WO2018164118A1 - Paste composition, carbide sintered body, method for producing same, and refractory member - Google Patents

Paste composition, carbide sintered body, method for producing same, and refractory member Download PDF

Info

Publication number
WO2018164118A1
WO2018164118A1 PCT/JP2018/008563 JP2018008563W WO2018164118A1 WO 2018164118 A1 WO2018164118 A1 WO 2018164118A1 JP 2018008563 W JP2018008563 W JP 2018008563W WO 2018164118 A1 WO2018164118 A1 WO 2018164118A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbide
sintered body
paste composition
fluoride
carbide sintered
Prior art date
Application number
PCT/JP2018/008563
Other languages
French (fr)
Japanese (ja)
Inventor
一成 目黒
哲宗 黒村
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2019504600A priority Critical patent/JP6942788B2/en
Publication of WO2018164118A1 publication Critical patent/WO2018164118A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present invention relates to a paste composition. More specifically, the present invention relates to a paste composition containing a carbide having a melting point of 3000 ° C. or higher, a carbide sintered body, a manufacturing method thereof, and a refractory member.
  • SiC Silicon carbide
  • SiC silicon carbide
  • the raw material is supplied to a heat-resistant container (crucible) such as graphite and the raw material is heated from the outside of the container by means of high-frequency heating or the like, and SiC single crystal growth is performed at an ultrahigh temperature of about 2500 ° C. Done in the area.
  • a heat-resistant container such as graphite
  • SiC single crystal growth is performed at an ultrahigh temperature of about 2500 ° C. Done in the area.
  • SiC single crystal growth method as described above, sublimation gases such as Si 2 C and SiC 2 sublimated by high-temperature heating, SiH
  • the surface of the graphite container is exposed to a reactive gas derived from a source gas such as 4 . In the presence of such a reactive gas, the heat resistance of graphite is significantly reduced.
  • Patent Document 1 JP 2009-137789 A discloses that tantalum carbide powder is sintered under a high pressure of 20 MPa or higher under vacuum to sinter high-density tantalum carbide. It has been proposed to obtain a molded body consisting of a body.
  • Patent Document 2 discloses a paste in which an auxiliary powder made of transition metal or transition metal carbide is added to carbides such as niobium carbide, hafnium carbide, tantalum carbide, and tungsten carbide.
  • Patent Document 3 a ceramic layer obtained by sintering a mixture containing a metal nitride or metal carbide and a sintering aid such as yttrium oxide is provided on the surface of the carbon material.
  • a carbon material-ceramic material joined body obtained by joining the two has been proposed.
  • the tantalum carbide sintered body proposed in Patent Document 1 needs to be pressurized at the time of sintering, it is not easy to obtain a compact body having a complicated shape and a high density. It was difficult to form a tantalum carbide sintered film on the surface of the material.
  • the paste described in Patent Document 2 and the mixture described in Patent Document 3 contain a sintering aid, a small amount of auxiliary powder is contained in the sintered body when a carbide sintered body is obtained. It tends to remain.
  • the portion where the sintering aid remains in the sintered body is preferentially eroded by the reactive gas, From there, the reactive gas permeates the coating and erodes the graphite, which is the base material, which may deteriorate the high temperature durability of the container.
  • the reactive gas permeates the coating and erodes the graphite, which is the base material, which may deteriorate the high temperature durability of the container.
  • it is considered necessary to fire at a temperature (2500 ° C. or higher) higher than the heat resistance of the base graphite.
  • the object of the present invention is to sinter at a lower temperature than in the prior art, there is little residual amount of sintering aid in the sintered body, and the sintered carbide body has high density and high gas shielding properties. Is to provide a paste composition.
  • Another object of the present invention is to provide a carbide sintered body using the paste composition, a method for producing the same, and a refractory member.
  • the present inventors can sinter the sintered body even when sintered at a temperature lower than 2450 ° C. It was found that a carbide sintered body with a small amount of residual sintering auxiliary agent, a high density and a high gas shielding property can be obtained.
  • the following paste composition, the manufacturing method of the carbide sintered compact using the same, and a refractory member are provided.
  • the paste composition according to the present invention includes a carbide having a melting point of 3000 ° C. or higher, A fluoride of at least one element selected from Group 2 or Group 3 of the Periodic Table; Is included.
  • the carbide sintered body according to another aspect of the present invention is a carbide sintered body of the paste composition described above,
  • the area occupancy of the sintered body obtained from the electron microscope observation of the cross section of the carbide sintered body is D (%),
  • the carbide required condition index S expressed by the following is a sintered carbide body in which S ⁇ 0.69.
  • a fireproof member is a fireproof member comprising a base material and a coating covering at least a part of the surface of the base material,
  • the coating consists of a sintered carbide of the paste composition described above,
  • the carbide sintered body is:
  • the area occupancy of the carbide sintered body obtained from the electron microscope observation of the cross section of the carbide sintered body is D (%),
  • I metal element content other than the carbide obtained by energy dispersive X-ray spectroscopy in the cross section
  • the pure carbide requirement index S expressed by the following is S ⁇ 0.69.
  • the fireproof member according to another aspect of the present invention is a fireproof member formed by bonding the first base material and the second base material via a connecting material
  • the connecting material comprises a carbide sintered body of the paste composition described above,
  • the carbide sintered body is:
  • the area occupancy of the carbide sintered body obtained from the electron microscope observation of the cross section of the carbide sintered body is D (%),
  • I (mol%) the metal element content other than the carbide obtained by energy dispersive X-ray spectroscopy in the cross section
  • I mol%
  • S D ⁇ (1 ⁇ I / 0.6)
  • the pure carbide requirement index S expressed by the following is S ⁇ 0.69.
  • a paste composition in which a specific fluoride is added as a sintering aid to a carbide having a high melting point that is difficult to sinter It is possible to realize a paste composition in which a sintered sintering agent remaining amount in the bonded body is small, and a carbide sintered body having a high density and a high gas shielding property can be obtained.
  • the electron microscope observation photograph of the section of the carbide sintered compact obtained using paste composition 4 of an example The analysis image binarized from the electron microscopic observation photograph of FIG. 1 with the closed region occupied by the pore portion as a black portion and the other as a white portion.
  • the paste composition according to the present invention contains a carbide having a melting point of 3000 ° C. or higher and a fluoride of at least one element selected from Group 2 or Group 3 of the periodic table as essential components. Even when the paste composition according to the present invention is sintered at a temperature lower than that of the prior art, a carbide sintering body having a high density and a high gas shielding property is obtained with a small amount of residual sintering aid in the sintered body. can get. The reason for this is not clear, but is considered as follows. That is, a carbide having a high melting point has low sinterability, and a high-density sintered body cannot be obtained unless a sintering aid is used in combination.
  • the sintering aid one having a melting point lower than the sintering temperature is selected. That is, when the sintering aid melts during sintering, the carbides are easily sintered and a high-density sintered body is obtained. However, usually a small amount of sintering aid remains in the sintered body.
  • a fluoride of an element selected from Group 2 or Group 3 of the periodic table for example, calcium fluoride
  • the sintering aid is melted at the initial stage of sintering.
  • the fluoride is sublimated or vaporized as the sintering proceeds, so that the remaining amount of the sintering aid in the obtained sintered body is considered to be reduced.
  • the carbide used in the present invention is not particularly limited as long as it has a melting point (Tm) of 3000 ° C. or higher, but a known carbide can be suitably used as a metal carbide having a high melting point.
  • a known carbide can be suitably used as a metal carbide having a high melting point.
  • tantalum carbide is preferable from the viewpoint of heat resistance, but two or more kinds may be mixed.
  • the metal carbide as described above can be obtained by a known method.
  • a metal oxide titanium, zirconia, hafnium, niobium, tantalum, tungsten, etc.
  • carbon are mixed, and the mixture is subjected to a hydrogen reduction atmosphere.
  • Metal carbide can be obtained by heating at Alternatively, a metal carbide is obtained by heat-treating, in a non-oxygen atmosphere, a mixed solution in which an organic substance having a functional group capable of coordinating to the metal (for example, OH group or COOH group) is added as a carbon source to a metal alkoxide. Also good.
  • the carbide used in the paste composition according to the present invention is preferably in the form of particles. This is because it is necessary to uniformly disperse the carbide in the paste composition.
  • the average particle size of the carbide is preferably in the range of 0.05 to 20.0 ⁇ m, more preferably in the range of 0.1 to 10.0 ⁇ m. By using carbide particles having an average particle diameter in such a range, the carbide can be uniformly dispersed in the paste composition, and when the paste composition is sintered, a higher-density carbide firing is performed. A ligation can be obtained.
  • the average particle diameter is an average particle diameter (Fischer diameter) measured by an air permeation method using a Fisher sub-sieve sizer model 49 average particle size measuring device manufactured by Fischer, USA.
  • a carbide for example, TaC
  • the average particle diameter of the carbide can be appropriately adjusted depending on the average particle diameter of the raw material (metal oxide) and the pulverization conditions when the obtained carbide is pulverized (pulverized).
  • the particle size of the material to be pulverized is large, and when the pulverization time is long, the particle size tends to be small and the particle size distribution tends to be narrow.
  • the paste composition according to the present invention includes fluoride of at least one element selected from Group 2 or Group 3 of the periodic table in addition to the above-described carbide.
  • Fluoride functions as a sintering aid when sintering carbide. That is, the sintering aid is melted at a temperature equal to or lower than the starting temperature when sintering the carbide (about 1400 ° C.), and the sintered body can be densified when the carbide is sintered.
  • this fluoride as described above has a relatively low boiling point and sublimates or vaporizes at the carbide sintering temperature (2200 to 2600 ° C.), so that the amount of fluoride remaining after sintering can be kept low. . It is considered that a carbide sintered body having a high density and a high gas shielding property can be obtained by using such a fluoride as a sintering aid for the carbide sintered body.
  • the fluoride include beryllium fluoride, magnesium fluoride, calcium fluoride, barium fluoride, lanthanum fluoride, and cerium fluoride.
  • magnesium fluoride and calcium fluoride are used because the carbide can be sufficiently connected by melting of the sintering aid before the carbide is solidified and sintered by sublimation or vaporization of the sintering aid.
  • Barium fluoride, lanthanum fluoride, and cerium fluoride are preferred.
  • calcium fluoride can be preferably used from the viewpoint of obtaining a high-density, high-gas-shielding carbide sintered body.
  • Calcium fluoride has a melting point of about 1400 ° C. and a boiling point of about 2500 ° C.
  • the above-mentioned fluoride is also preferably in a particulate form from the viewpoint of being uniformly dispersed in the paste composition. It is preferable to use a fluoride having an average particle size in the range of 0.1 to 10.0 ⁇ m, and more preferably in the range of 0.5 to 5.0 ⁇ m. The definition of the average particle diameter is the same as described above.
  • the fluoride content in the paste composition is preferably in a ratio of 0.5 to 7 mol with respect to 100 mol of carbide.
  • the paste composition according to the present invention may contain a binder resin in addition to the above-described carbide and fluoride.
  • a binder resin By adding a binder resin, the viscosity adjustment of the paste composition is facilitated and the coating properties and handling properties are improved, so that the moldability when sintering the paste composition to form a carbide sintered body is improved. Can do.
  • the binder resin is not particularly limited as long as the above effects can be obtained.
  • polyvinyl alcohol resin, acrylic resin, polyvinyl butyral resin, methyl cellulose resin, ethyl cellulose resin, acetyl cellulose resin, phenol Resin, urea resin, melamine resin, etc. are mentioned. Two or more of these binder resins may be mixed and used.
  • a particularly preferred binder resin is a polyvinyl butyral resin.
  • the binder resin content in the paste composition affects the viscosity of the paste composition, it is used for the paste composition, that is, for coating the substrates, or for bonding the substrates.
  • the range of 0.1 to 2.0 parts by mass with respect to 100 parts by mass of carbide is preferable.
  • the paste composition according to the present invention may contain an additive for improving the dispersibility of carbides and fluorides in addition to the binder resin.
  • an additive for improving the dispersibility of carbides and fluorides for example, a polyethyleneimine polymer dispersant, a polyurethane polymer dispersant, a polyallylamine polymer dispersant and the like can be suitably used.
  • the content of the additive is preferably in the range of 0.03 to 0.20 parts by mass with respect to 100 parts by mass of carbide.
  • the paste composition may contain a solvent in addition to the binder resin and additives.
  • the solvent include organic solvents such as ethanol, benzyl alcohol, toluene, dimethylacetamide, and methyl ethyl ketone, and these can be used alone or in combination. Since the solvent content affects the viscosity of the paste composition, it can be appropriately adjusted according to the use of the paste composition, but is generally 5.0 to 30.0 parts by mass with respect to 100 parts by mass of the carbide. The range of is preferable.
  • the carbide sintered body according to the present invention can be obtained by sintering the paste composition described above.
  • the paste composition is poured into a container having a desired shape.
  • the paste composition is dried to remove the solvent. Drying of the paste composition may be natural drying, or may be hot air drying or vacuum drying to shorten the drying time.
  • the temperature at which hot air drying is performed is generally 50 to 150 ° C., although it depends on the type of solvent used. When drying in a heated atmosphere, it is preferably performed in an inert atmosphere to prevent oxidation of the paste composition.
  • the molded body (paste composition) from which the solvent has been removed is sintered to obtain a carbide sintered body.
  • Sintering is performed at a temperature of 2200 to 2600 ° C., preferably at a temperature of 2350 to 2450 ° C.
  • the fluoride in the paste composition is melted below the temperature at the start of sintering (about 1400 ° C.) and the carbide is sintered, the sintered body is densified and the fluoride at the above sintering temperature. Is vaporized or sublimated, so that a sintered carbide with high density and high gas shielding properties can be obtained.
  • the area occupancy D (%) refers to an arbitrary observation region of 15 ⁇ m ⁇ 25 ⁇ m in a cross section of a carbide sintered body, a sintered body portion (matrix region) and a pore portion (non-matrix). It is defined as an area ratio (%) of the sintered body portion. Specifically, in the cross-sectional image of the carbide sintered body, when the closed region occupied by the pore portion is a blackened portion and the other is whitened, the total area of the whitened portion is the observation region. The area occupancy D (%) can be obtained as a ratio of the area.
  • the metal element content I is a mapping of the observation region by energy dispersive X-ray spectroscopic analysis, and the metal elements (for example, titanium, zirconia, It is defined as a ratio (mol%) of a metal element (for example, calcium derived from calcium fluoride) other than metal elements such as hafnium, niobium, tantalum, and tungsten.
  • Typical observation conditions for an electron micrograph are, for example, an acceleration voltage of 15 kV, a movable aperture diameter of 30 ⁇ m, and an emission current of 260 ⁇ A.
  • the value of the pure carbide necessary condition index S of the carbide sintered body is less than 0.69, a carbide sintered body having high density and high gas shielding properties cannot be realized.
  • a preferable range of the pure carbide requirement index S is 0.70 ⁇ S ⁇ 0.90.
  • the carbide sintered body according to the present invention is formed from a carbide sintered body having a desired shape by forming the paste composition into a desired shape as described above and sintering the paste composition.
  • a fireproof member provided as a coating on the surface of a base material made of graphite or the like as described below, or used as a connecting material for joining the base materials together.
  • a coating film is not restricted to application
  • the coating film is sintered at a temperature of 2200 to 2600 ° C. In this way, when the fluoride in the paste composition melts and the carbide is sintered, the sintered body is densified, and the fluoride is vaporized or sublimated by sintering, so it has excellent high temperature durability.
  • a refractory member having a coating made of a carbide sintered body having a high density and a high gas shielding property can be produced.
  • the thickness of the coating made of a carbide sintered body is preferably 30 to 500 ⁇ m, although it depends on the use of the refractory member. If the film thickness is too thin, the fire resistance and high-temperature durability may be insufficient. On the other hand, if the film thickness is too thick, the film may crack or peel due to the difference in thermal expansion coefficient with the substrate. is there.
  • a carbide sintered body that has a thermal expansion coefficient close to that of the base material, or use a base material close to the thermal expansion coefficient of the carbide sintered body. Is preferably used.
  • base materials made of graphite, boron nitride, or the like may be bonded together via a connecting material made of the carbide sintered body of the present invention.
  • a connecting material made of the carbide sintered body of the present invention For example, preparing a plurality of base materials on a flat plate, applying the paste composition described above to the end portions of the flat plate base material, joining the end portions of the substrate to form a container, etc., and then sintering.
  • Sintering is performed at a temperature of 2200 to 2600 ° C. as described above.
  • the thickness of the connecting material is preferably 30 to 500 ⁇ m for the reason described above.
  • Tantalum carbide (Mitsui Metal Mining Co., Ltd., purity 99.5%) having an average particle size of 0.5 to 1.5 ⁇ m was used as a carbide having a melting point of 3000 ° C. or higher.
  • average particle diameter was measured using calcium fluoride (manufactured by Hakuho Chemical Laboratory Co., Ltd.) having an average particle diameter of 10.0 to 15.0 ⁇ m, ethanol as a solvent, and zirconia balls having a diameter of 10 mm. Calcium fluoride ground to a diameter of 1.5 ⁇ m was used.
  • vinyl butyral resin manufactured by Sekisui Chemical Co., Ltd.
  • polyethyleneimine manufactured by Wako Pure Chemical Industries, Ltd.
  • ethanol was used as a solvent. It mix
  • a resin binder is 0.5 mass part with respect to 100 mass parts of carbides
  • an additive is 0.1 mass part.
  • paste compositions 1 to 4 each component was mixed so that the ratio of the solvent was 8.5 parts by mass, and mixed with a hybrid mixer (ARE-310, manufactured by Shinky Co., Ltd.) for 120 seconds to prepare paste compositions 1 to 4. Further, paste composition 5 was prepared in the same manner as paste composition 2 except that 2 mol% of cobalt was added instead of calcium fluoride. Furthermore, paste composition 6 was prepared in the same manner as paste composition 1 except that calcium fluoride was not added.
  • ARE-310 manufactured by Shinky Co., Ltd.
  • An isotropic graphite substrate (manufactured by Shin Nippon Techno Carbon Co., Ltd.) was prepared as a base material.
  • the paste composition obtained as described above was brushed on the surface of the substrate to form a coating film.
  • the coating amount was adjusted so that the coating thickness after drying was 120 ⁇ m.
  • the coating film was dried at a temperature of 50 ° C. to remove the solvent, and then sintered at a temperature of 2400 ° C. in an argon atmosphere to form a carbide sintered body coating on the graphite substrate.
  • the film thickness was 100 ⁇ m.
  • the analysis image binarized by making the closed region which a pore part occupies into a black coating part, and making other than a white coating part is shown in FIG.
  • the area occupation ratio D (%) that is, the ratio of the total area of the white areas other than the pores to the area of the entire observation area of 15 ⁇ m ⁇ 25 ⁇ m was obtained.
  • the carbide sintered bodies (Examples 1 to 4) obtained using the paste compositions 1 to 4 containing fluoride each have an area occupancy ratio D of 70%.
  • the sintered body has a high density and a high theoretical density.
  • the carbide sintered compact (comparative example 1) obtained using the paste composition 5 which uses cobalt as a sintering auxiliary agent is a very high-density sintered compact.
  • the carbide sintered body (Comparative Example 2) obtained using the paste composition 6 containing no sintering aid has an area occupation ratio D of less than 70% and is not a high-density sintered body. Recognize.
  • Example 4 in which the compounding amount of fluoride is contained as much as 6 mol% with respect to the carbide. Even in this case, it can be seen that almost no fluoride remains in the sintered carbide body (the metal element content is less than the detection limit).
  • the carbide sintered body of Comparative Example 1 uses cobalt (Co) as a sintering aid, although it is a very high density sintered body, Co remains in the sintered body. I understand that.
  • the carbide sintered bodies of Examples 1 to 4 had an S value of 0.69 or more, whereas the carbide sintered body of Comparative Example 1 had an S value much lower than these, -0.21. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)

