WO2018167839A1 - Ride sharing support system, ride sharing support method, and ride sharing support program - Google Patents
Ride sharing support system, ride sharing support method, and ride sharing support program Download PDFInfo
- Publication number
- WO2018167839A1 WO2018167839A1 PCT/JP2017/010163 JP2017010163W WO2018167839A1 WO 2018167839 A1 WO2018167839 A1 WO 2018167839A1 JP 2017010163 W JP2017010163 W JP 2017010163W WO 2018167839 A1 WO2018167839 A1 WO 2018167839A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shared traffic
- candidate
- riding
- candidates
- conditions
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 12
- 230000033001 locomotion Effects 0.000 description 34
- 238000010586 diagram Methods 0.000 description 9
- 238000005457 optimization Methods 0.000 description 8
- 239000000284 extract Substances 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 238000012790 confirmation Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000007115 recruitment Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 235000015220 hamburgers Nutrition 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000029305 taxis Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
Definitions
- the present invention relates to a riding assistance system, a riding assistance method, and a riding assistance program.
- the establishment of a shared taxi depends greatly on the nature of the area. For example, in a city station, there are many taxi users, and the routes of people moving from the station to a residential area are limited. However, there are few taxi users in local cities, so there are few cases where shared taxis are established except in tourist areas.
- desired reservation information boarding location, getting-off location, departure time
- contact information of users with usage history are stored in the reservation system
- the contact information is searched using the desired reservation information as a key
- the desired reservation in the past A user of the first boarding pattern who has transmitted the same desired reservation information as the information, or a section included in the route from the boarding place A to the getting-off place B in the past may be used as the desired reservation information.
- a technique for informing the contact information of the user of the boarding pattern by e-mail or the like and soliciting carpooling has been studied (for example, Patent Document 1).
- the purpose is to increase the possibility that a ride will be established in shared traffic.
- the riding support system includes a receiving unit that receives a boarding request for the boarding traffic, and a plurality of items constituting the conditions of the boarding traffic for each candidate for boarding the boarding traffic according to the boarding request.
- a generating unit that generates, for each of the candidates, a condition that maximizes the probability of being accepted by the candidate for the shared traffic based on a parameter indicating characteristics relating to each of the candidates.
- FIG. 5 is a flowchart for explaining an example of a processing procedure executed by the riding assistance system 10. It is a figure which shows the structural example of request history DB122. It is a figure which shows the structural example of movement pattern DB121. It is a figure which shows the structural example of proposal acceptance log
- the riding support system is not limited to the usual movement patterns of the rider who wants to ride, such as A, and the rider candidate, such as B or C. Manage the impact on benefits such as incentives (whether providing coupons increases the probability of accepting proposals), and what incentives are involved and what proposals If this is done, it is calculated whether the probability that the multiplication will be established is high, and the proposal that maximizes the probability is raised, thereby increasing the possibility of multiplication and synthesis.
- benefits such as incentives (whether providing coupons increases the probability of accepting proposals), and what incentives are involved and what proposals If this is done, it is calculated whether the probability that the multiplication will be established is high, and the proposal that maximizes the probability is raised, thereby increasing the possibility of multiplication and synthesis.
- FIG. 1 is a diagram illustrating a network configuration example according to an embodiment of the present invention.
- the passenger support system 10 and the plurality of user terminals 20 are connected via a network such as the Internet (which may include a wireless section), for example.
- a network such as the Internet (which may include a wireless section), for example.
- the user terminal 20 is a terminal used by a shared taxi user to input a request for a ride or to receive a shared taxi proposal.
- a shared taxi proposal is distributed to a person other than the requester.
- a PC Personal Computer
- a mobile phone a smartphone, a tablet terminal, or the like may be used as the user terminal 20.
- the riding support system 10 is one or more computers that generate proposals (sharing taxi terms) using incentives so as to increase the probability that the riding will be established for the riding taxi according to the request for the riding taxi.
- FIG. 2 is a diagram illustrating a hardware configuration example of the riding support system 10 according to the embodiment of the present invention.
- 2 includes a drive device 100, an auxiliary storage device 102, a memory device 103, a CPU 104, an interface device 105, and the like that are mutually connected by a bus B.
- a program that realizes processing in the riding support system 10 is provided by the recording medium 101.
- the recording medium 101 on which the program is recorded is set in the drive device 100, the program is installed from the recording medium 101 to the auxiliary storage device 102 via the drive device 100.
- the program need not be installed from the recording medium 101 and may be downloaded from another computer via a network.
- the auxiliary storage device 102 stores the installed program and also stores necessary files and data.
- the memory device 103 reads the program from the auxiliary storage device 102 and stores it when there is an instruction to start the program.
- the CPU 104 executes functions related to the riding support system 10 according to a program stored in the memory device 103.
- the interface device 105 is used as an interface for connecting to a network.
- An example of the recording medium 101 is a portable recording medium such as a CD-ROM, a DVD disk, or a USB memory.
- a portable recording medium such as a CD-ROM, a DVD disk, or a USB memory.
- an HDD Hard Disk Disk Drive
- flash memory or the like can be given. Both the recording medium 101 and the auxiliary storage device 102 correspond to computer-readable recording media.
- FIG. 3 is a diagram illustrating a functional configuration example of the riding assistance system 10 according to the embodiment of the present invention.
- the riding support system 10 includes a request receiving unit 11, a movement pattern matching unit 12, a user characteristic learning unit 13, a proposal optimization unit 14, and the like. Each of these units is realized by processing that one or more programs installed in the riding support system 10 cause the CPU 104 to execute.
- the riding support system 10 also uses databases (storage units) such as a movement pattern DB 121, a request history DB 122, a proposal acceptance history DB 123, a learning result DB 124, an incentive DB 125, and a facility DB 126.
- Each of these databases can be realized using, for example, the auxiliary storage device 102 or a storage device that can be connected to the sharing support system 10 via a network.
- the request receiving unit 11 receives a ride request for a shared taxi (hereinafter referred to as “ride request”) from the user terminal 20.
- the boarding request includes information indicating the boarding time, arrival time, departure place, destination, and the like.
- the movement pattern matching unit 12 extracts users who have a possibility of sharing a shared taxi (hereinafter referred to as “target taxi”) according to the shared request from the past usage history of the shared taxi of each user.
- target taxi a shared taxi
- the originator of the sharing request hereinafter referred to as “requester”
- the user extracted by the movement pattern matching unit 12 are hereinafter referred to as “combining candidates”.
- the user characteristic learning unit 13 learns a model (parameter) representing each user's characteristic (influence degree) related to each of a plurality of items constituting the shared taxi proposal (condition) based on the past proposal acceptance history. Do.
- the learning result is stored in the learning result DB 124.
- the proposal acceptance history is a history of acceptance status regarding a shared taxi proposal (condition) generated for a shared taxi in response to another person's ride request, and is stored in the proposal acceptance history DB 123 for each user. Yes.
- the characteristic of the user is information indicating which component among the components of the shared taxi condition is emphasized by the user, or which component is highly influenced by the user.
- the components of the proposal for a shared taxi include departure time, departure time error relative to desired departure time, arrival time error relative to desired arrival time, travel time (ride time), fee, incentive (privilege), and the like.
- the incentive is not an indispensable parameter regarding the conditions of shared taxi, but is a parameter introduced in this embodiment in order to increase the possibility of establishment of shared taxi.
- the proposal optimizing unit 14 refers to the learning result DB 124, the incentive DB 125, the facility DB 126, and the like for the riding candidate using the model learned by the user characteristic learning unit 13, and what kind of suggestion should be made.
- the probability that the establishment of will increase will be calculated with probability.
- the proposal optimizing unit 14 adjusts the contents of the proposal while narrowing down the candidates for riding based on the calculated probability.
- the proposal optimizing unit 14 transmits the proposal content generated for each narrowed-down candidate user terminal 20 to solicit the ride.
- the proposed optimization unit 14 will be described in more detail.
- the proposal optimizing unit 14 generates a proposal for each riding candidate n while involving the incentive I, and calculates the probability that the riding candidate n accepts the proposal for the proposal.
- the riding candidate n proposes (X n , ⁇ tl n , ⁇ ta n , T n , C n , I n ) are accepted as equations (1) and (2).
- Z n is a partition function. The does not include the X in the right-hand side of equation (1), the lag time ( ⁇ tl n, ⁇ ta n) from the planned establishment probability of riding together to the assumption that depends on the magnitude of, does not depend on the departure time Based.
- Each ⁇ is a parameter (weight) constituting user characteristics. That is, ⁇ 1 is a characteristic (influence or tolerance) with respect to the error ⁇ tl from the desired departure time X. ⁇ 2 is a characteristic (influence or tolerance) with respect to the error ⁇ ta from the arrival time. ⁇ 3 is a characteristic (influence or tolerance) with respect to the travel time T. ⁇ 4 is a characteristic (influence or tolerance) for the fee. ⁇ 5 is a characteristic (influence degree) with respect to the incentive I. The value of each ⁇ of each user is learned by the user characteristic learning unit 13.
- Incentives I n may be, for example, take values of 1 or -1. If incentive vans candidates n is accepted in the past and then, a -1 if there be accepted, it is possible to represent the acceptance degree of incentives size of beta 5.
- the incentive may be a coupon or a gift voucher.
- Proposed vans probability by vans candidates is highest, i.e., the riding together all candidates best suggestion OPT proposed acceptance probability is maximum of ⁇ X n, ⁇ tl n, ⁇ ta n, T n, C n, I n ⁇ Can be obtained by the following equation (3).
- the proposal optimizing unit 14 uses Formula (3) to generate a proposal that maximizes the acceptance probability P n of the proposal of each riding candidate n for each riding candidate.
- FIG. 4 is a flowchart for explaining an example of a processing procedure executed by the riding assistance system 10.
- step S101 the request receiving unit 11 receives the multiplication request transmitted from the user terminal 20 of the requester.
- the boarding request includes information indicating the desired departure time X or the desired arrival time Y, the departure place O, and the destination D.
