WO2018166667A1 - Hybrid supercapacitor, method for producing a hybrid supercapacitor, and vehicle - Google Patents

Hybrid supercapacitor, method for producing a hybrid supercapacitor, and vehicle Download PDF

Info

Publication number
WO2018166667A1
WO2018166667A1 PCT/EP2018/050849 EP2018050849W WO2018166667A1 WO 2018166667 A1 WO2018166667 A1 WO 2018166667A1 EP 2018050849 W EP2018050849 W EP 2018050849W WO 2018166667 A1 WO2018166667 A1 WO 2018166667A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
cathode
anode
hybrid supercapacitor
active material
Prior art date
Application number
PCT/EP2018/050849
Other languages
German (de)
French (fr)
Inventor
Mathias Widmaier
Elisabeth Buehler
Lars BOMMER
Parviz HAJIYEV
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2018166667A1 publication Critical patent/WO2018166667A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Hybrid supercapacitor method for producing a hybrid supercapacitor and vehicle
  • the present invention relates to a hybrid supercapacitor with high
  • WO 2006/1 1 1079 A further describes a hybrid supercapacitor with high cycle life and energy density intercalating lithium ions
  • a hybrid supercapacitor is understood to be a combined supercapacitor / battery or supercapacitor / battery cell, which is characterized by synergistic properties in terms of power density and energy density.
  • the hybrid supercapacitor according to the invention comprises two electrodes, an anode and a cathode.
  • the anode and the cathode can be used as free-standing electrodes be obtained or, for example, by means of a casting or molding process, be arranged on corresponding pantographs. In the case of the production of free-standing electrodes, these can also be subsequently pressed together with corresponding current collectors and thus connected to current collectors.
  • the anode comprises an anode material containing a first active material.
  • the first active material is considered to be a mixture consisting of Li 4 Ti 5 O 2 and activated
  • the anode consists exclusively of the anode material.
  • a proportion of the first active material in the anode is, based on the total weight of the anode material,
  • the cathode comprises a cathode material which is a second
  • Active material consisting of LiMn 2 C> 4 and activated carbon.
  • the cathode consists exclusively of the cathode material.
  • Total weight of the cathode material also 87.5% by mass to 96.5% by mass.
  • the cathode as well as the anode in the light of the proportion of first active material characterized by a very high proportion of second active material, wherein the second active material of LiMn2C> 4 and activated
  • Electrode the hybrid supercapacitor according to the invention is characterized by a synergistically high energy density and power density.
  • the positive and negative electrodes can store the same amount of charge, with very good charge release and charge storage properties are achieved. This is due among other things to the high, and in particular equal, proportions of first and second active material in the corresponding electrode.
  • a proportion of Li4Ti 5 0i2 in the first active material 34 to 54% by mass, in particular 39 to 49% by mass, and
  • the energy density of the hybrid supercapacitor can be further improved to values of more than 60 Wh / kg.
  • the power density can be increased, namely to values of at least 50 kW / kg.
  • Proportion of LiMn 2 C> 4 in the second active material based on the total weight of the second active material, 25 to 45 mass%, in particular 30 to 40 mass%, and in particular 32 to 38 mass%.
  • proportions of LiMn 2 C> 4 of more than 30% by weight and in particular of more than 40% by mass or even more than 45% by mass have the opposite effect with respect to the power density of the hybrid supercapacitor, namely a reduction in power density.
  • the power density of the hybrid supercapacitor of the present invention can be maximized.
  • the anode material and / or the cathode material advantageously contains at least one electrically conductive additive.
  • carbon black is used as an electrically conductive additive.
  • a proportion of electrically conductive additive in the anode material or in the cathode material is as low as possible, since it essentially does not contribute to increasing the power density or the energy density of the hybrid supercapacitor.
  • a proportion of electrically conductive additive in the anode material and / or in the cathode material based on the total weight of the corresponding electrode material, 2.5 to 7.5% by weight and in particular 5% by mass.
  • Cathode material at least one binder, in particular a polymeric binder, such.
  • a polymeric binder such as Cellulose, polyolefins, polyesters and fluorinated polymers.
  • Particularly preferred polymers are cellulose, polyethylene,
  • Cathode material is as low as possible, ie 1 to 7% by weight and in particular 5% by weight, based on the total weight of the corresponding
  • a further improvement of the charge transport within the hybrid supercapacitor can advantageously be improved in that a pore volume of the activated carbon is 0.7 to 1 ml / g, wherein the pore volume is determined by means of a BET measurement method.
  • a specific surface of the activated carbon is preferably more than 1000 m 2 / g, the specific surface also being determined by means of a BET measuring method. Suitable activated carbons are described in the literature (see Journal of the electrochemical society, 163 (14) A2956-A2964 (2016).
  • a mass ratio of anode to cathode 0.5 to 0.9, in particular 0.5 to 0.7 and in particular 0.6, is. If the anode and the cathode comprise a carrier material, this is not to be included in the determination of the mass ratio.
  • a layer thickness of the anode is 30 to 100 ⁇ m and / or a layer thickness of the cathode is 70 to 200 ⁇ m.
  • Method includes a step of making an anode and a step of making a cathode.
  • the anode is produced by an anode dispersion containing an electrically conductive additive, in particular carbon black, an aqueous dispersion of a
  • Binder in particular a polymeric binder, optionally a solvent and a first active material consisting of Li4Ti 5 0i2 and activated carbon is homogenized. After homogenization is the Anodendispersion potted and then dried. The drying can be carried out with heat, but is preferably carried out at room temperature, ie about 25 ° C. A proportion of the first active material, based on the total mass of the dried anode dispersion, is 87.5% by mass to 96.5% by mass.
  • the cathode is produced.
  • a cathode dispersion comprising an electrically conductive additive, in particular carbon black, an aqueous dispersion of a binder, in particular a polymeric binder, optionally a solvent and a second active material consisting of LiMn 2 C> 4 and activated carbon, is homogenized, then cast and also preferably dried at room temperature.
  • a proportion of second active material, based on the total mass of the dried cathode dispersion, is 87.5% by mass to 96.5% by mass.
  • a proportion of binder based on the total weight of the aqueous dispersion of the binder, in particular 50 to 70 mass% and in particular 60 mass%.
  • compositions of the electrode dispersions and the finally obtained electrodes can be detected by means of mass spectroscopy, scanning electron microscopy (SEM) or X-ray diffraction (XRD) or electrochemical characterization by cyclic voltammetry.
  • the process is simple, with the combination of conventional, easily implementable process steps executable and allows the production of a hybrid supercapacitor with high power density and high
  • the vehicle comprises a first voltage supply unit and a second voltage supply unit, wherein the second voltage supply unit is formed by a hybrid supercapacitor as described above.
  • Voltage supply unit which is formed by the hybrid supercapacitor according to the invention, if necessary, a large amount of energy can be provided quickly and reliably, for example, if the power of the first power supply unit breaks down or the like.
  • the vehicle further comprises a control unit which is set up to activate the hybrid supercapacitor in the event of an additional need for energy.
  • a control unit which is set up to activate the hybrid supercapacitor in the event of an additional need for energy.
  • FIG. 1 is a diagram in which the energy density against the
  • a second comparative cathode and a second comparative anode were prepared with the following compositions, wherein the proportion of Li 4 Ti 5 0i2 was 19% by mass:
  • the comparative anodes and reference cathodes were analogous to
  • measured cathode and the anode according to the invention and their average power density is determined as a function of the energy density (for the first comparison anode / comparison cathode see curve B in Figure 1; for the second comparison anode / comparison cathode see curve A in FIG

