullerene (C 60 ), or the like, for example, an oxidizing agent such as potassium permanganate or potassium chlorate. It can be obtained by oxidation with.
  • an oxidizing agent such as potassium permanganate or potassium chlorate. It can be obtained by oxidation with.
  • acidic functional groups such as hydroxyl groups and carboxyl groups are often added to the nanocarbon skeleton. However, these may be included (see FIG. 1 showing graphene oxide as an example).
  • the dispersion medium of the dispersion liquid may be a medium in which nanocarbon having an oxygen functional group in the molecular skeleton is relatively easily dispersed, and is generally water.
  • the nanocarbon having an oxygen functional group in the molecular skeleton is preferably dispersed as much as possible in the dispersion.
  • the thickness of the nanocarbon having an oxygen functional group in the molecular skeleton is preferably nano-sized (for example, 1 nm).
  • the method for producing nanocarbon having an oxygen functional group in the molecular skeleton and a dispersion thereof is not particularly limited.
  • a method such as a Brodie method, a Staudenmeier method, a Hummers method, or an improved Hummers method (see Japanese Patent Application Laid-Open No. 2015-160766) may be used.
  • the modified Hummers method graphite is oxidized and peeled by adding sulfuric acid and an oxidizing agent to react with it. Subsequently, when water is added and centrifugation is performed a plurality of times, an aqueous dispersion of graphene oxide is obtained.
  • the content ratio of oxygen atoms to carbon atoms is preferably 0.1 to 1, and more preferably 0.4 to 0.8.
  • the amination of nanocarbon having an oxygen functional group can be carried out by allowing an amine dissolved in an organic solvent to act on the nanocarbon aqueous dispersion prepared by the above-described method.
  • the concentration of nanocarbon in the nanocarbon dispersion used for the amination reaction may be 0.01% to 2% in terms of the weight ratio of nanocarbon to the volume of the dispersion. If the concentration is higher than this, sufficient agitation cannot be performed, and if the concentration is lower, the amount of carbon obtained at one time is reduced, which is inefficient.
  • the amine used in the present invention is preferably a primary or secondary amine in which the substituent on the nitrogen atom is a hydrocarbon group having 4 to 26 carbon atoms. At this time, the substituent on the nitrogen atom may have an unsaturated bond or an aromatic group in a part of its structure.
  • the amine is usually dispersed or dissolved in an organic solvent and subjected to the amination of the present invention.
  • Any organic solvent may be used as long as it can be easily mixed with a dispersion in which nanocarbon having an oxygen functional group in the molecular skeleton is dispersed.
  • the dispersion medium of nanocarbon having an oxygen functional group in the molecular skeleton is mostly water, it may be a polar solvent that is easily miscible with it.
  • ethanol, propanol, solmix, dimethylformamide, N-methylmorpholine, dimethyl sulfoxide and the like can be mentioned.
  • the concentration of the amine dispersed or dissolved in the organic solvent is preferably 0.01 to 50% by weight ratio of the amine to the capacity of the organic solvent.
  • concentration of nanocarbon in the dispersion of nanocarbon is selected from the range of 0.1 mg / ml to 30 mg / ml
  • the amine concentration is from 0.02 to 30 mg / ml. You can choose.
  • the amination of the nanocarbon can be performed by mixing the amine dispersion prepared above and the nanocarbon dispersion having the oxygen functional group prepared above. This mixing method does not require any special method. Usually, the former amine dispersion may be added to the latter nanocarbon dispersion having an oxygen functional group while stirring.
  • the reaction temperature in the amination reaction may be selected in consideration of the reactivity of the amine to be used and the physical properties of the dispersion medium, and is not particularly limited as long as each liquid can maintain a liquid phase, but is usually 0 ° C. to 150 ° C. What is necessary is just to carry out on the atmospheric pressure conditions of °C.
  • the amine dispersion and the nanocarbon dispersion can be put in a pressure resistant vessel and further reacted under a high temperature condition.
  • the reaction time in the amination reaction may be selected in consideration of the reactivity of the amine to be used and the reaction temperature, but it is usually preferably 0.5 to 48 hours.
  • reaction mixture may be subsequently subjected to a step of removing ammonium ion groups.
  • ammonium ionic groups reacted with the starting amine are often included as a by-product. As described above, since it has been clarified that this ammonium ionic group has a property of promoting aggregation between nanocarbon molecules, the ammonium ionic group must be excluded.
  • the ammonium ionic group In order to exclude the ammonium ionic group, it is effective to subject it to acid decomposition, that is, addition of an acid.
  • the acid to be added is not particularly limited as long as it has higher acidity than that of the phenolic hydroxyl group or carboxyl group on the nanocarbon skeleton.
  • hydrochloric acid, sulfuric acid, paratoluenesulfonic acid and the like can be used inexpensively and easily.
  • the above-described acid decomposition step can be completed simply by adding the above-mentioned acid to the aminated nanocarbon dispersion at room temperature and stirring for a certain period of time.
  • the end point of this step may be a point when the dispersibility of the nanocarbon is improved.
  • the red color may be confirmed with a pH test paper.
  • the thus obtained dispersion after acid decomposition has a target ammonium ionic property that has an amino group in the molecular skeleton and an acid functional group such as a carboxyl group that reacts with the starting amine to form a by-product.
  • the nanocarbon from which the group is removed is generated.
  • Carbon can be purified by a conventional method such as centrifugation, filtration or dialysis, or can be isolated by concentration.
  • the acid-decomposed dispersion is subjected to centrifugation to obtain a precipitate once.
  • a dispersion medium such as water or hydrous alcohol
  • impurities such as amine and acid of raw materials remaining excessively in the amination reaction or acid salts of these amines are removed. And can be purified.
  • the amine and the acid salt of amine may be difficult to remove sufficiently by adsorbing to nanocarbon.
  • the amine acid salt may remain in the preparation of the nanocarbon organic solvent dispersion of the present invention.
  • the present inventors have separately confirmed that the acid salt of the amine has a positive effect on the dispersion stability of the organic solvent dispersion of the present invention, but does not have a negative influence.
  • the purified precipitate thus obtained is subjected to conventional drying means such as vacuum drying, hot air heating drying, freeze drying, and the like, from the nanocarbon having an amino group in the target molecular skeleton to ammonium ions.
  • the nanocarbon obtained by removing the functional group or the nanocarbon having an amino group in the molecular skeleton and no ammonium ion group is isolated as a powder.
  • This can be subjected to a subsequent step of producing an organic solvent dispersion.
  • the purified precipitate may be subjected to a subsequent step of producing an organic solvent dispersion without any special treatment such as drying.
  • Another aspect of the present invention is a nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, or an ammonium ionic group having an amino group in the molecular skeleton.
  • This is a method for producing an organic solvent dispersion in which nanocarbons having no carbon are stably dispersed in an organic solvent widely including not only polar organic solvents but also nonpolar organic solvents.
  • Nanocarbons that do not have can be stably dispersed in organic solvents that include not only polar organic solvents but also nonpolar organic solvents.
  • the dispersion method does not require any special procedure, and usually a desired organic solvent and nanocarbon are mixed, and a dispersion means for applying a physical stimulus such as stirring and shaking to the mixture may be provided.
  • the dispersing means for example, ultrasonic irradiation can be adopted as a simple and efficient method.
  • the organic solvent used for dispersing the carbon is preferably one having a dielectric constant ( ⁇ ) of 2 or more because it provides a stable dispersion.
  • the organic solvent to be used is preferably one having a viscosity (Pa ⁇ S) of 1 ⁇ 10 ⁇ 4 or more because it gives a stable dispersion.
  • saturated or unsaturated hydrocarbon solvents such as pentane, hexane, petroleum ether, benzene, toluene, xylene, light oil, polyolefin, ethanol, butanol, 2-ethylhexanol, decanol, ethylene glycol, glycerin, etc.
  • Alcohol solvents including monohydric alcohols, ether solvents such as ethyl cellosolve, dimethoxyethane, tetrahydrofuran, dioxane, cyclopentyl methyl ether, ester solvents such as ethyl acetate, butyl acetate, 2-ethylhexyl acetate, methyl acrylate, methyl methacrylate Solvents, halogen solvents such as dichloromethane, chloroform, trichloroethylene, amide solvents such as formamide, dimethylformamide, dimethylacetamide, acetone, methyl ethyl ketone, methyl iso Ethyl ketone, cyclopentanone, ketone solvents such as cyclohexanone, acetonitrile, nitriles such as acrylonitrile, and the like.
  • ether solvents such as ethyl cellosolve, dimethoxyethane,
  • nanocarbon obtained by removing ammonium ionic group from nanocarbon having an amino group in the molecular skeleton, or having an amino group in the molecular skeleton obtained by removing ammonium ionic group from nanocarbon having an amino group in the molecular skeleton, or having an amino group in the molecular skeleton,
  • an organic solvent dispersion in which nanocarbons having no ammonium ionic group are stably dispersed in a wide variety of organic solvents including not only polar organic solvents but also nonpolar organic solvents can be obtained.
  • the highly dispersible nanocarbon organic solvent dispersion liquid of the present invention obtained in this way, it is easy to produce an electrode of a power storage device and a conductive resin without reducing the functions inherent to nanocarbon. Become. Further, even in a form using the nanocarbon organic solvent dispersion itself, high reliability is maintained from the viewpoint of quality stability over time.
  • the acid-treated reaction solution obtained is subjected to centrifugation to once separate acidic components, then once with water, then once with 50% aqueous ethanol, and then twice with Solmix. It was purified by separation.
  • Example 1 the result of having performed reaction and a post-process like Example 1 except having changed the used oleylamine into the amine shown below is shown.
  • the symbol for evaluation is that the obtained 1-methoxy-2-propanol dispersion is left to stand for one month and the dispersibility is equal to or higher than that of Example 1, ⁇ , slightly inferior, and inferior X.
  • Ethylamine ⁇ Ethanolamine ⁇ Diethylamine ⁇ Aniline ⁇ Hexylamine ⁇ Benzylamine ⁇ Dodecylamine ⁇ Phenethylamine ⁇ 2-Octyldodecylamine ⁇ Stearylamine ⁇
  • Example 1 The results of performing the reaction and post-treatment in the same manner as in Example 1 except that 1-methoxy-2-propanol used in Example 1 was changed to the following solvents are shown.
  • the symbol for evaluation was ⁇ when the dispersibility after standing for one month was equal to or higher than that of Example 1, and ⁇ when it was inferior.
  • Example 1 the reaction mixture that was not subjected to acid treatment after amination was purified by centrifuging once with water and then twice with Solmix. Solmix was removed by adding 1-methoxy-2-propanol and centrifuging the resulting precipitate. A small amount of the resulting black viscous precipitate was dried under reduced pressure to obtain a black powdery product.
  • the infrared spectral absorption spectrum of this product showed an increase in absorption intensity at 2800 to 3000 cm ⁇ 1 compared to that of graphene oxide, suggesting that a long-chain alkyl group was introduced.
  • the remaining black viscous precipitate obtained was dispersed by adding 1-methoxy-2-propanol (50 ml) thereto and irradiating with ultrasonic waves for 5 minutes.
  • the dispersion thus obtained was colorless at the top of the container and clearly settled at the bottom (see FIG. 7). Further, from the result of electron microscope analysis, it was confirmed that it was present in 1-methoxy-2-propanol exclusively in a multilayer state and was not sufficiently dispersed (see FIG. 8).
  • the nanocarbon is highly stable against a kind of organic solvent widely including not only a polar organic solvent but also a nonpolar organic solvent without requiring a dispersant or the like.
  • a dispersion is provided.
  • the dispersion of the present invention is useful as a raw material for electrodes of power storage devices such as lithium ion secondary batteries and supercapacitors.
  • the dispersion of the present invention can also be used for the production of functional coating agents such as transparent conductivity, antistatic properties, thermal conductivity and gas barrier properties, and functional films.
  • a resin for example, it is useful for the production of a high-strength resin composite material, and so on, it can be supplied to a wide variety of industrial applications without deteriorating the functions inherent to nanocarbon.
  • Nanocarbon 20 having oxygen functional group in molecular skeleton 20 Amine 30 Ammonium ionic group 40 Amino group 100 Nanocarbon dispersion 200 having oxygen functional group in molecular skeleton 200
  • Amine dispersion 300 Obtained by adding dispersion 200 to dispersion 100
  • Amination reaction liquid 400 obtained by subjecting reaction liquid 300 to acid treatment, purification, and solvent dispersion, an organic solvent dispersion of graphene oxide obtained by removing ammonium ionic groups having amino groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Provided are: nanocarbon that exhibits high dispersibility not only in polar organic solvents but also non-polar organic solvents, even when dispersed alone without using a dispersant or the like; and a dispersion of the nanocarbon. Specifically provided are: nanocarbon obtained by aminating nanocarbon which has an oxygen functional group in the molecular skeleton thereof and then removing an ammonium group; and an organic solvent dispersion threof.