- the request receiving unit 11 stores the sharing request in the request history DB 122.
- FIG. 5 is a diagram illustrating a configuration example of the request history DB 122.
- the request history DB 122 stores the departure place, destination, desired departure time X, desired arrival time Y, and the like of past boarding requests for each user.
- FIG. 5 shows a request history of a certain user.
- the movement pattern matching unit 12 searches for a movement route (boarding route) according to the boarding request (S102).
- a known technique may be used for the route search. Note that the scheduled departure time, the estimated arrival time, and the like are determined according to the search for the travel route.
- the movement pattern matching unit 12 extracts a user who has a movement experience of a route close to the searched movement route with reference to the movement pattern DB 121 (S103).
- FIG. 6 is a diagram illustrating a configuration example of the movement pattern DB 121.
- the movement pattern DB 121 stores a departure place, a destination, the number of movements, a most frequent movement time zone, and the like for each user.
- the contents of each record in the movement pattern DB 121 may be generated based on the request history DB 122, for example.
- step S103 for example, a record in which the departure point and the destination are included on the movement route, and the estimated arrival time of the departure point or the destination when moving along the movement route is included in the most frequent movement time zone is registered.
- the user who has been selected is extracted as a riding candidate.
- the extraction target may be limited to a record in which the number of movements is a predetermined value or more. That is, a riding candidate may be extracted based on a movement pattern with a high movement frequency.
- a record in the movement pattern DB 121 that causes extraction for a certain riding candidate is hereinafter referred to as a “target movement pattern”.
- each extracted candidate and requester are set as a candidate n. That is, hereinafter, the requester is also treated as one passenger candidate n.
- the user characteristic learning unit 13 learns (calculates) the value of ⁇ of each user based on the information stored in the proposal acceptance history DB 123 using Expression (4), and learns the results (calculation results). Is stored in the learning result DB 124 (S104).
- FIG. 7 is a diagram showing a configuration example of the proposal acceptance history DB 123.
- the suggestion acceptance history DB 123 stores, for each user, information indicating how much error of departure time or arrival time is allowed for adjustment with other riding candidates for multiplication / combination.
- the proposal acceptance history DB 123 departure time error, arrival time error, travel time, fee, incentive, proposal acceptance result, etc. are stored for each user for each past proposal. As a result, it is possible to grasp for each user whether the time is exactly, whether it is loose, what kind of incentive is weak, and what kind of proposal will be accepted in the future is highly likely to be accepted. You can know what will be.
- the proposal number for the riding candidate n and the proposal acceptance result is “accepted” (in order from oldest to newest) Learning is performed by estimating each ⁇ in Expression (2), where s is the number when the two are arranged.
- the equation for learning is given by the following equation (4).
- the user characteristic learning unit 13 learns the characteristic ⁇ using the equation (4).
- the learned ⁇ is stored in the learning result DB 124 for each user. The more the proposal is accepted, the more accurately the user characteristic ⁇ is learned.
- the learning by the user characteristic learning unit 13 may not be executed at this timing. For example, learning may be performed each time a response to a proposal is received.
- the proposal optimizing unit 14 generates a proposal Opt for each multiplication candidate n using Expression (3) (S105).
- the proposal optimizing unit 14 for each combination of the candidate candidates n for the number of recruited persons, for each combination of the requester and the candidate candidate n for the combination.
- the travel route is searched so that the total power of Pn becomes the maximum.
- a travel route of a triplet is searched when a requester and two riding candidates n are selected.
- a travel route of a triplet is searched when a requester and two riding candidates n are selected.
- a travel route of a triplet is searched when a requester and two riding candidates n are selected.
- ⁇ tl and ⁇ ta of the requester are errors in the departure time of the travel route and the arrival time of the travel route with respect to the desired departure time X and the desired arrival time Y in the ride request.
- ⁇ tl and ⁇ ta of the riding candidate n other than the requester are errors with respect to the most frequent movement time zone of the target movement pattern for the riding candidate.
- the proposed optimization unit 14 for each vans candidates n, available incentives (benefits) to generate a proposed Opt while fitted to I n at each destination or destination peripheral.
- incentives can be specified with reference to the incentive DB 125.
- FIG. 8 is a diagram illustrating a configuration example of the incentive DB 125.
- the incentive DB 125 stores facility names, stores, privilege details, privilege conditions, and the like for each currently available privilege (coupon or present).
- the facility name is the name of the facility including the store where the privilege can be used.
- the store name is the name of the store.
- the privilege content is the content of the privilege.
- the privilege condition is a condition for the privilege to be usable, such as a time limit of the privilege.
- the location information (latitude and longitude) of each facility including a store where the privilege can be used can be specified with reference to the facility DB 126.
- FIG. 9 is a diagram illustrating a configuration example of the facility DB 126.
- the facility DB 126 stores the facility name, latitude / longitude, store name, location, and the like of each facility.
- the latitude and longitude are the latitude and longitude of the location of the facility.
- the store name is the store name of the store in which the facility is included.
- the location is information indicating the position of the store in the facility.
- the proposal optimizing unit 14 can specify the facility of each passenger candidate n or the facility in the vicinity of the destination with reference to the facility DB 126, and refer to the incentive DB 125 for the benefits available at the facility. Can be identified.
- the proposal optimizing unit 14 generates a proposal for the triplet that maximizes the total power of the probability Pn while changing the incentive for each of the multiplicative candidates n included in the triplet and changing the movement route. .
- the proposal optimizing unit 14 executes such processing for all three-person patterns (however, one of the three-person groups is always a requester). As a result, an optimal proposal Opt is generated for each pattern of three people.
- the proposal optimizing unit 14 determines the optimal proposal Opt for each combination candidate n (in the above example, each pattern of a triplet), and the acceptance probability Pn of each candidate n in the optimal proposal Opt, Based on the above, a candidate n for sharing is selected as a proposal destination (that is, a solicitation target for sharing) (S106). Specifically, the proposal optimizing unit 14 sums the probabilities P n obtained from the formula (1) with respect to the proposal Opt for each of the two riding candidates n excluding the requester for each pattern of the triplet. Calculate The proposal optimizing unit 14 has the expected value (2.0 of the recruitment number) within the total for each pattern of the triplet, and the triple candidate n for the total closest to the expected value Select. In addition, with the selection of the riding candidate n, the proposal Opt for each selected riding candidate is also determined.
- the proposal optimizing unit 14 transmits each proposal Opt in the optimum proposal Opt for the combination (the triplet) to each user terminal 20 of the requester and each selected combination candidate n. (S107).
- a screen including a proposal Opt for each (hereinafter referred to as “suggest screen”) is displayed.
- e-mail may be used for sending the proposal.
- the mail address of each user may be stored in advance in the auxiliary storage device 102 or the like.
- FIG. 10 is a diagram showing a display example of the proposal screen.
- the proposal screen 510 includes a map area 511, an operation information area 512, an incentive display area 513, a cancel button 514, a reservation confirmation button 515, and the like.
- the map area 511 a map showing the starting point and the destination in the proposal Opt of the user is displayed.
- the operation information area 512 parameters excluding incentives are displayed among the parameters constituting the proposal Opt. Incentives are displayed in the incentive display area 513. When an incentive is selected, the contents of the incentive may be displayed as shown in a balloon.
- Cancel button 514 is a button for accepting rejection of a proposal.
- the reservation confirmation button 515 is a button for accepting proposal acceptance.
- the user terminal 20 transmits information indicating rejection of the proposal to the riding assistance system 10.
- the user terminal 20 transmits information indicating acceptance of the proposal to the riding assistance system 10.
- the proposal optimization unit 14 When the proposal optimization unit 14 receives a response from each user terminal 20 of the transmission destination of the proposal, the proposal optimization unit 14 associates the acceptance result (acceptance or rejection) included in the response with the proposal for the transmission destination, and proposes acceptance history Store in the DB 123 (S108).
- the movement pattern matching part 12 may extract all the users of the past joint traffic as a joint candidate, for example. In this case, a multiplication candidate unrelated to the movement route is also extracted. However, in the generation of the optimum proposal by the proposal optimization unit 14, the acceptance probability of such a multiplication candidate is low. It is unlikely that a person will be selected. Therefore, even if the movement pattern matching unit 12 extracts all users, this embodiment can be realized. However, the movement pattern matching unit 12 can extract the number of candidates that can be combined, thereby reducing the amount of calculation performed by the proposed optimization unit 14.
- the proposal is selected based on the acceptance probability of the proposal by the common candidate, and the common candidate having a high acceptance probability is selected as the proposal destination. Therefore, it is possible to increase the possibility that the ride is established in the ride traffic.
- the shared taxi has been described as an example of the shared traffic.
- the present embodiment may be applied to other shared traffic such as a shared bus.
- the request receiving unit 11 is an example of a receiving unit.
- the proposal optimizing unit 14 is an example of a generating unit.
Landscapes
- Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Health & Medical Sciences (AREA)
- Economics (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
A ride sharing support system has: a reception unit that receives a request to board ride sharing transportation; and a generation unit that generates, on the basis of parameters indicating characteristics relating to each of a plurality of items constituting the conditions of the ride sharing transportation for each ride sharing candidate for the ride sharing transportation in accordance with the boarding request, the condition for each candidate for which the probability is the highest of the ride sharing transportation being accepted by the candidate, whereby the possibility is increased that ride sharing is feasible for the ride sharing transportation.
Description
本発明は、乗合支援システム、乗合支援方法及び乗合支援プログラムに関する。
The present invention relates to a riding assistance system, a riding assistance method, and a riding assistance program.
乗合タクシーの成立は、その地域の性格によって大きく左右される。例えば、都市の駅においてはタクシー利用者が多く、駅から住宅地へ移動する人々のルートは限られているので乗合が成立しやすい。しかし、地方都市においてはタクシー利用者が少ないため、乗合タクシーが成立するケースは観光地を除いて少ないと考えられる。
The establishment of a shared taxi depends greatly on the nature of the area. For example, in a city station, there are many taxi users, and the routes of people moving from the station to a residential area are limited. However, there are few taxi users in local cities, so there are few cases where shared taxis are established except in tourist areas.