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The invention relates to a hybrid supercapacitor comprising an anode and a cathode, the anode comprising an anode material containing a first active material consisting of Li4Ti5O12 and activated carbon, a portion of the first active material amounting to between 87.5 mass % to 96.5 mass % of the total weight of the anode material, and the cathode comprising a cathode material that contains a second active material consisting of LiMn2O4 and activated carbon, a portion of the second active material amounting to between 87.5 mass % to 96.5 mass % of the total weight of the cathode material.

Description

Beschreibung  description
Titel title
Hybrid-Superkondensator, Verfahren zur Herstellung eines Hvbrid- Superkondensators und Fahrzeug  Hybrid supercapacitor, method for producing a hybrid supercapacitor and vehicle
Stand der Technik State of the art
Die vorliegende Erfindung betrifft einen Hybrid-Superkondensator mit hoher The present invention relates to a hybrid supercapacitor with high
Energiedichte und guten Ladungsspeicherungseigenschaften und Energy density and good charge storage properties and
Freisetzungseigenschaften sowie ein Verfahren zur Herstellung desselben als auch ein Fahrzeug, das einen Hybrid-Superkondensator umfasst. Release characteristics and a method for producing the same as well as a vehicle comprising a hybrid supercapacitor.
Aus dem Stand der Technik sind Hybrid-Superkondensatoren in The prior art hybrid supercapacitors are in
unterschiedlicher Ausführung bekannt, beispielsweise aus DE 102014220953 different version known, for example from DE 102014220953
A1 . WO 2006/1 1 1079 A beschreibt ferner einen Hybrid-Superkondensator mit hoher Zykluslebensdauer und Energiedichte, der Lithiumionen interkalierende A1. WO 2006/1 1 1079 A further describes a hybrid supercapacitor with high cycle life and energy density intercalating lithium ions
Verbindungen verwendet. Nachteilig an Hybrid-Superkondensatoren aus dem Used connections. A disadvantage of hybrid supercapacitors from the
Stand der Technik ist, dass sie keine ausreichend guten Batterie- und auch The state of the art is that they are not sufficiently good battery and also
Kondensatoreigenschaften in sich vereinen. Combine capacitor properties in itself.
Offenbarung der Erfindung Disclosure of the invention
Der erfindungsgemäße Hybrid-Superkondensator gemäß dem Anspruch 1 The hybrid supercapacitor according to the invention according to claim 1
zeichnet sich hingegen sowohl durch eine hohe Leistungsdichte als auch durch eine hohe Energiedichte und damit durch eine sehr gute Eigenschaft zur On the other hand, it is characterized by a high power density as well as by a high energy density and thus by a very good property
Bereitstellung und Speicherung von elektrischer Ladung aus. Hierbei wird unter einem Hybrid-Superkondensator eine kombinierte Superkondensator/Batterie oder Superkondensator/ Batteriezelle, verstanden, die sich durch synergistische Eigenschaften in der Leistungsdichte und Energiedichte auszeichnet.  Provision and storage of electrical charge. Here, a hybrid supercapacitor is understood to be a combined supercapacitor / battery or supercapacitor / battery cell, which is characterized by synergistic properties in terms of power density and energy density.
Der erfindungsgemäße Hybrid-Superkondensator umfasst zwei Elektroden, eine Anode und eine Kathode. Die Anode und die Kathode können als freistehende Elektroden erhalten werden oder aber, z.B. mittels eines Gieß- oder Formprozesses, auf entsprechenden Stromabnehmern angeordnet werden. Im Falle der Herstellung von freistehenden Elektroden können diese auch im Anschluss mit entsprechenden Stromabnehmern verpresst und somit mit Stromabnehmern verbunden werden. The hybrid supercapacitor according to the invention comprises two electrodes, an anode and a cathode. The anode and the cathode can be used as free-standing electrodes be obtained or, for example, by means of a casting or molding process, be arranged on corresponding pantographs. In the case of the production of free-standing electrodes, these can also be subsequently pressed together with corresponding current collectors and thus connected to current collectors.
Die Anode umfasst ein Anodenmaterial, das ein erstes Aktivmaterial enthält. Als erstes Aktivmaterial wird eine Mischung angesehen, die aus Li4Ti50i2 und aktiviertem The anode comprises an anode material containing a first active material. The first active material is considered to be a mixture consisting of Li 4 Ti 5 O 2 and activated
Kohlenstoff, also Aktivkohlenstoff, besteht. Vorzugsweise besteht die Anode ausschließlich aus dem Anodenmaterial. Ein Anteil an erstem Aktivmaterial in der Anode beträgt, bezogen auf das Gesamtgewicht des Anodenmaterials, Carbon, ie activated carbon exists. Preferably, the anode consists exclusively of the anode material. A proportion of the first active material in the anode is, based on the total weight of the anode material,
erfindungsgemäß 87,5 Masse% bis 96,5 Masse%. Hierdurch wird ein hoher Anteil an erstem Aktivmaterial bereitgestellt, der eine hohe Energie- und Leistungsdichte des Hybrid-Superkondensators bedingt. Erfindungsgemäß umfasst die Kathode ein Kathodenmaterial, das ein zweites According to the invention 87.5% by mass to 96.5% by mass. As a result, a high proportion of first active material is provided, which requires a high energy and power density of the hybrid supercapacitor. According to the invention, the cathode comprises a cathode material which is a second
Aktivmaterial, bestehend aus LiMn2C>4 und aktiviertem Kohlenstoff, enthält.  Active material consisting of LiMn 2 C> 4 and activated carbon.
Vorzugsweise besteht die Kathode ausschließlich aus dem Kathodenmaterial. Ein Anteil an zweitem Aktivmaterial in der Kathode beträgt, bezogen auf das Preferably, the cathode consists exclusively of the cathode material. A proportion of second active material in the cathode, based on the
Gesamtgewicht des Kathodenmaterials, erfindungsgemäß ebenfalls 87,5 Masse% bis 96,5 Masse%. Somit ist die Kathode ebenso wie die Anode im Lichte des Anteils an erstem Aktivmaterial, durch einen sehr hohen Anteil an zweitem Aktivmaterial gekennzeichnet, wobei das zweite Aktivmaterial aus LiMn2C>4 und aktiviertem Total weight of the cathode material, according to the invention also 87.5% by mass to 96.5% by mass. Thus, the cathode as well as the anode in the light of the proportion of first active material, characterized by a very high proportion of second active material, wherein the second active material of LiMn2C> 4 and activated
Kohlenstoff besteht. Durch die hohen Anteile an erstem und zweitem Aktivmaterial in der entsprechendenCarbon exists. Due to the high proportion of first and second active material in the corresponding
