WO2018167855A1 - Operation screen display device - Google Patents

Operation screen display device Download PDF

Info

Publication number
WO2018167855A1
WO2018167855A1 PCT/JP2017/010268 JP2017010268W WO2018167855A1 WO 2018167855 A1 WO2018167855 A1 WO 2018167855A1 JP 2017010268 W JP2017010268 W JP 2017010268W WO 2018167855 A1 WO2018167855 A1 WO 2018167855A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
operation screen
axis
display
coordinate
Prior art date
Application number
PCT/JP2017/010268
Other languages
French (fr)
Japanese (ja)
Inventor
英希 保坂
芳敬 野田
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2017/010268 priority Critical patent/WO2018167855A1/en
Priority to JP2019505571A priority patent/JP6761894B2/en
Publication of WO2018167855A1 publication Critical patent/WO2018167855A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/409Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using manual data input [MDI] or by using control panel, e.g. controlling functions with the panel; characterised by control panel details or by setting parameters

Definitions

  • This specification discloses an operation screen display device that displays an operation screen for operating a robot.
  • the entire robot image to be displayed is fixed in a side view, and depending on the axis and direction in which the robot is moved, it is difficult for the operator to grasp the axis and direction, which may cause an operation error. It was.
  • This disclosure mainly aims to provide an operation screen display device that makes it easy for an operator to grasp an axis and a direction in which a robot is operated and can suppress an operation error.
  • the present disclosure is an operation screen display device that displays an operation screen for operating a robot, and includes a display unit that displays the operation screen, an input unit that receives an operation by an operator, a pictorial diagram of the robot, and coordinate axes.
  • the display unit is controlled to be displayed on the operation screen and a coordinate axis related to the operation of the robot is specified via the input unit, the coordinate screen is displayed on the operation screen according to the specified coordinate axis.
  • a display control unit that controls the display unit so that the picture of the robot is changed.
  • This operation screen display device can change the pictorial illustration of the robot so that the operator can easily see the coordinate axes specified by the operator. As a result, the operator can easily grasp the axis and direction for operating the robot, and operation errors can be suppressed.
  • FIG. 1 is a configuration diagram showing an outline of a configuration of a robot system 10.
  • FIG. 2 is a configuration diagram showing an outline of the configuration of a robot 20.
  • FIG. 3 is a block diagram showing an electrical connection relationship among a robot 20, a robot control device 70, and a teaching device 80.
  • FIG. It is a flowchart which shows an example of the display control routine at the time of robot operation. It is explanatory drawing which shows an example of an operation screen. It is explanatory drawing which shows an example of an operation screen. It is explanatory drawing which shows an example of an operation screen. It is explanatory drawing which shows an example of an operation screen. It is explanatory drawing which shows an example of an operation screen. It is explanatory drawing which shows an example of an operation screen. It is explanatory drawing which shows an example of an operation screen.
  • FIG. 1 is a configuration diagram showing an outline of the configuration of the robot system 10.
  • FIG. 2 is a configuration diagram showing an outline of the configuration of the robot 20.
  • FIG. 3 is a block diagram showing an electrical connection relationship among the robot 20, the robot control device 70, and the teaching device 80.
  • the left-right direction is the X-axis direction
  • the front-rear direction is the Y-axis direction
  • the up-down direction is the Z-axis direction.
  • the robot system 10 is a work system that performs a predetermined work on the workpiece W.
  • examples of the predetermined work include a pick-up work for picking up a work, a place work for placing the work at a predetermined position, and an assembling work for assembling the work at a predetermined position.
  • the robot system 10 includes a transfer device 12 installed substantially at the center of the work table 11 and configured to transfer a workpiece W in the X-axis direction (left-right direction), and a plurality of robot systems 10 facing each other across the transfer device 12.
  • the robot 20 is installed on the work table 11 one by one and performs a work on the workpiece W transferred by the transfer device 12.
  • the conveyance device 12 is a belt conveyor device, and conveys the workpiece W placed on the belt from left to right (X-axis direction) in FIG.
  • Each robot 20 includes a 5-axis vertical articulated arm (hereinafter referred to as an arm) 22 as shown in FIG.
  • Each arm 22 has six links (first to sixth links 31 to 36) and five joints (first to fifth joints 41 to 45) that connect the links so as to be rotatable or pivotable.
  • Each joint (first to fifth joints 41 to 45) includes motors (servo motors) 51 to 55 for driving the corresponding joints, and encoders (rotary encoders) 61 to 65 for detecting the rotational positions of the corresponding motors. Is provided.
  • a work tool as an end effector can be attached to and detached from the distal end link (sixth link 36) of the arm 22.
  • the work tool include an electromagnetic chuck, a mechanical chuck, and a suction nozzle.
  • the tool to be attached to the tip link is appropriately selected according to the shape and material of the work W to be worked.
  • a camera 24 is attached to the distal end portion (fifth link 35) of the arm 22.
  • the camera 24 is for capturing an image of the workpiece W in order to recognize the position and posture of the workpiece W conveyed by the conveying device 12.
  • the robot control device 70 is configured as a microprocessor centered on the CPU 71, and includes a ROM 72, an HDD 73, a RAM 74, an input / output interface (not shown), a communication interface (not shown), and the like in addition to the CPU 71.
  • the HDD 73 stores a system program for managing the entire robot system 10 and an operation program for each robot 20. Detection signals from the encoders 61 to 65 and the like are input to the robot control device 70. Further, the robot control device 70 outputs control signals to the transfer device 12, the motors 51 to 55, and the like.
  • the robot controller 70 is connected to a teaching device 80 used for teaching work of the robot 20.
  • the teaching device 80 includes an input unit 81 that can be input by an operator, a display unit 82 that can display various types of information, and a display control unit 83 that controls display of the display unit 82.
  • FIG. 4 is a flowchart showing an example of a display control routine during robot operation executed by the display control unit 83 of the teaching device 80. This routine is executed when a jog feed mode in which the robot 20 is gradually moved manually is selected.
  • the display control unit 83 When the robot operation display control routine is executed, the display control unit 83 first displays the robot picture and the coordinate axis imitating the appearance of the robot 20 on the operation screen of the display unit 82 with default settings (S100).
  • FIG. 5 is an explanatory diagram showing an example of an operation screen 90 displayed with default settings.
  • the operation screen 90 includes an image display area 91, an installation angle designation area 92, a coordinate mode designation area 93, a speed / pitch designation area 94, an operation axis designation area 95, and an operation direction designation area 96. It is comprised including.
  • image display area 91 coordinate axes (operation axes) capable of operating the robot 20 are displayed together with a robot picture that imitates the appearance of the robot 20.
  • the designated values of the designated areas 92 to 96 are changed based on the input operation of the input unit 81 by the operator.
  • the installation angle designation area 92 is an area in which the installation angle of the robot 20 with respect to the work table 11 can be designated.
  • the installation angle at which the front of the robot 20 faces the back of the work table 11 (the installation angle of the robot 20 installed on the front side of the work table 11 in FIG. 1) is 0 degree