従来技術では、乗合を成立させるために、過去の利用履歴に基づくものが検討されている。例えば、利用履歴のある利用者の希望予約情報(乗車地、降車地、出発時刻)や連絡先を予約システムに格納しておき、希望予約情報をキーとして連絡先を検索し、過去に希望予約情報と同一の希望予約情報を送信したことのある第1の乗車パターンの利用者、又は過去に乗車地Aから降車地Bへのルートに含まれる区間を希望予約情報としたことのある第2の乗車パターンの利用者の連絡先へ電子メールなどで通知し、相乗りを勧誘する技術が検討されている(例えば、特許文献1)。
In the prior art, in order to establish a ride, those based on past usage history have been studied. For example, desired reservation information (boarding location, getting-off location, departure time) and contact information of users with usage history are stored in the reservation system, the contact information is searched using the desired reservation information as a key, and the desired reservation in the past A user of the first boarding pattern who has transmitted the same desired reservation information as the information, or a section included in the route from the boarding place A to the getting-off place B in the past may be used as the desired reservation information. A technique for informing the contact information of the user of the boarding pattern by e-mail or the like and soliciting carpooling has been studied (for example, Patent Document 1).
しかしながら、従来技術では、或るユーザからのリクエストに応じた乗合タクシーについて時間帯等において、他のユーザの過去の利用履歴に対してずれが有る場合に、乗合を成立させることが困難である。
However, with the conventional technology, it is difficult to establish a ride when there is a deviation from the past usage history of another user in a time zone or the like for a shared taxi in response to a request from a certain user.
そこで、一側面では、乗合交通において乗合が成立する可能性を高めることを目的とする。
Therefore, in one aspect, the purpose is to increase the possibility that a ride will be established in shared traffic.
一つの案では、乗合支援システムは、乗合交通に対する乗車要求を受信する受信部と、前記乗車要求に応じた乗合交通への乗合の候補者ごとの、前記乗合交通の条件を構成する複数の項目のそれぞれに関する特性を示すパラメータに基づいて、前記乗合交通について、前記候補者によって受け入れられる確率が最大となる条件を、前記候補者ごとに生成する生成部と、を有する。
In one plan, the riding support system includes a receiving unit that receives a boarding request for the boarding traffic, and a plurality of items constituting the conditions of the boarding traffic for each candidate for boarding the boarding traffic according to the boarding request. A generating unit that generates, for each of the candidates, a condition that maximizes the probability of being accepted by the candidate for the shared traffic based on a parameter indicating characteristics relating to each of the candidates.
一態様によれば、乗合交通において乗合が成立する可能性を高めることができる。
According to one aspect, it is possible to increase the possibility of establishment of sharing in shared traffic.
以下、図面に基づいて本発明の実施の形態を説明する。本実施の形態では、乗合の成立の可能性が高まるように、最初の乗合希望者と共に乗合タクシーに同乗してくれる同乗者を、インセンティブを絡めて探し出す乗合支援システムについて説明する。まず、乗合支援システムによって実現される乗合の具体例について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, a sharing support system that searches for passengers who ride in a shared taxi together with the first rider so as to increase the possibility of establishment of a ride will be described. First, a specific example of riding realized by the riding assistance system will be described.
[具体例1]
例えば、Aさんが13時に自宅を出発してa駅を目的地とする乗合タクシーをリクエストしたとする。乗合支援システムは、14時00分にa駅の途中になる病院に、タクシーで旅行時間20分を要して習慣的に通っている老人Bさんに目をつける。老人Bさんの自宅は、Aさんの自宅とa駅との間にあり、病院もAさんの自宅とa駅との間にあるとする。Bさんは、普段は14時00分のタクシーで病院に通っているが、料金の安い乗合タクシーであれば、Aさんの出発時刻に合わせて30分融通してもらい、13時30分に病院に到着するように行動を変えてもらえる可能性が有る。そこで、乗合支援システムは、13時10分にBさんを迎えにいき、13時30分に病院に到着する乗合タクシーをスマホ経由でBさんに提案する。提案がBさんに受け入れられた場合は、乗合タクシーは、13時にAさんを迎えに行き、13時10分にBさんを迎えに行って、病院、a駅に向かって出発する。 [Specific Example 1]
For example, suppose that Mr. A leaves his home at 13:00 and requests a shared taxi with destination a station. The riding support system looks at the elderly person B who takes a 20-minute taxi trip to a hospital in the middle of station a at 14:00. It is assumed that old man B's home is between A's home and station a, and the hospital is between A's home and station a. Mr. B usually goes to the hospital by taxi at 14:00, but if it is a low-cost shared taxi, he will be accommodated for 30 minutes according to the departure time of Mr. A, and the hospital will be at 13:30. There is a possibility that you will be able to change your behavior to arrive. Therefore, the riding assistance system picks up Mr. B at 13:10, and proposes a riding taxi that arrives at the hospital at 13:30 to Mr. B via smartphone. If the proposal is accepted by Mr. B, the shared taxi will pick up Mr. A at 13:00, go to pick up Mr. B at 13:10 and leave for the hospital, station a.
例えば、Aさんが13時に自宅を出発してa駅を目的地とする乗合タクシーをリクエストしたとする。乗合支援システムは、14時00分にa駅の途中になる病院に、タクシーで旅行時間20分を要して習慣的に通っている老人Bさんに目をつける。老人Bさんの自宅は、Aさんの自宅とa駅との間にあり、病院もAさんの自宅とa駅との間にあるとする。Bさんは、普段は14時00分のタクシーで病院に通っているが、料金の安い乗合タクシーであれば、Aさんの出発時刻に合わせて30分融通してもらい、13時30分に病院に到着するように行動を変えてもらえる可能性が有る。そこで、乗合支援システムは、13時10分にBさんを迎えにいき、13時30分に病院に到着する乗合タクシーをスマホ経由でBさんに提案する。提案がBさんに受け入れられた場合は、乗合タクシーは、13時にAさんを迎えに行き、13時10分にBさんを迎えに行って、病院、a駅に向かって出発する。 [Specific Example 1]
For example, suppose that Mr. A leaves his home at 13:00 and requests a shared taxi with destination a station. The riding support system looks at the elderly person B who takes a 20-minute taxi trip to a hospital in the middle of station a at 14:00. It is assumed that old man B's home is between A's home and station a, and the hospital is between A's home and station a. Mr. B usually goes to the hospital by taxi at 14:00, but if it is a low-cost shared taxi, he will be accommodated for 30 minutes according to the departure time of Mr. A, and the hospital will be at 13:30. There is a possibility that you will be able to change your behavior to arrive. Therefore, the riding assistance system picks up Mr. B at 13:10, and proposes a riding taxi that arrives at the hospital at 13:30 to Mr. B via smartphone. If the proposal is accepted by Mr. B, the shared taxi will pick up Mr. A at 13:00, go to pick up Mr. B at 13:10 and leave for the hospital, station a.
[具体例2]
同様に、Aさんが13時に自宅を出発してa駅を目的地とする乗合タクシーをリクエストしたとする。乗合支援システムは、Aさん宅とa駅との途中にある△デパートに12時のバスで自宅から通うCさんに目をつける。乗合支援システムは、Cさんが△デパートのハンバーガーが大好物であることを知っている。そこで、乗合支援システムは、ハンバーガーの割引クーポンを発行し、お昼を食べてもらうために、12時30分にCさんを迎えに行く乗合タクシーを提案する。Aさんにあわせてもう少し遅い時間を提案するとCさんに拒否される可能性がある。そこで、乗合支援システムは、Aさんに対しても時間を融通してもらい、Aさんに対して12時45分に迎えに行く乗合タクシーを提案する。Aさん及びCさんの双方が提案を受け入れた場合、乗合タクシーは、12時30分にCさんを迎えに行き、12時45分にAさんを迎えに行って、それぞれの目的地に向けて出発する。 [Specific Example 2]
Similarly, suppose that Mr. A left his home at 13:00 and requested a shared taxi with destination a station. The riding support system looks at Mr. C who goes from his house by bus at 12:00 to the △ department store between Mr. A's house and station a. In the riding support system, Mr. C knows that a hamburger at a department store is a favorite food. Therefore, the riding support system issues a discount coupon for hamburgers and proposes a shared taxi to pick up Mr. C at 12:30 in order to have lunch. If you suggest a little later time for Mr. A, Mr. C may be rejected. Therefore, the riding support system proposes a shared taxi that will meet Mr. A at 12:45, with time available for Mr. A. If both Mr. A and Mr. C accept the proposal, the shared taxi will pick up Mr. C at 12:30, go to pick up Mr. A at 12:45, and head for each destination. depart.
同様に、Aさんが13時に自宅を出発してa駅を目的地とする乗合タクシーをリクエストしたとする。乗合支援システムは、Aさん宅とa駅との途中にある△デパートに12時のバスで自宅から通うCさんに目をつける。乗合支援システムは、Cさんが△デパートのハンバーガーが大好物であることを知っている。そこで、乗合支援システムは、ハンバーガーの割引クーポンを発行し、お昼を食べてもらうために、12時30分にCさんを迎えに行く乗合タクシーを提案する。Aさんにあわせてもう少し遅い時間を提案するとCさんに拒否される可能性がある。そこで、乗合支援システムは、Aさんに対しても時間を融通してもらい、Aさんに対して12時45分に迎えに行く乗合タクシーを提案する。Aさん及びCさんの双方が提案を受け入れた場合、乗合タクシーは、12時30分にCさんを迎えに行き、12時45分にAさんを迎えに行って、それぞれの目的地に向けて出発する。 [Specific Example 2]
Similarly, suppose that Mr. A left his home at 13:00 and requested a shared taxi with destination a station. The riding support system looks at Mr. C who goes from his house by bus at 12:00 to the △ department store between Mr. A's house and station a. In the riding support system, Mr. C knows that a hamburger at a department store is a favorite food. Therefore, the riding support system issues a discount coupon for hamburgers and proposes a shared taxi to pick up Mr. C at 12:30 in order to have lunch. If you suggest a little later time for Mr. A, Mr. C may be rejected. Therefore, the riding support system proposes a shared taxi that will meet Mr. A at 12:45, with time available for Mr. A. If both Mr. A and Mr. C accept the proposal, the shared taxi will pick up Mr. C at 12:30, go to pick up Mr. A at 12:45, and head for each destination. depart.
