WO2018163952A1 - Multi-room air-conditioning device - Google Patents

Multi-room air-conditioning device Download PDF

Info

Publication number
WO2018163952A1
WO2018163952A1 PCT/JP2018/007719 JP2018007719W WO2018163952A1 WO 2018163952 A1 WO2018163952 A1 WO 2018163952A1 JP 2018007719 W JP2018007719 W JP 2018007719W WO 2018163952 A1 WO2018163952 A1 WO 2018163952A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor unit
indoor
unit
air conditioner
capacity
Prior art date
Application number
PCT/JP2018/007719
Other languages
French (fr)
Japanese (ja)
Inventor
隼人 布
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2018163952A1 publication Critical patent/WO2018163952A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits

Definitions

  • This disclosure relates to a multi-room air conditioner in which a plurality of indoor units are connected to an outdoor unit by a refrigerant circuit.
  • the load on the compressor provided in the outdoor unit varies greatly depending on the number of indoor units actually operated and the operation capacity required for each indoor unit.
  • the capacity of the compressor that is, the operating capacity of the outdoor unit is limited within a certain range
  • the operating capacity of each indoor unit is also restricted in accordance with the range of the operating capacity of the outdoor unit.
  • the multi-room air conditioner when the multi-room air conditioner is in a heating operation and there is only one indoor unit in operation, and the operating capacity required from this indoor unit is below the minimum operating capacity of the outdoor unit, Even if the outdoor unit is operated with the minimum operating capacity, the operating capacity supplied to the indoor unit may be excessive, and the room temperature may be higher than the set temperature.
  • the indoor unit When the room temperature becomes higher than the set temperature by a predetermined temperature (for example, 2 ° C) or more, the indoor unit requests a capacity request signal to the outdoor unit (a signal that requests the compressor speed of the outdoor unit according to the difference between the set temperature and the room temperature). Is stopped, and the air conditioning operation is stopped. On the other hand, the outdoor unit stops the compressor when all the indoor units stop the air conditioning operation and do not receive the capacity request signal.
  • a predetermined temperature for example, a set temperature after the thermo-off state
  • the indoor unit cancels the thermo-off state and transmits a capability request signal to the outdoor unit. Start up at a predetermined speed.
  • the room temperature may exceed the set temperature as described above. There is. In this case, each time the thermo-off state is released, the compressor starts at a predetermined rotation speed, so that there are problems that power consumption increases and the room temperature is not stable.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-193901
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-193901
  • the indoor expansion valve of the indoor unit that is not in operation is opened to forcibly operate the indoor unit.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-193901
  • the necessary minimum operating capacity of the outdoor unit is ensured, and the outdoor unit is continuously operated with the minimum operating capacity.
  • frequent transition / cancellation to the thermo-off state is suppressed.
  • the present disclosure solves the above-described problem, and in a multi-room air conditioner, when an indoor unit that is not in operation is forcibly operated, the indoor unit is adjusted to an appropriate operating capacity. Objective.
  • the first multi-room air conditioner is a multi-room air conditioner including an outdoor unit, a plurality of indoor units, and a control unit that controls the operation of the outdoor unit and the indoor unit.
  • the outdoor unit has an outdoor heat exchanger.
  • Each of the plurality of indoor units has an indoor heat exchanger.
  • the outdoor heat exchanger and the indoor heat exchanger are connected by a refrigerant circuit.
  • a plurality of expansion valves are arranged in the refrigerant circuit corresponding to the indoor heat exchanger.
  • the second multi-room air conditioner is a first multi-room air conditioner, and in the distribution operation mode, the control unit performs the first operation when the operation load of the first indoor unit is smaller than a predetermined value. 2 Increase the capacity of indoor units.
  • the third multi-room air conditioner is a first multi-room air conditioner, and the controller is configured such that when the difference between the target temperature of the first indoor unit and the room temperature is smaller than a predetermined value, Increase the capacity of the second indoor unit.
  • the fourth multi-room air conditioner is the first multi-room air conditioner, and the control unit determines that the second multi-room air conditioner Increase the capacity of indoor units.
  • the fifth multi-room air conditioner is any one of the first to third multi-room air conditioners, and the control unit generates a predetermined number of thermo-off times per unit time of the first indoor unit. When it becomes above, the capability of the second indoor unit is increased.
  • the thermo-off of the first indoor unit means that the supply of capacity to the first indoor unit is stopped when the difference between the target temperature of the first indoor unit and the room temperature becomes a predetermined value or less.
  • the sixth multi-room air conditioner is any one of the first to fifth multi-room air conditioners, and the indoor unit further includes an indoor fan that sends the air conditioned by the indoor heat exchanger into the room. Prepare.
  • the control unit increases the capacity of the second indoor unit by increasing the number of rotations of the indoor fan of the second indoor unit.
  • the seventh multi-chamber air conditioner is any one of the first to fifth multi-chamber air conditioners, and the controller can adjust the opening of the expansion valve.
  • the control unit increases the operating capacity of the second indoor unit by increasing the opening of the expansion valve corresponding to the second indoor unit.
  • the first indoor unit is operated when the first indoor unit is operated and the second indoor unit that has received the stop command in the partial operation mode is operated in the distributed operation mode.
  • the capacity to be distributed to the second indoor unit is adjusted according to the operation load. That is, when the operation capacity supplied to the first indoor unit is excessive even after shifting to the distribution operation mode, the operation capacity distributed to the second indoor unit is increased and supplied to the first indoor unit. When the driving capacity is insufficient, the driving capacity distributed to the second indoor unit is reduced. For this reason, a 1st indoor unit can be drive
  • the second indoor unit when the operation is performed in the distribution operation mode, the second indoor unit is increased in capacity when the operation load of the first indoor unit is smaller than a predetermined value, to the second indoor unit. Adjust the ability to distribute. That is, even if the operation mode is shifted to the distribution operation mode, when the operation capacity supplied to the first indoor unit is excessive, the operation capacity supplied to the first indoor unit is distributed to the second indoor unit.
  • One indoor unit can be operated with an optimal driving capability.
  • the capacity of the second indoor unit is increased. Let That is, even when the operation mode is changed to the distribution operation mode, the operation capacity to be distributed to the second indoor unit is increased according to the frequency when it is likely to enter the thermo-off state. You can drive in.
  • the capacity of the second indoor unit is increased. That is, even if the operation mode is shifted to the distribution operation mode, when the operation capacity supplied to the first indoor unit is excessive and the room temperature greatly increases or decreases, the operation capacity to be distributed to the second indoor unit is increased.
  • the indoor unit can be operated with the optimum driving ability.
  • the capacity of the second indoor unit is increased. Increase. That is, even when the operation mode is changed to the distribution operation mode, when the operation / release to the thermo-off state occurs at a predetermined frequency, the first indoor unit is operated optimally in order to increase the operation capacity to be distributed to the second indoor unit. You can drive with your ability.
  • the rotation speed of the indoor fan of the second indoor unit is increased to increase the capacity of the second indoor unit.
  • capacitance of a 2nd indoor unit can be increased by simple control.
  • the seventh multi-room air conditioner increases the operating capacity of the second indoor unit by increasing the opening of the expansion valve when increasing the capacity of the second indoor unit during operation in the distribution operation mode. . For this reason, the capacity
  • multi-room air conditioner in which five indoor units are connected to one outdoor unit by a refrigerant circuit will be described as an example.
  • the multi-room air conditioner is not limited to the following embodiments, and can be variously modified without departing from the gist of the present disclosure.
  • FIG. 1 shows a refrigerant circuit diagram of the overall configuration of the multi-chamber air conditioner 10.
  • the multi-room air conditioner 10 includes five indoor units 30 and one outdoor unit 20 that shares a refrigerant system with these indoor units 30a, 30b, 30c, 30d, and 30e.
  • the refrigerant circuit 11 of the multi-room air conditioner 10 mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, indoor heat exchangers 31a, 31b, 31c, 31d, 31e, and expansion valves 24a, 24b. , 24c, 24d, and 24e are connected.
  • a vapor compression refrigeration cycle is performed using R32 refrigerant.
  • the refrigerant circuit 11 has a configuration in which an outdoor refrigerant circuit 12 formed in the outdoor unit 20 and an indoor refrigerant circuit 13 formed in the indoor unit 30 are connected.
  • the outdoor refrigerant circuit 12 includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, and five expansion valves 24.
  • the indoor refrigerant circuit 13 includes an indoor heat exchanger 31.
  • the outdoor refrigerant circuit 12 of the outdoor unit 20 and the indoor refrigerant circuit 13 of the indoor unit 30 are connected by five gas side refrigerant communication pipes 16 and five liquid side refrigerant communication pipes 17.
  • the five gas side refrigerant communication pipes 16 are connected to the gas pipe connection port 14 of the outdoor unit 20, and the five liquid side refrigerant communication pipes 17 are connected to the liquid pipe connection port 15 of the outdoor unit 20.
  • the gas pipe connection port 14 combines the five gas side refrigerant communication pipes 16 into one gas pipe, and the one gas pipe connects the gas side shut-off valve 18 as shown by the solid line in FIG. To the four-way switching valve 22.
  • the other end of the four-way switching valve 22 is connected to one end side of the outdoor heat exchanger 23.
  • liquid pipe connection port 15 five liquid side refrigerant communication pipes 17 are respectively connected to one end side of the five expansion valves 24, and the other end side of the five expansion valves 24 is joined to one liquid pipe. Yes.
  • One liquid pipe connected to the other end side of the five expansion valves 24 is connected to the other end side of the outdoor heat exchanger 23 via the liquid side closing valve 19.
  • four discharge sides of the compressor 21 are connected to one end side of the four-way switching valve 22, and the suction side of the compressor 21 is connected to the other end of the four-way switching valve 22.
  • Indoor units 30a, 30b, 30c, 30d, 30e The plurality of indoor units 30a, 30b, 30c, 30d, and 30e are installed in different rooms of the building.
  • the indoor units 30a, 30b, 30c, 30d, and 30e include indoor heat exchangers 31a, 31b, 31c, 31d, and 31e, and indoor fans 32a, 32b, 32c, 32d, and 32e, respectively. Since the configurations of the indoor units 30a, 30b, 30c, 30d, and 30e are all the same, in the following description, the configuration of the indoor unit 30a will be described, and the other indoor units 30b, 30c, 30d, and 30e will be described. Description is omitted.
  • FIG. 2 is a control block diagram of the control unit 60 provided in the multi-room air conditioner 10.
  • the control unit 60 includes an indoor unit control unit 33 and an outdoor unit control unit 26, which will be described later, and controls the operation of the entire air conditioner.
  • the indoor unit 30a has an indoor unit control unit 33a.
  • the indoor unit control unit 33a controls the operation of each unit (the indoor fan 32a and the indoor temperature sensor 34a) constituting the indoor unit 30a.
  • the indoor unit control part 33a has a microcomputer, memory, etc. provided in order to control the indoor unit 30a, and controls between the remote control 35a for operating the indoor unit 30a separately. Signals and the like can be exchanged, and control signals and the like can be exchanged with the outdoor unit 20 via the transmission line 61.
  • Outdoor unit 20 As shown in FIG. 1, the outdoor unit 20 is connected to each of the indoor units 30a, 30b, 30c, 30d, and 30e via a refrigerant circuit, and is composed of a compressor 21, an outdoor heat exchanger 23, and the like. A circuit 12 is formed.
  • the outdoor unit 20 includes an outdoor unit control board 28.
  • the outdoor unit control board 28 includes components constituting the outdoor unit 20 (compressor 21, four-way switching valve 22, outdoor fan 37, and expansion valves 24a, 24b corresponding to the indoor units 30a, 30b, 30c, 30d, 30e. , 24c, 24d, 24e) has an outdoor unit control unit 26 and a determination unit 27.
  • the outdoor unit control unit 26 includes a microcomputer, a memory, and the like provided for controlling the outdoor unit 20, and is connected to each indoor unit control unit 33a, 33b, 33c, 33d, and 33e. Control signals and the like can be exchanged via the transmission line 61.
  • the outdoor unit control unit 26 includes a determination unit 27, a timer T1, a timer T2, and a counter C.
  • the timer T1 measures the elapsed time from the start of the partial operation mode described later, and the timer T2 measures the elapsed time from the start of the distribution operation.
  • the counter C measures the number of thermo-offs within the time measured by the timer T1.
  • the determination unit 27 determines whether or not the number of thermo-offs counted within the time measured by the timer T1 has been counted a predetermined number or more within a predetermined time.
  • the four-way switching valve 22 is switched to the state shown by the solid line in FIG. That is, the discharge side of the compressor 21 is connected to one end side of the outdoor heat exchanger 23, and the suction side of the compressor 21 is connected to the five gas side refrigerant communication pipes 16.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 flows into the outdoor heat exchanger 23 via the four-way switching valve 22, and the outdoor heat exchanger. In 23, it is condensed and liquefied by heat exchange with outdoor air.
  • the liquid refrigerant liquefied by the outdoor heat exchanger 23 is divided into five, and the five divided flows pass through the five expansion valves 24 according to their opening degrees.
  • the liquid refrigerant that has passed through the five expansion valves 24 of the liquid pipe connection port 15 expands by passing through the expansion valve 24, passes through the five liquid-side refrigerant communication pipes 17, and reaches the five indoor units 30. Each flows in.
  • the liquid refrigerant evaporates by exchanging heat with indoor air in the indoor heat exchangers 31a, 31b, 31c, 31d, and 31e.
  • the indoor air cooled by the evaporation of the refrigerant is blown out into the room by the indoor fan 32 (32a to 32e) to cool the room.
  • the gas refrigerant evaporated and vaporized in the indoor heat exchanger 31 returns to the outdoor refrigerant circuit 12 of the outdoor unit 20 from the gas pipe connection port 14 through the gas side refrigerant communication pipe 16.
  • the gas refrigerant that has returned to the outdoor refrigerant circuit 12 is drawn into the compressor 21 from the four-way switching valve 22.
  • the gas refrigerant passes through the gas side refrigerant communication pipe 16 and flows into the indoor heat exchanger 31 of each indoor unit 30, and is condensed and liquefied by heat exchange with the indoor air in the indoor heat exchanger 31. .
  • the indoor air heated by the condensation of the refrigerant is blown into the room by the indoor fan 32 to heat the room.
  • the liquid refrigerant liquefied in the indoor heat exchanger 31 returns to the outdoor refrigerant circuit 12 of the outdoor unit 20 from the liquid pipe connection port 15 through the liquid side refrigerant communication pipe 17.
  • the liquid refrigerant that has returned to the outdoor unit 20 passes through the five expansion valves 24 at the liquid pipe connection port 15 and expands.
  • the liquid refrigerant that has passed through the expansion valve 24 merges at the liquid pipe connection port 15, passes through the liquid side closing valve 19, and flows into the outdoor heat exchanger 23.
  • the liquid refrigerant that has flowed into the outdoor heat exchanger 23 evaporates by exchanging heat with outdoor air in the outdoor heat exchanger 23.
  • the gas refrigerant evaporated and evaporated in the outdoor heat exchanger 23 is sucked into the compressor 21 from the four-way switching valve 22.
  • the time chart of FIG. 3 shows (a) timer T1, (b) timer T2, (c) operation of the compressor 21, and (d) expansion valve in order from the top with the time t as the horizontal axis during heating operation.
  • 24a shows the opening / closing of 24a, (e) the measured temperature of the temperature sensor 34a, (f) the opening / closing of the expansion valve 24b, (g) the target rotational speed of the indoor fan 32b, and (h) the measured temperature of the temperature sensor 34b.
  • the indoor unit 30a is the first indoor unit
  • the indoor unit 30b is the second indoor unit
  • only the indoor unit 30a with the rated operating capacity of 2.2 kW performs the heating operation. Is suspended.
  • the minimum driving capability of the outdoor unit 20 is 2.2 kW.
  • the heating operation is described in the present embodiment, the operation described later is applicable also in the cooling operation.
  • the user sets the set temperature to 22 ° C.
  • the driving capability required for the indoor unit 30a is lower than the rated driving capability of 2.2 kW.
  • the indoor unit control unit 33a of the indoor unit 30a sends a capability request signal (set temperature and room temperature) to the outdoor unit 20.
  • the transmission of the signal requesting the rotational speed of the compressor 21 of the outdoor unit 20 according to the difference between the two is stopped, the air conditioning operation of the indoor unit 30a is stopped, and the thermo-off state is entered (tTH1).
  • the capability request signal is always transmitted from the indoor unit 30a to the outdoor unit 20 except when the thermo is off.
  • the stop of the air-conditioning operation means that the heat exchange in the indoor heat exchanger 31a is substantially stopped, and is executed by not allowing the refrigerant to flow into the indoor heat exchanger 31a or by reducing it to a minimum. .
  • the presence / absence of operation of the indoor fan 32a is not included in the definition of thermo-off. Stopping the air conditioning operation of the indoor unit 30a at the time of the thermo-off is performed by changing the opening degree of the expansion valve 24a corresponding to the indoor unit 30a. For example, the expansion valve 24a is fully closed or has an extremely small opening degree.