  • the front of the robot 20 is The installation angle facing the front of the work table 11 (the installation angle of the robot 20 installed on the back side of the work table 11 in FIG. 1) was 180 degrees.
  • the default setting angle is 180 degrees.
  • the installation angle is 180 degrees, the robot picture is displayed as a right perspective view imitating the appearance of the robot 20 when the robot 20 is viewed obliquely from the front right as shown in FIG. .
  • the coordinate mode designation area 93 is an area in which one of the world coordinate system and the base coordinate system can be selected (designated).
  • the default coordinate mode is the world coordinate system.
  • the world coordinate system is an orthogonal coordinate system based on the work table 11.
  • the axis along the conveyance direction of the workpiece W is the X axis (Xw)
  • the axis along the direction orthogonal to the upper surface of the work table 11 is the Z axis (Zw)
  • Zw Z axis
  • Yw The axis along the direction orthogonal to the Y-axis
  • the axis along the rotation direction around the X axis (Xw) is the RB axis
  • the axis along the rotation direction around the Z axis (Zw) is the RC axis (RCw).
  • the arm 22 is a 5-axis vertical articulated arm, and an axis along the rotational direction around the Y axis (Yw) is not defined.
  • the base coordinate system is an orthogonal coordinate system based on the proximal link (the first link 31) that is the base of the arm 22.
  • the axis along the front (front) and rear (back) directions when the robot 20 is viewed from the front is the X axis (Xb), and the axis is along the extending direction of the rotation axis of the first joint 41.
  • the axis along the vertical direction of the robot 20 is the Z axis (Zb), and the axis along the Xb direction and the direction perpendicular to the Zb direction is the Y axis (Yb).
  • the axis along the rotation direction around the Y axis (Yb) is the RB axis
  • the axis along the rotation direction around the Z axis (Zb) is the RC axis (RCb).
  • an axis along the rotation direction around the X axis (Xb) is not defined.
  • the coordinate mode is not limited to the base coordinate system and the world coordinate system, and is attached to the wrist coordinate system or the tip link (sixth link 36) based on the tip link (sixth link 36).
  • a tool coordinate system based on the tool, a target coordinate system based on the target position of the tool, and the like may be included.
  • the speed / pitch designation area 94 is an area in which the movement speed or movement pitch of the robot 20 can be designated.
  • the default speed / pitch settings are speed and low speed.
  • the operation axis designation area 95 is an area in which an operation axis (including a set of a plurality of axes) for operating the robot 20 among the coordinate axes in the coordinate mode designated in the coordinate mode designation area 93 can be designated.
  • an operation axis including a set of a plurality of axes
  • RCw an operation axis
  • the world coordinate system either (Xw, Yw, Zw, RCw) of the coordinate axes Xw, Yw, Zw, RB, and RCw and (RB) can be selected.
  • the default operation axis is a set of (Xw, Yw, Zw, RCw) in the world coordinate system.
  • the operation direction designation area 96 is an area in which the operation direction on the operation axis designated in the operation axis designation area 95 can be designated.
  • + direction and -direction direction keys are arranged for each operable operation axis.
  • the display control unit 83 determines whether or not the designation of the installation angle of the robot 20 has been changed (S110). If the display control unit 83 determines that the designation of the set angle has been changed, the display control unit 83 displays the robot picture in the direction corresponding to the changed set angle on the display unit 81 (the image display area 91 of the operation screen 90) (S120). , The process proceeds to S130, and if the setting angle designation is not changed, the process proceeds to S130. For example, when the installation angle is changed from 180 degrees to 0 degrees, as shown in FIG. 6, the robot picture is a left perspective view simulating the appearance of the robot 20 when looking at the robot 20 obliquely from the front left. Changed to figure.
  • the display control unit 83 determines whether or not the designation of the coordinate mode has been changed (S130).
  • the display control unit 83 displays the image of the coordinate axis corresponding to the changed coordinate mode on the display unit 82 (the image display area 91 of the operation screen 90) (S140).
  • S150 if it is determined that the designation of the coordinate mode has not been changed, the process proceeds directly to S150.
  • the display of the operable coordinate axes is (Xb, Yb, Zb) from the group (Xw, Yw, Zw, RCw). , RCb).
  • the display control unit 83 determines whether or not the designation of the operation axis has been changed (S150).
  • the display unit 82 (the image display area 91 of the operation screen 90) displays the robot picture in the direction corresponding to the changed operation axis and the picture of the operation axis. (S160), the process proceeds to S170, and if it is determined that the designation of the operation axis has not been changed, the process proceeds to S170 as it is.
  • the robot picture is the robot 20 when the left side of the robot 20 is viewed as shown in FIG. Is changed to a left side view simulating the external appearance (when the installation angle is 180 degrees).
  • the robot picture shows the appearance of the robot 20 when the right side surface of the robot 20 is viewed as shown in FIG. It is changed to a simulated right side view.
  • the display control unit 83 determines whether or not an operation direction is designated (S170), and when the operation direction is designated, the arrow display of the axis corresponding to the designated operation direction is emphasized (S180). The process proceeds to S190, and if the operation direction is not designated, the process proceeds to S190 as it is.
  • the display control unit 83 determines whether or not the operation of the robot 20 has ended (S190). If the display control unit 83 determines that the operation has not ended, the display control unit 83 returns to S110 and determines that the operation has ended. End the display control routine during operation.
  • the display unit 82 corresponds to the display unit
  • the input unit 81 corresponds to the input unit
  • the display control unit 83 corresponds to the display control unit.
  • the display control unit 83 of the operation screen display device described above controls the display unit 82 so that the robot picture and the coordinate axes are displayed on the operation screen 90 when the jog feed mode is instructed.
  • the display control unit 83 displays the robot displayed on the operation screen 90 according to the designated coordinate axis (operation axis).
  • the display unit 82 is controlled so that the picture is changed. That is, the display control unit 83 can change the robot picture (the direction of the robot 20) so that the operator can easily see the coordinate axes specified by the operator. As a result, the operator can easily grasp the axis and direction in which the robot 20 is operated, and operation errors can be suppressed.
  • the display control unit 83 displays the display unit 82 so that the robot picture is displayed on the operation screen 90 in an orientation corresponding to the specified installation direction. Control.
  • the display control unit 83 displays an image of coordinate axes corresponding to the designated coordinate mode on the operation screen 90.
  • the display unit 82 is controlled. Thereby, it can respond to designation
  • the display control unit 83 changes the robot picture to the orientation corresponding to the changed installation angle.
  • the teaching device 80 may be configured so that the installation angle cannot be specified.
  • the display control unit 83 changes the image to the coordinate axis image corresponding to the changed coordinate mode.
  • the teaching device 80 may be configured so that the coordinate mode cannot be specified.
  • the robot 20 includes a 5-axis vertical articulated arm.
  • the articulated arm is not limited to 5 axes, and may have, for example, 6 axes or more.
  • an axis along the rotation direction around the Y axis (Yw) and an axis along the rotation direction around the X axis (Xb) may be used as the RA axis.
  • This disclosure can be used in the robot manufacturing industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