以上の具体例のように、乗合支援システムは、Aさんのような乗合希望者、及びBさん又はCさんのような乗合候補者の普段の移動パターンだけではなく、それぞれの特性又は性格(どれだけ時間の融通が可能か等)、インセンティブ等の特典への影響度(クーポンなどを提供すると提案を受け入れる確率が高まるか)を管理して、どのようなインセンティブを絡めて、どのような提案を行えば乗合が成立する確率が高くなるのか計算し、当該確率が最高となる提案をすることで、乗合成立の可能性を高める。
As in the above specific examples, the riding support system is not limited to the usual movement patterns of the rider who wants to ride, such as A, and the rider candidate, such as B or C. Manage the impact on benefits such as incentives (whether providing coupons increases the probability of accepting proposals), and what incentives are involved and what proposals If this is done, it is calculated whether the probability that the multiplication will be established is high, and the proposal that maximizes the probability is raised, thereby increasing the possibility of multiplication and synthesis.
図1は、本発明の実施の形態のネットワーク構成例を示す図である。図1において、乗合支援システム10と複数のユーザ端末20とは、例えば、インターネット等のネットワーク(無線区間を含んでも良よい)を介して接続される。
FIG. 1 is a diagram illustrating a network configuration example according to an embodiment of the present invention. In FIG. 1, the passenger support system 10 and the plurality of user terminals 20 are connected via a network such as the Internet (which may include a wireless section), for example.
ユーザ端末20は、乗合タクシーの利用者が、乗車のリクエスト(要求)の入力や、乗合タクシーの提案の受信等に利用する端末である。すなわち、本実施の形態では、乗合タクシーのリクエストが発生すると、リクエスト者以外の人に、乗合タクシーの提案が配信される。なお、例えば、PC(Personal Computer)、携帯電話、スマートフォン、タブレット端末等がユーザ端末20として利用されてもよい。
The user terminal 20 is a terminal used by a shared taxi user to input a request for a ride or to receive a shared taxi proposal. In other words, in this embodiment, when a shared taxi request is generated, a shared taxi proposal is distributed to a person other than the requester. For example, a PC (Personal Computer), a mobile phone, a smartphone, a tablet terminal, or the like may be used as the user terminal 20.
乗合支援システム10は、乗合タクシーのリクエストに応じた乗合タクシーについて、乗合が成立する確率が高まるように、インセンティブを活用して提案(乗合タクシーの条)を生成する1以上のコンピュータである。
The riding support system 10 is one or more computers that generate proposals (sharing taxi terms) using incentives so as to increase the probability that the riding will be established for the riding taxi according to the request for the riding taxi.
図2は、本発明の実施の形態における乗合支援システム10のハードウェア構成例を示す図である。図2の乗合支援システム10は、それぞれバスBで相互に接続されているドライブ装置100、補助記憶装置102、メモリ装置103、CPU104、及びインタフェース装置105等を有する。
FIG. 2 is a diagram illustrating a hardware configuration example of the riding support system 10 according to the embodiment of the present invention. 2 includes a drive device 100, an auxiliary storage device 102, a memory device 103, a CPU 104, an interface device 105, and the like that are mutually connected by a bus B.
乗合支援システム10での処理を実現するプログラムは、記録媒体101によって提供される。プログラムを記録した記録媒体101がドライブ装置100にセットされると、プログラムが記録媒体101からドライブ装置100を介して補助記憶装置102にインストールされる。但し、プログラムのインストールは必ずしも記録媒体101より行う必要はなく、ネットワークを介して他のコンピュータよりダウンロードするようにしてもよい。補助記憶装置102は、インストールされたプログラムを格納すると共に、必要なファイルやデータ等を格納する。
A program that realizes processing in the riding support system 10 is provided by the recording medium 101. When the recording medium 101 on which the program is recorded is set in the drive device 100, the program is installed from the recording medium 101 to the auxiliary storage device 102 via the drive device 100. However, the program need not be installed from the recording medium 101 and may be downloaded from another computer via a network. The auxiliary storage device 102 stores the installed program and also stores necessary files and data.
メモリ装置103は、プログラムの起動指示があった場合に、補助記憶装置102からプログラムを読み出して格納する。CPU104は、メモリ装置103に格納されたプログラムに従って乗合支援システム10に係る機能を実行する。インタフェース装置105は、ネットワークに接続するためのインタフェースとして用いられる。
The memory device 103 reads the program from the auxiliary storage device 102 and stores it when there is an instruction to start the program. The CPU 104 executes functions related to the riding support system 10 according to a program stored in the memory device 103. The interface device 105 is used as an interface for connecting to a network.
なお、記録媒体101の一例としては、CD-ROM、DVDディスク、又はUSBメモリ等の可搬型の記録媒体が挙げられる。また、補助記憶装置102の一例としては、HDD(Hard Disk Drive)又はフラッシュメモリ等が挙げられる。記録媒体101及び補助記憶装置102のいずれについても、コンピュータ読み取り可能な記録媒体に相当する。
An example of the recording medium 101 is a portable recording medium such as a CD-ROM, a DVD disk, or a USB memory. As an example of the auxiliary storage device 102, an HDD (Hard Disk Disk Drive), a flash memory, or the like can be given. Both the recording medium 101 and the auxiliary storage device 102 correspond to computer-readable recording media.
図3は、本発明の実施の形態における乗合支援システム10の機能構成例を示す図である。図3において、乗合支援システム10は、リクエスト受信部11、移動パターンマッチング部12、ユーザ特性学習部13及び提案最適化部14等を有する。これら各部は、乗合支援システム10にインストールされた1以上のプログラムが、CPU104に実行させる処理により実現される。乗合支援システム10は、また、移動パターンDB121、リクエスト履歴DB122、提案受理履歴DB123、学習結果DB124、インセンティブDB125及び施設DB126等のデータベース(記憶部)を利用する。これら各データベースは、例えば、補助記憶装置102、又は乗合支援システム10にネットワークを介して接続可能な記憶装置等を用いて実現可能である。
FIG. 3 is a diagram illustrating a functional configuration example of the riding assistance system 10 according to the embodiment of the present invention. In FIG. 3, the riding support system 10 includes a request receiving unit 11, a movement pattern matching unit 12, a user characteristic learning unit 13, a proposal optimization unit 14, and the like. Each of these units is realized by processing that one or more programs installed in the riding support system 10 cause the CPU 104 to execute. The riding support system 10 also uses databases (storage units) such as a movement pattern DB 121, a request history DB 122, a proposal acceptance history DB 123, a learning result DB 124, an incentive DB 125, and a facility DB 126. Each of these databases can be realized using, for example, the auxiliary storage device 102 or a storage device that can be connected to the sharing support system 10 via a network.
リクエスト受信部11は、ユーザ端末20から乗合タクシーの乗車要求(以下、「乗合リクエスト」という。)を受信する。乗合リクエストには、乗車時刻、到着時刻、出発地及び目的地等を示す情報が含まれる。
The request receiving unit 11 receives a ride request for a shared taxi (hereinafter referred to as “ride request”) from the user terminal 20. The boarding request includes information indicating the boarding time, arrival time, departure place, destination, and the like.
移動パターンマッチング部12は、各ユーザの過去の乗合タクシーの利用履歴から、乗合リクエストに応じた乗合タクシー(以下、「対象タクシー」という。)へ乗合を行う可能性の有るユーザの抽出を行う。なお、乗合リクエストの発信者(以下、「リクエスト者」という。)と、移動パターンマッチング部12によって抽出されたユーザとを、以下「乗合候補者」という。
The movement pattern matching unit 12 extracts users who have a possibility of sharing a shared taxi (hereinafter referred to as “target taxi”) according to the shared request from the past usage history of the shared taxi of each user. In addition, the originator of the sharing request (hereinafter referred to as “requester”) and the user extracted by the movement pattern matching unit 12 are hereinafter referred to as “combining candidates”.
ユーザ特性学習部13は、過去の提案の受理履歴に基づいて、乗合タクシーの提案(条件)を構成する複数の項目のそれぞれに関する各ユーザの特性(影響度)を表すモデル(パラメータ)の学習を行う。学習結果は、学習結果DB124に記憶される。なお、提案の受理履歴とは、他者の乗合リクエストに応じた乗合タクシーに関して生成された乗合タクシーの提案(条件)についての受理状況の履歴をいい、ユーザごとに提案受理履歴DB123に記憶されている。
The user characteristic learning unit 13 learns a model (parameter) representing each user's characteristic (influence degree) related to each of a plurality of items constituting the shared taxi proposal (condition) based on the past proposal acceptance history. Do. The learning result is stored in the learning result DB 124. Note that the proposal acceptance history is a history of acceptance status regarding a shared taxi proposal (condition) generated for a shared taxi in response to another person's ride request, and is stored in the proposal acceptance history DB 123 for each user. Yes.