  • the outdoor unit control unit 26 of the outdoor unit 20 starts the operation of the outdoor unit 20 based on the control signal from the indoor unit 30a, and the timer T1 measures time from the time when the indoor unit 30a starts to operate. To start. Then, if the reception of the capability request signal from the indoor unit 30a stops during the operation of the outdoor unit 20, the outdoor unit control unit 26 determines that the indoor unit 30a has shifted to the thermo-off state, and sets the number of thermo-offs to once. Count.
  • thermo-off state occurs, the flow of the refrigerant to the indoor unit 30a stops, and heat exchange between the refrigerant and the indoor air in the indoor heat exchanger 31a is not performed. If this state continues, the room in which the indoor unit 30a is installed The room temperature decreases. When the room temperature detected by the indoor temperature sensor 34a becomes lower than the set temperature by a predetermined temperature (for example, 1 ° C.) or more, the indoor unit control unit 33a releases the thermo-off state and drives the indoor fan 32a. Then, transmission of the capability request signal to the outdoor unit 20 is resumed.
  • a predetermined temperature for example, 1 ° C.
  • the outdoor unit control unit 26 counts the number of thermo-offs from the time when the operation of the indoor unit 30a is started, and stores it in the counter C. Then, this number is equal to or more than a predetermined number of times within a predetermined time measured by the timer T1 from the time when the operation of the indoor unit 30a is started, for example, 5 times within 30 minutes after starting the operation of the indoor unit 30a (tTH1 to tTH5).
  • the outdoor unit control unit 26 determines that the indoor unit 30a is frequently shifted to the thermo-off state, that is, the operation load of the indoor unit 30a is small with respect to the minimum operation capability of the outdoor unit 20, In order to make the capacity required for the unit 30a equal to or greater than the minimum operation capacity of the outdoor unit 20, it is determined that the distribution operation start condition for forcibly operating the stopped indoor unit is satisfied.
  • the outdoor unit control unit 26 resets the time measured from the time when the operation of the indoor unit 30a is started ( Timer reset). If the indoor unit 30b set in advance by the user for the distribution operation is stopped, the distribution operation is started (tST).
  • the distribution operation setting is to select an indoor unit that is forcibly started when the operation load of the indoor unit receiving the operation command is small in the partial operation mode.
  • the distribution operation setting is set by the user using the remote controller 35 from among the other indoor units 30 connected to the same multi-room air conditioner 10 for each indoor unit 30. If the indoor unit 30 to be set for the distribution operation is an indoor unit installed in a room that is scheduled to be used soon, the distribution operation can be combined with the preheating operation.
  • the indoor unit control unit 33b of the indoor unit 30b that has received the distribution operation start signal drives the indoor fan 32b at the minimum rotation speed.
  • the outdoor unit control unit 26 starts the distribution operation of the indoor unit 30b with the expansion valve 24b set to an opening corresponding to the degree of refrigerant supercooling at the outlet of the indoor heat exchanger 31b.
  • the indoor unit control unit 33a reads the room temperature from the indoor temperature sensor 34a.
  • the outdoor unit control unit 26 of the outdoor unit 20 starts time measurement from the time point when the indoor unit 30b starts operation by the timer T2. After a predetermined time has elapsed from the start of time measurement by the timer T2, for example, after 5 minutes, the room temperature is read again from the indoor temperature sensor 34a, and the operating load of the indoor unit 30a is estimated from the amount of room temperature change per predetermined time.
  • the room temperature change amount is larger than a predetermined value, for example, + 2 ° C., the target rotational speed of the indoor fan 32b of the indoor unit 30b is increased by one stage because the capacity distribution amount to the indoor unit 30b is insufficient.
  • the machine 30a By increasing the rotational speed of the indoor fan 32b of the indoor unit 30b, the amount of heat exchange in the indoor heat exchanger 31b is increased, and the opening of the expansion valve 24b is increased, thereby increasing the capacity distribution amount to the indoor unit 30b.
  • the machine 30a is operated with the optimum driving ability, and the entry into the thermo-off state is avoided.
  • the change in room temperature is smaller than 2 ° C, it is determined whether the room temperature is rising, constant, or decreasing. If the room temperature has decreased, it is determined that the capacity distribution to the indoor unit 30b is excessive, and the target rotational speed of the indoor fan 32b is decreased. On the other hand, if the room temperature rises or is constant, it is determined that optimum capacity distribution is being performed, and the distribution operation is continued without changing the target rotational speed of the indoor fan 32b.
  • the indoor unit 30a is operated with the optimum operating capacity, The number of times that the indoor unit 30a shifts to the thermo-off state is decreased.
  • the room temperature is measured by the room temperature sensor 34a at the start of the distribution operation mode (tS1) and at the first timer reset (tR1), and the difference between these room temperatures is calculated.
  • the indoor temperature change amount is + 3 ° C., which is larger than the predetermined value + 2 ° C. Therefore, assuming that the capacity distribution amount to the indoor unit 30b is insufficient, the target rotational speed of the indoor fan 32b is increased by one step, and the time measurement of the timer T2 is started again. Subsequently, the measurement is performed by the room temperature sensor 34a at the start (tS2) and end (tR2) of the second measurement of the timer T2. Since the temperature change amount here is + 2.5 ° C.
  • the target rotational speed of the indoor fan 32b is further increased by one step, and the distribution operation is continued.
  • the timer T2 measurement is started for the third time after the start of the distribution operation, and the indoor temperature change amount at the start (tS3) and the end (tR3) is calculated.
  • the indoor temperature change amount is + 1 ° C., which is smaller than + 2 ° C. Since the indoor temperature change amount is slightly increased, the distribution operation is continued without changing the rotation speed of the indoor fan 32b, assuming that the optimum capacity distribution can be performed.
  • the target rotational speed of the indoor fan 32b is increased stepwise in accordance with the balance between the load and capacity, and the ability to distribute to the indoor unit 30b is increased, so that the indoor temperature change measured by the temperature sensor 34a is moderate. And thermo-off is suppressed.
  • the difference ⁇ D between the room temperature and the set temperature in the indoor unit 30a is measured. If ⁇ D is larger than a predetermined value ⁇ (for example, 5 ° C.), it is determined that the capacity supply to the indoor unit 30a is too small. Then, the distribution operation to the indoor unit 30b is stopped. When the distribution operation stop signal is transmitted, the expansion valve 24b is closed, the indoor fan 32b is stopped, and the distribution operation is ended. In addition, when the user performs a remote control operation on the indoor unit 30b, a distribution operation stop signal is transmitted to the indoor unit 30b, and the operation is switched to give priority to the instruction from the user.
  • a predetermined value ⁇ for example, 5 ° C.
  • the indoor unit 30b when the room temperature detected by the indoor temperature sensor 34b becomes higher than the set temperature set in the indoor unit 30b, that is, when the distribution operation is used as the preheating operation. When the capacity demand in the indoor unit 30b is satisfied, the distribution operation is terminated.
  • the required operating capacity of the single indoor unit 30a that is operating is smaller than the minimum operating capacity of the outdoor unit 20, and the indoor unit 30b that has stopped operating is used.
  • the indoor unit 30a is operated with the optimum capability by adjusting the operation capability of the indoor unit 30b, and the shift to / release of the thermo-off state is reduced.
  • processing other than the flowcharts of FIGS. 4 to 5A and 5B for example, switching of the four-way switching valve 22 in the outdoor unit 20 and the rotational speed of the compressor 21 corresponding to the set temperature designated by the user and the rotational speed thereof.
  • the description of other processing in the general outdoor unit 20 such as adjustment of the opening degree of the expansion valve 24 according to is omitted.
  • the timer T1 is used to measure the “predetermined time” when counting how many times the transition to / release from the thermo-off state is performed within a predetermined time.
  • thermo-off condition it is determined whether or not the thermo-off condition is satisfied (ST3). If the condition is satisfied, transmission of the capability request signal to the outdoor unit 20 is stopped, and capability supply to the indoor unit 30a is stopped (ST4). 1 is added to the number of thermo-offs of the counter C (ST5). In the thermo-off condition determination, ⁇ D is determined to satisfy the thermo-off condition by being smaller than a predetermined value. After the compressor 21 is stopped, it is determined whether the thermo-on condition is satisfied (ST6), and the thermo-off state is continued until this condition is satisfied.
  • thermo-on condition When the thermo-on condition is satisfied, the transmission of the capability request signal is resumed, the operation of the indoor unit 30a is started (ST7), and it is confirmed whether the thermo-off counter C has reached the predetermined number of times (a times) (ST8). . If the thermo-off counter C is equal to or greater than the predetermined number, after resetting the timer T1 (ST9), it is confirmed whether the indoor unit 30 (in this case, the indoor unit 30b) set in the distribution room is stopped (ST10). If it is stopped, the distribution operation mode is started. When the indoor unit 30b is in operation, the process returns to ST2 and starts the timer T1 again.
  • thermo-off condition is not satisfied in ST3, it is confirmed whether the time measurement X minutes of the timer T1 is completed (ST12). If not completed, the process returns to step S3 and repeatedly confirms whether the thermo-off condition is satisfied. . If the timer T1 is over, the timer T1 is reset (ST13), the thermo-off counter C is reset (ST14), and then the process returns to step S2 to continue the partial operation mode.
  • the timer T2 starts.
  • a difference D1 between the set temperature after the start of the distribution operation in the indoor unit 30a and the room temperature is calculated, and it is confirmed whether it is smaller than the predetermined value ⁇ .
  • D1 is smaller than the predetermined value ⁇
  • the distribution operation is continued.
  • the difference D2 between the set temperature of the indoor unit 30b and the room temperature is measured, and the room temperature does not reach the set temperature of the indoor unit 30b, that is, D2> 0. Continue the distribution operation.
  • steps are steps for determining the distribution operation end condition. If the conditions are not satisfied, the process proceeds to steps (ST21 to ST24) for terminating the distribution operation described later. Also, when the indoor unit 30b is operated by remote control (ST20), the distribution operation mode is ended.
  • the process proceeds to the operation capacity adjustment process (ST25 to ST34) of the indoor unit 30b.
  • the indoor temperature c1 of the indoor unit 30a is measured (ST25). In the driving ability adjustment processing (ST25 to ST34), it is determined whether or not Y minutes (5 minutes in the present embodiment) have elapsed by the timer T2 (ST26), and if it has elapsed, the timer T2 is reset (ST27).
  • the room temperature c2 of the indoor unit 30a is measured (ST28), and it is determined whether the indoor temperature change amount c2-c1 of the indoor unit 30a is equal to or larger than a predetermined value ⁇ (2 ° C. or higher in this embodiment) during the measurement time by the timer T2. (ST29).
  • the current rotation speed of the indoor fan 32b is the upper limit value (ST30).
  • the target rotational speed is increased by a predetermined value (for example, 200 rpm).
  • ST31 If it is the upper limit value, the target rotational speed of the indoor fan 32b is maintained and the distribution operation is continued. If the room temperature change is not greater than or equal to the predetermined value ⁇ in ST29, it is determined whether the indoor temperature change amount c2-c1 is less than 0 ° C. (ST32).
  • the room temperature of the indoor unit 30a is lowered, and it is determined whether the rotational speed of the indoor fan 32b is the lower limit value because the capacity distribution to the indoor unit 30b is excessive ( If it is not the lower limit value, the target rotational speed of the indoor fan 32b is decreased by a predetermined value (for example, 200 rpm) (ST34).
  • a predetermined value for example, 200 rpm
  • the operation capacity required for the indoor unit 30 during operation is lower than the minimum required operation capacity of the outdoor unit 20, and the indoor unit 30 is stopped.
  • the fan rotation speed of the indoor unit 30b is adjusted according to the room temperature change amount of the indoor unit 30a. By doing so, the ability to distribute to the indoor unit 30b and the driving capability supplied to the indoor unit 30a are adjusted, the indoor unit 30a is operated with the optimum capability, and the transition to / release from the thermo-off state is reduced. Can do.
  • Modification (6-1) Modification A 6A and 6B are flowcharts of the distribution operation in the modified example A.
  • FIG. 1 is a diagrammatic representation of Modification (6-1) Modification A 6A and 6B .
  • Modification A takes an embodiment different from the above-described embodiment in the capacity adjustment process (ST125 to ST136) of the indoor unit 30b during the distribution operation.
  • the distribution operation end condition determination process and the distribution operation end process (ST111, ST115 to ST120, ST121 to ST124) after the start of the distribution operation are the same as ST11, ST15 to ST20 and ST21 to ST24 of the above embodiment, respectively. Is omitted.
  • the timer T3 is a timer that measures a time different from that of the timer T2, and is used to count how many times the indoor unit 30a is stopped / restarted, that is, how many times the transition to / release from the thermo-off state is performed within a predetermined time. Used to measure “predetermined time”.
  • thermo-off condition If the thermo-off condition is satisfied, the expansion valve 24a is closed, the indoor fan 32a is stopped, the capacity supply to the indoor unit 30a is stopped (ST126), and the number of thermo-offs of the counter C is incremented by 1 (ST127). After stopping the supply of capacity to the indoor unit 30a, it is determined whether the thermo-on condition is satisfied (ST128), and the thermo-off state is continued until the thermo-on condition is satisfied. When the thermo-on condition is satisfied, capacity supply to the indoor unit 30a is started (ST129), and the process returns to ST117.
  • the completion of the time measurement Z for the timer T3 is confirmed (ST130). If the time measurement is completed, the timer T3 is reset (ST131), and the number of thermo-offs is 0. It is determined whether the current time is (ST132). If the number of thermo-offs is 0, the capacity supplied to the indoor unit 30a in the capacity distribution of the current distribution operation becomes suitable for the indoor load, and the transition / release to the thermo-off state is reduced. Then, the thermo-off counter C is reset, and the distribution operation is continued while maintaining the rotation speed of the indoor fan 32b.
  • thermo-off counter C After resetting the thermo-off counter C (ST134), it is determined whether the rotational speed of the indoor fan 32b of the indoor unit 30b is the upper limit value (ST135). If it is not the upper limit, the number of rotations of the indoor fan 32b of the indoor unit 30b is increased by 200 rpm (ST136), the process returns to step ST117, and the distribution operation is continued.
  • Modification A in the distribution capacity adjustment in the distribution operation mode, the distribution capacity adjustment is performed after completion of the time measurement of the timer T3. Therefore, it is possible to adjust the distribution capacity without being influenced by a small indoor temperature change in which the indoor unit 30a is installed.
  • (6-2) Modification B In the above embodiment, an example is shown in which five indoor units 30a, 30b, 30c, 30d, and 30e are connected to one outdoor unit 20, but the gas pipe connection port 14 and the liquid pipe connection port 15 are shown. If the setting of the number of liquid pipe connection ports and the number of gas pipe connection ports is changed, the upper limit value of the number of indoor units 30 that can be connected can be changed. Further, in the air conditioner according to the present disclosure, the number of outdoor units 20 and indoor units 30 is not limited to the present embodiment, and a plurality of indoor units 30 and one or a plurality of outdoor units 20 are refrigerants. It only has to share the system.
  • the indoor unit 30b set in advance and stopped by the user is selected as the indoor unit that performs the distribution operation.
  • the operation time of each indoor unit 30 in the predetermined period is learned and distributed.
  • An air conditioner that is expected to start operation near the time when the operation start condition is satisfied and is stopped may be selected. In this way, the distribution operation can be used as a preliminary operation without bothering the user.
  • the stopped indoor unit may be set for distributed operation. By doing so, it is possible to prevent the user from feeling uncomfortable by starting the distribution operation against the intention of the user in the room.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A multi-room air-conditioning device equipped with: an outdoor unit (20); multiple indoor units (30); and a control unit (60) for controlling the operation of the outdoor unit (20) and the indoor units (30). The outdoor unit (20) has an outdoor heat exchanger (23). The multiple indoor units (30) each have an indoor heat exchanger (31). The outdoor heat exchanger (23) and the indoor heat exchangers (31) are connected by a refrigerant circuit (11). Multiple expansion valves (24) are arranged in the refrigerant circuit (11) in correspondence with the indoor heat exchangers (31). In a partial operation mode in which a first indoor unit that has received an operation command is operated and a second indoor unit that has not received an operation command is not operated, if the operational load of the first indoor unit is small the control unit (60) moves to a distributed operation mode. In the distributed operation mode the first indoor unit is operated and the second indoor unit also is operated. In the distributed operation mode the control unit adjusts the capacity of the second indoor unit in accordance with the operational load of the first indoor unit.