This operation screen display device is provided with: a display unit that displays an operation screen; an input unit that receives an operation performed by an operator; and a display control unit that controls the display unit. The display control unit controls the display unit so that coordinate axes and graphics of a robot are displayed on the operation screen. When the coordinate axes involved in an operation of the robot are specified via the input unit, the display control unit controls the display unit so as to cause the robot graphics displayed on the operation screen to be altered in accordance with the specified coordinate axes.

Description

操作画面表示装置Operation screen display device
 本明細書は、ロボットを操作するための操作画面を表示する操作画面表示装置について開示する。 This specification discloses an operation screen display device that displays an operation screen for operating a robot.
 従来より、ティーチング作業時に、ロボットの各軸を正方向または負方向に回転あるいは並進させる各軸送りモードが選択されると、ロボット全体像に各軸の位置および運動方向を指示する画像(矢印画像)を重畳表示させる表示装置が提案されている(例えば、特許文献1参照)。この表示装置は、ジョグ送り方向選択キーが押下されて、ジョグ送り方向が指定されると、表示画像中に、ジョグ送り方向の指定内容を表わす強調表示を行なう。 Conventionally, when each axis feed mode that rotates or translates each axis of the robot in the positive or negative direction during teaching work is selected, an image (arrow image) that indicates the position and motion direction of each axis on the entire robot image ) Has been proposed (for example, see Patent Document 1). When the jog feed direction selection key is pressed and the jog feed direction is designated, this display device performs highlighting indicating the designated content of the jog feed direction in the display image.
特開平7-295625号公報JP 7-295625 A
 しかしながら、上述した表示装置では、表示されるロボット全体像は側面視で固定されており、ロボットを動かす軸や方向によっては、その軸や方向をオペレータが把握し難く、操作ミスが生じるおそれがあった。 However, in the display device described above, the entire robot image to be displayed is fixed in a side view, and depending on the axis and direction in which the robot is moved, it is difficult for the operator to grasp the axis and direction, which may cause an operation error. It was.
 本開示は、オペレータがロボットを操作させる軸や方向を把握し易くし、操作ミスを抑制することができる操作画面表示装置を提供することを主目的とする。 This disclosure mainly aims to provide an operation screen display device that makes it easy for an operator to grasp an axis and a direction in which a robot is operated and can suppress an operation error.
 本開示は、上述の主目的を達成するために以下の手段を採った。 This disclosure has taken the following measures to achieve the main purpose described above.
 本開示は、ロボットを操作するための操作画面を表示する操作画面表示装置であって、前記操作画面を表示する表示部と、オペレータによる操作を受け付ける入力部と、前記ロボットの絵図と座標軸とが前記操作画面に表示されるよう前記表示部を制御し、前記入力部を介して前記ロボットの操作に係る座標軸が指定されると、該指定された座標軸に応じて前記操作画面に表示される前記ロボットの絵図が変更されるよう前記表示部を制御する表示制御部と、を備えることを要旨とする。 The present disclosure is an operation screen display device that displays an operation screen for operating a robot, and includes a display unit that displays the operation screen, an input unit that receives an operation by an operator, a pictorial diagram of the robot, and coordinate axes. When the display unit is controlled to be displayed on the operation screen and a coordinate axis related to the operation of the robot is specified via the input unit, the coordinate screen is displayed on the operation screen according to the specified coordinate axis. And a display control unit that controls the display unit so that the picture of the robot is changed.
 この本開示の操作画面表示装置は、オペレータにより指定された座標軸によってロボットの絵図をオペレータが見やすいように変更することが可能である。これにより、オペレータが、ロボットを操作させる軸や方向を把握し易くすることができ、操作ミスを抑制することができる。 This operation screen display device according to the present disclosure can change the pictorial illustration of the robot so that the operator can easily see the coordinate axes specified by the operator. As a result, the operator can easily grasp the axis and direction for operating the robot, and operation errors can be suppressed.
ロボットシステム10の構成の概略を示す構成図である。1 is a configuration diagram showing an outline of a configuration of a robot system 10. FIG. ロボット20の構成の概略を示す構成図である。2 is a configuration diagram showing an outline of the configuration of a robot 20. FIG. ロボット20とロボット制御装置70と教示装置80の電気的な接続関係を示すブロック図である。3 is a block diagram showing an electrical connection relationship among a robot 20, a robot control device 70, and a teaching device 80. FIG. ロボット操作時表示制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the display control routine at the time of robot operation. 操作画面の一例を示す説明図である。It is explanatory drawing which shows an example of an operation screen. 操作画面の一例を示す説明図である。It is explanatory drawing which shows an example of an operation screen. 操作画面の一例を示す説明図である。It is explanatory drawing which shows an example of an operation screen. 操作画面の一例を示す説明図である。It is explanatory drawing which shows an example of an operation screen. 操作画面の一例を示す説明図である。It is explanatory drawing which shows an example of an operation screen.
 次に、本開示の発明を実施するための形態について図面を参照しながら説明する。 Next, modes for carrying out the invention of the present disclosure will be described with reference to the drawings.
 図1は、ロボットシステム10の構成の概略を示す構成図である。図2は、ロボット20の構成の概略を示す構成図である。図3は、ロボット20とロボット制御装置70と教示装置80の電気的な接続関係を示すブロック図である。なお、図1中、左右方向がX軸方向であり、前後方向がY軸方向であり、上下方向がZ軸方向である。 FIG. 1 is a configuration diagram showing an outline of the configuration of the robot system 10. FIG. 2 is a configuration diagram showing an outline of the configuration of the robot 20. FIG. 3 is a block diagram showing an electrical connection relationship among the robot 20, the robot control device 70, and the teaching device 80. In FIG. 1, the left-right direction is the X-axis direction, the front-rear direction is the Y-axis direction, and the up-down direction is the Z-axis direction.
 ロボットシステム10は、ワークWに対して所定の作業を行なう作業システムである。なお、所定の作業としては、ワークをピックアップするピックアップ作業や、ワークを所定位置にプレースするプレース作業、ワークを所定位置に組み付ける組み付け作業などを挙げることができる。 The robot system 10 is a work system that performs a predetermined work on the workpiece W. In addition, examples of the predetermined work include a pick-up work for picking up a work, a place work for placing the work at a predetermined position, and an assembling work for assembling the work at a predetermined position.
 ロボットシステム10は、図1に示すように、作業台11の略中央に設置されワークWをX軸方向(左右方向)に搬送する搬送装置12と、搬送装置12を挟んで互いに向かい合うように複数台ずつ作業台11上に設置されて搬送装置12により搬送されたワークWに対して作業を行なうロボット20とを備える。 As shown in FIG. 1, the robot system 10 includes a transfer device 12 installed substantially at the center of the work table 11 and configured to transfer a workpiece W in the X-axis direction (left-right direction), and a plurality of robot systems 10 facing each other across the transfer device 12. The robot 20 is installed on the work table 11 one by one and performs a work on the workpiece W transferred by the transfer device 12.
 搬送装置12は、ベルトコンベア装置であり、ベルト上に載置されたワークWを図1中、左から右(X軸方向)へと搬送する。 The conveyance device 12 is a belt conveyor device, and conveys the workpiece W placed on the belt from left to right (X-axis direction) in FIG.