Elektrode, zeichnet sich der erfindungsgemäße Hybrid-Superkondensator durch eine synergistisch hohe Energiedichte und Leistungsdichte aus. Die positive und negative Elektrode können hierbei gleich hohe Ladungsmengen speichern, wobei sehr gute Ladungsfreisetzungs- und Ladungsspeicherungseigenschaften erzielt werden. Dies ist unter Anderem auch auf die hohen, und insbesondere gleich hohen, Anteile an erstem und zweitem Aktivmaterial in der entsprechenden Elektrode zurückzuführen. Electrode, the hybrid supercapacitor according to the invention is characterized by a synergistically high energy density and power density. The positive and negative electrodes can store the same amount of charge, with very good charge release and charge storage properties are achieved. This is due among other things to the high, and in particular equal, proportions of first and second active material in the corresponding electrode.
Die Unteransprüche zeigen bevorzugte Weiterbildungen der Erfindung. The dependent claims show preferred developments of the invention.
Gemäß einer vorteilhaften Weiterbildung, beträgt ein Anteil an Li4Ti50i2 im ersten Aktivmaterial 34 bis 54 Masse%, insbesondere 39 bis 49 Masse%, und According to an advantageous development, a proportion of Li4Ti 5 0i2 in the first active material 34 to 54% by mass, in particular 39 to 49% by mass, and
insbesondere 41 bis 47 Masse%, bezogen auf das Gesamtgewicht des ersten Aktivmaterials. Hierdurch kann die Energiedichte des Hybrid-Superkondensators auf Werte von über 60 Wh/kg weiter verbessert werden. Ferner kann auch die Leistungsdichte gesteigert werden, nämlich auf werte von mindestens 50 kW/kg. Eine weitere vorteilhafte Weiterbildung ist dadurch gekennzeichnet, dass einin particular from 41 to 47% by weight, based on the total weight of the first Active material. As a result, the energy density of the hybrid supercapacitor can be further improved to values of more than 60 Wh / kg. Furthermore, the power density can be increased, namely to values of at least 50 kW / kg. A further advantageous development is characterized in that a
Anteil an LiMn2C>4 im zweiten Aktivmaterial, bezogen auf das Gesamtgewicht des zweiten Aktivmaterials, 25 bis 45 Masse%, insbesondere 30 bis 40 Masse%, und insbesondere 32 bis 38 Masse%, beträgt. Überraschend wurde gefunden, dass Anteile an LiMn2C>4 von über 30 Masse% und insbesondere von über 40 Masse% oder sogar von über 45 Masse%, trotz hohem Anteil an Aktivmaterial, einen gegenteiligen Effekt in Bezug auf die Leistungsdichte des Hybrid- Superkondensators bewirken, nämlich eine Reduktion der Leistungsdichte. Proportion of LiMn 2 C> 4 in the second active material, based on the total weight of the second active material, 25 to 45 mass%, in particular 30 to 40 mass%, and in particular 32 to 38 mass%. Surprisingly, it has been found that proportions of LiMn 2 C> 4 of more than 30% by weight and in particular of more than 40% by mass or even more than 45% by mass, despite a high proportion of active material, have the opposite effect with respect to the power density of the hybrid supercapacitor, namely a reduction in power density.
Durch Einhalten der beanspruchten Bereiche kann die Leistungsdichte des erfindungsgemäßen Hybrid-Superkondensators maximiert werden. By maintaining the claimed ranges, the power density of the hybrid supercapacitor of the present invention can be maximized.
Zur Verbesserung der Ladungstransporteigenschaften in den Elektroden, enthält das Anodenmaterial und/oder das Kathodenmaterial vorteilhafterweise mindestens ein elektrisch leitfähiges Additiv. Besonders vorteilhaft aufgrund der guten Verfügbarkeit zu moderaten Preisen, wird Ruß als elektrisch leitfähiges Additiv verwendet. To improve the charge transport properties in the electrodes, the anode material and / or the cathode material advantageously contains at least one electrically conductive additive. Particularly advantageous due to the good availability at moderate prices, carbon black is used as an electrically conductive additive.
Vorzugsweise ist ein Anteil an elektrisch leitfähigem Additiv im Anodenmaterial bzw. im Kathodenmaterial möglichst gering, da es im Wesentlichen nicht zur Erhöhung der Leistungsdichte bzw. der Energiedichte des Hybrid- Superkondensators beiträgt. Gemäß einer vorteilhaften Weiterbildung beträgt somit ein Anteil an elektrisch leitfähigem Additiv im Anodenmaterial und/oder im Kathodenmaterial, bezogen auf das Gesamtgewicht des entsprechenden Elektrodenmaterials, 2,5 bis 7,5 Masse% und insbesondere 5 Masse%. Um eine Verbesserung der Struktur der Elektrodenmaterialien zu erzielen, ist ferner vorteilhaft vorgesehen, dass das Anodenmaterial und/oder das Preferably, a proportion of electrically conductive additive in the anode material or in the cathode material is as low as possible, since it essentially does not contribute to increasing the power density or the energy density of the hybrid supercapacitor. According to an advantageous development, therefore, a proportion of electrically conductive additive in the anode material and / or in the cathode material, based on the total weight of the corresponding electrode material, 2.5 to 7.5% by weight and in particular 5% by mass. In order to achieve an improvement in the structure of the electrode materials, it is further advantageously provided that the anode material and / or the
Kathodenmaterial mindestens ein Bindemittel, insbesondere ein polymeres Bindemittel, wie z.B. Cellulose, Polyolefine, Polyester und fluorierte Polymere, enthält. Besonders bevorzugte Polymere sind Cellulose, Polyethylen, Cathode material at least one binder, in particular a polymeric binder, such. Cellulose, polyolefins, polyesters and fluorinated polymers. Particularly preferred polymers are cellulose, polyethylene,
Polypropylen, Polyethylenterephthalat, Polytetrafluorethylen und Polypropylene, polyethylene terephthalate, polytetrafluoroethylene and
Polyvinylidenfluorid. Um die Energiedichte sowie die Leistungsdichte des Hybrid-Superkondensators weiter zu optimieren, ist gemäß einer weiteren vorteilhaften Weiterbildung vorgesehen, dass ein Anteil an Bindemittel im Anodenmaterial bzw. im Polyvinylidene fluoride. In order to further optimize the energy density and the power density of the hybrid supercapacitor, it is provided according to a further advantageous development that a proportion of binder in the anode material or in the
Kathodenmaterial möglichst gering ist, also 1 bis 7 Masse% und insbesondere 5 Masse%, bezogen auf das Gesamtgewicht des entsprechenden Cathode material is as low as possible, ie 1 to 7% by weight and in particular 5% by weight, based on the total weight of the corresponding
Elektrodenmaterials, beträgt. Electrode material.
