WO2018163835A1 - Laminated film and food packaging bag - Google Patents

Laminated film and food packaging bag Download PDF

Info

Publication number
WO2018163835A1
WO2018163835A1 PCT/JP2018/006387 JP2018006387W WO2018163835A1 WO 2018163835 A1 WO2018163835 A1 WO 2018163835A1 JP 2018006387 W JP2018006387 W JP 2018006387W WO 2018163835 A1 WO2018163835 A1 WO 2018163835A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
laminated film
mass
polyethylene
layer
Prior art date
Application number
PCT/JP2018/006387
Other languages
French (fr)
Japanese (ja)
Inventor
渡辺 康史
賢人 庄司
松原 弘明
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2019504460A priority Critical patent/JP7140104B2/en
Publication of WO2018163835A1 publication Critical patent/WO2018163835A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/30Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
    • B65D85/36Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for bakery products, e.g. biscuits

Definitions

  • the present invention relates to a laminated film using a plant-derived raw material and a food packaging bag.
  • a resin film using a plant-derived resin for example, a sealant film using a plant-derived linear low-density polyethylene as a sealant film that is laminated with a base material and used for a laminate tube or a standing pouch (Patent Document 1) 2), and a cover material (Patent Document 3) provided with a sealant layer and a base material using plant-derived low-density biomass polyethylene.
  • Plant-derived resins are highly environmentally friendly, but often exhibit properties different from those derived from fossil fuels. If simply replaced, heat sealability, impact resistance, bag-breaking resistance, etc. may be reduced. .
  • the resin film disclosed in the above document uses a plant-derived resin, but when applied to uses such as a standing pouch and a lid, it is laminated with a laminate base material. No consideration is given to impact resistance, bag breakage resistance and the like in a film configuration without a laminate substrate.
  • the resin film disclosed in the above document is mainly composed of an ethylene-based resin.
  • ethylene-based resin mainly composed of an ethylene-based resin.
  • replacement of a fossil fuel-derived resin with a plant-derived resin is desired. It is rare.
  • the problem to be solved by the present invention is to provide a laminated film having suitable seal strength and impact resistance while applying a resin plant-derived component in a film structure mainly composed of a propylene resin.
  • the present invention is a laminated film in which a surface layer (A), an intermediate layer (B) and a seal layer (C) are laminated, wherein the surface layer (A), the intermediate layer (B) and the seal layer (C) Contains a propylene-based resin, and the intermediate layer (B) solves the above problems by a laminated film containing plant-derived biomass polyethylene (b1) and fossil fuel-derived polyethylene (b2).
  • the laminated film of the present invention can be suitably used as various packaging materials because it has suitable sealing strength and impact resistance while using plant-derived resin.
  • it since it has excellent impact resistance even in a configuration in which a laminate base material is not laminated, it can be suitably used as a packaging bag for pillow packaging or gusset packaging.
  • the laminated film of the present invention since the laminated film of the present invention has a suitable matte property and excellent fusing strength, it is suitable for use as a gusset packaging bag used for packaging foods such as bread.
  • the laminated film of the present invention has at least a surface layer (A), an intermediate layer (B) and a seal layer (C), one surface layer being a surface layer (A) and the other surface layer being a seal layer (C). It is a laminated film.
  • the laminated film contains a propylene-based resin in the surface layer (A) and the seal layer (C), and the intermediate layer (B) is a plant-derived biomass polyethylene (b1) fossil fuel-derived polyethylene (b2) and propylene. Contains a block copolymer resin.
  • Examples of the propylene resin used as the resin for the surface layer (A) include propylene homopolymers; random copolymers composed of propylene and ethylene, block copolymers composed of propylene and ethylene, and other than propylene and ethylene. And a propylene resin such as a copolymer with an ⁇ -olefin. These propylene resins may be used alone or in combination of two or more. Matte laminate having suitable impact resistance and friction resistance as well as high rigidity and excellent design by including a propylene resin, preferably a propylene block copolymer resin, in the surface layer (A) It can be a film.
  • the content of the propylene-based resin in the resin component contained in the surface layer (A) is preferably 50% by mass or more and 70% by mass or more because it is easy to obtain suitable fusing strength and bag-making suitability. More preferably, it is more preferably 90% by mass or more.
  • the resin component contained in the surface layer (A) may be a surface layer substantially composed of only a propylene-based resin.
  • a propylene-based block copolymer resin that can be preferably used as a propylene-based resin
  • a copolymer of propylene and another ⁇ -olefin can be used.
  • ⁇ -olefins include ethylene, 1-butene, 1-hexene, 4-methyl / 1-pentene, 1-octene, and the like because ethylene has an excellent matte feeling, cold resistance and rigidity balance.
  • the ⁇ -olefin content in the propylene-based block copolymer is preferably 2 to 10% by mass, more preferably 4 to 8% by mass because it is easy to obtain impact resistance and rigidity.
  • the melt flow rate (MFR) of the propylene-based block copolymer resin is preferably 0.5 g / 10 min or more, since it is easy to mold and easily obtains suitable impact resistance and mat feeling. More preferably, it is 1 g / 10 minutes or more. Moreover, it is preferable that it is 20 g / 10min or less, and it is more preferable that it is 10 g / 10min or less.
  • the melting point of the propylene-based block copolymer resin is preferably 155 ° C. or higher, and preferably 165 ° C. or lower because it is easy to obtain suitable bag-making properties.
  • the propylene block copolymer resin used for the surface layer (A) may be a single copolymer or a plurality of copolymers. When using two or more, it is preferable to make the total content of the propylene-type block copolymer resin to be used into the following range.
  • BC8, BC7 (manufactured by Nippon Polypro Co., Ltd.), E150GK, F704V (Prime) are used in the surface layer (A) and have a good balance with mat feeling, fusing strength and bag making suitability.
  • Polymer PC480A, PC684S, PC380A, VB370A (manufactured by Sun Allomer), and the like.