 ロボット20は、いずれも、図2に示すように、5軸の垂直多関節アーム(以下、アームという)22を備える。各アーム22は、6つのリンク(第1~第6リンク31~36)と、各リンクを回転または旋回可能に連結する5つの関節(第1~第5関節41~45)とを有する。各関節(第1~第5関節41~45)には、対応する関節を駆動するモータ(サーボモータ)51~55と、対応するモータの回転位置を検出するエンコーダ(ロータリエンコーダ)61~65とが設けられている。 Each robot 20 includes a 5-axis vertical articulated arm (hereinafter referred to as an arm) 22 as shown in FIG. Each arm 22 has six links (first to sixth links 31 to 36) and five joints (first to fifth joints 41 to 45) that connect the links so as to be rotatable or pivotable. Each joint (first to fifth joints 41 to 45) includes motors (servo motors) 51 to 55 for driving the corresponding joints, and encoders (rotary encoders) 61 to 65 for detecting the rotational positions of the corresponding motors. Is provided.
 アーム22の先端リンク(第6リンク36)には、エンドエフェクタとしての作業ツールが着脱可能となっている。なお、作業ツールとしては、電磁チャックやメカニカルチャック、吸着ノズルなどを挙げることができる。先端リンクに装着するツールは、作業対象のワークWの形状や素材に合わせて適宜選択される。 A work tool as an end effector can be attached to and detached from the distal end link (sixth link 36) of the arm 22. Examples of the work tool include an electromagnetic chuck, a mechanical chuck, and a suction nozzle. The tool to be attached to the tip link is appropriately selected according to the shape and material of the work W to be worked.
 また、アーム22の先端部(第5リンク35)には、図2に示すように、カメラ24が取り付けられている。カメラ24は、搬送装置12により搬送されるワークWの位置および姿勢を認識するために当該ワークWを撮像するためのものである。 Further, as shown in FIG. 2, a camera 24 is attached to the distal end portion (fifth link 35) of the arm 22. The camera 24 is for capturing an image of the workpiece W in order to recognize the position and posture of the workpiece W conveyed by the conveying device 12.
 ロボット制御装置70は、図3に示すように、CPU71を中心としたマイクロプロセッサとして構成され、CPU71の他に、ROM72やHDD73、RAM74、図示しない入出力インタフェース、図示しない通信インタフェースなどを備える。なお、HDD73は、ロボットシステム10全体を管理するためのシステムプログラムや各ロボット20の動作プログラムなどを記憶している。ロボット制御装置70には、エンコーダ61~65などからの検知信号が入力される。また、ロボット制御装置70からは、搬送装置12やモータ51~55などへの制御信号が出力される。 As shown in FIG. 3, the robot control device 70 is configured as a microprocessor centered on the CPU 71, and includes a ROM 72, an HDD 73, a RAM 74, an input / output interface (not shown), a communication interface (not shown), and the like in addition to the CPU 71. The HDD 73 stores a system program for managing the entire robot system 10 and an operation program for each robot 20. Detection signals from the encoders 61 to 65 and the like are input to the robot control device 70. Further, the robot control device 70 outputs control signals to the transfer device 12, the motors 51 to 55, and the like.
 また、ロボット制御装置70には、ロボット20のティーチング作業に用いる教示装置80が接続されている。教示装置80は、オペレータによる入力操作が可能な入力部81と、各種情報を表示可能な表示部82と、表示部82の表示制御を行なう表示制御部83とを備えて構成される。 Further, the robot controller 70 is connected to a teaching device 80 used for teaching work of the robot 20. The teaching device 80 includes an input unit 81 that can be input by an operator, a display unit 82 that can display various types of information, and a display control unit 83 that controls display of the display unit 82.
 次に、オペレータがティーチングプレイバック方式によるティーチング作業を行なう際の教示装置80の動作について説明する。なお、ティーチングプレイバック方式とは、オペレータが作業現場で実際にロボット20を手動操作で移動させながらその動きを連続的に記録装置に記録させ、記録させた動作を再生(プレイバック)するものである。図4は、教示装置80の表示制御部83により実行されるロボット操作時表示制御ルーチンの一例を示すフローチャートである。このルーチンは、ロボット20を手動操作によって徐々に移動させるジョグ送りモードが選択されたときに実行される。 Next, the operation of the teaching device 80 when the operator performs teaching work by the teaching playback method will be described. Note that the teaching playback method is a method in which an operator actually moves the robot 20 manually at a work site, continuously records the movement in a recording device, and reproduces (plays back) the recorded operation. is there. FIG. 4 is a flowchart showing an example of a display control routine during robot operation executed by the display control unit 83 of the teaching device 80. This routine is executed when a jog feed mode in which the robot 20 is gradually moved manually is selected.
 ロボット操作時表示制御ルーチンが実行されると、表示制御部83は、まず、デフォルト設定でロボット20の外観を模したロボット絵図と座標軸とを表示部82の操作画面に表示する(S100)。図5は、デフォルト設定で表示される操作画面90の一例を示す説明図である。 When the robot operation display control routine is executed, the display control unit 83 first displays the robot picture and the coordinate axis imitating the appearance of the robot 20 on the operation screen of the display unit 82 with default settings (S100). FIG. 5 is an explanatory diagram showing an example of an operation screen 90 displayed with default settings.
 操作画面90は、図示するように、画像表示領域91と、設置角度指定領域92と、座標モード指定領域93と、速度/ピッチ指定領域94と、操作軸指定領域95と、操作方向指定領域96とを含んで構成される。画像表示領域91には、ロボット20の外観を模したロボット絵図と共にロボット20を操作可能な座標軸(操作軸)が表示される。各指定領域92~96は、オペレータによる入力部81の入力操作に基づいてその指定値が変更される。 As shown in the figure, the operation screen 90 includes an image display area 91, an installation angle designation area 92, a coordinate mode designation area 93, a speed / pitch designation area 94, an operation axis designation area 95, and an operation direction designation area 96. It is comprised including. In the image display area 91, coordinate axes (operation axes) capable of operating the robot 20 are displayed together with a robot picture that imitates the appearance of the robot 20. The designated values of the designated areas 92 to 96 are changed based on the input operation of the input unit 81 by the operator.
 ここで、設置角度指定領域92は、作業台11に対するロボット20の設置角度を指定可能な領域である。本実施形態では、ロボット20の正面が作業台11の後方を向く設置角度(図1中、作業台11の手前側に設置されたロボット20の設置角度)を0度とし、ロボット20の正面が作業台11の前方を向く設置角度(図1中、作業台11の奥側に設置されたロボット20の設置角度)を180度とした。デフォルト設定の設置角度は、180度である。なお、設置角度が180度である場合、ロボット絵図は、図5に示すように、向かって右斜め前からロボット20を見たときの当該ロボット20の外観を模した右斜視図で表示される。 Here, the installation angle designation area 92 is an area in which the installation angle of the robot 20 with respect to the work table 11 can be designated. In the present embodiment, the installation angle at which the front of the robot 20 faces the back of the work table 11 (the installation angle of the robot 20 installed on the front side of the work table 11 in FIG. 1) is 0 degree, and the front of the robot 20 is The installation angle facing the front of the work table 11 (the installation angle of the robot 20 installed on the back side of the work table 11 in FIG. 1) was 180 degrees. The default setting angle is 180 degrees. When the installation angle is 180 degrees, the robot picture is displayed as a right perspective view imitating the appearance of the robot 20 when the robot 20 is viewed obliquely from the front right as shown in FIG. .