Abstract

[Problem] To provide a paste composition which enables the achievement of a carbide sintered body that has high density and high gas shielding performance, while containing less residual sintering assistant in the sintered body even in cases where sintering is carried out at lower temperatures than ever before. [Solution] A paste composition which contains a carbide that has a melting point of 3,000°C or higher and a fluoride of at least one element that is selected from among elements in group 2 or group 3 of the periodic table.

Description

ペースト組成物、炭化物焼結体およびその製造方法、並びに耐火部材Paste composition, carbide sintered body, method for producing the same, and refractory member
 本発明はペースト組成物に関する。より詳細には、融点が3000℃以上の炭化物を含むペースト組成物、炭化物焼結体およびその製造方法、並びに耐火部材に関する。 The present invention relates to a paste composition. More specifically, the present invention relates to a paste composition containing a carbide having a melting point of 3000 ° C. or higher, a carbide sintered body, a manufacturing method thereof, and a refractory member.
 炭化ケイ素(SiC)半導体は、シリコン(Si)半導体と比較して耐熱性が高いだけでなく、広いバンドギャップを有し絶縁破壊電界強度が大きいという特徴があることから、低電力損失パワーデバイス用の半導体材料として注目されている。SiCは常圧下では融解せず2000℃程度の温度で昇華するため、Si単結晶体の製造に使用されているCZ法やFZ法を採用することができない。そのため、SiC単結晶体の量産化にあたっては、主に改良レーリー法等の昇華法が採用されている。また、近年、SiC単結晶ウエハの大口径化の要請があることや、低欠陥、高品質のSiC単結晶体を効率的に得るための方法が模索されており、昇華法以外の製造方法(溶液法、ガス成長法等)が注目されている。 Silicon carbide (SiC) semiconductors not only have high heat resistance compared to silicon (Si) semiconductors, but also have a wide band gap and a high dielectric breakdown electric field strength. It is attracting attention as a semiconductor material. Since SiC does not melt under normal pressure and sublimes at a temperature of about 2000 ° C., the CZ method and FZ method used for the production of Si single crystal cannot be employed. For this reason, sublimation methods such as an improved Rayleigh method are mainly employed in mass production of SiC single crystals. In recent years, there has been a demand for a large-diameter SiC single crystal wafer, and a method for efficiently obtaining a low-defect, high-quality SiC single crystal has been sought. Manufacturing methods other than the sublimation method ( A solution method, a gas growth method, etc.) are attracting attention.
 上記した方法はいずれも黒鉛等の耐熱性容器(坩堝)に原料を供給し、容器外部から高周波加熱等の手段によって原料を加熱するものであり、SiC単結晶成長は、2500℃程度の超高温領域で行われる。黒鉛は2500℃以上の耐熱性を有する材料であることが知られているものの、上記したようなSiC単結晶成長法では、高温加熱により昇華したSiCやSiC等の昇華ガスや、SiH等の原料ガスに由来する反応性ガスに黒鉛容器表面が曝される。このような反応性ガスの存在下では黒鉛の耐熱性は著しく低下する。そのため、黒鉛容器に替えて黒鉛よりも非常に融点の高い金属炭化物からなる容器を使用することも考えられが、炭化タンタルや炭化ハフニウム等の金属炭化物は高価であるとともに、難加工性材料でもある。そこで、黒鉛等の基材の表面に炭化物焼結体を被覆することが考えられる。被覆方法としては、基材表面に高融点の金属を蒸着等により被覆した後に該金属を炭化することが考えられるが、表層の金属を炭化させる際の体積膨張により炭化物被膜にクラックが生じたり、炭化物被膜が基材から剥離し易くなるといった問題がある。 In any of the above methods, the raw material is supplied to a heat-resistant container (crucible) such as graphite and the raw material is heated from the outside of the container by means of high-frequency heating or the like, and SiC single crystal growth is performed at an ultrahigh temperature of about 2500 ° C. Done in the area. Although graphite is known to be a material having heat resistance of 2500 ° C. or higher, in the SiC single crystal growth method as described above, sublimation gases such as Si 2 C and SiC 2 sublimated by high-temperature heating, SiH The surface of the graphite container is exposed to a reactive gas derived from a source gas such as 4 . In the presence of such a reactive gas, the heat resistance of graphite is significantly reduced. Therefore, it is conceivable to use a container made of a metal carbide having a melting point much higher than that of graphite instead of the graphite container. However, metal carbides such as tantalum carbide and hafnium carbide are expensive and difficult to process. . Therefore, it is conceivable to coat the surface of a substrate such as graphite with a carbide sintered body. As a coating method, it is conceivable to carbonize the metal after coating the surface of the substrate with a high melting point metal by vapor deposition, etc., but cracking occurs in the carbide coating due to volume expansion when carbonizing the surface layer metal, There is a problem that the carbide coating is easily peeled off from the substrate.
 上記のような問題に対して、例えば特開2009-137789号公報(特許文献1)には、炭化タンタル粉末を真空下、20MPa以上の高圧下で焼結して、高密度の炭化タンタル焼結体からなる成形体を得ることが提案されている。また、特開2010-248060号公報(特許文献2)は、炭化ニオブ、炭化ハフニウム、炭化タンタル、炭化タングステン等の炭化物に、遷移金属または遷移金属炭化物からなる助剤粉末を添加したペーストを開示しており、このペーストを用いて所望の形状に成形しておき、それを焼結して炭化物焼結体からなる耐高温部材を得ることが提案されている。さらに、国際公開2013/172286号パンフレット(特許文献3)には、金属窒化物や金属炭化物と酸化イットリウム等の焼結助剤とを含む混合物を焼結させたセラミックス層を炭素材の表面に設けて両者を接合させた炭素材-セラミックス材接合体が提案されている。 In order to solve the above problems, for example, JP 2009-137789 A (Patent Document 1) discloses that tantalum carbide powder is sintered under a high pressure of 20 MPa or higher under vacuum to sinter high-density tantalum carbide. It has been proposed to obtain a molded body consisting of a body. Japanese Patent Application Laid-Open No. 2010-248060 (Patent Document 2) discloses a paste in which an auxiliary powder made of transition metal or transition metal carbide is added to carbides such as niobium carbide, hafnium carbide, tantalum carbide, and tungsten carbide. It has been proposed to obtain a high temperature resistant member made of a carbide sintered body by molding the paste into a desired shape and sintering it. Furthermore, in the pamphlet of International Publication No. 2013/172286 (Patent Document 3), a ceramic layer obtained by sintering a mixture containing a metal nitride or metal carbide and a sintering aid such as yttrium oxide is provided on the surface of the carbon material. A carbon material-ceramic material joined body obtained by joining the two has been proposed.
特開2009-137789号公報JP 2009-137789 A 特開2010-248060号公報JP 2010-248060 A 国際公開2013/172286号パンフレットInternational Publication 2013/172286 Pamphlet
 特許文献1に提案されている炭化タンタル焼結体は、焼結時に加圧する必要があるため、複雑な形状で且つ高密度の成形体を得ることが容易ではなく、特に、黒鉛坩堝等の基材の表面に炭化タンタル焼結体の被膜を形成することが困難であった。また、特許文献2に記載されているペーストや特許文献3に記載の混合物は焼結助剤を含んでいるため、炭化物焼結体を得た場合に焼結体中に微量の助剤粉末が残存しやすい。このため、得られた炭化物焼結体を上記したようなSiC単結晶成長用の容器として用いると、焼結体中に焼結助剤が残存した箇所が優先的に反応性ガスに侵食され、そこから反応性ガスが被膜を透過して基材である黒鉛を侵食するため、容器の高温耐久性が悪化する可能性がある。助剤粉末の残分を完全に除去するためには、基材の黒鉛の耐熱性よりも高い温度(2500℃以上)で焼成する必要があると考えられる。 Since the tantalum carbide sintered body proposed in Patent Document 1 needs to be pressurized at the time of sintering, it is not easy to obtain a compact body having a complicated shape and a high density. It was difficult to form a tantalum carbide sintered film on the surface of the material. In addition, since the paste described in Patent Document 2 and the mixture described in Patent Document 3 contain a sintering aid, a small amount of auxiliary powder is contained in the sintered body when a carbide sintered body is obtained. It tends to remain. For this reason, when the obtained carbide sintered body is used as a container for SiC single crystal growth as described above, the portion where the sintering aid remains in the sintered body is preferentially eroded by the reactive gas, From there, the reactive gas permeates the coating and erodes the graphite, which is the base material, which may deteriorate the high temperature durability of the container. In order to completely remove the residue of the auxiliary powder, it is considered necessary to fire at a temperature (2500 ° C. or higher) higher than the heat resistance of the base graphite.
 したがって、本発明の目的は、従来より低い温度で焼結した場合であっても、焼結体中の焼結助剤残存量が少なく、且つ、高密度でガス遮蔽性の高い炭化物焼結体が得られるペースト組成物を提供することである。 Therefore, even if the object of the present invention is to sinter at a lower temperature than in the prior art, there is little residual amount of sintering aid in the sintered body, and the sintered carbide body has high density and high gas shielding properties. Is to provide a paste composition.
 また、本発明の別の目的は、上記ペースト組成物を用いた炭化物焼結体およびその製造方法、並びに耐火部材を提供することである。 Another object of the present invention is to provide a carbide sintered body using the paste composition, a method for producing the same, and a refractory member.
 本発明者らは、融点が高く焼結しにくい炭化物に特定のフッ化物を焼結助剤として添加することにより、2450℃以下の従来より低温で焼結した場合であっても、焼結体中の焼結助剤残存量が少なく、且つ、高密度でガス遮蔽性の高い炭化物焼結体が得られるとの知見を得た。本発明によれば、以下のペースト組成物、それを用いた炭化物焼結体の製造方法、並びに耐火部材が提供される。 By adding a specific fluoride as a sintering aid to a carbide having a high melting point and difficult to sinter, the present inventors can sinter the sintered body even when sintered at a temperature lower than 2450 ° C. It was found that a carbide sintered body with a small amount of residual sintering auxiliary agent, a high density and a high gas shielding property can be obtained. According to this invention, the following paste composition, the manufacturing method of the carbide sintered compact using the same, and a refractory member are provided.