ユーザの特性とは、乗合タクシーの条件の構成要素のうちのいずれの構成要素を当該ユーザが重視するのか、又はいずれの構成要素に当該ユーザが影響される度合いが高いのかを示す情報である。乗合タクシーの提案の構成要素としては、出発時刻、出発希望時刻に対する出発時刻の誤差、到着希望時刻に対する到着時刻の誤差、旅行時間(乗車時間)、料金、インセンティブ(特典)等が有る。なお、インセンティブは、乗合タクシーの条件に関して必然的なパラメータではないが、本実施の形態において、乗合が成立する可能性を高めるために導入されるパラメータである。
The characteristic of the user is information indicating which component among the components of the shared taxi condition is emphasized by the user, or which component is highly influenced by the user. The components of the proposal for a shared taxi include departure time, departure time error relative to desired departure time, arrival time error relative to desired arrival time, travel time (ride time), fee, incentive (privilege), and the like. The incentive is not an indispensable parameter regarding the conditions of shared taxi, but is a parameter introduced in this embodiment in order to increase the possibility of establishment of shared taxi.
提案最適化部14は、ユーザ特性学習部13が学習したモデルを用いて、乗合候補者に対して、学習結果DB124、インセンティブDB125及び施設DB126等を参照して、どのような提案をすれば乗合の成立が高まるのかを確率で計算する。提案最適化部14は、計算された確率に基づいて、乗合候補者を絞りこみつつ、提案内容を調整する。提案最適化部14は、絞り込まれた各乗合候補者のユーザ端末20に、それぞれに対して生成された提案内容を送信して、乗合の勧誘を行う。
The proposal optimizing unit 14 refers to the learning result DB 124, the incentive DB 125, the facility DB 126, and the like for the riding candidate using the model learned by the user characteristic learning unit 13, and what kind of suggestion should be made. The probability that the establishment of will increase will be calculated with probability. The proposal optimizing unit 14 adjusts the contents of the proposal while narrowing down the candidates for riding based on the calculated probability. The proposal optimizing unit 14 transmits the proposal content generated for each narrowed-down candidate user terminal 20 to solicit the ride.
提案最適化部14について更に詳しく説明する。
The proposed optimization unit 14 will be described in more detail.
例として、或るユーザAさんがX時に自宅を出発し、最寄り駅まで乗合タクシーで移動する乗合リクエストを出したとする。乗合タクシーがドライバーを含めて4人乗りの場合、乗合候補者として、ユーザAさんの他に2名を探す必要がある(すなわち、募集人数は2名である)。提案最適化部14は、インセンティブIを絡めながら、各乗合候補者nへの提案を生成し、当該提案に対して乗合候補者nが提案を受け入れる確率を計算する。
As an example, assume that a user A leaves his home at X and issues a sharing request to travel to the nearest station by a shared taxi. If the shared taxi is a four-seater rider including a driver, it is necessary to search for two people in addition to the user A as a candidate for sharing (that is, the number of recruitment is two). The proposal optimizing unit 14 generates a proposal for each riding candidate n while involving the incentive I, and calculates the probability that the riding candidate n accepts the proposal for the proposal.
出発希望時刻Xからの誤差をΔtl、到着時刻からの誤差をΔta、旅行時間をT、料金をCとすると、乗合候補者nが提案(Xn,Δtln,Δtan,Tn,Cn,In)を受け入れる確率は式(1)、(2)となる。
If the error from the desired departure time X is Δtl, the error from the arrival time is Δta, the travel time is T, and the charge is C, the riding candidate n proposes (X n , Δtl n , Δta n , T n , C n , I n ) are accepted as equations (1) and (2).
各βは、ユーザ特性を構成するパラメータ(重み)である。すなわち、β1は、出発希望時刻Xからの誤差Δtlに対する特性(影響度又は許容度)である。β2は、到着時刻からの誤差Δtaに対する特性(影響度又は許容度)である。β3は、旅行時間Tに対する特性(影響度又は許容度)である。β4は、料金に対する特性(影響度又は許容度)である。β5は、インセンティブIに対する特性(影響度)である。各ユーザの各βの値は、ユーザ特性学習部13によって学習される。
Each β is a parameter (weight) constituting user characteristics. That is, β 1 is a characteristic (influence or tolerance) with respect to the error Δtl from the desired departure time X. β 2 is a characteristic (influence or tolerance) with respect to the error Δta from the arrival time. β 3 is a characteristic (influence or tolerance) with respect to the travel time T. β 4 is a characteristic (influence or tolerance) for the fee. β 5 is a characteristic (influence degree) with respect to the incentive I. The value of each β of each user is learned by the user characteristic learning unit 13.
インセンティブInは、例えば、1又は-1の値をとるとしてもよい。乗合候補者nが過去に受け入れたインセンティブであれば1とし、受け入れたことがなければ-1とし、β5の大きさでインセンティブの受け入れ度合いを表すことができる。インセンティブは、クーポンでもプレゼント引き換え券でもよい。
Incentives I n may be, for example, take values of 1 or -1. If incentive vans candidates n is accepted in the past and then, a -1 if there be accepted, it is possible to represent the acceptance degree of incentives size of beta 5. The incentive may be a coupon or a gift voucher.
乗合候補者による乗合確率が最も高くなる提案、すなわち、各乗合候補者全員の提案受け入れ確率が最大になる最良の提案OPT{Xn,Δtln,Δtan,Tn,Cn,In}は、以下の式(3)で求めることができる。
Proposed vans probability by vans candidates is highest, i.e., the riding together all candidates best suggestion OPT proposed acceptance probability is maximum of {X n, Δtl n, Δta n, T n, C n, I n} Can be obtained by the following equation (3).
以下、乗合支援システム10が実行する処理手順について説明する。図4は、乗合支援システム10が実行する処理手順の一例を説明するためのフローチャートである。
Hereinafter, the processing procedure executed by the riding support system 10 will be described. FIG. 4 is a flowchart for explaining an example of a processing procedure executed by the riding assistance system 10.
ステップS101において、リクエスト受信部11は、リクエスト者のユーザ端末20から送信された乗合リクエストを受信する。乗合リクエストには、出発希望時刻X又は到着希望時刻Y、出発地O及び目的地Dを示す情報が含まれている。リクエスト受信部11は、当該乗合リクエストをリクエスト履歴DB122に記憶する。
In step S101, the request receiving unit 11 receives the multiplication request transmitted from the user terminal 20 of the requester. The boarding request includes information indicating the desired departure time X or the desired arrival time Y, the departure place O, and the destination D. The request receiving unit 11 stores the sharing request in the request history DB 122.
図5は、リクエスト履歴DB122の構成例を示す図である。図5に示されるように、リクエスト履歴DB122には、過去の乗車リクエストの出発地、目的地、希望出発時刻X、希望到着時刻Y等がユーザごとに記憶される。図5には、或るユーザのリクエスト履歴が示されている。
FIG. 5 is a diagram illustrating a configuration example of the request history DB 122. As shown in FIG. 5, the request history DB 122 stores the departure place, destination, desired departure time X, desired arrival time Y, and the like of past boarding requests for each user. FIG. 5 shows a request history of a certain user.
続いて、移動パターンマッチング部12は、乗車リクエストに応じた移動経路(乗車経路)を探索する(S102)。経路の探索には、公知の技術が利用されればよい。なお、移動経路の探索に応じて、出発予定時刻、到着予定時刻等も決まる。
Subsequently, the movement pattern matching unit 12 searches for a movement route (boarding route) according to the boarding request (S102). A known technique may be used for the route search. Note that the scheduled departure time, the estimated arrival time, and the like are determined according to the search for the travel route.
続いて、移動パターンマッチング部12は、探索した移動経路に近い経路の移動経験が有るユーザを、移動パターンDB121を参照して抽出する(S103)。
Subsequently, the movement pattern matching unit 12 extracts a user who has a movement experience of a route close to the searched movement route with reference to the movement pattern DB 121 (S103).
図6は、移動パターンDB121の構成例を示す図である。移動パターンDB121には、ユーザごとに、出発地、目的地、移動回数、最頻度移動時間帯等が記憶されている。移動パターンDB121の各レコードの内容は、例えば、リクエスト履歴DB122に基づいて生成されてもよい。
FIG. 6 is a diagram illustrating a configuration example of the movement pattern DB 121. The movement pattern DB 121 stores a departure place, a destination, the number of movements, a most frequent movement time zone, and the like for each user. The contents of each record in the movement pattern DB 121 may be generated based on the request history DB 122, for example.
ステップS103では、例えば、移動経路上に出発地及び目的地が含まれ、当該移動経路によって移動した場合の当該出発地又は目的地の到着予定時刻が、最頻度移動時間帯に含まれるレコードが登録されているユーザが、乗合候補者として抽出される。但し、抽出対象は、移動回数が所定値以上であるレコードに限定されてもよい。すなわち、移動頻度が高い移動パターンに基づいて、乗合候補者が抽出されてもよい。なお、或る乗合候補者について抽出の原因となった移動パターンDB121のレコードを、以下「対象移動パターン」という。また、抽出された各乗合候補者及びリクエスト者を、乗合候補者nとする。すなわち、以降では、リクエスト者も一人の乗合候補者nとして扱われる。
In step S103, for example, a record in which the departure point and the destination are included on the movement route, and the estimated arrival time of the departure point or the destination when moving along the movement route is included in the most frequent movement time zone is registered. The user who has been selected is extracted as a riding candidate. However, the extraction target may be limited to a record in which the number of movements is a predetermined value or more. That is, a riding candidate may be extracted based on a movement pattern with a high movement frequency. A record in the movement pattern DB 121 that causes extraction for a certain riding candidate is hereinafter referred to as a “target movement pattern”. Also, each extracted candidate and requester are set as a candidate n. That is, hereinafter, the requester is also treated as one passenger candidate n.
続いて、ユーザ特性学習部13は、式(4)を用いて、提案受理履歴DB123に記憶されている情報に基づいて各ユーザのβの値を学習(算出)し、学習結果(算出結果)を学習結果DB124に記憶する(S104)。
Subsequently, the user characteristic learning unit 13 learns (calculates) the value of β of each user based on the information stored in the proposal acceptance history DB 123 using Expression (4), and learns the results (calculation results). Is stored in the learning result DB 124 (S104).
