WO2018166203A1 - 一种用于端面车削温度测量的装置与方法 - Google Patents

一种用于端面车削温度测量的装置与方法 Download PDF

Info

Publication number
WO2018166203A1
WO2018166203A1 PCT/CN2017/106791 CN2017106791W WO2018166203A1 WO 2018166203 A1 WO2018166203 A1 WO 2018166203A1 CN 2017106791 W CN2017106791 W CN 2017106791W WO 2018166203 A1 WO2018166203 A1 WO 2018166203A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
turning
hole
data
annular rib
Prior art date
Application number
PCT/CN2017/106791
Other languages
English (en)
French (fr)
Inventor
段春争
寇文能
孙玉文
张方圆
刘朋和
孙伟
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/099,536 priority Critical patent/US20190154515A1/en
Publication of WO2018166203A1 publication Critical patent/WO2018166203A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • G01K1/143Supports; Fastening devices; Arrangements for mounting thermometers in particular locations for measuring surface temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/04Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies
    • G01K13/08Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies in rotary movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/023Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples provided with specially adapted connectors

Definitions

  • the present invention relates to the field of cutting processing technology, and relates to a measuring device for face turning temperature and a measuring method thereof.
  • Turning temperature is an important physical phenomenon that occurs during turning.
  • the heat generated during the turning process is dissipated in the surrounding medium, and the rest is transferred into the tool, the chip and the workpiece to obtain a certain temperature.
  • Different turning temperatures can cause different tools and workpieces to be thermally deformed, which affects the machining accuracy of the parts, tool life and reduces production efficiency.
  • the turning temperature is also an important factor affecting the surface quality of the workpiece. Therefore, by studying the turning temperature, the turning process can be further developed.
  • orthogonal turning is a frequently used cutting method for calculation and modeling, and face cutting can easily achieve orthogonal cutting.
  • research on the change of material organization is usually also to extract the tissue material after orthogonal turning of the end face. Therefore, it is very important to study the equipment and method of face turning temperature measurement for studying the turning process.
  • thermocouple temperature measurement is a relatively mature and commonly used turning temperature measurement method.
  • the principle is that two different conductor materials are connected and there is a temperature difference at the joint, which will cause an overflow electromotive force due to surface electron overflow, forming a thermoelectric potential. , called the Seebeck effect. Since the thermoelectromotive force formed by a specific two materials under a certain temperature condition is constant, the heat state of the region to be tested and its temperature change can be judged according to the magnitude of the thermoelectric potential.
  • the present invention provides a simple structure, convenient operation, and high measurement accuracy. It is suitable for the device for measuring the temperature of the end face turning and its measuring method.
  • a device for measuring the temperature of the end face cutting comprising a thermocouple sensor 5, a slip ring 9, a temperature signal processing end 16 and an experimental workpiece 1;
  • the experimental workpiece 1 is a material for turning temperature material to be tested, which is cylindrical , the left side reserves the clamping space, the right side reserves the turning tool width, the middle is the protruding annular rib 2;
  • the annular rib 2 has two holes, one is the blind hole 3, the other is the through hole 4, blind The central axis of the hole 3 and the through hole 4 are in a straight line;
  • the probe of the thermocouple sensor 5 is provided in the blind hole 3, and the other side of the thermocouple sensor 5 is connected to the rotor 8 of the slip ring through the input wire 6;
  • the rotor 8 is located outside the right side of the experimental workpiece 1, and the two are fixed to the fixing groove 12 of the rotor by screws 7, and the rotor 8 holding the slip ring is coaxial with the experimental workpiece 1 to counteract the centri
  • the number of the annular ribs 2 on the experimental workpiece 1 is two or more, and the height of the annular rib 2 is 5 to 15 mm, and the height from the left to the right gradually decreases; the thickness of the annular rib 2 does not exceed the width of the blade 10, In this way, the external turning process can be equivalent to the 90° turning face turning process; the groove in the annular rib 2 is machined by the grooving knife, and the groove maintains a certain width.
  • the blind hole 3 and the through hole 4 are processed by a process of the electric spark drilling machine.
  • the diameter of the through hole 4 is larger than that of the blind hole 3, and is processed by one step, and then processed through the through hole 4 and the thermocouple.
  • the sensor 5 has a blind hole 3 of comparable probe diameter, and the treatment is mainly to prevent discharge interference of the upper via 4 of the processing blind hole 3.
  • the holes of each annular rib 2 are distributed at an angle in the vertical axial plane, which facilitates the installation of the thermocouple probe and balances the centrifugal force.