Eine weitere Verbesserung des Ladungstransports innerhalb des Hybrid- Superkondensators kann vorteilhaft dadurch verbessert werden, dass ein Porenvolumen des aktivierten Kohlenstoffes 0,7 bis 1 ml/g beträgt, wobei das Porenvolumen mittels eines BET-Messverfahrens ermittelt wird. Eine spezifische Oberfläche des aktivierten Kohlenstoffes beträgt vorzugsweise mehr als 1000 m2/g, wobei die spezifische Oberfläche ebenfalls mittels eines BET- Messverfahrens bestimmt wird. Geeignete aktivierte Kohlenstoffe sind in der Literatur beschrieben (siehe hierzu Journal of the electrochemical society, 163 (14) A2956-A2964 (2016). A further improvement of the charge transport within the hybrid supercapacitor can advantageously be improved in that a pore volume of the activated carbon is 0.7 to 1 ml / g, wherein the pore volume is determined by means of a BET measurement method. A specific surface of the activated carbon is preferably more than 1000 m 2 / g, the specific surface also being determined by means of a BET measuring method. Suitable activated carbons are described in the literature (see Journal of the electrochemical society, 163 (14) A2956-A2964 (2016).
Um die positiven Eigenschaften des Hybrid-Superkondensators auch über eine lange Laufzeit zu erhalten, ist es ferner vorteilhaft, wenn ein Masseverhältnis von Anode zu Kathode 0,5 bis 0,9, insbesondere 0,5 bis 0,7 und insbesondere 0,6, beträgt. Sofern die Anode und die Kathode ein Trägermaterial umfassen, ist dieses in die Bestimmung des Masseverhältnisses nicht mit einzubeziehen. In order to obtain the positive properties of the hybrid supercapacitor over a long period of time, it is furthermore advantageous if a mass ratio of anode to cathode 0.5 to 0.9, in particular 0.5 to 0.7 and in particular 0.6, is. If the anode and the cathode comprise a carrier material, this is not to be included in the determination of the mass ratio.
Aus vorstehend genanntem Grund ist es ebenfalls von Vorteil, wenn eine Schichtdicke der Anode 30 bis 100 μηη beträgt und/oder eine Schichtdicke der Kathode 70 bis 200 μηι beträgt. For the above-mentioned reason, it is likewise advantageous if a layer thickness of the anode is 30 to 100 μm and / or a layer thickness of the cathode is 70 to 200 μm.
Ebenfalls erfindungsgemäß wird auch ein Verfahren zur Herstellung eines wie vorstehend beschriebenen Hybrid-Superkondensators beschrieben. Das Also according to the invention, a method for producing a hybrid supercapacitor as described above is also described. The
Verfahren umfasst einen Schritt des Herstellens einer Anode sowie einen Schritt des Herstellens einer Kathode. Method includes a step of making an anode and a step of making a cathode.
Die Anode wird hergestellt, indem eine Anodendispersion, die ein elektrisch leitfähiges Additiv, insbesondere Ruß, eine wässrigen Dispersion eines The anode is produced by an anode dispersion containing an electrically conductive additive, in particular carbon black, an aqueous dispersion of a
Bindemittels, insbesondere eines polymeren Bindemittels, ggf. ein Lösungsmittel und ein erstes Aktivmaterial, das aus Li4Ti50i2 und aktiviertem Kohlenstoff besteht, homogenisiert wird. Nach erfolgter Homogenisierung wird die Anodendispersion vergossen und anschließend getrocknet. Das Trocknen kann unter Wärmezufuhr erfolgen, wird aber vorzugsweise bei Raumtemperatur, also etwa 25 °C, ausgeführt. Ein Anteil an erstem Aktivmaterial, bezogen auf die Gesamtmasse der getrockneten Anodendispersion, beträgt hierbei 87,5 Masse% bis 96,5 Masse%. Binder, in particular a polymeric binder, optionally a solvent and a first active material consisting of Li4Ti 5 0i2 and activated carbon is homogenized. After homogenization is the Anodendispersion potted and then dried. The drying can be carried out with heat, but is preferably carried out at room temperature, ie about 25 ° C. A proportion of the first active material, based on the total mass of the dried anode dispersion, is 87.5% by mass to 96.5% by mass.
In analoger Weise wird die Kathode hergestellt. Zunächst wird somit eine Kathodendispersion, die ein elektrisch leitfähiges Additiv, insbesondere Ruß, eine wässrigen Dispersion eines Bindemittels, insbesondere eines polymeren Bindemittels, ggf. ein Lösungsmittel und ein zweites Aktivmaterial, bestehend aus LiMn2C>4 und aktiviertem Kohlenstoff, umfasst, homogenisiert, anschließend vergossen und ebenfalls vorzugsweise bei Raumtemperatur getrocknet. Ein Anteil an zweitem Aktivmaterial, bezogen auf die Gesamtmasse der getrockneten Kathodendispersion, beträgt 87,5 Masse% bis 96,5 Masse%. In an analogous manner, the cathode is produced. First of all, a cathode dispersion comprising an electrically conductive additive, in particular carbon black, an aqueous dispersion of a binder, in particular a polymeric binder, optionally a solvent and a second active material consisting of LiMn 2 C> 4 and activated carbon, is homogenized, then cast and also preferably dried at room temperature. A proportion of second active material, based on the total mass of the dried cathode dispersion, is 87.5% by mass to 96.5% by mass.
Ein Anteil an Bindemittel beträgt, bezogen auf das Gesamtgewicht der wässrigen Dispersion des Bindemittels, insbesondere 50 bis 70 Masse% und insbesondere 60 Masse%. A proportion of binder, based on the total weight of the aqueous dispersion of the binder, in particular 50 to 70 mass% and in particular 60 mass%.
Eine beispielhafte Zusammensetzung einer Kathodendispersion ist nachstehend angegeben: An exemplary composition of a cathode dispersion is given below:
2,475 g LiMn204 (AC YP80F der Firma Kuraray aus dem Jahre 2015), 4,596 g elektrisch leitfähiges Additiv (C-Nergy C65 der Firma Imerys Graphite and Carbon aus dem Jahre 2015), 0,404 g Ruß, 19,078 g Lösungsmittel 2.475 g of LiMn 2 O 4 (AC YP80F from Kuraray from 2015), 4.596 g of electrically conductive additive (C-Nergy C65 from Imerys Graphite and Carbon from 2015), 0.404 g of carbon black, 19.078 g of solvent
(Isopropanol) und 1 ,010 g einer wässrigen Dispersion mit 60 Masse% PTFE. Hieraus ergibt sich nach dem Trocknen eine trockene Elektrodenmasse von 8,485 g. (Isopropanol) and 1, 010 g of an aqueous dispersion with 60% by weight of PTFE. This results in a dry electrode mass of 8.485 g after drying.
Eine beispielhafte Zusammensetzung einer Anodendispersion ist nachstehend angegeben: An exemplary composition of an anode dispersion is given below:
1 ,848 g Li4Ti50i2 (AC YP80F der Firma Kuraray aus dem Jahre 2015), 2,352 g elektrisch leitfähiges Additiv (C-Nergy C65 der Firma Imerys Graphite and Carbon aus dem Jahre 2015), 0,242 g Ruß, 12,171 g Lösungsmittel 1.848 g of Li 4 Ti 5 O 2 (AC YP80F from Kuraray from 2015), 2.352 g of electrically conductive additive (C-Nergy C65 from Imerys Graphite and Carbon from 2015), 0.242 g of carbon black, 12.171 g of solvent
(Isopropanol) und 0,606 g einer wässrigen Dispersion mit 60 Masse% PTFE. Hieraus ergibt sich nach dem Trocknen eine trockene Elektrodenmasse von 5,091 g. (Isopropanol) and 0.606 g of an aqueous dispersion containing 60% by mass of PTFE. This results in a dry electrode mass of 5.091 g after drying.
