WO2018167869A1 - Rotating body, electric compressor, and turbine power generator - Google Patents
Rotating body, electric compressor, and turbine power generator Download PDFInfo
- Publication number
- WO2018167869A1 WO2018167869A1 PCT/JP2017/010378 JP2017010378W WO2018167869A1 WO 2018167869 A1 WO2018167869 A1 WO 2018167869A1 JP 2017010378 W JP2017010378 W JP 2017010378W WO 2018167869 A1 WO2018167869 A1 WO 2018167869A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnet
- rotating body
- rotor
- outer periphery
- adhesive layer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
Definitions
- the present invention relates to a rotating body provided with a permanent magnet in a rotating body and rotating at a high speed, and further to an electric compressor and a turbine generator using the rotating body.
- turbo-equipped engine vehicles also have weaknesses, one of which is the problem of turbo lag. As a characteristic of a rotating turbine driven by exhaust, there is a time lag until the rotation is increased by exhaust.
- the motor used for these needs to have an acceleration capacity that can reach the number of revolutions (tens of thousands of rpm) required by the compressor in a few seconds (1 second or less). Therefore, it is necessary to make the inertia of the rotor of the motor as small as possible, and a small inner rotor type motor is employed.
- FIG. 13 and 14 show the structure of a rotor (rotor) of an inner rotor type motor using a general permanent magnet.
- the rotor is configured by affixing a plurality of permanent magnets 12 having an arc-shaped cross section to the outer peripheral surface of a shaft (or rotor core) 11 in a cylindrical shape, and the magnets 12 do not scatter due to centrifugal force during rotation.
- the protective sleeve 15 is provided on the outer peripheral surface of the magnet 12 for assembly (Patent Documents 1 and 2).
- the protective sleeve 15 needs a particularly high strength in order to withstand radial stress due to the centrifugal force applied to the sleeve itself and the magnet 12.
- the magnet 12 divided into the arc shape is attached to the shaft 11 in a cylindrical shape with an adhesive or the like, and the protective sleeve 15 is provided thereon.
- the adhesive interposed between the two may be peeled off by centrifugal force and the magnet 12 may move and lose its balance. I don't want to make a gap as much as possible.
- the magnet 12 is composed of a plurality of pieces and is within the dimensional tolerance, the size of each magnet is slightly different, so that the magnet 12 does not have a complete cylindrical shape. Moreover, many permanent magnets are brittle materials and are easily broken when excessive stress is applied.
- Patent Document 1 Patent Document 2
- Patent Document 2 Patent Document 2
- the protective sleeve 15 is made of carbon fiber (carbon fiber) by the filament winding method as shown in Patent Document 3 or Patent Document 4.
- This method is a method of forming a carbon fiber reinforced plastic by winding a carbon fiber having a resin attached on the outer peripheral surface of a magnet 12 in a spiral shape in a substantially circumferential direction and hardening the attached resin by thermosetting. is there.
- the protective sleeve 15 having a high mechanical strength is formed by adhering to the outer periphery of the magnet 12 with a resin, rigidity can be maintained against heat generated by high-speed rotation, and centrifugal force works.
- the magnet 12 is prevented from peeling off from the shaft.
- CFRP carbon fiber reinforced plastic
- the linear expansion coefficient differs between the magnet 12 and the protective sleeve 15 made of CFRP. Therefore, in the environment of the cooling and heating cycle, the circumferential expansion and contraction amounts of the two differ, and the bonding boundary surface is different. Stress will be added.
- FIG. 14 shows the state of the stress.
- the magnet 12 is dragged by the thermal deformation of the bonded protective sleeve 15 having a high mechanical strength, and a repeated force is applied in the direction of the arrow 16. receive.
- the magnet 12 When gaps or cracks occur in the magnet, it is further expanded by centrifugal force, and even if the centrifugal force is removed, it does not return to its original state. Therefore, the magnet 12 remains moving, and the weight balance of the rotor may be lost.
- This problem is not limited to the rotor (rotary body) of the electric turbo motor, but also applies to the rotor of a turbine generator in which a generator is arranged coaxially with a turbine driven by exhaust gas or steam of an internal combustion engine.
- the present invention protects a permanent magnet constituting a rotating body from centrifugal force and prevents breakage of the magnet due to a heat cycle, so that the rotating body can be rotated to a high speed rotation range.
- An object is to provide an electric compressor and a turbine generator.
- the present invention provides a shaft, a plurality of magnets arranged and fixed in a cylindrical shape on the outer periphery of the shaft, and a cylinder formed by winding a filament around the outer periphery of the plurality of magnets. And a non-adhesive layer is interposed between the outer periphery of the magnet and the inner periphery of the protective member.
- the non-adhesive layer has an adhesive surface that adheres to the outer periphery of the magnet on one side and a non-adhesive surface that slidably contacts the inner periphery of the protective member on the other side.
- the non-adhesive layer is a fluororesin film individually bonded to each outer periphery of the plurality of magnets.
- the adhesive surface of the non-adhesive layer is adhered to the outer periphery of the individual magnet to form the non-adhesive layer, and thus the small piece fluororesin film is individually adhered to each magnet. It will be easy.
- the non-adhesive layer is a fluororesin film adhered to the entire outer periphery of the plurality of magnets.
- the bonding operation of the non-adhesive layer can be performed in a short time.
- the non-adhesive layer is formed of a coating material formed on the outer periphery of the magnet.
- the coating material is a fluororesin or titanium nitride.
- the outer periphery of the magnet may be coated with fluororesin or titanium nitride, so that the non-adhesive layer can be formed easily and uniformly.
- the coating material is formed by a release agent applied to the outer periphery of the magnet.
- the release agent is a fluorine-type or silicon-type release agent.
- the fluorine-based or silicon-based release agent is applied to the outer periphery of the magnet, the non-adhesive layer can be easily and uniformly formed.
- the present invention includes a stator, a rotor, and an impeller that compresses gas, and the impeller is an electric compressor that is disposed coaxially with the rotor. It is characterized by using.
- this invention is provided with the turbine rotated with a stator, a rotor, and carrier gas,
- the said turbine is a turbine generator arrange
- FIG. 1 is a cross-sectional view perpendicular to the shaft of the rotating body according to the first embodiment of the present invention
- FIG. 2 is a cross-sectional view along the shaft.
- Numeral 10 is a rotating body, which constitutes a turbo motor for an electric compressor by a stator (not shown) arranged on the outer periphery thereof, and rotates at a high speed of tens of thousands rpm or more by supplying power to the coil of the stator.
- Reference numeral 2 denotes a permanent magnet fixed to the outer peripheral surface of the shaft 1 with an adhesive, and is configured by combining a plurality of pieces having an arc-shaped cross section into a cylindrical shape.
- the plurality of pieces are even numbers, and the polarities of the outer peripheral surfaces combined in a cylindrical shape are alternately changed from N ⁇ S ⁇ N ⁇ S.
- four pieces of magnets 2a to 2d are used. Composed.
- Numeral 5 is a protective member that prevents the magnets 2a to 2d from being lifted and scattered by centrifugal force during rotation.
- the protection member 5 is formed in a cylindrical shape on the outer peripheral surface of the magnets 2a to 2d formed in a cylindrical shape, and is made of a nonmagnetic material.
- the protective member 5 is configured by spirally winding glass fibers or carbon fibers having an epoxy resin adhered to the outer peripheral surface of a cylinder formed of magnets 2a to 2d by a filament winding method.
- Reference numeral 4 denotes a non-adhesive layer interposed between the outer peripheral surface of the cylinder formed by the magnets 2a to 2d and the inner peripheral surface of the protective member 5, and is attached to the outer peripheral surface of the cylinder of the magnets 2a to 2d. .
- the rotating body 10 is composed of the shaft 1, the permanent magnet 2, the non-adhesive layer 4 and the protective member 5.
- the non-adhesive layer 4 has a non-adhesive contact with an adhesive surface 3 that adheres to the outer peripheral surface of the magnet on one side and a slidable contact with the inner periphery of the protective member 5 on the other side, as shown in cross section in FIG. Each has a surface 7.
- the adhesive surface 3 is covered with a protective release liner 6, and the release liner 6 is peeled off and bonded to the outer peripheral surface of the magnet 2.
- the non-adhesive surface 7 is a PTFE film (fluororesin film)
- the adhesive surface 3 is a silicone-based adhesive
- the release liner 6 is a PET release liner.
- FIG. 4 is a perspective view of the rotating body according to the first embodiment of the present invention.
- the non-adhesive layer 4 is composed of divided four pieces 4a to 4d, and individually bonded to the outer peripheral surfaces of the magnets 2a to 2d. In this configuration, the small piece of the non-adhesive layer 4 is individually bonded to each magnet, so that the bonding operation is simplified.
- FIG. 5 is an explanatory diagram of the operation of forming the protective member 5 on the outer periphery of the magnet of the first embodiment, and shows a winding device that performs filament winding.
- 51 is a feeding reel for the four carbon fibers 52
- 53 is a bar that aligns the spacing and posture of the four carbon fibers 51 that have been fed.