図7は、提案受理履歴DB123の構成例を示す図である。提案受理履歴DB123には、乗合成立のために他の乗合候補者との調整のため、出発時刻もしくは到着時刻の誤差をどれだけ許容したのかを示す情報がユーザごとに記憶される。
FIG. 7 is a diagram showing a configuration example of the proposal acceptance history DB 123. The suggestion acceptance history DB 123 stores, for each user, information indicating how much error of departure time or arrival time is allowed for adjustment with other riding candidates for multiplication / combination.
具体的には、提案受理履歴DB123には、過去の各提案について、出発時刻誤差、到着時刻誤差、旅行時間、料金、インセンティブ、提案受理結果等がユーザごとに記憶されている。これにより、各ユーザについて、時間にきっちりしているのか、ルーズなのか、どのようなインセンティブに弱いか等を把握することができ、今後どのような提案をすれば提案の受理の可能性が高くなるのかを知ることができる。
Specifically, in the proposal acceptance history DB 123, departure time error, arrival time error, travel time, fee, incentive, proposal acceptance result, etc. are stored for each user for each past proposal. As a result, it is possible to grasp for each user whether the time is exactly, whether it is loose, what kind of incentive is weak, and what kind of proposal will be accepted in the future is highly likely to be accepted. You can know what will be.
例えば、各乗合候補者n(但し、リクエスト者は除く)について、当該乗合候補者nに対する提案であって、提案受理結果が「受理」である提案の番号(提案を古いものから新しいものに順番に並べたときの番号)をsとすると、学習は、式(2)の各βを推定することによって行われる。学習のための式は、以下の式(4)で与えられる。
For example, for each riding candidate n (excluding the requester), the proposal number for the riding candidate n and the proposal acceptance result is “accepted” (in order from oldest to newest) Learning is performed by estimating each β in Expression (2), where s is the number when the two are arranged. The equation for learning is given by the following equation (4).
なお、ユーザ特性学習部13による学習は、このタイミングで実行されなくてもよい。例えば、提案に対する応答が受信されるたびに、学習が行われてもよい。
Note that the learning by the user characteristic learning unit 13 may not be executed at this timing. For example, learning may be performed each time a response to a proposal is received.
続いて、提案最適化部14は、式(3)を用いて、各乗合候補者nに対して提案Optを生成する(S105)。この際、提案最適化部14は、リクエスト者の他に、募集人数分の他の乗合候補者nを選択した場合の全ての組み合わせごとに、当該組み合わせに係るリクエスト者及び乗合候補者nのそれぞれのPnの総乗が最大となるような移動経路の探索を行う。
Subsequently, the proposal optimizing unit 14 generates a proposal Opt for each multiplication candidate n using Expression (3) (S105). At this time, in addition to the requester, the proposal optimizing unit 14, for each combination of the candidate candidates n for the number of recruited persons, for each combination of the requester and the candidate candidate n for the combination. The travel route is searched so that the total power of Pn becomes the maximum.
例えば、募集人数が二人であれば、リクエスト者と、二人の乗合候補者nとを選択した場合の3人組の移動経路が探索される。その結果、当該移動経路について、リクエスト者を含む3人の乗合候補者nのそれぞれに対して、Δtln、Δtan、Tn、Cnが決まる。なお、リクエスト者のΔtl、Δtaは、乗合リクエストにおける出発希望時刻X、到着希望時刻Yに対する、当該移動経路の出発時刻、当該移動経路の到着時刻の誤差である。一方、リクエスト者以外の乗合候補者nのΔtl、Δtaは、当該乗合候補者に対する対象移動パターンの最頻度移動時間帯に対する誤差である。
For example, if the recruitment number is two, a travel route of a triplet is searched when a requester and two riding candidates n are selected. As a result, for the moving path, for each of the three vans candidates n containing requester, .DELTA.TL n, .DELTA.ta n, T n, C n is determined. Note that Δtl and Δta of the requester are errors in the departure time of the travel route and the arrival time of the travel route with respect to the desired departure time X and the desired arrival time Y in the ride request. On the other hand, Δtl and Δta of the riding candidate n other than the requester are errors with respect to the most frequent movement time zone of the target movement pattern for the riding candidate.
また、提案最適化部14は、各乗合候補者nについて、それぞれの目的地又は目的地周辺において利用可能なインセンティブ(特典)をInに当てはめつつ提案Optを生成する。斯かるインセンティブは、インセンティブDB125を参照して特定可能である。
The proposed optimization unit 14, for each vans candidates n, available incentives (benefits) to generate a proposed Opt while fitted to I n at each destination or destination peripheral. Such an incentive can be specified with reference to the incentive DB 125.
図8は、インセンティブDB125の構成例を示す図である。図8に示されるように、インセンティブDB125には、現在利用可能な特典(クーポン又はプレゼント等)ごとに、施設名、店舗、特典内容及び特典条件等が記憶されている。
FIG. 8 is a diagram illustrating a configuration example of the incentive DB 125. As shown in FIG. 8, the incentive DB 125 stores facility names, stores, privilege details, privilege conditions, and the like for each currently available privilege (coupon or present).
施設名は、当該特典が利用可能な店舗を含む施設の名称である。店舗名は、当該店舗の名称である。特典内容は、当該特典の内容である。特典条件は、特典の期限等、特典が利用可能であるための条件である。
The facility name is the name of the facility including the store where the privilege can be used. The store name is the name of the store. The privilege content is the content of the privilege. The privilege condition is a condition for the privilege to be usable, such as a time limit of the privilege.
なお、特典を利用可能な店舗を含む各施設の位置情報(緯度経度)は、施設DB126を参照して特定可能である。
In addition, the location information (latitude and longitude) of each facility including a store where the privilege can be used can be specified with reference to the facility DB 126.
図9は、施設DB126の構成例を示す図である。図9に示されるように、施設DB126には、各施設の施設名、緯度経度、店舗名、及びロケーション等が記憶されている。緯度経度は、施設の位置の緯度及び経度である。店舗名は、当該施設の含まれる店舗の店舗名である。ロケーションは、当該施設における店舗の位置を示す情報である。
FIG. 9 is a diagram illustrating a configuration example of the facility DB 126. As shown in FIG. 9, the facility DB 126 stores the facility name, latitude / longitude, store name, location, and the like of each facility. The latitude and longitude are the latitude and longitude of the location of the facility. The store name is the store name of the store in which the facility is included. The location is information indicating the position of the store in the facility.
したがって、提案最適化部14は、各乗合候補者nの目的地又は目的地周辺における施設を施設DB126を参照して特定することができ、当該施設において利用可能な特典をインセンティブDB125を参照して特定することができる。
Therefore, the proposal optimizing unit 14 can specify the facility of each passenger candidate n or the facility in the vicinity of the destination with reference to the facility DB 126, and refer to the incentive DB 125 for the benefits available at the facility. Can be identified.
提案最適化部14は、3人組に含まれる各乗合候補者nに対するインセンティブを入れ替えつつ、また、移動経路を変化させつつ、確率Pnの総乗が最大となる提案を当該3人組について生成する。提案最適化部14は、このような処理を、全ての3人組のパターン(但し、3人組のうちの一人は常にリクエスト者である)について実行する。その結果、3人組のパターンごとに、最適な提案Optが生成される。
The proposal optimizing unit 14 generates a proposal for the triplet that maximizes the total power of the probability Pn while changing the incentive for each of the multiplicative candidates n included in the triplet and changing the movement route. . The proposal optimizing unit 14 executes such processing for all three-person patterns (however, one of the three-person groups is always a requester). As a result, an optimal proposal Opt is generated for each pattern of three people.
続いて、提案最適化部14は、乗合候補者nの組み合わせごと(上記の例では3人組のパターンごと)の最適な提案Optと、最適な提案Optにおける各乗合候補者nの受け入れ確率Pnとに基づいて、提案の送信先とする(すなわち、乗合の勧誘対象とする)乗合候補者nを選択する(S106)。具体的には、提案最適化部14は、3人組のパターンごとに、リクエスト者を除く二人の乗合候補者nのそれぞれについて、提案Optに関して式(1)に基づいて求まる確率Pnの合計を計算する。提案最適化部14は、3人組のパターンごとの当該合計の中で、期待値(募集人数の2.0)以下であって、当該期待値に最も近い合計に係る3人組の乗合候補者nを選択する。なお、乗合候補者nの選択と共に、選択された各乗合候補者に対する提案Optも決まる。
Subsequently, the proposal optimizing unit 14 determines the optimal proposal Opt for each combination candidate n (in the above example, each pattern of a triplet), and the acceptance probability Pn of each candidate n in the optimal proposal Opt, Based on the above, a candidate n for sharing is selected as a proposal destination (that is, a solicitation target for sharing) (S106). Specifically, the proposal optimizing unit 14 sums the probabilities P n obtained from the formula (1) with respect to the proposal Opt for each of the two riding candidates n excluding the requester for each pattern of the triplet. Calculate The proposal optimizing unit 14 has the expected value (2.0 of the recruitment number) within the total for each pattern of the triplet, and the triple candidate n for the total closest to the expected value Select. In addition, with the selection of the riding candidate n, the proposal Opt for each selected riding candidate is also determined.
続いて、提案最適化部14は、リクエスト者と、選択した各乗合候補者nとのそれぞれのユーザ端末20へ、当該組み合わせ(当該3人組)に対する最適な提案Optにおけるそれぞれの提案Optを送信する(S107)。その結果、当該各ユーザ端末20において、それぞれに対する提案Optを含む画面(以下、「提案画面」とい。)が表示される。なお、提案の送信には、例えば、電子メールが利用されてもよい。この場合、各ユーザのメールアドレスは、補助記憶装置102等に予め記憶されていればよい。
Subsequently, the proposal optimizing unit 14 transmits each proposal Opt in the optimum proposal Opt for the combination (the triplet) to each user terminal 20 of the requester and each selected combination candidate n. (S107). As a result, on each user terminal 20, a screen including a proposal Opt for each (hereinafter referred to as “suggest screen”) is displayed. For example, e-mail may be used for sending the proposal. In this case, the mail address of each user may be stored in advance in the auxiliary storage device 102 or the like.