Die Zusammensetzungen der Elektrodendispersionen sowie der final erhaltenen Elektroden ist mittels Massenspektroskopie, Rasterelektronenmikroskopie (SEM) oder Röntgenbeugung (XRD) oder elektrochemischer Charakterisierung mittels Cyclovoltammetrie nachweisbar. The compositions of the electrode dispersions and the finally obtained electrodes can be detected by means of mass spectroscopy, scanning electron microscopy (SEM) or X-ray diffraction (XRD) or electrochemical characterization by cyclic voltammetry.
Das Verfahren ist einfach, unter Kombination von herkömmlichen, leicht umsetzbaren Verfahrensschritten ausführbar und ermöglicht die Herstellung eines Hybrid-Superkondensators mit hoher Leistungsdichte und hoher The process is simple, with the combination of conventional, easily implementable process steps executable and allows the production of a hybrid supercapacitor with high power density and high
Energiedichte. Energy density.
Ferner erfindungsgemäß wird auch ein Fahrzeug, das insbesondere als Furthermore, according to the invention is also a vehicle, in particular as
Kraftfahrzeug ausgebildet ist, beschrieben. Das Fahrzeug umfasst eine erste Spannungsversorgungseinheit und eine zweite Spannungsversorgungseinheit, wobei die zweite Spannungsversorgungseinheit durch einen wie vorstehend beschriebenen Hybrid-Superkondensator gebildet ist. Durch die zweite Motor vehicle is formed, described. The vehicle comprises a first voltage supply unit and a second voltage supply unit, wherein the second voltage supply unit is formed by a hybrid supercapacitor as described above. By the second
Spannungsversorgungseinheit, die durch den erfindungsgemäßen Hybrid- Superkondensator gebildet ist, kann im Bedarfsfall schnell und zuverlässig eine hohe Energiemenge bereitgestellt werden, beispielsweise falls die Leistung der ersten Spannungsversorgungseinheit einbricht o.ä. Voltage supply unit, which is formed by the hybrid supercapacitor according to the invention, if necessary, a large amount of energy can be provided quickly and reliably, for example, if the power of the first power supply unit breaks down or the like.
Vorteilhaft ist demnach auch vorgesehen, dass das Fahrzeug ferner eine Steuereinheit umfasst, die eingerichtet ist, den Hybrid-Superkondensator im Fall eines zusätzlichen Bedarfs an Energie zu aktivieren. Somit steht im Bedarfsfall immer eine ausreichende Menge an Energie für entsprechende Manöver des Fahrzeugs zur Verfügung. Auch eignet sich diese Weiterbildung für sogenannte Boost-Rekuperationssysteme. Advantageously, it is accordingly also provided that the vehicle further comprises a control unit which is set up to activate the hybrid supercapacitor in the event of an additional need for energy. Thus, if necessary, a sufficient amount of energy is always available for corresponding maneuvers of the vehicle. This development is also suitable for so-called boost recuperation systems.
Die für den erfindungsgemäßen Hybrid-Superkondensator beschriebenen Vorteile, vorteilhaften Effekte und Eigenschaften finden auch Anwendung auf das erfindungsgemäße Verfahren und das erfindungsgemäße Fahrzeug. Kurze Beschreibung der Zeichnung The advantages, advantageous effects and properties described for the hybrid supercapacitor according to the invention are also applicable to the method according to the invention and the vehicle according to the invention. Short description of the drawing
Nachfolgend werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die begleitende Zeichnung im Detail beschrieben. In der Zeichnung ist: Hereinafter, embodiments of the invention will be described in detail with reference to the accompanying drawings. In the drawing is:
Figur 1 ein Diagramm, in dem die Energiedichte gegen die Figure 1 is a diagram in which the energy density against the
durchschnittliche Leistungsdichte aufgetragen ist.  average power density is plotted.
Ausführungsform der Erfindung Embodiment of the invention
Aus nachfolgenden Zusammensetzungen wurden je eine erfindungsgemäße Anode und eine erfindungsgemäße Kathode hergestellt, indem die From the following compositions, an anode according to the invention and a cathode according to the invention were each prepared by the
entsprechenden Zusammensetzungen homogenisiert und anschließend kalandriert bzw. ausgerollt wurden, wobei eine Schichtdicke der Anode 100 μηη und eine Schichtdicke der Kathode 200 μηη betrug.  homogenized and then calendered or rolled out, with a layer thickness of the anode 100 μηη and a layer thickness of the cathode was 200 μηη.
Figure imgf000009_0001
Figure imgf000009_0001
Unter Verwendung der erfindungsgemäß hergestellten Anode und Kathode wurde die durchschnittliche Leistungsdichte in Abhängigkeit der Energiedichte bestimmt. Die entsprechende Kurve C ist in Figur 1 dargestellt. In analoger Weise wurden eine erste Vergleichskathode und eine erste Using the anode and cathode produced according to the invention, the average power density was determined as a function of the energy density. The corresponding curve C is shown in FIG. In an analogous manner, a first comparison cathode and a first
Vergleichsanode mit folgenden Zusammensetzungen hergestellt, wobei der Anteil an Li4Ti50i2 24 Masse% betrug: Comparative anode prepared with the following compositions, wherein the proportion of Li 4 Ti 5 0i2 24% by mass was:
Figure imgf000010_0001
Figure imgf000010_0001
In analoger Weise wurden eine zweite Vergleichskathode und eine zweite Vergleichsanode mit folgenden Zusammensetzungen hergestellt, wobei der Anteil an Li4Ti50i2 19 Masse% betrug: In a similar manner, a second comparative cathode and a second comparative anode were prepared with the following compositions, wherein the proportion of Li 4 Ti 5 0i2 was 19% by mass:
Figure imgf000010_0002
Figure imgf000010_0002
Die Vergleichsanoden und Vergleichskathoden wurden analog der The comparative anodes and reference cathodes were analogous to
erfindungsgemäßen Kathode und der erfindungsgemäßen Anode vermessen und ihre durchschnittliche Leistungsdichte in Abhängigkeit der Energiedichte bestimmt (für die erste Vergleichsanode/Vergleichskathode siehe Kurve B in Figur 1 ; für die zweite Vergleichsanode/Vergleichskathode siehe Kurve A in Figuraccording to the invention measured cathode and the anode according to the invention and their average power density is determined as a function of the energy density (for the first comparison anode / comparison cathode see curve B in Figure 1; for the second comparison anode / comparison cathode see curve A in FIG
1 )- 1 )-
Aus Figur 1 ist deutlich ersichtlich, dass der erhöhte Anteil an Aktivmaterial zu einer gesteigerten Energiedichte bei sehr guter Leistungsdichte führt. It can clearly be seen from FIG. 1 that the increased proportion of active material leads to an increased energy density with very good power density.