  • a device measuring method for end face cutting temperature measurement the steps are as follows:
  • the beneficial effects of the present invention are that the temperature data of the cutting area during the turning process is directly collected by the probe of the thermocouple sensor 5 buried in the experimental workpiece 1, and the accurate measurement of the turning temperature is realized by stepwise feeding until the probe is cut off.
  • the 90° face turning is transformed into a shape similar to external turning, which makes the experiment process more convenient.
  • the device ensures the safety by burying the thermocouple sensor 5 inside the device, and the experimental workpiece 1 itself plays a certain shielding role to reduce signal interference.
  • the interference between the devices is eliminated by the design of the rotor 8, and the high-speed rotation of the experimental workpiece 1 can be ensured.
  • the device of the invention has simple structure, convenient installation and operation, and can realize material turning temperature under certain turning parameters. Brief description of the drawing
  • FIG. 1 is a schematic structural view of a device of the present invention.
  • FIG. 2 is a right side view of the structure of the device of the present invention.
  • FIG. 3 is a schematic structural view of the apparatus of the present invention after completion of the experiment.
  • the device includes a thermocouple sensor 5, a slip ring 9, a temperature signal processing end 16 and an experimental workpiece 1;
  • the experimental workpiece 1 is a material for turning temperature material to be tested, which is cylindrical, left side The clamping space is reserved, the width of the turning tool is reserved on the right side, and the annular ring 2 is protruding in the middle.
  • the number of annular ribs 2 on the experimental workpiece 1 is two or more, and the height of the annular rib 2 is 5-15 mm, and the height from the left to the right gradually decreases; the thickness of the annular rib 2 does not exceed the width of the blade 10, so This external turning process is equivalent to a 90° turning face turning process; the groove in the annular rib 2 is machined by a grooving knife, and the groove maintains a certain width.
  • the annular rib 2 has two holes, one is a blind hole 3, and the other is a through hole 4, and the central axes of the blind hole 3 and the through hole 4 are in a straight line.
  • the blind hole 3 and the through hole 4 are processed by a process of the electric spark drilling machine.
  • the diameter of the through hole 4 is larger than that of the blind hole 3, and is processed by one step, and then processed through the through hole 4 and the thermocouple sensor 5
  • the diameter of the probe is equivalent to the blind hole 3, so that the treatment mainly prevents the discharge of the blind hole 3 ⁇ and the discharge of the upper layer through hole 4.
  • the holes of each annular rib 2 are angularly distributed on the vertical axial plane, which facilitates the installation of the thermocouple probe and balances the centrifugal force.
  • thermocouple sensor 5 A probe of the thermocouple sensor 5 is provided in the blind hole 3, and the other side of the thermocouple sensor 5 is connected to the rotor 8 of the slip ring via the input wire 6; the rotor 8 of the slip ring is located outside the right side of the experimental workpiece 1, both of which pass the screw 7 is fixed on the fixing groove 12 of the rotor, and the rotor 8 holding the slip ring is coaxial with the experimental workpiece 1 to cancel the centrifugal force; the stator 9 of the slip ring is connected to the temperature signal processing end 16 through the output wire 15, and the stator of the same slip ring 9 is fixed to the holder 13 by the baffle 14 to prevent rotation; the blade 10 of the cutter 11 is used for turning the annular rib 2.
  • the temperature signal processing terminal 16 selects a relatively high acquisition frequency, preferably a synchronous signal acquisition card.
  • [0020] Mount the device to the machine and use a three-jaw chuck to catch the left end of the device. Start the machine at the corresponding speed, and use the blade 10 to turn the ring rib 2 with the corresponding feed amount.
  • the temperature signal taken changes accordingly, after the temperature signal processing end 16, the temperature signal shows a wave shape, due to the increase in the amount of ring-shaped ribs, the closer the distance probe is, the higher the peaks are.
  • the blade 10 cuts the probe the measured data is the closest to the actual turning temperature.
  • thermocouple sensor 5 probe is damaged and the temperature data is no longer accepted.
  • the position of the last data acquisition is not the same as the distance of the probe, so that the last signal value is different, so it is necessary to analyze according to the data measured by the plurality of annular ribs 2.
  • the obtained sets of data are imported and sorted in the terminal, and are smoothly fitted.
  • the experiment takes the fluctuation data of the last several cycles of each set of temperature curves, eliminates the obvious interference data, and obtains the highest temperature value measured by each group. Comparing with each other, taking the maximum value is the relatively accurate face turning temperature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