  • the content of the propylene-based block copolymer in the resin component contained in the surface layer (A) depends on mat feeling, fusing strength, and bag-making suitability.
  • the content of the resin component used in the surface layer (A) is preferably 50% by mass or more, more preferably 70% by mass or more. By setting it as the said range, it becomes easy to obtain the uniform mat feeling excellent in the designability.
  • the content is preferably 80 to 100% by mass, and when the mat feeling is improved, the content is preferably 70 to 90% by mass.
  • various olefin resins used for the packaging film can be used in addition to the propylene resin described above.
  • examples of such resins include propylene homopolymer, propylene- ⁇ -olefin random copolymer (propylene-ethylene copolymer, propylene-butene-1 copolymer, propylene-ethylene-butene-1 copolymer).
  • Polypropylene resins such as metallocene catalyst polypropylene
  • polyethylene resins such as very low density polyethylene (VLDPE), linear low density polyethylene (LLDPE), and low density polyethylene (LDPE), and ethylene-vinyl acetate copolymers (EVA), ethylene-methyl methacrylate copolymer (EMMA), ethylene-ethyl acrylate copolymer (EEA), ethylene-methyl acrylate (EMA) copolymer, ethylene-ethyl acrylate-maleic anhydride copolymer ( E-EA-MAH), ethylene Ethylene copolymers such as crylic acid copolymer (EAA) and ethylene-methacrylic acid copolymer (EMAA); further, ionomers of ethylene-acrylic acid copolymers, ionomers of ethylene-methacrylic acid copolymers, etc. Resin can be used.
  • VLDPE very low density polyethylene
  • LLDPE linear low density
  • additives may be blended in the surface layer (A) as long as the effects of the present invention are not impaired.
  • the additive include an antioxidant, a weather resistance stabilizer, an antistatic agent, an antifogging agent, an antiblocking agent, a lubricant, a nucleating agent, and a pigment.
  • the surface roughness (Ra) of the surface layer (A) based on JIS B-0601 is preferably 0.2 to 1.0, and more preferably 0.3 to 0.7.
  • the amount of other components additive such as slip agents and antiblocking agents
  • a film with excellent surface slipperiness can be obtained.
  • the speed of bag making is improved, the associating after bag making and the improvement and efficiency of packing work are improved, and the workability at the time of packing by the automatic packing machine after filling the contents is improved.
  • the friction coefficient (ASTM D-1894) of the surface layer (A) is preferably 0.05 to 0.7, more preferably 0.07 to 0.6, and more preferably 0.1 to 0.5. By setting it as the said range, it becomes easy to improve the film feeding property at the time of packaging, the alignment property after bag making, packing workability
  • the friction coefficient can be adjusted by appropriately adding additives such as a lubricant and an anti-blocking agent according to the resin component used for the surface layer.
  • the intermediate layer of the laminated film of the present invention is a layer containing plant-derived biomass polyethylene (b1), fossil fuel-derived polyethylene (b2), and propylene-based block copolymer resin (b3).
  • the laminated film has excellent matting properties, excellent bag breaking resistance, particularly excellent bag breaking resistance and friction resistance at low temperatures, while having excellent environmental compatibility. Can be obtained.
  • the plant-derived biomass polyethylene (b1) used for the intermediate layer (B) is a polyethylene-based resin produced from plant-derived ethylene starting from sugarcane, corn, beet or the like.
  • the biomass polyethylene (b1) include linear low density polyethylene (LLDPE), linear medium density polyethylene (LMDPE), linear high density polyethylene (LHDPE), low density polyethylene (LDPE), and medium density polyethylene (MDPE). ), High density polyethylene (HDPE), and the like. These may be used alone or in combination of two or more.
  • linear low density polyethylene is particularly preferable.
  • the linear low density Porieren preferably density of 0.925 g / cm 3 or less, more preferably 0.920 g / cm 3 or less.
  • the MFR of the biomass polyethylene (b1) used for the intermediate layer (B) is preferably from 0.1 to 30 g / 10 minutes, particularly preferably from 0.5 to 20 g / 10 minutes. By setting it as 1 g / 10min or more, it becomes easy to obtain suitable film forming property, and it becomes easy to obtain suitable moldability by setting it as 20 g / 10 minutes or less.
  • Biomass polyethylene (b1) used for the intermediate layer (B) is a plant such as sugar cane, and the production method is the same except for the production of monomers, although the raw material is a plant such as sugar cane.
  • a manufacturing method It can manufacture by the well-known method. For example, a production method using a Ziegler-Natta catalyst or a metallocene catalyst can be raised.
  • a catalyst system in which a titanium-containing compound itself or a titanium-containing compound supported on a carrier such as a magnesium compound is used as a main catalyst and an organoaluminum compound is used as a co-catalyst, propylene alone or a desired ⁇ such as ethylene -A method of carrying out polymerization by adding an olefin can be mentioned.
  • This polymerization may be any process such as a slurry polymerization method, a solution polymerization method, and a gas phase polymerization method.
  • a homogeneous catalyst may be used, and a conventionally used catalyst composed of a vanadium compound and an organoaluminum compound, or a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, etc.
  • a metallocene system comprising a transition metal compound such as zirconium, titanium or hafnium having one or two ligands, a transition metal compound in which the ligand is geometrically controlled, and a promoter such as an aluminoxane or an ionic compound. Mention may also be made of homogeneous catalyst systems such as catalysts.
  • the metallocene catalyst may be any process such as a slurry polymerization method and a gas phase polymerization method in addition to homogeneous polymerization in the presence of a solvent, if necessary, using an organoaluminum compound.
  • biomass polyethylene (b1) examples include SLL118, SLL118 / 21, SLL218, SLL318, SLH118, SLH218, SLH0820 / 30AF, SBC818, SPB208, STN7006, SEB853, etc. manufactured by Braschem.