 本発明によるペースト組成物は、融点が3000℃以上である炭化物と、
 周期律表の第2族または第3族から選択される少なくとも1種の元素のフッ化物と、
を含んでなるものである。
The paste composition according to the present invention includes a carbide having a melting point of 3000 ° C. or higher,
A fluoride of at least one element selected from Group 2 or Group 3 of the Periodic Table;
Is included.
 また、本発明の別の態様による炭化物焼結体は、上記したペースト組成物の炭化物焼結体であって、
 該炭化物焼結体の断面の電子顕微鏡観察から得られる焼結体の面積占有率をD(%)とし、
 前記断面におけるエネルギー分散型X線分光分析により得られる、前記炭化物以外の金属元素含有率をI(mol%)とした場合に、下記式:
  S=D×(1-I/0.6)
で表される純炭化物必要条件指数Sが、S≧0.69である炭化物焼結体である。
Moreover, the carbide sintered body according to another aspect of the present invention is a carbide sintered body of the paste composition described above,
The area occupancy of the sintered body obtained from the electron microscope observation of the cross section of the carbide sintered body is D (%),
When the metal element content other than the carbide obtained by energy dispersive X-ray spectroscopy in the cross section is I (mol%), the following formula:
S = D × (1−I / 0.6)
The carbide required condition index S expressed by the following is a sintered carbide body in which S ≧ 0.69.
 また、本発明の別の態様による耐火部材は、基材と、前記基材の表面の少なくとも一部を覆う被膜と、を備えた耐火部材であって、
 前記被膜が、上記したペースト組成物の炭化物焼結体からなり、
 前記炭化物焼結体は、
 該炭化物焼結体の断面の電子顕微鏡観察から得られる炭化物焼結体の面積占有率をD(%)とし、
 前記断面におけるエネルギー分散型X線分光分析により得られる、前記炭化物以外の金属元素含有率をI(mol%)とした場合に、下記式:
  S=D×(1-I/0.6)
で表される純炭化物必要条件指数Sが、S≧0.69である。
Further, a fireproof member according to another aspect of the present invention is a fireproof member comprising a base material and a coating covering at least a part of the surface of the base material,
The coating consists of a sintered carbide of the paste composition described above,
The carbide sintered body is:
The area occupancy of the carbide sintered body obtained from the electron microscope observation of the cross section of the carbide sintered body is D (%),
When the metal element content other than the carbide obtained by energy dispersive X-ray spectroscopy in the cross section is I (mol%), the following formula:
S = D × (1−I / 0.6)
The pure carbide requirement index S expressed by the following is S ≧ 0.69.
 また、本発明の別の態様による耐火部材は、第1の基材と第2の基材とが、連結材を介して結合してなる耐火部材であって、
 前記連結材が、上記したペースト組成物の炭化物焼結体からなり、
 前記炭化物焼結体は、
 該炭化物焼結体の断面の電子顕微鏡観察から得られる炭化物焼結体の面積占有率をD(%)とし、
 前記断面におけるエネルギー分散型X線分光分析により得られる、前記炭化物以外の金属元素含有率をI(mol%)とした場合に、下記式:
  S=D×(1-I/0.6)
で表される純炭化物必要条件指数Sが、S≧0.69である。
Moreover, the fireproof member according to another aspect of the present invention is a fireproof member formed by bonding the first base material and the second base material via a connecting material,
The connecting material comprises a carbide sintered body of the paste composition described above,
The carbide sintered body is:
The area occupancy of the carbide sintered body obtained from the electron microscope observation of the cross section of the carbide sintered body is D (%),
When the metal element content other than the carbide obtained by energy dispersive X-ray spectroscopy in the cross section is I (mol%), the following formula:
S = D × (1−I / 0.6)
The pure carbide requirement index S expressed by the following is S ≧ 0.69.
 本発明によれば、融点が高く焼結しにくい炭化物に特定のフッ化物を焼結助剤として添加したペースト組成物とすることにより、従来より低い温度で焼結した場合であっても、焼結体中の焼結助剤残存量が少なく、高密度で且つガス遮蔽性の高い炭化物焼結体が得られるペースト組成物を実現することができる。 According to the present invention, by using a paste composition in which a specific fluoride is added as a sintering aid to a carbide having a high melting point that is difficult to sinter, It is possible to realize a paste composition in which a sintered sintering agent remaining amount in the bonded body is small, and a carbide sintered body having a high density and a high gas shielding property can be obtained.
実施例のペースト組成物4を用いて得られた炭化物焼結体の断面の電子顕微鏡観察写真。The electron microscope observation photograph of the section of the carbide sintered compact obtained using paste composition 4 of an example. 図1の電子顕微鏡観察写真から、気孔部分が占める閉鎖領域を黒塗り部とし、それ以外を白塗り部として2値化した解析画像。The analysis image binarized from the electron microscopic observation photograph of FIG. 1 with the closed region occupied by the pore portion as a black portion and the other as a white portion.
<ペースト組成物>
 本発明によるペースト組成物は、融点が3000℃以上である炭化物と、周期律表の第2族または第3族から選択される少なくとも1種の元素のフッ化物とを必須成分として含む。本発明によるペースト組成物は、従来より低い温度で焼結した場合であっても、焼結体中の焼結助剤残存量が少なく、且つ高密度でガス遮蔽性の高い炭化物焼結体が得られる。この理由は定かではないが以下のように考えられる。即ち、融点が高い炭化物は焼結性が低く、焼結助剤を併用しないと高密度の焼結体を得ることができない。焼結助剤としては、その融点が焼結温度よりも低いものが選ばれる。即ち、焼結時に焼結助剤が融解することにより、炭化物どうしが焼結し易くなり高密度の焼結体が得られる。しかしながら、通常、焼結体中には少量の焼結助剤が残存する。本発明においては、周期律表の第2族または第3族から選択される元素のフッ化物(例えば、フッ化カルシウム等)を用いることにより、焼結時の初期に焼結助剤が融解して炭化物の焼結性を高めるとともに、焼結が進むにつれてフッ化物が昇華ないし気化してしまうため、得られた焼結体中の焼結助剤の残存量が少なくなるものと考えられる。
<Paste composition>
The paste composition according to the present invention contains a carbide having a melting point of 3000 ° C. or higher and a fluoride of at least one element selected from Group 2 or Group 3 of the periodic table as essential components. Even when the paste composition according to the present invention is sintered at a temperature lower than that of the prior art, a carbide sintering body having a high density and a high gas shielding property is obtained with a small amount of residual sintering aid in the sintered body. can get. The reason for this is not clear, but is considered as follows. That is, a carbide having a high melting point has low sinterability, and a high-density sintered body cannot be obtained unless a sintering aid is used in combination. As the sintering aid, one having a melting point lower than the sintering temperature is selected. That is, when the sintering aid melts during sintering, the carbides are easily sintered and a high-density sintered body is obtained. However, usually a small amount of sintering aid remains in the sintered body. In the present invention, by using a fluoride of an element selected from Group 2 or Group 3 of the periodic table (for example, calcium fluoride), the sintering aid is melted at the initial stage of sintering. Thus, the sinterability of the carbide is enhanced, and the fluoride is sublimated or vaporized as the sintering proceeds, so that the remaining amount of the sintering aid in the obtained sintered body is considered to be reduced.
 本発明において用いられる炭化物は、3000℃以上の融点(Tm)を有するものであれば特に限定されるものではないが、高融点を有する金属炭化物として公知の炭化物を好適に使用できる。例えば、炭化チタン(Tm=3530℃)、炭化ジルコニア(Tm=3803℃)、炭化ハフニウム(Tm=3887℃)、炭化ニオブ(Tm=3800℃)、炭化タンタル(Tm=3880℃)、炭化タングステン(Tm=3058℃)等が挙げられる。これらのなかでも、耐熱性の観点からは炭化タンタルが好ましいが、2種以上を混合してもよい。 The carbide used in the present invention is not particularly limited as long as it has a melting point (Tm) of 3000 ° C. or higher, but a known carbide can be suitably used as a metal carbide having a high melting point. For example, titanium carbide (Tm = 3530 ° C.), zirconia carbide (Tm = 3803 ° C.), hafnium carbide (Tm = 3887 ° C.), niobium carbide (Tm = 3800 ° C.), tantalum carbide (Tm = 3880 ° C.), tungsten carbide ( Tm = 3058 ° C.) and the like. Among these, tantalum carbide is preferable from the viewpoint of heat resistance, but two or more kinds may be mixed.
 上記したような金属炭化物は、公知の方法により得ることができ、例えば、金属(チタン、ジルコニア、ハフニウム、ニオブ、タンタル、タングステン等)の酸化物と炭素とを混合し、混合物を水素還元雰囲気下で加熱することにより金属炭化物を得ることができる。あるいは、金属アルコキシドに、当該金属に配位可能な官能基(例えばOH基やCOOH基)を有する有機物を炭素源として加えた混合溶液を、非酸素雰囲気下で熱処理することにより金属炭化物を得てもよい。 The metal carbide as described above can be obtained by a known method. For example, a metal oxide (titanium, zirconia, hafnium, niobium, tantalum, tungsten, etc.) and carbon are mixed, and the mixture is subjected to a hydrogen reduction atmosphere. Metal carbide can be obtained by heating at Alternatively, a metal carbide is obtained by heat-treating, in a non-oxygen atmosphere, a mixed solution in which an organic substance having a functional group capable of coordinating to the metal (for example, OH group or COOH group) is added as a carbon source to a metal alkoxide. Also good.