 座標モード指定領域93は、ワールド座標系とベース座標系とのうちいずれか一つを選択(指定)可能な領域である。本実施形態では、デフォルト設定の座標モードは、ワールド座標系である。ワールド座標系は、作業台11を基準とした直交座標系である。ワールド座標系では、ワークWの搬送方向に沿った軸がX軸(Xw)であり、作業台11の上面に直交する方向に沿った軸がZ軸(Zw)であり、Xw方向およびZw方向に直交する方向に沿った軸がY軸(Yw)である。また、ワールド座標系では、X軸(Xw)周りの回転方向に沿った軸がRB軸であり、Z軸(Zw)周りの回転方向に沿った軸がRC軸(RCw)である。なお、本実施形態では、アーム22は5軸の垂直多関節アームであり、Y軸(Yw)周りの回転方向に沿った軸は定義されない。一方、ベース座標系は、アーム22の台座である基端リンク(第1リンク31)を基準とした直交座標系である。ベース座標系では、ロボット20を正面から見て前(手前)後(奥)の方向に沿った軸がX軸(Xb)であり、第1関節41の回転軸の延在方向に沿った軸(ロボット20の上下方向に沿った軸)がZ軸(Zb)であり、Xb方向およびZb方向に直交する方向に沿った軸がY軸(Yb)である。また、ベース座標系では、Y軸(Yb)周りの回転方向に沿った軸がRB軸であり、Z軸(Zb)周りの回転方向に沿った軸がRC軸(RCb)である。なお、本実施形態では、X軸(Xb)周りの回転方向に沿った軸は定義されない。なお、座標モード(座標系)は、上記ベース座標系およびワールド座標系に限られず、先端リンク(第6リンク36)を基準とした手首座標系や先端リンク(第6リンク36)に装着されるツールを基準としたツール座標系、ツールの到達目標位置を基準とした目標座標系などを含むものとしてもよい。 The coordinate mode designation area 93 is an area in which one of the world coordinate system and the base coordinate system can be selected (designated). In the present embodiment, the default coordinate mode is the world coordinate system. The world coordinate system is an orthogonal coordinate system based on the work table 11. In the world coordinate system, the axis along the conveyance direction of the workpiece W is the X axis (Xw), the axis along the direction orthogonal to the upper surface of the work table 11 is the Z axis (Zw), and the Xw direction and the Zw direction The axis along the direction orthogonal to the Y-axis (Yw). In the world coordinate system, the axis along the rotation direction around the X axis (Xw) is the RB axis, and the axis along the rotation direction around the Z axis (Zw) is the RC axis (RCw). In the present embodiment, the arm 22 is a 5-axis vertical articulated arm, and an axis along the rotational direction around the Y axis (Yw) is not defined. On the other hand, the base coordinate system is an orthogonal coordinate system based on the proximal link (the first link 31) that is the base of the arm 22. In the base coordinate system, the axis along the front (front) and rear (back) directions when the robot 20 is viewed from the front is the X axis (Xb), and the axis is along the extending direction of the rotation axis of the first joint 41. The axis along the vertical direction of the robot 20 is the Z axis (Zb), and the axis along the Xb direction and the direction perpendicular to the Zb direction is the Y axis (Yb). In the base coordinate system, the axis along the rotation direction around the Y axis (Yb) is the RB axis, and the axis along the rotation direction around the Z axis (Zb) is the RC axis (RCb). In the present embodiment, an axis along the rotation direction around the X axis (Xb) is not defined. The coordinate mode (coordinate system) is not limited to the base coordinate system and the world coordinate system, and is attached to the wrist coordinate system or the tip link (sixth link 36) based on the tip link (sixth link 36). A tool coordinate system based on the tool, a target coordinate system based on the target position of the tool, and the like may be included.
 速度/ピッチ指定領域94は、ロボット20の移動速度あるいは移動ピッチを指定可能な領域である。デフォルト設定の速度/ピッチ設定は、速度,低速である。 The speed / pitch designation area 94 is an area in which the movement speed or movement pitch of the robot 20 can be designated. The default speed / pitch settings are speed and low speed.
 操作軸指定領域95は、座標モード指定領域93で指定された座標モードにおける各座標軸のうちロボット20を操作する操作軸(複数の軸の組を含む)を指定可能な領域である。本実施形態では、ワールド座標系では、座標軸Xw,Yw,Zw,RBおよびRCwのうち(Xw,Yw,Zw,RCw)の組と、(RB)のいずれかを選択可能である。また、ベース座標系では、座標軸Xb,Yb,Zb,RBおよびRCbのうち(Xb,Yb,Zb,RCb)の組と、(RB)のいずれかを選択可能である。デフォルト設定の操作軸は、ワールド座標系の(Xw,Yw,Zw,RCw)の組である。 The operation axis designation area 95 is an area in which an operation axis (including a set of a plurality of axes) for operating the robot 20 among the coordinate axes in the coordinate mode designated in the coordinate mode designation area 93 can be designated. In the present embodiment, in the world coordinate system, either (Xw, Yw, Zw, RCw) of the coordinate axes Xw, Yw, Zw, RB, and RCw and (RB) can be selected. In the base coordinate system, either (Xb, Yb, Zb, RCb) set or (RB) among the coordinate axes Xb, Yb, Zb, RB and RCb can be selected. The default operation axis is a set of (Xw, Yw, Zw, RCw) in the world coordinate system.
 操作方向指定領域96は、操作軸指定領域95で指定された操作軸における操作方向を指定可能な領域である。操作方向指定領域96は、本実施形態では、操作可能な操作軸ごとに、+方向および-方向の方向キーが配置される。 The operation direction designation area 96 is an area in which the operation direction on the operation axis designated in the operation axis designation area 95 can be designated. In the present embodiment, in the operation direction designation area 96, + direction and -direction direction keys are arranged for each operable operation axis.
 こうして表示部82に操作画面90を表示すると、表示制御部83は、ロボット20の設置角度の指定が変更されたか否かを判定する(S110)。表示制御部83は、設定角度の指定が変更されたと判定すると、変更された設定角度の対応する向きのロボット絵図を表示部81(操作画面90の画像表示領域91)に表示して(S120)、S130に進み、設定角度の指定が変更されていないと、そのままS130に進む。例えば、設置角度が180度から0度に変更された場合、ロボット絵図は、図6に示すように、向かって左斜め前からロボット20を見たときの当該ロボット20の外観を模した左斜視図に変更される。 Thus, when the operation screen 90 is displayed on the display unit 82, the display control unit 83 determines whether or not the designation of the installation angle of the robot 20 has been changed (S110). If the display control unit 83 determines that the designation of the set angle has been changed, the display control unit 83 displays the robot picture in the direction corresponding to the changed set angle on the display unit 81 (the image display area 91 of the operation screen 90) (S120). , The process proceeds to S130, and if the setting angle designation is not changed, the process proceeds to S130. For example, when the installation angle is changed from 180 degrees to 0 degrees, as shown in FIG. 6, the robot picture is a left perspective view simulating the appearance of the robot 20 when looking at the robot 20 obliquely from the front left. Changed to figure.
 次に、表示制御部83は、座標モードの指定が変更されたか否かを判定する(S130)。表示制御部83は、座標モードの指定が変更されたと判定すると、変更された座標モードに対応する座標軸の画像を表示部82(操作画面90の画像表示領域91)に表示して(S140)、S150に進み、座標モードの指定が変更されていないと判定すると、そのままS150に進む。例えば、座標モードがワールド座標系からベース座標系に変更された場合、図7に示すように、操作可能な座標軸の表示が(Xw,Yw,Zw,RCw)の組から(Xb,Yb,Zb,RCb)の組に変更される。 Next, the display control unit 83 determines whether or not the designation of the coordinate mode has been changed (S130). When the display control unit 83 determines that the designation of the coordinate mode has been changed, the display control unit 83 displays the image of the coordinate axis corresponding to the changed coordinate mode on the display unit 82 (the image display area 91 of the operation screen 90) (S140). In S150, if it is determined that the designation of the coordinate mode has not been changed, the process proceeds directly to S150. For example, when the coordinate mode is changed from the world coordinate system to the base coordinate system, as shown in FIG. 7, the display of the operable coordinate axes is (Xb, Yb, Zb) from the group (Xw, Yw, Zw, RCw). , RCb).
 続いて、表示制御部83は、操作軸の指定が変更されたか否かを判定する(S150)。表示制御部83は、操作軸の指定が変更されたと判定すると、変更された操作軸に対応する向きのロボット絵図とその操作軸の絵図とを表示部82(操作画面90の画像表示領域91)に表示して(S160)、S170に進み、操作軸の指定が変更されていないと判定すると、そのままS170に進む。例えば、操作軸が(Xw,Yw,Zw,RCw)の組から(RB)へ変更された場合、ロボット絵図は、図8に示すように、ロボット20の左側面を見たときの当該ロボット20の外観を模した左側面図に変更される(設置角度180度時)。なお、この状態から、ロボット20の設置角度が180度から0度に変更されると、ロボット絵図は、図9に示すように、ロボット20の右側面を見たときの当該ロボット20の外観を模した右側面図に変更される。 Subsequently, the display control unit 83 determines whether or not the designation of the operation axis has been changed (S150). When the display control unit 83 determines that the designation of the operation axis is changed, the display unit 82 (the image display area 91 of the operation screen 90) displays the robot picture in the direction corresponding to the changed operation axis and the picture of the operation axis. (S160), the process proceeds to S170, and if it is determined that the designation of the operation axis has not been changed, the process proceeds to S170 as it is. For example, when the operation axis is changed from the group (Xw, Yw, Zw, RCw) to (RB), the robot picture is the robot 20 when the left side of the robot 20 is viewed as shown in FIG. Is changed to a left side view simulating the external appearance (when the installation angle is 180 degrees). When the installation angle of the robot 20 is changed from 180 degrees to 0 degrees from this state, the robot picture shows the appearance of the robot 20 when the right side surface of the robot 20 is viewed as shown in FIG. It is changed to a simulated right side view.