一种用于端面车削温度测量的装置与方法,属于切削加工技术领域,适用于测量端面车削时切削区域产生的温度。该装置包含热电偶传感器(5)、滑环(8,9)以及经过特殊设计的实验工件(1);实验工件(1)为待测车削温度材料制品;实验工件(1)上设计的环状筋(2)将端面车削转换成外圆车削;通孔(4)与盲孔(3)的设计使热电偶传感器(5)合理地埋在实验工件(1)内部,提高了车削过程的安全性以及信号的稳定性。同时,使用滑环(8,9)结构排除了装置间的干扰;温度信号经滑环(8,9)由数据采集卡采集并传输至温度信号处理端(16),最终得到较为精确的端面车削温度。该装置结构简单,操作方便,为实现端面车削温度的精确测量提供了良好的测量装置与方法。

Description

一种用于端面车削温度测量的装置与方法 技术领域
[0001] 本发明属于切削加工技术领域, 涉及一种端面车削温度的测量装置及其测量方 法。
背景技术
[0002] 车削温度是车削过程中产生的一种重要的物理现象。 车削过程中产生的热一部 分散逸在周围介质中, 其余传入刀具、 切屑和工件中, 使其获得一定的温度。 不同的车削温度会导致不同的刀具、 工件的热变形, 从而影响零件的加工精度 、 刀具寿命, 降低生产效率。 同吋, 由于金属材料的组织也会随着车削温度的 不同产生变化, 所以车削温度也是影响工件表面质量的重要因素。 因此, 通过 研究车削温度能够促进车削加工工艺得到进一步发展。 在科学研究中, 为了便 于计算和建模, 正交车削是经常采用的一种切削方式, 而端面切削可以很方便 地实现正交切削。 此外, 对于材料组织变化的研究通常也是提取端面正交车削 后的组织材料。 因此, 研究端面车削温度测量的装置与方法对于研究车削加工 工艺具有非常重要的意义。
[0003] 目前车削温度测量的方法有很多种, 包括热电偶法、 光辐射法、 热辐射法、 金 相结构法等。 其中, 热电偶测温是目前比较成熟也较为常用的车削温度测量方 法, 其原理是两种不同的导体材料相连并在连接处存在温差吋, 会因表层电子 溢出而产生溢出电动势, 形成热电势, 称为赛贝克效应 (Seebeck) 。 由于特定 两种材料在一定温度条件下形成的热电动势是一定的, 因此, 可根据热电势的 大小来判断待测区域受热状态及其温度变化情况。 但是对于车削温度的测量, 由于工件的高速运转, 给温度测量带来了很多不便, 尤其是端面温度测量, 存 在较大的离心力, 有一定的信号干扰, 装置之间也容易相互干扰, 导致目前现 有的车削测温装置存在结构复杂、 测量结果不够准确等缺点。
技术问题
[0004] 为了解决以上问题, 本发明提供了一种结构简单、 操作方便、 测量精度高, 尤 其适合端面车削温度测量的装置及其测量方法。
问题的解决方案
技术解决方案
[0005] 本发明的技术方案:
[0006] 一种用于端面切削温度测量的装置, 包括热电偶传感器 5、 滑环 9、 温度信号处 理端 16和实验工件 1 ; 实验工件 1为待测车削温度材料制品, 其为圆筒状, 左侧 预留夹持空间, 右侧预留车削刀具宽度, 中间为突出的环状筋 2; 环状筋 2上有 两个孔, 一个为盲孔 3, 另一个为通孔 4, 盲孔 3和通孔 4的中心轴在一条直线上 ; 在盲孔 3中设有热电偶传感器 5的探头, 热电偶传感器 5另一侧通过输入导线 6 与滑环的转子 8连接; 滑环的转子 8位于实验工件 1右侧外, 二者通过螺钉 7固定 在转子的固定槽 12上, 保持滑环的转子 8与实验工件 1同轴, 以抵消离心力; 滑 环的定子 9通过输出导线 15与温度信号处理端 16连接, 同吋滑环的定子 9通过挡 板 14固定在固定架 13上, 防止转动; 刀具 11的刀刃 10用于车削环状筋 2。
[0007] 实验工件 1上环状筋 2的数量为两个以上, 环状筋 2的高度为 5~15mm, 从左向右 高度逐渐递减; 环状筋 2的厚度不超过刀刃 10的宽度, 如此即可把这种外圆车削 过程等效成 90°车刀端面车削过程; 环状筋 2中的凹槽是由切槽刀加工而成, 凹槽 保持一定宽度。
[0008] 盲孔 3和通孔 4由电火花打孔机一个工序加工而成, 通孔 4的直径比盲孔 3大, 由 一个工步加工而成, 然后通过通孔 4加工与热电偶传感器 5的探头直径相当的盲 孔 3, 这样处理主要为防止加工盲孔 3吋上层通孔 4的放电干扰。 各环状筋 2的孔 在垂直轴向平面上成一定角分布, 方便安装热电偶探头, 同吋平衡离心力。