  • the fossil fuel-derived polyethylene (b2) used for the intermediate layer (B) is a polyethylene-based resin made from fossil fuels such as petroleum.
  • Examples of the polyethylene (b2) include linear low density polyethylene (LLDPE), linear medium density polyethylene (LMDPE), linear high density polyethylene (LHDPE), low density polyethylene (LDPE), and medium density polyethylene (MDPE).
  • Polyethylene resin such as high density polyethylene (HDPE), ethylene-butene-rubber copolymer (EBR), ethylene-propylene-rubber copolymer (EPR), ethylene-vinyl acetate copolymer (EVA), ethylene -Methyl methacrylate copolymer (EMMA), ethylene-ethyl acrylate copolymer (EEA), ethylene-methyl acrylate (EMA) copolymer, ethylene-ethyl acrylate-maleic anhydride copolymer (E-EA-MAH) ), Ethylene-acrylic acid copolymer (EAA), Ethylene copolymers such as lene-methacrylic acid copolymer (EMAA); and ethylene-acrylic acid copolymer ionomers, ethylene-methacrylic acid copolymer ionomers, and the like.
  • HDPE high density polyethylene
  • EBR ethylene-butene-rubber copolymer
  • linear low density polyethylene is preferable.
  • the linear low density Porieren preferably density of 0.915 g / cm 3 or less, more preferably 0.910 g / cm 3 or less, still be at 0.906 g / cm 3 or less preferable.
  • density of the linear low-density polyethylene By setting the density of the linear low-density polyethylene to be used within the above range, it is easy to combine suitable fusing strength, high impact resistance, and bag breaking resistance.
  • One kind of linear low density polyethylene may be used, or a plurality of kinds may be used in combination.
  • the MFR (190 ° C., 21.18N) of the linear low density polyethylene is preferably 10 g / 10 minutes or less, more preferably 1 to 5 g / 10 minutes.
  • the same propylene-based block copolymer resin used for the surface layer can be preferably used.
  • the propylene-based block copolymer may be a single copolymer or a plurality of copolymers.
  • the mass is preferably from 35% by mass to 35% by mass, and more preferably from 2% by mass to 25% by mass.
  • the content is more preferably 5% by mass or more, and particularly preferably 10% by mass or more.
  • 20 mass% or less is further more preferable, and it is especially preferable that it is 15 mass% or less.
  • the content of polyethylene (b2) derived from fossil fuel in the resin component contained in the intermediate layer (B) is 3% by mass or more because it is easy to obtain suitable bag making suitability, fusing seal strength, and bag breaking resistance.
  • it is 5 mass% or more, more preferably 7 mass% or more.
  • it is preferable that it is 30 mass% or less, It is more preferable that it is 20 mass% or less, It is further more preferable that it is 15 mass% or less.
  • the content of the propylene-based block copolymer (b3) in the resin component contained in the intermediate layer (B) is preferably 95% by mass or less because it is easy to obtain suitable impact resistance and mat feeling, 85 It is more preferably no greater than mass%, more preferably no greater than 80 mass%, and particularly preferably no greater than 75 mass%. Moreover, since it is easy to obtain the stability at the time of a bag making, it is preferable that it is 15 mass% or more, It is more preferable that it is 20 mass% or more, It is more preferable that it is 25 mass% or more, 30 mass % Or more is particularly preferable.
  • biomass polyethylene (b1) fossil fuel-derived polyethylene (b2) and propylene-based block copolymer (b3)
  • Content ratio biomass polyethylene (b1) / fossil fuel-derived polyethylene (b2) / propylene block copolymer (b3)) is 2/3/95 to 30/25/45 by mass ratio Is preferably 10/5/85 to 25/20/55.
  • resins other than those described above for example, olefinic resins as described above may be used in combination, and among them, propylene- ⁇ -olefin random copolymers can be preferably used, particularly propylene-ethylene.
  • a random copolymer can be preferably used.
  • the content of ⁇ -olefin such as ethylene, butene-1,4-methylpentene-1, and octene-1 in the propylene- ⁇ -olefin random copolymer is preferably 0.3 to 10% by mass. More preferably, the content is 5 to 6% by mass.
  • ⁇ -olefin content By setting the ⁇ -olefin content in the above range, it is easy to obtain suitable rigidity and blocking resistance, and it becomes easy to realize suitable bag making aptitude and packaging aptitude.
  • the content of ⁇ -olefin such as ethylene is measured by an infrared absorption spectrum method.
  • the melt flow rate (MFR) of the propylene-ethylene random copolymer in the intermediate layer (B) is not particularly limited as long as it can form a laminated film, but is preferably 0.5 g / 10 min or more, It is more preferably 3 g / 10 minutes or more, and more preferably 5 g / 10 minutes or more.
  • the MFR is preferably 20 g / 10 min or less, more preferably 15 g / 10 min or less, and more preferably 12 g / 10 min or less.
  • Propylene - density of the ethylene random copolymer more it is preferably at most 0.880 g / cm 3 or more 0.905 g / cm 3, is 0.890 g / cm 3 or more 0.900 g / cm 3 or less preferable.
  • the melting point of the propylene-ethylene random copolymer is preferably 110 ° C. or higher, and more preferably 115 ° C. or higher, from the viewpoint of preventing adhesion to the fusing seal blade during bag making.
  • it is preferably 150 ° C. or less, more preferably 145 ° C. or less.
  • the content of the propylene- ⁇ -olefin random copolymer in the resin component contained in the intermediate layer (B) is 5 It is preferably at least mass%, more preferably at least 15 mass%, and even more preferably at least 25 mass%. Moreover, it is preferable to set it as 50 mass% or less, It is more preferable to set it as 45 mass% or less, It is further more preferable to set it as 40 mass% or less.
  • the resin component contained in the intermediate layer (B) may be any of the above-mentioned various resins, but it is easy to suppress deterioration of rigidity and impact strength when the total thickness of the laminated film is designed to be thin. Therefore, it is preferable that the content of the propylene resin in the resin component contained in the intermediate layer (B) is 55% by mass or more and the content of the ethylene resin is 7 to 45% by mass.
