WO2018166005A1 - 一种直流断路器 - Google Patents

一种直流断路器 Download PDF

Info

Publication number
WO2018166005A1
WO2018166005A1 PCT/CN2017/079689 CN2017079689W WO2018166005A1 WO 2018166005 A1 WO2018166005 A1 WO 2018166005A1 CN 2017079689 W CN2017079689 W CN 2017079689W WO 2018166005 A1 WO2018166005 A1 WO 2018166005A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
state current
breaker
circuit breaker
main breaker
Prior art date
Application number
PCT/CN2017/079689
Other languages
English (en)
French (fr)
Inventor
康成
Original Assignee
康成
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201720235947.XU external-priority patent/CN206806977U/zh
Priority claimed from CN201710144624.4A external-priority patent/CN106848999B/zh
Application filed by 康成 filed Critical 康成
Publication of WO2018166005A1 publication Critical patent/WO2018166005A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/06Details with automatic reconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications

Definitions

  • the present invention relates to a DC circuit breaker, which can be applied to a conventional DC transmission system, a flexible DC transmission system, and a hybrid DC transmission system, and belongs to the field of DC transmission technology.
  • the hybrid DC circuit breaker comprises two parts: an on-state current branch connected in parallel and a main breaker branch.
  • the on-state current branch is generally composed of a fast mechanical switch and an auxiliary commutation module, and the main breaker branch is generally powered by electricity.
  • the electronic current interrupting unit and the energy consuming unit are composed.
  • the structure of the on-state current branch and the main breaker branch are both prior art and are not described in detail herein. After normal operation, the on-state current branch flows through most or all of the DC current; the DC breaker is required to trip ⁇ , the main breaker branch breaks the DC current, establishes the isolation voltage and absorbs the DC system fault energy.
  • the rated voltage of the existing DC circuit breaker is the same as the rated voltage of the main circuit breaker branch, and a large number of power electronic components need to be connected in series in the main circuit breaker branch, and the cost is high; on the other hand, the existing DC circuit breaker Two outlets are used.
  • a large number of DC breakers need to be placed between the converter station and the DC line, and between the DC line and the DC line. The control is complex, affecting its wide application and promotion.
  • the present invention provides a DC circuit breaker that is low in cost, simple in control, and flexible to expand.
  • the outlet end is directly connected to two on-state current branches and one main breaker branch;
  • Both ends of the on-state current branch are directly connected to two adjacent outlet ends of the DC circuit breaker; [0008] one end of the main breaker branch is directly connected to the outlet end of the DC breaker, The other end is connected to the other main breaker branch at an electrical node.
  • the on-state current branch routing fast mechanical switch and the auxiliary commutation module are formed in series;
  • the number of the fast mechanical switches is at least one
  • the number of the auxiliary commutation modules is at least one;
  • the rated voltage of the on-state current branch is not lower than the rated voltage of the DC circuit breaker.
  • the main breaker branch routing main breaker sub-module is composed in series, the main breaker sub-module includes a power electronic interrupting unit and an energy consuming unit;
  • the number of the main breaker sub-modules is at least one;
  • the rated voltage of the main breaker branch is not lower than half of the rated voltage of the DC breaker.
  • Another object of the present invention is to provide a control method for a DC circuit breaker:
  • the present invention provides that the number of power electronic components, energy consuming units, and other components used in the main breaker branch of the DC circuit breaker is half that of the existing DC circuit breaker, and the cost is low.
  • the present invention provides that the DC circuit breaker only needs to add an on-state current branch and a main breaker branch, so that the number of the DC breaker outlet ends can be increased by one, the expansion cost is lower, and the expansion flexibility is higher.
  • the present invention provides a control method for a DC circuit breaker.
  • a DC circuit breaker When used to isolate a DC device, it is only necessary to break a fast mechanical switch that directly connects the two on-state current branches to the DC device. Therefore, the number of fast mechanical switches is independent of the number of outlets of the DC circuit breaker, which not only reduces the control difficulty of the DC circuit breaker.
  • FIG. 1 is a schematic view showing the electrical structure of a first embodiment of a DC circuit breaker according to the present invention.
  • FIG. 2 is a schematic diagram showing the electrical structure of a second embodiment of a DC circuit breaker according to the present invention.
  • a first embodiment of a DC circuit breaker is a DC circuit breaker
  • the DC circuit breaker when the outlet end of the DC circuit breaker is three turns, the DC circuit breaker includes three on-state current branches and three main breaker branches.
  • the three on-state current branches are respectively composed of a fast mechanical switching FSD and an auxiliary commutation module ASM; the number of fast mechanical switching FSDs is at least one; and the number of auxiliary commutation modules ASM is at least one.
  • the current branch 12 is connected between the outlet end 1 and the outlet end 2; the on-state current branch 23 is connected between the outlet end 2 and the outlet end 3; the on-state current branch 31 is connected to the outlet end 3 and the outlet end 1 between.
  • the rated voltage of the DC circuit breaker is 500kV
  • the rated voltage of each on-state current branch is not less than 500kV.
  • the three main breaker sub-circuits are each composed of a main breaker sub-module SM connected in series, and the main breaker sub-module SM includes a power electronic interrupting unit and an energy-consuming unit; the number of main breaker sub-modules SM is at least one .
  • One end of the main breaker branch 1 is directly connected to the outlet end 1 and the other end is connected to the electrical node o;
  • one end of the main breaker branch 2 is directly connected to the outlet end 2, and the other end is connected to the electrical node o;
  • One end of the road 3 is directly connected to the outlet end 3, and the other end is connected to the electrical node o.
  • the rated voltage of the DC breaker is 500kV
  • the rated voltage of each main breaker branch is not less than 250kV.
  • the number of power electronics, energy consuming units and other components used in each main breaker branch is half that of existing DC breakers, so the cost is lower
  • This embodiment provides a control method for a DC circuit breaker, and the process is as follows:
  • the on-state current branch 12, the on-state current branch 23, and the on-state current branch 31 are closed to the fast mechanical switch FSD to unlock the on-state current branch.
  • the auxiliary current commutation module ASM of the on-state current branch 23 and the on-state current branch 31, the on-state current branch 12, the on-state current branch 23 and the on-state current branch 31 flow through most or all of the direct current Current.
  • the on-state current branch 12 and the auxiliary converter module ASM of the on-state current branch 31 are first blocked, and the main breaker branch 1 is unlocked. And any one or two of the main breaker branch 2/3, transferring the currents of the on-state current branch 12 and the on-state current branch 31 to the main breaker branch; then breaking the on-state current branch 12 and The fast mechanical switch of the on-state current branch 31 is F SD; then the main breaker branch is blocked, and as the energy consumption unit of the main breaker branch absorbs the fault energy of the DC system, the DC breaker completes the pair and the outlet end 1 Isolation of the connected DC device.
  • the DC circuit breaker completes the isolation of the DC device connected to the outlet terminal 1, the DC grid requires reconnection of the DC device, first unlocking the main breaker branch 1 and the main breaker branch 2/ Any one or two of 3; when the DC current flowing through the main breaker branch does not exceed the DC breaker overcurrent protection setting and maintains a certain time, the on-state current branch 12 and the on-state current branch are closed.
  • the fast mechanical switch F SD of 31, the same state unlocks the auxiliary current converter module ASM of the on-state current branch 12 and the on-state current branch 31; when the direct current is transferred from the main breaker branch to the on-state current branch 12 and After the on-state current branch 31, realize and exit End 1 is connected to the DC device and reconnected.
  • the on-state current branch 12 and the auxiliary converter module ASM of the on-state current branch 23 are first blocked, and the main breaker branch 2 is unlocked. And one or both of the main circuit breaker branches 1/3, the currents of the on-state current branch 12 and the on-state current branch 23 are transferred to the main breaker branch; then the on-state current branch 12 is broken.
  • the fast mechanical switch of the on-state current branch 23 is F SD; then the main breaker branch is blocked, and with the absorption of the DC system fault energy by the energy-consuming unit in the main breaker branch, the DC breaker completes the pair and the outlet 2 Isolation of the connected DC device.
  • the DC circuit breaker completes the isolation between the DC device connected to the outlet terminal 2, the DC grid requires reconnection of the DC device, first unlocking the main breaker branch 2 and the main breaker branch 1/ Any one or two of 3; when the DC current flowing through the main breaker branch does not exceed the DC breaker overcurrent protection setting and maintains a certain time, the on-state current branch 12 and the on-state current branch are closed.
  • the on-state current branch 2 3 and the auxiliary converter module ASM of the on-state current branch 31 are first blocked, and the main breaker branch 3 is unlocked. And one or both of the main circuit breaker branches 1/2, transferring the currents of the on-state current branch 23 and the on-state current branch 31 to the main breaker branch; then breaking the on-state current branch 23 and The fast mechanical switch of the on-state current branch 31 is F SD; then the main breaker branch is blocked, and with the absorption of the DC system fault energy by the energy-consuming unit in the main breaker branch, the DC breaker completes the pair and the outlet 3 Isolation of the connected DC device.
  • the DC grid requires reconnection of the DC device, first unlocking the main breaker branch 3 and the main breaker branch 1/ Any one or two of the two; when the DC current flowing through the main breaker branch does not exceed the DC breaker overcurrent protection setting and maintains a certain period of time, the on-state current branch 23 and the on-state current branch are closed.
  • a second embodiment of a DC circuit breaker As shown in FIG. 2, when the outlet end of the DC circuit breaker is four turns, the DC circuit breaker includes four on-state current branches and four main breaker branches.