Claims

Ansprüche claims
1 . Hybrid-Superkondensator, umfassend eine Anode und eine Kathode, wobei die Anode ein Anodenmaterial umfasst, das ein erstes Aktivmaterial, bestehend aus Li4Ti50i2 und aktiviertem Kohlenstoff, enthält, und wobei ein Anteil an erstem Aktivmaterial, bezogen auf das Gesamtgewicht des Anodenmaterials, 87,5 Masse% bis 96,5 Masse% beträgt, und wobei die Kathode ein Kathodenmaterial umfasst, das ein zweites Aktivmaterial, bestehend aus LiMn2C>4 und aktiviertem Kohlenstoff, enthält, und wobei ein Anteil an zweitem Aktivmaterial, bezogen auf das Gesamtgewicht des Kathodenmaterials, 87,5 Masse% bis 96,5 Masse% beträgt. 1 . A hybrid supercapacitor comprising an anode and a cathode, the anode comprising an anode material containing a first active material consisting of Li 4 Ti 5 O 2 and activated carbon, and a portion of first active material based on the total weight of the anode material , 5 mass% to 96.5 mass%, and wherein the cathode comprises a cathode material containing a second active material consisting of LiMn 2 C> 4 and activated carbon, and wherein a proportion of second active material, based on the total weight of the cathode material , 87.5% by mass to 96.5% by mass.
2. Hybrid-Superkondensator nach Anspruch 1 , dadurch gekennzeichnet, dass ein2. hybrid supercapacitor according to claim 1, characterized in that a
Anteil an Li4Ti50i2 im ersten Aktivmaterial 34 bis 54 Masse%, insbesondere 39 bis 49 Masse%, und insbesondere 41 bis 47 Masse%, bezogen auf das Content of Li 4 Ti 5 O 2 in the first active material 34 to 54% by mass, in particular 39 to 49% by mass, and in particular 41 to 47% by mass, based on the
Gesamtgewicht des ersten Aktivmaterials, beträgt.  Total weight of the first active material is.
3. Hybrid-Superkondensator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Anteil an LiMn2C>4 im zweiten Aktivmaterial 25 bis 45 Masse%, insbesondere 30 bis 40 Masse%, und insbesondere 32 bis 38 Masse%, bezogen auf das Gesamtgewicht des zweiten Aktivmaterials, beträgt. 3. hybrid supercapacitor according to one of the preceding claims, characterized in that a proportion of LiMn2C> 4 in the second active material 25 to 45 mass%, in particular 30 to 40 mass%, and in particular 32 to 38 mass%, based on the total weight of second active material.
4. Hybrid-Superkondensator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Anodenmaterial und/oder das Kathodenmaterial mindestens ein elektrisch leitfähiges Additiv, insbesondere Ruß, enthält. 4. Hybrid supercapacitor according to one of the preceding claims, characterized in that the anode material and / or the cathode material contains at least one electrically conductive additive, in particular carbon black.
5. Hybrid-Superkondensator nach Anspruch 4, dadurch gekennzeichnet, dass ein Anteil an elektrisch leitfähigem Additiv im Anodenmaterial 2,5 bis 7,5 Masse%, insbesondere 5 Masse%, bezogen auf das Gesamtgewicht des Anodenmaterials, beträgt und/oder dadurch gekennzeichnet, dass ein Anteil an elektrisch leitfähigem Additiv im Kathodenmaterial 2,5 bis 7,5 Masse%, insbesondere 5 Masse%, bezogen auf das Gesamtgewicht des Kathodenmaterials, beträgt. Hybrid-Superkondensator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Anodenmaterial und/oder das Kathodenmaterial mindestens ein Bindemittel, insbesondere PTFE, enthält. 5. hybrid supercapacitor according to claim 4, characterized in that a proportion of electrically conductive additive in the anode material is 2.5 to 7.5% by mass, in particular 5% by mass, based on the total weight of the anode material, and / or characterized a proportion of electrically conductive additive in the cathode material is 2.5 to 7.5% by mass, in particular 5% by mass, based on the total weight of the cathode material. Hybrid supercapacitor according to one of the preceding claims, characterized in that the anode material and / or the cathode material contains at least one binder, in particular PTFE.
Hybrid-Superkondensator nach Anspruch 6, dadurch gekennzeichnet, dass ein Anteil an Bindemittel im Anodenmaterial 1 bis 5 Masse%, insbesondere 3 Masse%, bezogen auf das Gesamtgewicht des Anodenmaterials, beträgt und/oder dadurch gekennzeichnet, dass ein Anteil an Bindemittel im Hybrid supercapacitor according to claim 6, characterized in that a proportion of binder in the anode material is 1 to 5 mass%, in particular 3 mass%, based on the total weight of the anode material, and / or characterized in that a proportion of binder in the
Kathodenmaterial 1 bis 5 Masse%, insbesondere 3 Masse%, bezogen auf das Gesamtgewicht des Kathodenmaterials, beträgt. Cathode material 1 to 5 mass%, in particular 3 mass%, based on the total weight of the cathode material is.