Description

多室型空気調和装置Multi-room air conditioner
 本開示は、室外機に複数台の室内機が冷媒回路で接続された多室型空気調和装置に関する。 This disclosure relates to a multi-room air conditioner in which a plurality of indoor units are connected to an outdoor unit by a refrigerant circuit.
 従来、多室型空気調和装置では、実際に運転される室内機の台数や、個々の室内機で要求される運転能力によって、室外機に備えられた圧縮機の負荷が大きく変動する。一方で、圧縮機の能力、つまり室外機の運転能力は一定範囲内に限定されるため、各室内機での運転能力も、室外機の運転能力の範囲に合わせて制約される。 Conventionally, in a multi-room type air conditioner, the load on the compressor provided in the outdoor unit varies greatly depending on the number of indoor units actually operated and the operation capacity required for each indoor unit. On the other hand, since the capacity of the compressor, that is, the operating capacity of the outdoor unit is limited within a certain range, the operating capacity of each indoor unit is also restricted in accordance with the range of the operating capacity of the outdoor unit.
 例えば、多室型空気調和装置が暖房運転を行っている状況で、運転している室内機が1台であり、この室内機から要求される運転能力が室外機の最小運転能力を下回る場合は、室外機が最小運転能力で運転しても、当該室内機に対して供給される運転能力が過剰となり、室温が設定温度以上となることがある。 For example, when the multi-room air conditioner is in a heating operation and there is only one indoor unit in operation, and the operating capacity required from this indoor unit is below the minimum operating capacity of the outdoor unit, Even if the outdoor unit is operated with the minimum operating capacity, the operating capacity supplied to the indoor unit may be excessive, and the room temperature may be higher than the set temperature.
 設定温度に対し室温が所定温度(例えば2℃)以上高くなると、室内機は室外機への能力要求信号(設定温度と室温との差に応じた室外機の圧縮機回転数を要求する信号)の送信を停止するとともに、空調運転を停止する、所謂サーモオフ状態になる。一方、室外機は、全ての室内機が空調運転を停止して能力要求信号を受信しなくなると、圧縮機を停止する。サーモオフ状態となった後、室温が所定温度、例えば、設定温度まで低下すると、室内機ではサーモオフ状態が解除されて室外機へ能力要求信号を送信し、これを受けた室外機は、圧縮機を所定の回転数で起動する。 When the room temperature becomes higher than the set temperature by a predetermined temperature (for example, 2 ° C) or more, the indoor unit requests a capacity request signal to the outdoor unit (a signal that requests the compressor speed of the outdoor unit according to the difference between the set temperature and the room temperature). Is stopped, and the air conditioning operation is stopped. On the other hand, the outdoor unit stops the compressor when all the indoor units stop the air conditioning operation and do not receive the capacity request signal. When the room temperature decreases to a predetermined temperature, for example, a set temperature after the thermo-off state, the indoor unit cancels the thermo-off state and transmits a capability request signal to the outdoor unit. Start up at a predetermined speed.
 室内機で必要とされる運転能力に対し室外機の運転能力が過剰となると、上述したように室温が設定温度以上となることがあるため、サーモオフ状態への移行/解除が頻繁に行われる虞がある。この場合、サーモオフ状態が解除される度に、圧縮機が所定の回転数で起動するので、消費電力が高くなる、室温が安定しない、という問題があった。 As described above, if the outdoor unit has an excessive driving capacity compared to that required by the indoor unit, the room temperature may exceed the set temperature as described above. There is. In this case, each time the thermo-off state is released, the compressor starts at a predetermined rotation speed, so that there are problems that power consumption increases and the room temperature is not stable.
 以上説明した問題を解決するものとして、例えば、特許文献1(特開2012-193901)では、運転している室内機が要求する運転能力が、室外機の最小運転能力を下回っている場合は、運転していない室内機の室内膨張弁を開いて当該室内機を強制的に運転する。特許文献1(特開2012-193901)に記載の多室型空気調和装置では、このような制御によって、室外機における必要最小運転能力を確保し、室外機を最小運転能力で運転しつづけるようにして、サーモオフ状態へ移行/解除が頻繁に行われることを抑制している。 In order to solve the above-described problem, for example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2012-193901), when the operation capability required by the operating indoor unit is lower than the minimum operation capability of the outdoor unit, The indoor expansion valve of the indoor unit that is not in operation is opened to forcibly operate the indoor unit. In the multi-room air conditioner described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2012-193901), by such control, the necessary minimum operating capacity of the outdoor unit is ensured, and the outdoor unit is continuously operated with the minimum operating capacity. Thus, frequent transition / cancellation to the thermo-off state is suppressed.
 しかしながら、上述した多室型空気調和装置では、停止している室内機を強制的に運転した際の2つの室内機の能力調整については考慮されておらず、最適な運転がなされないという虞があった。 However, in the above-described multi-room air conditioner, the capacity adjustment of the two indoor units when the stopped indoor unit is forcibly operated is not taken into consideration, and there is a possibility that the optimum operation will not be performed. there were.
 本開示は上述した問題を解決するものであって、多室型空気調和装置において、運転していない室内機を強制的に運転した際に、当該室内機を適切な運転能力に調整することを目的とする。 The present disclosure solves the above-described problem, and in a multi-room air conditioner, when an indoor unit that is not in operation is forcibly operated, the indoor unit is adjusted to an appropriate operating capacity. Objective.
 第1の多室型空気調和装置は、室外機と、複数の室内機と、室外機および室内機の運転制御を行う制御部と、を備える多室型空気調和装置である。室外機は、室外熱交換器を有している。複数の室内機は、それぞれ室内熱交換器を有している。室外熱交換器と室内熱換器は、冷媒回路で接続されている。室内熱交換器に対応して、複数の膨張弁が冷媒回路に配置されている。制御部は、運転指令を受けた第1室内機を運転させ、運転指令を受けていない第2室内機を停止させる一部運転モードにおいて、第1室内機の運転負荷が小さい場合に、分配運転モードに移行する。分配運転モードでは、第1室内機を運転させ、さらに第2室内機を運転させる。分配運転モードにおいて、制御部は、第1室内機の運転負荷に応じて、第2室内機の能力を調整する。 The first multi-room air conditioner is a multi-room air conditioner including an outdoor unit, a plurality of indoor units, and a control unit that controls the operation of the outdoor unit and the indoor unit. The outdoor unit has an outdoor heat exchanger. Each of the plurality of indoor units has an indoor heat exchanger. The outdoor heat exchanger and the indoor heat exchanger are connected by a refrigerant circuit. A plurality of expansion valves are arranged in the refrigerant circuit corresponding to the indoor heat exchanger. In the partial operation mode in which the control unit operates the first indoor unit that has received the operation command and stops the second indoor unit that has not received the operation command, the distribution operation is performed when the operation load of the first indoor unit is small. Enter mode. In the distribution operation mode, the first indoor unit is operated, and the second indoor unit is further operated. In the distribution operation mode, the control unit adjusts the capacity of the second indoor unit according to the operation load of the first indoor unit.
 第2の多室型空気調和装置は、第1の多室型空気調和装置であって、分配運転モードにおいて、制御部は、第1室内機の運転負荷が所定値よりも小さい場合に、第2室内機の能力を増大させる。 The second multi-room air conditioner is a first multi-room air conditioner, and in the distribution operation mode, the control unit performs the first operation when the operation load of the first indoor unit is smaller than a predetermined value. 2 Increase the capacity of indoor units.
 第3の多室型空気調和装置は、第1の多室型空気調和装置であって、制御部は、第1室内機の目標温度と室内温度との差が所定値よりも小さい場合に、第2室内機の能力を増大させる。 The third multi-room air conditioner is a first multi-room air conditioner, and the controller is configured such that when the difference between the target temperature of the first indoor unit and the room temperature is smaller than a predetermined value, Increase the capacity of the second indoor unit.
 第4の多室型空気調和装置は、第1の多室型空気調和装置であって、制御部は、第1室内機の空調空間における室内温度変化が所定値よりも小さい場合に、第2室内機の能力を増大させる。 The fourth multi-room air conditioner is the first multi-room air conditioner, and the control unit determines that the second multi-room air conditioner Increase the capacity of indoor units.
 第5の多室型空気調和装置は、第1~第3のいずれかの多室型空気調和装置であって、制御部は、第1室内機のサーモオフの単位時間あたりの発生回数が所定回数以上となった場合に、第2室内機の能力を増大させる。第1室内機のサーモオフとは、第1室内機の目標温度と室内温度との差が所定値以下になって、第1室内機への能力供給が停止されることである。 The fifth multi-room air conditioner is any one of the first to third multi-room air conditioners, and the control unit generates a predetermined number of thermo-off times per unit time of the first indoor unit. When it becomes above, the capability of the second indoor unit is increased. The thermo-off of the first indoor unit means that the supply of capacity to the first indoor unit is stopped when the difference between the target temperature of the first indoor unit and the room temperature becomes a predetermined value or less.
 第6の多室型空気調和装置は、第1~第5いずれかの多室型空気調和装置であって、室内機は、室内熱交換器によって調和された空気を室内に送り出す室内ファンをさらに備える。制御部は、第2室内機の室内ファンの回転数を増加させることによって、第2室内機の能力を増大させる。 The sixth multi-room air conditioner is any one of the first to fifth multi-room air conditioners, and the indoor unit further includes an indoor fan that sends the air conditioned by the indoor heat exchanger into the room. Prepare. The control unit increases the capacity of the second indoor unit by increasing the number of rotations of the indoor fan of the second indoor unit.
 第7の多室型空気調和装置は、第1~第5いずれかの多室型空気調和装置であって、制御部は、膨張弁の開度を調整可能である。制御部は、第2室内機に対応する膨張弁の開度を大きくすることによって、第2室内機の運転能力を増大させる。 The seventh multi-chamber air conditioner is any one of the first to fifth multi-chamber air conditioners, and the controller can adjust the opening of the expansion valve. The control unit increases the operating capacity of the second indoor unit by increasing the opening of the expansion valve corresponding to the second indoor unit.
 第1の多室型空気調和装置では、第1室内機を運転させ、一部運転モードで停止指令を受けていた第2室内機を運転させる分配運転モードで運転する際に、第1室内機の運転負荷に応じて、第2室内機へ分配する能力を調整する。すなわち、分配運転モードに移行してもなお、第1室内機へ供給される運転能力が過剰な場合には、第2室内機へ分配する運転能力を増加させ、第1室内機へ供給される運転能力が不足している場合には、第2室内機へ分配する運転能力を減少させる。このため、第1室内機を最適な運転能力で運転させることができる。 In the first multi-room air conditioner, the first indoor unit is operated when the first indoor unit is operated and the second indoor unit that has received the stop command in the partial operation mode is operated in the distributed operation mode. The capacity to be distributed to the second indoor unit is adjusted according to the operation load. That is, when the operation capacity supplied to the first indoor unit is excessive even after shifting to the distribution operation mode, the operation capacity distributed to the second indoor unit is increased and supplied to the first indoor unit. When the driving capacity is insufficient, the driving capacity distributed to the second indoor unit is reduced. For this reason, a 1st indoor unit can be drive | operated by optimal driving capability.
 第2の多室型空気調和装置では、分配運転モードで運転する際に、第1室内機の運転負荷が所定値より小さいときに第2室内機の能力を増大させて、第2室内機へ分配する能力を調整する。すなわち、分配運転モードに移行してもなお、第1室内機へ供給される運転能力が過剰である場合に、第1室内機へ供給される運転能力を第2室内機へ分配するので、第1室内機を最適な運転能力で運転させることができる。 In the second multi-room air conditioner, when the operation is performed in the distribution operation mode, the second indoor unit is increased in capacity when the operation load of the first indoor unit is smaller than a predetermined value, to the second indoor unit. Adjust the ability to distribute. That is, even if the operation mode is shifted to the distribution operation mode, when the operation capacity supplied to the first indoor unit is excessive, the operation capacity supplied to the first indoor unit is distributed to the second indoor unit. One indoor unit can be operated with an optimal driving capability.
 第3の多室型空気調和装置では、分配運転モードで運転する際に、第1室内機の目標温度と室内温度との差が所定値よりも小さい場合に、第2室内機の能力を増大させる。すなわち、分配運転モードに移行してもなお、サーモオフ状態への移行しそうな場合に、その頻度に応じて第2室内機へ分配する運転能力を増加させるため、第1室内機を最適な運転能力で運転させることができる。 In the third multi-room air conditioner, when the operation is performed in the distribution operation mode, if the difference between the target temperature of the first indoor unit and the room temperature is smaller than a predetermined value, the capacity of the second indoor unit is increased. Let That is, even when the operation mode is changed to the distribution operation mode, the operation capacity to be distributed to the second indoor unit is increased according to the frequency when it is likely to enter the thermo-off state. You can drive in.
 第4の多室型空気調和装置では、分配運転モードで運転する際に、第1室内機の空調空間における室温変化量が所定値よりも小さい場合に、第2室内機の能力を増大させる。すなわち、分配運転モードに移行してもなお、第1室内機に供給される運転能力が過剰で室内温度が大きく増減する場合に、第2室内機へ分配する運転能力を増加させるため、第1室内機を最適な運転能力で運転させることができる。 In the fourth multi-room type air conditioner, when the room temperature change amount in the air-conditioned space of the first indoor unit is smaller than a predetermined value when operating in the distribution operation mode, the capacity of the second indoor unit is increased. That is, even if the operation mode is shifted to the distribution operation mode, when the operation capacity supplied to the first indoor unit is excessive and the room temperature greatly increases or decreases, the operation capacity to be distributed to the second indoor unit is increased. The indoor unit can be operated with the optimum driving ability.
 第5の多室型空気調和装置では、分配運転モードで運転する際に、第1室内機のサーモオフの単位時間あたりの発生回数が所定回数以上となった場合に、第2室内機の能力を増大させる。すなわち、分配運転モードに移行してもなお、サーモオフ状態への移行/解除が所定頻度で発生する場合に、第2室内機へ分配する運転能力を増加させるため、第1室内機を最適な運転能力で運転させることができる。 In the fifth multi-room air conditioner, when the number of occurrences per unit time of the thermo-off of the first indoor unit exceeds a predetermined number when operating in the distribution operation mode, the capacity of the second indoor unit is increased. Increase. That is, even when the operation mode is changed to the distribution operation mode, when the operation / release to the thermo-off state occurs at a predetermined frequency, the first indoor unit is operated optimally in order to increase the operation capacity to be distributed to the second indoor unit. You can drive with your ability.
 第6の多室型空気調和装置では、分配運転モードでの運転時に第2室内機の能力を増大させる際に、第2室内機の室内ファンの回転数を増加させることによって第2室内機の能力を増大させる。このため、簡易な制御によって第2室内機の能力を増大させることができる。 In the sixth multi-room air conditioner, when the capacity of the second indoor unit is increased during operation in the distribution operation mode, the rotation speed of the indoor fan of the second indoor unit is increased to increase the capacity of the second indoor unit. Increase capacity. For this reason, the capacity | capacitance of a 2nd indoor unit can be increased by simple control.
 第7の多室型空気調和装置は、分配運転モードでの運転時に第2室内機の能力を増大させる際に、膨張弁の開度を大きくすることによって第2室内機の運転能力を増大させる。このため、簡易な制御によって第2室内機の能力を増大させることができる。 The seventh multi-room air conditioner increases the operating capacity of the second indoor unit by increasing the opening of the expansion valve when increasing the capacity of the second indoor unit during operation in the distribution operation mode. . For this reason, the capacity | capacitance of a 2nd indoor unit can be increased by simple control.
本実施形態の多室型空気調和機の冷凍サイクルを示す構成図である。It is a block diagram which shows the refrigerating cycle of the multi-chamber type air conditioner of this embodiment. 本実施形態の多室型空気調和機の機能ブロック図である。It is a functional block diagram of the multi-room air conditioner of this embodiment. 本実施形態の一部運転モードから分配運転モードにおけるタイムチャートである。It is a time chart in partial operation mode from distribution operation mode of this embodiment. 本実施形態の一部運転モードにおける制御フローチャートである。It is a control flowchart in the partial operation mode of this embodiment. 本実施形態の分配運転モードにおける制御フローチャート(前半)である。It is a control flowchart (first half) in distribution operation mode of this embodiment. 本実施形態の分配運転モードにおける制御フローチャート(後半)である。It is a control flowchart (second half) in the distribution operation mode of this embodiment. 変形例Aにおける分配運転モードの制御フローチャート(前半)である。10 is a control flowchart (first half) of a distribution operation mode in Modification A. 変形例Aにおける分配運転モードの制御フローチャート(後半)である。10 is a control flowchart (second half) of a distribution operation mode in Modification A.
 以下、多室型空気調和装置の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、1台の室外機に5台の室内機が冷媒回路で接続されている多室型空気調和装置を例に挙げて説明する。尚、多室型空気調和装置は、以下の実施形態に限定されることはなく、本開示の主旨を逸脱しない範囲で種々変形することが可能である。 Hereinafter, an embodiment of a multi-room air conditioner will be described in detail with reference to the accompanying drawings. As an embodiment, a multi-room type air conditioner in which five indoor units are connected to one outdoor unit by a refrigerant circuit will be described as an example. The multi-room air conditioner is not limited to the following embodiments, and can be variously modified without departing from the gist of the present disclosure.
 <第1実施形態>
 (1)空気調和装置の構成
 (1-1)冷媒回路
 図1に、多室型空気調和装置10の全体構成の冷媒回路図を示す。多室型空気調和装置10は、5台の室内機30と、これらの室内機30a,30b,30c,30d,30eと冷媒系統を共有する1台の室外機20と、を備えている。
<First Embodiment>
(1) Configuration of Air Conditioner (1-1) Refrigerant Circuit FIG. 1 shows a refrigerant circuit diagram of the overall configuration of the multi-chamber air conditioner 10. The multi-room air conditioner 10 includes five indoor units 30 and one outdoor unit 20 that shares a refrigerant system with these indoor units 30a, 30b, 30c, 30d, and 30e.