図10は、提案画面の表示例を示す図である。図10において、提案画面510は、地図領域511、運行情報領域512、インセンティブ表示領域513、キャンセルボタン514及び予約確定ボタン515等を含む。
FIG. 10 is a diagram showing a display example of the proposal screen. In FIG. 10, the proposal screen 510 includes a map area 511, an operation information area 512, an incentive display area 513, a cancel button 514, a reservation confirmation button 515, and the like.
地図領域511には、当該ユーザの提案Optにおける出発地と目的地とが示された地図が表示される。運行情報領域512には、提案Optを構成するパラメータのうち、インセンティブを除くパラメータが表示される。インセンティブ表示領域513には、インセンティブが表示される。なお、インセンティブが選択されると、吹き出しに示されるように、当該インセンティブの内容が表示されるようにしてもよい。
In the map area 511, a map showing the starting point and the destination in the proposal Opt of the user is displayed. In the operation information area 512, parameters excluding incentives are displayed among the parameters constituting the proposal Opt. Incentives are displayed in the incentive display area 513. When an incentive is selected, the contents of the incentive may be displayed as shown in a balloon.
キャンセルボタン514は、提案の拒否を受け付けるためのボタンである。予約確定ボタン515は、提案の受理を受け付けるためのボタンである。
Cancel button 514 is a button for accepting rejection of a proposal. The reservation confirmation button 515 is a button for accepting proposal acceptance.
したがって、ユーザが、キャンセルボタン514を選択すると、ユーザ端末20は、提案の拒否を示す情報を乗合支援システム10へ送信する。一方、ユーザが、予約確定ボタン515を選択すると、ユーザ端末20は、提案の受理を示す情報を乗合支援システム10へ送信する。
Therefore, when the user selects the cancel button 514, the user terminal 20 transmits information indicating rejection of the proposal to the riding assistance system 10. On the other hand, when the user selects the reservation confirmation button 515, the user terminal 20 transmits information indicating acceptance of the proposal to the riding assistance system 10.
提案最適化部14は、提案の送信先の各ユーザ端末20からの応答を受信すると、当該応答に含まれる受理結果(受理又は拒否)と、当該送信先に対する提案とを関連付けて、提案受理履歴DB123に記憶する(S108)。
When the proposal optimization unit 14 receives a response from each user terminal 20 of the transmission destination of the proposal, the proposal optimization unit 14 associates the acceptance result (acceptance or rejection) included in the response with the proposal for the transmission destination, and proposes acceptance history Store in the DB 123 (S108).
なお、乗合を受理したユーザが、募集人数以上である場合、適宜、調整が行われればよい。
It should be noted that if the number of users who have accepted the ride is greater than or equal to the number of applicants, adjustments may be made as appropriate.
なお、移動パターンマッチング部12は、例えば、過去の乗合交通の利用者の全てを乗合候補者として抽出してもよい。この場合、移動経路とは無関係の乗合候補者も抽出されるが、提案最適化部14による最適な提案の生成において、このような乗合候補者の受け入れ確率は低くなるため、このような乗合候補者が選択される可能性は低い。したがって、移動パターンマッチング部12が全ての利用者を抽出したとしても、本実施の形態の実現は可能である。但し、移動パターンマッチング部12が、乗合の可能性が認められる乗合候補者を抽出することで、提案最適化部14による計算量を削減することができる。
In addition, the movement pattern matching part 12 may extract all the users of the past joint traffic as a joint candidate, for example. In this case, a multiplication candidate unrelated to the movement route is also extracted. However, in the generation of the optimum proposal by the proposal optimization unit 14, the acceptance probability of such a multiplication candidate is low. It is unlikely that a person will be selected. Therefore, even if the movement pattern matching unit 12 extracts all users, this embodiment can be realized. However, the movement pattern matching unit 12 can extract the number of candidates that can be combined, thereby reducing the amount of calculation performed by the proposed optimization unit 14.
上述したように、本実施の形態によれば、乗合候補者による提案の受け入れ確率に基づいて、提案が選択され、受け入れ確率の高い乗合候補者が提案先として選択される。したがって、乗合交通において乗合が成立する可能性を高めることができる。
As described above, according to the present embodiment, the proposal is selected based on the acceptance probability of the proposal by the common candidate, and the common candidate having a high acceptance probability is selected as the proposal destination. Therefore, it is possible to increase the possibility that the ride is established in the ride traffic.
また、提案にインセンティブ(特典)が含められることにより、乗合候補者の希望に対して多少の誤差が有る提案であっても、乗合候補者によって提案が受け入れられる確率を高めることができる。
In addition, by including an incentive (privilege) in the proposal, it is possible to increase the probability that the proposal is accepted by the riding candidate even if the proposal has a slight error with respect to the desire of the riding candidate.
上記の結果、例えば、乗合交通のユーザが増加することで、交通事業者の利益の向上を期待することができる。また、乗合交通を起爆剤に、商業施設がクーポンを発行して集客をはかることができる。
As a result of the above, for example, an increase in the number of shared traffic users can be expected to improve the profits of the traffic operators. In addition, commercial facilities can issue coupons using passenger traffic as an initiating agent to attract customers.
なお、本実施の形態では、乗合タクシーを乗合交通の一例として説明したが、乗合バス等、他の乗合交通について、本実施の形態が適用されてもよい。
In the present embodiment, the shared taxi has been described as an example of the shared traffic. However, the present embodiment may be applied to other shared traffic such as a shared bus.
なお、本実施の形態において、リクエスト受信部11は、受信部の一例である。提案最適化部14は、生成部の一例である。
In the present embodiment, the request receiving unit 11 is an example of a receiving unit. The proposal optimizing unit 14 is an example of a generating unit.
以上、本発明の実施例について詳述したが、本発明は斯かる特定の実施形態に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
As mentioned above, although the Example of this invention was explained in full detail, this invention is not limited to such specific embodiment, In the range of the summary of this invention described in the claim, various deformation | transformation * It can be changed.
10 乗合支援システム
11 リクエスト受信部
12 移動パターンマッチング部
13 ユーザ特性学習部
14 提案最適化部
20 ユーザ端末
100 ドライブ装置
101 記録媒体
102 補助記憶装置
103 メモリ装置
104 CPU
105 インタフェース装置
121 移動パターンDB
122 リクエスト履歴DB
123 提案受理履歴DB
124 学習結果DB
125 インセンティブDB
126 施設DB
B バス DESCRIPTION OFSYMBOLS 10 Sharing support system 11 Request receiving part 12 Movement pattern matching part 13 User characteristic learning part 14 Proposal optimization part 20 User terminal 100 Drive apparatus 101 Recording medium 102 Auxiliary storage apparatus 103 Memory apparatus 104 CPU
105Interface device 121 Movement pattern DB
122 Request history DB
123 Proposal Acceptance History DB
124 Learning result DB
125 Incentive DB
126 Facility DB
B bus
11 リクエスト受信部
12 移動パターンマッチング部
13 ユーザ特性学習部
14 提案最適化部
20 ユーザ端末
100 ドライブ装置
101 記録媒体
102 補助記憶装置
103 メモリ装置
104 CPU
105 インタフェース装置
121 移動パターンDB
122 リクエスト履歴DB
123 提案受理履歴DB
124 学習結果DB
125 インセンティブDB
126 施設DB
B バス DESCRIPTION OF
105
122 Request history DB
123 Proposal Acceptance History DB
124 Learning result DB
125 Incentive DB
126 Facility DB
B bus
Claims (15)
- 乗合交通に対する乗車要求を受信する受信部と、
前記乗車要求に応じた乗合交通への乗合の候補者ごとの、前記乗合交通の条件を構成する複数の項目のそれぞれに関する特性を示すパラメータに基づいて、前記乗合交通について、前記候補者によって受け入れられる確率が最大となる条件を、前記候補者ごとに生成する生成部と、
を有することを特徴とする乗合支援システム。 A receiving unit for receiving a boarding request for shared traffic;
Based on parameters indicating characteristics of each of a plurality of items constituting the conditions of the shared traffic for each candidate for shared traffic according to the boarding request, the shared traffic is accepted by the candidate. A generating unit that generates a condition that maximizes the probability for each candidate;
A riding support system characterized by comprising: - 前記乗合交通の条件を構成する複数の項目には、前記乗合交通を利用した場合の特典が含まれる、
ことを特徴とする請求項1記載の乗合支援システム。 The plurality of items constituting the conditions of the shared traffic include a privilege when using the shared traffic.
The sharing support system according to claim 1. - 前記乗合交通の条件を構成する複数の項目には、前記乗合交通の出発時刻及び到着時刻の少なくともいずれか一方について、希望時刻に対する誤差を含む、
ことを特徴とする請求項2記載の乗合支援システム。 The plurality of items constituting the conditions of the shared traffic include an error with respect to a desired time for at least one of the departure time and the arrival time of the shared traffic.
The riding together support system according to claim 2 characterized by things. - 前記乗合交通の条件を構成する複数の項目には、前記乗合交通での旅行時間を含む、
ことを特徴とする請求項3記載の乗合支援システム。 The plurality of items constituting the conditions for the shared traffic include travel time in the shared traffic,
The riding support system according to claim 3. - 前記生成部は、複数の候補者のうちの所定数の候補者の組み合わせごとに、当該組み合わせに係る候補者の全員の受け入れ確率が最大となる条件を、前記候補者ごとに生成し、前記組み合わせごとに生成された条件における、受け入れ確率の合計に基づいて、前記乗合交通の提案先とする前記所定数の候補者を選択する、
ことを特徴とする請求項1乃至4いずれか一項記載の乗合支援システム。 The generation unit generates, for each candidate, a condition that maximizes the acceptance probability of all candidates related to the combination for each combination of a predetermined number of candidates among a plurality of candidates. Selecting the predetermined number of candidates to be proposed for the shared traffic based on the total acceptance probability in the conditions generated for each;
The riding together support system according to any one of claims 1 to 4 characterized by things. - 乗合交通に対する乗車要求を受信し、
前記乗車要求に応じた乗合交通への乗合の候補者ごとの、前記乗合交通の条件を構成する複数の項目のそれぞれに関する特性を示すパラメータに基づいて、前記乗合交通について、前記候補者によって受け入れられる確率が最大となる条件を、前記候補者ごとに生成する、
処理をコンピュータが実行することを特徴とする乗合支援方法。 Receive boarding requests for shared traffic,
Based on parameters indicating characteristics of each of a plurality of items constituting the conditions of the shared traffic for each candidate for shared traffic according to the boarding request, the shared traffic is accepted by the candidate. A condition that maximizes the probability is generated for each candidate.