Hybrid-Superkondensator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Porenvolumen des aktivierten Kohlenstoffes 0,7 bis 1 ml/g beträgt. Hybrid supercapacitor according to one of the preceding claims, characterized in that a pore volume of the activated carbon is 0.7 to 1 ml / g.
Hybrid-Superkondensator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Masseverhältnis von Anode zu Kathode 0,5 bis 0,9, insbesondere 0,5 bis 0,7 und insbesondere 0,6, beträgt. Hybrid supercapacitor according to one of the preceding claims, characterized in that a mass ratio of anode to cathode 0.5 to 0.9, in particular 0.5 to 0.7 and in particular 0.6, is.
Hybrid-Superkondensator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Schichtdicke der Anode 30 bis 100 μηη beträgt und/oder dass eine Schichtdicke der Kathode 70 bis 200 μηη beträgt. Hybrid supercapacitor according to one of the preceding claims, characterized in that a layer thickness of the anode is 30 to 100 μηη and / or that a layer thickness of the cathode is 70 to 200 μηη.
Verfahren zur Herstellung eines Hybrid-Superkondensators nach einem der vorhergehenden Ansprüche, umfassend die Schritte: Process for the preparation of a hybrid supercapacitor according to one of the preceding claims, comprising the steps:
Herstellen einer Anode durch Homogenisieren einer Anodendispersion umfassend ein elektrisch leitfähiges Additiv, insbesondere Ruß, eine wässrigen Dispersion eines Bindemittels, insbesondere ein polymeres Bindemittel, ggf. ein Lösungsmittel und ein erstes Aktivmaterial bestehend aus Li4Ti50i2 und aktiviertem Kohlenstoff, Vergießen der Anodendispersion und Trocknen der Anodendispersion, wobei ein Anteil an erstem Producing an anode by homogenizing an anode dispersion comprising an electrically conductive additive, in particular carbon black, an aqueous dispersion of a binder, in particular a polymeric binder, optionally a solvent and a first active material consisting of Li4Ti 5 0i2 and activated carbon, casting the anode dispersion and drying the Anodendispersion, with a share of the first
Aktivmaterial, bezogen auf die Gesamtmasse der getrockneten  Active material, based on the total mass of the dried
Anodendispersion, 87,5 Masse% bis 96,5 Masse% beträgt;  Anodendispersion, 87.5% by mass to 96.5% by mass;
Herstellen einer Kathode durch Homogenisieren einer Kathodendispersion umfassend ein elektrisch leitfähiges Additiv, insbesondere Ruß, eine wässrigen Dispersion eines Bindemittels, insbesondere PTFE, ggf. ein Lösungsmittel und ein zweites Aktivmaterial bestehend aus LiMn2C>4 und aktiviertem Kohlenstoff, Vergießen der Kathodendispersion und Trocknen der Kathodendispersion, wobei ein Anteil an zweitem Aktivmaterial, bezogen auf die Gesamtmasse der getrockneten Kathodendispersion, 87,5 Masse% bis 96,5 Masse% beträgt. Producing a cathode by homogenizing a cathode dispersion comprising an electrically conductive additive, in particular carbon black, an aqueous dispersion of a binder, in particular PTFE, optionally a solvent and a second active material consisting of LiMn 2 C> 4 and activated carbon, potting the cathode dispersion and drying the cathode dispersion, wherein a proportion of second active material, based on the total mass of the dried cathode dispersion, 87.5% by mass to 96.5% by mass.
Fahrzeug, insbesondere Kraftfahrzeug, umfassend eine erste Vehicle, in particular motor vehicle, comprising a first
Spannungsversorgungseinheit und eine zweite Spannungsversorgungseinheit, wobei die zweite Spannungsversorgungseinheit durch einen Hybrid- Superkondensator nach einem der Ansprüche 1 bis 10 gebildet ist. Power supply unit and a second power supply unit, wherein the second power supply unit is formed by a hybrid supercapacitor according to one of claims 1 to 10.
Fahrzeug, insbesondere Kraftfahrzeug nach Anspruch 12, ferner umfassend eine Steuereinheit, die eingerichtet ist, den Hybrid-Superkondensator im Fall eines zusätzlichen Bedarfs an Energie zu aktivieren. Vehicle, in particular motor vehicle according to claim 12, further comprising a control unit which is adapted to activate the hybrid supercapacitor in case of an additional need for energy.
PCT/EP2018/050849 2017-03-14 2018-01-15 Hybrid supercapacitor, method for producing a hybrid supercapacitor, and vehicle WO2018166667A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017204207.9A DE102017204207A1 (en) 2017-03-14 2017-03-14 Hybrid supercapacitor, method of making a hybrid supercapacitor and vehicle
DE102017204207.9 2017-03-14