 また、表示制御部83は、操作方向が指定されたか否かを判定し(S170)、操作方向が指定されたときには、指定された操作方向に対応する軸の矢印表示を強調して(S180)、S190に進み、操作方向が指定されていないときには、そのままS190に進む。 Further, the display control unit 83 determines whether or not an operation direction is designated (S170), and when the operation direction is designated, the arrow display of the axis corresponding to the designated operation direction is emphasized (S180). The process proceeds to S190, and if the operation direction is not designated, the process proceeds to S190 as it is.
 そして、表示制御部83は、ロボット20の操作が終了したか否かを判定し(S190)、操作が終了していないと判定すると、S110に戻り、操作が終了したと判定すると、これでロボット操作時表示制御ルーチンを終了する。 Then, the display control unit 83 determines whether or not the operation of the robot 20 has ended (S190). If the display control unit 83 determines that the operation has not ended, the display control unit 83 returns to S110 and determines that the operation has ended. End the display control routine during operation.
 ここで、実施形態の主要な要素と発明の開示の欄に記載した発明の主要な要素との対応関係について説明する。即ち、表示部82が表示部に相当し、入力部81が入力部に相当し、表示制御部83が表示制御部に相当する。 Here, the correspondence between the main elements of the embodiment and the main elements of the invention described in the disclosure section of the invention will be described. That is, the display unit 82 corresponds to the display unit, the input unit 81 corresponds to the input unit, and the display control unit 83 corresponds to the display control unit.
 以上説明した操作画面表示装置の表示制御部83は、ジョグ送りモードが指示されると、ロボット絵図と座標軸とが操作画面90に表示されるよう表示部82を制御する。そして、表示制御部83は、入力部81を介してロボット20の操作に係る座標軸(操作軸)が指定されると、指定された座標軸(操作軸)に応じて操作画面90に表示されるロボット絵図が変更されるよう表示部82を制御する。即ち、表示制御部83は、オペレータにより指定された座標軸によってロボット絵図(ロボット20の向き)を当該オペレータが見やすいように変更することが可能である。これにより、オペレータがロボット20を操作させる軸や方向を把握し易くすることができ、操作ミスを抑制することができる。 The display control unit 83 of the operation screen display device described above controls the display unit 82 so that the robot picture and the coordinate axes are displayed on the operation screen 90 when the jog feed mode is instructed. When the coordinate axis (operation axis) related to the operation of the robot 20 is designated via the input unit 81, the display control unit 83 displays the robot displayed on the operation screen 90 according to the designated coordinate axis (operation axis). The display unit 82 is controlled so that the picture is changed. That is, the display control unit 83 can change the robot picture (the direction of the robot 20) so that the operator can easily see the coordinate axes specified by the operator. As a result, the operator can easily grasp the axis and direction in which the robot 20 is operated, and operation errors can be suppressed.
 しかも、表示制御部83は、入力部81を介してロボット20の設置方向が指定されると、指定された設置方向に応じた向きでロボット絵図が操作画面90に表示されるよう表示部82を制御する。これにより、異なる設置角度の複数台のロボット20のティーチングを行なう際にも、オペレータが各ロボット20を操作させる軸や方向を把握し易くすることができ、操作ミスをさらに抑制することができる。 In addition, when the installation direction of the robot 20 is specified via the input unit 81, the display control unit 83 displays the display unit 82 so that the robot picture is displayed on the operation screen 90 in an orientation corresponding to the specified installation direction. Control. As a result, even when teaching a plurality of robots 20 with different installation angles, it is possible to make it easier for the operator to grasp the axes and directions for operating the robots 20 and to further suppress operation mistakes.
 さらに、表示制御部83は、入力部81を介して複数の座標モード(座標系)のいずれかが指定されると、指定された座標モードに応じた座標軸の画像が操作画面90に表示されるよう表示部82を制御する。これにより、複数の座標モード(座標系)の指定に対応することができ、オペレータの利便性を高めることができる。 Further, when any one of a plurality of coordinate modes (coordinate systems) is designated via the input unit 81, the display control unit 83 displays an image of coordinate axes corresponding to the designated coordinate mode on the operation screen 90. The display unit 82 is controlled. Thereby, it can respond to designation | designated of several coordinate modes (coordinate system), and can improve the convenience of an operator.
 本実施形態では、表示制御部83は、ロボット20の設置角度の指定が変更されると、変更された設置角度に応じた向きのロボット絵図に変更するものとした。しかし、教示装置80は、設置角度を指定できないように構成されてもよい。 In the present embodiment, when the designation of the installation angle of the robot 20 is changed, the display control unit 83 changes the robot picture to the orientation corresponding to the changed installation angle. However, the teaching device 80 may be configured so that the installation angle cannot be specified.
 本実施形態では、表示制御部83は、座標モード(座標系)の指定が変更されると、変更された座標モードに応じた座標軸の画像に変更するものとした。しかし、教示装置80は、座標モードを指定できないように構成されてもよい。 In the present embodiment, when the designation of the coordinate mode (coordinate system) is changed, the display control unit 83 changes the image to the coordinate axis image corresponding to the changed coordinate mode. However, the teaching device 80 may be configured so that the coordinate mode cannot be specified.
 本実施形態では、ロボット20は、5軸の垂直多関節アームを備えるものとした。しかし、多関節アームは、5軸に限られず、例えば、6軸以上有するものとしてもよい。この場合、上記ワールド座標系やベース座標系の座標軸として、Y軸(Yw)周りの回転方向に沿った軸やX軸(Xb)周りの回転方向に沿った軸をRA軸とすればよい。 In this embodiment, the robot 20 includes a 5-axis vertical articulated arm. However, the articulated arm is not limited to 5 axes, and may have, for example, 6 axes or more. In this case, as the coordinate axes of the world coordinate system and the base coordinate system, an axis along the rotation direction around the Y axis (Yw) and an axis along the rotation direction around the X axis (Xb) may be used as the RA axis.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本開示の発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the invention of the present disclosure.
 本開示は、ロボットの製造産業などに利用可能である。 This disclosure can be used in the robot manufacturing industry.
 10 ロボットシステム、11 作業台、20 ロボット、22 アーム、24 カメラ、31 第1リンク、32 第2リンク、33 第3リンク、34 第4リンク、35 第5リンク、36 第6リンク、41 第1関節、42 第2関節、43 第3関節、44 第4関節、45 第5関節、51~55 モータ、61~65 エンコーダ、70 ロボット制御装置、71 CPU、72 ROM、73 HDD、74 RAM、80 教示装置、81 入力部、82 表示部、83 表示制御部、90 操作画面、91 画像表示領域、92 設置角度指定領域、93 座標モード指定領域、94 速度/ピッチ指定領域、95 操作軸指定領域、96 操作方向指定領域。 10 robot system, 11 workbench, 20 robot, 22 arm, 24 camera, 31 first link, 32 second link, 33 third link, 34 fourth link, 35 fifth link, 36 sixth link, 41 first Joint, 42 2nd joint, 43 3rd joint, 44 4th joint, 45 5th joint, 51-55 motor, 61-65 encoder, 70 robot controller, 71 CPU, 72 ROM, 73 HDD, 74 RAM, 80 Teaching device, 81 input section, 82 display section, 83 display control section, 90 operation screen, 91 image display area, 92 installation angle designation area, 93 coordinate mode designation area, 94 speed / pitch designation area, 95 operation axis designation area, 96 Operation direction designation area.