 本発明によるペースト組成物に使用される炭化物は、粒子状の形態であることが好ましい。ペースト組成物中に炭化物を均一に分散させる必要があるからである。炭化物の平均粒子径は0.05~20.0μmの範囲であることが好ましく、より好ましくは0.1~10.0μmの範囲である。平均粒子径がこのような範囲にある炭化物粒子を使用することにより、ペースト組成物中に炭化物を均一に分散させることができるとともに、ペースト組成物を焼結した際に、より高密度の炭化物焼結体を得ることができる。なお、平均粒子径とは、米国フィッシャー社製のフィッシャーサブシーブサイザー・モデル49平均粒度測定装置を用いて、空気透過法により測定した平均粒子径(フィッシャー径)である。即ち、炭化物(例えば、TaC)試料14.53gを上記装置の試料管に充填し、これに定圧空気を通過させ、マノメータ水位のキャルキュレータチャート上の数値を読み取り、その値を粒度(μm)とする。炭化物の平均粒子径は、原料(金属酸化物)の平均粒子径や得られた炭化物を粉砕(解砕)する際の粉砕条件によって適宜調整することができる。なお、粉砕時間が短いと被粉砕物の粒径は大きく、粉砕時間が長いと粒径は小さくなり粒度分布は狭くなる傾向がある。 The carbide used in the paste composition according to the present invention is preferably in the form of particles. This is because it is necessary to uniformly disperse the carbide in the paste composition. The average particle size of the carbide is preferably in the range of 0.05 to 20.0 μm, more preferably in the range of 0.1 to 10.0 μm. By using carbide particles having an average particle diameter in such a range, the carbide can be uniformly dispersed in the paste composition, and when the paste composition is sintered, a higher-density carbide firing is performed. A ligation can be obtained. The average particle diameter is an average particle diameter (Fischer diameter) measured by an air permeation method using a Fisher sub-sieve sizer model 49 average particle size measuring device manufactured by Fischer, USA. That is, 14.53 g of a carbide (for example, TaC) sample is filled in the sample tube of the above apparatus, air is passed through it under constant pressure, the numerical value on the calculator chart of the manometer water level is read, and the value is determined as the particle size (μm). To do. The average particle diameter of the carbide can be appropriately adjusted depending on the average particle diameter of the raw material (metal oxide) and the pulverization conditions when the obtained carbide is pulverized (pulverized). When the pulverization time is short, the particle size of the material to be pulverized is large, and when the pulverization time is long, the particle size tends to be small and the particle size distribution tends to be narrow.
 本発明によるペースト組成物には、上記した炭化物に加えて、周期律表の第2族または第3族から選択される少なくとも1種の元素のフッ化物が含まれる。フッ化物は、炭化物を焼結させる際の焼結助剤として機能する。即ち、炭化物を焼結させる際の開始時の温度以下(約1400℃)で焼結助剤が融解し、炭化物が焼結した際に焼結体を高密度化することができる。一方、上記したようなこのフッ化物は、沸点が比較的低く、炭化物の焼結温度(2200~2600℃)において昇華ないし気化するため、焼結終了後のフッ化物残存量を低く抑えることができる。このようなフッ化物を炭化物焼結体の焼結助剤として使用することにより、高密度でガス遮蔽性の高い炭化物焼結体が得られるものと考えられる。 The paste composition according to the present invention includes fluoride of at least one element selected from Group 2 or Group 3 of the periodic table in addition to the above-described carbide. Fluoride functions as a sintering aid when sintering carbide. That is, the sintering aid is melted at a temperature equal to or lower than the starting temperature when sintering the carbide (about 1400 ° C.), and the sintered body can be densified when the carbide is sintered. On the other hand, this fluoride as described above has a relatively low boiling point and sublimates or vaporizes at the carbide sintering temperature (2200 to 2600 ° C.), so that the amount of fluoride remaining after sintering can be kept low. . It is considered that a carbide sintered body having a high density and a high gas shielding property can be obtained by using such a fluoride as a sintering aid for the carbide sintered body.
 具体的なフッ化物としては、フッ化ベリリウム、フッ化マグネシウム、フッ化カルシウム、フッ化バリウム、フッ化ランタン、フッ化セリウム等が挙げられる。これらのフッ化物のなかでも、焼結助剤の昇華ないし気化による炭化物の固化焼結までの間に焼結助剤の融解による炭化物の連結を十分に行える点から、フッ化マグネシウム、フッ化カルシウム、フッ化バリウム、フッ化ランタン、フッ化セリウムが好ましい。特に、高密度でガス遮蔽性の高い炭化物焼結体が得る観点からフッ化カルシウムを好適に使用することができる。フッ化カルシウムは、融点が1400℃程度であり、沸点が2500℃程度である。 Specific examples of the fluoride include beryllium fluoride, magnesium fluoride, calcium fluoride, barium fluoride, lanthanum fluoride, and cerium fluoride. Among these fluorides, magnesium fluoride and calcium fluoride are used because the carbide can be sufficiently connected by melting of the sintering aid before the carbide is solidified and sintered by sublimation or vaporization of the sintering aid. , Barium fluoride, lanthanum fluoride, and cerium fluoride are preferred. In particular, calcium fluoride can be preferably used from the viewpoint of obtaining a high-density, high-gas-shielding carbide sintered body. Calcium fluoride has a melting point of about 1400 ° C. and a boiling point of about 2500 ° C.
 上記したフッ化物も、ペースト組成物中に均一分散させる観点から粒子状の形態であることが好ましい。フッ化物は、平均粒子径が0.1~10.0μmの範囲のものを使用することが好ましく、より好ましくは0.5~5.0μmの範囲である。なお、平均粒子径の定義は上記と同様である。 The above-mentioned fluoride is also preferably in a particulate form from the viewpoint of being uniformly dispersed in the paste composition. It is preferable to use a fluoride having an average particle size in the range of 0.1 to 10.0 μm, and more preferably in the range of 0.5 to 5.0 μm. The definition of the average particle diameter is the same as described above.
 炭化物に対するフッ化物の含有量が増加すると炭化物焼結体の理論密度が高くなり、高密度の炭化物焼結体が得られるが、炭化物焼結体中のフッ化物残存量が増える傾向にある。SiC単結晶成長を行う容器(坩堝)などに炭化物焼結体を使用した場合に、炭化物焼結体中に残存するフッ化物が雰囲気ガスと反応し、フッ化物が存在していた箇所が空隙となることがある。そのため、使用当初は高密度な炭化物焼結体であっても、繰り返し使用するにつれてガス遮蔽性が低下してしまう可能性がある。このため、本発明においては、ペースト組成物中のフッ化物含有量は、炭化物100molに対して0.5~7molの割合であることが好ましい。この範囲でフッ化物が含有されることにより、高密度でガス遮蔽性の高い炭化物焼結体を得ることができるとともに、容器として繰り返し使用されてもガス遮蔽性を維持することができる。 When the content of fluoride with respect to carbide increases, the theoretical density of the carbide sintered body increases and a high-density carbide sintered body is obtained, but the residual amount of fluoride in the carbide sintered body tends to increase. When a carbide sintered body is used in a vessel (crucible) or the like for SiC single crystal growth, the fluoride remaining in the carbide sintered body reacts with the atmospheric gas, and the place where the fluoride was present is a void. May be. Therefore, even if it is a high-density carbide sintered body at the beginning of use, there is a possibility that the gas shielding properties will deteriorate as it is repeatedly used. Therefore, in the present invention, the fluoride content in the paste composition is preferably in a ratio of 0.5 to 7 mol with respect to 100 mol of carbide. By containing fluoride in this range, it is possible to obtain a carbide sintered body with high density and high gas shielding properties, and it is possible to maintain gas shielding properties even when used repeatedly as a container.
 本発明によるペースト組成物は、上記した炭化物およびフッ化物に加えて、バインダー樹脂が含まれていてもよい。バインダー樹脂を添加することにより、ペースト組成物の粘度調整が容易となり塗布性や取扱性が改善されるため、ペースト組成物を焼結して炭化物焼結体とする際の成形性を向上させることができる。バインダー樹脂としては、上記のような効果が得られるのであれば特に制限されるものではないが、例えば、ポリビニルアルコール樹脂、アクリル系樹脂、ポリビニルブチラール樹脂、メチルセルロース樹脂、エチルセルロース樹脂、アセチルセルロース樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂等が挙げられる。これらバインダー樹脂は2種以上を混合して用いてもよい。特に好ましいバインダー樹脂は、ポリビニルブチラール樹脂である。 The paste composition according to the present invention may contain a binder resin in addition to the above-described carbide and fluoride. By adding a binder resin, the viscosity adjustment of the paste composition is facilitated and the coating properties and handling properties are improved, so that the moldability when sintering the paste composition to form a carbide sintered body is improved. Can do. The binder resin is not particularly limited as long as the above effects can be obtained. For example, polyvinyl alcohol resin, acrylic resin, polyvinyl butyral resin, methyl cellulose resin, ethyl cellulose resin, acetyl cellulose resin, phenol Resin, urea resin, melamine resin, etc. are mentioned. Two or more of these binder resins may be mixed and used. A particularly preferred binder resin is a polyvinyl butyral resin.
 ペースト組成物に配合するバインダー樹脂の含有量は、ペースト組成物の粘度に影響するため、ペースト組成物の用途、即ち、基材の被覆用途に使用するか、あるいは基材どうしの接着用途に使用するかで異なるが、概ね、炭化物100質量部に対して、0.1~2.0質量部の範囲が好ましい。バインダー樹脂の含有量が多過ぎると、得られる炭化物焼結体に歪みが生じたり、バインダー樹脂由来の炭素析出物が発生し易くなる。 Since the binder resin content in the paste composition affects the viscosity of the paste composition, it is used for the paste composition, that is, for coating the substrates, or for bonding the substrates. In general, the range of 0.1 to 2.0 parts by mass with respect to 100 parts by mass of carbide is preferable. When there is too much content of binder resin, distortion will arise in the obtained carbide sintered compact, or carbon precipitate derived from binder resin will occur easily.
 本発明によるペースト組成物は、バインダー樹脂の他にも、炭化物やフッ化物の分散性を向上させるための添加剤が含まれていてもよい。例えば、ポリエチレンイミン系高分子分散剤、ポリウレタン系高分子分散剤、ポリアリルアミン系高分子分散剤等を好適に使用することができる。添加剤の含有量は、炭化物100質量部に対して、0.03~0.20質量部の範囲が好ましい。 The paste composition according to the present invention may contain an additive for improving the dispersibility of carbides and fluorides in addition to the binder resin. For example, a polyethyleneimine polymer dispersant, a polyurethane polymer dispersant, a polyallylamine polymer dispersant and the like can be suitably used. The content of the additive is preferably in the range of 0.03 to 0.20 parts by mass with respect to 100 parts by mass of carbide.
 さらに、ペースト組成物を調製するには、バインダー樹脂や添加剤に加え、溶媒を含んでいてもよい。溶媒としては、エタノール、ベンジルアルコール、トルエン、ジメチルアセトアミド、メチルエチルケトン等の有機溶剤が挙げられ、これら1種または2種以上を混合して使用することができる。溶媒の含有量は、ペースト組成物の粘度に影響するため、ペースト組成物の用途に応じて適宜調整することができるが、炭化物100質量部に対して、概ね5.0~30.0質量部の範囲が好ましい。 Furthermore, in order to prepare the paste composition, it may contain a solvent in addition to the binder resin and additives. Examples of the solvent include organic solvents such as ethanol, benzyl alcohol, toluene, dimethylacetamide, and methyl ethyl ketone, and these can be used alone or in combination. Since the solvent content affects the viscosity of the paste composition, it can be appropriately adjusted according to the use of the paste composition, but is generally 5.0 to 30.0 parts by mass with respect to 100 parts by mass of the carbide. The range of is preferable.