- 54 is a resin tank for adhering epoxy resin to each carbon fiber 52
- 55 is a head that supports the resin tank 54 and reciprocates in the width direction
- 56 is a support base on which the head 55 moves
- 58 is a reciprocating head 55.
- a rotating body 10 shown in FIG. 4 is disposed in front of the head 55.
- the rotating body 10 has both ends of the shaft 1 supported by a supporting body (not shown) of the winding device and is rotated by a rotating mechanism 59.
- the epoxy resin is adhered to the surface of the four carbon fibers 52 by passing through the resin tank 54.
- the carbon fiber 52 is spirally wound around the outer periphery of the non-adhesive layer 4 of the rotating body by the rotation of the rotating body 10 by the rotating mechanism 59 and the reciprocating motion of the head 54.
- the rotating body 10 is removed from the support of the winding device after the carbon fiber 52 is densely wound around the outer peripheral surface of the non-adhesive layer 4 and a predetermined number of layers are wound.
- the removed rotating body 10 is entirely heated, and the epoxy resin adhering to the carbon fiber 52 is heated and cured.
- FIG. 7 shows the state after heat curing in cross section.
- the carbon fibers 52 wound around the outer periphery of the non-adhesive layer 4 are bonded together by curing of the epoxy resin to form a cylindrical protective member 5 having a high mechanical strength (only one layer is wound in the figure). Yes.)
- the non-adhesive layer 4 is divided into four pieces 4a to 4d and individually bonded to the outer peripheral surfaces of the magnets 2a to 2d. It becomes a structure.
- the non-adhesive surface 7 and the adhesive surface 3 constituting the non-adhesive layer 4 are both four pieces, and there is a boundary between the pieces.
- the magnet 2 and the protective member 5 have different amounts of expansion and contraction in the circumferential direction depending on the difference in linear expansion coefficient. Therefore, in the case of thermal expansion, the protective member 5 having high mechanical strength expands and moves in the circumferential direction indicated by the arrow 9.
- Example 1 the non-adhesive layer 4 is interposed between the inner peripheral surface of the protective member 5 and the outer peripheral surface of the magnet 2, and the non-adhesive surface 7 of the non-adhesive layer 4 is in contact with the protective member 5. Even if it moves by expansion, it only slides on the surface of the non-adhesive surface 7, and no force is applied to the non-adhesive layer 4 and the magnet 2.
- the permanent magnet is protected from the centrifugal force applied to the rotating body 10, and no stress is applied to the magnet 2 even if the protective member 5 expands and contracts due to the heat cycle.
- FIG. 9 is a cross-sectional view showing a part of the rotating body according to the second embodiment of the present invention.
- the non-adhesive layer 4 (adhesive surface 3, non-adhesive surface 7) is bonded to the outer periphery of the plurality of magnets 2 at once without dividing the non-adhesive layer 4 (adhesive surface 3, non-adhesive surface 7) into four pieces. .
- the fluororesin film can be bonded to the entire outer periphery of the plurality of magnets at once, the bonding operation of the non-adhesive layer can be performed in a short time.
- a gap is formed at the boundary between the plurality of non-adhesive layers 4a to 4d.
- there is no gap in the non-adhesive layer 4 and the non-adhesive layer 4 is formed at the boundary of each magnet.
- the outer periphery becomes smooth, and the sliding with the protective member 5 is even better.
- the magnet 2 and the protection member 5 have different linear expansion coefficients, but even if the protection member 5 having a high mechanical strength is thermally expanded in the circumferential direction of the arrow 9, the non-adhesive layer 4 (non- It only slides on the adhesive surface 7).
- the permanent magnet is protected from the centrifugal force applied to the rotating body 10, and no stress is applied to the magnet 2 even if the protective member 5 expands or contracts due to the heat cycle.
- FIG. 10 is a cross-sectional view showing a part of the rotating body of Examples 3 and 4 of the present invention.
- the PTFE film fluororesin film
- the non-adhesive layer 4 is composed of a non-adhesive coating material 8. Yes.
- the coating material 8 is made of fluororesin or titanium nitride.
- the fluororesin is applied and fixed to the outer peripheral surface of the magnet 2, and the titanium nitride is fixedly formed on the outer periphery of the magnet 2 by vapor deposition.
- the non-adhesive layer can be formed easily and uniformly.
- the formation of the coating material 8 can be performed before the magnet 2 is bonded to the shaft 1 and after the bonding.
- the coating material 8 is not mistakenly attached to the inner peripheral surface of the magnet 2 (if it adheres to the inner peripheral surface of the magnet 2, the outer peripheral surface of the shaft 1 and the magnet 2), it is necessary to mask the inner peripheral surface of the magnet 2 with a tape or the like in advance.
- the coating material 8 is formed on the outer peripheral surface of the magnet 2 by coating or vapor deposition, and the masking tape is peeled off after the operation.
- the coating material 8 is formed after the magnet 2 is bonded to the shaft 1, the forming operation is performed in a state where masking is applied to portions other than the outer peripheral surface of the magnet that do not require coating.
- the protective member 5 is formed by winding the carbon fiber 52 on the outer peripheral surface of the coating material by the winding device shown in FIG.
- the magnet 2 and the protection member 5 have different linear expansion coefficients, but even if the protection member 5 having a high mechanical strength is thermally expanded in the circumferential direction of the arrow 9, It only slides.
- the permanent magnet is protected from the centrifugal force applied to the rotating body 10, and no stress is applied to the magnet 2 even if the protective member 5 expands or contracts due to the heat cycle.
- Example 4 a release agent is used as the coating material 8, and the release agent is adhered by applying a fluorine-based or silicon-based release agent to the outer peripheral surface of the magnet 2.
- the release agent is wiped off by inadvertent contact by other work after application, it is preferably applied immediately before the carbon fiber 52 is wound by the winding device shown in FIG.
- the non-adhesive layer can be easily and uniformly formed.
- the carbon fiber 52 is wound around the outer peripheral surface of the release agent by the winding device shown in FIG. 5 to form the protective member 5.
- the rotating body 10 configured as described above has a release agent (coating material 8) even when the protective member 5 having high mechanical strength is thermally expanded in the circumferential direction indicated by the arrow 9. It only slides on the surface.
- the permanent magnet is protected from the centrifugal force applied to the rotating body 10, and no stress is applied to the magnet 2 even if the protective member 5 expands or contracts due to the heat cycle.
- FIG. 11 is a cross-sectional view of an electric compressor having an inner rotor type electric motor in Example 5 of the present invention.
- the 31 is an electric compressor, which includes a compressor section 32 and an inner rotor type electric motor 33.
- the compressor unit 32 includes an impeller 34, and the electric motor 33 includes a rotor 35 and a stator 36.
- the impeller 34 and the rotor 35 are integrally formed coaxially with a rotating shaft 37 (shaft), and are rotatably supported by a housing 39 via a bearing 38.
- the stator 36 is fixed to the housing 39.
- an electric compressor used for intake of an internal combustion engine has several tens of thousands of revolutions, and is required to repeat acceleration and deceleration.
- the rotor 35 is any one of the rotors of the first to fourth embodiments, so that the rotor 35 can be used even when it is repeatedly used at a high speed rotation in a cold cycle environment. It is possible to prevent cracking of the magnet.
- the permanent magnet constituting the rotor of the electric compressor can be protected from centrifugal force due to high-speed rotation and can be prevented from being broken by heat cycle, and the electric compressor can be maintained at high speed while maintaining the balance of the rotating body. be able to.
- FIG. 12 is a cross-sectional view of a turbine generator having an inner rotor type generator in Example 6 of the present invention.
- the 41 is a turbine generator, and includes a turbine section 42 and an inner rotor type generator 43.
- the turbine section 42 includes a turbine 44
- the generator 43 includes a rotor 45 and a stator 46.
- the turbine 44 and the rotor 45 are integrally formed coaxially with a rotating shaft 47 (shaft), and are rotatably supported by a housing 49 via a bearing 48.
- the stator 46 is fixed to the housing 49.
- a turbine generator driven by exhaust gas from an internal combustion engine reaches tens of thousands of revolutions, and acceleration / deceleration is repeatedly performed.
- the rotor 45 can rotate even when repeatedly used at a high speed rotation in an environment of a thermal cycle.
- the crack of the magnet of the child 45 can be prevented.
- the permanent magnets constituting the rotor of the turbine generator can be protected from centrifugal force due to high speed rotation, and can be prevented from being broken by heat cycle, and the turbine generator can be rotated at high speed while maintaining the balance of the rotating body. Can be maintained.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
The present invention protects a permanent magnet constituting a rotating body and a permanent magnet constituting the rotors of an electric compressor and a turbine power generator from centrifugal force and prevents the magnets from breaking due to heat cycling. The rotating body is provided with a shaft, a plurality of magnets cylindrically arranged and fixed on the outer circumference of the shaft, and a cylindrical protection member formed by winding a filament around the outer perimeters of the magnets, wherein a non-adhesive layer is interposed between the outer perimeters of the magnets and the inner circumference of the protection member.