  • propylene block copolymer (b3) and propylene-ethylene random copolymer are used as the propylene resin, and the total amount of these is 55% by mass or more.
  • the ethylene resin plant-derived biomass is used. It is particularly preferable that polyethylene (b1) and fossil fuel-derived polyethylene (b2) are used and the total amount thereof is 7 to 45% by mass.
  • biomass polyethylene (b1) the fossil fuel-derived polyethylene (b2), the propylene-based block copolymer (b3) and the propylene-ethylene random copolymer are used as the resin component contained in the intermediate layer (B).
  • the ratio of these contents is 2/3 / by mass. 65/30 to 25/20/15/40 is preferable, and 10/5/50/35 to 15/15/30/40 is more preferable.
  • the sealing layer (C) used for this invention is a layer used for adhesion
  • species from which the suitable sealing strength is obtained for the said sealing layer according to a use aspect or to-be-sealed object For example, when used as a packaging bag by sealing the seal layers, propylene- ⁇ - such as propylene-ethylene random copolymer, propylene-1-butene copolymer, etc. is obtained from the point that an appropriate seal strength can be obtained.
  • a seal layer containing an ⁇ -olefin-propylene copolymer such as an olefin copolymer or 1-butene-propylene copolymer can be suitably used.
  • propylene-1-butene is easy to adjust heat seal temperature and strength at easy opening seal at low temperature, wide heat seal temperature range, and easy to obtain appropriate heat seal strength as easy open seal.
  • a butene-based resin such as a polymer or a 1-butene-propylene copolymer is preferred.
  • the 1-butene content in the copolymer is 60%. It is preferably ⁇ 95 mol%, more preferably 65 to 95%, and even more preferably 70 to 90 mol%.
  • the propylene content is preferably 2 to 10% by mole, more preferably 3 to 9% by mole, and further preferably 4 to 8% by mole because a suitable low-temperature sealability is easily obtained. preferable.
  • the content of butene resin is 50% by mass or less in the resin component contained in the seal layer.
  • it is 40 mass% or less, more preferably 30 mass% or less.
  • it is preferable to set it as 10 mass% or more, and it is more preferable to set it as 15 mass% or more.
  • the content of the butene-based resin is within this range, it is easy to obtain suitable low-temperature sealing properties, fusing strength and tear resistance of bag-made products, and it is advantageous for cost reduction.
  • polystyrene-based resins As the resin used in combination with the butene-based resin, other polyolefin-based resins can be used as appropriate. However, since the seal strength is easily adjusted, a propylene- ⁇ -olefin copolymer or an ethylene- ⁇ -olefin copolymer can be used. Polymers can be preferably used, and propylene- ⁇ -olefin copolymers can be particularly preferably used.
  • the ⁇ -olefin content in the propylene- ⁇ -olefin copolymer is not particularly limited, but is preferably 1 to 20% by mass, more preferably 1.5 to 15% by mass.
  • Examples of the ⁇ -olefin include ethylene, 1-hexene, 4-methyl-1-pentene, 1-octene and the like.
  • propylene-ethylene random copolymers as exemplified in the intermediate layer can be preferably used.
  • the MFR is preferably from 0.5 to 20 g / 10 minutes, more preferably from 2 to 10 g / 10 minutes, since good moldability is easily obtained.
  • the content of the other olefinic resin is preferably 90% by mass or less, more preferably 85% by mass or less in the resin component contained in the seal layer, because it is easy to obtain suitable low-temperature sealing properties. . Moreover, it is preferable to set it as 50 mass% or more, and it is more preferable to set it as 60 mass% or more.
  • a butene-based resin and a propylene- ⁇ -olefin copolymer when providing an easy-opening part in which the sealing layers are heat-sealed, a butene-based resin and a propylene- ⁇ -olefin copolymer, It is preferable to use in combination at a ratio such that the mass ratio represented by the butene resin / propylene- ⁇ -olefin copolymer is 20/80 to 50/50.
  • various additives may be blended within a range not impairing the effects of the present invention.
  • the additive include an antioxidant, a weather resistance stabilizer, an antistatic agent, an antifogging agent, an antiblocking agent, a lubricant, a nucleating agent, and a pigment.
  • the friction coefficient (ASTM D1894) of the seal layer (C) surface is preferably 0.01 to 0.4, more preferably 0.02 to 0.35, and more preferably 0.05 to 0.30. By setting it as the said range, it becomes easy to improve the packaging work by the film feedability at the time of packaging, the wrinkle after bag making, and suppression of swell. In addition, it is easy to suppress scratches caused by rubbing between the contents when filling the contents such as bread and the film inner surface, and to improve wear resistance and tear resistance, and to easily suppress film tearing.
  • the friction coefficient can be adjusted by appropriately adding additives such as a lubricant and an anti-blocking agent according to the resin component used for the seal layer.
  • the laminated film of the present invention is a laminated film having at least the above-mentioned surface layer, intermediate layer and seal layer, and is a laminated film in which one surface layer of the laminated film is a surface layer and the other surface layer is a seal layer.
  • the laminated film having such a configuration can be suitably used as a film for various packaging because it has a suitable fusing seal strength and is excellent in impact resistance and bag breaking resistance.
  • the thickness of the laminated film of the present invention may be appropriately adjusted according to the use and mode to be used.
  • the total thickness is 20 because it is easy to achieve both volume reduction in packaging applications and resistance to bag breakage during distribution. It is preferably ⁇ 60 ⁇ m, more preferably 25 ⁇ 50 ⁇ m.
  • each layer are not particularly limited, but for example, the thickness of the surface layer is preferably 2 to 20 ⁇ m, and more preferably 3 to 15 ⁇ m.