<炭化物焼結体およびその製造方法>
 本発明による炭化物焼結体は、上記したペースト組成物を焼結することにより得ることができる。例えば、先ず、ペースト組成物を所望の形状を有する容器に注入する。その後、溶媒を除去するためにペースト組成物の乾燥を行う。ペースト組成物の乾燥は、自然乾燥でもよく、あるいは乾燥時間を短縮するため熱風乾燥や真空乾燥であってもよい。熱風乾燥を行う際の温度は、使用した溶媒の種類にもよるが概ね50~150℃である。加熱雰囲気下で乾燥を行う場合は、ペースト組成物の酸化防止のため不活性雰囲気下で行うことが好ましい。
<Carbide sintered body and manufacturing method thereof>
The carbide sintered body according to the present invention can be obtained by sintering the paste composition described above. For example, first, the paste composition is poured into a container having a desired shape. Thereafter, the paste composition is dried to remove the solvent. Drying of the paste composition may be natural drying, or may be hot air drying or vacuum drying to shorten the drying time. The temperature at which hot air drying is performed is generally 50 to 150 ° C., although it depends on the type of solvent used. When drying in a heated atmosphere, it is preferably performed in an inert atmosphere to prevent oxidation of the paste composition.
 次いで、溶剤が除去された成形体(ペースト組成物)を焼結して炭化物焼結体を得る。焼結は、2200~2600℃の温度、好ましくは、2350~2450℃の温度で行う。焼結の開始時の温度以下(約1400℃)でペースト組成物中のフッ化物が融解し、炭化物が焼結した際に焼結体を高密度化するとともに、上記した焼結温度でフッ化物が気化ないし昇華するため、高密度でガス遮蔽性の高い炭化物焼結体を得ることができる。 Next, the molded body (paste composition) from which the solvent has been removed is sintered to obtain a carbide sintered body. Sintering is performed at a temperature of 2200 to 2600 ° C., preferably at a temperature of 2350 to 2450 ° C. When the fluoride in the paste composition is melted below the temperature at the start of sintering (about 1400 ° C.) and the carbide is sintered, the sintered body is densified and the fluoride at the above sintering temperature. Is vaporized or sublimated, so that a sintered carbide with high density and high gas shielding properties can be obtained.
 本発明による炭化物焼結体は、高密度でありながらも、焼結助剤の含有量が非常に少なく、その結果、ガス遮蔽性に優れた炭化物焼結体を実現できるものである。すなわち、本発明によるペースト組成物を焼結して得られる炭化物焼結体は、炭化物焼結体の断面の電子顕微鏡観察から得られる焼結体の面積占有率をD(%)とし、該断面におけるエネルギー分散型X線分光分析により得られる炭化物以外の金属元素含有率をI(mol%)とした場合に、下記式:
  S=D×(1-I/0.6)
で表される純炭化物必要条件指数Sが、S≧0.69であることに特徴を有する。
Although the carbide sintered body according to the present invention has a high density and a very small content of the sintering aid, as a result, a carbide sintered body excellent in gas shielding properties can be realized. That is, in the carbide sintered body obtained by sintering the paste composition according to the present invention, the area occupancy of the sintered body obtained from the electron microscope observation of the cross section of the carbide sintered body is D (%), and the cross section When the content of metal elements other than carbides obtained by energy dispersive X-ray spectroscopic analysis at I is I (mol%), the following formula:
S = D × (1−I / 0.6)
It is characterized in that the pure carbide requirement index S represented by: S ≧ 0.69.
 ここで、面積占有率D(%)とは、炭化物焼結体の断面の電子顕微鏡観察写真において、15μm×25μmの任意の観察領域を、焼結体部分(マトリックス領域)と気孔部分(非マトリックス領域)との2領域に分割し、焼結体部分の面積割合(%)と定義される。具体的には、炭化物焼結体の断面像において、気孔部分が占める閉鎖領域を黒塗り部とし、それ以外を白塗り部として2値化した場合に、白塗り部の面積総和が観察領域の面積に対して占める割合として、面積占有率D(%)を求めることができる。また、金属元素含有率I(mol%)とは、上記の観察領域をエネルギー分散型X線分光分析によりマッピングし、当該分析から得られた、炭化物を構成する金属元素(例えば、チタン、ジルコニア、ハフニウム、ニオブ、タンタル、タングステン等の金属元素)以外の金属元素(例えば、フッ化カルシウム由来のカルシウム等)の割合(mol%)と定義される。典型的な電子顕微鏡写真の観察条件としては、例えば加速電圧は15kV、可動絞り径は30μm、エミッション電流は260μAとするとよい。 Here, the area occupancy D (%) refers to an arbitrary observation region of 15 μm × 25 μm in a cross section of a carbide sintered body, a sintered body portion (matrix region) and a pore portion (non-matrix). It is defined as an area ratio (%) of the sintered body portion. Specifically, in the cross-sectional image of the carbide sintered body, when the closed region occupied by the pore portion is a blackened portion and the other is whitened, the total area of the whitened portion is the observation region. The area occupancy D (%) can be obtained as a ratio of the area. Further, the metal element content I (mol%) is a mapping of the observation region by energy dispersive X-ray spectroscopic analysis, and the metal elements (for example, titanium, zirconia, It is defined as a ratio (mol%) of a metal element (for example, calcium derived from calcium fluoride) other than metal elements such as hafnium, niobium, tantalum, and tungsten. Typical observation conditions for an electron micrograph are, for example, an acceleration voltage of 15 kV, a movable aperture diameter of 30 μm, and an emission current of 260 μA.
 純炭化物必要条件指数Sは焼結体中に空隙や気孔が少ない程、1に近い値となるが、仮に完全に空隙や気孔が存在しない焼結体(D=1)であっても、焼結体中に他の金属元素が残存していると1よりも小さい値となり得る。本発明において、炭化物焼結体の純炭化物必要条件指数Sの値が0.69未満であると、高密度でガス遮蔽性の高い炭化物焼結体を実現することができない。本発明において、好ましい純炭化物必要条件指数Sの範囲は、0.70≦S≦0.90である。 The pure carbide requirement index S becomes closer to 1 as the number of voids and pores in the sintered body is smaller, but even if the sintered body is completely free of voids and pores (D = 1), If other metal elements remain in the aggregate, the value can be smaller than 1. In the present invention, if the value of the pure carbide necessary condition index S of the carbide sintered body is less than 0.69, a carbide sintered body having high density and high gas shielding properties cannot be realized. In the present invention, a preferable range of the pure carbide requirement index S is 0.70 ≦ S ≦ 0.90.
<耐火部材>
 本発明による炭化物焼結体は、上記のようにしてペースト組成物を所望の形状となるように成形しておき、ペースト組成物を焼結することにより、所望の形状を有する炭化物焼結体からなる成形物を得ることもできるが、下記のように黒鉛等からなる基材の表面に被膜として設けたり、基材どうしを結合する連結材として使用した耐火部材とすることもできる。
<Fireproof member>
The carbide sintered body according to the present invention is formed from a carbide sintered body having a desired shape by forming the paste composition into a desired shape as described above and sintering the paste composition. However, it is also possible to provide a fireproof member provided as a coating on the surface of a base material made of graphite or the like as described below, or used as a connecting material for joining the base materials together.
 例えば、黒鉛や窒化ホウ素からなる基材の表面に、上記したペースト組成物を塗布して塗膜を形成し、塗膜を乾燥させてペースト組成物中に含まれる溶剤を除去した後に、塗膜を焼結して炭化物焼結体からなる被膜を形成することができる。塗膜の形成は、塗布に限られず、基材をペースト組成物に浸漬することで形成してもよい。塗膜の焼結は、上記したように、2200~2600℃の温度で行う。このようにして、ペースト組成物中のフッ化物が融解し、炭化物が焼結した際に焼結体を高密度化するととともに、焼結によりフッ化物が気化ないし昇華するため、高温耐久性に優れ、高密度でガス遮蔽性の高い炭化物焼結体からなる被膜を備えた耐火部材を製造することができる。 For example, after applying the above paste composition to the surface of a base material made of graphite or boron nitride to form a coating film, drying the coating film to remove the solvent contained in the paste composition, To form a film made of a sintered carbide. Formation of a coating film is not restricted to application | coating, You may form by immersing a base material in a paste composition. As described above, the coating film is sintered at a temperature of 2200 to 2600 ° C. In this way, when the fluoride in the paste composition melts and the carbide is sintered, the sintered body is densified, and the fluoride is vaporized or sublimated by sintering, so it has excellent high temperature durability. A refractory member having a coating made of a carbide sintered body having a high density and a high gas shielding property can be produced.
 炭化物焼結体からなる被膜の厚さは、耐火部材の用途にもよるが、30~500μmであることが好ましい。被膜厚が薄すぎると耐火性や高温耐久性が不十分となる場合があり、一方、被膜厚が厚すぎると、基材との熱膨張係数差により被膜にクラックが入ったり、剥離する場合がある。500μmよりも厚い被膜を形成する場合には、基材の熱膨張係数と近い熱膨張係数となるような炭化物焼結体を使用するか、あるいは、炭化物焼結体の熱膨張係数と近い基材を用いることが好ましい。 The thickness of the coating made of a carbide sintered body is preferably 30 to 500 μm, although it depends on the use of the refractory member. If the film thickness is too thin, the fire resistance and high-temperature durability may be insufficient. On the other hand, if the film thickness is too thick, the film may crack or peel due to the difference in thermal expansion coefficient with the substrate. is there. When forming a film thicker than 500 μm, use a carbide sintered body that has a thermal expansion coefficient close to that of the base material, or use a base material close to the thermal expansion coefficient of the carbide sintered body. Is preferably used.