[0009] 一种用于端面切削温度测量的装置测量方法, 步骤如下:
[0010] ( 1) 安装待测装置, 将装置加紧固定, 并将信号输出线连接至数据采集卡; [0011] (2) 用刀刃对准最右侧环状筋 2, 按照数据目标设定切削量, 数据采集卡同吋 采集数据; 逐渐进给刀具, 直到切断热电偶传感器 5的探头无法采集到温度数据 为止;
[0012] (3) 重复以上操作, 采取每个环状筋 2所得到的温度数据;
[0013] (4) 取每一组温度曲线最后数个循环的波动数据, 排除明显干扰数据, 得到 每组所测得的最高温度值, 相互比较, 取最大值, 即为相对精确的端面车削温 度。
发明的有益效果
有益效果
[0014] 本发明的有益效果是直接通过埋进实验工件 1的热电偶传感器 5的探头采集车削 过程中切削区域的温度数据, 通过逐步进给直到切断探头为止, 实现车削温度 的准确测量。 通过本装置的特殊环状筋 2将 90°端面车削转化成类似外圆车削的形 式, 使得实验过程更加方便。 本装置通过将热电偶传感器 5埋藏在装置内部保证 了其安全性, 同吋实验工件 1本身起到了一定的屏蔽作用, 减少信号干扰。 通过 转子 8的设计排除了装置之间的干扰问题, 能够保证实验工件 1的高速旋转。 本 发明装置结构简单, 安装、 操作方便, 能够实现一定车削参数下材料车削温度 对附图的简要说明
附图说明
[0015] 图 1是本发明的装置结构示意图。
[0016] 图 2是本发明的装置结构右视图示意图。
[0017] 图 3是本发明的装置实验完成之后结构示意图。
本发明的实施方式
[0018] 以下结合附图和技术方案, 进一步说明本发明的具体实施方式。
[0019] 如图 1所示, 该装置包括热电偶传感器 5、 滑环 9、 温度信号处理端 16和实验工 件 1 ; 实验工件 1为待测车削温度材料制品, 其为圆筒状, 左侧预留夹持空间, 右侧预留车削刀具宽度, 中间为突出的环状筋 2。 实验工件 1上环状筋 2的数量为 两个以上, 环状筋 2的高度为 5~15mm, 从左向右高度逐渐递减; 环状筋 2的厚度 不超过刀刃 10的宽度, 如此即可把这种外圆车削过程等效成 90°车刀端面车削过 程; 环状筋 2中的凹槽是由切槽刀加工而成, 凹槽保持一定宽度。 环状筋 2上有 两个孔, 一个为盲孔 3, 另一个为通孔 4, 盲孔 3和通孔 4的中心轴在一条直线上 ; 盲孔 3和通孔 4由电火花打孔机一个工序加工而成, 通孔 4的直径比盲孔 3大, 由一个工步加工而成, 然后通过通孔 4加工与热电偶传感器 5的探头直径相当的 盲孔 3, 这样处理主要为防止加工盲孔 3吋, 上层通孔 4的放电干扰。 每一个环状 筋 2的孔在垂直轴向平面上成一定角分布, 方便安装热电偶探头, 同吋平衡离心 力。 在盲孔 3中设有热电偶传感器 5的探头, 热电偶传感器 5另一侧通过输入导线 6与滑环的转子 8连接; 滑环的转子 8位于实验工件 1右侧外, 二者通过螺钉 7固定 在转子的固定槽 12上, 保持滑环的转子 8与实验工件 1同轴, 以抵消离心力; 滑 环的定子 9通过输出导线 15与温度信号处理端 16连接, 同吋滑环的定子 9通过挡 板 14固定在固定架 13上, 防止转动; 刀具 11的刀刃 10用于车削环状筋 2。 温度信 号处理端 16选用采集频率比较高的, 最好是同步信号采集卡。
[0020] 将装置安装到机床上, 用三爪卡盘卡住装置左端。 以相应的速度启动机床, 用 刀刃 10以相应的进给量车削环状筋 2, 随着刀具离热电偶传感器 5的探头距离的 变化, 所采取的温度信号随之改变, 经过温度信号处理端 16, 温度信号呈现波 浪形状, 由于环状筋车削量的增加, 距离探头越近, 波峰依次增高, 当刀刃 10 切过探头的一瞬间, 此吋测得的就是最接近真实车削温度的数据。
[0021] 进一步, 热电偶传感器 5探头损坏, 不再接受温度数据。 但是由于数据采集频 率的存在, 导致最后一次采集数据的位置距离探头的远近不一样, 以至于最后 一个信号数值不一样, 因此需要根据多个环状筋 2所测得的数据进行分析。 车削 过程完成之后, 装置结构如图 3所示。
[0022] 进一步, 在终端导入并整理所得到的几组数据, 对其进行光滑拟合。 实验取每 一组温度曲线最后数个循环的波动数据, 排除明显干扰数据, 得到每组所测得 的最高温度值, 相互比较, 取最大值, 即为相对精确的端面车削温度。