Description

分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られる、ナノカーボンその有機溶媒分散液及びそれらの製造方法Nanocarbon obtained by removing ammonium ionic group from nanocarbon having amino group in molecular skeleton, organic solvent dispersion thereof, and production method thereof
 本発明は、ナノカーボン、ナノカーボン分散液、および、これらの製造方法に関する。 The present invention relates to a nanocarbon, a nanocarbon dispersion, and a method for producing them.
 近年、ナノカーボンはその機械的強度,電気伝導性,熱伝導性,熱安定性等が優れていることから、金属の代替やリチウムイオン電池及びスーパーキャパシタ電極材料等への利用を指向した研究開発が活発に行われている。 In recent years, nanocarbons have excellent mechanical strength, electrical conductivity, thermal conductivity, thermal stability, etc., so research and development aimed at the use of metal substitutes and lithium ion battery and supercapacitor electrode materials, etc. Is being actively conducted.
 しかし、ナノカーボンは凝集しやすいためにハンドリングが難しく、有機溶媒に分散させる場合には、これに分散剤を加えて、凝集を抑制しようとする試みが多い(特許文献1,2参照)。また、界面活性剤によって基油中にナノカーボンを分散させる例もある(特許文献3参照)。しかしながら、分散剤そのものは、ナノカーボンにとっては不純物であり、これを加えることはナノカーボンの機能を損ねるリスクとトレードオフである。また、酸化黒鉛もしくは酸化グラフェンの酸化程度を制御することで、このものの水への分散性が向上することに言及した例がある(特許文献5参照)。しかしながら、その程度、および、それの有機溶媒分散性については一切開示されていない。 However, nanocarbon is difficult to handle because it easily aggregates, and when dispersed in an organic solvent, there are many attempts to suppress aggregation by adding a dispersant to this (see Patent Documents 1 and 2). There is also an example in which nanocarbon is dispersed in a base oil by a surfactant (see Patent Document 3). However, the dispersant itself is an impurity for nanocarbon, and adding this is a trade-off with the risk of impairing the function of the nanocarbon. In addition, there is an example in which dispersibility in water is improved by controlling the degree of oxidation of graphite oxide or graphene oxide (see Patent Document 5). However, there is no disclosure about the degree and dispersibility of the organic solvent.
  前記したように、これら従来技術は分散剤の類の添加物が必要とされる上に、これらの分散状態におけるカーボンを電子顕微鏡で観察すると、有機溶媒中で単層にはなっておらず、重なって多層を形成しているか、凝集体を形成していることがほとんどである。 As described above, these conventional techniques require additives such as dispersants, and when carbon in these dispersed states is observed with an electron microscope, they are not formed into a single layer in an organic solvent. In most cases, they overlap to form a multilayer or an aggregate.
  この重なりは、有機溶媒へのナノカーボンの分散性を低下させ、分散安定性を損なうことになる。従って、広い範囲の種類の有機溶媒中で分散状態が安定に保持されるナノカーボンの分散液が求められていた。中でもとりわけ、分散剤等の分散助剤を用いることなく、ナノカーボンが単体で分散された分散液が強く求められていた。 This overlap reduces the dispersibility of the nanocarbon in the organic solvent and impairs the dispersion stability. Accordingly, there has been a demand for nanocarbon dispersions in which the dispersion state is stably maintained in a wide range of organic solvents. In particular, there has been a strong demand for a dispersion in which nanocarbon is dispersed alone without using a dispersion aid such as a dispersant.
特開2012-82120号公報JP2012-82120A 特開2015-29947号公報Japanese Patent Laid-Open No. 2015-29947 特開2016-47875号公報JP 2016-47875 A 特開2015-059079号公報Japanese Patent Laying-Open No. 2015-059079 特開2015-160766号公報Japanese Patent Laid-Open No. 2015-160766
 ナノカーボンの凝集を抑制し、これを溶媒中に安定に分散させる技術は重要である。ところが、前記したように、ナノカーボンそのものが凝集しやすいために、現行技術は、これに分散剤などの助剤を添加することで強制的に分散させる技術が一般的である。しかしながら、分散剤を用いたナノカーボンの分散液は、例えば、これを用いて、キャスト法等で薄膜を形成させた場合、分散剤が介在してナノカーボン同士の間隔が拡大し、導電性を損なう。即ち、分散剤を添加する従来技術は、ナノカーボンの機能を損ねるリスクと背中合わせであり、改善しなければならない課題である。 The technology to suppress the aggregation of nanocarbon and stably disperse it in the solvent is important. However, as described above, since the nanocarbon itself is likely to aggregate, the current technique is generally a technique in which an auxiliary agent such as a dispersant is forcibly dispersed. However, the dispersion of nanocarbon using a dispersant, for example, when this is used to form a thin film by a casting method or the like, the spacing between the nanocarbons increases due to the presence of the dispersant, and the conductivity is increased. To lose. In other words, the conventional technique of adding a dispersant is a problem that must be improved by back-to-back with the risk of impairing the function of nanocarbon.
 そこで、本発明は先の背景技術とその課題認識を基になされたものである。即ち、本発明は、極性有機溶媒のみならず非極性有機溶媒まで広く包含する種類の有機溶媒に対して安定した分散性を示す高分散性ナノカーボン、および、これが高度に安定して有機溶媒に分散した分散液を提供することを目的とする。 Therefore, the present invention has been made on the basis of the above background art and recognition of its problems. That is, the present invention relates to a highly dispersible nanocarbon that exhibits stable dispersibility in a wide variety of organic solvents including not only polar organic solvents but also nonpolar organic solvents, and this is highly stable as an organic solvent. The object is to provide a dispersed dispersion.
本発明者は、分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン、および、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボンが,有機溶媒に高度に安定して分散した分散液を提供する方法を検討するに際して、特段の添加剤を必要とすることなく単体で、しかも、とりわけ広範な種類の有機溶媒に対して安定に分散することを見出して本発明を完成した。 The present inventor has obtained a nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, and an amino group in the molecular skeleton and no ammonium ionic group. When studying a method for providing a dispersion in which nanocarbon is highly stably dispersed in an organic solvent, it is not necessary to use a special additive, and especially for a wide variety of organic solvents. The present invention was completed by finding stable dispersion.
 本発明者は、上記課題を解決すべくナノカーボン分子を化学修飾する検討を重ねた。その結果、有機溶媒中でナノカーボンの分散安定性を高めるためには、当該ナノカーボン分子をアルキルアミノ基で修飾することが有効であることを見出した。一方で、その修飾の際に、ナノカーボン分子骨格上の酸性官能基(例えば、カルボキシル基)がアミンと反応してアンモニウムイオン性基を形成すること、および、この基に由来する静電気的相互作用が、予期に反して、ナノカーボン分子同士の凝集を促進することも見出した。 The present inventor has repeatedly studied to chemically modify nanocarbon molecules in order to solve the above problems. As a result, in order to improve the dispersion stability of nanocarbon in an organic solvent, it was found that it is effective to modify the nanocarbon molecule with an alkylamino group. On the other hand, during the modification, acidic functional groups (for example, carboxyl groups) on the nanocarbon molecular skeleton react with amines to form ammonium ionic groups, and electrostatic interactions derived from these groups. However, unexpectedly, it has also been found that it promotes aggregation of nanocarbon molecules.
 そこで、本発明はこれらの知見を基になされた。即ち、ナノカーボンをアルキルアミンで修飾してアミノ基を有するナノカーボンを得る際に、ナノカーボン分子内の酸性官能基(例えばカルボキシル基)がアルキルアミンとイオン結合したアンモニウムイオン性基が副生すること、また、分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン、および、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボンの、有機溶媒中で凝集する作用が従来のナノカーボンと比較して顕著に抑制されることを見出して、上記課題を解決した。 Therefore, the present invention was made based on these findings. That is, when a nanocarbon having an amino group is obtained by modifying the nanocarbon with an alkylamine, an ammonium ionic group in which an acidic functional group (for example, a carboxyl group) in the nanocarbon molecule is ionically bonded to the alkylamine is by-produced. In addition, nanocarbon obtained by removing ammonium ionic group from nanocarbon having amino group in the molecular skeleton, and nanocarbon having amino group in molecular skeleton and not having ammonium ionic group The above problem has been solved by finding that the action of agglomerating carbon in an organic solvent is significantly suppressed as compared with conventional nanocarbon.
 即ち、分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン、および、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボンが、分散剤などを特に必要とすることなく、このもの単体で、極性有機溶媒のみならず非極性有機溶媒まで広く包含する種類の有機溶媒に対して安定した分散性を示すことを見出し、本発明を完成した。 That is, a nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, and a nanocarbon having an amino group in the molecular skeleton and no ammonium ionic group. The present invention has been found to exhibit stable dispersibility in a wide variety of organic solvents including not only polar organic solvents but also nonpolar organic solvents, without the need for a dispersant or the like. Was completed.
 前記した課題を解決するために、ナノカーボンが有機溶媒に高度に安定して分散した分散液を提供する方法を以下とした。即ち、分子骨格に酸素官能基を有するナノカーボンをアミノ化し、引き続いて、アンモニウムイオン性基を除去して得られるナノカーボン、および、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボンを合成する第一の手段と、このものが広範な種類の有機溶媒に分散された分散液を提供する第二の手段とした。 In order to solve the above-described problems, a method for providing a dispersion in which nanocarbon is highly stably dispersed in an organic solvent is described below. That is, a nanocarbon obtained by aminating a nanocarbon having an oxygen functional group in the molecular skeleton, and subsequently removing the ammonium ionic group, and an amino group in the molecular skeleton and an ammonium ionic group. The first means for synthesizing nanocarbons that do not have this and the second means for providing a dispersion in which these were dispersed in a wide variety of organic solvents were used.
 即ち、本発明は、分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン、および、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボン、および、このものが有機溶媒に高度に安定して分散した分散液、さらには、これらの製造方法に関する。 That is, the present invention is a nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, and an amino group in the molecular skeleton and an ammonium ionic group. The present invention relates to non-nanocarbons and dispersions in which these are highly stably dispersed in an organic solvent, and further to a method for producing them.
 本発明に係るナノカーボンは,分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるものを含む。 The nanocarbon according to the present invention includes those obtained by removing an ammonium ionic group from nanocarbon having an amino group in the molecular skeleton.
本発明に係るナノカーボンは,分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボンを含む。 The nanocarbon according to the present invention includes a nanocarbon having an amino group in the molecular skeleton and no ammonium ion group.
 本発明に係るナノカーボンは,分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られる酸化グラフェン,または,分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さない酸化グラフェンであってもよい。 The nanocarbon according to the present invention is graphene oxide obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, or an amino group in the molecular skeleton and an ammonium ionic group. The graphene oxide which does not have may be sufficient.
 本発明に係るナノカーボンの製造方法において,分子骨格に酸素官能基を有するナノカーボンの分散液に、溶媒に溶解したアミンを作用させ、引き続いて、生成物に酸を作用させることでアンモニウムイオン性基を除去する工程を含んでもよい。 In the method for producing nanocarbon according to the present invention, an amine ionic property is obtained by allowing an amine dissolved in a solvent to act on a dispersion of nanocarbon having an oxygen functional group in the molecular skeleton, and subsequently causing an acid to act on the product. A step of removing the group may be included.
 本発明にかかる分散液に分散させるナノカーボンは,前記分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン,分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボン,分子骨格にアミノ基を有する酸化グラフェンからアンモニウムイオン性基を除去して得られる酸化グラフェン,または,分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さない酸化グラフェンのいずれかであってもよい。 The nanocarbon dispersed in the dispersion according to the present invention is a nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, an amino group in the molecular skeleton, and ammonium. Nanocarbon without ionic groups, graphene oxide obtained by removing ammonium ionic groups from graphene oxide with amino groups in the molecular skeleton, or ammonium ionic groups with amino groups in the molecular skeleton It may be any of graphene oxide that does not have.
 本発明にかかる分散液の製造方法において,分子骨格に酸素官能基を有するナノカーボンの分散液に、溶媒に溶解したアミンを作用させ、引き続いて、生成物に酸を作用させることでアンモニウムイオン性基を除去する工程を含んでもよい。 In the method for producing a dispersion according to the present invention, an amine ionic property is obtained by allowing an amine dissolved in a solvent to act on a nanocarbon dispersion having an oxygen functional group in the molecular skeleton, and subsequently causing an acid to act on the product. A step of removing the group may be included.