Publications (1)

Publication Number Publication Date
WO2018166667A1 true WO2018166667A1 (en) 2018-09-20

Family

ID=61163663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/050849 WO2018166667A1 (en) 2017-03-14 2018-01-15 Hybrid supercapacitor, method for producing a hybrid supercapacitor, and vehicle

Country Status (2)

Country Link
DE (1) DE102017204207A1 (en)
WO (1) WO2018166667A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023117490A1 (en) * 2021-12-23 2023-06-29 Skeleton Technologies GmbH Electrode material compositions for electrodes of energy storage cells with fast charge and discharge capabilities

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6517972B1 (en) * 2000-09-29 2003-02-11 Telcordia Technologies, Inc. High energy density hybrid battery/supercapacitor system
WO2006111079A1 (en) 2005-04-21 2006-10-26 Fudan University A hybrid aqueous energy storage device
DE102014220953A1 (en) 2014-10-16 2016-04-21 Robert Bosch Gmbh Electrode for a combination of supercapacitor and battery and process for their preparation
DE102015122963A1 (en) * 2015-01-06 2016-07-07 Ningbo Csr New Energy Technology Co., Ltd. Novel battery-capacitor based on anode and cathode composites

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105632774A (en) * 2015-12-31 2016-06-01 江苏集盛星泰新能源科技有限公司 Lithium ion capacitor and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6517972B1 (en) * 2000-09-29 2003-02-11 Telcordia Technologies, Inc. High energy density hybrid battery/supercapacitor system
WO2006111079A1 (en) 2005-04-21 2006-10-26 Fudan University A hybrid aqueous energy storage device
DE102014220953A1 (en) 2014-10-16 2016-04-21 Robert Bosch Gmbh Electrode for a combination of supercapacitor and battery and process for their preparation
DE102015122963A1 (en) * 2015-01-06 2016-07-07 Ningbo Csr New Energy Technology Co., Ltd. Novel battery-capacitor based on anode and cathode composites

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DARIO CERICOLA ET AL: "Hybridization of electrochemical capacitors and rechargeable batteries: An experimental analysis of the different possible approaches utilizing activated carbon, LiTiOand LiMnO", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 196, no. 23, 10 July 2011 (2011-07-10), pages 10305 - 10313, XP028303468, ISSN: 0378-7753, [retrieved on 20110715], DOI: 10.1016/J.JPOWSOUR.2011.07.032 *
DIANBO RUAN ET AL: "A Li4Ti5O12+AC/LiMn2O4+AC hybrid battery capacitor with good cycle performance", JOURNAL OF ALLOYS AND COMPOUNDS, 2 November 2016 (2016-11-02), pages 1685 - 1690, XP055461259, Retrieved from the Internet <URL:https://www.sciencedirect.com/science/article/pii/S0925838816334545/pdfft?md5=08af28303aecf3da52ac511112d89aab&pid=1-s2.0-S0925838816334545-main.pdf> [retrieved on 20180320], DOI: 10.1016/j.jallcom.2016.10.318 *
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 163, no. 14, 2016, pages A2956 - A2964

Also Published As

Publication number Publication date
DE102017204207A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
DE102013113518B4 (en) ANODES COMPRISING MESOPOROUS, HIGH SILICON PARTICLES AND A METHOD FOR SYNTHETIZING MESOPOROUS, HOLLOWING SILICON PARTICLES
DE102014223177A1 (en) Surface treated cathode active material and lithium secondary battery employing this
DE102009034799A1 (en) Coating process for the production of electrodes for electrical energy storage
WO2018077614A1 (en) Optimized hybrid supercapacitor
DE102019130019A1 (en) A lead-carbon battery comprising an activated carbon anode
EP3120400A1 (en) Electrode for a lithium cell
EP3008768B1 (en) Lithium-ion cell for a secondary battery
EP2166598A2 (en) Electrode and separator material for lithium ion cells and method for the production thereof
DE102012224324A1 (en) Battery cell i.e. lithium ion battery cell, has first and second material layers exhibiting positive material that exhibits smaller potential than positive material of third material layer relative to negative material of anode conductor
DE102009054718A1 (en) Use of N-ethyl pyrrolidone in the manufacture of electrodes for double-layer capacitors
WO2018166667A1 (en) Hybrid supercapacitor, method for producing a hybrid supercapacitor, and vehicle
DE112016001947T5 (en) NEGATIVE ELECTRODE FOR NON-AQUEOUS ELECTROLYTE ENERGY STORAGE
WO2019086247A1 (en) Hybrid supercapacitor comprising lithium titanate doped with oxygen vacancies
DE102015222654A1 (en) Cathode for an all-solid-state lithium-sulfur battery
DE102018212889A1 (en) Composite materials conducting lithium ions and their production and their use in electrochemical cells
DE102018201283A1 (en) Method for producing a lithium-ion battery cell and corresponding lithium-ion battery cell
DE102018205413A1 (en) Graphene and solid electrolyte based cathode for a lithium cell
DE102016002179A1 (en) A coating solution for an electrode and / or a solid electrolyte of a metal-ion battery cell, a method for treating an electrode and / or a solid electrolyte, metal-ion battery cell and metal-ion battery
DE102015219473A1 (en) Electrode material, battery cell containing this and method for their preparation
DE102017209245A1 (en) Hybrid supercapacitor
DE102021213786A1 (en) Method of making an electrode, Electrode
EP4044310A1 (en) Solid electrolyte for an electrode layer of a solid state battery
DE112019001198T5 (en) INSULATING LAYER, BATTERY CELL FILM AND BATTERY
DE102021128484A1 (en) SOLID STATE BATTERY
DE102012218781A1 (en) Electrochemical energy storage i.e. lithium-ion-battery, manufacturing method, involves arranging electrode complementary to another electrode on side of separator layer, where side is opposite to former electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18703210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18703210

Country of ref document: EP

Kind code of ref document: A1