Claims (3)

  1.  ロボットを操作するための操作画面を表示する操作画面表示装置であって、
     前記操作画面を表示する表示部と、
     オペレータによる操作を受け付ける入力部と、
     前記ロボットの絵図と座標軸とが前記操作画面に表示されるよう前記表示部を制御し、前記入力部を介して前記ロボットの操作に係る座標軸が指定されると、該指定された座標軸に応じて前記操作画面に表示される前記ロボットの絵図が変更されるよう前記表示部を制御する表示制御部と、
     を備える操作画面表示装置。
    An operation screen display device that displays an operation screen for operating a robot,
    A display unit for displaying the operation screen;
    An input unit for receiving operations by an operator;
    When the display unit is controlled so that the robot picture and coordinate axes are displayed on the operation screen, and the coordinate axis related to the operation of the robot is designated via the input unit, the coordinate axis is designated according to the designated coordinate axis. A display control unit that controls the display unit such that the pictorial image of the robot displayed on the operation screen is changed;
    An operation screen display device comprising:
  2.  請求項1記載の操作画面表示装置であって、
     前記表示制御部は、前記入力部を介して前記ロボットの設置方向が指定されると、該指定された設置方向に応じて前記操作画面に表示される前記ロボットの絵図が変更されるよう前記表示部を制御する、
     操作画面表示装置。
    The operation screen display device according to claim 1,
    When the installation direction of the robot is designated via the input unit, the display control unit is configured to change the pictorial illustration of the robot displayed on the operation screen according to the designated installation direction. Control the part,
    Operation screen display device.
  3.  請求項1または2記載の操作画面表示装置であって、
     前記表示制御部は、前記入力部を介して複数種類の座標系のうちの何れかが指定されると、該指定された座標系に応じて前記操作画面に表示される座標軸が変更されるよう前記表示部を制御する、
     操作画面表示装置。
    The operation screen display device according to claim 1 or 2,
    When any one of a plurality of types of coordinate systems is specified via the input unit, the display control unit may change the coordinate axes displayed on the operation screen according to the specified coordinate system. Controlling the display unit;
    Operation screen display device.
PCT/JP2017/010268 2017-03-14 2017-03-14 Operation screen display device WO2018167855A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/010268 WO2018167855A1 (en) 2017-03-14 2017-03-14 Operation screen display device
JP2019505571A JP6761894B2 (en) 2017-03-14 2017-03-14 Operation screen display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/010268 WO2018167855A1 (en) 2017-03-14 2017-03-14 Operation screen display device