 本発明にかかるナノカーボンに作用させるアミンは、窒素原子上の置換基が炭素数4から26の炭化水素基で構成される一級もしくは二級アミンであってもよい。 The amine that acts on the nanocarbon according to the present invention may be a primary or secondary amine in which the substituent on the nitrogen atom is a hydrocarbon group having 4 to 26 carbon atoms.
 本発明にかかるナノカーボンの製造方法において,作用させるアミンは、窒素原子上の置換基が炭素数4から26の炭化水素基で構成される一級もしくは二級アミンであってもよい。 In the method for producing nanocarbon according to the present invention, the amine to be acted on may be a primary or secondary amine in which the substituent on the nitrogen atom is composed of a hydrocarbon group having 4 to 26 carbon atoms.
 本発明にかかるナノカーボン分散液に用いるナノカーボンに作用させるアミンは、窒素原子上の置換基が炭素数4から26の炭化水素基で構成される一級もしくは二級アミンであってもよい。 The amine that acts on the nanocarbon used in the nanocarbon dispersion according to the present invention may be a primary or secondary amine in which the substituent on the nitrogen atom is composed of a hydrocarbon group having 4 to 26 carbon atoms.
 本発明にかかるナノカーボン分散液の製造方法において,作用させるアミンは、窒素原子上の置換基が炭素数4から26の炭化水素基で構成される一級もしくは二級アミンであってもよい。 In the method for producing a nanocarbon dispersion according to the present invention, the amine to be actuated may be a primary or secondary amine in which a substituent on a nitrogen atom is composed of a hydrocarbon group having 4 to 26 carbon atoms.
 本発明にかかるナノカーボンに作用させるアミンは、窒素原子上の置換基が、その構造の一部に不飽和結合または芳香族基を有してもよい。 In the amine that acts on the nanocarbon according to the present invention, the substituent on the nitrogen atom may have an unsaturated bond or an aromatic group in a part of its structure.
 本発明にかかるナノカーボンの製造方法において,作用させるアミンは、窒素原子上の置換基が、その構造の一部に不飽和結合または芳香族基を有してもよい。 In the method for producing nanocarbon according to the present invention, the amine to be acted on may have a substituent on the nitrogen atom having an unsaturated bond or an aromatic group in a part of its structure.
 本発明にかかるナノカーボン分散液に用いるナノカーボンに作用させるアミンは、窒素原子上の置換基が、その構造の一部に不飽和結合または芳香族基を有してもよい。 In the amine that acts on the nanocarbon used in the nanocarbon dispersion according to the present invention, the substituent on the nitrogen atom may have an unsaturated bond or an aromatic group in a part of its structure.
 本発明にかかるナノカーボン分散液の製造方法において,作用させるアミンは、窒素原子上の置換基が、その構造の一部に不飽和結合または芳香族基を有してもよい。 In the method for producing a nanocarbon dispersion according to the present invention, the amine to be acted on may have a substituent on a nitrogen atom having an unsaturated bond or an aromatic group in a part of its structure.
 本発明にかかるナノカーボンに作用させるアミンは、ブチルアミン、ヘキシルアミン、アニリン、ベンジルアミン、オクチルアミン、フェネチルアミン、アミノアダマンタン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オレイルアミン、2-オクチルドデシルアミン、ステアリルアミン、N-メチルオクタデシルアミン、ポリエチレングリコールステアリルアミンから選択される1つ,あるいは2以上のアミンであってもよい。 The amines acting on the nanocarbon according to the present invention are butylamine, hexylamine, aniline, benzylamine, octylamine, phenethylamine, aminoadamantane, dodecylamine, tetradecylamine, hexadecylamine, oleylamine, 2-octyldodecylamine, stearyl. One or two or more amines selected from amine, N-methyloctadecylamine, and polyethylene glycol stearylamine may be used.
 本発明にかかるナノカーボンの製造方法において,作用させるアミンは、ブチルアミン、ヘキシルアミン、アニリン、ベンジルアミン、オクチルアミン、フェネチルアミン、アミノアダマンタン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オレイルアミン、2-オクチルドデシルアミン、ステアリルアミン、N-メチルオクタデシルアミン、ポリエチレングリコールステアリルアミンから選択される1つ,あるいは2以上のアミンであってもよい。 In the method for producing nanocarbon according to the present invention, the acted amine is butylamine, hexylamine, aniline, benzylamine, octylamine, phenethylamine, aminoadamantane, dodecylamine, tetradecylamine, hexadecylamine, oleylamine, 2-octyl. One or two or more amines selected from dodecylamine, stearylamine, N-methyloctadecylamine, and polyethylene glycol stearylamine may be used.
 本発明にかかるナノカーボン分散液に用いるナノカーボンに作用させるアミンは、ブチルアミン、ヘキシルアミン、アニリン、ベンジルアミン、オクチルアミン、フェネチルアミン、アミノアダマンタン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オレイルアミン、2-オクチルドデシルアミン、ステアリルアミン、N-メチルオクタデシルアミン、ポリエチレングリコールステアリルアミンから選択される1つ,あるいは2以上のアミンであってもよい。 The amines that act on the nanocarbon used in the nanocarbon dispersion according to the present invention are butylamine, hexylamine, aniline, benzylamine, octylamine, phenethylamine, aminoadamantane, dodecylamine, tetradecylamine, hexadecylamine, oleylamine, 2 -One or two or more amines selected from octyldodecylamine, stearylamine, N-methyloctadecylamine, polyethylene glycol stearylamine may be used.
 本発明にかかるナノカーボン分散液の製造方法において,作用させるアミンは、ブチルアミン、ヘキシルアミン、アニリン、ベンジルアミン、オクチルアミン、フェネチルアミン、アミノアダマンタン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オレイルアミン、2-オクチルドデシルアミン、ステアリルアミン、N-メチルオクタデシルアミン、ポリエチレングリコールステアリルアミンから選択される1つ,あるいは2以上のアミンであってもよい。 In the method for producing a nanocarbon dispersion according to the present invention, the amine to be acted on is butylamine, hexylamine, aniline, benzylamine, octylamine, phenethylamine, aminoadamantane, dodecylamine, tetradecylamine, hexadecylamine, oleylamine, 2 -One or two or more amines selected from octyldodecylamine, stearylamine, N-methyloctadecylamine, polyethylene glycol stearylamine may be used.
 本発明にかかるナノカーボン分散液に用いる有機溶媒は,誘電率(ε)が2以上のものであってもよい。 The organic solvent used in the nanocarbon dispersion according to the present invention may have a dielectric constant (ε) of 2 or more.
 本発明にかかるナノカーボン分散液の製造方法において,ナノカーボンを分散させる有機溶媒は誘電率(ε)が2以上のものであってもよい。 In the method for producing a nanocarbon dispersion according to the present invention, the organic solvent in which nanocarbon is dispersed may have a dielectric constant (ε) of 2 or more.
本発明にかかるナノカーボン分散液に用いる有機溶媒は,20℃における粘度(Pa・S)が1x10-4以上であってもよい。 The organic solvent used in the nanocarbon dispersion according to the present invention may have a viscosity (Pa · S) at 20 ° C. of 1 × 10 −4 or more.
本発明にかかるナノカーボン分散液の製造方法において,ナノカーボンを分散させる有機溶媒は,20℃における粘度(Pa・S)が1x10-4以上であってもよい。 In the method for producing a nanocarbon dispersion according to the present invention, the organic solvent in which nanocarbon is dispersed may have a viscosity (Pa · S) at 20 ° C. of 1 × 10 −4 or more.
 本発明にかかるナノカーボン分散液に用いる有機溶媒は,ヘキサン、石油エーテル、トルエン、キシレン、軽油、ポリオレフィン、などの飽和もしくは不飽和炭化水素系溶媒、1-メトキシ-2-プロパノール,エタノール、ブタノール、2-エチルヘキサノール、エチレングリコール、グリセリン等の多価アルコールを含むアルコール系溶媒、エチルセロソルブ、ジメトキシエタン、テトラヒドロフラン、シクロペンチルメチルエーテル等のエーテル系溶媒、酢酸エチル、酢酸ブチル、酢酸-2-エチルヘキシル、アクリル酸メチル、メタクリル酸メチル等のエステル系溶媒、ジクロロメタン、トリクロロエチレン等のハロゲン系溶媒、ホルムアミド、ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、アセトニトリル、アクリロニトリル等のニトリル系溶媒から選択される1つ,あるいは2以上の溶媒の混合溶媒であってもよい。 Organic solvents used in the nanocarbon dispersion according to the present invention are saturated or unsaturated hydrocarbon solvents such as hexane, petroleum ether, toluene, xylene, light oil, polyolefin, 1-methoxy-2-propanol, ethanol, butanol, Alcohol solvents containing polyhydric alcohols such as 2-ethylhexanol, ethylene glycol, glycerin, ether solvents such as ethyl cellosolve, dimethoxyethane, tetrahydrofuran, cyclopentyl methyl ether, ethyl acetate, butyl acetate, 2-ethylhexyl acetate, acrylic Ester solvents such as methyl acid, methyl methacrylate, halogen solvents such as dichloromethane and trichloroethylene, amide solvents such as formamide, dimethylformamide, dimethylacetamide, acetone, methyl ethyl ketone, The solvent may be one selected from ketone solvents such as methyl isobutyl ketone and cyclohexanone, nitrile solvents such as acetonitrile and acrylonitrile, or a mixed solvent of two or more solvents.
 本発明にかかるナノカーボン分散液の製造方法において、ナノカーボンを分散させる有機溶媒は,ヘキサン、石油エーテル、トルエン、キシレン、軽油、ポリオレフィン、などの飽和もしくは不飽和炭化水素系溶媒、1-メトキシ-2-プロパノール,エタノール、ブタノール、2-エチルヘキサノール、エチレングリコール、グリセリン等の多価アルコールを含むアルコール系溶媒、エチルセロソルブ、ジメトキシエタン、テトラヒドロフラン、シクロペンチルメチルエーテル等のエーテル系溶媒、酢酸エチル、酢酸ブチル、酢酸-2-エチルヘキシル、アクリル酸メチル、メタクリル酸メチル等のエステル系溶媒、ジクロロメタン、トリクロロエチレン等のハロゲン系溶媒、ホルムアミド、ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、アセトニトリル、アクリロニトリル等のニトリル系溶媒から選択される1つ,あるいは2以上の溶媒の混合溶媒であってもよい。 In the method for producing a nanocarbon dispersion according to the present invention, the organic solvent in which nanocarbon is dispersed is saturated or unsaturated hydrocarbon solvent such as hexane, petroleum ether, toluene, xylene, light oil, polyolefin, 1-methoxy- Alcohol solvents containing polyhydric alcohols such as 2-propanol, ethanol, butanol, 2-ethylhexanol, ethylene glycol, glycerin, ether solvents such as ethyl cellosolve, dimethoxyethane, tetrahydrofuran, cyclopentyl methyl ether, ethyl acetate, butyl acetate , Ester solvents such as 2-ethylhexyl acetate, methyl acrylate and methyl methacrylate, halogen solvents such as dichloromethane and trichloroethylene, amides such as formamide, dimethylformamide and dimethylacetamide The solvent may be one selected from ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, nitrile solvents such as acetonitrile and acrylonitrile, or a mixed solvent of two or more solvents.
 本発明によれば、分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン、および、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボン、および、これらが極性有機溶媒のみならず非極性有機溶媒まで広く包含する種類の有機溶媒に対して安定に分散した有機溶媒分散液とを提供することができる。 According to the present invention, a nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, and an amino group in the molecular skeleton and an ammonium ionic group. It is possible to provide a non-nanocarbon and an organic solvent dispersion in which they are stably dispersed in an organic solvent of a kind widely including not only a polar organic solvent but also a nonpolar organic solvent.