 多室型空気調和装置10の冷媒回路11は、主として、圧縮機21、四路切換弁22、室外熱交換器23、室内熱交換器31a,31b,31c,31d,31e及び膨張弁24a,24b,24c,24d,24eが接続されたものである。この冷媒回路11では、R32冷媒を用いて蒸気圧縮式の冷凍サイクルが行なわれる。冷媒回路11は、室外機20の中に形成される室外側冷媒回路12と室内機30の中に形成される室内側冷媒回路13とが接続された構成になっている。室外側冷媒回路12には、圧縮機21、四路切換弁22、室外熱交換器23、5つの膨張弁24が含まれる。室内側冷媒回路13には、室内熱交換器31が含まれる。 The refrigerant circuit 11 of the multi-room air conditioner 10 mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, indoor heat exchangers 31a, 31b, 31c, 31d, 31e, and expansion valves 24a, 24b. , 24c, 24d, and 24e are connected. In the refrigerant circuit 11, a vapor compression refrigeration cycle is performed using R32 refrigerant. The refrigerant circuit 11 has a configuration in which an outdoor refrigerant circuit 12 formed in the outdoor unit 20 and an indoor refrigerant circuit 13 formed in the indoor unit 30 are connected. The outdoor refrigerant circuit 12 includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, and five expansion valves 24. The indoor refrigerant circuit 13 includes an indoor heat exchanger 31.
 室外機20の室外側冷媒回路12と室内機30の室内側冷媒回路13との間は、5本のガス側冷媒連絡配管16及び5本の液側冷媒連絡配管17により接続されている。5本のガス側冷媒連絡配管16は、室外機20のガス管接続ポート14に接続され、5本の液側冷媒連絡配管17は、室外機20の液管接続ポート15に接続される。ガス管接続ポート14は、5本のガス側冷媒連絡配管16を1本のガス管に合流させまとめて、その1本のガス管が、図1の実線で示す通り、ガス側閉鎖弁18を介して四路切換弁22に接続されている。この四路切換弁22の他端は、室外熱交換器23の一端側に接続されている。液管接続ポート15では、5本の液側冷媒連絡配管17がそれぞれ5つの膨張弁24の一端側に接続されて、5つの膨張弁24の他端側を1本の液管に合流させている。5つの膨張弁24の他端側に接続される1本の液管は、液側閉鎖弁19を介して室外熱交換器23の他端側に接続されている。また、四路切換弁22の一端側には、圧縮機21の吐出側が四接続され、四路切換弁22の他端には圧縮機21の吸入側が接続されている。 The outdoor refrigerant circuit 12 of the outdoor unit 20 and the indoor refrigerant circuit 13 of the indoor unit 30 are connected by five gas side refrigerant communication pipes 16 and five liquid side refrigerant communication pipes 17. The five gas side refrigerant communication pipes 16 are connected to the gas pipe connection port 14 of the outdoor unit 20, and the five liquid side refrigerant communication pipes 17 are connected to the liquid pipe connection port 15 of the outdoor unit 20. The gas pipe connection port 14 combines the five gas side refrigerant communication pipes 16 into one gas pipe, and the one gas pipe connects the gas side shut-off valve 18 as shown by the solid line in FIG. To the four-way switching valve 22. The other end of the four-way switching valve 22 is connected to one end side of the outdoor heat exchanger 23. In the liquid pipe connection port 15, five liquid side refrigerant communication pipes 17 are respectively connected to one end side of the five expansion valves 24, and the other end side of the five expansion valves 24 is joined to one liquid pipe. Yes. One liquid pipe connected to the other end side of the five expansion valves 24 is connected to the other end side of the outdoor heat exchanger 23 via the liquid side closing valve 19. Further, four discharge sides of the compressor 21 are connected to one end side of the four-way switching valve 22, and the suction side of the compressor 21 is connected to the other end of the four-way switching valve 22.
 (2)多室型空気調和装置10の詳細構成
 (2-1)室内機30a,30b,30c,30d,30e
 複数台の室内機30a,30b,30c,30d,30eは、建物のそれぞれ別の室内に設置されている。室内機30a,30b,30c,30d,30eはそれぞれ、室内熱交換器31a,31b,31c,31d,31e、室内ファン32a,32b,32c,32d,32eを備えている。なお、室内機30a,30b,30c,30d,30eの構成は全て同じであるため、以下の説明では、室内機30aの構成について説明を行い、その他の室内機30b,30c,30d,30eについては説明を省略する。
(2) Detailed configuration of multi-room air conditioner 10 (2-1) Indoor units 30a, 30b, 30c, 30d, 30e
The plurality of indoor units 30a, 30b, 30c, 30d, and 30e are installed in different rooms of the building. The indoor units 30a, 30b, 30c, 30d, and 30e include indoor heat exchangers 31a, 31b, 31c, 31d, and 31e, and indoor fans 32a, 32b, 32c, 32d, and 32e, respectively. Since the configurations of the indoor units 30a, 30b, 30c, 30d, and 30e are all the same, in the following description, the configuration of the indoor unit 30a will be described, and the other indoor units 30b, 30c, 30d, and 30e will be described. Description is omitted.
 図2は、多室型空気調和装置10が備える制御部60の制御ブロック図である。制御部60は後述する室内機制御部33と室外機制御部26とを含み、空気調和機全体の運転を制御する。室内機30aは、室内機制御部33aを有している。室内機制御部33aは、室内機30aを構成する各部(室内ファン32a、室内温度センサ34a)の動作を制御する。そして、室内機制御部33aは、室内機30aの制御を行うために設けられたマイクロコンピュータやメモリ等を有しており、室内機30aを個別に操作するためのリモコン35aとの間で、制御信号等のやりとりを行ったり、室外機20との間で伝送線61を介して制御信号等のやりとりを行ったりすることができるようになっている。 FIG. 2 is a control block diagram of the control unit 60 provided in the multi-room air conditioner 10. The control unit 60 includes an indoor unit control unit 33 and an outdoor unit control unit 26, which will be described later, and controls the operation of the entire air conditioner. The indoor unit 30a has an indoor unit control unit 33a. The indoor unit control unit 33a controls the operation of each unit (the indoor fan 32a and the indoor temperature sensor 34a) constituting the indoor unit 30a. And the indoor unit control part 33a has a microcomputer, memory, etc. provided in order to control the indoor unit 30a, and controls between the remote control 35a for operating the indoor unit 30a separately. Signals and the like can be exchanged, and control signals and the like can be exchanged with the outdoor unit 20 via the transmission line 61.
 (2-2)室外機20
 図1のとおり、室外機20は、各室内機30a,30b,30c,30d,30eと冷媒回路を介して接続されており、圧縮機21や室外熱交換器23等から構成される室外側冷媒回路12を形成している。 
(2-2) Outdoor unit 20
As shown in FIG. 1, the outdoor unit 20 is connected to each of the indoor units 30a, 30b, 30c, 30d, and 30e via a refrigerant circuit, and is composed of a compressor 21, an outdoor heat exchanger 23, and the like. A circuit 12 is formed.
 また、図2に示すように、室外機20は、室外機制御基板28を備えている。室外機制御基板28は、室外機20を構成する各部(圧縮機21、四路切換弁22、室外ファン37、及び各室内機30a,30b,30c,30d,30eに対応する膨張弁24a,24b,24c,24d,24e)の動作を制御する室外機制御部26および、判定部27を有している。そして、室外機制御部26は、室外機20の制御を行うために設けられたマイクロコンピュータやメモリ等を有しており、各室内機制御部33a,33b,33c,33d,33eとの間で伝送線61を介して制御信号等のやりとりを行うことができるようになっている。室外機制御部26は、判定部27、タイマT1およびタイマT2、カウンタCを有している。タイマT1は、後述する一部運転モード開始からの経過時間を計測し、タイマT2は分配運転開始からの経過時間を計測する。カウンタCは、タイマT1により計測された時間内におけるサーモオフ回数を計測する。判定部27は、タイマT1により計測された時間内にカウントされるサーモオフ回数が所定時間内に所定回数以上カウントされているか否か、を判定する。 Further, as shown in FIG. 2, the outdoor unit 20 includes an outdoor unit control board 28. The outdoor unit control board 28 includes components constituting the outdoor unit 20 (compressor 21, four-way switching valve 22, outdoor fan 37, and expansion valves 24a, 24b corresponding to the indoor units 30a, 30b, 30c, 30d, 30e. , 24c, 24d, 24e) has an outdoor unit control unit 26 and a determination unit 27. The outdoor unit control unit 26 includes a microcomputer, a memory, and the like provided for controlling the outdoor unit 20, and is connected to each indoor unit control unit 33a, 33b, 33c, 33d, and 33e. Control signals and the like can be exchanged via the transmission line 61. The outdoor unit control unit 26 includes a determination unit 27, a timer T1, a timer T2, and a counter C. The timer T1 measures the elapsed time from the start of the partial operation mode described later, and the timer T2 measures the elapsed time from the start of the distribution operation. The counter C measures the number of thermo-offs within the time measured by the timer T1. The determination unit 27 determines whether or not the number of thermo-offs counted within the time measured by the timer T1 has been counted a predetermined number or more within a predetermined time.
 (3)多室型空気調和装置の動作
 次に、この多室型空気調和装置10の冷房運転時及び暖房運転時の動作について説明する。
(3) Operation of Multi-Room Air Conditioner Next, the operation of the multi-room air conditioner 10 during cooling operation and heating operation will be described.
 (3-1)冷房運転
 まず、冷房運転時は、四路切換弁22が、図1において実線で示す状態に切り換えられる。つまり、圧縮機21の吐出側が室外熱交換器23の一端側に接続され、圧縮機21の吸入側が5本のガス側冷媒連絡配管16に接続される。このような冷房運転時の冷媒回路11の回路構成により、圧縮機21から吐出された高温高圧のガス冷媒は、四路切換弁22を介して室外熱交換器23に流入し、室外熱交換器23で室外空気と熱交換されることによって凝縮して液化する。室外熱交換器23で液化した液冷媒は5つに分流され、5つの分流が5つの膨張弁24それぞれを、その開度に応じて通過する。液管接続ポート15の5つの膨張弁24を通過した液冷媒は、膨張弁24を通過することで膨張し、それぞれ5本の液側冷媒連絡配管17を通って、5台の室内機30にそれぞれ流入する。
(3-1) Cooling Operation First, during the cooling operation, the four-way switching valve 22 is switched to the state shown by the solid line in FIG. That is, the discharge side of the compressor 21 is connected to one end side of the outdoor heat exchanger 23, and the suction side of the compressor 21 is connected to the five gas side refrigerant communication pipes 16. With such a circuit configuration of the refrigerant circuit 11 during the cooling operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 flows into the outdoor heat exchanger 23 via the four-way switching valve 22, and the outdoor heat exchanger. In 23, it is condensed and liquefied by heat exchange with outdoor air. The liquid refrigerant liquefied by the outdoor heat exchanger 23 is divided into five, and the five divided flows pass through the five expansion valves 24 according to their opening degrees. The liquid refrigerant that has passed through the five expansion valves 24 of the liquid pipe connection port 15 expands by passing through the expansion valve 24, passes through the five liquid-side refrigerant communication pipes 17, and reaches the five indoor units 30. Each flows in.
 各室内機30a,30b,30c,30d,30eにおいて、液冷媒は、室内熱交換器31a,31b,31c,31d,31eで室内空気と熱交換して蒸発する。そして、冷媒の蒸発によって冷却された室内空気は、室内ファン32(32a~32e)によって室内へと吹き出され、室内を冷房する。また、室内熱交換器31で蒸発して気化したガス冷媒は、ガス側冷媒連絡配管16を通って、ガス管接続ポート14から室外機20の室外側冷媒回路12に戻る。室外側冷媒回路12に戻ったガス冷媒は、四路切換弁22から圧縮機21に吸入される。 In each of the indoor units 30a, 30b, 30c, 30d, and 30e, the liquid refrigerant evaporates by exchanging heat with indoor air in the indoor heat exchangers 31a, 31b, 31c, 31d, and 31e. The indoor air cooled by the evaporation of the refrigerant is blown out into the room by the indoor fan 32 (32a to 32e) to cool the room. The gas refrigerant evaporated and vaporized in the indoor heat exchanger 31 returns to the outdoor refrigerant circuit 12 of the outdoor unit 20 from the gas pipe connection port 14 through the gas side refrigerant communication pipe 16. The gas refrigerant that has returned to the outdoor refrigerant circuit 12 is drawn into the compressor 21 from the four-way switching valve 22.
 (3-2)暖房運転
 一方、暖房運転時は、四路切換弁22が、図1において破線で示す状態に切り換えられる。つまり、圧縮機21の吐出側が5本のガス側冷媒連絡配管16に接続され、圧縮機21の吸入側が室外熱交換器23の一端側に接続される。このような暖房運転時の冷媒回路11の回路構成により、圧縮機21から吐出された高温高圧のガス冷媒は、四路切換弁22を介して、ガス管接続ポート14からガス側冷媒連絡配管16に流出する。そして、ガス冷媒は、ガス側冷媒連絡配管16を通って、各室内機30の室内熱交換器31に流入し、室内熱交換器31で室内空気と熱交換されることによって凝縮して液化する。冷媒の凝縮によって加熱された室内空気は、室内ファン32によって室内へと吹き出され、室内を暖房する。室内熱交換器31において液化した液冷媒は、それぞれ液側冷媒連絡配管17を通って、液管接続ポート15から室外機20の室外側冷媒回路12に戻る。室外機20に戻った液冷媒は、液管接続ポート15において5つの膨張弁24を通過して膨張する。膨張弁24を通過した液冷媒は、液管接続ポート15で合流して、液側閉鎖弁19を通過して室外熱交換器23に流入する。室外熱交換器23に流入した液冷媒は、室外熱交換器23で室外空気と熱交換して蒸発する。室外熱交換器23で蒸発して気化したガス冷媒は、四路切換弁22から圧縮機21に吸入される。
(3-2) Heating Operation On the other hand, during the heating operation, the four-way switching valve 22 is switched to the state indicated by the broken line in FIG. That is, the discharge side of the compressor 21 is connected to the five gas side refrigerant communication pipes 16, and the suction side of the compressor 21 is connected to one end side of the outdoor heat exchanger 23. Due to the circuit configuration of the refrigerant circuit 11 during such heating operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 passes through the four-way switching valve 22 from the gas pipe connection port 14 to the gas side refrigerant communication pipe 16. To leak. The gas refrigerant passes through the gas side refrigerant communication pipe 16 and flows into the indoor heat exchanger 31 of each indoor unit 30, and is condensed and liquefied by heat exchange with the indoor air in the indoor heat exchanger 31. . The indoor air heated by the condensation of the refrigerant is blown into the room by the indoor fan 32 to heat the room. The liquid refrigerant liquefied in the indoor heat exchanger 31 returns to the outdoor refrigerant circuit 12 of the outdoor unit 20 from the liquid pipe connection port 15 through the liquid side refrigerant communication pipe 17. The liquid refrigerant that has returned to the outdoor unit 20 passes through the five expansion valves 24 at the liquid pipe connection port 15 and expands. The liquid refrigerant that has passed through the expansion valve 24 merges at the liquid pipe connection port 15, passes through the liquid side closing valve 19, and flows into the outdoor heat exchanger 23. The liquid refrigerant that has flowed into the outdoor heat exchanger 23 evaporates by exchanging heat with outdoor air in the outdoor heat exchanger 23. The gas refrigerant evaporated and evaporated in the outdoor heat exchanger 23 is sucked into the compressor 21 from the four-way switching valve 22.
 (4-1)一部運転モードの概要
 次に、図3に基づいて、本実施例の多室型空気調和装置10における、一部運転モードおよび分配運転モードの動作の具体例を説明する。図3のタイムチャートは、暖房運転時について、時間tを横軸にして、上から順に、(a)タイマT1、(b)タイマT2、(c)圧縮機21の運転、(d)膨張弁24aの開閉、(e)温度センサ34aの測定温度、(f)膨張弁24bの開閉、(g)室内ファン32bの目標回転数、(h)温度センサ34bの測定温度を示している。尚、以下の説明では、室内機30aを第1室内機、室内機30bを第2室内機とし、定格運転能力が2.2kWの室内機30aのみが暖房運転を行っており、他の室内機は停止中である。また、室外機20の最小運転能力が2.2kWであるとして説明する。なお、本実施例では暖房運転について説明しているが、冷房運転においても後述の運転は適用可能である。
(4-1) Outline of Partial Operation Mode Next, specific examples of operations in the partial operation mode and the distribution operation mode in the multi-room air conditioner 10 of the present embodiment will be described based on FIG. The time chart of FIG. 3 shows (a) timer T1, (b) timer T2, (c) operation of the compressor 21, and (d) expansion valve in order from the top with the time t as the horizontal axis during heating operation. 24a shows the opening / closing of 24a, (e) the measured temperature of the temperature sensor 34a, (f) the opening / closing of the expansion valve 24b, (g) the target rotational speed of the indoor fan 32b, and (h) the measured temperature of the temperature sensor 34b. In the following description, the indoor unit 30a is the first indoor unit, the indoor unit 30b is the second indoor unit, and only the indoor unit 30a with the rated operating capacity of 2.2 kW performs the heating operation. Is suspended. Moreover, it demonstrates as the minimum driving capability of the outdoor unit 20 is 2.2 kW. In addition, although the heating operation is described in the present embodiment, the operation described later is applicable also in the cooling operation.
 室内機30aにおいて、使用者が設定温度を22℃と設定している。暖房運転を開始して、室内温度センサ34aで検出した温度が設定温度である22℃となれば、室内機30aで必要となる運転能力は定格運転能力である2.2kWより低くなる。 In the indoor unit 30a, the user sets the set temperature to 22 ° C. When the heating operation is started and the temperature detected by the indoor temperature sensor 34a reaches the set temperature of 22 ° C., the driving capability required for the indoor unit 30a is lower than the rated driving capability of 2.2 kW.
 室外機20の最小運転能力は2.2kWであるため、室内機30aで必要な運転能力より大きな運転能力が、室内機30aに供給される。このような状態となれば、室温が設定温度を越えてしまう。室内機30aの室内機制御部33aは、室内温度センサ34aで検出した室温が設定温度に比べて所定温度(例えば、2℃)以上高くなると、室外機20に対し能力要求信号(設定温度と室温との差に応じた室外機20の圧縮機21の回転数を要求する信号)の送信を停止し、室内機30aの空調運転を停止して、サーモオフ状態に移行する(tTH1)。能力要求信号は、上記サーモオフ時以外は、常時室内機30aから室外機20に対して送信されているものである。なお、空調運転の停止とは、室内熱交換器31aでの熱交換を実質的に停止させることを指し、室内熱交換器31aへ冷媒を流入させないこと、あるいは極小まで減少させることによって実行される。室内ファン32aの運転の有無は、サーモオフの定義に含まないものとする。サーモオフ時の室内機30aの空調運転停止は、室内機30aに対応する膨張弁24aの開度変更によって行われ、例えば、膨張弁24aを全閉状態あるいは極めて小さい開度にすることを意味する。 Since the minimum operating capacity of the outdoor unit 20 is 2.2 kW, an operating capacity larger than that required for the indoor unit 30a is supplied to the indoor unit 30a. In such a state, the room temperature exceeds the set temperature. When the room temperature detected by the indoor temperature sensor 34a is higher than a set temperature by a predetermined temperature (for example, 2 ° C.) or more, the indoor unit control unit 33a of the indoor unit 30a sends a capability request signal (set temperature and room temperature) to the outdoor unit 20. The transmission of the signal requesting the rotational speed of the compressor 21 of the outdoor unit 20 according to the difference between the two is stopped, the air conditioning operation of the indoor unit 30a is stopped, and the thermo-off state is entered (tTH1). The capability request signal is always transmitted from the indoor unit 30a to the outdoor unit 20 except when the thermo is off. The stop of the air-conditioning operation means that the heat exchange in the indoor heat exchanger 31a is substantially stopped, and is executed by not allowing the refrigerant to flow into the indoor heat exchanger 31a or by reducing it to a minimum. . The presence / absence of operation of the indoor fan 32a is not included in the definition of thermo-off. Stopping the air conditioning operation of the indoor unit 30a at the time of the thermo-off is performed by changing the opening degree of the expansion valve 24a corresponding to the indoor unit 30a. For example, the expansion valve 24a is fully closed or has an extremely small opening degree.