  • the four on-state current branches are respectively composed of a fast mechanical switching FSD and an auxiliary commutation module ASM; the number of fast mechanical switching FSD is at least one; the number of auxiliary commutation modules ASM is at least one.
  • the on-state current branch 12 is connected between the outlet end 1 and the outlet end 2; the on-state current branch 23 is connected between the outlet end 2 and the outlet end 3; the on-state current branch 34 is connected to the outlet end 3 and the outlet end 4; an on-state current branch 41 is connected between the outlet end 4 and the outlet end 1.
  • the rated voltage of the DC circuit breaker is 500kV
  • the rated voltage of each on-state branch is not less than 500kV.
  • the four main breaker sub-circuits are each composed of a main breaker sub-module SM connected in series, and the main breaker sub-module SM includes a power electronic interrupting unit and an energy-consuming unit; the number of main breaker sub-modules SM is at least one .
  • One end of the main breaker branch 1 is directly connected to the outlet end 1 and the other end is connected to the electrical node o; one end of the main breaker branch 2 is directly connected to the outlet end 2, and the other end is connected to the electrical node o; One end of the road 3 is directly connected to the outlet end 3, and the other end is connected to the electrical node o; one end of the main breaker branch 4 is directly connected to the outlet end 4, and the other end is connected to the electrical node o.
  • the rated voltage of the DC breaker is 500kV ⁇
  • the rated voltage of each main breaker branch is not less than 250kV, and the number of power electronic components, energy consuming units and other components used in each main breaker branch is now It has half of the DC breaker and is therefore less expensive.
  • This embodiment provides a control method for a DC circuit breaker, and the process is as follows:
  • the fast mechanical switching FSD of the on-state current branch 12, the on-state current branch 23, the on-state current branch 34, and the on-state current branch 41 is closed.
  • the auxiliary current commutating module A SM , the on-state current branch 12 and the on-state current branch 23 of the on-state current branch 12 , the on-state current branch 23 , the on-state current branch 34 and the on-state current branch 41 are unlocked
  • the on-state current branch 34 and the on-state current branch 41 flow most or all of the direct current.
  • the on-state current branch 12 and the auxiliary converter module ASM of the on-state current branch 41 are first blocked, and the main breaker branch 1 is unlocked. And any one, two or three of the main breaker branches 2/3/4, transferring the currents of the on-state current branch 12 and the on-state current branch 41 to the main breaker branch; The fast branch of the current branch 12 and the on-state current branch 41 is mechanically closed to the FSD; then the main breaker branch is blocked, and the DC breaker is completed as the energy dissipation unit of the main breaker branch absorbs the fault energy of the DC system Isolation of the DC device from the outlet end 1.
  • the DC grid requires reconnection of the DC device, first unlocking the main breaker branch 1 and the main breaker branch 2/ Any one, two or three of 3/4; when the DC current flowing through the main breaker branch does not exceed the DC breaker overcurrent protection setting and remains for a certain period of time, the on-state current branch 12 and The fast mechanical switch FSD of the on-state current branch 41 unlocks the on-state current branch 12 and the auxiliary commutation module AS M of the on-state current branch 41; when the direct current is transferred from the main breaker branch to the on-state After the current branch 12 and the on-state current branch 41, the reconnection of the DC device to the outlet end 1 is realized.
  • the on-state current branch 12 and the auxiliary converter module ASM of the on-state current branch 23 are first blocked, and the main breaker branch 2 is unlocked. And any one, two or three of the main circuit breaker branches 1/3/4, the currents of the on-state current branch 12 and the on-state current branch 23 are transferred to the main breaker branch; The fast branch of the current branch 12 and the on-state current branch 23 is FSD; then the main breaker branch is blocked, and the DC breaker is completed as the energy consumption unit of the main breaker branch absorbs the fault energy of the DC system Isolation of the DC device from the outgoing terminal 2.
  • the DC grid requires reconnection of the DC device, first unlocking the main breaker branch 2 and the main breaker branch 1/ Any one, two or three of 3/4; when the DC current flowing through the main breaker branch does not exceed the DC breaker overcurrent protection setting and remains for a certain period of time, the on-state current branch 12 and The fast mechanical switching FSD of the on-state current branch 23 cancels the auxiliary current commutation module AS M of the on-state current branch 12 and the on-state current branch 23; when the direct current is transferred from the main breaker branch to the on-state After the current branch 12 and the on-state current branch 23, the reconnection of the DC device to the outlet end 2 is achieved.
  • the on-state current branch 2 3 and the auxiliary converter module ASM of the on-state current branch 34 are first blocked, and the main breaker branch 3 is unlocked. And any one, two or three of the main breaker branch 1/2/4, transferring the currents of the on-state current branch 23 and the on-state current branch 34 to the main breaker branch; The fast branch of the current branch 23 and the on-state current branch 34 is FSD; then the main breaker branch is blocked, and the DC breaker is completed as the energy consumption unit of the main breaker branch absorbs the fault energy of the DC system Isolation of the DC device from the outgoing terminal 3.
  • the DC circuit breaker completes the isolation between the DC device connected to the outlet terminal 3, the DC grid requires reconnection of the DC device, first unlocking the main breaker branch 3 and the main breaker branch 1/ 2/4 One, two or three; when the DC current flowing through the main breaker branch does not exceed the DC breaker overcurrent protection setting and maintains a certain time, the on-state current branch 23 and the on-state current branch are closed.
  • the fast mechanical switch FSD of the road 34 unlocks the on-current branch 23 and the auxiliary commutation module AS M of the on-state current branch 34; when the direct current is transferred from the main breaker branch to the on-state branch 23 After the on-state current branch 34 is connected, the DC device connected to the outlet terminal 3 is reconnected.
  • the on-state current branch 34 and the auxiliary converter module ASM of the on-state current branch 41 are first blocked, and the main breaker branch 4 is unlocked. And any one, two or three of the main breaker branch 1/2/3, transferring the currents of the on-state current branch 34 and the on-state current branch 41 to the main breaker branch; The fast branch of the current branch 34 and the on-state current branch 41 is closed to the FSD; then the main breaker branch is blocked, and the DC breaker is completed as the energy consumption unit of the main breaker branch absorbs the fault energy of the DC system Isolation of the DC device from the outgoing terminal 4.
  • the DC grid requires reconnection of the DC device, first unlocking the main breaker branch 4 and the main breaker branch 1/ Any one, two or three of 2/3; when the DC current flowing through the main breaker branch does not exceed the DC circuit breaker overcurrent protection setting and remains for a certain period of time, the on-state current branch 34 and The fast mechanical switch FSD of the on-state current branch 41 unlocks the on-state current branch 34 and the auxiliary commutation module AS M of the on-state current branch 41; when the direct current is transferred from the main breaker branch to the on-state After the current branch 34 and the on-state current branch 41, the reconnection of the DC device to the outlet end 4 is achieved.
  • a first embodiment of a DC circuit breaker As shown in FIG. 1, when the outlet end of the DC circuit breaker is three turns, the DC circuit breaker includes three on-state current branches and three main breaker branches.
  • the three on-state current branches are respectively composed of a fast mechanical switching FSD and an auxiliary commutation module ASM; the number of fast mechanical switching FSD is at least one; the number of auxiliary commutation modules ASM is at least one.
  • the on-state current branch 12 is connected between the outlet end 1 and the outlet end 2; the on-state current branch 23 is connected between the outlet end 2 and the outlet end 3; the on-state current branch 31 is connected to the outlet end 3 and the outlet end Between 1.
  • the rated voltage of the DC circuit breaker is 500kV
  • the rated voltage of each on-state current branch is not less than 500kV.
  • the three main breaker sub-circuits are each composed of a main breaker sub-module SM connected in series, and the main breaker sub-module SM includes a power electronic interrupting unit and an energy-consuming unit; the number of main breaker sub-modules SM is at least one .
  • One end of the main breaker branch 1 is directly connected to the outlet end 1 and the other end is connected to the electrical node o; one end of the main breaker branch 2 is directly connected to the outlet end 2, and the other end is connected to the electrical node o;
  • One end of the road 3 is directly connected to the outlet end 3, and the other end is connected to the electrical node o.
  • the rated voltage of the DC breaker is 500kV
  • the rated voltage of each main breaker branch is not less than 250kV.
  • the number of power electronics, energy consuming units and other components used in each main breaker branch is half that of existing DC breakers, so the cost is lower
  • This embodiment provides a control method for a DC circuit breaker, and the process is as follows:
  • the on-state current branch 12, the on-state current branch 23, and the on-state current branch 31 are closed to the fast mechanical switch FSD to unlock the on-state current branch.
  • the auxiliary current commutation module ASM of the on-state current branch 23 and the on-state current branch 31, the on-state current branch 12, the on-state current branch 23 and the on-state current branch 31 flow through most or all of the direct current Current.
  • the on-state current branch 12 and the auxiliary converter module ASM of the on-state current branch 31 are first blocked, and the main breaker branch 1 is unlocked. And any one or two of the main breaker branch 2/3, transferring the currents of the on-state current branch 12 and the on-state current branch 31 to the main breaker branch; then breaking the on-state current branch 12 and The fast mechanical switch of the on-state current branch 31 is F SD; then the main breaker branch is blocked, and as the energy consumption unit of the main breaker branch absorbs the fault energy of the DC system, the DC breaker completes the pair and the outlet end 1 Isolation of the connected DC device.
  • the on-state current branch 12 and the auxiliary converter module ASM of the on-state current branch 23 are first blocked, and the main breaker branch 2 is unlocked. And one or both of the main circuit breaker branches 1/3, the currents of the on-state current branch 12 and the on-state current branch 23 are transferred to the main breaker branch; then the on-state current branch 12 is broken The fast mechanical switch of the on-state current branch 23 is F SD; then the main breaker branch is blocked, and with the absorption of the DC system fault energy by the energy-consuming unit in the main breaker branch, the DC breaker completes the pair and the outlet 2 Isolation of the connected DC device.
  • the DC circuit breaker completes the isolation between the DC device connected to the outlet terminal 2, the DC grid requires reconnection of the DC device, first unlocking the main breaker branch 2 and the main breaker branch 1/ Any one or two of 3; when the DC current flowing through the main breaker branch does not exceed the DC breaker overcurrent protection setting and maintains a certain time, the on-state current branch 12 and the on-state current branch are closed.
  • the on-state current branch 23 and the auxiliary converter module ASM of the on-state current branch 31 are first blocked, and the main breaker branch 3 is unlocked. And one or both of the main circuit breaker branches 1/2, transferring the currents of the on-state current branch 23 and the on-state current branch 31 to the main breaker branch; then breaking the on-state current branch 23 and The fast mechanical switch of the on-state current branch 31 is F SD; then the main breaker branch is blocked, and with the absorption of the DC system fault energy by the energy-consuming unit in the main breaker branch, the DC breaker completes the pair and the outlet 3 Isolation of the connected DC device.
  • the DC grid requires reconnection of the DC device, first unlocking the main breaker branch 3 and the main breaker branch 1/ Any one or two of the two; when the DC current flowing through the main breaker branch does not exceed the DC breaker overcurrent protection setting and maintains a certain period of time, the on-state current branch 23 and the on-state current branch are closed.
  • 31 fast mechanical FF SD the same as the auxiliary current converter module ASM for unlocking the on-state current branch 23 and the on-state current branch 31; when the direct current is transferred from the main breaker branch to the on-state current branch 23 and the on-state current branch 31 , realize the reconnection of the DC device connected to the outlet terminal 3.
  • the DC circuit breaker when the outlet end of the DC circuit breaker is four turns, the DC circuit breaker includes four on-state current branches and four main breaker branches.
  • the four on-state current branches are respectively composed of a fast mechanical switching FSD and an auxiliary commutation module ASM; the number of fast mechanical switching FSD is at least one; the number of auxiliary commutation modules ASM is at least one.
  • the on-state current branch 12 is connected between the outlet end 1 and the outlet end 2; the on-state current branch 23 is connected between the outlet end 2 and the outlet end 3; the on-state current branch 34 is connected to the outlet end 3 and the outlet end 4; an on-state current branch 41 is connected between the outlet end 4 and the outlet end 1.
  • the rated voltage of the DC circuit breaker is 500kV
  • the rated voltage of each on-state branch is not less than 500kV.
  • the four main breaker sub-circuits are each composed of a main breaker sub-module SM connected in series, and the main breaker sub-module SM includes a power electronic interrupting unit and an energy-consuming unit; the number of main breaker sub-modules SM is at least one .
  • One end of the main breaker branch 1 is directly connected to the outlet end 1 and the other end is connected to the electrical node o; one end of the main breaker branch 2 is directly connected to the outlet end 2, and the other end is connected to the electrical node o; One end of the road 3 is directly connected to the outlet end 3, and the other end is connected to the electrical node o; one end of the main breaker branch 4 is directly connected to the outlet end 4, and the other end is connected to the electrical node o.
  • the rated voltage of the DC breaker is 500kV ⁇
  • the rated voltage of each main breaker branch is not less than 250kV, and the number of power electronic components, energy consuming units and other components used in each main breaker branch is now It has half of the DC breaker and is therefore less expensive.
  • This embodiment provides a control method of a DC circuit breaker, and the process is as follows:
  • the fast mechanical switching FSD of the on-state current branch 12, the on-state current branch 23, the on-state current branch 34, and the on-state current branch 41 is closed.
  • the auxiliary current commutating module A SM , the on-state current branch 12 and the on-state current branch 23 of the on-state current branch 12 , the on-state current branch 23 , the on-state current branch 34 and the on-state current branch 41 are unlocked
  • the on-state current branch 34 and the on-state current branch 41 flow most or all of the direct current.
  • the on-state current branch 12 and the auxiliary converter module ASM of the on-state current branch 41 are first blocked, and the main breaker branch 1 is unlocked.
  • Main breaker Any one, two or three of the branches 2/3/4 transfer the currents of the on-state current branch 12 and the on-state current branch 41 to the main breaker branch; then the on-state current branch 12 is broken And the fast mechanical switch FSD of the on-state current branch 41; then the main breaker branch is blocked, and the DC breaker completes the pair and the outlet end with the energy consumption of the DC system in the main breaker branch Isolation of the connected DC device.
  • the DC grid requires reconnection of the DC device, first unlocking the main breaker branch 1 and the main breaker branch 2/ Any one, two or three of 3/4; when the DC current flowing through the main breaker branch does not exceed the DC breaker overcurrent protection setting and remains for a certain period of time, the on-state current branch 12 and The fast mechanical switch FSD of the on-state current branch 41 unlocks the on-state current branch 12 and the auxiliary commutation module AS M of the on-state current branch 41; when the direct current is transferred from the main breaker branch to the on-state After the current branch 12 and the on-state current branch 41, the reconnection of the DC device to the outlet end 1 is realized.
  • the on-state current branch 12 and the auxiliary converter module ASM of the on-state current branch 23 are first blocked, and the main breaker branch 2 is unlocked. And any one, two or three of the main circuit breaker branches 1/3/4, the currents of the on-state current branch 12 and the on-state current branch 23 are transferred to the main breaker branch; The fast branch of the current branch 12 and the on-state current branch 23 is FSD; then the main breaker branch is blocked, and the DC breaker is completed as the energy consumption unit of the main breaker branch absorbs the fault energy of the DC system Isolation of the DC device from the outgoing terminal 2.
  • the DC grid requires reconnection of the DC device, first unlocking the main breaker branch 2 and the main breaker branch 1/ Any one, two or three of 3/4; when the DC current flowing through the main breaker branch does not exceed the DC breaker overcurrent protection setting and remains for a certain period of time, the on-state current branch 12 and The fast mechanical switching FSD of the on-state current branch 23 cancels the auxiliary current commutation module AS M of the on-state current branch 12 and the on-state current branch 23; when the direct current is transferred from the main breaker branch to the on-state After the current branch 12 and the on-state current branch 23, the reconnection of the DC device to the outlet end 2 is achieved.
  • the on-state current branch 2 3 and the auxiliary converter module ASM of the on-state current branch 34 are first blocked, and the main breaker branch 3 is unlocked. And any one, two or three of the main breaker branch 1/2/4, transferring the currents of the on-state current branch 23 and the on-state current branch 34 to the main breaker branch; Fast current branch 23 and on-state current branch 34 The mechanical switch off the FSD; then the main breaker branch is blocked. As the energy-consuming unit of the main breaker branch absorbs the fault energy of the DC system, the DC breaker completes the isolation of the DC device connected to the outlet 3.
  • the DC grid requires reconnection of the DC device, first unlocking the main breaker branch 3 and the main breaker branch 1/ Any one, two or three of 2/4; when the DC current flowing through the main breaker branch does not exceed the DC circuit breaker overcurrent protection setting and remains for a certain period of time, the on-state current branch 23 and The fast mechanical switch FSD of the on-state current branch 34 unlocks the on-state current branch 23 and the auxiliary commutation module AS M of the on-state current branch 34; when the direct current is transferred from the main breaker branch to the on-state After the current branch 23 and the on-state current branch 34, the reconnection of the DC device to the outlet end 3 is achieved.
  • the on-state current branch 34 and the auxiliary converter module ASM of the on-state current branch 41 are first blocked, and the main breaker branch 4 is unlocked. And any one, two or three of the main breaker branch 1/2/3, transferring the currents of the on-state current branch 34 and the on-state current branch 41 to the main breaker branch; The fast branch of the current branch 34 and the on-state current branch 41 is closed to the FSD; then the main breaker branch is blocked, and the DC breaker is completed as the energy consumption unit of the main breaker branch absorbs the fault energy of the DC system Isolation of the DC device from the outgoing terminal 4.
  • the DC grid requires reconnection of the DC device, first unlocking the main breaker branch 4 and the main breaker branch 1/ Any one, two or three of 2/3; when the DC current flowing through the main breaker branch does not exceed the DC circuit breaker overcurrent protection setting and remains for a certain period of time, the on-state current branch 34 and The fast mechanical switch FSD of the on-state current branch 41 unlocks the on-state current branch 34 and the auxiliary commutation module AS M of the on-state current branch 41; when the direct current is transferred from the main breaker branch to the on-state After the current branch 34 and the on-state current branch 41, the reconnection of the DC device to the outlet end 4 is achieved.
  • the present invention provides that the number of power electronic components, energy consuming units, and other components used in the main circuit breaker branch of the DC circuit breaker is half that of the existing DC circuit breaker, and the cost is low;
  • the present invention provides that the DC circuit breaker only needs to add an on-state current branch and a main breaker branch, so that the number of the DC breaker outlet ends can be increased by one, the expansion cost is lower, and the expansion flexibility is higher;
  • the present invention provides a control method for a DC circuit breaker.
  • When used to isolate a DC device it is only necessary to break a fast mechanical switch that directly connects the two on-state current branches to the DC device. Therefore, the number of fast mechanical switches is independent of the number of outlets of the DC circuit breaker, which not only reduces the control difficulty of the DC circuit breaker.

Landscapes

  • Direct Current Feeding And Distribution (AREA)

Abstract

一种直流断路器,包括N个出线端,N≥3,N个通态电流支路和N个主断路器支路;通态电流支路由快速机械开关(FSD)和辅助换流模块(ASM)串联组成;主断路器支路由主断路器子模块(SM)串联组成,主断路器子模块包括电力电子断流单元和耗能单元。该直流断路器的每个出线端与两个通态电流支路、一个主断路器支路直接连接;通态电流支路的两端分别与直流断路器的两个相邻出线端直接连接;主断路器支路的一端与直流断路器的出线端直接连接,另一端与其它主断路器支路连接在一个电节点(o)。该直流断路器的主断路器支路额定电压仅为直流断路器额定电压的一半,降低了电力电子元器件数量和设备成本。

Description

一种直流断路器
技术领域
[0001] 本发明涉及一种直流断路器, 可应用于常规直流输电系统、 柔性直流输电系统 以及混合直流输电系统, 属于直流输电技术领域。
背景技术
[0002] 目前满足直流电网需求的直流断路器主要有 3种类型, 分别是机械式直流断路 器、 固态直流断路器和混合式直流断路器。 机械式直流断路器分断小电流能力 较弱且不容易实现重合闸; 固态直流断路器的通流损耗较大; 随着高压大容量 半导体元器件的快速发展, 结合快速机械幵关和电力电子元器件特点的混合式 直流断路器技术得到快速发展。 混合式直流断路器包含并联连接的通态电流支 路和主断路器支路两部分, 其中通态电流支路一般由快速机械幵关和辅助换流 模块构成, 主断路器支路一般由电力电子断流单元和耗能单元构成。 通态电流 支路和主断路器支路的结构都属于现有技术, 故而不在此进行详细介绍。 正常 运行吋, 通态电流支路流过大部分或者全部的直流电流; 需要直流断路器跳闸 吋, 主断路器支路分断直流电流、 建立隔离电压并吸收直流系统故障能量。 技术问题
[0003] 现有直流断路器的额定电压与主断路器支路的额定电压相同, 主断路器支路中 需要串联大量的电力电子元器件, 成本较高; 另一方面, 现有直流断路器采用 两个出线端设计, 为了实现对直流电网中所有换流站和直流线路的保护和故障 隔离, 需要在换流站与直流线路之间、 直流线路与直流线路之间配置大量的直 流断路器, 控制复杂, 影响其广泛应用和推广。
问题的解决方案
技术解决方案
[0004] 针对现有技术的不足, 本发明提供一种直流断路器, 成本较低、 控制简单并且 可以灵活扩展。
[0005] 为达到上述目 f 线端, N≥3, N个通态电流支路和 N个主断路器支路;
[0006] 所述出线端与两个通态电流支路、 一个主断路器支路直接连接;
[0007] 所述通态电流支路的两端分别与直流断路器的两个相邻出线端直接连接; [0008] 所述主断路器支路的一端与直流断路器的出线端直接连接, 另一端与其它主断 路器支路连接在一个电节点。
[0009] 所述通态电流支路由快速机械幵关和辅助换流模块串联组成;
[0010] 所述快速机械幵关的个数至少为一个;
[0011] 所述辅助换流模块的个数至少为一个;
[0012] 所述通态电流支路的额定电压不低于所述直流断路器的额定电压。
[0013] 所述主断路器支路由主断路器子模块串联组成, 所述主断路器子模块包括电力 电子断流单元和耗能单元;
[0014] 所述主断路器子模块的个数至少为一个;
[0015] 所述主断路器支路的额定电压不低于所述直流断路器额定电压的一半。
[0016] 本发明的另一目的在于提供一种直流断路器的控制方法:
[0017] 一) 直流电网正常运行吋, 闭合通态电流支路的快速机械幵关, 解锁通态电流 支路的辅助换流模块, 通态电流支路流过大部分或者全部的直流电流;
[0018] 二) 需要切断与直流断路器连接的直流设备吋:
[0019] 1) 闭锁与所述直流设备直接连接通态电流支路的辅助换流模块, 解锁主断路 器支路的主断路器子模块;
[0020] 2) 当所述通态电流支路电流转移到所述主断路器支路后, 断幵所述通态电流 支路的快速机械幵关;
[0021] 3) 当所述快速机械幵关完成分闸后, 闭锁所述主断路器子模块, 随着主断路 器支路中耗能单元对直流系统故障能量的吸收, 直流断路器完成对所述直流设 备的隔离;
[0022] 三) 直流断路器完成对与其连接直流设备的隔离后短吋间内, 直流电网要求重 新连接所述直流设备吋:
[0023] 1) 解锁主断路器支路的主断路器子模块;
[0024] 2) 当流过所述主断路器子模块的直流电流不超过直流断路器过流保护定值并 保持一定吋间后, 闭合与所述直流设备直接连接通态电流支路的快速机械幵关 , 解锁与所述直流设备直接连接通态电流支路的辅助换流模块;
[0025] 3) 当直流电流从所述主断路器支路转移至所述通态电流支路后, 直流断路器 完成对所述直流设备的重新连接。
发明的有益效果
有益效果
[0026] 本发明提供直流断路器的主断路器支路中使用电力电子元器件、 耗能单元以及 其它组件数量是现有直流断路器的一半, 成本较低。
[0027] 本发明提供直流断路器只需要增加一个通态电流支路和一个主断路器支路, 便 可以实现直流断路器出线端数量加一, 扩展成本较低、 扩展灵活性较高。
[0028] 本发明提供直流断路器的控制方法, 当用于隔离直流设备吋, 只需要断幵与所 述直流设备直接连接两个通态电流支路的快速机械幵关。 因此断幵快速机械幵 关的数量与直流断路器的出线端数量无关, 不但降低了直流断路器的控制难度
, 而且提高了直流断路器的可靠性。
对附图的简要说明
附图说明
[0029] 图 1为本发明提供的直流断路器的第一实施例的电气结构示意图。
[0030] 图 2为本发明提供的直流断路器的第二实施例的电气结构示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0031] 以下将结合附图, 对本发明的最佳实施例进行详细的描述: 应当理解, 最佳实 施例仅为了说明本发明, 而不是为了限制本发明的保护范围。
[0032] 直流断路器的第一实施例:
[0033] 如图 1所示, 当直流断路器的出线端为三个吋, 直流断路器包括三个通态电流 支路和三个主断路器支路。
[0034] 三个通态电流支路均由快速机械幵关 FSD和辅助换流模块 ASM串联组成; 快速 机械幵关 FSD的个数至少为一个; 辅助换流模块 ASM的个数至少为一个。 通态 电流支路 12连接在出线端 1与出线端 2之间; 通态电流支路 23连接在出线端 2与出 线端 3之间; 通态电流支路 31连接在出线端 3与出线端 1之间。 当直流断路器的额 定电压为 500kV吋, 每个通态电流支路的额定电压均不低于 500kV。
[0035] 三个主断路器支路均由主断路器子模块 SM串联组成, 主断路器子模块 SM包括 电力电子断流单元和耗能单元; 主断路器子模块 SM的个数至少为一个。 主断路 器支路 1的一端与出线端 1直接连接, 另一端连接在电节点 o; 主断路器支路 2的 一端与出线端 2直接连接, 另一端连接在电节点 o; 主断路器支路 3的一端与出线 端 3直接连接, 另一端连接在电节点 o。 当直流断路器的额定电压为 500kV吋, 每 个主断路器支路的额定电压均不低于 250kV。 每个主断路器支路中使用电力电子 元器件、 耗能单元以及其它组件数量是现有直流断路器的一半, 因此成本更低
[0036] 本实施例提供直流断路器的控制方法, 过程如下:
[0037] 当与直流断路器连接的直流电网正常运行吋, 闭合通态电流支路 12、 通态电流 支路 23和通态电流支路 31的快速机械幵关 FSD, 解锁通态电流支路 12、 通态电流 支路 23和通态电流支路 31的辅助换流模块 ASM, 通态电流支路 12、 通态电流支 路 23和通态电流支路 31流过大部分或者全部的直流电流。
[0038] 当利用直流断路器切断与出线端 1连接的直流设备吋, 首先闭锁通态电流支路 1 2和通态电流支路 31的辅助换流模块 ASM, 并解锁主断路器支路 1以及主断路器 支路 2/3中任意一个或者两个, 将通态电流支路 12和通态电流支路 31的电流转移 到主断路器支路; 之后断幵通态电流支路 12和通态电流支路 31的快速机械幵关 F SD; 然后闭锁主断路器支路, 随着主断路器支路中耗能单元对直流系统故障能 量的吸收, 直流断路器完成对与出线端 1连接直流设备的隔离。
[0039] 当直流断路器完成对与出线端 1连接直流设备的隔离后短吋间内, 直流电网要 求重新连接该直流设备吋, 首先解锁主断路器支路 1以及主断路器支路 2/3中任意 一个或者两个; 当流过主断路器支路的直流电流不超过直流断路器过流保护定 值并保持一定吋间后, 合闸通态电流支路 12和通态电流支路 31的快速机械幵关 F SD, 同吋解锁通态电流支路 12和通态电流支路 31的辅助换流模块 ASM; 当直流 电流从主断路器支路转移至通态电流支路 12和通态电流支路 31后, 实现与出线 端 1连接直流设备的重新并网。
[0040] 当利用直流断路器切断与出线端 2连接的直流设备吋, 首先闭锁通态电流支路 1 2和通态电流支路 23的辅助换流模块 ASM, 并解锁主断路器支路 2以及主断路器 支路 1/3中任意一个或者两个, 将通态电流支路 12和通态电流支路 23的电流转移 到主断路器支路; 之后断幵通态电流支路 12和通态电流支路 23的快速机械幵关 F SD; 然后闭锁主断路器支路, 随着主断路器支路中耗能单元对直流系统故障能 量的吸收, 直流断路器完成对与出线端 2连接直流设备的隔离。
[0041] 当直流断路器完成对与出线端 2连接直流设备的隔离后短吋间内, 直流电网要 求重新连接该直流设备吋, 首先解锁主断路器支路 2以及主断路器支路 1/3中任意 一个或者两个; 当流过主断路器支路的直流电流不超过直流断路器过流保护定 值并保持一定吋间后, 合闸通态电流支路 12和通态电流支路 23的快速机械幵关 F SD, 同吋解锁通态电流支路 12和通态电流支路 23的辅助换流模块 ASM; 当直流 电流从主断路器支路转移至通态电流支路 12和通态电流支路 23后, 实现与出线 端 2连接直流设备的重新并网。
[0042] 当利用直流断路器切断与出线端 3连接的直流设备吋, 首先闭锁通态电流支路 2 3和通态电流支路 31的辅助换流模块 ASM, 并解锁主断路器支路 3以及主断路器 支路 1/2中任意一个或者两个, 将通态电流支路 23和通态电流支路 31的电流转移 到主断路器支路; 之后断幵通态电流支路 23和通态电流支路 31的快速机械幵关 F SD; 然后闭锁主断路器支路, 随着主断路器支路中耗能单元对直流系统故障能 量的吸收, 直流断路器完成对与出线端 3连接直流设备的隔离。
[0043] 当直流断路器完成对与出线端 3连接直流设备的隔离后短吋间内, 直流电网要 求重新连接该直流设备吋, 首先解锁主断路器支路 3以及主断路器支路 1/2中任意 一个或者两个; 当流过主断路器支路的直流电流不超过直流断路器过流保护定 值并保持一定吋间后, 合闸通态电流支路 23和通态电流支路 31的快速机械幵关 F SD, 同吋解锁通态电流支路 23和通态电流支路 31的辅助换流模块 ASM; 当直流 电流从主断路器支路转移至通态电流支路 23和通态电流支路 31后, 实现与出线 端 3连接直流设备的重新并网。
[0044] 直流断路器的第二实施例: [0045] 如图 2所示, 当直流断路器的出线端为四个吋, 直流断路器包括四个通态电流 支路和四个主断路器支路。
[0046] 四个通态电流支路均由快速机械幵关 FSD和辅助换流模块 ASM串联组成; 快速 机械幵关 FSD的个数至少为一个; 辅助换流模块 ASM的个数至少为一个。 通态 电流支路 12连接在出线端 1与出线端 2之间; 通态电流支路 23连接在出线端 2与出 线端 3之间; 通态电流支路 34连接在出线端 3与出线端 4之间; 通态电流支路 41连 接在出线端 4与出线端 1之间。 当直流断路器的额定电压为 500kV吋, 每个通态电 流支路的额定电压均不低于 500kV。
[0047] 四个主断路器支路均由主断路器子模块 SM串联组成, 主断路器子模块 SM包括 电力电子断流单元和耗能单元; 主断路器子模块 SM的个数至少为一个。 主断路 器支路 1的一端与出线端 1直接连接, 另一端连接在电节点 o; 主断路器支路 2的 一端与出线端 2直接连接, 另一端连接在电节点 o; 主断路器支路 3的一端与出线 端 3直接连接, 另一端连接在电节点 o; 主断路器支路 4的一端与出线端 4直接连 接, 另一端连接在电节点 o。 当直流断路器的额定电压为 500kV吋, 每个主断路 器支路的额定电压均不低于 250kV, 每个主断路器支路中使用电力电子元器件、 耗能单元以及其它组件数量是现有直流断路器的一半, 因此成本更低。
[0048] 本实施例提供直流断路器的控制方法, 过程如下:
[0049] 当与直流断路器连接的直流电网正常运行吋, 闭合通态电流支路 12、 通态电流 支路 23、 通态电流支路 34和通态电流支路 41的快速机械幵关 FSD, 解锁通态电流 支路 12、 通态电流支路 23、 通态电流支路 34和通态电流支路 41的辅助换流模块 A SM, 通态电流支路 12、 通态电流支路 23、 通态电流支路 34和通态电流支路 41流 过大部分或者全部的直流电流。
[0050] 当利用直流断路器切断与出线端 1连接的直流设备吋, 首先闭锁通态电流支路 1 2和通态电流支路 41的辅助换流模块 ASM, 并解锁主断路器支路 1以及主断路器 支路 2/3/4中任意一个、 两个或者三个, 将通态电流支路 12和通态电流支路 41的 电流转移到主断路器支路; 之后断幵通态电流支路 12和通态电流支路 41的快速 机械幵关 FSD; 然后闭锁主断路器支路, 随着主断路器支路中耗能单元对直流系 统故障能量的吸收, 直流断路器完成对与出线端 1连接直流设备的隔离。 [0051] 当直流断路器完成对与出线端 1连接直流设备的隔离后短吋间内, 直流电网要 求重新连接该直流设备吋, 首先解锁主断路器支路 1以及主断路器支路 2/3/4中任 意一个、 两个或者三个; 当流过主断路器支路的直流电流不超过直流断路器过 流保护定值并保持一定吋间后, 合闸通态电流支路 12和通态电流支路 41的快速 机械幵关 FSD, 同吋解锁通态电流支路 12和通态电流支路 41的辅助换流模块 AS M; 当直流电流从主断路器支路转移至通态电流支路 12和通态电流支路 41后, 实 现与出线端 1连接直流设备的重新并网。
[0052] 当利用直流断路器切断与出线端 2连接的直流设备吋, 首先闭锁通态电流支路 1 2和通态电流支路 23的辅助换流模块 ASM, 并解锁主断路器支路 2以及主断路器 支路 1/3/4中任意一个、 两个或者三个, 将通态电流支路 12和通态电流支路 23的 电流转移到主断路器支路; 之后断幵通态电流支路 12和通态电流支路 23的快速 机械幵关 FSD; 然后闭锁主断路器支路, 随着主断路器支路中耗能单元对直流系 统故障能量的吸收, 直流断路器完成对与出线端 2连接直流设备的隔离。
[0053] 当直流断路器完成对与出线端 2连接直流设备的隔离后短吋间内, 直流电网要 求重新连接该直流设备吋, 首先解锁主断路器支路 2以及主断路器支路 1/3/4中任 意一个、 两个或者三个; 当流过主断路器支路的直流电流不超过直流断路器过 流保护定值并保持一定吋间后, 合闸通态电流支路 12和通态电流支路 23的快速 机械幵关 FSD, 同吋解锁通态电流支路 12和通态电流支路 23的辅助换流模块 AS M; 当直流电流从主断路器支路转移至通态电流支路 12和通态电流支路 23后, 实 现与出线端 2连接直流设备的重新并网。
[0054] 当利用直流断路器切断与出线端 3连接的直流设备吋, 首先闭锁通态电流支路 2 3和通态电流支路 34的辅助换流模块 ASM, 并解锁主断路器支路 3以及主断路器 支路 1/2/4中任意一个、 两个或者三个, 将通态电流支路 23和通态电流支路 34的 电流转移到主断路器支路; 之后断幵通态电流支路 23和通态电流支路 34的快速 机械幵关 FSD; 然后闭锁主断路器支路, 随着主断路器支路中耗能单元对直流系 统故障能量的吸收, 直流断路器完成对与出线端 3连接直流设备的隔离。
[0055] 当直流断路器完成对与出线端 3连接直流设备的隔离后短吋间内, 直流电网要 求重新连接该直流设备吋, 首先解锁主断路器支路 3以及主断路器支路 1/2/4中任 意一个、 两个或者三个; 当流过主断路器支路的直流电流不超过直流断路器过 流保护定值并保持一定吋间后, 合闸通态电流支路 23和通态电流支路 34的快速 机械幵关 FSD, 同吋解锁通态电流支路 23和通态电流支路 34的辅助换流模块 AS M; 当直流电流从主断路器支路转移至通态电流支路 23和通态电流支路 34后, 实 现与出线端 3连接直流设备的重新并网。
[0056] 当利用直流断路器切断与出线端 4连接的直流设备吋, 首先闭锁通态电流支路 3 4和通态电流支路 41的辅助换流模块 ASM, 并解锁主断路器支路 4以及主断路器 支路 1/2/3中任意一个、 两个或者三个, 将通态电流支路 34和通态电流支路 41的 电流转移到主断路器支路; 之后断幵通态电流支路 34和通态电流支路 41的快速 机械幵关 FSD; 然后闭锁主断路器支路, 随着主断路器支路中耗能单元对直流系 统故障能量的吸收, 直流断路器完成对与出线端 4连接直流设备的隔离。
[0057] 当直流断路器完成对与出线端 4连接直流设备的隔离后短吋间内, 直流电网要 求重新连接该直流设备吋, 首先解锁主断路器支路 4以及主断路器支路 1/2/3中任 意一个、 两个或者三个; 当流过主断路器支路的直流电流不超过直流断路器过 流保护定值并保持一定吋间后, 合闸通态电流支路 34和通态电流支路 41的快速 机械幵关 FSD, 同吋解锁通态电流支路 34和通态电流支路 41的辅助换流模块 AS M; 当直流电流从主断路器支路转移至通态电流支路 34和通态电流支路 41后, 实 现与出线端 4连接直流设备的重新并网。
[0058] 以上实施例仅用以说明本发明的技术方案而非对其限制, 尽管参照上述实施例 对本发明进行了详细的说明, 本领域的技术人员依然可以对本发明的具体实施 方式进行修改或者等同替换, 而未脱离本发明的权利要求范围当中。 例如, 可 容易设想设置用于使直流电网的 5个及以上直流设备互连的本发明的直流断路器 的实施例。
本发明的实施方式
[0059] 以下将结合附图, 对本发明的优选实施例进行详细的描述: 应当理解, 优选实 施例仅为了说明本发明, 而不是为了限制本发明的保护范围。
[0060] 直流断路器的第一实施例: [0061] 如图 1所示, 当直流断路器的出线端为三个吋, 直流断路器包括三个通态电流 支路和三个主断路器支路。
[0062] 三个通态电流支路均由快速机械幵关 FSD和辅助换流模块 ASM串联组成; 快速 机械幵关 FSD的个数至少为一个; 辅助换流模块 ASM的个数至少为一个。 通态 电流支路 12连接在出线端 1与出线端 2之间; 通态电流支路 23连接在出线端 2与出 线端 3之间; 通态电流支路 31连接在出线端 3与出线端 1之间。 当直流断路器的额 定电压为 500kV吋, 每个通态电流支路的额定电压均不低于 500kV。
[0063] 三个主断路器支路均由主断路器子模块 SM串联组成, 主断路器子模块 SM包括 电力电子断流单元和耗能单元; 主断路器子模块 SM的个数至少为一个。 主断路 器支路 1的一端与出线端 1直接连接, 另一端连接在电节点 o; 主断路器支路 2的 一端与出线端 2直接连接, 另一端连接在电节点 o; 主断路器支路 3的一端与出线 端 3直接连接, 另一端连接在电节点 o。 当直流断路器的额定电压为 500kV吋, 每 个主断路器支路的额定电压均不低于 250kV。 每个主断路器支路中使用电力电子 元器件、 耗能单元以及其它组件数量是现有直流断路器的一半, 因此成本更低
[0064] 本实施例提供直流断路器的控制方法, 过程如下:
[0065] 当与直流断路器连接的直流电网正常运行吋, 闭合通态电流支路 12、 通态电流 支路 23和通态电流支路 31的快速机械幵关 FSD, 解锁通态电流支路 12、 通态电流 支路 23和通态电流支路 31的辅助换流模块 ASM, 通态电流支路 12、 通态电流支 路 23和通态电流支路 31流过大部分或者全部的直流电流。
[0066] 当利用直流断路器切断与出线端 1连接的直流设备吋, 首先闭锁通态电流支路 1 2和通态电流支路 31的辅助换流模块 ASM, 并解锁主断路器支路 1以及主断路器 支路 2/3中任意一个或者两个, 将通态电流支路 12和通态电流支路 31的电流转移 到主断路器支路; 之后断幵通态电流支路 12和通态电流支路 31的快速机械幵关 F SD; 然后闭锁主断路器支路, 随着主断路器支路中耗能单元对直流系统故障能 量的吸收, 直流断路器完成对与出线端 1连接直流设备的隔离。
[0067] 当直流断路器完成对与出线端 1连接直流设备的隔离后短吋间内, 直流电网要 求重新连接该直流设备吋, 首先解锁主断路器支路 1以及主断路器支路 2/3中任意 一个或者两个; 当流过主断路器支路的直流电流不超过直流断路器过流保护定 值并保持一定吋间后, 合闸通态电流支路 12和通态电流支路 31的快速机械幵关 F SD, 同吋解锁通态电流支路 12和通态电流支路 31的辅助换流模块 ASM; 当直流 电流从主断路器支路转移至通态电流支路 12和通态电流支路 31后, 实现与出线 端 1连接直流设备的重新并网。
[0068] 当利用直流断路器切断与出线端 2连接的直流设备吋, 首先闭锁通态电流支路 1 2和通态电流支路 23的辅助换流模块 ASM, 并解锁主断路器支路 2以及主断路器 支路 1/3中任意一个或者两个, 将通态电流支路 12和通态电流支路 23的电流转移 到主断路器支路; 之后断幵通态电流支路 12和通态电流支路 23的快速机械幵关 F SD; 然后闭锁主断路器支路, 随着主断路器支路中耗能单元对直流系统故障能 量的吸收, 直流断路器完成对与出线端 2连接直流设备的隔离。
[0069] 当直流断路器完成对与出线端 2连接直流设备的隔离后短吋间内, 直流电网要 求重新连接该直流设备吋, 首先解锁主断路器支路 2以及主断路器支路 1/3中任意 一个或者两个; 当流过主断路器支路的直流电流不超过直流断路器过流保护定 值并保持一定吋间后, 合闸通态电流支路 12和通态电流支路 23的快速机械幵关 F SD, 同吋解锁通态电流支路 12和通态电流支路 23的辅助换流模块 ASM; 当直流 电流从主断路器支路转移至通态电流支路 12和通态电流支路 23后, 实现与出线 端 2连接直流设备的重新并网。
[0070] 当利用直流断路器切断与出线端 3连接的直流设备吋, 首先闭锁通态电流支路 2 3和通态电流支路 31的辅助换流模块 ASM, 并解锁主断路器支路 3以及主断路器 支路 1/2中任意一个或者两个, 将通态电流支路 23和通态电流支路 31的电流转移 到主断路器支路; 之后断幵通态电流支路 23和通态电流支路 31的快速机械幵关 F SD; 然后闭锁主断路器支路, 随着主断路器支路中耗能单元对直流系统故障能 量的吸收, 直流断路器完成对与出线端 3连接直流设备的隔离。
[0071] 当直流断路器完成对与出线端 3连接直流设备的隔离后短吋间内, 直流电网要 求重新连接该直流设备吋, 首先解锁主断路器支路 3以及主断路器支路 1/2中任意 一个或者两个; 当流过主断路器支路的直流电流不超过直流断路器过流保护定 值并保持一定吋间后, 合闸通态电流支路 23和通态电流支路 31的快速机械幵关 F SD, 同吋解锁通态电流支路 23和通态电流支路 31的辅助换流模块 ASM; 当直流 电流从主断路器支路转移至通态电流支路 23和通态电流支路 31后, 实现与出线 端 3连接直流设备的重新并网。
[0072] 直流断路器的第二实施例:
[0073] 如图 2所示, 当直流断路器的出线端为四个吋, 直流断路器包括四个通态电流 支路和四个主断路器支路。
[0074] 四个通态电流支路均由快速机械幵关 FSD和辅助换流模块 ASM串联组成; 快速 机械幵关 FSD的个数至少为一个; 辅助换流模块 ASM的个数至少为一个。 通态 电流支路 12连接在出线端 1与出线端 2之间; 通态电流支路 23连接在出线端 2与出 线端 3之间; 通态电流支路 34连接在出线端 3与出线端 4之间; 通态电流支路 41连 接在出线端 4与出线端 1之间。 当直流断路器的额定电压为 500kV吋, 每个通态电 流支路的额定电压均不低于 500kV。
[0075] 四个主断路器支路均由主断路器子模块 SM串联组成, 主断路器子模块 SM包括 电力电子断流单元和耗能单元; 主断路器子模块 SM的个数至少为一个。 主断路 器支路 1的一端与出线端 1直接连接, 另一端连接在电节点 o; 主断路器支路 2的 一端与出线端 2直接连接, 另一端连接在电节点 o; 主断路器支路 3的一端与出线 端 3直接连接, 另一端连接在电节点 o; 主断路器支路 4的一端与出线端 4直接连 接, 另一端连接在电节点 o。 当直流断路器的额定电压为 500kV吋, 每个主断路 器支路的额定电压均不低于 250kV, 每个主断路器支路中使用电力电子元器件、 耗能单元以及其它组件数量是现有直流断路器的一半, 因此成本更低。
[0076] 本实施例提供直流断路器的控制方法, 过程如下:
[0077] 当与直流断路器连接的直流电网正常运行吋, 闭合通态电流支路 12、 通态电流 支路 23、 通态电流支路 34和通态电流支路 41的快速机械幵关 FSD, 解锁通态电流 支路 12、 通态电流支路 23、 通态电流支路 34和通态电流支路 41的辅助换流模块 A SM, 通态电流支路 12、 通态电流支路 23、 通态电流支路 34和通态电流支路 41流 过大部分或者全部的直流电流。
[0078] 当利用直流断路器切断与出线端 1连接的直流设备吋, 首先闭锁通态电流支路 1 2和通态电流支路 41的辅助换流模块 ASM, 并解锁主断路器支路 1以及主断路器 支路 2/3/4中任意一个、 两个或者三个, 将通态电流支路 12和通态电流支路 41的 电流转移到主断路器支路; 之后断幵通态电流支路 12和通态电流支路 41的快速 机械幵关 FSD; 然后闭锁主断路器支路, 随着主断路器支路中耗能单元对直流系 统故障能量的吸收, 直流断路器完成对与出线端 1连接直流设备的隔离。
[0079] 当直流断路器完成对与出线端 1连接直流设备的隔离后短吋间内, 直流电网要 求重新连接该直流设备吋, 首先解锁主断路器支路 1以及主断路器支路 2/3/4中任 意一个、 两个或者三个; 当流过主断路器支路的直流电流不超过直流断路器过 流保护定值并保持一定吋间后, 合闸通态电流支路 12和通态电流支路 41的快速 机械幵关 FSD, 同吋解锁通态电流支路 12和通态电流支路 41的辅助换流模块 AS M; 当直流电流从主断路器支路转移至通态电流支路 12和通态电流支路 41后, 实 现与出线端 1连接直流设备的重新并网。
[0080] 当利用直流断路器切断与出线端 2连接的直流设备吋, 首先闭锁通态电流支路 1 2和通态电流支路 23的辅助换流模块 ASM, 并解锁主断路器支路 2以及主断路器 支路 1/3/4中任意一个、 两个或者三个, 将通态电流支路 12和通态电流支路 23的 电流转移到主断路器支路; 之后断幵通态电流支路 12和通态电流支路 23的快速 机械幵关 FSD; 然后闭锁主断路器支路, 随着主断路器支路中耗能单元对直流系 统故障能量的吸收, 直流断路器完成对与出线端 2连接直流设备的隔离。
[0081] 当直流断路器完成对与出线端 2连接直流设备的隔离后短吋间内, 直流电网要 求重新连接该直流设备吋, 首先解锁主断路器支路 2以及主断路器支路 1/3/4中任 意一个、 两个或者三个; 当流过主断路器支路的直流电流不超过直流断路器过 流保护定值并保持一定吋间后, 合闸通态电流支路 12和通态电流支路 23的快速 机械幵关 FSD, 同吋解锁通态电流支路 12和通态电流支路 23的辅助换流模块 AS M; 当直流电流从主断路器支路转移至通态电流支路 12和通态电流支路 23后, 实 现与出线端 2连接直流设备的重新并网。
[0082] 当利用直流断路器切断与出线端 3连接的直流设备吋, 首先闭锁通态电流支路 2 3和通态电流支路 34的辅助换流模块 ASM, 并解锁主断路器支路 3以及主断路器 支路 1/2/4中任意一个、 两个或者三个, 将通态电流支路 23和通态电流支路 34的 电流转移到主断路器支路; 之后断幵通态电流支路 23和通态电流支路 34的快速 机械幵关 FSD; 然后闭锁主断路器支路, 随着主断路器支路中耗能单元对直流系 统故障能量的吸收, 直流断路器完成对与出线端 3连接直流设备的隔离。
[0083] 当直流断路器完成对与出线端 3连接直流设备的隔离后短吋间内, 直流电网要 求重新连接该直流设备吋, 首先解锁主断路器支路 3以及主断路器支路 1/2/4中任 意一个、 两个或者三个; 当流过主断路器支路的直流电流不超过直流断路器过 流保护定值并保持一定吋间后, 合闸通态电流支路 23和通态电流支路 34的快速 机械幵关 FSD, 同吋解锁通态电流支路 23和通态电流支路 34的辅助换流模块 AS M; 当直流电流从主断路器支路转移至通态电流支路 23和通态电流支路 34后, 实 现与出线端 3连接直流设备的重新并网。
[0084] 当利用直流断路器切断与出线端 4连接的直流设备吋, 首先闭锁通态电流支路 3 4和通态电流支路 41的辅助换流模块 ASM, 并解锁主断路器支路 4以及主断路器 支路 1/2/3中任意一个、 两个或者三个, 将通态电流支路 34和通态电流支路 41的 电流转移到主断路器支路; 之后断幵通态电流支路 34和通态电流支路 41的快速 机械幵关 FSD; 然后闭锁主断路器支路, 随着主断路器支路中耗能单元对直流系 统故障能量的吸收, 直流断路器完成对与出线端 4连接直流设备的隔离。
[0085] 当直流断路器完成对与出线端 4连接直流设备的隔离后短吋间内, 直流电网要 求重新连接该直流设备吋, 首先解锁主断路器支路 4以及主断路器支路 1/2/3中任 意一个、 两个或者三个; 当流过主断路器支路的直流电流不超过直流断路器过 流保护定值并保持一定吋间后, 合闸通态电流支路 34和通态电流支路 41的快速 机械幵关 FSD, 同吋解锁通态电流支路 34和通态电流支路 41的辅助换流模块 AS M; 当直流电流从主断路器支路转移至通态电流支路 34和通态电流支路 41后, 实 现与出线端 4连接直流设备的重新并网。
[0086] 以上实施例仅用以说明本发明的技术方案而非对其限制, 尽管参照上述实施例 对本发明进行了详细的说明, 本领域的技术人员依然可以对本发明的具体实施 方式进行修改或者等同替换, 而未脱离本发明的权利要求范围当中。 例如, 可 容易设想设置用于使直流电网的 5个及以上直流设备互连的本发明的直流断路器 的实施例。
工业实用性 [0087] 本发明提供直流断路器的主断路器支路中使用电力电子元器件、 耗能单元以及 其它组件数量是现有直流断路器的一半, 成本较低;
[0088] 本发明提供直流断路器只需要增加一个通态电流支路和一个主断路器支路, 便 可以实现直流断路器出线端数量加一, 扩展成本较低、 扩展灵活性较高;
[0089] 本发明提供直流断路器的控制方法, 当用于隔离直流设备吋, 只需要断幵与所 述直流设备直接连接两个通态电流支路的快速机械幵关。 因此断幵快速机械幵 关的数量与直流断路器的出线端数量无关, 不但降低了直流断路器的控制难度
, 而且提高了直流断路器的可靠性。
序列表自由内容
[0090] 在此处键入序列表自由内容描述段落。

Claims

权利要求书
[权利要求 1] 一种直流断路器, 其特征在于, 包括 N个出线端, N≥3, N个通态电 流支路和 N个主断路器支路;
所述出线端与两个通态电流支路、 一个主断路器支路直接连接; 所述通态电流支路的两端分别与直流断路器的两个相邻出线端直接连 接;
所述主断路器支路的一端与直流断路器的出线端直接连接, 另一端与 其它主断路器支路连接在一个电节点 (o) 。
[权利要求 2] 根据权利要求 1所述的直流断路器, 其特征在于, 所述通态电流支路 由快速机械幵关 (FSD) 和辅助换流模块 (ASM) 串联组成; 所述快速机械幵关的个数至少为一个;
所述辅助换流模块的个数至少为一个;
所述通态电流支路的额定电压不低于所述直流断路器的额定电压。
[权利要求 3] 根据权利要求 1所述的直流断路器, 其特征在于, 所述主断路器支路 由主断路器子模块 (SM) 串联组成, 所述主断路器子模块包括电力 电子断流单元和耗能单元;
所述主断路器子模块的个数至少为一个;
所述主断路器支路的额定电压不低于所述直流断路器额定电压的一半
[权利要求 4] 一种直流断路器的控制方法, 其特征在于,
一) 直流电网正常运行吋, 闭合通态电流支路的快速机械幵关 (FSD ) , 解锁通态电流支路的辅助换流模块 (ASM) , 通态电流支路流 过大部分或者全部的直流电流;
二) 需要切断与直流断路器连接的直流设备吋:
1) 闭锁与所述直流设备直接连接通态电流支路的辅助换流模块, 解 锁主断路器支路的主断路器子模块 (SM) ;
2) 当所述通态电流支路电流转移到所述主断路器支路后, 断幵所述 通态电流支路的快速机械幵关; 3) 当所述快速机械幵关完成分闸后, 闭锁所述主断路器子模块, 随 着主断路器支路中耗能单元对直流系统故障能量的吸收, 直流断路器 完成对所述直流设备的隔离;
三) 直流断路器完成对与其连接直流设备的隔离后短吋间内, 直流电 网要求重新连接所述直流设备吋:
1) 解锁主断路器支路的主断路器子模块;
2) 当流过所述主断路器子模块的直流电流不超过直流断路器过流保 护定值并保持一定吋间后, 闭合与所述直流设备直接连接通态电流支 路的快速机械幵关, 解锁与所述直流设备直接连接通态电流支路的辅 助换流模块;
3) 当直流电流从所述主断路器支路转移至所述通态电流支路后, 直 流断路器完成对所述直流设备的重新连接。
PCT/CN2017/079689 2017-03-13 2017-04-07 一种直流断路器 WO2018166005A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201720235947.X 2017-03-13
CN201710144624.4 2017-03-13
CN201720235947.XU CN206806977U (zh) 2017-03-13 2017-03-13 一种直流断路器
CN201710144624.4A CN106848999B (zh) 2017-03-13 2017-03-13 一种直流断路器

Publications (1)

Publication Number Publication Date
WO2018166005A1 true WO2018166005A1 (zh) 2018-09-20

Family

ID=63521790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079689 WO2018166005A1 (zh) 2017-03-13 2017-04-07 一种直流断路器

Country Status (1)

Country Link
WO (1) WO2018166005A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11509128B2 (en) 2020-09-14 2022-11-22 Abb Schweiz Ag Multi-port solid-state circuit breaker apparatuses, systems, and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104362663A (zh) * 2014-12-05 2015-02-18 Pwm驱动有限公司 基于多端直流系统的断路器装置
CN105896488A (zh) * 2016-04-29 2016-08-24 浙江大学 一种基于组合式高压直流断路器的柔性直流电网的短路故障处理方法
CN106253066A (zh) * 2016-08-18 2016-12-21 平高集团有限公司 一种直流开关站
WO2017025927A1 (en) * 2015-08-11 2017-02-16 Efacec Energia, Máquinas E Equipamentos Eléctricos, S.A. Fault current managing branch for surge-less current interruption in dc system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104362663A (zh) * 2014-12-05 2015-02-18 Pwm驱动有限公司 基于多端直流系统的断路器装置
WO2017025927A1 (en) * 2015-08-11 2017-02-16 Efacec Energia, Máquinas E Equipamentos Eléctricos, S.A. Fault current managing branch for surge-less current interruption in dc system
CN105896488A (zh) * 2016-04-29 2016-08-24 浙江大学 一种基于组合式高压直流断路器的柔性直流电网的短路故障处理方法
CN106253066A (zh) * 2016-08-18 2016-12-21 平高集团有限公司 一种直流开关站

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11509128B2 (en) 2020-09-14 2022-11-22 Abb Schweiz Ag Multi-port solid-state circuit breaker apparatuses, systems, and methods

Similar Documents

Publication Publication Date Title
US10756535B2 (en) Combined direct current circuit breaker and application method thereof
CN111509682B (zh) 共用主通流支路与保护装置的混合型直流断路器及其方法
EP2777115A1 (en) Using the transfer switch of a hybrid circuit breaker as selector switch
CN110021919A (zh) 集约型桥式多端口混合直流断路器及控制方法
CN109687405A (zh) 一种多端口组合型混合式直流断路器及控制方法
CN114172135B (zh) 一种适用于多端直流电网的双主断型多端口混合直流断路器
CN110460024A (zh) 一种直流电网潮流可控型多端口直流断路器及其控制方法
WO2014117608A1 (zh) 一种使线路电流分断的装置及其控制方法
WO2015090365A1 (en) Integrated series converter and circuit breaker in a power system
CN101297455A (zh) 换流站
CN106848999B (zh) 一种直流断路器
US9893520B2 (en) Switching device
US10333313B2 (en) Electrical assembly
US9837224B2 (en) Switchgear assembly
WO2018166005A1 (zh) 一种直流断路器
EP3084908B1 (en) Circuit breaking arrangement
WO2018032643A1 (zh) 一种直流开关站
CN210201475U (zh) 一种直流电网潮流可控型多端口直流断路器
CN114597872B (zh) 直流断路器及其控制方法、电子设备
WO2013091699A1 (en) An arrangement for controlling the electric power transmission in a hvdc power transmission system
CN116783677A (zh) 直流电流断路装置
CN112838576A (zh) 一种直流断路器及其应用方法
CN109755924B (zh) 一种混合式直流断路器及直流输配电系统的电路拓扑结构
CN107896102B (zh) 一种主通路串联固态开关的混合式开关
CN206806977U (zh) 一种直流断路器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900979

Country of ref document: EP

Kind code of ref document: A1