 また、黒鉛や窒化ホウ素等からなる基材どうしを、本発明の炭化物焼結体からなる連結材を介して結合してもよい。例えば、平板上の基材を複数用意し、これら平板基材の端部に上記したペースト組成物を塗布して基板の端部どうしを接合して容器等の形状とした後、焼結することにより、基材の端部どうしが炭化物焼結体によって結合した耐火部材を製造することができる。焼結は、上記したように、2200~2600℃の温度で行う。また、連結材の厚みは、上記した理由により、30~500μmであることが好ましい。 Further, base materials made of graphite, boron nitride, or the like may be bonded together via a connecting material made of the carbide sintered body of the present invention. For example, preparing a plurality of base materials on a flat plate, applying the paste composition described above to the end portions of the flat plate base material, joining the end portions of the substrate to form a container, etc., and then sintering. Thus, it is possible to manufacture a refractory member in which the end portions of the base material are bonded by the carbide sintered body. Sintering is performed at a temperature of 2200 to 2600 ° C. as described above. Further, the thickness of the connecting material is preferably 30 to 500 μm for the reason described above.
 次に本発明の実施形態について以下の実施例を参照して具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Next, embodiments of the present invention will be specifically described with reference to the following examples, but the present invention is not limited to these examples.
<ペースト組成物1~6の調製>
 融点が3000℃以上の炭化物として、平均粒子径が0.5~1.5μmである炭化タンタル(三井金属鉱業株式会社製、純度99.5%)を用いた。また、フッ化物として、平均粒子径が10.0~15.0μmであるフッ化カルシウム(株式会社白辰化学研究所製)を、エタノールを溶媒とし、直径10mmのジルコニアボールを用いて、平均粒子径が1.5μmになるまで粉砕したフッ化カルシウムを用いた。更に、樹脂バインダーとしてビニルブチラール樹脂(積水化学工業株式会社製)を、添加剤として、平均重量分子量が10000のポリエチレンイミン(和光純薬工業株式会社製)を、溶剤としてエタノールを用いた。
 炭化物100molに対してフッ化物の含有量が下記表1に示した割合となるように配合し、炭化物100質量部に対して、樹脂バインダーが0.5質量部、添加剤が0.1質量部、溶剤が8.5質量部の割合となるように各成分を混合し、ハイブリッドミキサー(株式会社シンキー製、ARE-310)で120秒間混合することによりペースト組成物1~4を調製した。また、フッ化カルシウムに替えてコバルトを2mol%添加した以外はペースト組成物2と同様にしてペースト組成物5を調製した。さらに、フッ化カルシウムを添加しなかった以外はペースト組成物1と同様にしてペースト組成物6を調製した。
<Preparation of paste compositions 1-6>
Tantalum carbide (Mitsui Metal Mining Co., Ltd., purity 99.5%) having an average particle size of 0.5 to 1.5 μm was used as a carbide having a melting point of 3000 ° C. or higher. In addition, as fluoride, average particle diameter was measured using calcium fluoride (manufactured by Hakuho Chemical Laboratory Co., Ltd.) having an average particle diameter of 10.0 to 15.0 μm, ethanol as a solvent, and zirconia balls having a diameter of 10 mm. Calcium fluoride ground to a diameter of 1.5 μm was used. Furthermore, vinyl butyral resin (manufactured by Sekisui Chemical Co., Ltd.) was used as a resin binder, polyethyleneimine (manufactured by Wako Pure Chemical Industries, Ltd.) having an average weight molecular weight of 10,000 was used as an additive, and ethanol was used as a solvent.
It mix | blends so that content of fluoride may become the ratio shown in following Table 1 with respect to 100 mol of carbides, a resin binder is 0.5 mass part with respect to 100 mass parts of carbides, and an additive is 0.1 mass part. Then, each component was mixed so that the ratio of the solvent was 8.5 parts by mass, and mixed with a hybrid mixer (ARE-310, manufactured by Shinky Co., Ltd.) for 120 seconds to prepare paste compositions 1 to 4. Further, paste composition 5 was prepared in the same manner as paste composition 2 except that 2 mol% of cobalt was added instead of calcium fluoride. Furthermore, paste composition 6 was prepared in the same manner as paste composition 1 except that calcium fluoride was not added.
<炭化物焼結体の製造>
 基材として、等方性黒鉛製基板(新日本テクノカーボン株式会社製)を準備した。基材表面に、上記のようにして得られたペースト組成物を刷毛塗りして塗膜を形成した。塗布量は乾燥後の塗膜厚が120μmとなるように調整した。続いて、50℃の温度で塗膜を乾燥して溶剤を除去した後、アルゴン雰囲気下で2400℃の温度で焼結を行い、黒鉛基板上に炭化物焼結体の被膜を形成した。被膜厚さは、100μmであった。
<Manufacture of carbide sintered body>
An isotropic graphite substrate (manufactured by Shin Nippon Techno Carbon Co., Ltd.) was prepared as a base material. The paste composition obtained as described above was brushed on the surface of the substrate to form a coating film. The coating amount was adjusted so that the coating thickness after drying was 120 μm. Subsequently, the coating film was dried at a temperature of 50 ° C. to remove the solvent, and then sintered at a temperature of 2400 ° C. in an argon atmosphere to form a carbide sintered body coating on the graphite substrate. The film thickness was 100 μm.
<炭化物焼結体の評価>
(1)面積占有率Dの測定
 上記のようにして得られた被膜(炭化物焼結体)の任意断面について、電子顕微鏡観察(日本エフイー・アイ株式会社製、XL30-SFEG)を行った。図1に、ペースト組成物4を用いて得られた炭化物焼結体の断面の電子顕微鏡観察写真を示す。図1に示される電子顕微鏡観察写真において、15μm×25μmの任意の観察領域を、焼結体部分(マトリックス領域)と気孔部分(非マトリックス領域)との2領域に分割し、焼結体部分の面積割合(%)を算出し、面積占有率D(%)とした。また、図1の電子顕微鏡観察写真において、気孔部分が占める閉鎖領域を黒塗り部とし、それ以外を白塗り部として2値化した解析画像を図2に示す。図2の解析画像を使用して、面積占有率D(%)、即ち、15μm×25μmの観察領域全体の面積に対する、気孔部分以外の白塗り部の面積の総和が占める割合を求めた。
<Evaluation of sintered carbide>
(1) Measurement of area occupancy ratio D An electron microscope observation (XL30-SFEG, manufactured by Japan FI Eye Co., Ltd.) was performed on an arbitrary cross section of the film (carbide sintered body) obtained as described above. In FIG. 1, the electron microscope observation photograph of the cross section of the carbide sintered compact obtained using the paste composition 4 is shown. In the electron microscope observation photograph shown in FIG. 1, an arbitrary observation region of 15 μm × 25 μm is divided into two regions, a sintered body portion (matrix region) and a pore portion (non-matrix region). The area ratio (%) was calculated and used as the area occupation ratio D (%). Moreover, in the electron microscopic observation photograph of FIG. 1, the analysis image binarized by making the closed region which a pore part occupies into a black coating part, and making other than a white coating part is shown in FIG. Using the analysis image of FIG. 2, the area occupation ratio D (%), that is, the ratio of the total area of the white areas other than the pores to the area of the entire observation area of 15 μm × 25 μm was obtained.
(2)金属元素含有率Iの測定
 面積占有率Dを測定した15μm×25μmの観察領域において、エネルギー分散型X線分光分析(オックスフォード・インストゥルメンツ株式会社製、INCA Xsight)によりマッピングし、タンタル(Ta)以外の金属元素の含有割合(mol%)を算出し、金属元素含有率I(mol%)とした。なお、各金属元素の含有割合が装置検出限界(0.15mol%)未満であったものは、I値は0(mol%)とした。
(2) Measurement of metal element content I In the observation region of 15 μm × 25 μm where the area occupancy D was measured, mapping was performed by energy dispersive X-ray spectroscopy (manufactured by Oxford Instruments, INCA Xsight), and tantalum The content ratio (mol%) of a metal element other than (Ta) was calculated and used as the metal element content I (mol%). In the case where the content ratio of each metal element was less than the device detection limit (0.15 mol%), the I value was 0 (mol%).
(3)純炭化物必要条件指数Sの算出
 上記のようにして算出したDおよびIの値から、下記式:
  S=D×(1-I/0.6)
で表される純炭化物必要条件指数Sを求めた。各炭化物焼結体の純炭化物必要条件指数Sは下記表1に示されるとおりであった。
(3) Calculation of pure carbide requirement index S From the values of D and I calculated as described above, the following formula:
S = D × (1−I / 0.6)
Pure carbide requirement index S expressed by The pure carbide requirement index S of each carbide sintered body was as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の評価結果からも明らかなように、フッ化物を含むペースト組成物1~4を用いて得られた炭化物焼結体(実施例1~4)は、面積占有率Dがいずれも70%以上であり、高密度で理論密度が高い焼結体であることがわかる。また、焼結助剤としてコバルトを使用したペースト組成物5を用いて得られた炭化物焼結体(比較例1)は、非常に高密度な焼結体であることがわかる。一方、焼結助剤を含まないペースト組成物6を用いて得られた炭化物焼結体(比較例2)は面積占有率Dが70%未満であり、高密度な焼結体ではないことがわかる。 As is apparent from the evaluation results in Table 1, the carbide sintered bodies (Examples 1 to 4) obtained using the paste compositions 1 to 4 containing fluoride each have an area occupancy ratio D of 70%. As described above, it can be seen that the sintered body has a high density and a high theoretical density. Moreover, it turns out that the carbide sintered compact (comparative example 1) obtained using the paste composition 5 which uses cobalt as a sintering auxiliary agent is a very high-density sintered compact. On the other hand, the carbide sintered body (Comparative Example 2) obtained using the paste composition 6 containing no sintering aid has an area occupation ratio D of less than 70% and is not a high-density sintered body. Recognize.
 また、フッ化物を含むペースト組成物を用いて得られた炭化物焼結体(実施例1~実施例4)のうち、フッ化物の配合量が炭化物に対して6mol%と多く含まれる実施例4の場合であっても、炭化物焼結体中に残存するフッ化物はほとんど存在しない(金属元素含有率が検出限界未満)ことがわかる。一方、比較例1の炭化物焼結体は、焼結助剤としてコバルト(Co)を使用しているため、非常に高密度な焼結体であるものの、焼結体中にCoが残存していることがわかる。その結果、実施例1~4の炭化物焼結体はS値が0.69以上であったのに対し、比較例1の炭化物焼結体はS値がこれらよりずっと低い-0.21であった。 Further, among the carbide sintered bodies (Examples 1 to 4) obtained by using the paste composition containing fluoride, Example 4 in which the compounding amount of fluoride is contained as much as 6 mol% with respect to the carbide. Even in this case, it can be seen that almost no fluoride remains in the sintered carbide body (the metal element content is less than the detection limit). On the other hand, since the carbide sintered body of Comparative Example 1 uses cobalt (Co) as a sintering aid, although it is a very high density sintered body, Co remains in the sintered body. I understand that. As a result, the carbide sintered bodies of Examples 1 to 4 had an S value of 0.69 or more, whereas the carbide sintered body of Comparative Example 1 had an S value much lower than these, -0.21. It was.