 一方、室外機20の室外機制御部26は、室内機30aからの制御信号に基づいて室外機20の運転を開始するとともに、タイマT1が、室内機30aが運転を開始した時点からの時間計測を開始する。そして、室外機制御部26は、室外機20の運転中に室内機30aからの能力要求信号の受信が停止すれば、室内機30aがサーモオフ状態に移行したと判断し、サーモオフ回数を1回とカウントする。 On the other hand, the outdoor unit control unit 26 of the outdoor unit 20 starts the operation of the outdoor unit 20 based on the control signal from the indoor unit 30a, and the timer T1 measures time from the time when the indoor unit 30a starts to operate. To start. Then, if the reception of the capability request signal from the indoor unit 30a stops during the operation of the outdoor unit 20, the outdoor unit control unit 26 determines that the indoor unit 30a has shifted to the thermo-off state, and sets the number of thermo-offs to once. Count.
 サーモオフ状態となれば、室内機30aへの冷媒の流れが停止し、室内熱交換器31aにおける冷媒と室内空気との熱交換が行われなくなり、この状態が続くと室内機30aが設置された部屋の室温が低下する。そして、室内温度センサ34aで検出した室温が設定温度に比べて所定温度(例えば、1℃)以上低くなると、室内機制御部33aは、サーモオフ状態を解除し、室内ファン32aを駆動する。そして、室外機20への能力要求信号の送信を再開する。 If the thermo-off state occurs, the flow of the refrigerant to the indoor unit 30a stops, and heat exchange between the refrigerant and the indoor air in the indoor heat exchanger 31a is not performed. If this state continues, the room in which the indoor unit 30a is installed The room temperature decreases. When the room temperature detected by the indoor temperature sensor 34a becomes lower than the set temperature by a predetermined temperature (for example, 1 ° C.) or more, the indoor unit control unit 33a releases the thermo-off state and drives the indoor fan 32a. Then, transmission of the capability request signal to the outdoor unit 20 is resumed.
 室外機制御部26は、室内機30aの運転を開始した時点からのサーモオフ回数をカウントし、カウンタCに記憶する。そして、この回数が室内機30aの運転を開始した時点からタイマT1により計測した所定時間内に所定回数以上、例えば、室内機30aの運転を開始してから30分間に5回(tTH1~tTH5)以上であれば、室外機制御部26は、室内機30aが頻繁にサーモオフ状態に移行している、つまり、室外機20の最小運転能力に対し室内機30aの運転負荷が小さいと判断し、室内機30aで必要とされる能力を室外機20の最小運転能力以上とするために、停止している室内機を強制的に運転する分配運転の開始条件が成立したと判断する。 The outdoor unit control unit 26 counts the number of thermo-offs from the time when the operation of the indoor unit 30a is started, and stores it in the counter C. Then, this number is equal to or more than a predetermined number of times within a predetermined time measured by the timer T1 from the time when the operation of the indoor unit 30a is started, for example, 5 times within 30 minutes after starting the operation of the indoor unit 30a (tTH1 to tTH5). If it is above, the outdoor unit control unit 26 determines that the indoor unit 30a is frequently shifted to the thermo-off state, that is, the operation load of the indoor unit 30a is small with respect to the minimum operation capability of the outdoor unit 20, In order to make the capacity required for the unit 30a equal to or greater than the minimum operation capacity of the outdoor unit 20, it is determined that the distribution operation start condition for forcibly operating the stopped indoor unit is satisfied.
 室内機30aの運転を開始してから30分間にサーモオフ回数が5回以上となった場合は、室外機制御部26は、室内機30aの運転を開始した時点から計測していた時間をリセット(タイマリセット)する。そして、使用者によって予め分配運転設定されていた室内機30bが停止中であれば、分配運転を開始させる(tST)。分配運転設定は、一部運転モードにおいて、運転指令を受けていた室内機の運転負荷が小さい場合に強制的に運転を開始させる室内機を選択することである。分配運転設定は、個々の室内機30に対して、同じ多室型空気調和装置10に接続される他の室内機30の中から、使用者がリモコン35を用いて設定する。分配運転設定する室内機30が、近いうちに利用が予定されている部屋に設置される室内機であれば、分配運転を予熱運転と兼ねることができる。 When the number of thermo-offs is 5 or more in 30 minutes after starting the operation of the indoor unit 30a, the outdoor unit control unit 26 resets the time measured from the time when the operation of the indoor unit 30a is started ( Timer reset). If the indoor unit 30b set in advance by the user for the distribution operation is stopped, the distribution operation is started (tST). The distribution operation setting is to select an indoor unit that is forcibly started when the operation load of the indoor unit receiving the operation command is small in the partial operation mode. The distribution operation setting is set by the user using the remote controller 35 from among the other indoor units 30 connected to the same multi-room air conditioner 10 for each indoor unit 30. If the indoor unit 30 to be set for the distribution operation is an indoor unit installed in a room that is scheduled to be used soon, the distribution operation can be combined with the preheating operation.
 (4-2)分配運転モードの概要
 分配運転開始信号を受信した室内機30bの室内機制御部33bは、室内ファン32bを最小回転数で駆動する。それと共に、室外機制御部26は、膨張弁24bを、室内熱交換器31b出口での冷媒過冷却度に応じた開度として、室内機30bの分配運転を開始する。
(4-2) Overview of Distribution Operation Mode The indoor unit control unit 33b of the indoor unit 30b that has received the distribution operation start signal drives the indoor fan 32b at the minimum rotation speed. At the same time, the outdoor unit control unit 26 starts the distribution operation of the indoor unit 30b with the expansion valve 24b set to an opening corresponding to the degree of refrigerant supercooling at the outlet of the indoor heat exchanger 31b.
 分配運転を開始すると、室内機制御部33aは、室内温度センサ34aから室温を読み取る。室外機20の室外機制御部26は、タイマT2によって、室内機30bが運転を開始した時点から時間計測を開始する。タイマT2による時間計測開始から所定時間経過後、例えば5分後に再度室内温度センサ34aから室温を読み取り、この所定時間あたりの室温変化量から室内機30aの運転負荷を推定する。室温変化量が所定値、例えば+2℃よりも大きい場合、室内機30bへの能力分配量が不足しているとして、室内機30bの室内ファン32bの目標回転数を一段階上昇させる。室内機30bの室内ファン32bの回転数上昇により、室内熱交換器31bおける熱交換量を増加させ、膨張弁24bの開度が大きくなることで室内機30bへの能力分配量が増加し、室内機30aを最適な運転能力で運転し、サーモオフ状態への突入を回避する。 When the distribution operation is started, the indoor unit control unit 33a reads the room temperature from the indoor temperature sensor 34a. The outdoor unit control unit 26 of the outdoor unit 20 starts time measurement from the time point when the indoor unit 30b starts operation by the timer T2. After a predetermined time has elapsed from the start of time measurement by the timer T2, for example, after 5 minutes, the room temperature is read again from the indoor temperature sensor 34a, and the operating load of the indoor unit 30a is estimated from the amount of room temperature change per predetermined time. When the room temperature change amount is larger than a predetermined value, for example, + 2 ° C., the target rotational speed of the indoor fan 32b of the indoor unit 30b is increased by one stage because the capacity distribution amount to the indoor unit 30b is insufficient. By increasing the rotational speed of the indoor fan 32b of the indoor unit 30b, the amount of heat exchange in the indoor heat exchanger 31b is increased, and the opening of the expansion valve 24b is increased, thereby increasing the capacity distribution amount to the indoor unit 30b. The machine 30a is operated with the optimum driving ability, and the entry into the thermo-off state is avoided.
 一方で、室温変化量が2℃よりも小さい場合は、室温が上昇あるいは一定であるか、それとも減少しているか、を判定する。室温が減少していれば、室内機30bへの能力分配が過大であったとして、室内ファン32bの目標回転数を減少させる。一方で、室温が上昇あるいは一定であれば、最適な能力分配が行えているとして、室内ファン32bの目標回転数は変化させずに、分配運転を継続する。このように、室温変化量に応じて室内ファン32bの目標回転数を変化させ、室内機30bへの能力分配量を調整することを繰り返すことによって、室内機30aを最適な運転能力で運転し、室内機30aがサーモオフ状態に移行する回数を減少させる。 On the other hand, if the change in room temperature is smaller than 2 ° C, it is determined whether the room temperature is rising, constant, or decreasing. If the room temperature has decreased, it is determined that the capacity distribution to the indoor unit 30b is excessive, and the target rotational speed of the indoor fan 32b is decreased. On the other hand, if the room temperature rises or is constant, it is determined that optimum capacity distribution is being performed, and the distribution operation is continued without changing the target rotational speed of the indoor fan 32b. In this way, by changing the target rotational speed of the indoor fan 32b in accordance with the amount of change in the room temperature and repeatedly adjusting the capacity distribution amount to the indoor unit 30b, the indoor unit 30a is operated with the optimum operating capacity, The number of times that the indoor unit 30a shifts to the thermo-off state is decreased.
 図3のタイムチャートにおいては、分配運転モード開始時(tS1)と1度目のタイマリセット時(tR1)において室内温度センサ34aによって室内温度を測定し、これらの室内温度の差を算出する。ここでは室内温度変化量が+3℃であり、所定値の+2℃よりも大きい。このため、室内機30bへの能力分配量が不足しているとして、室内ファン32bの目標回転数を一段階上昇させ、再びタイマT2の時間計測を開始する。続いて、タイマT2の2度目の計測開始時(tS2)と終了時(tR2)において室内温度センサ34aによって測定する。ここでの温度変化量は+2.5℃であり、+2℃よりも大きいため、室内ファン32bの目標回転数をさらに一段階上昇させて、分配運転を継続する。分配運転開始後3度目のタイマT2計測が開始され、この開始時(tS3)と終了時(tR3)における室内温度変化量を算出する。室内温度変化量は+1℃であり、+2℃よりも小さい。室内温度変化量が微増であるため、最適な能力分配が行えているとして、室内ファン32bの回転数は変化させずに、分配運転を継続する。このように、室内ファン32bの目標回転数を負荷と能力のバランスに応じて段階的に上げ、室内機30bへ分配する能力を増加させることで、温度センサ34aによって測定される室内温度変化が緩やかになり、サーモオフが抑制される。 In the time chart of FIG. 3, the room temperature is measured by the room temperature sensor 34a at the start of the distribution operation mode (tS1) and at the first timer reset (tR1), and the difference between these room temperatures is calculated. Here, the indoor temperature change amount is + 3 ° C., which is larger than the predetermined value + 2 ° C. Therefore, assuming that the capacity distribution amount to the indoor unit 30b is insufficient, the target rotational speed of the indoor fan 32b is increased by one step, and the time measurement of the timer T2 is started again. Subsequently, the measurement is performed by the room temperature sensor 34a at the start (tS2) and end (tR2) of the second measurement of the timer T2. Since the temperature change amount here is + 2.5 ° C. and is larger than + 2 ° C., the target rotational speed of the indoor fan 32b is further increased by one step, and the distribution operation is continued. The timer T2 measurement is started for the third time after the start of the distribution operation, and the indoor temperature change amount at the start (tS3) and the end (tR3) is calculated. The indoor temperature change amount is + 1 ° C., which is smaller than + 2 ° C. Since the indoor temperature change amount is slightly increased, the distribution operation is continued without changing the rotation speed of the indoor fan 32b, assuming that the optimum capacity distribution can be performed. As described above, the target rotational speed of the indoor fan 32b is increased stepwise in accordance with the balance between the load and capacity, and the ability to distribute to the indoor unit 30b is increased, so that the indoor temperature change measured by the temperature sensor 34a is moderate. And thermo-off is suppressed.
 また、分配運転開始後に室内機30aにおける室温と設定温度の差ΔDを測定し、ΔDが所定値α(例えば、5℃)より大きい場合は、室内機30aへの能力供給が過小であると判断し、室内機30bへの分配運転を停止する。分配運転停止信号を送信すると、膨張弁24bを閉めるとともに、室内ファン32bを停止させ、分配運転を終了させる。また、室内機30bに対して使用者からリモコン操作があった場合には、室内機30bに分配運転停止信号を送信し、使用者からの指令を優先した運転に切り替える。 Further, after the distribution operation is started, the difference ΔD between the room temperature and the set temperature in the indoor unit 30a is measured. If ΔD is larger than a predetermined value α (for example, 5 ° C.), it is determined that the capacity supply to the indoor unit 30a is too small. Then, the distribution operation to the indoor unit 30b is stopped. When the distribution operation stop signal is transmitted, the expansion valve 24b is closed, the indoor fan 32b is stopped, and the distribution operation is ended. In addition, when the user performs a remote control operation on the indoor unit 30b, a distribution operation stop signal is transmitted to the indoor unit 30b, and the operation is switched to give priority to the instruction from the user.
 上述した終了条件以外にも室内機30bにおいて、室内温度センサ34bで検出した室温が、室内機30bに設定されている設定温度よりも高くなったとき、つまり分配運転を予熱運転として利用する場合に室内機30bにおける能力需要が満たされたとき、分配運転を終了させる。 In addition to the above-described termination conditions, in the indoor unit 30b, when the room temperature detected by the indoor temperature sensor 34b becomes higher than the set temperature set in the indoor unit 30b, that is, when the distribution operation is used as the preheating operation. When the capacity demand in the indoor unit 30b is satisfied, the distribution operation is terminated.
 以上説明した多室型空気調和装置10では、室外機20の最小運転能力に対し、運転している1台の室内機30aで必要な運転能力が小さく、運転を停止している室内機30bで分配運転する場合において、室内機30bの運転能力を調整することによって、室内機30aを最適な能力で運転し、サーモオフ状態移行/解除が行われることを減少させる。 In the multi-room air conditioner 10 described above, the required operating capacity of the single indoor unit 30a that is operating is smaller than the minimum operating capacity of the outdoor unit 20, and the indoor unit 30b that has stopped operating is used. In the case of the distributed operation, the indoor unit 30a is operated with the optimum capability by adjusting the operation capability of the indoor unit 30b, and the shift to / release of the thermo-off state is reduced.
 (5)フローチャートを用いた各運転モードの説明
 次に、図4~図5Aおよび図5Bに示すフローチャートを用いて、多室型空気調和装置10での処理の流れについて説明する。図4のフローチャートは、5台の室内機30a~30eのうち、いずれか1台の室内機が運転している状態における、室外機20の室外機制御部26での処理の流れを説明するものであり、STはステップを表し、これに続く数字はステップの番号を表している。
(5) Explanation of each operation mode using flowchart Next, the flow of processing in the multi-chamber air conditioner 10 will be described using the flowcharts shown in FIGS. 4 to 5A and 5B. The flowchart in FIG. 4 explains the flow of processing in the outdoor unit control unit 26 of the outdoor unit 20 when any one of the five indoor units 30a to 30e is in operation. ST represents a step, and the number following this represents a step number.
 尚、図4~図5Aおよび図5Bのフローチャート以外の処理、例えば、室外機20における四路切換弁22の切り替えや使用者の指示した設定温度に対応した圧縮機21の回転数やその回転数に応じた膨張弁24の開度調整等といった、その他の一般的な室外機20での処理については、説明を省略している。 It should be noted that processing other than the flowcharts of FIGS. 4 to 5A and 5B, for example, switching of the four-way switching valve 22 in the outdoor unit 20 and the rotational speed of the compressor 21 corresponding to the set temperature designated by the user and the rotational speed thereof. The description of other processing in the general outdoor unit 20 such as adjustment of the opening degree of the expansion valve 24 according to is omitted.
 (5-1)一部運転モード
 図4に示すように、まず、室内機30aが運転開始され、一部運転モードが開始され(ST1)、タイマT1をスタート(ST2)する。タイマT1は、所定時間内にサーモオフ状態への移行/解除が何回行われたかをカウントする際に「所定時間」を計測するために用いられる。
(5-1) Partial Operation Mode As shown in FIG. 4, first, the indoor unit 30a is started to operate, the partial operation mode is started (ST1), and the timer T1 is started (ST2). The timer T1 is used to measure the “predetermined time” when counting how many times the transition to / release from the thermo-off state is performed within a predetermined time.
 次に、サーモオフ条件を満たしているかどうかを判定し(ST3)、条件を満たしていれば室外機20への能力要求信号の送信を停止し、室内機30aへの能力供給を停止(ST4)してカウンタCのサーモオフ回数を1加算する(ST5)。サーモオフ条件判定では、ΔDが所定値より小さいことによって、サーモオフ条件を満たしていることを判定する。圧縮機21の停止後は、サーモオン条件が成立するかどうかを判定し(ST6)、この条件が成立するまではサーモオフ状態を継続する。サーモオン条件が成立すると、能力要求信号の送信を再開し、室内機30aの運転を開始させ(ST7)、サーモオフのカウンタCが所定回数(a回)に到達しているかどうかを確認する(ST8)。サーモオフのカウンタCが所定回数以上であれば、タイマT1をリセットした後(ST9)、分配部屋に設定されている室内機30(ここでは室内機30b)が停止中かどうかを確認し(ST10)、停止中であれば分配運転モードを開始する。室内機30bが運転中の場合は、ST2に戻り、再びタイマT1をスタートする。 Next, it is determined whether or not the thermo-off condition is satisfied (ST3). If the condition is satisfied, transmission of the capability request signal to the outdoor unit 20 is stopped, and capability supply to the indoor unit 30a is stopped (ST4). 1 is added to the number of thermo-offs of the counter C (ST5). In the thermo-off condition determination, ΔD is determined to satisfy the thermo-off condition by being smaller than a predetermined value. After the compressor 21 is stopped, it is determined whether the thermo-on condition is satisfied (ST6), and the thermo-off state is continued until this condition is satisfied. When the thermo-on condition is satisfied, the transmission of the capability request signal is resumed, the operation of the indoor unit 30a is started (ST7), and it is confirmed whether the thermo-off counter C has reached the predetermined number of times (a times) (ST8). . If the thermo-off counter C is equal to or greater than the predetermined number, after resetting the timer T1 (ST9), it is confirmed whether the indoor unit 30 (in this case, the indoor unit 30b) set in the distribution room is stopped (ST10). If it is stopped, the distribution operation mode is started. When the indoor unit 30b is in operation, the process returns to ST2 and starts the timer T1 again.