  • the thickness of the intermediate layer is preferably 3 to 30 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the thickness of the seal layer is preferably 1 to 10 ⁇ m, and more preferably 2 to 8 ⁇ m.
  • the thickness ratio of the surface layer is preferably 15% or more, more preferably 20% or more of the total thickness of the laminated film, because it is easy to obtain a suitable matte feeling, fusing strength and bag-making suitability. . Moreover, it is preferable to set it as 40% or less, and it is more preferable to set it as 35% or less.
  • the thickness ratio of the intermediate layer is preferably 30% or more, more preferably 40% or more of the total thickness of the laminated film because it is easy to obtain suitable matte feeling, fusing strength, and bag-making suitability. Moreover, it is preferable to set it as 70% or less, and it is more preferable to set it as 65% or less.
  • the thickness ratio of the seal layer is preferably 5% to 30%, more preferably 10 to 25% of the total thickness of the laminated film, since it is easy to obtain suitable easy-openability, fusing strength, and bag-making suitability.
  • the content of plant-derived biomass polyethylene in the resin component contained in the entire laminated film is preferably 2% by mass or more from the viewpoint of reducing environmental burden, and is 3% by mass or more. Is more preferable, and it is more preferable that it is 5 mass% or more.
  • the haze of the laminated film of the present invention is preferably 35% or more, and more preferably 55% or more because it is easy to obtain a suitable matte design. Moreover, when ensuring the visibility of the contents, the haze is preferably 80% or less, and more preferably 70% or less.
  • the laminated film of the present invention may be laminated with any other resin layer other than the surface layer, intermediate layer and seal layer, but the thickness of the other resin layer is 20% or less of the total thickness.
  • the structure composed of the surface layer, the intermediate layer, and the seal layer is particularly preferable. In this configuration, an intermediate layer in which a plurality of intermediate layers are stacked may be used.
  • the layer structure include a three-layer structure of surface layer / intermediate layer / sealing layer in which an intermediate layer is provided between the surface layer and the seal layer, or a surface layer in which the intermediate layer is composed of a plurality of layers.
  • Preferred examples include: / intermediate layer 1 / intermediate layer 2 / four-layer structure of seal layer.
  • the 3 layer structure which consists of a surface layer / intermediate layer / sealing layer can be used preferably.
  • the resin or resin mixture used for each layer is heat-melted with a respectively separate extruder,
  • methods such as a coextrusion multilayer die method and a feed block method, etc.
  • coextrusion method in which a film is laminated in a molten state and then formed into a film by inflation, a T-die / chill roll method, or the like.
  • This co-extrusion method is preferable because the thickness ratio of each layer can be adjusted relatively freely, and a laminated film having excellent hygiene and cost performance can be obtained. Since the laminated film obtained by the manufacturing method is obtained as a substantially unstretched laminated film, secondary molding such as deep drawing by vacuum molding is also possible.
  • the surface layer is preferably subjected to a surface treatment in order to improve adhesion with printing ink.
  • a surface treatment examples include corona treatment, plasma treatment, chromic acid treatment, flame treatment, hot air treatment, surface oxidation treatment such as ozone / ultraviolet treatment, and surface unevenness treatment such as sandblasting. Corona treatment is preferable.
  • Examples of the packaging material made of the laminated film of the present invention include packaging bags, containers, container lids and the like used for foods, medicines, industrial parts, miscellaneous goods, magazines and the like.
  • the sealing layer of the laminated film of the present invention is used as a heat sealing layer, the sealing layers are overlapped and heat sealed, or the surface layer and the sealing layer are overlapped and heat sealed, so that the sealing layer is the inner side.
  • a formed packaging bag is preferred. For example, after cutting the two laminated films into the desired size of the packaging bag, overlapping them and heat-sealing the three sides to form a bag, filling the contents from one side that is not heat-sealed It can be used as a packaging bag by heat sealing. Furthermore, it is also possible to form a packaging bag by sealing the upper and lower sides after sealing the end of a roll-shaped film into a cylindrical shape by an automatic packaging machine.
  • the packaging bag for bread when it is set as the packaging bag for bread, it can be set as the packaging bag which has a gusset part by folding and sealing a printing surface. Specifically, it is processed into a bottom gusset bag by a bag making machine such as HK-40 manufactured by Totani Giken Kogyo Co., Ltd. so that the sealing layer of the laminated film of the present invention is inside the bag. Since the laminated film of the present invention can realize suitable fusing strength and bag making suitability, it can be particularly suitably used as a bottom gusset bag.
  • the fusing seal temperature and the bag making speed are adjusted so that the fusing seal strength of the side part of the bottom gusset bag and the bottom gusset part (folded part of the bottom part) is 7.5 N to 30 N / 15 mm, preferably 10 to 30 N / 15 mm. It is preferable.
  • the obtained bottom gusset bag is supplied to a bread bread automatic filling machine, and after filling bread, is easy to open and has a heat seal strength of 0.1 to 5 N / 15 mm, preferably 0.2 to 4 N / 15 mm.
  • the horizontal pillow type automatic packaging machine such as FW-3400 ⁇ V type manufactured by Fujikikai Co., Ltd. so that the seal layer is inside the bag. Supplied in roll form.
  • the heat seal surfaces of the film are overlapped and heat sealed to form a bag and to enclose the bread.
  • it is preferable to adjust the heat sealing temperature and the packaging speed so that the sealing strength of the bottom portion and the back pasting portion of the pillow packaging bag by the packaging machine is 7.5 N to 30 N / 15 mm, preferably 8 to 20 N / 15 mm. .
  • an easily openable seal portion may be formed by heat sealing under conditions that allow easy opening and a heat seal strength of 0.1 to 5 N / 15 mm, preferably 0.2 to 4 N / 15 mm. May be bound using a binding tool such as a plastic plate, tape, or string.
  • a packaging bag, a container, and a container lid by heat-sealing another film that can be heat-sealed with a sealing layer.