図1は本発明の、アミノ基を有し、アンモニウムイオン性基を除去して得られる酸化グラフェンの構造式の一例である。FIG. 1 is an example of a structural formula of graphene oxide obtained by removing an ammonium ionic group and having an amino group according to the present invention. 図6は実施例1で用いた酸化グラフェンの赤外分光吸収スペクトルである。6 is an infrared spectral absorption spectrum of the graphene oxide used in Example 1. FIG. 図4は比較例2のアンモニウムイオン性基の形成によりカルボキシル基1715cm-1における吸収強度が顕著に減少したことを示す酸化グラフェンの赤外分光吸収スペクトルである。FIG. 4 is an infrared spectral absorption spectrum of graphene oxide showing that the absorption intensity at a carboxyl group of 1715 cm −1 was significantly reduced by the formation of ammonium ionic groups in Comparative Example 2. 図7は本発明にかかる,実施例1のアルキル基の導入に由来すると推定される2800~3000cm-1における吸収強度が顕著に増加したこと、かつカルボキシル基の再形成に由来すると推定される1715cm-1における吸収が存在することを示す酸化グラフェンの赤外分光吸収スペクトルである。FIG. 7 shows that the absorption intensity at 2800 to 3000 cm −1 presumed to be derived from the introduction of the alkyl group of Example 1 according to the present invention was remarkably increased and 1715 cm presumed to be derived from the re-formation of the carboxyl group. 2 is an infrared spectral absorption spectrum of graphene oxide indicating that absorption at −1 exists. 図3は,本発明による剥離十分な、即ち、もっぱら単層の状態で分散した,アミノ基を有し、アンモニウムイオン性基を除去して得られる酸化グラフェン分散液の写真である。FIG. 3 is a photograph of a graphene oxide dispersion obtained by removing the ammonium ionic groups having amino groups dispersed sufficiently in a single layer state according to the present invention. 図2は本発明による剥離十分な、即ち、もっぱら単層の状態で分散した,アミノ基を有し、アンモニウムイオン性基を除去して得られる酸化グラフェンの電子顕微鏡写真である。2~3層の酸化グラフェンも確認できるが,基板に滴下して乾燥する過程で積層したと考えられる。液中では全て単層に分散していると考えられる。FIG. 2 is an electron micrograph of graphene oxide obtained by removing the ammonium ionic group having an amino group, which is sufficiently peeled, ie, dispersed in a single layer state according to the present invention. Although two to three layers of graphene oxide can be confirmed, it is thought that they were stacked in the process of dropping on the substrate and drying. In the liquid, all are considered to be dispersed in a single layer. 図5は比較例2の剥離不十分な酸化グラフェン分散液の写真である。FIG. 5 is a photograph of the graphene oxide dispersion of Comparative Example 2 with insufficient peeling. 図4は比較例2の剥離不十分な酸化グラフェンの電子顕微鏡写真である。4 is an electron micrograph of graphene oxide of Comparative Example 2 with insufficient peeling. 図10は本発明の実施形態に係る、アミノ基を有し、アンモニウムイオン性基を除去して得られる酸化グラフェンの有機溶媒分散液の製造方法の一例を示す図である。FIG. 10 is a diagram showing an example of a method for producing an organic solvent dispersion of graphene oxide having an amino group and obtained by removing an ammonium ionic group according to an embodiment of the present invention.
 本発明者らは鋭意研究を重ねた結果、分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン、および、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボンが、極性有機溶媒のみならず非極性有機溶媒まで広く包含する種類の有機溶媒に対して安定した分散性を示すことを見出して本発明を完成した。 As a result of intensive studies, the present inventors have found that nanocarbons obtained by removing ammonium ionic groups from nanocarbons having amino groups in the molecular skeleton, and those having amino groups in the molecular skeleton and ammonium The present invention was completed by finding that nanocarbons having no ionic group exhibit stable dispersibility in a wide variety of organic solvents including not only polar organic solvents but also nonpolar organic solvents.
 即ち、本発明は、分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボン、それらの有機溶媒分散液、および、それらの製造方法である。 That is, the present invention relates to a nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, and a nanocarbon having an amino group in the molecular skeleton and no ammonium ionic group. Carbon, their organic solvent dispersions, and their production methods.
 本発明によれば、広範な種類の有機溶媒に高度に安定した分散性を示すナノカーボン、および、その分散液が提供される。 According to the present invention, nanocarbons exhibiting highly stable dispersibility in a wide variety of organic solvents and dispersions thereof are provided.
 本発明のナノカーボンは、有機溶媒に分散させるに際して、分散剤等の類の添加剤を必要としない。従って、添加剤を加えることでナノカーボンが本来有する物性や機能が薄まる、あるいは減失される恐れがない。加えて、経済性や環境適合性を向上する観点でも利点を有する。 The nanocarbon of the present invention does not require additives such as a dispersant when dispersed in an organic solvent. Therefore, there is no possibility that the physical properties and functions inherent to the nanocarbon may be reduced or lost by adding the additive. In addition, there is an advantage in terms of improving economic efficiency and environmental compatibility.
 まず、本発明の、分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン、および、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボンとその有機溶媒分散液の製造方法について要約する。本実施形態に係る分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン、および、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボンの製造方法では、分子骨格に酸素官能基を有するナノカーボンの分散液を、撹拌下で、これに有機溶媒に溶解したアミンを加えてアミノ化する。得られた反応液を酸処理し、遠心分離、ろ過、透析などの方法で精製することで分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン、あるいは、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボンを得る。このものは、乾燥などして単離した後、所望の有機溶媒を加え、超音波等の物理的刺激を与えて分散を促進させることでことによりナノカーボンの分散性を向上させる。 First, a nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton of the present invention, and an amino group in the molecular skeleton and an ammonium ionic group. Summarize the production method of non-nanocarbon and its organic solvent dispersion. A nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton according to the present embodiment, and an amino group in the molecular skeleton and no ammonium ionic group. In the method for producing nanocarbon, a nanocarbon dispersion liquid having an oxygen functional group in a molecular skeleton is aminated by adding an amine dissolved in an organic solvent under stirring. Nanocarbon obtained by removing ammonium ion group from nanocarbon having amino group in the molecular skeleton by acid treatment of the obtained reaction solution and purification by methods such as centrifugation, filtration, dialysis, or A nanocarbon having an amino group in the molecular skeleton and no ammonium ion group is obtained. This is isolated by drying or the like, and then added with a desired organic solvent, and imparts physical stimulation such as ultrasonic waves to promote dispersion, thereby improving the dispersibility of the nanocarbon.
 すなわち、本発明の一つの形態は、分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン、あるいは、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボンと、その製造方法に関する。 That is, one embodiment of the present invention is a nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, or an amino group having an amino group in the molecular skeleton and an ammonium ionic property. The present invention relates to a nanocarbon having no group and a production method thereof.
 ここで、分子骨格に酸素官能基を有するナノカーボンは、分子骨格にオキシラン構造を有するナノカーボンである。例えば、酸化グラフェン、酸化グラファイト、酸化されたカーボンナノチューブもしくは酸化されたフラーレン(C60)などが含まれる。 Here, the nanocarbon having an oxygen functional group in the molecular skeleton is a nanocarbon having an oxirane structure in the molecular skeleton. For example, graphene oxide, graphite oxide, oxidized carbon nanotube, or oxidized fullerene (C 60 ) is included.
 前記した分子骨格に酸素官能基を有するナノカーボンは、それぞれ、相当するグラファイト、カーボンナノチューブあるいはフラーレン(C60)などを、例えば、過マンガン酸カリウムや塩素酸カリウムなどの酸化剤を用いる公知の方法で酸化することにより得ることができる。当該酸化の過程で、ナノカーボン骨格上に、オキシラン基(炭素・炭素二重結合に一つの酸素原子が挿入した形態の官能基)以外に、水酸基およびカルボキシル基などのいわゆる酸性官能基がしばしば副生するが、これらは含まれていてもよい(酸化グラフェンを例として示した図1参照)。 The nanocarbon having an oxygen functional group in the molecular skeleton is a known method using a corresponding graphite, carbon nanotube, fullerene (C 60 ), or the like, for example, an oxidizing agent such as potassium permanganate or potassium chlorate. It can be obtained by oxidation with. During the oxidation process, in addition to the oxirane group (a functional group in which one oxygen atom is inserted into the carbon / carbon double bond), so-called acidic functional groups such as hydroxyl groups and carboxyl groups are often added to the nanocarbon skeleton. However, these may be included (see FIG. 1 showing graphene oxide as an example).
 まず,図9に示すように、分子骨格に酸素官能基を有するナノカーボンが分散された分散液を用意する。本実施形態において、分散液の分散媒体は分子骨格に酸素官能基を有するナノカーボンが比較的分散しやすい媒体であればよく、大概は水である。分子骨格に酸素官能基を有するナノカーボンは、好ましくは分散液中で可能な限り分散されている。また,分子骨格に酸素官能基を有するナノカーボンの厚さは、好適にはナノサイズ(例えば1nm)である。 First, as shown in FIG. 9, a dispersion liquid in which nanocarbon having an oxygen functional group in the molecular skeleton is dispersed is prepared. In this embodiment, the dispersion medium of the dispersion liquid may be a medium in which nanocarbon having an oxygen functional group in the molecular skeleton is relatively easily dispersed, and is generally water. The nanocarbon having an oxygen functional group in the molecular skeleton is preferably dispersed as much as possible in the dispersion. The thickness of the nanocarbon having an oxygen functional group in the molecular skeleton is preferably nano-sized (for example, 1 nm).
 分子骨格に酸素官能基を有するナノカーボンと、その分散液を製造する方法は特に限定されない。例えば、ナノカーボンが酸化グラフェンである場合、Brodie法、Staudenmaier法、Hummers法、改良Hummers法(特許文献5特開2015-160766参照)などの方法によればよい。例えば、改良Hummers法によれば、グラファイトは、これに硫酸と酸化剤とを加えて反応させることにより酸化して剥離される。引き続いて、水を加えて遠心分離を複数回行うと酸化グラフェンの水分散液が得られる。 The method for producing nanocarbon having an oxygen functional group in the molecular skeleton and a dispersion thereof is not particularly limited. For example, when the nanocarbon is graphene oxide, a method such as a Brodie method, a Staudenmeier method, a Hummers method, or an improved Hummers method (see Japanese Patent Application Laid-Open No. 2015-160766) may be used. For example, according to the modified Hummers method, graphite is oxidized and peeled by adding sulfuric acid and an oxidizing agent to react with it. Subsequently, when water is added and centrifugation is performed a plurality of times, an aqueous dispersion of graphene oxide is obtained.
 酸素官能基を有するナノカーボンにおいて、炭素原子に対する酸素原子の含有比率(O/C)は好ましくは0.1~1であり、さらに好ましくは0.4~0.8である。 In the nanocarbon having an oxygen functional group, the content ratio of oxygen atoms to carbon atoms (O / C) is preferably 0.1 to 1, and more preferably 0.4 to 0.8.
 次に、酸素官能基を有するナノカーボンのアミノ化は、上記した方法によって調製した当該ナノカーボンの水分散液に、有機溶媒に溶解したアミンを作用させることで行える。 Next, the amination of nanocarbon having an oxygen functional group can be carried out by allowing an amine dissolved in an organic solvent to act on the nanocarbon aqueous dispersion prepared by the above-described method.
 アミノ化反応に供するナノカーボン分散液におけるナノカーボンの濃度は、分散液の容量に対するナノカーボンの重量比で0.01%~2%であればよい。これより濃度が大きい場合は、十分に撹拌ができず、小さい場合には、一度に得られるカーボン量が少なくなり非効率である。 The concentration of nanocarbon in the nanocarbon dispersion used for the amination reaction may be 0.01% to 2% in terms of the weight ratio of nanocarbon to the volume of the dispersion. If the concentration is higher than this, sufficient agitation cannot be performed, and if the concentration is lower, the amount of carbon obtained at one time is reduced, which is inefficient.
 次にアミンが分散もしくは溶解した分散液を用意する。本発明で用いられるアミンは、窒素原子上の置換基が炭素数4から26の炭化水素基で構成される一級もしくは二級アミンであることが好ましい。このとき、窒素原子上の置換基が、その構造の一部に不飽和結合または芳香族基を有していてもよい。中でも,例えば、ブチルアミン、ヘキシルアミン、アニリン、ベンジルアミン、オクチルアミン、フェネチルアミン、アミノアダマンタン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オレイルアミン、2-オクチルドデシルアミン、ステアリルアミン、N-メチルオクタデシルアミン、ポリエチレングリコールステアリルアミンなどが好適に用いられる。 Next, prepare a dispersion in which amine is dispersed or dissolved. The amine used in the present invention is preferably a primary or secondary amine in which the substituent on the nitrogen atom is a hydrocarbon group having 4 to 26 carbon atoms. At this time, the substituent on the nitrogen atom may have an unsaturated bond or an aromatic group in a part of its structure. Among them, for example, butylamine, hexylamine, aniline, benzylamine, octylamine, phenethylamine, aminoadamantane, dodecylamine, tetradecylamine, hexadecylamine, oleylamine, 2-octyldodecylamine, stearylamine, N-methyloctadecylamine, Polyethylene glycol stearylamine is preferably used.