Description
本発明は、回転体に永久磁石を備え、高速度で回転する回転体に関し、さらにはこの回転体を用いた電動コンプレッサおよびタービン発電機に関する。
The present invention relates to a rotating body provided with a permanent magnet in a rotating body and rotating at a high speed, and further to an electric compressor and a turbine generator using the rotating body.
近年、地球温暖化対策として、CO2排出量削減の取り組みが各国で導入されており、年々その排出量目標値も厳しくなっている。自動車分野においても然りであり、各メーカは燃費向上の技術開発に取組み、電気自動車(EV)や燃料電池車(FCV、ヒュエルセルビークル)のような内燃機関を使わない自動車等も開発されている。一方、世界市場では価格の面でいまだ内燃機関のみを駆動源とした自動車の需要が高く、これらがEVやFCVに置き換わるにはまだ年月を有する。
In recent years, efforts to reduce CO2 emissions have been introduced in various countries as a measure against global warming, and the target value of emissions has become stricter year by year. This is also true in the automobile field. Each manufacturer is working on the development of technology to improve fuel efficiency, and automobiles that do not use internal combustion engines such as electric vehicles (EV) and fuel cell vehicles (FCV, fuel cell vehicles) have also been developed. ing. On the other hand, in the global market, there is still a high demand for automobiles that use only an internal combustion engine as a driving source in terms of price, and it still has years to replace EVs and FCVs.
そのため、内燃機関を有する自動車の燃費向上技術の開発も急務とされ、その1つの潮流としてダウンサイジングターボという技術がある。これは簡単に説明すると、エンジン排気量を小さくして燃費を上げ、失ったトルクをターボで補うというものである。
Therefore, development of fuel efficiency improvement technology for automobiles with internal combustion engines is urgently needed, and one of the trends is a technology called downsizing turbo. In short, this means that the engine displacement is reduced to improve fuel efficiency, and the lost torque is compensated by turbo.
しかしながら、ターボ搭載エンジン車には弱点もあり、その一つとしてターボラグの問題がある。排気によって駆動する回転タービンの特性として、排気によって回転が上昇するまでタイムラグがある。
However, turbo-equipped engine vehicles also have weaknesses, one of which is the problem of turbo lag. As a characteristic of a rotating turbine driven by exhaust, there is a time lag until the rotation is increased by exhaust.
即ち、アクセルを踏んで加速する際に、排気によってタービンが回転し、タービンに直結したコンプレッサの回転により吸気圧が上昇するので、アクセルを踏んでから吸気圧が上昇するまでワンテンポ遅れてしまう。
That is, when stepping on the accelerator and accelerating, the turbine rotates due to exhaust, and the intake pressure increases due to the rotation of the compressor directly connected to the turbine. Therefore, there is a delay of one tempo until the intake pressure increases after the accelerator is pressed.
これを改善するために、吸気コンプレッサを取り付け、アクセルを踏むと同時にモータによる駆動でタイムラグなく、吸気圧を上げるという電動コンプレッサ技術がある。
In order to improve this, there is an electric compressor technology that installs an intake compressor, steps on the accelerator, and at the same time increases the intake pressure by driving with a motor without a time lag.
これらに用いるモータとしては、コンプレッサが必要とする回転数(数万rpm)まで、コンマ何秒(1秒以下)かで到達する加速能力を必要とする。そのため、モータの回転子のイナーシャをなるべく小さくする必要があり、小型のインナーロータ型モータが採用される。
The motor used for these needs to have an acceleration capacity that can reach the number of revolutions (tens of thousands of rpm) required by the compressor in a few seconds (1 second or less). Therefore, it is necessary to make the inertia of the rotor of the motor as small as possible, and a small inner rotor type motor is employed.
一般的な永久磁石を用いるインナーロータ型モータのロータ(回転子)の構造を図13、図14に示す。ロータは、シャフト(又はロータコア)11の外周面に、円弧状の断面を有する複数の永久磁石12が円筒状に貼り付けられて構成される、そして、回転時の遠心力によって磁石12が飛散しないように、磁石12の外周面に保護スリーブ15を設けて組立てられる(特許文献1、特許文献2)。
13 and 14 show the structure of a rotor (rotor) of an inner rotor type motor using a general permanent magnet. The rotor is configured by affixing a plurality of permanent magnets 12 having an arc-shaped cross section to the outer peripheral surface of a shaft (or rotor core) 11 in a cylindrical shape, and the magnets 12 do not scatter due to centrifugal force during rotation. As described above, the protective sleeve 15 is provided on the outer peripheral surface of the magnet 12 for assembly (Patent Documents 1 and 2).
ロータの高速度回転時には遠心力が大きくなるため、前記保護スリーブ15は、スリーブ自身と磁石12に加わる遠心力による半径方向の応力に耐えるために、特に高強度を必要とする。
Since the centrifugal force increases when the rotor rotates at a high speed, the protective sleeve 15 needs a particularly high strength in order to withstand radial stress due to the centrifugal force applied to the sleeve itself and the magnet 12.
一方で、高速度で回転するためには、ロータの不釣り合い量を小さくする必要もあり、高精度なバランス修正を必要とする。上記構造の場合、シャフト11に円弧状に分割された磁石12を円筒状に接着剤などで貼り付け、その上に保護スリーブ15を設ける。
On the other hand, in order to rotate at a high speed, it is necessary to reduce the amount of unbalance of the rotor, and a highly accurate balance correction is required. In the case of the above structure, the magnet 12 divided into the arc shape is attached to the shaft 11 in a cylindrical shape with an adhesive or the like, and the protective sleeve 15 is provided thereon.
しかし、保護スリーブ15と磁石12の隙間が大きいと、両者に介在する接着剤が遠心力で剥がれて磁石12が移動し、バランスが崩れる恐れがあるため、保護スリーブ15と磁石12の間には、なるべく隙間を設けたくない。
However, if the gap between the protective sleeve 15 and the magnet 12 is large, the adhesive interposed between the two may be peeled off by centrifugal force and the magnet 12 may move and lose its balance. I don't want to make a gap as much as possible.
また、磁石12は複数ピースから構成され、寸法公差内にあるとは言え、それぞれの大きさが僅かに異なるため、完全な円筒形にはならない。また、永久磁石は脆弱材料で脆いものが多く、過剰な応力を掛けると割れ易い。
Also, although the magnet 12 is composed of a plurality of pieces and is within the dimensional tolerance, the size of each magnet is slightly different, so that the magnet 12 does not have a complete cylindrical shape. Moreover, many permanent magnets are brittle materials and are easily broken when excessive stress is applied.
このような理由で、既成の円筒部材外周部に絞り加工、圧入または焼嵌め等で嵌合して外嵌保持させる(特許文献1、特許文献2)ことは難しく、かつ、磁石12と保護スリーブ15の間を隙間なく構成するのは困難である。
For this reason, it is difficult to fit and hold the outer periphery of an existing cylindrical member by drawing, press-fitting or shrink fitting (Patent Document 1, Patent Document 2), and the magnet 12 and protective sleeve It is difficult to configure between 15 without any gap.
そこで採用される方法の一つに、特許文献3または特許文献4に示されるような、フィラメントワインディング法によって、保護スリーブ15をカーボンファイバ(炭素繊維)で構成する方法がある。
As one of the methods adopted there, there is a method in which the protective sleeve 15 is made of carbon fiber (carbon fiber) by the filament winding method as shown in Patent Document 3 or Patent Document 4.
この方法は、磁石12の外周面に、樹脂を付着させた炭素繊維を略円周方向に螺旋状に巻き、付着している樹脂を熱硬化で固めて、炭素繊維強化プラスチックを形成する方法である。
This method is a method of forming a carbon fiber reinforced plastic by winding a carbon fiber having a resin attached on the outer peripheral surface of a magnet 12 in a spiral shape in a substantially circumferential direction and hardening the attached resin by thermosetting. is there.
この方法によれば、磁石12の外周に樹脂により密着して機械的強度の強い保護スリーブ15が構成されるので、高速回転で生じる発熱に対しても剛性を維持でき、遠心力が働いても磁石12はシャフトから剥離することが防止される。
According to this method, since the protective sleeve 15 having a high mechanical strength is formed by adhering to the outer periphery of the magnet 12 with a resin, rigidity can be maintained against heat generated by high-speed rotation, and centrifugal force works. The magnet 12 is prevented from peeling off from the shaft.
しかし、上記方法では別の問題が発生してしまう。すなわち、炭素繊維強化プラスチック(CFRP)は、熱硬化過程で保護スリーブ15と磁石12の外周面を強固に接着してしまうことである。
However, the above method causes another problem. That is, carbon fiber reinforced plastic (CFRP) is to firmly bond the protective sleeve 15 and the outer peripheral surface of the magnet 12 during the thermosetting process.
このように接着されると、磁石12とCFRPからなる保護スリーブ15とは線膨張率が異なるので、冷熱サイクルの環境下では、両者の円周方向の膨張と収縮量が異なり、接着境界面にストレスが加わることになる。
When bonded in this way, the linear expansion coefficient differs between the magnet 12 and the protective sleeve 15 made of CFRP. Therefore, in the environment of the cooling and heating cycle, the circumferential expansion and contraction amounts of the two differ, and the bonding boundary surface is different. Stress will be added.