 ST3で、サーモオフ条件を満たしていなければ、タイマT1の時間計測X分が完了しているかを確認し(ST12)、完了していない場合はステップS3に戻り、サーモオフ条件を満たすかを繰り返し確認する。タイマT1がオーバーしている場合は、タイマT1をリセット(ST13)して、サーモオフのカウンタCをリセット(ST14)したうえで、ステップS2へ戻り一部運転モードを継続する。 If the thermo-off condition is not satisfied in ST3, it is confirmed whether the time measurement X minutes of the timer T1 is completed (ST12). If not completed, the process returns to step S3 and repeatedly confirms whether the thermo-off condition is satisfied. . If the timer T1 is over, the timer T1 is reset (ST13), the thermo-off counter C is reset (ST14), and then the process returns to step S2 to continue the partial operation mode.
 (5-2)分配運転モード
 図5A及び図5Bに示すように、分配運転モードが開始される(ST11)と、室内機30bの室内ファン32bが起動(ST15)、室内機30bの膨張弁24bが開いて(ST16)、室内機30bの運転が開始される。
(5-2) Distribution Operation Mode As shown in FIGS. 5A and 5B, when the distribution operation mode is started (ST11), the indoor fan 32b of the indoor unit 30b is activated (ST15), and the expansion valve 24b of the indoor unit 30b is activated. Is opened (ST16), and the operation of the indoor unit 30b is started.
 ST17において、タイマT2がスタートする。ST18では、室内機30aにおける分配運転開始後の設定温度と室内温度との差D1を算出し、所定値αよりも小さいかを確認する。D1が所定値αより小さい場合は、分配運転を継続する。次に、ST19では、室内機30bにおいて、室内機30bの設定温度と室内温度との差D2を計測し、室内温度が室内機30bの設定温度に到達していない場合、つまりD2>0の場合に分配運転を継続する。 In ST17, the timer T2 starts. In ST18, a difference D1 between the set temperature after the start of the distribution operation in the indoor unit 30a and the room temperature is calculated, and it is confirmed whether it is smaller than the predetermined value α. When D1 is smaller than the predetermined value α, the distribution operation is continued. Next, in ST19, in the indoor unit 30b, the difference D2 between the set temperature of the indoor unit 30b and the room temperature is measured, and the room temperature does not reach the set temperature of the indoor unit 30b, that is, D2> 0. Continue the distribution operation.
 これらのステップは、分配運転の終了条件を判定するステップであり、条件を満たさない場合は、後述する分配運転を終了するステップ(ST21~ST24)へ進む。また、室内機30bにリモコン操作があった(ST20)場合も、分配運転モードを終了する。 These steps are steps for determining the distribution operation end condition. If the conditions are not satisfied, the process proceeds to steps (ST21 to ST24) for terminating the distribution operation described later. Also, when the indoor unit 30b is operated by remote control (ST20), the distribution operation mode is ended.
 終了条件判定処理(ST18~ST20)が完了すると、分配運転終了判定があれば、タイマT2をリセット(ST21)し、室内機30bの膨張弁24bを閉じ(ST22)、室内ファン32bを停止し(ST23)、分配運転モードを終了する(ST24)。 When the end condition determination process (ST18 to ST20) is completed, if there is a distribution operation end determination, the timer T2 is reset (ST21), the expansion valve 24b of the indoor unit 30b is closed (ST22), and the indoor fan 32b is stopped ( ST23), the distribution operation mode is terminated (ST24).
 一方で、分配運転終了判定がなければ、室内機30bの運転能力調整処理(ST25~ST34)に移行する。 On the other hand, if the distribution operation end determination is not made, the process proceeds to the operation capacity adjustment process (ST25 to ST34) of the indoor unit 30b.
 室内機30aの室内温度c1を計測する(ST25)する。運転能力調整処理(ST25~ST34)では、タイマT2によってY分(本実施形態では5分)経過したかを判定し(ST26)、経過していればタイマT2をリセットする(ST27)。室内機30aの室温c2を計測し(ST28)、タイマT2による測定時間における、室内機30aの室内温度変化量c2-c1が所定値β以上(本実施例では2℃以上)かどうかを判定する(ST29)。所定値β以上であれば、室内機30bへ分配する運転能力を増加させるために、現在の室内ファン32bの回転数が上限値かどうか確認(ST30)し、上限値でなければ室内ファン32bの目標回転数を所定値だけ(例えば200rpm)増加させ、(ST31)上限値であれば室内ファン32bの目標回転数を維持し、分配運転を継続する。ST29で室温変化が所定値β以上でなければ、室内温度変化量c2-c1が0℃未満かを判定する(ST32)。c2-c1が0℃未満であれば、室内機30aの室温が低下しており、室内機30bへの能力分配が過多であったとして、室内ファン32bの回転数が下限値かどうかを確認(ST33)し、下限値でなければ室内ファン32bの目標回転数を所定値だけ(例えば200rpm)減少させる(ST34)。室内ファン32bの回転数が下限値であった場合はこれ以上室内ファン32b回転数を減少させることができないため、室内機30bの膨張弁24bを閉じ(ST22)、室内ファン32bを停止させて(ST23)、分配運転を終了する(ST24)。 The indoor temperature c1 of the indoor unit 30a is measured (ST25). In the driving ability adjustment processing (ST25 to ST34), it is determined whether or not Y minutes (5 minutes in the present embodiment) have elapsed by the timer T2 (ST26), and if it has elapsed, the timer T2 is reset (ST27). The room temperature c2 of the indoor unit 30a is measured (ST28), and it is determined whether the indoor temperature change amount c2-c1 of the indoor unit 30a is equal to or larger than a predetermined value β (2 ° C. or higher in this embodiment) during the measurement time by the timer T2. (ST29). If it is equal to or greater than the predetermined value β, in order to increase the operating capacity to be distributed to the indoor unit 30b, it is checked whether the current rotation speed of the indoor fan 32b is the upper limit value (ST30). The target rotational speed is increased by a predetermined value (for example, 200 rpm). (ST31) If it is the upper limit value, the target rotational speed of the indoor fan 32b is maintained and the distribution operation is continued. If the room temperature change is not greater than or equal to the predetermined value β in ST29, it is determined whether the indoor temperature change amount c2-c1 is less than 0 ° C. (ST32). If c2-c1 is less than 0 ° C., the room temperature of the indoor unit 30a is lowered, and it is determined whether the rotational speed of the indoor fan 32b is the lower limit value because the capacity distribution to the indoor unit 30b is excessive ( If it is not the lower limit value, the target rotational speed of the indoor fan 32b is decreased by a predetermined value (for example, 200 rpm) (ST34). When the rotation speed of the indoor fan 32b is the lower limit value, the rotation speed of the indoor fan 32b cannot be decreased any more, so the expansion valve 24b of the indoor unit 30b is closed (ST22), and the indoor fan 32b is stopped ( (ST23), the distribution operation is terminated (ST24).
 以上説明したように、多室型空気調和装置10によれば、運転中の室内機30で必要とされる運転能力が室外機20の必要最小運転能力に比べて低く、停止中の室内機30を運転させる分配運転を行った際に、室内機30aの室温変化量に応じて、室内機30bのファン回転数を調整する。このようにすることで、室内機30bへ分配する能力と室内機30aへ供給される運転能力を調整し、室内機30aを最適な能力で運転させ、サーモオフ状態への移行/解除を減少させることができる。 As described above, according to the multi-room air conditioner 10, the operation capacity required for the indoor unit 30 during operation is lower than the minimum required operation capacity of the outdoor unit 20, and the indoor unit 30 is stopped. When the distribution operation is performed, the fan rotation speed of the indoor unit 30b is adjusted according to the room temperature change amount of the indoor unit 30a. By doing so, the ability to distribute to the indoor unit 30b and the driving capability supplied to the indoor unit 30a are adjusted, the indoor unit 30a is operated with the optimum capability, and the transition to / release from the thermo-off state is reduced. Can do.
 (6)変形例
 (6-1)変形例A
 図6A及び図6Bは、変形例Aにおける分配運転のフローチャートである。
(6) Modification (6-1) Modification A
6A and 6B are flowcharts of the distribution operation in the modified example A. FIG.
 変形例Aでは分配運転時の室内機30bの能力調整処理(ST125~ST136)において、上記の実施形態と異なる実施形態を取る。 Modification A takes an embodiment different from the above-described embodiment in the capacity adjustment process (ST125 to ST136) of the indoor unit 30b during the distribution operation.
 分配運転開始後から分配運転終了条件判定処理および分配運転終了処理(ST111、ST115~ST120、ST121~ST124)は、それぞれ上記の実施形態のST11、ST15~ST20およびST21~ST24と同様のため、説明を省略する。ただし、タイマT3はタイマT2とは異なる時間を計測するタイマであり、所定時間内に室内機30aの運転休止/再開、つまりサーモオフ状態への移行/解除が何回行われたかをカウントする際に「所定時間」を計測するために用いられる。分配運転終了条件判定処理および分配運転終了処理が完了すると続いて、室内機30aのサーモオフに関する判定を行う(ST125)。サーモオフ条件を満たせば、膨張弁24aを閉じて室内ファン32aを停止させ、室内機30aへの能力供給を停止(ST126)し、カウンタCのサーモオフ回数を1加算する(ST127)。室内機30aへの能力供給停止後は、サーモオン条件が成立するかどうかを判定し(ST128)、成立するまではサーモオフ状態を継続する。サーモオン条件が成立すると、室内機30aへの能力供給を開始させ(ST129)、ST117へ戻る。 The distribution operation end condition determination process and the distribution operation end process (ST111, ST115 to ST120, ST121 to ST124) after the start of the distribution operation are the same as ST11, ST15 to ST20 and ST21 to ST24 of the above embodiment, respectively. Is omitted. However, the timer T3 is a timer that measures a time different from that of the timer T2, and is used to count how many times the indoor unit 30a is stopped / restarted, that is, how many times the transition to / release from the thermo-off state is performed within a predetermined time. Used to measure “predetermined time”. When the distribution operation end condition determination process and the distribution operation end process are completed, determination regarding the thermo-off of the indoor unit 30a is performed (ST125). If the thermo-off condition is satisfied, the expansion valve 24a is closed, the indoor fan 32a is stopped, the capacity supply to the indoor unit 30a is stopped (ST126), and the number of thermo-offs of the counter C is incremented by 1 (ST127). After stopping the supply of capacity to the indoor unit 30a, it is determined whether the thermo-on condition is satisfied (ST128), and the thermo-off state is continued until the thermo-on condition is satisfied. When the thermo-on condition is satisfied, capacity supply to the indoor unit 30a is started (ST129), and the process returns to ST117.
 ST125で室内機30aがサーモオフ条件を満たさない場合、タイマT3の時間測定Z分の完了を確認し(ST130)、時間測定が完了していればタイマT3をリセット(ST131)し、サーモオフ回数が0回であるかの判定を行う(ST132)。サーモオフ回数が0回であれば、現在の分配運転の能力分配で室内機30aへ供給される能力が室内負荷に対して適したものになり、サーモオフ状態への移行/解除が減少しているので、サーモオフのカウンタCをリセットし、室内ファン32bの回転数を維持したまま分配運転を継続する。一方、サーモオフ回数が1回以上の場合は、現在の分配運転の能力分配が最適とは言えないため、室内機30bの運転能力を調整する必要がある。サーモオフのカウンタCをリセット(ST134)した後、室内機30bの室内ファン32b回転数が上限値かどうかを判定(ST135)する。上限値でなければ室内機30bの室内ファン32b回転数を200rpm増加させて(ST136)ステップST117へ戻り、分配運転を継続する。一方、ST136で室内機30bの室内ファン32b回転数が上限値である場合は、現在の分配運転の能力が最適とは言えないが、室内機30bへの能力分配量を増加させることが出来ないため、運転中の回転数を維持してステップST117へ戻って分配運転を継続する。 If the indoor unit 30a does not satisfy the thermo-off condition in ST125, the completion of the time measurement Z for the timer T3 is confirmed (ST130). If the time measurement is completed, the timer T3 is reset (ST131), and the number of thermo-offs is 0. It is determined whether the current time is (ST132). If the number of thermo-offs is 0, the capacity supplied to the indoor unit 30a in the capacity distribution of the current distribution operation becomes suitable for the indoor load, and the transition / release to the thermo-off state is reduced. Then, the thermo-off counter C is reset, and the distribution operation is continued while maintaining the rotation speed of the indoor fan 32b. On the other hand, when the number of times of thermo-off is one or more, it cannot be said that the capacity distribution of the current distribution operation is optimal, and thus it is necessary to adjust the operation capacity of the indoor unit 30b. After resetting the thermo-off counter C (ST134), it is determined whether the rotational speed of the indoor fan 32b of the indoor unit 30b is the upper limit value (ST135). If it is not the upper limit, the number of rotations of the indoor fan 32b of the indoor unit 30b is increased by 200 rpm (ST136), the process returns to step ST117, and the distribution operation is continued. On the other hand, when the rotation speed of the indoor fan 32b of the indoor unit 30b is the upper limit value in ST136, the current distribution operation capability is not optimal, but the capacity distribution amount to the indoor unit 30b cannot be increased. Therefore, the number of rotations during operation is maintained, and the process returns to step ST117 to continue the distribution operation.
 変形例Aでは、分配運転モードでの分配能力調整において、タイマT3の時間計測完了を待って分配能力調整を行う。そのため、室内機30aの設置された小さな室内温度変動に左右されることなく分配能力調整を行うことができる。 In Modification A, in the distribution capacity adjustment in the distribution operation mode, the distribution capacity adjustment is performed after completion of the time measurement of the timer T3. Therefore, it is possible to adjust the distribution capacity without being influenced by a small indoor temperature change in which the indoor unit 30a is installed.
 なお、変形例Aでは分配運転モードでサーモオフしたとき、室内機30aへの能力供給を停止し、室内機30bの運転は継続させているが、室内機30bへの運転も停止させて圧縮機21を停止させてもよい。 In Modification A, when the thermo-off is performed in the distribution operation mode, the capacity supply to the indoor unit 30a is stopped and the operation of the indoor unit 30b is continued. However, the operation to the indoor unit 30b is also stopped and the compressor 21 is stopped. May be stopped.
 (6-2)変形例B
 上記実施形態では、5台の室内機30a,30b,30c,30d,30eが1台の室外機20に接続されている例が示されているが、ガス管接続ポート14や液管接続ポート15の液管接続口やガス管接続口の数の設定などを変えれば、接続できる室内機30の台数の上限値は変更することができる。また、本開示に係る空気調和装置において、室外機20及び室内機30の台数は本実施形態に限定されるものではなく、複数台の室内機30と1又は複数台の室外機20とが冷媒系統を共有していればよい。
(6-2) Modification B
In the above embodiment, an example is shown in which five indoor units 30a, 30b, 30c, 30d, and 30e are connected to one outdoor unit 20, but the gas pipe connection port 14 and the liquid pipe connection port 15 are shown. If the setting of the number of liquid pipe connection ports and the number of gas pipe connection ports is changed, the upper limit value of the number of indoor units 30 that can be connected can be changed. Further, in the air conditioner according to the present disclosure, the number of outdoor units 20 and indoor units 30 is not limited to the present embodiment, and a plurality of indoor units 30 and one or a plurality of outdoor units 20 are refrigerants. It only has to share the system.
 (6-3)変形例C
 上記実施形態では、膨張弁が室外機側にある場合を示したが、膨張弁は室内機側にあってもよい。また、四路切換弁がある場合を示したが、四路切換弁がない冷房専用空気調和機や暖房専用空気調和機であってもよい。
(6-3) Modification C
Although the case where the expansion valve is on the outdoor unit side is shown in the above embodiment, the expansion valve may be on the indoor unit side. Moreover, although the case where there existed a four-way switching valve was shown, the air conditioner only for cooling and the air conditioner only for heating without a four-way switching valve may be sufficient.
 (6-4)変形例D
 上記実施形態の一部運転モードでは、室内機30a以外の室内機、すなわち室内機30b、室内機30c、室内機30dおよび室内機30eが運転を停止している状態について説明したが、停止している室内機が1台以上あれば、複数台運転していても良い。一部運転モードにおいて2台以上の室内機30が運転しているときに運転負荷が室外機の最小運転能力よりも大きい場合にも、分配運転によって最適な運転を行うことができる。
(6-4) Modification D
In the partial operation mode of the above embodiment, an explanation has been given of a state where the indoor units other than the indoor unit 30a, that is, the indoor unit 30b, the indoor unit 30c, the indoor unit 30d, and the indoor unit 30e are stopped. If there are one or more indoor units, a plurality of units may be operated. Even when two or more indoor units 30 are operating in the partial operation mode, even when the operation load is larger than the minimum operation capability of the outdoor unit, the optimum operation can be performed by the distributed operation.
 (6-5)変形例E
 上記実施形態においては、使用者によって予め設定されて且つ停止している室内機30b、を分配運転を行う室内機として選択したが、それぞれの室内機30の所定期間における運転時間を学習し、分配運転の開始条件が成立した時間付近で運転が開始されることが予想されて、且つ停止している空調機、を選択しても良い。こうすることで、使用者の手を煩わせることなく分配運転を予備運転として利用することができる。
(6-5) Modification E
In the above embodiment, the indoor unit 30b set in advance and stopped by the user is selected as the indoor unit that performs the distribution operation. However, the operation time of each indoor unit 30 in the predetermined period is learned and distributed. An air conditioner that is expected to start operation near the time when the operation start condition is satisfied and is stopped may be selected. In this way, the distribution operation can be used as a preliminary operation without bothering the user.
 また、人検知センサ等によって不在を確認したうえで、停止している室内機を分配運転設定してもよい。こうすることで、在室している使用者の意思に反して分配運転を開始させ、不快感を与えることを防止することが出来る。 In addition, after confirming the absence by a human detection sensor, etc., the stopped indoor unit may be set for distributed operation. By doing so, it is possible to prevent the user from feeling uncomfortable by starting the distribution operation against the intention of the user in the room.
   11 冷媒回路
   20 室外機
   21 圧縮機
   23 室外熱交換器
   24 膨張弁
   30 室内機
   31 室内熱交換器
   32 室内ファン
   60 制御部
DESCRIPTION OF SYMBOLS 11 Refrigerant circuit 20 Outdoor unit 21 Compressor 23 Outdoor heat exchanger 24 Expansion valve 30 Indoor unit 31 Indoor heat exchanger 32 Indoor fan 60 Control part
特開2012-193901JP2012-193901