 前記アミンは、通常、有機溶媒に分散もしくは溶解させて本発明のアミノ化に供する。用いる有機溶媒は、分子骨格に酸素官能基を有するナノカーボンが分散された分散液と混合しやすいものであればよい。通常、分子骨格に酸素官能基を有するナノカーボンの分散媒は、大概が水であるので、これと混和しやすい極性溶媒であればよい。例えば、エタノール、プロパノール、ソルミックス、ジメチルホルムアミド、N-メチルモルホリン、ジメチルスルホキシドなどが挙げられる。 The amine is usually dispersed or dissolved in an organic solvent and subjected to the amination of the present invention. Any organic solvent may be used as long as it can be easily mixed with a dispersion in which nanocarbon having an oxygen functional group in the molecular skeleton is dispersed. Usually, since the dispersion medium of nanocarbon having an oxygen functional group in the molecular skeleton is mostly water, it may be a polar solvent that is easily miscible with it. For example, ethanol, propanol, solmix, dimethylformamide, N-methylmorpholine, dimethyl sulfoxide and the like can be mentioned.
 有機溶媒に分散もしくは溶解させる前記アミンの濃度は、有機溶媒の容量に対するアミンの重量比で0.01~50%が好ましい。例えば、上記ナノカーボンの分散液中のナノカーボンの濃度が0.1mg/ml 以上 30mg/ml 以下の範囲から選択された場合、アミンの濃度は0.02mg/ml以上30mg/ml 以下の範囲から選択できる。 The concentration of the amine dispersed or dissolved in the organic solvent is preferably 0.01 to 50% by weight ratio of the amine to the capacity of the organic solvent. For example, when the concentration of nanocarbon in the dispersion of nanocarbon is selected from the range of 0.1 mg / ml to 30 mg / ml, the amine concentration is from 0.02 to 30 mg / ml. You can choose.
 ナノカーボンのアミノ化は、上記で調製したアミンの分散液と、先に調製した酸素官能基を有するナノカーボン分散液とを混合することで行える。この混合方法は、特別な方法を必要としないが、通常は、後者の酸素官能基を有するナノカーボン分散液を攪拌しながら、これに前者のアミン分散液を添加すればよい。 The amination of the nanocarbon can be performed by mixing the amine dispersion prepared above and the nanocarbon dispersion having the oxygen functional group prepared above. This mixing method does not require any special method. Usually, the former amine dispersion may be added to the latter nanocarbon dispersion having an oxygen functional group while stirring.
 上記アミノ化反応における反応温度は、用いるアミンの反応性と分散媒体の物性を考慮して選択すればよく、各液体が液相を保持できる温度である限り特に限定されないが、通常0℃~150℃の常圧条件下で行えばよい。アミンの反応性が十分高くない場合は、アミン分散液とナノカーボン分散液を耐圧容器内に入れて、さらに高温条件で反応させることもできる。 The reaction temperature in the amination reaction may be selected in consideration of the reactivity of the amine to be used and the physical properties of the dispersion medium, and is not particularly limited as long as each liquid can maintain a liquid phase, but is usually 0 ° C. to 150 ° C. What is necessary is just to carry out on the atmospheric pressure conditions of ℃. When the reactivity of the amine is not sufficiently high, the amine dispersion and the nanocarbon dispersion can be put in a pressure resistant vessel and further reacted under a high temperature condition.
 上記アミノ化反応における反応時間は、用いるアミンの反応性と反応温度を考慮して選べばよいが、通常0.5時間~48時間で行うことが好ましい。 The reaction time in the amination reaction may be selected in consideration of the reactivity of the amine to be used and the reaction temperature, but it is usually preferably 0.5 to 48 hours.
 遠心分離、ろ過等のあと乾燥すればよい。
また、必ずしも、単離する必要はない。反応混合物を、引き続いて、アンモニウムイオン基を除去する工程に供すればよい。
What is necessary is just to dry after centrifugation, filtration, etc.
Moreover, it is not always necessary to isolate. The reaction mixture may be subsequently subjected to a step of removing ammonium ion groups.
 このようにして得たアミノ化されたナノカーボンは、原料である酸素官能基を含むナノカーボンの分子骨格に水酸基およびカルボキシル基などの酸性官能基が含まれている場合は、該酸性官能基と原料のアミンとが反応したアンモニウムイオン性基が、しばしば、副生して含まれる。前記したように、このアンモニウムイオン性基は、ナノカーボン分子同士の凝集を促進する性質があることが明らかになったので、当該アンモニウムイオン性基を除外しなければならない。 When the aminated nanocarbon thus obtained contains an acidic functional group such as a hydroxyl group and a carboxyl group in the molecular skeleton of the nanocarbon containing an oxygen functional group as a raw material, Ammonium ionic groups reacted with the starting amine are often included as a by-product. As described above, since it has been clarified that this ammonium ionic group has a property of promoting aggregation between nanocarbon molecules, the ammonium ionic group must be excluded.
 当該アンモニウムイオン性基を除外するには、酸分解に付すること、即ち、酸の添加が有効である。添加する酸は、通常、ナノカーボン骨格上のフェノール性水酸基やカルボキシル基が有するそれより酸性度が高いものであれば有機酸、無機酸を問わない。中でも、塩酸、硫酸、パラトルエンスルホン酸などが安価かつ簡便に使用できる。 In order to exclude the ammonium ionic group, it is effective to subject it to acid decomposition, that is, addition of an acid. The acid to be added is not particularly limited as long as it has higher acidity than that of the phenolic hydroxyl group or carboxyl group on the nanocarbon skeleton. Of these, hydrochloric acid, sulfuric acid, paratoluenesulfonic acid and the like can be used inexpensively and easily.
 上記した酸分解の工程は、前記のアミノ化されたナノカーボン分散液に、前記した酸を常温で加え、一定の時間攪拌するだけで終えることができる。本工程の終点は、ナノカーボンの分散性が向上した時点とすればよい。例えばpH試験紙で赤色を確認すればよい。
 こうして得た酸分解終了後の分散液には、目的とする、分子骨格にアミノ基を有し、かつ、カルボキシル基などの酸性官能基が原料のアミンとが反応して副生したアンモニウムイオン性基が除かれたナノカーボンが生成している。
The above-described acid decomposition step can be completed simply by adding the above-mentioned acid to the aminated nanocarbon dispersion at room temperature and stirring for a certain period of time. The end point of this step may be a point when the dispersibility of the nanocarbon is improved. For example, the red color may be confirmed with a pH test paper.
The thus obtained dispersion after acid decomposition has a target ammonium ionic property that has an amino group in the molecular skeleton and an acid functional group such as a carboxyl group that reacts with the starting amine to form a by-product. The nanocarbon from which the group is removed is generated.
 こうして生成した、分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン、あるいは、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボンは、これの分散液を遠心分離、ろ過あるいは透析操作などの常法に従えば精製できるし、濃縮して、単離することができる。例えば、酸分解後の分散液を遠心分離に供し、一旦沈降物を得る。このものを、さらに、水もしくは含水アルコール等の分散媒を用いて遠心分離することによって、アミノ化反応で過剰に残存した原料のアミンや酸、もしくは、これらのアミンの酸塩などの不純物を除去し、精製することができる。 Nanocarbon obtained by removing ammonium ionic groups from nanocarbons having amino groups in the molecular skeleton, or nanocarbons having amino groups in the molecular skeleton and no ammonium ionic groups. Carbon can be purified by a conventional method such as centrifugation, filtration or dialysis, or can be isolated by concentration. For example, the acid-decomposed dispersion is subjected to centrifugation to obtain a precipitate once. By further centrifuging this with a dispersion medium such as water or hydrous alcohol, impurities such as amine and acid of raw materials remaining excessively in the amination reaction or acid salts of these amines are removed. And can be purified.
また、この精製においては、前記したアミンやアミンの酸塩はナノカーボンに吸着するなどして十分に除去し難いことがある。しかしながら、当該アミンの酸塩は、本発明のナノカーボンの有機溶媒分散液の調製において残存していてもよい。当該アミンの酸塩は、本発明の有機溶媒分散液の分散安定性に対して正の効果はあっても、負の影響は与えないことを本発明者は別途確認している。 In this purification, the amine and the acid salt of amine may be difficult to remove sufficiently by adsorbing to nanocarbon. However, the amine acid salt may remain in the preparation of the nanocarbon organic solvent dispersion of the present invention. The present inventors have separately confirmed that the acid salt of the amine has a positive effect on the dispersion stability of the organic solvent dispersion of the present invention, but does not have a negative influence.
 このようにして得た精製された沈降物は、減圧乾燥、熱風加熱乾燥、凍結乾燥などの常法の乾燥手段に供することで、目的とする分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン、あるいは、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボンが粉状物として単離される。
このものは、後続の有機溶媒分散液を製造する工程に供することができる。また、操作の簡便さの観点からは、前記の精製された沈降物を乾燥など、特段の処理をすることなく、後続の有機溶媒分散液を製造する工程に供すればよい。
このようにして、本発明の一つの形態である、広範な種類の有機溶媒に高度に安定した分散性を示す、分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン、あるいは、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボンが得られる。
The purified precipitate thus obtained is subjected to conventional drying means such as vacuum drying, hot air heating drying, freeze drying, and the like, from the nanocarbon having an amino group in the target molecular skeleton to ammonium ions. The nanocarbon obtained by removing the functional group or the nanocarbon having an amino group in the molecular skeleton and no ammonium ion group is isolated as a powder.
This can be subjected to a subsequent step of producing an organic solvent dispersion. From the viewpoint of ease of operation, the purified precipitate may be subjected to a subsequent step of producing an organic solvent dispersion without any special treatment such as drying.
In this way, it is obtained by removing ammonium ionic groups from nanocarbons having an amino group in the molecular skeleton, which shows highly stable dispersibility in a wide variety of organic solvents, which is one form of the present invention. Or a nanocarbon having an amino group in the molecular skeleton and no ammonium ion group.
 本発明のもう一つの形態は、分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン、あるいは、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボンが、極性有機溶媒のみならず非極性有機溶媒まで広く包含する有機溶媒に対して安定に分散した有機溶媒分散液を製造する方法である。 Another aspect of the present invention is a nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, or an ammonium ionic group having an amino group in the molecular skeleton. This is a method for producing an organic solvent dispersion in which nanocarbons having no carbon are stably dispersed in an organic solvent widely including not only polar organic solvents but also nonpolar organic solvents.
 前記した方法で単離した,分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン、および、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボンは、極性有機溶媒のみならず非極性有機溶媒まで広く包含する有機溶媒に対して安定に分散させることができる。
分散方法は、特段の手順を必要とするものではなく、通常、所望の有機溶媒とナノカーボンを混合し、これに攪拌、振とう等の物理的刺激を加える分散手段を講じればよい。当該分散手段として、例えば、超音波照射なども簡便で効率的な方法として採用できる。
A nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton, isolated by the method described above, and an ammonium ionic group having an amino group in the molecular skeleton. Nanocarbons that do not have can be stably dispersed in organic solvents that include not only polar organic solvents but also nonpolar organic solvents.
The dispersion method does not require any special procedure, and usually a desired organic solvent and nanocarbon are mixed, and a dispersion means for applying a physical stimulus such as stirring and shaking to the mixture may be provided. As the dispersing means, for example, ultrasonic irradiation can be adopted as a simple and efficient method.
 本発明の、分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン、あるいは、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボンを分散させるに際して用いる有機溶媒は、誘電率(ε)が2以上であるものであれば安定な分散液を与えて好ましい。また、用いる有機溶媒は、粘度(Pa・S)が1x10-4以上であるものであれば安定な分散液を与えて好ましい。
具体的には、ペンタン、ヘキサン、石油エーテル、ベンゼン、トルエン、キシレン、軽油、ポリオレフィンなどの飽和もしくは不飽和炭化水素系溶媒、エタノール、ブタノール、2-エチルヘキサノール、デカノール、エチレングリコール、グリセリン等の多価アルコールを含むアルコール系溶媒、エチルセロソルブ、ジメトキシエタン、テトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテル等のエーテル系溶媒、酢酸エチル、酢酸ブチル、酢酸-2-エチルヘキシル、アクリル酸メチル、メタクリル酸メチル等のエステル系溶媒、ジクロロメタン、クロロホルム、トリクロロエチレン等のハロゲン系溶媒、ホルムアミド、ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶媒、アセトニトリル、アクリロニトリル等のニトリル系溶媒、などが挙げられる。
The nanocarbon obtained by removing an ammonium ionic group from a nanocarbon having an amino group in the molecular skeleton of the present invention, or a nanocarbon having an amino group in the molecular skeleton and no ammonium ionic group. The organic solvent used for dispersing the carbon is preferably one having a dielectric constant (ε) of 2 or more because it provides a stable dispersion. The organic solvent to be used is preferably one having a viscosity (Pa · S) of 1 × 10 −4 or more because it gives a stable dispersion.