図14は、そのストレスの状況を示しているが、冷熱サイクルが繰返されると、磁石12は接着された機械的強度の強い保護スリーブ15の熱変形によって引きずられて、矢印16方向に繰り返し力を受ける。
FIG. 14 shows the state of the stress. When the cooling cycle is repeated, the magnet 12 is dragged by the thermal deformation of the bonded protective sleeve 15 having a high mechanical strength, and a repeated force is applied in the direction of the arrow 16. receive.
例えば、熱膨張の場合、矢印16方向に保護スリーブ15が膨張すると、保護スリーブ15に接着している磁石12が矢印17の両側に引張られ、磁石12同士の境界面に僅かな隙間や、磁石自身に割れが生じる恐れがある。
For example, in the case of thermal expansion, when the protective sleeve 15 expands in the direction of the arrow 16, the magnet 12 adhered to the protective sleeve 15 is pulled on both sides of the arrow 17, and a slight gap or magnet is formed on the boundary surface between the magnets 12. There is a risk of cracking in itself.
磁石に隙間や割れが生じると遠心力により一層拡大し、遠心力を取り去っても元に戻らないため、磁石12が移動したままとなり、ロータの重量バランスが崩れてしまう恐れがある。
When gaps or cracks occur in the magnet, it is further expanded by centrifugal force, and even if the centrifugal force is removed, it does not return to its original state. Therefore, the magnet 12 remains moving, and the weight balance of the rotor may be lost.
従って、電動機の組立時に調整されたロータの重量バランスは崩れると、高速度回転が出来なくなる。
Therefore, when the weight balance of the rotor adjusted at the time of assembling the motor is lost, high-speed rotation cannot be performed.
この課題は、電動ターボモータの回転子(回転体)に限らず、内燃機関の排気や蒸気によって駆動されるタービンに同軸に発電機が配置されたタービン発電機の回転子についても同様である。
This problem is not limited to the rotor (rotary body) of the electric turbo motor, but also applies to the rotor of a turbine generator in which a generator is arranged coaxially with a turbine driven by exhaust gas or steam of an internal combustion engine.
本発明は、上記した従来の問題点にかんがみ、回転体を構成する永久磁石を遠心力から保護すると共に、ヒートサイクルによる磁石の破断を防止することで、高速度回転域まで回転可能な回転体、電動コンプレッサおよびタービン発電機を提供することを目的とする。
In view of the above-described conventional problems, the present invention protects a permanent magnet constituting a rotating body from centrifugal force and prevents breakage of the magnet due to a heat cycle, so that the rotating body can be rotated to a high speed rotation range. An object is to provide an electric compressor and a turbine generator.
本発明は、上記課題を解決するために、シャフトと、前記シャフトの外周に円筒状に配置されて固定された複数の磁石と、前記複数の磁石の外周にフィラメントを巻回して構成された円筒状の保護部材とを備え、前記磁石の外周と前記保護部材の内周の間に非接着層を介在させたことを特徴とする。
In order to solve the above problems, the present invention provides a shaft, a plurality of magnets arranged and fixed in a cylindrical shape on the outer periphery of the shaft, and a cylinder formed by winding a filament around the outer periphery of the plurality of magnets. And a non-adhesive layer is interposed between the outer periphery of the magnet and the inner periphery of the protective member.
この構成によれば、遠心力が働いても磁石は、シャフトから剥離することが防止されると共に、磁石と保護部材が接着されてないので、ヒートサイクルによる磁石へのストレスが防止される。
According to this configuration, even if centrifugal force is applied, the magnet is prevented from peeling off from the shaft, and the magnet and the protective member are not adhered to each other, so that stress on the magnet due to heat cycle is prevented.
また、上記において、前記非接着層は、一方側に前記磁石の外周に接着する接着面を有し、他方の側に前記保護部材の内周に摺動可能に接する非接着面を有することを特徴とする。
In the above, the non-adhesive layer has an adhesive surface that adheres to the outer periphery of the magnet on one side and a non-adhesive surface that slidably contacts the inner periphery of the protective member on the other side. Features.
この構成によれば、非接着層を形成するのに非接着層の接着面を磁石の外周に接着するので、作業が簡単となる。
According to this configuration, since the non-adhesive layer is formed, the adhesion surface of the non-adhesion layer is adhered to the outer periphery of the magnet, so that the operation is simplified.
また、上記において、前記非接着層は、前記複数の磁石の各外周に個別に接着されたフッ素樹脂フィルムであることを特徴とする。
Also, in the above, the non-adhesive layer is a fluororesin film individually bonded to each outer periphery of the plurality of magnets.
この構成によれば、非接着層を形成するのに非接着層の接着面を個別の磁石の外周に接着するので、各磁石に個別に小ピースのフッ素樹脂フィルムを接着するので、接着作業が簡単となる。
According to this configuration, the adhesive surface of the non-adhesive layer is adhered to the outer periphery of the individual magnet to form the non-adhesive layer, and thus the small piece fluororesin film is individually adhered to each magnet. It will be easy.
また、上記において、前記非接着層は、前記複数の磁石の外周全体に接着されたフッ素樹脂フィルムであることを特徴とする。
In the above, the non-adhesive layer is a fluororesin film adhered to the entire outer periphery of the plurality of magnets.
この構成によれば、複数の磁石の外周全体にフッ素樹脂フィルムを一括で接着するので、非接着層の接着作業が短時間で行える。
According to this configuration, since the fluororesin film is bonded at once to the entire outer periphery of the plurality of magnets, the bonding operation of the non-adhesive layer can be performed in a short time.
また、上記において、前記非接着層は、前記磁石の外周に形成されたコーティング材で構成されたことを特徴とする。
In the above, the non-adhesive layer is formed of a coating material formed on the outer periphery of the magnet.
また、上記において、コーティング材は、フッ素樹脂または窒化チタンであることを特徴とする。
In the above, the coating material is a fluororesin or titanium nitride.
これらの構成によれば、磁石の外周にフッ素樹脂または窒化チタンをコーティングすればよいので、非接着層の形成が簡単で均一に行える。
According to these structures, the outer periphery of the magnet may be coated with fluororesin or titanium nitride, so that the non-adhesive layer can be formed easily and uniformly.
また、上記において、前記コーティング材は前記磁石の外周に塗布された離型剤により形成されたことを特徴とする。
In the above, the coating material is formed by a release agent applied to the outer periphery of the magnet.
また、上記において、前記離型剤は、フッ素系またはシリコン系の離型剤であることを特徴とする。
In the above, the release agent is a fluorine-type or silicon-type release agent.
これらの構成によれば、磁石の外周にフッ素系またはシリコン系の離型剤を塗布するので、非接着層の形成が簡単で均一に行える。
According to these configurations, since the fluorine-based or silicon-based release agent is applied to the outer periphery of the magnet, the non-adhesive layer can be easily and uniformly formed.
また、本発明は、固定子、回転子および気体を圧縮するインペラを備え、前記インペラは前記回転子に同軸に配置される電動コンプレッサにおいて、前記回転子として、上記の何れかに記載の回転体を用いたことを特徴とする。
In addition, the present invention includes a stator, a rotor, and an impeller that compresses gas, and the impeller is an electric compressor that is disposed coaxially with the rotor. It is characterized by using.
この構成によれば、ヒートサイクルによる磁石の破断を防止した電動コンプレッサを得ることができる。
According to this configuration, it is possible to obtain an electric compressor that prevents breakage of the magnet due to heat cycle.
また、本発明は、固定子、回転子および搬送気体により回転するタービンを備え、前記タービンは前記回転子に同軸に配置されるタービン発電機において、前記回転子として、上記の何れかに記載の回転体を用いたことを特徴とする。
Moreover, this invention is provided with the turbine rotated with a stator, a rotor, and carrier gas, The said turbine is a turbine generator arrange | positioned coaxially with the said rotor. It is characterized by using a rotating body.
この構成によれば、ヒートサイクルによる磁石の破断を防止したタービン発電機が得ることができる。
According to this configuration, it is possible to obtain a turbine generator that prevents breakage of the magnet due to heat cycle.
本発明によれば、回転体を構成する永久磁石と、電動コンプレッサおよびタービン発電機の回転子を構成する永久磁石とを、遠心力から保護すると共に、ヒートサイクルによる磁石の破断を防止することができる。
ADVANTAGE OF THE INVENTION According to this invention, while protecting the permanent magnet which comprises a rotary body, and the permanent magnet which comprises the rotor of an electric compressor and a turbine generator from a centrifugal force, it can prevent the fracture | rupture of the magnet by a heat cycle. it can.
以下、図1から12に基づいて、本発明の各実施例を説明する。各図において、同一符号を付した部分は同一或いは相当する部分を示す。
Hereinafter, each embodiment of the present invention will be described with reference to FIGS. In each figure, the parts denoted by the same reference numerals indicate the same or corresponding parts.