A sharing support method, wherein a computer executes processing. - 前記乗合交通の条件を構成する複数の項目には、前記乗合交通を利用した場合の特典が含まれる、
ことを特徴とする請求項6記載の乗合支援方法。 The plurality of items constituting the conditions of the shared traffic include a privilege when using the shared traffic.
The riding support method according to claim 6. - 前記乗合交通の条件を構成する複数の項目には、前記乗合交通の出発時刻及び到着時刻の少なくともいずれか一方について、希望時刻に対する誤差を含む、
ことを特徴とする請求項7記載の乗合支援方法。 The plurality of items constituting the conditions of the shared traffic include an error with respect to a desired time for at least one of the departure time and the arrival time of the shared traffic.
The riding support method according to claim 7. - 前記乗合交通の条件を構成する複数の項目には、前記乗合交通での旅行時間を含む、
ことを特徴とする請求項8記載の乗合支援方法。 The plurality of items constituting the conditions for the shared traffic include travel time in the shared traffic,
The riding support method according to claim 8, wherein: - 複数の候補者のうちの所定数の候補者の組み合わせごとに、当該組み合わせに係る候補者の全員の受け入れ確率が最大となる条件を、前記候補者ごとに生成し、前記組み合わせごとに生成された条件における、受け入れ確率の合計に基づいて、前記乗合交通の提案先とする前記所定数の候補者を選択する、
処理をコンピュータが実行ことを特徴とする請求項6乃至9いずれか一項記載の乗合支援方法。 For each combination of a predetermined number of candidates among a plurality of candidates, a condition that maximizes the acceptance probability of all candidates related to the combination is generated for each candidate, and is generated for each combination. Based on the total acceptance probability in the condition, select the predetermined number of candidates to be proposed for the shared traffic,
The riding support method according to any one of claims 6 to 9, wherein the computer executes the processing. - 乗合交通に対する乗車要求を受信し、
前記乗車要求に応じた乗合交通への乗合の候補者ごとの、前記乗合交通の条件を構成する複数の項目のそれぞれに関する特性を示すパラメータに基づいて、前記乗合交通について、前記候補者によって受け入れられる確率が最大となる条件を、前記候補者ごとに生成する、
処理をコンピュータに実行させることを特徴とする乗合支援プログラム。 Receive boarding requests for shared traffic,
Based on parameters indicating characteristics of each of a plurality of items constituting the conditions of the shared traffic for each candidate for shared traffic according to the boarding request, the shared traffic is accepted by the candidate. A condition that maximizes the probability is generated for each candidate.
A riding support program for causing a computer to execute processing. - 前記乗合交通の条件を構成する複数の項目には、前記乗合交通を利用した場合の特典が含まれる、
ことを特徴とする請求項11記載の乗合支援プログラム。 The plurality of items constituting the conditions of the shared traffic include a privilege when using the shared traffic.
12. The riding support program according to claim 11, characterized in that: - 前記乗合交通の条件を構成する複数の項目には、前記乗合交通の出発時刻及び到着時刻の少なくともいずれか一方について、希望時刻に対する誤差を含む、
ことを特徴とする請求項12記載の乗合支援プログラム。 The plurality of items constituting the conditions of the shared traffic include an error with respect to a desired time for at least one of the departure time and the arrival time of the shared traffic.
The riding support program according to claim 12, wherein: - 前記乗合交通の条件を構成する複数の項目には、前記乗合交通での旅行時間を含む、
ことを特徴とする請求項13記載の乗合支援プログラム。 The plurality of items constituting the conditions for the shared traffic include travel time in the shared traffic,
The riding support program according to claim 13. - 複数の候補者のうちの所定数の候補者の組み合わせごとに、当該組み合わせに係る候補者の全員の受け入れ確率が最大となる条件を、前記候補者ごとに生成し、前記組み合わせごとに生成された条件における、受け入れ確率の合計に基づいて、前記乗合交通の提案先とする前記所定数の候補者を選択する、
処理をコンピュータに実行させることを特徴とする請求項11乃至14いずれか一項記載の乗合支援プログラム。 For each combination of a predetermined number of candidates among a plurality of candidates, a condition that maximizes the acceptance probability of all candidates related to the combination is generated for each candidate, and is generated for each combination. Based on the total acceptance probability in the condition, select the predetermined number of candidates to be proposed for the shared traffic,
15. The riding support program according to claim 11, which causes a computer to execute processing.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019505557A JP6773211B2 (en) | 2017-03-14 | 2017-03-14 | Riding support system, riding support method and riding support program |
PCT/JP2017/010163 WO2018167839A1 (en) | 2017-03-14 | 2017-03-14 | Ride sharing support system, ride sharing support method, and ride sharing support program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/010163 WO2018167839A1 (en) | 2017-03-14 | 2017-03-14 | Ride sharing support system, ride sharing support method, and ride sharing support program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018167839A1 true WO2018167839A1 (en) | 2018-09-20 |
Family
ID=63523453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/010163 WO2018167839A1 (en) | 2017-03-14 | 2017-03-14 | Ride sharing support system, ride sharing support method, and ride sharing support program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6773211B2 (en) |
WO (1) | WO2018167839A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020140608A (en) * | 2019-03-01 | 2020-09-03 | 本田技研工業株式会社 | Vehicle riding-together support system and user terminal device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003044702A (en) * | 2001-07-30 | 2003-02-14 | Casio Comput Co Ltd | System and method for mediating shared taxi |
JP2015191364A (en) * | 2014-03-27 | 2015-11-02 | 富士通株式会社 | Carpool request method, carpool request device, and program |
JP2016042251A (en) * | 2014-08-15 | 2016-03-31 | 富士通株式会社 | Reservation management method, reservation management program, and reservation management device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003271706A (en) * | 2002-03-14 | 2003-09-26 | Fujitsu Ltd | Method, program, and apparatus for taxi sharing management |
JP2004062490A (en) * | 2002-07-29 | 2004-02-26 | Matsushita Electric Ind Co Ltd | Ride sharing proxy negotiation system and ride sharing proxy negotiation method |
JP6318536B2 (en) * | 2013-10-11 | 2018-05-09 | 日産自動車株式会社 | Vehicle carpooler search system |
-
2017
- 2017-03-14 WO PCT/JP2017/010163 patent/WO2018167839A1/en active Application Filing
- 2017-03-14 JP JP2019505557A patent/JP6773211B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003044702A (en) * | 2001-07-30 | 2003-02-14 | Casio Comput Co Ltd | System and method for mediating shared taxi |
JP2015191364A (en) * | 2014-03-27 | 2015-11-02 | 富士通株式会社 | Carpool request method, carpool request device, and program |
JP2016042251A (en) * | 2014-08-15 | 2016-03-31 | 富士通株式会社 | Reservation management method, reservation management program, and reservation management device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020140608A (en) * | 2019-03-01 | 2020-09-03 | 本田技研工業株式会社 | Vehicle riding-together support system and user terminal device |
Also Published As
Publication number | Publication date |
---|---|
JP6773211B2 (en) | 2020-10-21 |
JPWO2018167839A1 (en) | 2019-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6792977B2 (en) | Systems and methods for multi-factor based ranking of travel | |
US8306921B2 (en) | Mobile recommendation and reservation system | |
JP6340866B2 (en) | Carpool request method, carpool request apparatus and program | |
JP5434783B2 (en) | Carpool determination device, environmental load calculation device, carpool determination program, and carpool determination method | |
US20110313880A1 (en) | System and method for selecting transportation resources | |
US20150219467A1 (en) | Geographic location coding system | |
JP7139904B2 (en) | Information processing device and information processing program | |
CN111882112B (en) | Method and system for predicting arrival time | |
JP4916340B2 (en) | Route presenting device, route presenting method, and computer program | |
US20160364454A1 (en) | Computing system with contextual search mechanism and method of operation thereof | |
JPWO2004061392A1 (en) | Action support method and apparatus | |
JP2021077296A (en) | Information providing apparatus | |
WO2018167839A1 (en) | Ride sharing support system, ride sharing support method, and ride sharing support program | |
US20220090925A1 (en) | Transportation Dating System and Method | |
US20210390479A1 (en) | Vehicle allocation plan device, vehicle allocation plan system, and vehicle allocation plan program | |
KR102362369B1 (en) | Chauffeur service method and system based on travel scheduling | |
JP2022106538A (en) | Method and device for guiding transportation route candidate, and computer program | |
JP7540818B2 (en) | Vehicle dispatch request device, navigation device, vehicle dispatch management device, vehicle dispatch system, vehicle dispatch request method, navigation method, vehicle dispatch management method, program, and recording medium | |
Sonet et al. | SharY: a dynamic ridesharing and carpooling solution using advanced optimised algorithm | |
US20210182999A1 (en) | Control device, program for control device, and program for terminal device | |
JP2006163670A (en) | Visiting route searching system and program | |
JP2004192264A (en) | Riding-together providing system, riding-together providing method, riding-together providing program and computer-readable record medium | |
JP5156473B2 (en) | Information aggregation and distribution method | |
EP3983983A1 (en) | Improving user recommendations and reviews using autonomous vehicle information | |
JP7510306B2 (en) | Route guidance method, route guidance system, server, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17901041 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019505557 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17901041 Country of ref document: EP Kind code of ref document: A1 |