Specifically, there are many saturated or unsaturated hydrocarbon solvents such as pentane, hexane, petroleum ether, benzene, toluene, xylene, light oil, polyolefin, ethanol, butanol, 2-ethylhexanol, decanol, ethylene glycol, glycerin, etc. Alcohol solvents including monohydric alcohols, ether solvents such as ethyl cellosolve, dimethoxyethane, tetrahydrofuran, dioxane, cyclopentyl methyl ether, ester solvents such as ethyl acetate, butyl acetate, 2-ethylhexyl acetate, methyl acrylate, methyl methacrylate Solvents, halogen solvents such as dichloromethane, chloroform, trichloroethylene, amide solvents such as formamide, dimethylformamide, dimethylacetamide, acetone, methyl ethyl ketone, methyl iso Ethyl ketone, cyclopentanone, ketone solvents such as cyclohexanone, acetonitrile, nitriles such as acrylonitrile, and the like.
 このようにして、本発明のもう一つの形態である、分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られるナノカーボン、あるいは、分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボンが極性有機溶媒のみならず非極性有機溶媒まで広く包含する種類の有機溶媒に対して安定に分散した有機溶媒分散液が得られる。 Thus, another form of the present invention, nanocarbon obtained by removing ammonium ionic group from nanocarbon having an amino group in the molecular skeleton, or having an amino group in the molecular skeleton, In addition, an organic solvent dispersion in which nanocarbons having no ammonium ionic group are stably dispersed in a wide variety of organic solvents including not only polar organic solvents but also nonpolar organic solvents can be obtained.
 このようにして得られた、本発明の高分散性ナノカーボン有機溶媒分散液を用いれば、ナノカーボンが本来有する機能を減ずることなく、蓄電デバイスの電極や導電性樹脂を製造することが容易となる。また、ナノカーボンの有機溶媒分散液そのものを利用する形態においても、品質の経時安定性の観点で高い信頼性が保持される。 By using the highly dispersible nanocarbon organic solvent dispersion liquid of the present invention obtained in this way, it is easy to produce an electrode of a power storage device and a conductive resin without reducing the functions inherent to nanocarbon. Become. Further, even in a form using the nanocarbon organic solvent dispersion itself, high reliability is maintained from the viewpoint of quality stability over time.
 以下、実施例と比較例を示して、本発明を一層具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
 (1)酸化グラフェン分散液の製造
まず、3gの黒鉛を90mLの硫酸に加え、氷冷した。その後、9gの過マンガン酸カリウムを加え、35℃で2時間撹拌した。その後、反応液を再び氷冷し、これに90mLの水を加え、次いで3mLの30%過酸化水素水を加えて、室温で30分撹拌した。反応混合物は、水を用いて遠心分離を繰り返し、生成物から硫酸やマンガン塩を除去して酸化グラフェンの水分散液を得た(特許文献5参照)。
引き続いて、本分散液を遠心分離に供したのち、上澄みを除去することで黒色粘稠沈降物を120g得た。本沈降物の一部を減圧乾燥することにより、酸化グラフェンが固形物に換算して4.2g生成していたことを確認した。酸化グラフェン中の酸素含有量は重量比で55%(CHN有機元素分析により、100%からC、H、Nの割合を引いた値)であった。
残りの黒色粘稠沈降物に水を加えて均一分散することで、酸化グラフェンを1重量%含む水分散液を調製して、これを後続のアミノ化および比較例に供した。
(1) Production of graphene oxide dispersion First, 3 g of graphite was added to 90 mL of sulfuric acid and ice-cooled. Thereafter, 9 g of potassium permanganate was added and stirred at 35 ° C. for 2 hours. Thereafter, the reaction solution was ice-cooled again, 90 mL of water was added thereto, 3 mL of 30% hydrogen peroxide solution was added, and the mixture was stirred at room temperature for 30 minutes. The reaction mixture was repeatedly centrifuged using water, and sulfuric acid and manganese salts were removed from the product to obtain an aqueous dispersion of graphene oxide (see Patent Document 5).
Subsequently, the dispersion was subjected to centrifugation, and the supernatant was removed to obtain 120 g of a black viscous precipitate. It was confirmed that 4.2 g of graphene oxide was converted to a solid by drying a part of this sediment under reduced pressure. The oxygen content in graphene oxide was 55% by weight (value obtained by subtracting the proportions of C, H, and N from 100% by CHN organic element analysis).
By adding water to the remaining black viscous precipitate and uniformly dispersing it, an aqueous dispersion containing 1% by weight of graphene oxide was prepared and subjected to subsequent amination and comparative examples.
 (2)酸化グラフェンのアミノ化
次に、先に調製した酸化グラフェンの水分散液200gを秤とり、これをミキサーで撹拌しながら、これにソルミックスにオレイルアミンが1重量%含まれるように調製した溶液200gを滴下して、そのまま1分間撹拌した。得られた反応混合物は二等分し、一方を後続の酸処理に、他方を比較例2に供した。
(2) Amination of graphene oxide Next, 200 g of the aqueous dispersion of graphene oxide prepared above was weighed and stirred with a mixer to prepare 1% by weight of oleylamine in the solmix. 200 g of the solution was added dropwise and stirred as it was for 1 minute. The resulting reaction mixture was divided into two equal parts, one for subsequent acid treatment and the other for comparative example 2.
 (3)酸処理
上で得た一方のアミノ化反応溶液は、攪拌下の常温で、これに1Mの硫酸を加え、万能pH試験紙が赤変するまで酸性化した。
(3) One amination reaction solution obtained by acid treatment was acidified at room temperature with stirring until 1 M sulfuric acid was added thereto until the universal pH test paper turned red.
 (4)精製
得られた酸処理後の反応液は、遠心分離に供して一旦酸性成分を分離し、引き続いて水で1回、次いで50%含水エタノールで1回、その後ソルミックスで2回遠心分離することで精製した。
(4) Purification The acid-treated reaction solution obtained is subjected to centrifugation to once separate acidic components, then once with water, then once with 50% aqueous ethanol, and then twice with Solmix. It was purified by separation.
 (5)有機溶媒分散液調製
 上記精製工程において遠心分離で得た沈降物に、1-メトキシ-2-プロパノールを添加し遠心分離を行うことで、ソルミックスを除去した。こうして得た黒色粘稠沈降物を二等分し、一方を減圧乾燥に供することで黒色粉状の生成物を0.65g得た。このものの赤外分光吸収スペクトルは、2800~3000 cm-1における吸収強度が酸化グラフェンのそれと比較して増加しており、長鎖アルキル基が導入されたことを示唆していた(図2および3参照)。加えて、酸化グラフェン分子骨格内の酸性官能基(カルボキシル基)とオレイルアミンとの反応で生成するアンモニウムイオン性基が酸洗浄により除去されるため、カルボキシル基1715cm-1における吸収強度が、後述の比較例2で認められたそれと比較して顕著に増加していた(図3および4参照)。
また、この黒色粉状の生成物は、エタノールを抽出溶媒に用いてソックスレー抽出に付しても、回収重量に有意な減量は認められなかった。
以上のことから、この黒色粉状の生成物は、オレイルアミンが酸化グラフェン分子骨格に共有結合で導入され、かつ、アンモニウムイオン性基が除去されたものであることを確認した。
(5) Preparation of Organic Solvent Dispersion Solmix was removed by adding 1-methoxy-2-propanol to the precipitate obtained by centrifugation in the purification step and performing centrifugation. The black viscous precipitate thus obtained was divided into two equal parts, and one was subjected to vacuum drying to obtain 0.65 g of a black powdery product. The infrared spectral absorption spectrum of this product has an increased absorption intensity at 2800 to 3000 cm −1 compared to that of graphene oxide, suggesting that a long-chain alkyl group was introduced (FIGS. 2 and 3). reference). In addition, since the ammonium ionic group formed by the reaction of the acidic functional group (carboxyl group) in the graphene oxide molecular skeleton and oleylamine is removed by acid washing, the absorption intensity at the carboxyl group 1715 cm −1 is compared with that described later. There was a marked increase compared to that observed in Example 2 (see FIGS. 3 and 4).
In addition, even when this black powder product was subjected to Soxhlet extraction using ethanol as an extraction solvent, no significant weight loss was observed in the recovered weight.
From the above, it was confirmed that this black powder product was obtained by covalently introducing oleylamine into the graphene oxide molecular skeleton and removing the ammonium ionic group.
 (6)分散
 もう一方の黒色粘稠沈降物は、これに1-メトキシ-2-プロパノール(25ml)を加え、超音波を5分間照射することで分散させた。得られた分散液は、一か月間静置しても全く沈降は認められず、高度の分散性を有していた(図5参照)。また、電子顕微鏡分析の結果から、アミノ基を有する酸化グラフェンが、もっぱら単層の状態で1-メトキシ-2-プロパノールに分散していることを確認した(図6参照)。
(6) Dispersion The other black viscous sediment was dispersed by adding 1-methoxy-2-propanol (25 ml) and irradiating with ultrasonic waves for 5 minutes. The obtained dispersion liquid did not precipitate at all even after standing for one month, and had a high degree of dispersibility (see FIG. 5). From the results of electron microscopic analysis, it was confirmed that graphene oxide having amino groups was dispersed in 1-methoxy-2-propanol exclusively in a single layer state (see FIG. 6).
実施例1において、用いたオレイルアミンを下記に示すアミンに替えたほかは実施例1と同様に反応と後処理を行った結果を示す。評価の記号は、得られた1-メトキシ-2-プロパノール分散液を一か月間静置した後の分散性が実施例1と同等かそれ以上のものを◎、少し劣るものを○、劣るものを×とした。
 
エチルアミン ○
エタノールアミン ○
ジエチルアミン ○
アニリン ○
ヘキシルアミン ◎
ベンジルアミン ◎
ドデシルアミン ◎
フェネチルアミン ◎
2-オクチルドデシルアミン ◎
ステアリルアミン ◎
In Example 1, the result of having performed reaction and a post-process like Example 1 except having changed the used oleylamine into the amine shown below is shown. The symbol for evaluation is that the obtained 1-methoxy-2-propanol dispersion is left to stand for one month and the dispersibility is equal to or higher than that of Example 1, ◎, slightly inferior, and inferior X.

Ethylamine ○
Ethanolamine ○
Diethylamine ○
Aniline ○
Hexylamine ◎
Benzylamine ◎
Dodecylamine ◎
Phenethylamine ◎
2-Octyldodecylamine ◎
Stearylamine ◎
実施例1において、用いた1-メトキシ-2-プロパノールを下記に示す溶媒に替えたほかは実施例1と同様に反応と後処理を行った結果を示す。評価の記号は、一か月間静置した後の分散性が実施例1と同等かそれ以上のものを◎、劣るものを×とした。
ジメチルホルムアミド ◎
N-メチルピロリドン ◎
n-ヘキサン ◎
キシレン ◎
基油 ◎
酢酸ブチル ◎
メチルエチルケトン ◎
エチレングリコール ◎
n-プロパノール ◎
モーターオイルSAE40 ◎
オリーブ油 ◎
グリセリン ◎
スチレン ◎
The results of performing the reaction and post-treatment in the same manner as in Example 1 except that 1-methoxy-2-propanol used in Example 1 was changed to the following solvents are shown. The symbol for evaluation was ◎ when the dispersibility after standing for one month was equal to or higher than that of Example 1, and × when it was inferior.