Claims

权利要求书 [权利要求 1] 一种用于端面切削温度测量的装置, 其特征在于, 该装置包括热电偶 传感器 (5)、 滑环 (9)、 温度信号处理端 (16)和实验工件 (1) ; 实验工件 (1 )为待测车削温度材料制品, 其为圆筒状, 左侧预留夹持空间, 右侧 预留车削刀具宽度, 中间为突出的环状筋 (2); 环状筋 (2)上有两个孔 , 一个为盲孔 (3), 另一个通孔 (4), 盲孔 (3)和通孔 (4)的中心轴在一条 直线上; 在盲孔 (3)中设有热电偶传感器 (5)的探头, 热电偶传感器 (5) 另一侧通过输入导线 (6)与滑环的转子 (8)连接; 滑环的转子 (8)位于实 验工件 (1)右侧外, 二者通过螺钉 (7)固定在转子的固定槽 (12)上, 保持 滑环的转子 (8)与实验工件 (1)同轴, 以抵消离心力; 滑环的定子 (9)通 过输出导线 (15)与温度信号处理端 (16)连接, 同吋滑环的定子 (9)通过 挡板 (14)固定在固定架 (13)上, 防止转动; 刀具 (11)的刀刃 (10)用于车 削环状筋 (2)。 2.根据权利要求 1所述的装置, 其特征在于, 所述的实验工件 (1)上环 状筋 (2)的数量为两个以上, 环状筋 (2)的高度为 5~15mm, 从左向右高 度逐渐递减; 环状筋 (2)的厚度不超过刀刃 (10)的宽度; 环状筋 (2)中的 凹槽是由切槽刀加工而成, 凹槽保持一定宽度。 3.根据权利要求 1或 2所述的装置, 其特征在于, 所述的盲孔 (3)和通孔 (4)由电火花打孔机一个工序加工而成, 通孔 (4)的直径比盲孔 (3)大, 由一个工步加工而成, 然后通过通孔 (4)加工与热电偶传感器 (5)的探 头直径相当的盲孔 (3); 各环状筋 (2)的孔在垂直轴向平面上成一定角 分布。 4.一种用于端面切削温度测量的装置测量方法, 其特征在于, 步骤如 下:
( 1) 安装待测装置, 将装置加紧固定, 并将信号输出线连接至数据 采集卡;
(2) 用刀刃对准最右侧环状筋 (2), 按照数据目标设定切削量, 数据 采集卡同吋采集数据; 按照设定切削进给量进给刀具, 直到切断热电 偶传感器 (5)的探头无法采集到温度数据为止;
(3) 重复以上操作, 采取每个环状筋 (2)所得到的温度数据;
(4) 处理温度数据, 取每一组温度曲线最后数个循环的波动数据, 排除明显干扰数据, 得到每组所测得的最高温度值, 相互比较, 取最 大值, 即为相对精确的端面车削温度。
PCT/CN2017/106791 2017-03-13 2017-10-19 一种用于端面车削温度测量的装置与方法 WO2018166203A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/099,536 US20190154515A1 (en) 2017-03-13 2017-10-19 Device and method for measuring end surface turning temperature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710145432.5 2017-03-13
CN201710145432.5A CN106840428B (zh) 2017-03-13 2017-03-13 一种用于端面车削温度测量的装置与方法

Publications (1)

Publication Number Publication Date
WO2018166203A1 true WO2018166203A1 (zh) 2018-09-20

Family

ID=59143406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106791 WO2018166203A1 (zh) 2017-03-13 2017-10-19 一种用于端面车削温度测量的装置与方法

Country Status (3)

Country Link
US (1) US20190154515A1 (zh)
CN (1) CN106840428B (zh)
WO (1) WO2018166203A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114378640A (zh) * 2021-03-23 2022-04-22 中国航发南方工业有限公司 一种车削过程工件温度和尺寸变化在线测量装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106840428B (zh) * 2017-03-13 2018-05-08 大连理工大学 一种用于端面车削温度测量的装置与方法