図1は、本発明の実施例1の回転体のシャフトに直角方向の断面図で、図2は、同じくシャフトに沿った断面図である。
FIG. 1 is a cross-sectional view perpendicular to the shaft of the rotating body according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view along the shaft.
10は回転体で、その外周に配置される固定子(図示省略)によって電動コンプレッサ用ターボモータを構成し、固定子のコイルへの給電により、数万rpm以上で高速度回転する。
Numeral 10 is a rotating body, which constitutes a turbo motor for an electric compressor by a stator (not shown) arranged on the outer periphery thereof, and rotates at a high speed of tens of thousands rpm or more by supplying power to the coil of the stator.
1は、回転体のシャフトで、両端が図示しない軸受によって支持されている。2は、前記シャフト1の外周面に接着剤により固着された永久磁石で、円弧状断面の複数ピースを円筒状に組合わせて構成される。
1 is a shaft of a rotating body, both ends of which are supported by bearings (not shown). Reference numeral 2 denotes a permanent magnet fixed to the outer peripheral surface of the shaft 1 with an adhesive, and is configured by combining a plurality of pieces having an arc-shaped cross section into a cylindrical shape.
この複数ピースは偶数であり、円筒状に組合わせた外周面の極性が、N→S→N→Sと交互になるように構成され、本実施例1では、4ピースの磁石2a~2dで構成される。
The plurality of pieces are even numbers, and the polarities of the outer peripheral surfaces combined in a cylindrical shape are alternately changed from N → S → N → S. In the first embodiment, four pieces of magnets 2a to 2d are used. Composed.
5は、回転での遠心力による磁石2a~2dの浮上がりと飛散を防止する保護部材である。保護部材5は、円筒状に形成された磁石2a~2dの外周面に円筒状に形成され、非磁性材料からなる。
Numeral 5 is a protective member that prevents the magnets 2a to 2d from being lifted and scattered by centrifugal force during rotation. The protection member 5 is formed in a cylindrical shape on the outer peripheral surface of the magnets 2a to 2d formed in a cylindrical shape, and is made of a nonmagnetic material.
保護部材5は、磁石2a~2dで形成された円筒の外周面に、フィラメントワインディング法によりエポキシ樹脂を付着させたガラス繊維や炭素繊維を螺旋状に巻回して構成される。
The protective member 5 is configured by spirally winding glass fibers or carbon fibers having an epoxy resin adhered to the outer peripheral surface of a cylinder formed of magnets 2a to 2d by a filament winding method.
4は、磁石2a~2dで形成された円筒の外周面と前記保護部材5の内周面の間に介在した非接着層で、磁石2a~2dの円筒の外周面側に接着して取付けられる。
Reference numeral 4 denotes a non-adhesive layer interposed between the outer peripheral surface of the cylinder formed by the magnets 2a to 2d and the inner peripheral surface of the protective member 5, and is attached to the outer peripheral surface of the cylinder of the magnets 2a to 2d. .
回転体10は、上記シャフト1、永久磁石2、非接着層4及び保護部材5によって構成される。
The rotating body 10 is composed of the shaft 1, the permanent magnet 2, the non-adhesive layer 4 and the protective member 5.
非接着層4は、図3に断面を示すように、一方側に前記磁石の外周面に接着する接着面3を、他方の側に前記保護部材5の内周に摺動可能に接する非接着面7をそれぞれ有する。接着面3は、保護用の剥離ライナー6で覆われ、この剥離ライナー6を剥いで磁石2の外周面に接着される。
The non-adhesive layer 4 has a non-adhesive contact with an adhesive surface 3 that adheres to the outer peripheral surface of the magnet on one side and a slidable contact with the inner periphery of the protective member 5 on the other side, as shown in cross section in FIG. Each has a surface 7. The adhesive surface 3 is covered with a protective release liner 6, and the release liner 6 is peeled off and bonded to the outer peripheral surface of the magnet 2.
例えば、前記非接着面7は、PTFEフィルム(フッ素樹脂フィルム)であり、前記接着面3はシリコン系粘着剤であり、剥離ライナー6はPET剥離ライナーからなる。
For example, the non-adhesive surface 7 is a PTFE film (fluororesin film), the adhesive surface 3 is a silicone-based adhesive, and the release liner 6 is a PET release liner.
図4は本発明の実施例1の回転体の斜視図である。非接着層4は分割された4ピース4a~4dからなり、それぞれ、磁石2a~2dの外周面に個別に接着される。この構成では、各磁石に個別に小ピースの非接着層4を接着するので、接着作業が簡単となる。
FIG. 4 is a perspective view of the rotating body according to the first embodiment of the present invention. The non-adhesive layer 4 is composed of divided four pieces 4a to 4d, and individually bonded to the outer peripheral surfaces of the magnets 2a to 2d. In this configuration, the small piece of the non-adhesive layer 4 is individually bonded to each magnet, so that the bonding operation is simplified.
図5は、本実施例1の磁石の外周に保護部材5を形成する作業の説明図であり、フィラメントワインディングを行う巻回装置が示される。
FIG. 5 is an explanatory diagram of the operation of forming the protective member 5 on the outer periphery of the magnet of the first embodiment, and shows a winding device that performs filament winding.
51は4本の炭素繊維52の繰り出しリール、53は繰り出された4本の炭素繊維51の間隔と姿勢を揃えるバーである。54は各炭素繊維52にエポキシ樹脂を付着させる樹脂槽、55は樹脂槽54を支えて共に幅方向に往復動するヘッド、56はヘッド55が移動する支持台、58はヘッド55の往復動を制御するヘッド移動機構である。
51 is a feeding reel for the four carbon fibers 52, and 53 is a bar that aligns the spacing and posture of the four carbon fibers 51 that have been fed. 54 is a resin tank for adhering epoxy resin to each carbon fiber 52, 55 is a head that supports the resin tank 54 and reciprocates in the width direction, 56 is a support base on which the head 55 moves, and 58 is a reciprocating head 55. A head moving mechanism to be controlled.
ヘッド55の前方には、図4に示す回転体10が配置されている。回転体10は、シャフト1の両端が巻回装置の支持体(図示省略)に支持され、回転機構59によって回転駆動される。
A rotating body 10 shown in FIG. 4 is disposed in front of the head 55. The rotating body 10 has both ends of the shaft 1 supported by a supporting body (not shown) of the winding device and is rotated by a rotating mechanism 59.
4本の炭素繊維52は、樹脂槽54を通過することで表面にエポキシ樹脂が付着される。次いで、回転機構59による回転体10の回転と、ヘッド54の往復動により、回転体の非接着層4の外周に炭素繊維52が螺旋状に巻回される。
The epoxy resin is adhered to the surface of the four carbon fibers 52 by passing through the resin tank 54. Next, the carbon fiber 52 is spirally wound around the outer periphery of the non-adhesive layer 4 of the rotating body by the rotation of the rotating body 10 by the rotating mechanism 59 and the reciprocating motion of the head 54.
図6に示すように、回転体10は、非接着層4の外周面に炭素繊維52が緻密に巻回され、所定の層数が巻回された後、巻回装置の支持体から外される。
外された回転体10は全体が加熱され、炭素繊維52に付着しているエポキシ樹脂が加熱硬化される。 As shown in FIG. 6, the rotatingbody 10 is removed from the support of the winding device after the carbon fiber 52 is densely wound around the outer peripheral surface of the non-adhesive layer 4 and a predetermined number of layers are wound. The
The removed rotatingbody 10 is entirely heated, and the epoxy resin adhering to the carbon fiber 52 is heated and cured.
外された回転体10は全体が加熱され、炭素繊維52に付着しているエポキシ樹脂が加熱硬化される。 As shown in FIG. 6, the rotating
The removed rotating
図7は加熱硬化後の状態を断面で示す。非接着層4の外周に巻回された炭素繊維52同士が、エポキシ樹脂の硬化で接着され、機械的強度の強い円筒状の保護部材5が形成される(図では1層のみ巻回されている。)。
FIG. 7 shows the state after heat curing in cross section. The carbon fibers 52 wound around the outer periphery of the non-adhesive layer 4 are bonded together by curing of the epoxy resin to form a cylindrical protective member 5 having a high mechanical strength (only one layer is wound in the figure). Yes.)
実施例1では、非接着層4を分割して4ピース4a~4dとし、それぞれ、各磁石2a~2dの外周面に個別に接着するので、加熱硬化された回転体10は、図8の断面構造となる。
In the first embodiment, the non-adhesive layer 4 is divided into four pieces 4a to 4d and individually bonded to the outer peripheral surfaces of the magnets 2a to 2d. It becomes a structure.
図8で、非接着層4を構成する非接着面7と接着面3が共に、4ピースとされ、各ピースの間には境目が生じている。
8, the non-adhesive surface 7 and the adhesive surface 3 constituting the non-adhesive layer 4 are both four pieces, and there is a boundary between the pieces.