Dimethylformamide ◎
N-methylpyrrolidone ◎
n-Hexane ◎
Xylene ◎
Base oil ◎
Butyl acetate ◎
Methyl ethyl ketone ◎
Ethylene glycol ◎
n-Propanol ◎
Motor oil SAE40 ◎
Olive oil ◎
Glycerin ◎
Styrene ◎
比較例1Comparative Example 1
実施例1で調製した、酸化グラフェンを1重量%含む水分散液100gを秤とり、これを遠心分離して水を除去した。これに、1-メトキシ-2-プロパノール(50ml)を加え、超音波を5分間照射することで分散させたところ、容器上部に無色化が認められ、底部に明らかな沈降が認められた。また、電子顕微鏡分析の結果から、酸化グラフェンがもっぱら多層の状態で1-メトキシ-2-プロパノール内に存在しており,十分に分散していないことを確認した。 100 g of an aqueous dispersion containing 1% by weight of graphene oxide prepared in Example 1 was weighed and centrifuged to remove water. When 1-methoxy-2-propanol (50 ml) was added thereto and dispersed by irradiating ultrasonic waves for 5 minutes, colorlessness was observed at the top of the container, and clear sedimentation was observed at the bottom. From the results of electron microscope analysis, it was confirmed that graphene oxide was present in 1-methoxy-2-propanol exclusively in a multilayered state and was not sufficiently dispersed.
比較例2Comparative Example 2
 実施例1において、アミノ化後に酸処理に付さなかった反応混合物を水で1回、その後ソルミックスで2回遠心分離して精製した。得られた沈降物に、1-メトキシ-2-プロパノールを添加し遠心分離を行うことで、ソルミックスを除去した。得られた黒色粘稠沈降物の少量を減圧乾燥して黒色粉状の生成物を得た。このものの赤外分光吸収スペクトルは、2800~3000 cm-1における吸収強度が酸化グラフェンのそれと比較して増加しており、長鎖アルキル基が導入されたことを示唆していた。加えて、酸化グラフェン分子骨格内の酸性官能基(カルボキシル基)とオレイルアミンとの反応で副生するアンモニウムイオン性基が存在するため,カルボキシル基1715cm-1における吸収強度が消滅していること明らかに認められた(図3参照)。このことから、この黒色粉状の生成物は、オレイルアミンが酸化グラフェン分子骨格に共有結合で導入され、かつ、酸化グラフェン分子骨格内の酸性官能基(カルボキシル基)とオレイルアミンとの反応で生成するアンモニウムイオン性基を有するものと推定した。
得られた残りの黒色粘稠沈降物は、これに1-メトキシ-2-プロパノール(50ml)を加え、超音波を5分間照射することで分散させた。こうして得た分散液は、容器上部に無色化が認められ、底部に明らかな沈降が認められた(図7参照)。また、電子顕微鏡分析の結果から、もっぱら多層の状態で1-メトキシ-2-プロパノール内に存在しており,十分に分散していないことを確認した(図8参照)。
In Example 1, the reaction mixture that was not subjected to acid treatment after amination was purified by centrifuging once with water and then twice with Solmix. Solmix was removed by adding 1-methoxy-2-propanol and centrifuging the resulting precipitate. A small amount of the resulting black viscous precipitate was dried under reduced pressure to obtain a black powdery product. The infrared spectral absorption spectrum of this product showed an increase in absorption intensity at 2800 to 3000 cm −1 compared to that of graphene oxide, suggesting that a long-chain alkyl group was introduced. In addition, the presence of an ammonium ionic group by-produced by the reaction of the acidic functional group (carboxyl group) in the graphene oxide molecular skeleton with oleylamine clearly reveals that the absorption intensity at the carboxyl group 1715 cm −1 has disappeared. It was recognized (see FIG. 3). From this, this black powdery product is ammonium produced by reaction of oleylamine with an acidic functional group (carboxyl group) in the graphene oxide molecular skeleton, and oleylamine is covalently introduced into the graphene oxide molecular skeleton. Presumed to have an ionic group.
The remaining black viscous precipitate obtained was dispersed by adding 1-methoxy-2-propanol (50 ml) thereto and irradiating with ultrasonic waves for 5 minutes. The dispersion thus obtained was colorless at the top of the container and clearly settled at the bottom (see FIG. 7). Further, from the result of electron microscope analysis, it was confirmed that it was present in 1-methoxy-2-propanol exclusively in a multilayer state and was not sufficiently dispersed (see FIG. 8).
 本発明によれば、ナノカーボンが、分散剤などを特に必要とすることなく、このもの単体で、極性有機溶媒のみならず非極性有機溶媒まで広く包含する種類の有機溶媒に対して高度に安定した分散液が提供される。
本発明の分散液は、リチウムイオン二次電池やスーパーキャパシタ等の蓄電デバイスの電極の原料として有用である。また本発明の分散液は、透明導電性、帯電防止性、熱伝導性やガスバリア性等々の機能性コーテイング剤や、機能性フィルムの製造にも活用できる。さらには、樹脂にブレンドすると、例えば、高強度樹脂複合材料の製造に有用である等々、産業上の実に多様な用途に対して、ナノカーボンが本来有する機能を減失させることなく供給できる。
According to the present invention, the nanocarbon is highly stable against a kind of organic solvent widely including not only a polar organic solvent but also a nonpolar organic solvent without requiring a dispersant or the like. A dispersion is provided.
The dispersion of the present invention is useful as a raw material for electrodes of power storage devices such as lithium ion secondary batteries and supercapacitors. The dispersion of the present invention can also be used for the production of functional coating agents such as transparent conductivity, antistatic properties, thermal conductivity and gas barrier properties, and functional films. Furthermore, when blended with a resin, for example, it is useful for the production of a high-strength resin composite material, and so on, it can be supplied to a wide variety of industrial applications without deteriorating the functions inherent to nanocarbon.
10  分子骨格に酸素官能基を有するナノカーボン
20  アミン
30  アンモニウムイオン性基
40  アミノ基
100 分子骨格に酸素官能基を有するナノカーボン分散液
200 アミン分散液
300 分散液100に分散液200を加えて得たアミノ化反応液
400 反応液300を酸処理、精製と溶媒分散を行って得た,アミノ基を有し、アンモニウムイオン性基を除去して得られる酸化グラフェンの有機溶媒分散液
10 Nanocarbon 20 having oxygen functional group in molecular skeleton 20 Amine 30 Ammonium ionic group 40 Amino group 100 Nanocarbon dispersion 200 having oxygen functional group in molecular skeleton 200 Amine dispersion 300 Obtained by adding dispersion 200 to dispersion 100 Amination reaction liquid 400 obtained by subjecting reaction liquid 300 to acid treatment, purification, and solvent dispersion, an organic solvent dispersion of graphene oxide obtained by removing ammonium ionic groups having amino groups

Claims (24)

  1.  分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られる、ナノカーボン Nanocarbon obtained by removing ammonium ionic group from nanocarbon having amino group in molecular skeleton
  2. 分子骨格にアミノ基を有し、かつ、アンモニウムイオン性基を有さないナノカーボン Nanocarbon with amino group in the molecular skeleton and no ammonium ion group
  3. 分子骨格にアミノ基を有するナノカーボンが、酸化グラフェンである請求項1~2のいずれか1項に記載のナノカーボン The nanocarbon according to any one of claims 1 to 2, wherein the nanocarbon having an amino group in the molecular skeleton is graphene oxide.
  4. 分子骨格に酸素官能基を有するナノカーボンの分散液に、溶媒に溶解したアミンを作用させ、引き続いて、生成物に酸を作用させることでアンモニウムイオン性基を除去する工程を含むことを特徴とする請求項1~3のいずれか1項に記載のナノカーボンの製造方法。 It comprises a step of removing an ammonium ionic group by allowing an amine dissolved in a solvent to act on a dispersion of nanocarbon having an oxygen functional group in the molecular skeleton, and subsequently causing an acid to act on the product. The method for producing nanocarbon according to any one of claims 1 to 3, wherein:
  5. 前記請求項1~3のいずれか1項に記載のナノカーボンを有機溶媒に分散してなる分散液 A dispersion obtained by dispersing the nanocarbon according to any one of claims 1 to 3 in an organic solvent.
  6. 分子骨格に酸素官能基を有するナノカーボンの分散液に、溶媒に溶解したアミンを作用させ、引き続いて、生成物に酸を作用させることでアンモニウムイオン性基を除去する工程を含むことを特徴とする請求項5記載の分散液の製造方法 It comprises a step of removing an ammonium ionic group by allowing an amine dissolved in a solvent to act on a dispersion of nanocarbon having an oxygen functional group in the molecular skeleton, and subsequently causing an acid to act on the product. A method for producing a dispersion according to claim 5
  7. 前記アミンにおいて、窒素原子上の置換基が炭素数4から26の炭化水素基で構成される一級もしくは二級アミンである請求項1~3のいずれか1項に記載のナノカーボン The nanocarbon according to any one of claims 1 to 3, wherein in the amine, the substituent on the nitrogen atom is a primary or secondary amine composed of a hydrocarbon group having 4 to 26 carbon atoms.
  8.  前記アミンにおいて、窒素原子上の置換基が炭素数4から26の炭化水素基で構成される一級もしくは二級アミンである請求項4に記載のナノカーボンの製造方法 5. The method for producing nanocarbon according to claim 4, wherein in the amine, the substituent on the nitrogen atom is a primary or secondary amine composed of a hydrocarbon group having 4 to 26 carbon atoms.
  9.  前記アミンにおいて、窒素原子上の置換基が炭素数4から26の炭化水素基で構成される一級もしくは二級アミンである請求項5に記載のナノカーボン分散液 The nanocarbon dispersion liquid according to claim 5, wherein in the amine, the substituent on the nitrogen atom is a primary or secondary amine composed of a hydrocarbon group having 4 to 26 carbon atoms.
  10.  前記アミンにおいて、窒素原子上の置換基が炭素数4から26の炭化水素基で構成される一級もしくは二級アミンである請求項6に記載のナノカーボンの分散液の製造方法 The method for producing a nanocarbon dispersion liquid according to claim 6, wherein in the amine, a substituent on a nitrogen atom is a primary or secondary amine composed of a hydrocarbon group having 4 to 26 carbon atoms.
  11.  前記アミンにおいて、窒素原子上の置換基が、その構造の一部に不飽和結合または芳香族基を有する請求項1~3のいずれか1項に記載のナノカーボン。 The nanocarbon according to any one of claims 1 to 3, wherein in the amine, the substituent on the nitrogen atom has an unsaturated bond or an aromatic group in a part of its structure.
  12.  前記アミンにおいて、窒素原子上の置換基が、その構造の一部に不飽和結合または芳香族基を有する請求項4に記載のナノカーボンの製造方法。 The method for producing nanocarbon according to claim 4, wherein in the amine, the substituent on the nitrogen atom has an unsaturated bond or an aromatic group in a part of its structure.
  13.  前記アミンにおいて、窒素原子上の置換基が、その構造の一部に不飽和結合または芳香族基を有する請求項5に記載のナノカーボン分散液。 The nanocarbon dispersion liquid according to claim 5, wherein the substituent on the nitrogen atom in the amine has an unsaturated bond or an aromatic group in a part of its structure.
  14.  前記アミンにおいて、窒素原子上の置換基が、その構造の一部に不飽和結合または芳香族基を有する請求項6に記載のナノカーボンの分散液の製造方法 The method for producing a nanocarbon dispersion liquid according to claim 6, wherein the substituent on the nitrogen atom in the amine has an unsaturated bond or an aromatic group in a part of its structure.
  15.  前記アミンが、ブチルアミン、ヘキシルアミン、アニリン、ベンジルアミン、オクチルアミン、フェネチルアミン、アミノアダマンタン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オレイルアミン、2-オクチルドデシルアミン、ステアリルアミン、N-メチルオクタデシルアミン、ポリエチレングリコールステアリルアミンから選択される1つ,あるいは2以上のアミンである請求項1~3のいずれか1項に記載のナノカーボン。 The amine is butylamine, hexylamine, aniline, benzylamine, octylamine, phenethylamine, aminoadamantane, dodecylamine, tetradecylamine, hexadecylamine, oleylamine, 2-octyldodecylamine, stearylamine, N-methyloctadecylamine, The nanocarbon according to any one of claims 1 to 3, which is one or two or more amines selected from polyethylene glycol stearylamine.
  16.  前記アミンが、ブチルアミン、ヘキシルアミン、アニリン、ベンジルアミン、オクチルアミン、フェネチルアミン、アミノアダマンタン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オレイルアミン、2-オクチルドデシルアミン、ステアリルアミン、N-メチルオクタデシルアミン、ポリエチレングリコールステアリルアミンから選択される1つ,あるいは2以上のアミンである請求項4に記載のナノカーボンの製造方法 The amine is butylamine, hexylamine, aniline, benzylamine, octylamine, phenethylamine, aminoadamantane, dodecylamine, tetradecylamine, hexadecylamine, oleylamine, 2-octyldodecylamine, stearylamine, N-methyloctadecylamine, 5. The method for producing nanocarbon according to claim 4, wherein the one or more amines selected from polyethylene glycol stearylamine are used.