CN108401353B (zh) * 2018-02-06 2019-10-11 大连理工大学 一种等离子体射流促进金属切削断屑的方法
CN110849495B (zh) * 2019-11-06 2021-04-30 上海理工大学 用于线锯切割硬脆材料的测温装置及使用方法
CN112454494B (zh) * 2020-10-22 2022-04-08 南京林业大学 一种木塑复合材料瞬时切削温度测量系统
CN113203491A (zh) * 2021-04-27 2021-08-03 东风马勒热系统有限公司 用于测量旋转件温度的热电偶测温滑环
CN116256084B (zh) * 2023-03-28 2024-07-05 湖北清江水电开发有限责任公司 一种卧式水轮发电机组的转子测温装置及测温方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264184A (ja) * 2000-03-21 2001-09-26 Railway Technical Res Inst 回転体温度測定方法及び回転体温度測定装置
CN102128692A (zh) * 2010-11-24 2011-07-20 南京林业大学 端面密封摩擦表面温度的测量方法
CN102554702A (zh) * 2012-01-12 2012-07-11 南京理工大学 刀杆式旋铣刀片切削力及温度测量装置
CN103134605A (zh) * 2013-01-30 2013-06-05 山东大学 一种滚动轴承内圈滚道磨削温度测量装置
CN103465106A (zh) * 2013-09-10 2013-12-25 南京航空航天大学 车铣复合加工中心的切削温度测量装置
CN103792016A (zh) * 2012-10-31 2014-05-14 上海大众汽车有限公司 一种用于测量旋转件内部参数的装置以及方法
CN104772657A (zh) * 2015-04-10 2015-07-15 上海交通大学 一种侧铣加工的切削温度监控装置及方法
CN105784167A (zh) * 2016-03-01 2016-07-20 上海交通大学 曲轴连杆颈随动磨削温度测量装置
CN106840428A (zh) * 2017-03-13 2017-06-13 大连理工大学 一种用于端面车削温度测量的装置与方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002234A (ja) * 2009-06-16 2011-01-06 Nissan Motor Co Ltd 回転体の温度測定装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264184A (ja) * 2000-03-21 2001-09-26 Railway Technical Res Inst 回転体温度測定方法及び回転体温度測定装置
CN102128692A (zh) * 2010-11-24 2011-07-20 南京林业大学 端面密封摩擦表面温度的测量方法
CN102554702A (zh) * 2012-01-12 2012-07-11 南京理工大学 刀杆式旋铣刀片切削力及温度测量装置
CN103792016A (zh) * 2012-10-31 2014-05-14 上海大众汽车有限公司 一种用于测量旋转件内部参数的装置以及方法
CN103134605A (zh) * 2013-01-30 2013-06-05 山东大学 一种滚动轴承内圈滚道磨削温度测量装置
CN103465106A (zh) * 2013-09-10 2013-12-25 南京航空航天大学 车铣复合加工中心的切削温度测量装置
CN104772657A (zh) * 2015-04-10 2015-07-15 上海交通大学 一种侧铣加工的切削温度监控装置及方法
CN105784167A (zh) * 2016-03-01 2016-07-20 上海交通大学 曲轴连杆颈随动磨削温度测量装置
CN106840428A (zh) * 2017-03-13 2017-06-13 大连理工大学 一种用于端面车削温度测量的装置与方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114378640A (zh) * 2021-03-23 2022-04-22 中国航发南方工业有限公司 一种车削过程工件温度和尺寸变化在线测量装置
CN114378640B (zh) * 2021-03-23 2022-12-09 中国航发南方工业有限公司 一种车削过程工件温度和尺寸变化在线测量装置