図8において、磁石2と保護部材5は、線膨張率の差によって円周方向の膨張、収縮量が異なる。従って、熱膨張の場合、機械的強度の強い保護部材5が矢印9の円周方向に膨張して移動する。
In FIG. 8, the magnet 2 and the protective member 5 have different amounts of expansion and contraction in the circumferential direction depending on the difference in linear expansion coefficient. Therefore, in the case of thermal expansion, the protective member 5 having high mechanical strength expands and moves in the circumferential direction indicated by the arrow 9.
実施例1では、保護部材5の内周面と磁石2の外周面に非接着層4が介在し、非接着層4の非接着面7が保護部材5に接しているので、保護部材5が膨張で移動しても、非接着面7の面上を摺動するのみで、非接着層4および磁石2に力が加わらない。
In Example 1, the non-adhesive layer 4 is interposed between the inner peripheral surface of the protective member 5 and the outer peripheral surface of the magnet 2, and the non-adhesive surface 7 of the non-adhesive layer 4 is in contact with the protective member 5. Even if it moves by expansion, it only slides on the surface of the non-adhesive surface 7, and no force is applied to the non-adhesive layer 4 and the magnet 2.
従って、回転体10に加わる遠心力から永久磁石を保護すると共に、ヒートサイクルによって保護部材5が膨張、収縮しても、磁石2にストレスが加わることが無い。
Therefore, the permanent magnet is protected from the centrifugal force applied to the rotating body 10, and no stress is applied to the magnet 2 even if the protective member 5 expands and contracts due to the heat cycle.
図9は、本発明の実施例2の回転体の一部を示す断面図である。実施例2では、非接着層4(接着面3、非接着面7)を4ピースに分割しないで、連続した状態の非接着層4を複数の磁石2の外周に一括して接着している。
FIG. 9 is a cross-sectional view showing a part of the rotating body according to the second embodiment of the present invention. In Example 2, the non-adhesive layer 4 (adhesive surface 3, non-adhesive surface 7) is bonded to the outer periphery of the plurality of magnets 2 at once without dividing the non-adhesive layer 4 (adhesive surface 3, non-adhesive surface 7) into four pieces. .
この構成によれば、複数の磁石の外周全体にフッ素樹脂フィルムを一括で接着できるので、非接着層の接着作業が短時間で行える。
According to this configuration, since the fluororesin film can be bonded to the entire outer periphery of the plurality of magnets at once, the bonding operation of the non-adhesive layer can be performed in a short time.
また、先の実施例1では複数の非接着層4a~4dの間の境目に隙間ができるが、本実施例2では非接着層4に隙間が無く、各磁石の境目において非接着層4の外周が滑らかとなり、保護部材5との滑りが一層良い。
In the first embodiment, a gap is formed at the boundary between the plurality of non-adhesive layers 4a to 4d. However, in this second embodiment, there is no gap in the non-adhesive layer 4, and the non-adhesive layer 4 is formed at the boundary of each magnet. The outer periphery becomes smooth, and the sliding with the protective member 5 is even better.
図9の断面構造において、磁石2と保護部材5は、線膨張率が異なるが、機械的強度の強い保護部材5が矢印9の円周方向に熱膨張しても、非接着層4(非接着面7)の面上を摺動するのみである。
In the cross-sectional structure of FIG. 9, the magnet 2 and the protection member 5 have different linear expansion coefficients, but even if the protection member 5 having a high mechanical strength is thermally expanded in the circumferential direction of the arrow 9, the non-adhesive layer 4 (non- It only slides on the adhesive surface 7).
従って、回転体10に加わる遠心力から永久磁石を保護すると共に、ヒートサイクルによる保護部材5の膨張、収縮があっても、磁石2にストレスが加わることが無い。
Therefore, the permanent magnet is protected from the centrifugal force applied to the rotating body 10, and no stress is applied to the magnet 2 even if the protective member 5 expands or contracts due to the heat cycle.
図10は、本発明の実施例3及び4の回転体の一部を示す断面図である。先の実施例1、2では、非接着層4としてPTFEフィルム(フッ素樹脂フィルム)で形成しているが、本実施例3では、非接着層4として非接着性のコーティング材8で構成している。
FIG. 10 is a cross-sectional view showing a part of the rotating body of Examples 3 and 4 of the present invention. In Examples 1 and 2, the PTFE film (fluororesin film) is formed as the non-adhesive layer 4, but in this Example 3, the non-adhesive layer 4 is composed of a non-adhesive coating material 8. Yes.
コーティング材8は、フッ素樹脂または窒化チタンであり、フッ素樹脂は磁石2の外周面に塗布して固着され、窒化チタンは磁石2の外周に蒸着により固着形成される。
The coating material 8 is made of fluororesin or titanium nitride. The fluororesin is applied and fixed to the outer peripheral surface of the magnet 2, and the titanium nitride is fixedly formed on the outer periphery of the magnet 2 by vapor deposition.
この構成によれば、磁石の外周面にフッ素樹脂または窒化チタンをコーティングすればよいので、非接着層の形成が簡単で均一に行える。
According to this configuration, since it is only necessary to coat the outer peripheral surface of the magnet with fluororesin or titanium nitride, the non-adhesive layer can be formed easily and uniformly.
コーティング材8の形成は、シャフト1に磁石2を接着する前の実施と、接着後の実施が考えられる。
The formation of the coating material 8 can be performed before the magnet 2 is bonded to the shaft 1 and after the bonding.
シャフト1に磁石2を接着する前の実施の場合は、磁石2の内周面に誤ってコーティング材8が付着しないように(磁石2の内周面に付着すると、シャフト1の外周面と磁石2の内周面の接着強度が弱くなる)、予め、磁石2の内周面にテープ等でマスキングを施すことが必要である。
In the case of implementation before the magnet 2 is bonded to the shaft 1, the coating material 8 is not mistakenly attached to the inner peripheral surface of the magnet 2 (if it adheres to the inner peripheral surface of the magnet 2, the outer peripheral surface of the shaft 1 and the magnet 2), it is necessary to mask the inner peripheral surface of the magnet 2 with a tape or the like in advance.
このように、磁石2の内周面をマスキングした状態で、磁石2の外周面に塗布や蒸着の作業でコーティング材8を形成し、作業後にマスキングテープを剥がす。
Thus, with the inner peripheral surface of the magnet 2 masked, the coating material 8 is formed on the outer peripheral surface of the magnet 2 by coating or vapor deposition, and the masking tape is peeled off after the operation.
一方、シャフト1に磁石2を接着後にコーティング材8を形成する場合は、磁石の外周面以外のコーティング不要な部分にマスキングを施した状態で形成作業を行う。
On the other hand, when the coating material 8 is formed after the magnet 2 is bonded to the shaft 1, the forming operation is performed in a state where masking is applied to portions other than the outer peripheral surface of the magnet that do not require coating.
コーティング材が形成された後は、その外周面に図5に示す巻回装置により、炭素繊維52を巻回し保護部材5が形成される。
After the coating material is formed, the protective member 5 is formed by winding the carbon fiber 52 on the outer peripheral surface of the coating material by the winding device shown in FIG.
図10の断面構造において、磁石2と保護部材5は、線膨張率が異なるが、機械的強度の強い保護部材5が矢印9の円周方向に熱膨張しても、コーティング材8の面上を摺動するのみである。
In the cross-sectional structure of FIG. 10, the magnet 2 and the protection member 5 have different linear expansion coefficients, but even if the protection member 5 having a high mechanical strength is thermally expanded in the circumferential direction of the arrow 9, It only slides.
従って、回転体10に加わる遠心力から永久磁石を保護すると共に、ヒートサイクルによる保護部材5の膨張、収縮があっても、磁石2にストレスが加わることが無い。
Therefore, the permanent magnet is protected from the centrifugal force applied to the rotating body 10, and no stress is applied to the magnet 2 even if the protective member 5 expands or contracts due to the heat cycle.
本実施例4では、コーティング材8として離型剤を用い、離型剤はフッ素系またはシリコン系の離型剤を磁石2の外周面に塗布することで付着させる。
In Example 4, a release agent is used as the coating material 8, and the release agent is adhered by applying a fluorine-based or silicon-based release agent to the outer peripheral surface of the magnet 2.
磁石2をシャフト1に接着する前に離型剤を塗布する場合は、磁石2の内周面(シャフト1の外周面との接着面)に誤って離型剤が付着しないように、予め、磁石2の内周面にテープ等でマスキングを施す必要がある。
When applying the release agent before adhering the magnet 2 to the shaft 1, in order to prevent the release agent from accidentally adhering to the inner peripheral surface of the magnet 2 (adhesion surface with the outer peripheral surface of the shaft 1), It is necessary to mask the inner peripheral surface of the magnet 2 with a tape or the like.
また、離型剤は塗布後に他の作業による不用意な接触で拭き取られてしまうので、図5に示す巻回装置により炭素繊維52が巻回される直前に塗布するのが好ましい。
Further, since the release agent is wiped off by inadvertent contact by other work after application, it is preferably applied immediately before the carbon fiber 52 is wound by the winding device shown in FIG.