  • a film such as LDPE, EVA, or polypropylene having relatively low mechanical strength can be used.
  • a laminate film in which a film of LDPE, EVA, polypropylene, etc., and a stretched film having relatively good tearability for example, a biaxially stretched polyethylene terephthalate film (OPET), a biaxially stretched polypropylene film (OPP), etc. are bonded together.
  • OPET biaxially stretched polyethylene terephthalate film
  • OPP biaxially stretched polypropylene film
  • the laminated film of the present invention can realize suitable impact resistance and bag breaking resistance, it can be suitably applied to various packaging applications.
  • excellent impact resistance can be realized even at low temperatures, it is suitable for food packaging applications that are often packaged and distributed at low temperatures.
  • the laminated film of the present invention when the laminated film of the present invention is applied to bread packaging such as bread and confectionery bread in which a binding tool (closure) having a sharp tip portion and a heel portion is used, it is difficult for bag breakage at the time of binding to occur, In addition, even when contact with the binding tool or the transport container occurs during transfer, pinholes and tears are unlikely to occur. In addition, it is difficult to cause pinholes and tears due to rubbing between the food as the contents and the inner surface of the film (seal surface), friction between the mixed plastic tray and piercing. Furthermore, since the laminated film of the present invention can ensure a suitable fusing seal strength even when a gusset portion is formed, it can be particularly suitably applied to bread packaging applications.
  • Example 1 A resin mixture for forming each layer was prepared by using the following resins as resin components for forming each layer of the surface layer, the intermediate layer, and the seal layer. Each of these mixtures was supplied to three extruders and coextruded so that the average thickness of each layer of the laminated film formed by the surface layer / intermediate layer / sealing layer was 7/18/5 ⁇ m. A 30 ⁇ m laminated film was formed. Subsequently, the surface layer of the obtained laminated film was subjected to a corona discharge treatment so that the surface energy was 35 mN / m to obtain a laminated film.
  • propylene-ethylene block copolymer resin propylene-derived component content: 90% by mass, density: 0.90 g / cm 3 , MFR (measuring temperature 230 ° C.): 5 g / 10 min) (hereinafter referred to as propylene block copolymer) 100 parts by mass of polymer (referred to as polymer (1))
  • propylene block copolymer 100 parts by mass of polymer (referred to as polymer (1))
  • propylene-ethylene block copolymer (density: 0.90 g / cm 3 , MI: 8 g / 10 minutes, melting point 160 ° C.) (hereinafter referred to as propylene block copolymer) 40 parts by mass of a copolymer (referred to as (2)), a propylene-ethylene random copolymer (ethylene content: 5.2%, density: 0.90 g / cm 3 , MFR: 5.4 g / 10 minutes) (hereinafter referred to as COPP ( 1) and referred to
  • Example 2 A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
  • Intermediate layer propylene block copolymer (2) 42 parts by mass, COPP (1) 35 parts by mass, LLDPE (1) 3 parts by mass, bio PE (1) 20 parts by mass
  • Example 3 A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
  • Intermediate layer 45 parts by mass of propylene-based block copolymer (2), 35 parts by mass of COPP (1), 15 parts by mass of LLDPE (1), 5 parts by mass of bio PE (1)
  • Example 4 A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
  • Intermediate layer 45 parts by mass of propylene-based block copolymer (2), 40 parts by mass of COPP (1), 13 parts by mass of LLDPE (1), 2 parts by mass of bio PE (1)
  • Example 5 A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
  • Intermediate layer propylene block copolymer (2) 35 parts by mass, COPP (1) 35 parts by mass, LLDPE (1) 5 parts by mass, bio PE (1) 25 parts by mass
  • Example 6 A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows. Intermediate layer: 75 parts by mass of propylene-based block copolymer (2), 10 parts by mass of LLDPE (1), 15 parts by mass of bio PE (1)
  • Example 7 A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
  • Intermediate layer 72 parts by mass of propylene-based block copolymer (2), 3 parts by mass of LLDPE (1), 25 parts by mass of bio PE (1)
  • Example 8 A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
  • Intermediate layer 75 parts by mass of propylene-based block copolymer (2), 15 parts by mass of LLDPE (1), 10 parts by mass of bio PE (1)
  • Example 9 A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
  • Intermediate layer 65 parts by mass of propylene-based block copolymer (2), 10 parts by mass of LLDPE (1), 25 parts by mass of bio PE (1)
  • Example 10 A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
  • Intermediate layer 65 parts by mass of propylene-based block copolymer (2), 20 parts by mass of LLDPE (1), 15 parts by mass of bio PE (1)
  • Example 1 A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
  • Intermediate layer 55 parts by mass of propylene-based block copolymer (2), 5 parts by mass of LLDPE (1), 40 parts by mass of bio PE (1)
  • Comparative Example 2 A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
  • Intermediate layer propylene homopolymer (density: 0.90 g / cm 3, MFR: 8 g / 10 min) (hereinafter referred to as HOPP (1)) 85 parts by mass, bio PE (1) 15 parts by mass
  • The film follows the bag even at a bag-making speed of 120 shots, and there is no problem with the alignment.
  • The film follows the bag-making speed at 120 shots, but the alignment property becomes a problem. There are things that can not follow the bag speed, poor alignment
  • bottom gusset bags were produced in the same manner as in the bag-making suitability evaluation. From the center of the gusset portion on both sides of the obtained five bottom gusset bags and the center of the side portion other than the gusset, respectively, a test piece having a length of 70 mm and a width of 15 mm is set so that the fusing seal portion is the center portion in the length direction. 10 sheets were cut out each, and the maximum load at the time of pulling with a Tensilon tensile tester (manufactured by A & D Co., Ltd.) at 23 ° C.
  • the fusing strength of the gusset part and the side part is 15 N / 15 mm or more.
  • the fusing strength of the gusset part and the side part is both 12 N / 15 mm and less than 15 N / 15 mm.