Claims (7)

  1.  室外熱交換器(23)を有する室外機(20)と、
     室内熱交換器(31)を有する複数の室内機(30)と、
     前記室外熱交換器と前記室内熱換器とを接続する冷媒回路(11)と、
     前記冷媒回路において、前記室内熱交換器に対応して配置される複数の膨張弁(24)と、
     前記室外機および前記室内機の運転制御を行う制御部(60)と、
    を備えた、多室型空気調和装置であって、
     前記制御部は、
     運転指令を受けている第1室内機を運転させ、運転指令を受けていない第2室内機を運転させない一部運転モードから、前記第1室内機の運転負荷が小さいときに、前記第1室内機を運転させ、前記第2室内機を運転させる分配運転モードに移行し、
     前記分配運転モードにおいて、前記第1室内機の前記運転負荷に応じて、前記第2室内機の能力を調整する、
    多室型空気調和装置。
    An outdoor unit (20) having an outdoor heat exchanger (23);
    A plurality of indoor units (30) having an indoor heat exchanger (31);
    A refrigerant circuit (11) connecting the outdoor heat exchanger and the indoor heat exchanger;
    A plurality of expansion valves (24) arranged corresponding to the indoor heat exchanger in the refrigerant circuit;
    A control unit (60) for controlling the operation of the outdoor unit and the indoor unit;
    A multi-room air conditioner equipped with
    The controller is
    When the operation load of the first indoor unit is small from the partial operation mode in which the first indoor unit receiving the operation command is operated and the second indoor unit not receiving the operation command is not operated, the first indoor unit The machine is moved to a distribution operation mode in which the second indoor unit is operated,
    In the distributed operation mode, the capacity of the second indoor unit is adjusted according to the operation load of the first indoor unit.
    Multi-room air conditioner.
  2.  請求項1の多室型空気調和装置において、
    前記分配運転モードにおいて、前記制御部は、前記第1室内機の前記運転負荷が所定値よりも小さい場合に、前記第2室内機の能力を増大させる、
    多室型空気調和装置。
    The multi-room air conditioner according to claim 1,
    In the distributed operation mode, the control unit increases the capacity of the second indoor unit when the operation load of the first indoor unit is smaller than a predetermined value.
    Multi-room air conditioner.
  3.  請求項1の多室型空気調和装置において、
     前記分配運転モードにおいて、前記制御部は、前記第1室内機の目標温度と室内温度との差が所定値よりも小さい場合に、前記第2室内機の能力を増大させる、
    多室型空気調和装置。
    The multi-room air conditioner according to claim 1,
    In the distribution operation mode, the control unit increases the capacity of the second indoor unit when a difference between a target temperature of the first indoor unit and a room temperature is smaller than a predetermined value.
    Multi-room air conditioner.
  4.  請求項1の多室型空気調和装置において、
     前記分配運転モードにおいて、前記制御部は、前記第1室内機の空調空間における室温変化量が所定値よりも小さい場合に、前記第2室内機の能力を増大させる、
    多室型空気調和装置。
    The multi-room air conditioner according to claim 1,
    In the distribution operation mode, the control unit increases the capacity of the second indoor unit when a room temperature change amount in the air-conditioned space of the first indoor unit is smaller than a predetermined value.
    Multi-room air conditioner.
  5.  請求項1から3の多室型空気調和装置において、
     前記制御部は、前記第1室内機の目標温度と室内温度との差が所定値以下になって前記第1室内機への能力供給が停止されるサーモオフの単位時間あたりの発生回数が所定回数以上となった場合に、前記第2室内機の能力を増大させる、
    多室型空気調和装置。
    The multi-room air conditioner according to claim 1,
    The controller is configured to generate a predetermined number of thermo-offs per unit time at which the difference between the target temperature of the first indoor unit and the room temperature is equal to or less than a predetermined value and the supply of capacity to the first indoor unit is stopped. When the above is reached, increase the capacity of the second indoor unit.
    Multi-room air conditioner.
  6.  請求項1から5の多室型空気調和装置において、
     前記室内機は前記室内熱交換器によって調和された空気を室内に送り出す室内ファン(32)をさらに備え、
     前記制御部は、前記第2室内機の前記室内ファンの回転数を増加させることによって前記第2室内機の能力を増大させる、
    多室型空気調和装置。
    The multi-room air conditioner according to claim 1,
    The indoor unit further includes an indoor fan (32) for sending air conditioned by the indoor heat exchanger into the room,
    The controller increases the capacity of the second indoor unit by increasing the number of rotations of the indoor fan of the second indoor unit;
    Multi-room air conditioner.
  7.  請求項1から5の多室空型気調和装置において、
     前記制御部は前記膨張弁の開度を調整可能であって、
     前記制御部は、前記第2室内機に対応する前記膨張弁の開度を大きくすることによって前記第2室内機の運転能力を増大させる、
    多室型空気調和装置。
    The multi-room air-conditioning apparatus according to claim 1,
    The control unit can adjust the opening of the expansion valve,
    The control unit increases the operating capacity of the second indoor unit by increasing the opening of the expansion valve corresponding to the second indoor unit.
    Multi-room air conditioner.
PCT/JP2018/007719 2017-03-07 2018-03-01 Multi-room air-conditioning device WO2018163952A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-042832 2017-03-07
JP2017042832A JP2018146188A (en) 2017-03-07 2017-03-07 Multi-room type air conditioner