Claims (11)

  1.  融点が3000℃以上である炭化物と、
     周期律表の第2族または第3族から選択される少なくとも1種の元素のフッ化物と、
    を含んでなる、ペースト組成物。
    A carbide having a melting point of 3000 ° C. or higher;
    A fluoride of at least one element selected from Group 2 or Group 3 of the Periodic Table;
    A paste composition comprising:
  2.  前記フッ化物が、前記炭化物100molに対して0.5~7molの割合で含まれる、請求項1に記載のペースト組成物。 The paste composition according to claim 1, wherein the fluoride is contained at a ratio of 0.5 to 7 mol with respect to 100 mol of the carbide.
  3.  前記フッ化物がフッ化カルシウムである、請求項1または2に記載のペースト組成物。 The paste composition according to claim 1 or 2, wherein the fluoride is calcium fluoride.
  4.  前記炭化物が、平均粒子径0.05~20.0μmの粒子状である、請求項1~3のいずれか一項に記載のペースト組成物。 The paste composition according to any one of claims 1 to 3, wherein the carbide is in the form of particles having an average particle diameter of 0.05 to 20.0 µm.
  5.  前記フッ化物が、平均粒子径0.1~10.0μmの粒子状である、請求項1~4のいずれか一項に記載のペースト組成物。 The paste composition according to any one of claims 1 to 4, wherein the fluoride is in the form of particles having an average particle size of 0.1 to 10.0 µm.
  6.  バインダー樹脂をさらに含む、請求項1~5のいずれか一項に記載のペースト組成物。 The paste composition according to any one of claims 1 to 5, further comprising a binder resin.
  7.  請求項1~6のいずれか一項に記載のペースト組成物の炭化物焼結体であって、
     該炭化物焼結体の断面の電子顕微鏡観察から得られる焼結体の面積占有率をD(%)とし、
     前記断面におけるエネルギー分散型X線分光分析により得られる、前記炭化物以外の金属元素含有率をI(mol%)とした場合に、下記式:
      S=D×(1-I/0.6)
    で表される純炭化物必要条件指数Sが、S≧0.69である炭化物焼結体。
    A carbide sintered body of the paste composition according to any one of claims 1 to 6,
    The area occupancy of the sintered body obtained from the electron microscope observation of the cross section of the carbide sintered body is D (%),
    When the metal element content other than the carbide obtained by energy dispersive X-ray spectroscopy in the cross section is I (mol%), the following formula:
    S = D × (1−I / 0.6)
    The carbide sintered compact whose pure carbide requirement index | exponent S represented by these is S> = 0.69.
  8.  基材と、前記基材の表面の少なくとも一部を覆う被膜と、を備えた耐火部材であって、
     前記被膜が、請求項1~6のいずれか一項に記載のペースト組成物の炭化物焼結体からなり、
     前記炭化物焼結体は、
     該炭化物焼結体の断面の電子顕微鏡観察から得られる焼結体の面積占有率をD(%)とし、
     前記断面におけるエネルギー分散型X線分光分析により得られる、前記炭化物以外の金属元素含有率をI(mol%)とした場合に、下記式:
      S=D×(1-I/0.6)
    で表される純炭化物必要条件指数Sが、S≧0.69である、耐火部材。
    A fireproof member comprising a base material and a coating covering at least a part of the surface of the base material,
    The coating comprises a carbide sintered body of the paste composition according to any one of claims 1 to 6,
    The carbide sintered body is:
    The area occupancy of the sintered body obtained from the electron microscope observation of the cross section of the carbide sintered body is D (%),
    When the metal element content other than the carbide obtained by energy dispersive X-ray spectroscopy in the cross section is I (mol%), the following formula:
    S = D × (1−I / 0.6)
    A refractory member having a pure carbide requirement index S represented by: S ≧ 0.69.
  9.  前記被膜の厚さが30~500μmである、請求項8に記載耐火部材。 The fireproof member according to claim 8, wherein the thickness of the coating is 30 to 500 µm.
  10.  第1の基材と第2の基材とが、連結材を介して結合してなる耐火部材であって、
     前記連結材が、請求項請求項1~6のいずれか一項に記載のペースト組成物の炭化物焼結体からなり、
     前記炭化物焼結体は、
     該炭化物焼結体の断面の電子顕微鏡観察から得られる焼結体の面積占有率をD(%)とし、
     前記断面におけるエネルギー分散型X線分光分析により得られる、前記炭化物以外の金属元素含有率をI(mol%)とした場合に、下記式:
      S=D×(1-I/0.6)
    で表される純炭化物必要条件指数Sが、S≧0.69である、耐火部材。
    The first base material and the second base material are fire-resistant members formed by bonding via a connecting material,
    The connecting material comprises a carbide sintered body of the paste composition according to any one of claims 1 to 6,
    The carbide sintered body is:
    The area occupancy of the sintered body obtained from the electron microscope observation of the cross section of the carbide sintered body is D (%),
    When the metal element content other than the carbide obtained by energy dispersive X-ray spectroscopy in the cross section is I (mol%), the following formula:
    S = D × (1−I / 0.6)
    A refractory member having a pure carbide requirement index S represented by: S ≧ 0.69.
  11.  前記連結材の厚さが30~500μmである、請求項10に記載の耐火部材。 The fireproof member according to claim 10, wherein the thickness of the connecting material is 30 to 500 µm.
PCT/JP2018/008563 2017-03-07 2018-03-06 Paste composition, carbide sintered body, method for producing same, and refractory member WO2018164118A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019504600A JP6942788B2 (en) 2017-03-07 2018-03-06 Paste composition, carbide sintered body and its manufacturing method, and refractory member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-043199 2017-03-07
JP2017043199 2017-03-07