  • X At least one fusing of the gusset part and the side part. Strength is less than 12N / 15mm
  • the laminated films of the present invention of Examples 1 to 10 have favorable matte appearance, suitable seal strength, impact resistance, and friction resistance, and excellent bag breaking resistance. It was a thing.
  • the laminated films of Comparative Examples 1 and 2 were unable to combine suitable impact resistance and fusing seal strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wrappers (AREA)
  • Bag Frames (AREA)
  • Laminated Bodies (AREA)

Abstract

This laminated film has at least a surface layer (A), an intermediate layer (B), and a seal layer (C), wherein one outer layer of the laminated film is the surface layer (A) and the other outer layer of the laminated film is the seal layer (C). In this laminated film, the surface layer (A) and the seal layer (C) each contains a propylene-based resin; and the intermediate layer(B) contains a plant-derived biomass polyethylene(b1), a petroleum-derived polyethylene(b2) and a propylene-based block copolymer resin. This laminated film enables suitable sealing strength or impact resistance to be achieved while using a resin plant-derived component.

Description

積層フィルム及び食品包装袋Laminated film and food packaging bag
 本発明は、植物由来原料を使用した積層フィルム及び食品包装袋に関する。 The present invention relates to a laminated film using a plant-derived raw material and a food packaging bag.
 近年、環境負荷低減を目的に、包装材に使用する樹脂フィルムの原料の一部を、石油等の化石燃料由来成分を主成分とした樹脂から、植物由来成分を主成分とした樹脂に置き換える検討がなされている。 In recent years, with the aim of reducing environmental impact, some of the raw materials for resin films used in packaging materials have been replaced with resins mainly composed of components derived from fossil fuels such as petroleum, with resins mainly composed of plant-derived components. Has been made.
 植物由来の樹脂を使用した樹脂フィルムとしては、例えば、基材と積層してラミネートチューブやスタンディングパウチに使用するシーラントフィルムとして、植物由来の直鎖状低密度ポリエチレンを使用したシーラントフィルム(特許文献1~2参照)や、植物由来の低密度バイオマスポリエチレンを使用したシーラント層と基材とを備えた蓋材(特許文献3)等が開示されている。 As a resin film using a plant-derived resin, for example, a sealant film using a plant-derived linear low-density polyethylene as a sealant film that is laminated with a base material and used for a laminate tube or a standing pouch (Patent Document 1) 2), and a cover material (Patent Document 3) provided with a sealant layer and a base material using plant-derived low-density biomass polyethylene.
特開2016-145086号公報Japanese Patent Laid-Open No. 2016-145086 特開2012-167172号公報JP 2012-167172 A 特開2015-231870号公報Japanese Patent Laying-Open No. 2015-231870
 植物由来の樹脂は、環境対応性は高いものの化石燃料由来の樹脂とは異なる性質を示すことが多く、単に置き換えるとヒートシール性や耐衝撃性、耐破袋性等が低下する場合があった。また、上記文献にて開示された樹脂フィルムは、植物由来の樹脂を使用するものであるが、スタンディングパウチや蓋材等の用途に適用される際にはラミネート基材との積層がなされるためラミネート基材を有さないフィルム構成での耐衝撃性や耐破袋性等は何ら考慮されていない。 Plant-derived resins are highly environmentally friendly, but often exhibit properties different from those derived from fossil fuels. If simply replaced, heat sealability, impact resistance, bag-breaking resistance, etc. may be reduced. . In addition, the resin film disclosed in the above document uses a plant-derived resin, but when applied to uses such as a standing pouch and a lid, it is laminated with a laminate base material. No consideration is given to impact resistance, bag breakage resistance and the like in a film configuration without a laminate substrate.
 また、上記文献にて開示された樹脂フィルムはエチレン系樹脂を主体とするものであるが、プロピレン系樹脂を主体とするフィルム構成においても、化石燃料由来の樹脂の植物由来樹脂への置き換えが望まれている。 The resin film disclosed in the above document is mainly composed of an ethylene-based resin. However, even in a film configuration mainly composed of a propylene-based resin, replacement of a fossil fuel-derived resin with a plant-derived resin is desired. It is rare.
 本発明が解決しようとする課題は、プロピレン系樹脂を主体とするフィルム構成において、樹脂植物由来成分を適用しつつ、好適なシール強度や耐衝撃性を有する積層フィルムを提供することにある。 The problem to be solved by the present invention is to provide a laminated film having suitable seal strength and impact resistance while applying a resin plant-derived component in a film structure mainly composed of a propylene resin.
 さらには、プロピレン系樹脂を主体とするフィルム構成において、植物由来成分を適用しつつ、ラミネート基材を使用しなくとも、好適なシール強度や耐衝撃性を実現できる積層フィルムを提供することにある。 Furthermore, in a film configuration mainly composed of propylene-based resin, it is to provide a laminated film that can realize suitable seal strength and impact resistance without using a laminate base material while applying plant-derived components. .
 本発明は、表面層(A)、中間層(B)及びシール層(C)とが積層された積層フィルムであって、前記表面層(A)、中間層(B)及びシール層(C)がプロピレン系樹脂を含有し、前記中間層(B)が植物由来のバイオマスポリエチレン(b1)及び化石燃料由来のポリエチレン(b2)を含有する積層フィルムにより上記課題を解決するものである。 The present invention is a laminated film in which a surface layer (A), an intermediate layer (B) and a seal layer (C) are laminated, wherein the surface layer (A), the intermediate layer (B) and the seal layer (C) Contains a propylene-based resin, and the intermediate layer (B) solves the above problems by a laminated film containing plant-derived biomass polyethylene (b1) and fossil fuel-derived polyethylene (b2).