Publications (1)

Publication Number Publication Date
WO2018163952A1 true WO2018163952A1 (en) 2018-09-13

Family

ID=63447581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007719 WO2018163952A1 (en) 2017-03-07 2018-03-01 Multi-room air-conditioning device

Country Status (2)

Country Link
JP (1) JP2018146188A (en)
WO (1) WO2018163952A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020186598A1 (en) * 2019-03-21 2020-09-24 广东美的制冷设备有限公司 Air-conditioning system and indoor unit conflict control method therefor, and terminal and readable storage medium
CN112710065A (en) * 2019-10-24 2021-04-27 广东美的制冷设备有限公司 Control method of multi-split air conditioner, multi-split air conditioner and storage medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020152837A1 (en) * 2019-01-25 2020-07-30 日立ジョンソンコントロールズ空調株式会社 Air conditioning system, operation control method, and program
JP2021038907A (en) * 2019-09-05 2021-03-11 東芝キヤリア株式会社 Air conditioner
CN110887109B (en) * 2019-12-04 2020-10-27 珠海格力电器股份有限公司 Air conditioning system with variable scale and operation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727436A (en) * 1993-07-16 1995-01-27 Toshiba Corp Air conditioner
JP2012193901A (en) * 2011-03-16 2012-10-11 Fujitsu General Ltd Multi-room type air conditioner
WO2014122735A1 (en) * 2013-02-06 2014-08-14 ダイキン工業株式会社 Refrigeration device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727436A (en) * 1993-07-16 1995-01-27 Toshiba Corp Air conditioner
JP2012193901A (en) * 2011-03-16 2012-10-11 Fujitsu General Ltd Multi-room type air conditioner
WO2014122735A1 (en) * 2013-02-06 2014-08-14 ダイキン工業株式会社 Refrigeration device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020186598A1 (en) * 2019-03-21 2020-09-24 广东美的制冷设备有限公司 Air-conditioning system and indoor unit conflict control method therefor, and terminal and readable storage medium
CN112710065A (en) * 2019-10-24 2021-04-27 广东美的制冷设备有限公司 Control method of multi-split air conditioner, multi-split air conditioner and storage medium
CN112710065B (en) * 2019-10-24 2023-03-07 广东美的制冷设备有限公司 Control method of multi-split air conditioner, multi-split air conditioner and storage medium

Also Published As

Publication number Publication date
JP2018146188A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
WO2018163952A1 (en) Multi-room air-conditioning device
AU2007218821B2 (en) Air conditioner and heat source unit
EP2927612B1 (en) Air conditioning device
JP5642085B2 (en) Refrigeration cycle apparatus and information transmission method applied thereto
WO2018123361A1 (en) Multi-split air conditioner control device, multi-split air conditioner, multi-split air conditioner control method, and multi-split air conditioner control program
EP2792968B1 (en) Air conditioning device
EP2767776B1 (en) Refrigeration system
CN110741208B (en) Air conditioner
AU2019436796B2 (en) Air-conditioning apparatus
JP2001280669A (en) Refrigerating cycle device
JP2008215734A (en) Multiple air conditioner
JPWO2020161805A1 (en) Air conditioner control device, outdoor unit, repeater, heat source unit and air conditioner
JP2008175410A (en) Heat source-side unit and air conditioning system
EP3150941B1 (en) Refrigeration device
US10921023B2 (en) System for air-conditioning and hot-water supply
WO2019193685A1 (en) Air conditioning system control device, outdoor unit, relay unit, heat source unit, and air conditioning system
WO2016001958A1 (en) Air-conditioning device
EP3839365B1 (en) Air-conditioning system
US11493226B2 (en) Airconditioning apparatus
JP3729552B2 (en) Air conditioner
CN114127479B (en) Refrigerating device
US11209182B2 (en) System for air-conditioning and hot-water supply
KR100535687B1 (en) A Multi-type Air Conditioner
WO2020189588A1 (en) Air-conditioning system
JP2016102635A (en) Air conditioner system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764040

Country of ref document: EP

Kind code of ref document: A1