この構成によれば、磁石の外周面にフッ素系またはシリコン系の離型剤を塗布するだけで良いので、非接着層の形成が簡単で均一に行える。
According to this configuration, since it is only necessary to apply a fluorine-based or silicon-based release agent to the outer peripheral surface of the magnet, the non-adhesive layer can be easily and uniformly formed.
離型剤が付着された後は、その離型剤の外周面に図5に示す巻回装置により、炭素繊維52を巻回し保護部材5が形成される。
After the release agent is attached, the carbon fiber 52 is wound around the outer peripheral surface of the release agent by the winding device shown in FIG. 5 to form the protective member 5.
上記のように構成された回転体10は、図10に示すように、機械的強度の強い保護部材5が矢印9の円周方向に熱膨張しても、離型剤(コーティング材8)の面上を摺動するのみである。
As shown in FIG. 10, the rotating body 10 configured as described above has a release agent (coating material 8) even when the protective member 5 having high mechanical strength is thermally expanded in the circumferential direction indicated by the arrow 9. It only slides on the surface.
従って、回転体10に加わる遠心力から永久磁石を保護すると共に、ヒートサイクルによる保護部材5の膨張、収縮があっても、磁石2にストレスが加わることが無い。
Therefore, the permanent magnet is protected from the centrifugal force applied to the rotating body 10, and no stress is applied to the magnet 2 even if the protective member 5 expands or contracts due to the heat cycle.
図11は、本発明の実施例5で、インナーロータ型の電動機を有する電動コンプレッサの断面図である。
FIG. 11 is a cross-sectional view of an electric compressor having an inner rotor type electric motor in Example 5 of the present invention.
31は電動コンプレッサで、コンプレッサ部32とインナーロータ型の電動機33からなる。コンプレッサ部32はインペラ34を内蔵し、電動機33は回転子35と固定子36からなる。
31 is an electric compressor, which includes a compressor section 32 and an inner rotor type electric motor 33. The compressor unit 32 includes an impeller 34, and the electric motor 33 includes a rotor 35 and a stator 36.
インペラ34と回転子35は、回転軸37(シャフト)に同軸に一体に構成され、ベアリング38を介してハウジング39に回転可能に支持されている。また、固定子36は、ハウジング39に固定されている。
The impeller 34 and the rotor 35 are integrally formed coaxially with a rotating shaft 37 (shaft), and are rotatably supported by a housing 39 via a bearing 38. The stator 36 is fixed to the housing 39.
上記構成において、図示しないコントローラ(インバータ)から制御用の電力が電動機に供給されると、回転子35は所定方向に高速回転し、同時にインペラ34も高速回転する。
In the above configuration, when control electric power is supplied to the motor from a controller (inverter) (not shown), the rotor 35 rotates at a high speed in a predetermined direction, and the impeller 34 also rotates at a high speed.
その結果、インペラ34によって矢印に示すように方向に外気が吸引され、圧縮されて排出される。
As a result, the outside air is sucked in the direction indicated by the arrow by the impeller 34, compressed and discharged.
一般的に、内燃機関の吸気に用いられる電動コンプレッサは、回転数が数万回転であり、加速・減速の繰り返しが要求される。
Generally, an electric compressor used for intake of an internal combustion engine has several tens of thousands of revolutions, and is required to repeat acceleration and deceleration.
本実施例5の電動コンプレッサでは、回転子35を上記実施例1~4の何れかの回転体とすることにより、冷熱サイクルの環境下において、高速回転で繰り返し使用された場合でも、回転子35の磁石の割れ等を防止できる。
In the electric compressor of the fifth embodiment, the rotor 35 is any one of the rotors of the first to fourth embodiments, so that the rotor 35 can be used even when it is repeatedly used at a high speed rotation in a cold cycle environment. It is possible to prevent cracking of the magnet.
従って、電動コンプレッサの回転子を構成する永久磁石を高速回転による遠心力から保護すると共に、ヒートサイクルによる破断から防止することができ、回転体のバランスを保って、電動コンプレッサを高回転に維持することができる。
Therefore, the permanent magnet constituting the rotor of the electric compressor can be protected from centrifugal force due to high-speed rotation and can be prevented from being broken by heat cycle, and the electric compressor can be maintained at high speed while maintaining the balance of the rotating body. be able to.
図12は、本発明の実施例6で、インナーロータ型の発電機を有するタービン発電機の断面図である。
FIG. 12 is a cross-sectional view of a turbine generator having an inner rotor type generator in Example 6 of the present invention.
41はタービン発電機で、タービン部42とインナーロータ型の発電機43からなる。タービン部42はタービン44を内蔵し、発電機43は回転子45と固定子46からなる。
41 is a turbine generator, and includes a turbine section 42 and an inner rotor type generator 43. The turbine section 42 includes a turbine 44, and the generator 43 includes a rotor 45 and a stator 46.
タービン44と回転子45は、回転軸47(シャフト)に同軸に一体に構成され、ベアリング48を介してハウジング49に回転可能に支持されている。また、固定子46は、ハウジング49に固定されている。
The turbine 44 and the rotor 45 are integrally formed coaxially with a rotating shaft 47 (shaft), and are rotatably supported by a housing 49 via a bearing 48. The stator 46 is fixed to the housing 49.
上記構成において、矢印で示す方向に圧縮空気がタービン44に送り込まれると、そのエネルギーでタービン44が所定方向に高速回転し、同時に同軸に一体形成されている回転子45も高速回転する。
In the above configuration, when compressed air is sent into the turbine 44 in the direction indicated by the arrow, the turbine 44 rotates at a high speed in a predetermined direction with the energy, and at the same time, the rotor 45 integrally formed coaxially also rotates at a high speed.
その結果、固定子のコイルに電気的に接続された図示しない受電部へ電力が適宜供給されるように動作する。
As a result, it operates so that power is appropriately supplied to a power receiving unit (not shown) electrically connected to the stator coil.
一般に、内燃機関の排気で駆動されるタービン発電機は数万回転に及び、加減速が繰り返し行われる。
Generally, a turbine generator driven by exhaust gas from an internal combustion engine reaches tens of thousands of revolutions, and acceleration / deceleration is repeatedly performed.
本実施例6のタービン発電機41では、回転子45を上記実施例1~4の何れかの回転体とすることにより、冷熱サイクルの環境下において、高速回転で繰り返し使用された場合でも、回転子45の磁石の割れ等を防止できる。
In the turbine generator 41 of the sixth embodiment, by using the rotor 45 as the rotor of any of the first to fourth embodiments, the rotor 45 can rotate even when repeatedly used at a high speed rotation in an environment of a thermal cycle. The crack of the magnet of the child 45 can be prevented.
従って、タービン発電機の回転子を構成する永久磁石を高速回転による遠心力から保護すると共に、ヒートサイクルによる破断から防止することができ、回転体のバランスを保って、タービン発電機を高回転に維持することができる。
Therefore, the permanent magnets constituting the rotor of the turbine generator can be protected from centrifugal force due to high speed rotation, and can be prevented from being broken by heat cycle, and the turbine generator can be rotated at high speed while maintaining the balance of the rotating body. Can be maintained.
1…シャフト
2、2a、2b、2c、2d…永久磁石、磁石
3…接着面
4…非接着層
4a、4b、4c、4d…ピース
5…保護部材
6…剥離ライナー
7…非接着面
9…保護部材の膨張方向、矢印
10…回転体
11…シャフト
12…磁石
15…保護スリーブ
16…保護スリーブの膨張方向、矢印
17…磁石の引張り方向、矢印
31…電動コンプレッサ
32…コンプレッサ部
33…電動機
34…インペラ
35…回転子
36…固定子
37…回転軸
38…ベアリング
39…ハウジング
41…タービン発電機
42…タービン部
43…発電機
44…タービン
45…回転子
46…固定子
47…回転軸
48…ベアリング
49…ハウジング
51…繰り出しリール
52…炭素繊維
53…バー
54…樹脂槽
55…ヘッド
56…支持台
58…ヘッド移動機構
59…回転機構 DESCRIPTION OFSYMBOLS 1 ... Shaft 2, 2a, 2b, 2c, 2d ... Permanent magnet, magnet 3 ... Adhesion surface 4 ... Non-adhesion layer 4a, 4b, 4c, 4d ... Piece 5 ... Protection member 6 ... Release liner 7 ... Non-adhesion surface 9 ... Direction of expansion of protective member, arrow 10 ... rotating body 11 ... shaft 12 ... magnet 15 ... protective sleeve 16 ... direction of expansion of protective sleeve, arrow 17 ... direction of tension of magnet, arrow 31 ... electric compressor 32 ... compressor section 33 ... electric motor 34 ... impeller 35 ... rotor 36 ... stator 37 ... rotating shaft 38 ... bearing 39 ... housing 41 ... turbine generator 42 ... turbine section 43 ... generator 44 ... turbine 45 ... rotor 46 ... stator 47 ... rotating shaft 48 ... Bearing 49 ... Housing 51 ... Feeding reel 52 ... Carbon fiber 53 ... Bar 54 ... Resin tank 55 ... Head 56 ... Support base 58 ... Head moving mechanism 59 ... Rotation Structure
2、2a、2b、2c、2d…永久磁石、磁石
3…接着面
4…非接着層
4a、4b、4c、4d…ピース
5…保護部材
6…剥離ライナー
7…非接着面
9…保護部材の膨張方向、矢印
10…回転体
11…シャフト
12…磁石
15…保護スリーブ
16…保護スリーブの膨張方向、矢印
17…磁石の引張り方向、矢印
31…電動コンプレッサ
32…コンプレッサ部
33…電動機
34…インペラ
35…回転子
36…固定子
37…回転軸
38…ベアリング
39…ハウジング
41…タービン発電機
42…タービン部
43…発電機
44…タービン
45…回転子
46…固定子
47…回転軸
48…ベアリング
49…ハウジング
51…繰り出しリール
52…炭素繊維
53…バー
54…樹脂槽
55…ヘッド
56…支持台
58…ヘッド移動機構
59…回転機構 DESCRIPTION OF
Claims (10)
- シャフトと、
前記シャフトの外周に円筒状に配置されて固定された複数の磁石と、
前記複数の磁石の外周にフィラメントを巻回して構成された円筒状の保護部材とを備え、
前記磁石の外周と前記保護部材の内周の間に非接着層を介在させたことを特徴とする回転体。 A shaft,
A plurality of magnets arranged and fixed in a cylindrical shape on the outer periphery of the shaft;
A cylindrical protective member configured by winding a filament around the outer periphery of the plurality of magnets;
A rotating body comprising a non-adhesive layer interposed between an outer periphery of the magnet and an inner periphery of the protective member. - 前記非接着層は、一方側に前記磁石の外周に接着する接着面を有し、他方の側に前記保護部材の内周に摺動可能に接する非接着面を有することを特徴とする請求項1に記載の回転体。 The non-adhesive layer has an adhesive surface that adheres to the outer periphery of the magnet on one side and a non-adhesive surface that slidably contacts the inner periphery of the protective member on the other side. The rotating body according to 1.