Publications (1)

Publication Number Publication Date
WO2018167855A1 true WO2018167855A1 (en) 2018-09-20

Family

ID=63522352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010268 WO2018167855A1 (en) 2017-03-14 2017-03-14 Operation screen display device

Country Status (2)

Country Link
JP (1) JP6761894B2 (en)
WO (1) WO2018167855A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112034783A (en) * 2019-06-04 2020-12-04 发那科株式会社 Machine tool control device and machine tool
JP2020201913A (en) * 2019-06-04 2020-12-17 ファナック株式会社 Machine tool control device and machine tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165112A (en) * 1982-03-25 1983-09-30 Mitsubishi Electric Corp Numerical control working system
JPS6297012A (en) * 1985-10-23 1987-05-06 Hitachi Ltd Robot teaching device
JPH01245307A (en) * 1988-03-28 1989-09-29 Okuma Mach Works Ltd Non-contacting type digitizer
JPH09103978A (en) * 1995-10-04 1997-04-22 Yaskawa Electric Corp Robot control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114706A (en) * 2001-10-05 2003-04-18 Matsuura Tekkosho:Kk Display system for articulated general purpose robot model
JP2009006410A (en) * 2007-06-26 2009-01-15 Fuji Electric Systems Co Ltd Remote operation support device and remote operation support program
JP5201341B2 (en) * 2008-09-09 2013-06-05 富士電機株式会社 Remote operation support device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165112A (en) * 1982-03-25 1983-09-30 Mitsubishi Electric Corp Numerical control working system
JPS6297012A (en) * 1985-10-23 1987-05-06 Hitachi Ltd Robot teaching device
JPH01245307A (en) * 1988-03-28 1989-09-29 Okuma Mach Works Ltd Non-contacting type digitizer
JPH09103978A (en) * 1995-10-04 1997-04-22 Yaskawa Electric Corp Robot control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112034783A (en) * 2019-06-04 2020-12-04 发那科株式会社 Machine tool control device and machine tool
JP2020201913A (en) * 2019-06-04 2020-12-17 ファナック株式会社 Machine tool control device and machine tool
JP7339030B2 (en) 2019-06-04 2023-09-05 ファナック株式会社 Machine tool controller and machine tool

Also Published As

Publication number Publication date
JPWO2018167855A1 (en) 2019-11-21
JP6761894B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
JP6843050B2 (en) Robot system
JP7490349B2 (en) Input device, control method for input device, robot system, method for manufacturing article using robot system, control program and recording medium
TW201718204A (en) Method for teaching robot and device for controlling robot arm
JP2684359B2 (en) Robot work Cartesian coordinate system setting device
US11279044B2 (en) Robot instructing apparatus, teaching pendant, and method of instructing a robot
KR20180069031A (en) Direct teaching method of robot
US11358286B2 (en) Robot system and method of operating the same
CN109834709A (en) Set the robot controller of fine motion coordinate system
WO2018167855A1 (en) Operation screen display device
JP2018069361A (en) Force control coordinate axis setting device, robot, and force control coordinate axis setting method
US20220250237A1 (en) Teaching device, teaching method, and recording medium
JP4277825B2 (en) Robot teaching system
US20220134571A1 (en) Display Control Method, Display Program, And Robot System
JP3671694B2 (en) Robot teaching method and apparatus
JP7105223B2 (en) robot system
CN115666879A (en) Control device, robot system, and control method for causing robot to perform work on workpiece
JP2020037165A (en) Control device of robot for monitoring variable of operation program
TW202206242A (en) Display system and robot system
US20230142821A1 (en) Method for Precise, Intuitive Positioning of Robotic Welding Machine
US20220250236A1 (en) Teaching device, teaching method, and recording medium
JP2015000438A (en) Robot, positional attitude correction device, and positional attitude correction method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505571

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900549

Country of ref document: EP

Kind code of ref document: A1