Also Published As

Publication number Publication date
CN106840428B (zh) 2018-05-08
CN106840428A (zh) 2017-06-13
US20190154515A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
WO2018166203A1 (zh) 一种用于端面车削温度测量的装置与方法
CN106271880B (zh) 一种同时测量铣削过程铣刀及工件温度的测量系统
CN102554702B (zh) 刀杆式旋铣刀片切削力及温度测量装置
CN104741638B (zh) 一种车削刀具磨损状态监测系统
EP3034236B1 (en) Temperature measurement method, and temperature measurement device
CN104772657B (zh) 一种侧铣加工的切削温度监控装置及方法
CN107914184B (zh) 一种测试铣削切削温度的装置及方法
LU102414B1 (en) Device for accurately measuring cutting temperature in turn-milling processing
CN103801985B (zh) 一种内置式实时连续测温刀柄
CN113733366B (zh) 一种用于石墨烯钻削加工时的温度测量装置及方法
CN207888246U (zh) 一种可在线采集刀具切削力信号的夹具
TW201345651A (zh) 切削加工溫度的測定方法
CN110625440A (zh) 一种车削加工切削温度无线监控方法
CN103465106B (zh) 车铣复合加工中心的切削温度测量装置
CN111002103B (zh) 刀具温度检测系统和刀具温度检测方法
CN104889820A (zh) 一种钻削温度测量的新方法
CN106863009B (zh) 基于刀杆两点变形的切削力测量方法
CN112692647A (zh) 一种钻削刀具温度分布测量系统
CN211760238U (zh) 测量工件车铣过程中切削温度的装置
CN106484961B (zh) 一种确定立铣刀铣削过程切削热分配比例的方法
CN217224758U (zh) 一种钻削刀具温度分布测量系统
CN206029464U (zh) 一种同时测量铣削过程铣刀及工件温度的测量装置
CN109759900B (zh) 适于含能材料切削加工的测温刀具
RU2650827C1 (ru) Устройство для измерения температуры резца естественной термопарой
CN214720876U (zh) 一种可跟随刀-屑接触磨损的瞬态铣削温度测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901174

Country of ref document: EP

Kind code of ref document: A1