- 前記非接着層は、前記複数の磁石の各外周に個別に接着されたフッ素樹脂フィルムであることを特徴とする請求項2に記載の回転体。 3. The rotating body according to claim 2, wherein the non-adhesive layer is a fluororesin film individually bonded to each outer periphery of the plurality of magnets.
- 前記非接着層は、前記複数の磁石の外周全体に接着されたフッ素樹脂フィルムであることを特徴とする請求項2に記載の回転体。 The rotating body according to claim 2, wherein the non-adhesive layer is a fluororesin film adhered to the entire outer periphery of the plurality of magnets.
- 前記非接着層は、前記磁石の外周に形成されたコーティング材で構成されたことを特徴とする請求項1に記載の回転体。 2. The rotating body according to claim 1, wherein the non-adhesive layer is made of a coating material formed on an outer periphery of the magnet.
- コーティング材は、フッ素樹脂または窒化チタンであることを特徴とする請求項5に記載の回転体。 The rotating body according to claim 5, wherein the coating material is fluororesin or titanium nitride.
- 前記コーティング材は、前記磁石の外周に塗布された離型剤により形成されたことを特徴とする請求項5に記載の回転体。 6. The rotating body according to claim 5, wherein the coating material is formed by a release agent applied to an outer periphery of the magnet.
- 前記離型剤は、フッ素系またはシリコン系の離型剤であることを特徴とする請求項7に記載の回転体。 The rotating body according to claim 7, wherein the release agent is a fluorine-based or silicon-based release agent.
- 固定子、回転子および気体を圧縮するインペラを備え、前記インペラは前記回転子に同軸に配置される電動コンプレッサにおいて、
前記回転子として、請求項1~8の何れか1項に記載の回転体を用いたことを特徴とする電動コンプレッサ。 A stator, a rotor, and an impeller that compresses gas, wherein the impeller is disposed coaxially with the rotor,
An electric compressor using the rotating body according to any one of claims 1 to 8 as the rotor. - 固定子、回転子および搬送気体により回転するタービンを備え、前記タービンは前記回転子に同軸に配置されるタービン発電機において、
前記回転子として、請求項1~8の何れか1項に記載の回転体を用いたことを特徴とするタービン発電機。 A turbine generator including a stator, a rotor, and a turbine that is rotated by a carrier gas, wherein the turbine is disposed coaxially with the rotor;
A turbine generator using the rotor according to any one of claims 1 to 8 as the rotor.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/010378 WO2018167869A1 (en) | 2017-03-15 | 2017-03-15 | Rotating body, electric compressor, and turbine power generator |
JP2019505583A JP6759447B2 (en) | 2017-03-15 | 2017-03-15 | Rotating body, electric compressor and turbine generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/010378 WO2018167869A1 (en) | 2017-03-15 | 2017-03-15 | Rotating body, electric compressor, and turbine power generator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018167869A1 true WO2018167869A1 (en) | 2018-09-20 |
Family
ID=63522849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/010378 WO2018167869A1 (en) | 2017-03-15 | 2017-03-15 | Rotating body, electric compressor, and turbine power generator |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6759447B2 (en) |
WO (1) | WO2018167869A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021060287A1 (en) * | 2019-09-24 | 2021-04-01 | 株式会社デンソー | Rotating electrical machine |
KR102264898B1 (en) * | 2021-03-08 | 2021-06-11 | 김강규 | carbon composite motor spindle |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2617973A (en) * | 2021-02-04 | 2023-10-25 | Gyu Kim Kang | Carbon composite material shaft and carbon composite material motor spindle comprising same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016143008A1 (en) * | 2015-03-06 | 2016-09-15 | 三菱電機株式会社 | Rotor of rotary electric machine, and method for manufacturing rotor of rotary electric machine |
JP2016192877A (en) * | 2015-03-31 | 2016-11-10 | 株式会社豊田自動織機 | Rotary electric machine and compressor |
-
2017
- 2017-03-15 JP JP2019505583A patent/JP6759447B2/en active Active
- 2017-03-15 WO PCT/JP2017/010378 patent/WO2018167869A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016143008A1 (en) * | 2015-03-06 | 2016-09-15 | 三菱電機株式会社 | Rotor of rotary electric machine, and method for manufacturing rotor of rotary electric machine |
JP2016192877A (en) * | 2015-03-31 | 2016-11-10 | 株式会社豊田自動織機 | Rotary electric machine and compressor |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021060287A1 (en) * | 2019-09-24 | 2021-04-01 | 株式会社デンソー | Rotating electrical machine |
JP2021052485A (en) * | 2019-09-24 | 2021-04-01 | 株式会社デンソー | Rotary electric machine |
JP7342566B2 (en) | 2019-09-24 | 2023-09-12 | 株式会社デンソー | rotating electric machine |
KR102264898B1 (en) * | 2021-03-08 | 2021-06-11 | 김강규 | carbon composite motor spindle |
Also Published As
Publication number | Publication date |
---|---|
JP6759447B2 (en) | 2020-09-23 |
JPWO2018167869A1 (en) | 2019-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018167869A1 (en) | Rotating body, electric compressor, and turbine power generator | |
EP1851844B1 (en) | Rotor and method of manufacturing | |
JP5820046B2 (en) | Rotor of electric motor having magnet holding structure and electric motor having the same | |
US8097972B2 (en) | Gas turbine with magnetic shaft forming part of a generator/motor assembly | |
EP3451499B1 (en) | Electrical machine rotor | |
WO1994022203A1 (en) | Method and apparatus for manufacturing a rotor assembly | |
EP4050770B1 (en) | Electric machine rotor sleeve | |
WO2013075954A1 (en) | Abradable liner for a gas turbine | |
EP3187695A1 (en) | A wrap comprising sheets of graphene for a casing of a rotating member, corresponding turbofan engine and method of asssaembling a turbofan engine | |
CN113678343A (en) | Motor rotor | |
JP2010200440A (en) | Rotor, rotating electric machine using the same, electric blower, and electric cleaner | |
TWI520466B (en) | Tank type rotary motor | |
US11863026B2 (en) | Electric machine rotor sleeve | |
US11139704B2 (en) | Salient pole rotor with magnetic pole portions, concave portions and cylindrical cover portion with fiber filament | |
JP7499016B2 (en) | Rotor manufacturing method | |
US10557364B2 (en) | Two pieces stator inner shroud | |
Funck | Composite materials in high efficient sleeve applications of electric machines | |
EP3456931A1 (en) | Laminated hybrid composite-metallic containment system for gas turbine engines | |
JP2023180328A (en) | Rotary electric machine and rotor manufacturing method | |
CN221042427U (en) | Rotor assembly included in an electric motor | |
JP7476968B2 (en) | ROTOR, MOTOR, AND METHOD FOR MANUFACTURING ROTOR | |
JP7514367B1 (en) | Rotating electric machine and pump device | |
JP2023180329A (en) | Rotary electric machine and rotor manufacturing method | |
US20130270828A1 (en) | Housing for an electrical starter motor | |
CN114977574A (en) | Motor rotor sleeve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17900921 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019505583 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17900921 Country of ref document: EP Kind code of ref document: A1 |