Publications (1)

Publication Number Publication Date
WO2018164118A1 true WO2018164118A1 (en) 2018-09-13

Family

ID=63448623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008563 WO2018164118A1 (en) 2017-03-07 2018-03-06 Paste composition, carbide sintered body, method for producing same, and refractory member

Country Status (3)

Country Link
JP (1) JP6942788B2 (en)
TW (1) TW201838954A (en)
WO (1) WO2018164118A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115504791A (en) * 2022-08-12 2022-12-23 河南好运祥耐材有限公司 O' -SiAlON-SiC prefabricated part with high oxidation resistance and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104002A (en) * 1985-10-30 1987-05-14 太陽誘電株式会社 Resistance material
JP2004091241A (en) * 2002-08-30 2004-03-25 Sumitomo Coal Mining Co Ltd Tungsten carbide type super-hard material and manufacturing method thereof
JP2010248060A (en) * 2009-03-23 2010-11-04 Toyota Central R&D Labs Inc High temperature-resistant member, method for producing the same, and high temperature-resistant adhesive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104002A (en) * 1985-10-30 1987-05-14 太陽誘電株式会社 Resistance material
JP2004091241A (en) * 2002-08-30 2004-03-25 Sumitomo Coal Mining Co Ltd Tungsten carbide type super-hard material and manufacturing method thereof
JP2010248060A (en) * 2009-03-23 2010-11-04 Toyota Central R&D Labs Inc High temperature-resistant member, method for producing the same, and high temperature-resistant adhesive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115504791A (en) * 2022-08-12 2022-12-23 河南好运祥耐材有限公司 O' -SiAlON-SiC prefabricated part with high oxidation resistance and preparation method thereof

Also Published As

Publication number Publication date
JP6942788B2 (en) 2021-09-29
TW201838954A (en) 2018-11-01
JPWO2018164118A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
Kume et al. High‐thermal‐conductivity AlN filler for polymer/ceramics composites
US6753085B2 (en) Heat-resistant coated member
US20090121197A1 (en) Sintered Material, Sinterable Powder Mixture, Method for Producing Said Material and Use Thereof
Jiang et al. Oxidation protective ZrB2-MoSi2-SiC-Si coating for graphite materials prepared by slurry dipping and vapor silicon infiltration
JP6908248B2 (en) SiC ceramics using coated SiC nanoparticles and their manufacturing method
Jiang et al. Oxidation protection of graphite materials by single-phase ultra-high temperature boride modified monolayer Si-SiC coating
CN110446693B (en) SiC sintered body, heater, and method for producing SiC sintered body
WO2018164118A1 (en) Paste composition, carbide sintered body, method for producing same, and refractory member
JP4383062B2 (en) Method for producing porous silicon carbide sintered body
JP5113469B2 (en) Manufacturing method of oxide powder coated with carbide powder
US10541064B2 (en) SiC powder, SiC sintered body, SiC slurry and manufacturing method of the same
KR20190123966A (en) MANUFACTURING METHOD OF Mo-Si-B ALLOY
KR101470322B1 (en) Aluminum Nitride ceramics with high strength and the method of low temperature sintering thereof
KR101735456B1 (en) Electrically conductive siliconoxycarbide ceramics, and method for preparing thereof
JP2022048679A (en) Composite sintered body, semiconductor manufacturing equipment member, and manufacturing method of composite sintered body
EP2703349B1 (en) Lanthanum boride sintered body and method for producing the same
CN108892528B (en) Porous silicon nitride ceramic material and preparation method thereof
JP2008105936A (en) Carbide powder
KR102603574B1 (en) Pressureless sintered SiC ceramics with 1~30 Ωcm electrical resistivity, its composition, and method for producing the same
JP4860335B2 (en) Conductive corrosion-resistant member and manufacturing method thereof
JP5403851B2 (en) Method for producing sintered zirconium silicate
JP2021116218A (en) Dense composite material, method for producing the same, joined body, and member for semiconductor manufacturing device
WO2019159851A1 (en) Metal carbide sintered body, and heat-resistant member comprising same for silicon carbide semiconductor production device
FR2668476A1 (en) REFRACTORY MATERIALS CONSISTING OF GRAINS AND PROCESS FOR THEIR MANUFACTURE.
JP7213399B1 (en) Refractory member and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504600

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764715

Country of ref document: EP

Kind code of ref document: A1