  17.  前記アミンが、ブチルアミン、ヘキシルアミン、アニリン、ベンジルアミン、オクチルアミン、フェネチルアミン、アミノアダマンタン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オレイルアミン、2-オクチルドデシルアミン、ステアリルアミン、N-メチルオクタデシルアミン、ポリエチレングリコールステアリルアミンから選択される1つ,あるいは2以上のアミンである請求項5に記載のナノカーボン分散液。 The amine is butylamine, hexylamine, aniline, benzylamine, octylamine, phenethylamine, aminoadamantane, dodecylamine, tetradecylamine, hexadecylamine, oleylamine, 2-octyldodecylamine, stearylamine, N-methyloctadecylamine, The nanocarbon dispersion liquid according to claim 5, which is one or two or more amines selected from polyethylene glycol stearylamine.
  18.  前記アミンが、ブチルアミン、ヘキシルアミン、アニリン、ベンジルアミン、オクチルアミン、フェネチルアミン、アミノアダマンタン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オレイルアミン、2-オクチルドデシルアミン、ステアリルアミン、N-メチルオクタデシルアミン、ポリエチレングリコールステアリルアミンから選択される1つ,あるいは2以上のアミンである請求項6に記載のナノカーボンの分散液の製造方法。 The amine is butylamine, hexylamine, aniline, benzylamine, octylamine, phenethylamine, aminoadamantane, dodecylamine, tetradecylamine, hexadecylamine, oleylamine, 2-octyldodecylamine, stearylamine, N-methyloctadecylamine, The method for producing a nanocarbon dispersion liquid according to claim 6, which is one or two or more amines selected from polyethylene glycol stearylamine.
  19.  前記ナノカーボンを分散させる有機溶媒の誘電率(ε)が2以上のものである請求項5に記載のナノカーボン分散液。 The nanocarbon dispersion liquid according to claim 5, wherein the organic solvent in which the nanocarbon is dispersed has a dielectric constant (ε) of 2 or more.
  20.  前記ナノカーボンを分散させる有機溶媒の誘電率(ε)が2以上のものである請求項6に記載のナノカーボンの分散液の製造方法。 The method for producing a nanocarbon dispersion liquid according to claim 6, wherein the organic solvent in which the nanocarbon is dispersed has a dielectric constant (ε) of 2 or more.
  21. 前記ナノカーボンを分散させる有機溶媒の20℃における粘度(Pa・S)が1x10-4以上である請求項5に記載のナノカーボン分散液。 6. The nanocarbon dispersion liquid according to claim 5, wherein the viscosity (Pa · S) at 20 ° C. of the organic solvent in which the nanocarbon is dispersed is 1 × 10 −4 or more.
  22. 前記ナノカーボンを分散させる有機溶媒の20℃における粘度(Pa・S)が1x10-4以上である請求項6に記載のナノカーボンの分散液の製造方法。 The method for producing a nanocarbon dispersion liquid according to claim 6, wherein an organic solvent in which the nanocarbon is dispersed has a viscosity (Pa · S) at 20 ° C. of 1 × 10 −4 or more.
  23.  前記ナノカーボンを分散させる有機溶媒が、ヘキサン、石油エーテル、トルエン、キシレン、軽油、ポリオレフィン、などの飽和もしくは不飽和炭化水素系溶媒、1-メトキシ-2-プロパノール,エタノール、ブタノール、2-エチルヘキサノール、エチレングリコール、グリセリン等の多価アルコールを含むアルコール系溶媒、エチルセロソルブ、ジメトキシエタン、テトラヒドロフラン、シクロペンチルメチルエーテル等のエーテル系溶媒、酢酸エチル、酢酸ブチル、酢酸-2-エチルヘキシル、アクリル酸メチル、メタクリル酸メチル等のエステル系溶媒、ジクロロメタン、トリクロロエチレン等のハロゲン系溶媒、ホルムアミド、ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、アセトニトリル、アクリロニトリル等のニトリル系溶媒から選択される1つ,あるいは2以上の溶媒の混合溶媒である請求項5に記載のナノカーボン分散液。 The organic solvent in which the nanocarbon is dispersed is a saturated or unsaturated hydrocarbon solvent such as hexane, petroleum ether, toluene, xylene, light oil, polyolefin, 1-methoxy-2-propanol, ethanol, butanol, 2-ethylhexanol , Alcohol solvents containing polyhydric alcohols such as ethylene glycol and glycerin, ether solvents such as ethyl cellosolve, dimethoxyethane, tetrahydrofuran and cyclopentyl methyl ether, ethyl acetate, butyl acetate, 2-ethylhexyl acetate, methyl acrylate, methacryl Ester solvents such as methyl acid, halogen solvents such as dichloromethane and trichloroethylene, amide solvents such as formamide, dimethylformamide, and dimethylacetamide, acetone, methyl ethyl ketone, methyl isobutyl The nanocarbon dispersion liquid according to claim 5, which is a mixed solvent of one or two or more solvents selected from ketone solvents such as tilketone and cyclohexanone, and nitrile solvents such as acetonitrile and acrylonitrile.
  24.  前記ナノカーボンを分散させる有機溶媒が、ヘキサン、石油エーテル、トルエン、キシレン、軽油、ポリオレフィン、などの飽和もしくは不飽和炭化水素系溶媒、1-メトキシ-2-プロパノール,エタノール、ブタノール、2-エチルヘキサノール、エチレングリコール、グリセリン等の多価アルコールを含むアルコール系溶媒、エチルセロソルブ、ジメトキシエタン、テトラヒドロフラン、シクロペンチルメチルエーテル等のエーテル系溶媒、酢酸エチル、酢酸ブチル、酢酸-2-エチルヘキシル、アクリル酸メチル、メタクリル酸メチル等のエステル系溶媒、ジクロロメタン、トリクロロエチレン等のハロゲン系溶媒、ホルムアミド、ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、アセトニトリル、アクリロニトリル等のニトリル系溶媒から選択される1つ,あるいは2以上の溶媒の混合液である請求項6に記載のナノカーボンの分散液の製造方法。 The organic solvent in which the nanocarbon is dispersed is a saturated or unsaturated hydrocarbon solvent such as hexane, petroleum ether, toluene, xylene, light oil, polyolefin, 1-methoxy-2-propanol, ethanol, butanol, 2-ethylhexanol , Alcohol solvents containing polyhydric alcohols such as ethylene glycol and glycerin, ether solvents such as ethyl cellosolve, dimethoxyethane, tetrahydrofuran and cyclopentyl methyl ether, ethyl acetate, butyl acetate, 2-ethylhexyl acetate, methyl acrylate, methacryl Ester solvents such as methyl acid, halogen solvents such as dichloromethane and trichloroethylene, amide solvents such as formamide, dimethylformamide, and dimethylacetamide, acetone, methyl ethyl ketone, methyl isobutyl The method for producing a nanocarbon dispersion liquid according to claim 6, which is a mixed liquid of one or two or more solvents selected from ketone solvents such as tilketone and cyclohexanone, and nitrile solvents such as acetonitrile and acrylonitrile.
PCT/JP2017/011047 2017-03-17 2017-03-17 Nanocarbon obtained by removing ammonium ion group from nanocarbon having amino group in molecular skeleton, organic solvent dispersion thereof, and method for producing same WO2018167976A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/011047 WO2018167976A1 (en) 2017-03-17 2017-03-17 Nanocarbon obtained by removing ammonium ion group from nanocarbon having amino group in molecular skeleton, organic solvent dispersion thereof, and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/011047 WO2018167976A1 (en) 2017-03-17 2017-03-17 Nanocarbon obtained by removing ammonium ion group from nanocarbon having amino group in molecular skeleton, organic solvent dispersion thereof, and method for producing same

Publications (1)

Publication Number Publication Date
WO2018167976A1 true WO2018167976A1 (en) 2018-09-20

Family

ID=63521980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011047 WO2018167976A1 (en) 2017-03-17 2017-03-17 Nanocarbon obtained by removing ammonium ion group from nanocarbon having amino group in molecular skeleton, organic solvent dispersion thereof, and method for producing same

Country Status (1)

Country Link
WO (1) WO2018167976A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110028062A (en) * 2019-04-29 2019-07-19 苏州大学 A kind of preparation method of surface modification oil solubility graphene oxide
WO2022030636A1 (en) * 2020-08-07 2022-02-10 リファインホールディングス株式会社 Carbonaceous material dispersion for all-solid-state lithium ion secondary batteries, and electrode slurry for all-solid-state lithium ion secondary batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508422A (en) * 1997-12-15 2002-03-19 キャボット コーポレイション Polymer products containing modified carbon products and methods for their production and use
JP2006144201A (en) * 2004-11-24 2006-06-08 Seiko Epson Corp Carbon composite, method for producing carbon composite and resin molded product
JP2015170404A (en) * 2014-03-05 2015-09-28 株式会社東芝 Transparent conductive body and device using it
JP2016207812A (en) * 2015-04-21 2016-12-08 株式会社豊田中央研究所 Photoelectric conversion element
JP2017022095A (en) * 2015-07-13 2017-01-26 国立大学法人名古屋大学 Conductive film and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508422A (en) * 1997-12-15 2002-03-19 キャボット コーポレイション Polymer products containing modified carbon products and methods for their production and use
JP2006144201A (en) * 2004-11-24 2006-06-08 Seiko Epson Corp Carbon composite, method for producing carbon composite and resin molded product
JP2015170404A (en) * 2014-03-05 2015-09-28 株式会社東芝 Transparent conductive body and device using it
JP2016207812A (en) * 2015-04-21 2016-12-08 株式会社豊田中央研究所 Photoelectric conversion element
JP2017022095A (en) * 2015-07-13 2017-01-26 国立大学法人名古屋大学 Conductive film and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110028062A (en) * 2019-04-29 2019-07-19 苏州大学 A kind of preparation method of surface modification oil solubility graphene oxide
WO2022030636A1 (en) * 2020-08-07 2022-02-10 リファインホールディングス株式会社 Carbonaceous material dispersion for all-solid-state lithium ion secondary batteries, and electrode slurry for all-solid-state lithium ion secondary batteries

Similar Documents

Publication Publication Date Title
Narayan et al. Surfactant mediated liquid phase exfoliation of graphene
US9290524B2 (en) Methods for producing functionalized graphenes
Dao et al. Water-dispersible graphene designed as a Pickering stabilizer for the suspension polymerization of poly (methyl methacrylate)/graphene core–shell microsphere exhibiting ultra-low percolation threshold of electrical conductivity
US20210069660A1 (en) Method for producing stable graphene, graphite and amorphous carbon aqueous dispersions
TWI542643B (en) Dispersing agent, its preparation method and dispersed composition of carbon-based material comprising the same
AU2019356795B2 (en) Dispersible edge functionalised graphene platelets
US20170225951A1 (en) Process for Exfoliation and Dispersion of Boron Nitride
JP6762850B2 (en) Method for producing graphite oxide derivative
CN111212812A (en) Inorganic particle composite, method for producing same, and inorganic particle composite dispersion liquid
WO2018167976A1 (en) Nanocarbon obtained by removing ammonium ion group from nanocarbon having amino group in molecular skeleton, organic solvent dispersion thereof, and method for producing same
JP2012153590A (en) Aggregate, and dispersion liquid made by dispersing the aggregate in solvent
WO2017063026A1 (en) Dispersions
WO2020246500A1 (en) Surface-modified nanodiamond and method for producing surface-modified nanodiamond
JP2020045266A (en) Graphene oxide dispersion and method for preparing the same
CN107619044A (en) A kind of epoxides grafting amine reduction prepares and the method for dispersed graphite alkene
Biranje et al. Exfoliated graphene and its derivatives from liquid phase and their role in performance enhancement of epoxy matrix composite
WO2017082263A1 (en) Oxidized graphite derivative and method for producing same
JP2018030741A (en) Surface-modified nanodiamond, and dispersion liquid and composite material containing the surface-modified nanodiamond
EP3594968A1 (en) Conductive ceramic composition having excellent electrical conductivity
JP6979196B2 (en) Method for exfoliating layered mineral powder and method for producing layered nanoplate complex
Pati et al. Fabrication and characterization of graphene based nanocomposite for electrical properties
Arao et al. Mechanochemical reaction using weak acid salts enables dispersion and exfoliation of nanomaterials in polar solvents
EP3747830A1 (en) Nanodiamond particle dispersion
Phan et al. Evaluating the colloidal stability of graphene oxide nanosheet in heat transfer fluids
Texter 20 Visible Optical Extinction and Dispersion of Graphene in Water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP