WO2018165813A1 - 多功能太阳能装置 - Google Patents

多功能太阳能装置 Download PDF

Info

Publication number
WO2018165813A1
WO2018165813A1 PCT/CN2017/076411 CN2017076411W WO2018165813A1 WO 2018165813 A1 WO2018165813 A1 WO 2018165813A1 CN 2017076411 W CN2017076411 W CN 2017076411W WO 2018165813 A1 WO2018165813 A1 WO 2018165813A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
light
receiving surface
solar
container
Prior art date
Application number
PCT/CN2017/076411
Other languages
English (en)
French (fr)
Inventor
胡笑平
Original Assignee
博立多媒体控股有限公司
胡笑平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博立多媒体控股有限公司, 胡笑平 filed Critical 博立多媒体控股有限公司
Priority to PCT/CN2017/076411 priority Critical patent/WO2018165813A1/zh
Publication of WO2018165813A1 publication Critical patent/WO2018165813A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the invention relates to the field of clean energy technologies, and in particular relates to a multifunctional solar device for utilizing solar energy in various aspects.
  • a solar energy system in which a photoelectric conversion device and a thermal energy utilization device are cascaded together.
  • a photoelectric conversion device and a thermal energy utilization device are cascaded together.
  • Such a system has higher energy use efficiency, but requires photoelectric conversion and then thermoelectric conversion, so that its thermal energy utilization is limited by the heat dissipation rate of the photoelectric conversion device.
  • the photoelectric conversion device cannot dissipate heat rapidly, it may be damaged due to excessive temperature rise, or the work efficiency may be lowered due to too high temperature.
  • a multifunctional solar energy device comprising: a thermal energy storage device having a first container provided with a first light receiving surface and a heat storage medium contained in the first container, the first light receiving surface being transparent Forming a light-insulating material; a photoelectric conversion device having a second light-receiving surface for converting light energy received by the second light-receiving surface into electrical energy; and an optical splitter disposed on the first light-receiving surface and the second The light path before the light receiving surface has a moving part for adjusting incident light to the first light receiving surface and The ratio of the two receiving surfaces.
  • the ratio of the light energy to which the thermal energy storage device and the photoelectric conversion device are distributed is adjusted by the optical distributor, and energy storage and direct photovoltaic power generation can be realized in parallel. It enables dynamic adjustment of the proportion of solar energy used for instantaneous power generation or conversion to thermal energy storage according to natural conditions (such as season, ambient temperature, etc.) or actual application needs (such as device temperature, power demand, etc.), thereby achieving continuous uninterrupted Power supply and long-term storage of energy.
  • FIG. 1 is a schematic view of a solar device of Embodiment 1;
  • Figure 2 is a schematic view of a solar device of Embodiment 2;
  • Figure 3 is a schematic view of a solar device of Embodiment 3;
  • FIG. 4 is a schematic view of a solar device of Embodiment 4.
  • Fig. 5 is a schematic view of a solar device of Embodiment 5.
  • FIG. 1 An embodiment of the multifunctional solar device according to the present invention can be referred to FIG. 1 and includes a thermal energy storage device 110, a photoelectric conversion device 120, and a light distributor 130.
  • the thermal energy storage device 110 has a first container 112 provided with a first light receiving surface 111 and a heat storage medium housed in the first container.
  • the first light receiving surface is formed of a light transmissive heat insulating material.
  • the heat storage working medium is used for absorbing and storing thermal energy, and specifically, any working medium having a large heat capacity can be selected, for example, a substance selected from the following collections can be used. Or a mixture comprising at least one selected from the group consisting of molten salt, paraffin, water, liquid or solid fat, silica gel, and the like.
  • the photoelectric conversion device 120 has a second light receiving surface 121 for converting light energy received by the second light receiving surface into electrical energy.
  • various photovoltaic panels, photovoltaic films, quantum dot photoelectric conversion devices, and the like can be used.
  • the photoelectric conversion device in this embodiment employs a photovoltaic panel.
  • the optical distributor 130 is disposed on the optical path before the first light receiving surface and the second light receiving surface, and has a movable member for adjusting a ratio of the incident light to the first light receiving surface and the second light receiving surface.
  • the first light-receiving surface and the second light-receiving surface are substantially in the same plane, and are disposed substantially adjacent to each other. Therefore, the optical splitter adopts a tapered light guide tube 131 mounted on the rotating shaft 132.
  • the sunlight LL is incident from the larger end of the light guide opening, and is emitted from the smaller end of the opening, and the first light receiving surface (thermal energy storage device) is changed by rotating the rotating shaft 132 to change the irradiation angle of the light guiding tube.
  • the optical distributor may have various implementation forms according to a specific optical path design, as long as it has a movable component, and can change the optical path parameter between the first light receiving surface and the second light receiving surface. .
  • the embodiment further includes a liquid vaporization device 140 having a second container 141 and a liquid working medium capable of being vaporized in the second container.
  • the liquid working medium may be one selected from the group consisting of, or a mixture comprising at least one selected from the group consisting of fresh water, sea water, alcohol, diethyl ether, and freon.
  • a coolant which is not easily frozen can be preferable, so that the device has a stronger temperature adaptability.
  • the photovoltaic panel 120 is at least partially immersed in the liquid working medium, or at least one side is in contact with the liquid working medium, so that the operating temperature of the photovoltaic panel can be effectively controlled, and the solar energy can be more fully utilized. .
  • the present embodiment further includes a movable heat conducting plate 142 that acts as a controllable heat exchange channel between the liquid vaporization device 140 and the thermal energy storage device 110.
  • the middle portion of the heat conducting plate 142 is formed of a heat conductive material (the outer side thereof may be covered by a heat insulating material, not shown), and the sides are a shield plate 1421 formed of a heat insulating material.
  • the walls of the first container 112 and the second container 141 that are in contact with each other are made of a heat insulating material, so that there is no direct heat exchange between the two.
  • the side walls of the first container 112 and the second container 141 facing the heat conducting plate 142 are made of a heat conductive material.
  • the heat conducting plate 142 When the middle portion of the heat conducting plate 142 simultaneously contacts the heat conduction of the first container 112 and the second container 141 At the side wall, heat is exchanged between the liquid vaporization device 140 and the thermal energy storage device 110.
  • the heat conducting plate 142 When the heat conducting plate 142 is moved in position and its heat conducting portion is only in contact with the side wall of one of the containers, the heat exchange between the liquid vaporizing device 140 and the thermal energy storage device 110 is blocked. Therefore, the heat exchange passage between the two containers can be controllably opened or closed by moving the heat conducting plate.
  • other devices may be employed to form the heat exchange channels, such as pipes with controllable valves, and the like.
  • the liquid vaporization device and the photoelectric conversion device have a fixed heat exchange channel (the photoelectric conversion device is disposed in the second container), and the liquid vaporization device and the thermal energy storage device have a controllable heat exchange channel ( Active heat transfer board).
  • the liquid vaporization device can also have a fixed or controllable heat exchange channel between at least one of the thermal energy storage device and the photoelectric conversion device.
  • the liquid vaporization device 140 can be further connected to an external node device through a pipeline to achieve a richer function.
  • the node device in this embodiment includes a turbine generator 151 and a compressor 152.
  • the liquid working medium is heated and vaporized in the second container 141 by the thermal energy generated by the photovoltaic panel 120 (or heat energy stored in the thermal energy storage device 110), and the generated gas is sent to the turbo generator 151 for power generation, after power generation.
  • the working medium, whether gaseous or partially liquid, is transported back to the second vessel 141 by the compressor 152 to complete a closed cycle.
  • each node device that the working medium passes through in various circulation systems can communicate through the pipeline, and the corresponding valve (not shown) can be set for control, and will not be described again.
  • other turbine power units may be utilized in addition to the turbine generator to utilize the energy of the vapor, or other node equipment, such as a condensing tank, may be accessed in the circulating system of the working fluid.
  • a closed working fluid circulation system is adopted, so that it can be operated for a long time without replacing or replenishing the liquid working medium.
  • an open working fluid circulation system can also be adopted, and different functions can be realized based on different types of working fluids, such as providing hot water to the outside world or realizing desalination.
  • a concentrating device (not shown) may be further included.
  • the concentrating device is disposed on the optical path before the optical splitter, and the sunlight LL incident on the optical splitter may be the concentrated sunlight, which will not be described below.
  • the concentrating device makes the utilization of solar energy more efficient, and it can adopt a single concentrating device or a combination of various optical devices.
  • the concentrating device may preferably include Shot or reflective Fresnel lens.
  • a reflective lens can be formed by providing a reflective layer or a reflective coating on one side (or between two faces) of a transmissive lens.
  • Each flank of the Fresnel lens referred to herein may be either a simple lens surface containing only one Fresnel unit or a composite lens surface composed of a plurality of Fresnel units.
  • a detailed description of the Fresnel lens can be found in the PCT application entitled "Fresnel Lens System", published on June 2, 2016, International Publication No. WO/2017/082097, which is hereby incorporated by reference.
  • thermoelectric conversion devices may be further disposed, specifically, may be disposed on any one or more heat exchange channels for generating electricity by using the heat flowing through to achieve higher Solar energy utilization efficiency.
  • the thermoelectric conversion device can be disposed on at least one face of the photovoltaic panel in contact with the liquid working medium.
  • the thermoelectric conversion device can be specifically made of various thermoelectric conversion materials or semiconductor thermoelectric diodes.
  • a control device may be further provided for connecting at least one detector member disposed in the first container and the second container, and controlling the device according to the data collected by the detector device.
  • the work of other devices such as controlling the distribution ratio of the optical splitter, controlling the opening and closing of the controllable heat exchange channel, controlling the operation of the valve or node device in the circulation system, and the like.
  • the detector element used can be selected from the group consisting of a temperature sensor and a pressure sensor.
  • FIG. 2 An embodiment of the multifunctional solar device according to the present invention can be referred to FIG. 2, including a thermal energy storage device 210, a photovoltaic panel 220, an optical splitter 230, and a concentrating device 260.
  • the thermal energy storage device 210 has a first container 212 provided with a first light receiving surface 211 and a heat storage medium housed in the first container.
  • the first light receiving surface is formed of a light transmissive heat insulating material.
  • the side wall of the first container 212 is made of a heat conductive material
  • the thermal energy storage device 210 further has a movable outer wall 213 made of a heat insulating material.
  • the outer wall is a bottom closed sleeve that is axially movable along the sidewall of the first container to cover or expose the side wall.
  • the thermal energy storage device functions as a cooler.
  • the thermal energy storage device acts as a thermal insulation device.
  • thermoelectric conversion device (not shown) is further disposed on the sidewall of the first container 212 to facilitate storage in thermal energy. When the device exchanges heat with the outside world (heat dissipation), it uses the generated heat to generate electricity.
  • the embodiment further includes a rechargeable battery 270 electrically connected to at least one device for generating electrical energy (such as a photovoltaic panel or a thermoelectric conversion device) in the solar device for storing electrical energy and external powered by.
  • a rechargeable battery 270 is disposed between the thermally conductive bottom wall of the first container 212 and the bottom of the outer wall 213, which causes the battery 270 to be substantially closed relative to the outside. Therefore, the temperature of the battery 270 can be controlled by the thermal energy storage device. For example, in cold regions, battery 270 can be maintained at a temperature that does not freeze. Therefore, the solar device of the present embodiment is suitable for use as an independently powered solar power system, such as a street light or a field power station, used in cold regions.
  • the rechargeable battery is thermally coupled to the thermal energy storage device via a fixed heat exchange channel (ie, a thermally conductive bottom wall of the first container).
  • the rechargeable battery can also be thermally coupled to other devices in the solar device that generate or store thermal energy (eg, a photoelectric conversion device or a liquid vaporization device) through a fixed or controllable heat exchange channel.
  • the photovoltaic panel 220 has a second light receiving surface 221.
  • the first light receiving surface and the second light receiving surface are substantially in the same plane, and the second light receiving surface surrounds the periphery of the first light receiving surface.
  • the back side of the photovoltaic panel is thermally coupled to the thermal energy storage device 210 to facilitate heat dissipation or thermal insulation by the thermal energy storage device.
  • the optical splitter 230 adopts a mirror 231 mounted on the lifting shaft 232, and the reflecting surface (lower surface) faces the first light receiving surface and the second light receiving surface, and the first light receiving surface and the second light receiving surface are changed by moving up and down.
  • a photovoltaic panel (not shown) may be further disposed on the upper surface of the mirror 231 to make full use of sunlight incident from above the mirror.
  • the concentrating device 260 includes a mirror 261 and a transparent cover 262.
  • the mirror 261 surrounds the periphery of the second light receiving surface, and the transparent cover 262 covers the entire optical structure.
  • the mirrors 231 and 261 may be ordinary planar mirrors or reflective concentrating lenses, such as reflective concentrating Fresnel lenses having a macroscopic shape.
  • the transparent cover 262 may be a simple smooth cover made of transparent glass or plastic, or a transmissive concentrating Fresnel lens whose macroscopic shape is curved.
  • the sunlight LL After passing through the transparent cover 262, the sunlight LL is reflected by the mirror 231 onto the mirror 261, and then reflected by the mirror 261 to the first light receiving surface or the second light receiving surface. Due to the closure of the first container, entering the first light receiving surface All of the light energy will be converted into heat.
  • the outer wall 213 In winter, or in cold areas, the outer wall 213 can be moved to a closed position so that the thermal energy storage can heat or hold the battery and photovoltaic panels, and, if desired, the optical distributor can be added to the first light receiving surface. The proportion of light to increase the temperature. In the summer, the outer wall 213 can be opened, and the light distributor can reduce the proportion of light entering the first light receiving surface, so that the thermal energy storage is used to dissipate heat from the photovoltaic panel and the battery.
  • the solar device of the present embodiment is capable of operating the photovoltaic panel and the rechargeable battery at a suitable temperature range by controlling the activities of the optical distributor and the outer wall of the thermal energy storage.
  • FIG. 3 An embodiment of the multifunctional solar device according to the present invention can be referred to FIG. 3, including a thermal energy storage device 310, a photovoltaic panel 320, a light distributor 330, and a liquid vaporization device 340.
  • the solar device of this embodiment further includes a closed optical cavity 380.
  • closed is meant that the cavity is substantially closed to incident light, and light incident from the entrance of the cavity is substantially no longer reflected outside the cavity.
  • the optical cavity can be used in combination with a concentrating device (not shown), and the sunlight LL concentrated by the concentrating device is incident into the entrance of the optical cavity, and the optical cavity can thus adopt a smaller-sized inlet to achieve the sealing.
  • a light scattering device 381 may be further disposed at the entrance of the optical cavity to prevent light incident from the entrance of the optical cavity from being reflected outside the optical cavity.
  • the light-scattering device in this embodiment is specifically a tapered reflector having a reflective coating on its surface, and the tapered tip faces the outside of the optical cavity.
  • the thermal energy storage device 310 has a first container 312 provided with a first light receiving surface 311 and a heat storage medium housed in the first container.
  • the first light receiving surface is formed of a light transmissive heat insulating material.
  • the first light receiving surface is formed as one side wall of the optical cavity. In other embodiments, the first light receiving surface may also be disposed on one side wall of the optical cavity as a part of the side wall.
  • the photovoltaic panel 320 has a second light receiving surface 321 .
  • the second light receiving surface is disposed on the other side wall of the optical cavity, which is different from the sidewall on which the first light receiving surface is located.
  • Other regions of the inner surface of the optical cavity 380 may be wholly or at least partially mirrored such that light can be reflected multiple times within the optical cavity until all is absorbed and utilized, thereby increasing the efficiency of solar energy utilization.
  • the light distributor 330 is disposed inside the optical cavity 380, and specifically adopts a movable right angle mirror which changes the ratio of the light energy obtained by the first light receiving surface and the second light receiving surface by moving left and right.
  • the liquid vaporization device 340 has a second container 341 and a liquid capable of being vaporized in the second container Working quality.
  • the second container 341 is disposed below the photovoltaic panel 320 and is thermally coupled thereto.
  • the second container 341 also exchanges heat with the heat storage medium in the first container through the inlet conduit 343 and the outlet conduit 344 through the first container.
  • the working fluid circulation system of the present embodiment is open.
  • the liquid vaporization device 340 replenishes the liquid working medium through the inlet conduit 343, and delivers the vaporized working fluid to the turbo generator 351 through the outlet conduit 344 for power generation, and the generated working fluid is then cooled to a liquid in the condensation chamber 353 and is Collected and stored in it.
  • the solar device of the present embodiment can simultaneously achieve seawater desalination and obtain almost free fresh water.
  • a movable opening 345 may be provided at the bottom of the second container 341 for the cleaning operation.
  • FIG. 4 An embodiment of the multifunctional solar device according to the present invention can be referred to FIG. 4, including a thermal energy storage device 410, a photovoltaic panel 420, a light distributor 430, a liquid vaporization device 440, a rechargeable battery 470, and a closed optical cavity 480.
  • the solar device of the present embodiment also includes a closed optical cavity 480.
  • the first light receiving surface 411 of the first container 412 of the thermal energy storage device 410 is formed as one sidewall of the optical cavity, and the photovoltaic panel 420 is The second light receiving surface 421 is disposed on the other side wall of the optical cavity, the second container 441 of the liquid vaporizing device 440 is disposed under the photovoltaic plate 420 and thermally connected thereto, and the second container 441 passes through the inlet pipe 443 passing through the first container. And an outlet conduit 444 for heat exchange with the heat storage medium in the first vessel.
  • the entrance of the optical cavity 480 is not provided with a light scattering device, but the optical splitter 430 is disposed below the entrance.
  • the optical splitter adopts a mirror 431 mounted on the rotating shaft 432 to change the ratio of the light energy obtained by the first light receiving surface and the second light receiving surface by adjusting the rotation angle thereof.
  • the working fluid circulation system in this embodiment is closed.
  • the liquid vaporization device 440 delivers the vaporized working fluid to the turbine generator 451 through the outlet pipe 444 for power generation, and the generated working fluid is then cooled to a liquid in the condensation tank 453, and then sent back by the compressor 452 through the inlet pipe 443.
  • the second container 441 is thereby completed in a closed loop.
  • the solar device of the embodiment further includes a rechargeable battery 470 disposed under the optical cavity 480. Located below the second container 441 and surrounded by the first container 412. However, the battery 470 is only in contact with the second container 441 and exchanges heat.
  • an electric heater 414 is further included in the embodiment, and is specifically disposed in the first container 412 of the thermal energy storage device 410.
  • the electric heater 414 is electrically connected to an external power source, and can store energy by heating the heat storage medium in the thermal energy storage device, and can maintain the required temperature when the temperature is too low.
  • the electric heater may specifically be a resistance wire or a microwave generator.
  • the solar device of the present embodiment is suitable for an electric car or a hybrid car in a cold area.
  • FIG. 5 One embodiment of the multifunctional solar device according to the present invention can be referred to FIG. 5, including a thermal energy storage device 510, a photovoltaic panel 520, a light distributor 530, a liquid vaporization device 540, a concentrating device 560, and a rechargeable battery 570.
  • the optical structure portion of this embodiment is similar to that of Embodiment 2.
  • the first light receiving surface 511 of the first container 512 of the thermal energy storage device 510 is formed of a light transmissive heat insulating material, and the second light receiving surface 521 of the photovoltaic panel 520 is surrounded by the first light receiving surface.
  • the light splitter 530 adopts a mirror 531 that can move up and down, and the reflecting surface (lower surface) faces the first light receiving surface and the second light receiving surface, and the first light receiving surface and the second light receiving surface are changed by moving up and down.
  • the ratio of the obtained light energy, the mirror 561 of the concentrating device 560 surrounds the periphery of the second light receiving surface, and the transparent cover 562 covers the entire optical structure.
  • a hollow rotating electrical machine for example, a polyhedral ultrasonic motor
  • a hollow rotating electrical machine for example, a polyhedral ultrasonic motor
  • the part reaches the first light receiving surface.
  • the heat energy utilization portion of this embodiment is different from that of the second embodiment.
  • the second container 541 of the liquid vaporization device 540 is disposed below the photovoltaic panel 520 and is thermally coupled to the photovoltaic panel 520 by a thermoelectric conversion device AA.
  • the external working fluid circulation system connected to the second container is omitted in FIG. 5.
  • the second container may be connected to an open or closed working fluid circulation system as needed (for example, FIG. 3 or FIG.
  • the working fluid circulation system shown in 4) uses heat energy to generate electricity.
  • the first container 512 of the thermal energy storage device 510 is disposed inside the second container 541 of the liquid vaporization device 540, there is no direct contact heat exchange between the two containers.
  • the second container 541 exchanges heat with the first container through a conduit 546 that passes through the first container 512.
  • the rechargeable battery 570 is disposed below the mirror 561 and surrounds the periphery of the second container 541, but the battery 570 and the second container 541 are not directly in contact with each other for heat exchange.
  • the second container 541 exchanges heat with the battery 570 through a conduit 547 extending in the battery 570.
  • valves BB and 547 are provided with valves BB to control the progress of heat exchange, and thus valve BB may also be referred to as a heat exchange switch.
  • the solar device of the present embodiment is capable of adjusting the proportion of light energy for power generation and thermal energy storage by means of an optical distributor on the one hand, and thermoelectric conversion means on all major heat exchange channels on the other hand. Therefore, not only can the rechargeable battery be operated normally in a cold area, but also the stored thermal energy can be used to generate electricity as needed. For example, in the summer, excess light energy is stored as heat energy, while in winter, stored heat energy is used to generate electricity to supplement the shortage of electric energy caused by short lighting time, so that the capacity of the rechargeable battery and the area of the photovoltaic panel can be increased without increasing the capacity of the rechargeable battery and the area of the photovoltaic panel. To improve the power generation capacity of solar installations in winter. In addition, keeping the battery warm during the winter can effectively increase the capacity and life of the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种多功能太阳能装置,包括:一热能存储装置(110),其具有一设置有第一受光面(111)的第一容器(112)及容纳于第一容器中的储热工质;一光电转换装置(120),其具有第二受光面(121);一光分配器(130),其设置于第一受光面与第二受光面之前的光路上,其具有活动部件(132),其用于调整入射的光线照射到第一受光面和第二受光面上的比例。通过光分配器来调整热能存储装置和光电转换装置所分配到的光能的比例,能够并行地实现能量的存储和直接光电发电,并且能够根据自然条件或者实际应用的需要来动态调整太阳能用于即时发电或转换为热能存储的比例,从而实现连续不间断的供电以及能量的长期存储。

Description

多功能太阳能装置 技术领域
本发明涉及清洁能源技术领域,具体涉及一种对太阳能进行多方面利用的多功能太阳能装置。
背景技术
随着对环境保护的日益重视,太阳能系统得到了越来越广泛的应用。采用光伏板直接发电的太阳能系统通常不具备能量存储的功能,因此其发电功能具有间歇性。采用光热发电的太阳能系统首先将光能转换成热能,再利用热能来发电,虽然能够进行能量存储,但不能直接以光电转换方式进行利用,因此其光能利用效率受限于热能利用效率。
此外,也有提出将光电转换装置与热能利用装置级联在一起使用的太阳能系统。这种系统具有更高的能量使用效率,但是需要先进行光电转换,再进行热电转换,因此其热能利用会受到光电转换装置的散热速度的限制。当光电转换装置不能快速散热时,其可能因温度上升过快而损坏,或者因温度太高而导致工作效率降低。
因此,能够更好地协调太阳能的光电利用方式和热能利用方式的太阳能装置是值得研究的。
技术问题
在此处键入技术问题描述段落。
问题的解决方案
技术解决方案
依据本发明提供一种多功能太阳能装置,包括:一热能存储装置,其具有一设置有第一受光面的第一容器及容纳于第一容器中的储热工质,第一受光面由透光隔热材料形成;一光电转换装置,其具有第二受光面,其用于将第二受光面接收到的光能转换为电能;一光分配器,其设置于第一受光面与第二受光面之前的光路上,其具有活动部件,其用于调整入射的光线照射到第一受光面和第 二受光面上的比例。
发明的有益效果
有益效果
依据本发明的多功能太阳能装置,通过光分配器来调整热能存储装置和光电转换装置所分配到的光能的比例,能够并行地实现能量的存储和直接光电发电。使得能够根据自然条件(例如季节、环境温度等)或者实际应用的需要(例如器件温度、用电需求等)来动态调整太阳能用于即时发电或转换为热能存储的比例,从而实现连续不间断的供电以及能量的长期存储。
以下结合附图,对依据本发明的具体示例进行详细说明。
对附图的简要说明
附图说明
图1是实施例1的太阳能装置的示意图;
图2是实施例2的太阳能装置的示意图;
图3是实施例3的太阳能装置的示意图;
图4是实施例4的太阳能装置的示意图;
图5是实施例5的太阳能装置的示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
在此处键入本发明的最佳实施方式描述段落。
发明实施例
本发明的实施方式
实施例1
依据本发明的多功能太阳能装置的一种实施方式可参考图1,包括热能存储装置110,光电转换装置120,光分配器130。
热能存储装置110具有设置有第一受光面111的第一容器112及容纳于第一容器中的储热工质。第一受光面由透光隔热材料形成。储热工质用来吸收和存储热能,具体可选用任何热容量大的工质,例如可采用选自以下集合中的一种物质 ,或采用包含选自以下集合中的至少一种物质的混合物:融盐、石蜡、水、液态或固态油脂、硅胶等。
光电转换装置120具有第二受光面121,其用于将第二受光面接收到的光能转换为电能,具体可采用各种光伏板、光伏薄膜、量子点光电转换装置等等。本实施例中的光电转换装置采用光伏板。
光分配器130设置于第一受光面与第二受光面之前的光路上,其具有活动部件,其用于调整入射的光线照射到第一受光面和第二受光面上的比例。本实施例中,第一受光面与第二受光面基本位于同一平面,且基本左右相邻的设置,因此光分配器采用一安装在转轴132上的锥形导光管131。太阳光LL从导光管开口较大的一端射入,再从开口较小的一端射出,通过旋转转轴132的能够改变导光管的照射角度,从而改变第一受光面(热能存储装置)和第二受光面(光电转换装置)所获得的光能的比例。在其他实施方式中,根据具体的光路设计,光分配器可以具有各种不同的实现形式,只要其具有活动部件,能够改变其与第一受光面和第二受光面之间的光路参数即可。
作为一种优选的实施方式,本实施例中还包括一液体汽化装置140,其具有一第二容器141及容纳于第二容器中的能够被汽化的液体工质。液体工质可采用选自以下集合中的一种物质,或为包含选自以下集合中的至少一种物质的混合物:淡水、海水、酒精、乙醚、氟利昂。其中,可优选不容易冻结的冷却剂,从而使得装置具有更强的温度适应能力。
本实施例中,光伏板120至少部分地浸泡在液体工质中,或者至少有一面与液体工质接触,这使得光伏板的工作温度能够得到有效的控制,也有利于对太阳能更充分地利用。
进一步优选地,本实施例中还包括一活动的导热板142,其充当为液体汽化装置140与热能存储装置110之间的可控的热交换通道。导热板142中部由导热材料形成(其外侧可由隔热材料覆盖,未图示),两侧是由隔热材料形成的护板1421。第一容器112与第二容器141彼此接触的器壁采用隔热材料制成,因此二者之间没有直接的热量交换。第一容器112与第二容器141的面向导热板142的侧壁由导热材料制成。当导热板142的中部同时接触第一容器112和第二容器141的导热 的侧壁时,液体汽化装置140与热能存储装置110之间进行热量交换。当导热板142位置移动,其导热部分仅与一个容器的侧壁接触时,液体汽化装置140与热能存储装置110之间的热量交换被隔断。因此,可通过移动导热板来可控地打开或关闭两个容器之间的热交换通道。在其他实施方式中,也可采用其他器件来形成热交换通道,例如具有可控的阀门的管道等。
本实施例中,液体汽化装置与光电转换装置之间具有固定的热交换通道(光电转换装置设置在第二容器内),液体汽化装置与热能存储装置之间则具有可控的热交换通道(活动的导热板)。在其他实施方式中,液体汽化装置也可与热能存储装置和光电转换装置中的至少一者之间具有固定的或可控的热交换通道。
作为一种优选的实施方式,液体汽化装置140还可进一步通过管道与外部的节点设备连接以实现更为丰富的功能。本实施例中的节点设备包括汽轮发电机151和压缩机152。工作时,液体工质在第二容器141中被光伏板120产生的热能(或者还包括热能存储装置110存储的热能)加热汽化,产生的气体被输送到汽轮发电机151进行发电,发电后的工质无论是气态还是部分为液态均由压缩机152输送回第二容器141中,从而完成一个封闭的循环。本文中,工质在各种循环系统中经过的各个节点设备均可通过管道进行连通,并可设置相应的阀门(未图示)进行控制,不再赘述。在其他实施方式中,除了汽轮发电机以外还可采用其他汽轮动力装置来利用汽体的能量,或者,还可在工质的循环系统中接入其他节点设备,例如冷凝罐等。
本实施例中采用了封闭式的工质循环系统,因此可以长时间运行而不需要更换或补充液体工质。在其他实施方式中,也可采用开放式的工质循环系统,基于工质的不同种类可以实现不同的功能,例如为外界提供热水,或者实现海水淡化等功能。
在其他实施方式中,优选地,还可进一步包括聚光装置(未图示)。聚光装置设置在光分配器之前的光路上,入射到光分配器的太阳光LL可以是经过会聚后的太阳光,以下不再赘述。聚光装置使得对太阳光能的利用更加有效,其可采用单一的聚光器件,也可采用多种光学器件的组合。聚光装置可优选地包括透 射式的或反射式的菲涅尔透镜。反射式的透镜可通过在透射式的透镜的一个面上(或两个面之间)设置反射层或反射镀膜来形成。本文中所涉及的菲涅尔透镜的每个齿面既可以是仅包含一个菲涅尔单元的简单透镜面,也可以是由多个菲涅尔单元组成的复合透镜面。关于菲涅尔透镜的详细介绍可参见名称为“菲涅尔透镜系统”,公布日为2016年6月2日,国际公布号为WO/2016/082097的PCT申请,在此不再赘述。
在其他实施方式中,优选地,还可进一步设置一个或多个热电转换装置,具体可设置在任意一个或多个热交换通道上,用于利用流过的热量来发电,以实现更高的太阳能利用效率。例如,可以将热电转换装置设置在光伏板与液体工质接触的至少一个面上。热电转换装置具体可采用各种热电转换材料或半导体热电二极管等。
在其他实施方式中,优选地,还可进一步设置控制装置(未图示),用于连接至少一种设置在第一容器和第二容器中的探测器件,并根据探测器件采集的数据控制装置中其他器件的工作,例如控制光分配器的分配比例,控制可控的热交换通道的打开和关闭,控制循环系统中的阀门或节点设备的运行等。所使用的探测器件可选自:温度传感器、压力传感器。
实施例2
依据本发明的多功能太阳能装置的一种实施方式可参考图2,包括热能存储装置210,光伏板220,光分配器230,聚光装置260。
热能存储装置210具有设置有第一受光面211的第一容器212及容纳于第一容器中的储热工质。第一受光面由透光隔热材料形成。
本实施例中,第一容器212的侧壁由导热材料制成,热能存储装置210还具有由隔热材料制成的活动的外壁213。该外壁为底部封闭的套筒,能够沿第一容器的侧壁轴向移动以覆盖在侧壁上或将侧壁露出。当外壁213向下滑动,使得第一容器212的侧壁露出时,储热工质与外部空气进行热量交换,此时热能存储装置充当为冷却器。当外壁213向上滑动,封闭第一容器212的侧壁时,热能存储装置充当为保温装置。
第一容器212的侧壁上还设置有热电转换装置(未图示),以便于在热能存储 装置与外界进行热量交换(散热)时,利用散发的热量发电。
作为一种优选的实施方式,本实施例中还包括一可充电电池270,其与太阳能装置中的至少一个产生电能的装置(例如光伏板或热电转换装置)电连接,用于存储电能和对外供电。可充电电池270设置在第一容器212的导热的底壁与外壁213的底部之间,这使得电池270相对于外界基本是封闭的。因此,可通过热能存储装置来控制电池270的温度。例如,在寒冷地区,可以将电池270保持在不结冰的温度。因此,本实施例太阳能装置适用于作为在寒冷地区使用的独立供电的太阳能系统,例如路灯或野外电站。
本实施例中,可充电电池通过固定的热交换通道(即第一容器的导热的底壁)与热能存储装置导热连接。在其他实施方式中,可充电电池还可通过固定的或可控的热交换通道与太阳能装置中的其他产生或存储热能的装置(例如光电转换装置或液体汽化装置)导热连接。
光伏板220具有第二受光面221,第一受光面与第二受光面基本位于同一平面,且第二受光面环绕在第一受光面外围。本实施例中,光伏板的背面与热能存储装置210导热连接,以便于通过热能存储装置散热或保温。在其他实施方式中,优选地,可进一步在光伏板的背面与热能存储装置之间设置热电转换装置。
光分配器230采用一安装在升降轴232上的反射镜231,其反射面(下表面)朝向第一受光面和第二受光面,其通过上下移动来改变第一受光面和第二受光面所获得的光能的比例。优选地,可进一步在反射镜231的上表面设置光伏板(未图示)以充分利用从反射镜上方入射的太阳光。
聚光装置260包括反射镜261和透明罩262。反射镜261环绕在第二受光面的外围,透明罩262覆盖在整个光学结构外部。
反射镜231和261可以是普通的平面反射镜,也可以是反射式聚光透镜,例如宏观形状为平面的反射式聚光型菲涅尔透镜。透明罩262可以是由透明玻璃或塑料制成的简单的光滑罩体,也可以是宏观形状为弧面的透射式聚光型菲涅尔透镜。
太阳光LL经过透明罩262后被反射镜231反射到反射镜261上,再由反射镜261反射到第一受光面或第二受光面上。由于第一容器的封闭性,进入第一受光面的 光能将全部被转化为热能。在冬天,或者寒冷的地区,外壁213可移动至关闭的位置,使得热能存储器能够对电池和光伏板进行加热或保温,并且,在需要的情况下,光分配器可增加进入第一受光面的光线的比例以提高温度。在夏天,外壁213则可打开,并且光分配器可减少进入第一受光面的光线的比例,使得热能存储器用于对光伏板和电池进行散热。
因此本实施例太阳能装置能够通过控制光分配器和热能存储器的外壁的活动,使得光伏板和可充电电池工作于适宜的温度范围。
实施例3
依据本发明的多功能太阳能装置的一种实施方式可参考图3,包括热能存储装置310,光伏板320,光分配器330,液体汽化装置340。
本实施例太阳能装置还包括一封闭式的光腔380。所称“封闭式”是指该光腔对于入射的光线而言基本是封闭的,从光腔的入口射入的光线基本不会再被反射到光腔以外。光腔可以与聚光装置(未图示)联合使用,由聚光装置将会聚后的太阳光LL射入到光腔的入口中,光腔因此可采用较小尺寸的入口来实现封闭性。作为一种优选的实施方式,可进一步在光腔的入口处设置一光散射器件381,以避免从光腔入口射入的光线被反射到光腔外部。本实施例中的光散射器件具体是一锥形反射体,其表面具有反射镀膜,锥形的尖端朝向光腔外部。
热能存储装置310具有设置有第一受光面311的第一容器312及容纳于第一容器中的储热工质。第一受光面由透光隔热材料形成。本实施例中,第一受光面形成为光腔的一个侧壁。在其他实施方式中,第一受光面也可设置在光腔的一个侧壁上,成为侧壁的一部分。
光伏板320具有第二受光面321。第二受光面设置在光腔的另一个侧壁上,与第一受光面所在的侧壁不同。光腔380内表面的其他区域可以全部或至少部分为反射镜面,使得光线能够在光腔内多次反射直至全部被吸收利用,从而提高对太阳能的利用效率。
光分配器330设置在光腔380内部,具体采用一可移动的直角反射镜,其通过左右移动来改变第一受光面和第二受光面所获得的光能的比例。
液体汽化装置340具有一第二容器341及容纳于第二容器中的能够被汽化的液体 工质。第二容器341设置在光伏板320下方并与其导热连接。第二容器341还通过穿过第一容器的入口管道343和出口管道344,与第一容器中的储热工质进行热交换。
与实施例1中的封闭式的工质循环系统不同,本实施例中的工质循环系统是开放式的。液体汽化装置340通过入口管道343补充液体工质,并通过出口管道344将汽化后的工质输送到汽轮发电机351进行发电,发电后的工质随后在冷凝罐353中冷却为液体并被收集和存储在其中。
当采用海水作为本实施例太阳能装置的液体工质时,冷凝罐353中得到的将是淡水。因此,本实施例太阳能装置除了具有双重发电的功能以外,还可以同时实现海水淡化,得到几乎免费的淡水。此外,为便于清理液体汽化所产生的渣滓,可以在第二容器341的底部设置活动的开口345以进行清理操作。
实施例4
依据本发明的多功能太阳能装置的一种实施方式可参考图4,包括热能存储装置410,光伏板420,光分配器430,液体汽化装置440,可充电电池470,封闭式的光腔480。
与实施例3类似地,本实施例太阳能装置也包括封闭式的光腔480,热能存储装置410的第一容器412的第一受光面411形成为光腔的一个侧壁,光伏板420的第二受光面421则设置在光腔的另一个侧壁上,液体汽化装置440的第二容器441设置在光伏板420下方并与其导热连接,第二容器441通过穿过第一容器的入口管道443和出口管道444,与第一容器中的储热工质进行热交换。
与实施例3不同的是,光腔480的入口并未设置光散射器件,而是将光分配器430设置在入口下方。光分配器具体采用一安装在转轴432上的反射镜431,通过调整其旋转角度来改变第一受光面和第二受光面所获得的光能的比例。
并且,本实施例中的工质循环系统是封闭式的。液体汽化装置440通过出口管道444将汽化后的工质输送到汽轮发电机451进行发电,发电后的工质随后在冷凝罐453中冷却为液体,再由压缩机452通过入口管道443输送回第二容器441中,从而完成一个封闭的循环。
此外,本实施例太阳能装置还包括可充电电池470,其设置在光腔480的下方, 位于第二容器441下方且被第一容器412所环绕。不过电池470只与第二容器441接触并进行热交换。
作为一种优选的实施方式,本实施例中还包括一电加热器414,具体设置于热能存储装置410的第一容器412中。电加热器414与外部电源电连接,可通过加热热能存储装置中的储热工质来存储能量,并使得在温度过低的情况下,能够保持所需要的温度。电加热器具体可采用电阻丝或微波发生器。
本实施例太阳能装置适用于寒冷地区的电动汽车或混合动力汽车。
实施例5
依据本发明的多功能太阳能装置的一种实施方式可参考图5,包括热能存储装置510,光伏板520,光分配器530,液体汽化装置540,聚光装置560,可充电电池570。
本实施例的光学结构部分与实施例2类似,热能存储装置510的第一容器512的第一受光面511由透光隔热材料形成,光伏板520的第二受光面521环绕在第一受光面外围,光分配器530采用一可上下移动的反射镜531,其反射面(下表面)朝向第一受光面和第二受光面,其通过上下移动来改变第一受光面和第二受光面所获得的光能的比例,聚光装置560的反射镜561环绕在第二受光面的外围,透明罩562覆盖在整个光学结构外部。
与实施例2不同的是,本实施例中采用一中空的旋转电机(例如多面体超声电机)532来驱动反射镜531的上下移动,使得照射在电机532的中心部分的太阳光能够穿过该中空的部分到达第一受光面。
本实施例的热能利用部分与实施例2不同。液体汽化装置540的第二容器541设置在光伏板520下方并通过热电转换装置AA与光伏板520导热连接。简明起见,图5中省略了与第二容器相连的外部工质循环系统,在实际使用时,可根据需要为第二容器连接开放式的或封闭式的工质循环系统(例如图3或图4中示出的工质循环系统)以利用热能来发电。
热能存储装置510的第一容器512虽然设置在液体汽化装置540的第二容器541的内部,但是两个容器之间并没有直接接触式的热量交换。第二容器541通过穿过第一容器512的管道546与第一容器进行热量交换。
可充电电池570设置在反射镜561的下方且环绕在第二容器541的外围,但是电池570与第二容器541并不直接通过接触进行热量交换。第二容器541通过在电池570中延伸的管道547与电池570进行热量交换。
管道546和547的外壁均设置有热电转换装置AA,以利用热量交换的过程来发电。并且,管道546和547上均设置有阀门BB来控制热交换的进行,因此阀门BB也可称为热交换开关。
本实施例太阳能装置一方面能够通过光分配器来调整光能用于发电和热能存储的比例,另一方面还在所有主要的热交换通道上设置了热电转换装置。因此,不仅可以保证可充电电池在寒冷地区的正常工作,还能根据需要利用所存储的热能发电。例如,在夏天将多余的光能存储为热能,而在冬天则用存储的热能进行发电来补充光照时间短造成的电能短缺,从而能够在不增加可充电电池的容量和光伏板面积的情况下,提高太阳能装置在冬季的发电能力。此外,在冬天对电池进行保温还能有效提高电池的容量和寿命。
以上应用具体个例对本发明的原理及实施方式进行了阐述,应该理解,以上实施方式只是用于帮助理解本发明,而不应理解为对本发明的限制。对于本领域的一般技术人员,依据本发明的思想,可以对上述具体实施方式进行变化,例如,上述实施例中各模块之间的简单交换和实用性改进。

Claims (12)

  1. 一种多功能太阳能装置,其特征在于,包括
    一热能存储装置,其具有一设置有第一受光面的第一容器及容纳于第一容器中的储热工质,第一受光面由透光隔热材料形成,
    一光电转换装置,其具有第二受光面,其用于将第二受光面接收到的光能转换为电能,
    一光分配器,其设置于第一受光面与第二受光面之前的光路上,其具有活动部件,其用于调整入射的光线照射到第一受光面和第二受光面上的比例。
  2. 如权利要求1所述的太阳能装置,其特征在于,还包括
    一液体汽化装置,其具有一第二容器及容纳于第二容器中的能够被汽化的液体工质,其与所述热能存储装置和所述光电转换装置中的至少一者之间具有固定的或可控的热交换通道。
  3. 如权利要求2所述的太阳能电站,其特征在于,
    所述第二容器通过管道与外部的节点设备开路或闭路连接,从而形成为开放式或封闭式的工质循环系统,所述节点设备选自:汽轮发电装置、汽轮动力装置、压缩机、冷凝罐。
  4. 如权利要求2或3所述的太阳能装置,其特征在于,
    所述光电转换装置至少部分地浸泡在所述液体工质中,或者至少有一面与所述液体工质接触。
  5. 如权利要求2或3所述的太阳能装置,其特征在于,
    所述可控的热交换通道由以下器件中的至少一种形成:活动的导热板,具有可控的阀门的管道。
  6. 如权利要求2至5中任一项所述的太阳能装置,其特征在于,还包括
    一热电转换装置,设置在至少一个热交换通道上,用于利用流过的热量发电,所述热电转换装置选自:热电转换材料、半导体热电二极管。
  7. 如权利要求2至5中任一项所述的太阳能装置,其特征在于,
    所述储热工质为选自以下集合中的一种物质,或为包含选自以下集合中的至少一种物质的混合物:融盐、石蜡、水、液态或固态油脂、硅胶,
    所述液体工质为选自以下集合中的一种物质,或为包含选自以下集合中的至少一种物质的混合物:淡水、海水、酒精、乙醚、氟利昂。
  8. 如权利要求1至7中任一项所述的太阳能装置,其特征在于,还包括
    一聚光装置,设置在所述光分配器之前的光路上,用于会聚入射的太阳光,所述聚光装置包括透射式的或反射式的菲涅尔透镜。
  9. 如权利要求1至8中任一项所述的太阳能装置,其特征在于,还包括
    一可充电电池,其与所述太阳能装置中的至少一个产生电能的装置电连接,用于存储电能和对外供电,
    所述可充电电池通过固定的或可控的热交换通道与所述太阳能装置中的至少一个产生或存储热能的装置导热连接。
  10. 如权利要求1至9中任一项所述的太阳能装置,其特征在于,还包括
    一封闭式的光腔,所述光分配器设置在所述光腔内,第一受光面和第二受光面分别设置在所述光腔的不同的壁上。
  11. 如权利要求10所述的太阳能装置,其特征在于,还包括
    一光散射器件,设置在所述光腔的入口处,用于避免从所述光腔的入口射入的光线被反射到所述光腔外部。
  12. 如权利要求1至11中任一项所述的太阳能装置,其特征在于,还包括如下器件中的至少一种:
    一电加热器,与外部电源电连接,用于加热所述热能存储装置中的储热工质,
    一控制装置,用于连接至少一种设置在至少一个容器中的探测器件,并根据探测器件采集的数据控制所述光分配器的分配比例,所述探测器件选自:温度传感器、压力传感器。
PCT/CN2017/076411 2017-03-13 2017-03-13 多功能太阳能装置 WO2018165813A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/076411 WO2018165813A1 (zh) 2017-03-13 2017-03-13 多功能太阳能装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/076411 WO2018165813A1 (zh) 2017-03-13 2017-03-13 多功能太阳能装置

Publications (1)

Publication Number Publication Date
WO2018165813A1 true WO2018165813A1 (zh) 2018-09-20

Family

ID=63521794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076411 WO2018165813A1 (zh) 2017-03-13 2017-03-13 多功能太阳能装置

Country Status (1)

Country Link
WO (1) WO2018165813A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201113834Y (zh) * 2007-10-19 2008-09-10 杨东杰 太阳能发电机组
CN201142648Y (zh) * 2007-11-28 2008-10-29 叶明祥 太阳能发电与储热装置
US20090133733A1 (en) * 2007-11-27 2009-05-28 Retti Kahrl L Autonomous, modular power generation, storage and distribution apparatus, system and method thereof
CN101545604A (zh) * 2008-03-24 2009-09-30 昆山太得隆机械有限公司 太阳能光电互补光纤照明装置
CN101850741A (zh) * 2010-04-02 2010-10-06 刘盛里 太阳能移动生活车
CN101993166A (zh) * 2010-10-26 2011-03-30 江苏大学 一种太阳能热光伏海水淡化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201113834Y (zh) * 2007-10-19 2008-09-10 杨东杰 太阳能发电机组
US20090133733A1 (en) * 2007-11-27 2009-05-28 Retti Kahrl L Autonomous, modular power generation, storage and distribution apparatus, system and method thereof
CN201142648Y (zh) * 2007-11-28 2008-10-29 叶明祥 太阳能发电与储热装置
CN101545604A (zh) * 2008-03-24 2009-09-30 昆山太得隆机械有限公司 太阳能光电互补光纤照明装置
CN101850741A (zh) * 2010-04-02 2010-10-06 刘盛里 太阳能移动生活车
CN101993166A (zh) * 2010-10-26 2011-03-30 江苏大学 一种太阳能热光伏海水淡化装置

Similar Documents

Publication Publication Date Title
CA2998032C (en) Integrated solar energy utilization apparatus and system
CN101599722B (zh) 太阳能发电装置及方法
CA2992501A1 (en) Enclosed solar energy utilization device and system
CN108800605A (zh) 一种太阳能集热管及温差发电系统
RU2602708C2 (ru) Устройство генерации солнечной энергии и внешний паровой источник дополнительной электроэнергии
WO2018165813A1 (zh) 多功能太阳能装置
CN208779735U (zh) 一种基于定向传光的太阳能集热系统
CN103259461A (zh) 一种太阳能光热温差发电装置和方法
CN105390563B (zh) 光伏电池换热冷却器
CN214499328U (zh) 一种发电系统
CN105577032B (zh) 单元式太阳能全光谱利用的光电‑热电‑热水复合系统
CN109297205B (zh) 一种光伏光热耦合互补一体化利用系统
AU2017400886B2 (en) Energy storage type solar device
CA3045540C (en) Solar power station
CN205141000U (zh) 光伏电池换热冷却器
CN111023599A (zh) 一种以超临界二氧化碳为循环工质的光热发电系统
CN108981196A (zh) 一种基于定向传光的太阳能集热系统
CN114777341B (zh) 一种太阳能光热光电系统
CN111059007B (zh) 一种二次反射型聚光太阳能热利用系统
RU2199704C2 (ru) Гелиоэнергетическая установка
CN207229315U (zh) 一种斯特林太阳能发电及热水供应系统
CN115095495A (zh) 光伏光热系统
CN104792026B (zh) 太阳能热水器
CN114810522A (zh) 一种发电系统
CN115235128A (zh) 一种基于线性菲涅尔透镜的太阳能储热供热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900771

Country of ref document: EP

Kind code of ref document: A1