 本発明の積層フィルムは、植物由来の樹脂を使用しながらも、好適なシール強度と耐衝撃性を有することから各種包装材として好適に使用できる。特に、ラミネート基材を積層しない構成でも優れた耐衝撃性を有することから、ピロー包装やガゼット包装の包装袋用として好適に使用できる。特に、本発明の積層フィルムは好適なマット性を有し、かつ溶断強度にも優れることからパン等の食品の包装に使用するガゼット包装袋用途として好適である。 The laminated film of the present invention can be suitably used as various packaging materials because it has suitable sealing strength and impact resistance while using plant-derived resin. In particular, since it has excellent impact resistance even in a configuration in which a laminate base material is not laminated, it can be suitably used as a packaging bag for pillow packaging or gusset packaging. In particular, since the laminated film of the present invention has a suitable matte property and excellent fusing strength, it is suitable for use as a gusset packaging bag used for packaging foods such as bread.
 本発明の積層フィルムは、少なくとも表面層(A)、中間層(B)及びシール層(C)を有し、一方の表層が表面層(A)、他方の表層がシール層(C)からなる積層フィルムである。そして、当該積層フィルムは、表面層(A)及びシール層(C)にプロピレン系樹脂を含有し、中間層(B)が植物由来のバイオマスポリエチレン(b1)化石燃料由来のポリエチレン(b2)とプロピレン系ブロック共重合樹脂を含有する。 The laminated film of the present invention has at least a surface layer (A), an intermediate layer (B) and a seal layer (C), one surface layer being a surface layer (A) and the other surface layer being a seal layer (C). It is a laminated film. The laminated film contains a propylene-based resin in the surface layer (A) and the seal layer (C), and the intermediate layer (B) is a plant-derived biomass polyethylene (b1) fossil fuel-derived polyethylene (b2) and propylene. Contains a block copolymer resin.
[表面層(A)]
 表面層(A)用の樹脂として用いるプロピレン系樹脂としては、例えば、プロピレンの単独重合体;プロピレンとエチレンとからなるランダム共重合体、プロピレンとエチレンとからなるブロック共重合体、プロピレンとエチレン以外のα-オレフィンとの共重合体等のプロピレン系共重合体;などのようなプロピレン系樹脂を挙げることができる。これらプロピレン系樹脂は単独で用いても、2種以上を混合して用いてもよい。表面層(A)にプロピレン系樹脂、好ましくは、プロピレン系ブロック共重合体樹脂を含有することで、高い剛性や優れた意匠性と共に、好適な耐衝撃性、耐摩擦性を有するマット調の積層フィルムとすることができる。
[Surface layer (A)]
Examples of the propylene resin used as the resin for the surface layer (A) include propylene homopolymers; random copolymers composed of propylene and ethylene, block copolymers composed of propylene and ethylene, and other than propylene and ethylene. And a propylene resin such as a copolymer with an α-olefin. These propylene resins may be used alone or in combination of two or more. Matte laminate having suitable impact resistance and friction resistance as well as high rigidity and excellent design by including a propylene resin, preferably a propylene block copolymer resin, in the surface layer (A) It can be a film.
 表面層(A)に含まれる樹脂成分中のプロピレン系樹脂の含有量は、好適な溶断強度や製袋適性を得やすいことから、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。また、表面層(A)に含まれる樹脂成分が、実質的にプロピレン系樹脂のみからなる表面層であってもよい。 The content of the propylene-based resin in the resin component contained in the surface layer (A) is preferably 50% by mass or more and 70% by mass or more because it is easy to obtain suitable fusing strength and bag-making suitability. More preferably, it is more preferably 90% by mass or more. In addition, the resin component contained in the surface layer (A) may be a surface layer substantially composed of only a propylene-based resin.
 プロピレン系樹脂として好ましく使用できるプロピレン系ブロック共重合体樹脂としては、プロピレンと他のα-オレフィンとの共重合体を使用できる。α-オレフィンとしては、エチレン、1-ブテン、1-ヘキセン、4-メチル・1-ペンテン、1-オクテン等が例示でき、なかでもエチレンがマット感、耐寒性・剛性のバランスに優れてのため好ましい。プロピレン系ブロック共重合体中のα-オレフィン含有量は、耐衝撃性や剛性を得やすいことから2~10質量%であることが好ましく、4~8質量%であることがより好ましい。 As a propylene-based block copolymer resin that can be preferably used as a propylene-based resin, a copolymer of propylene and another α-olefin can be used. Examples of α-olefins include ethylene, 1-butene, 1-hexene, 4-methyl / 1-pentene, 1-octene, and the like because ethylene has an excellent matte feeling, cold resistance and rigidity balance. preferable. The α-olefin content in the propylene-based block copolymer is preferably 2 to 10% by mass, more preferably 4 to 8% by mass because it is easy to obtain impact resistance and rigidity.
 プロピレン系ブロック共重合体樹脂のメルトフローレート(MFR)は、成形が容易であり、また好適な耐衝撃性やマット感を得やすいことから、0.5g/10分以上であることが好ましく、1g/10分以上であることがより好ましい。また、20g/10分以下であることが好ましく、10g/10分以下であることがより好ましい。 The melt flow rate (MFR) of the propylene-based block copolymer resin is preferably 0.5 g / 10 min or more, since it is easy to mold and easily obtains suitable impact resistance and mat feeling. More preferably, it is 1 g / 10 minutes or more. Moreover, it is preferable that it is 20 g / 10min or less, and it is more preferable that it is 10 g / 10min or less.
 プロピレン系ブロック共重合体樹脂の融点は、好適な製袋性を得やすいことから、155℃以上であることが好ましく、165℃以下であることが好ましい。 The melting point of the propylene-based block copolymer resin is preferably 155 ° C. or higher, and preferably 165 ° C. or lower because it is easy to obtain suitable bag-making properties.
 表面層(A)に使用するプロピレン系ブロック共重合体樹脂は単一の共重合体を使用しても、複数の共重合体を使用してもよい。複数使用する場合には、使用するプロピレン系ブロック共重合体樹脂の含有量の総量を下記範囲とすることが好ましい。 The propylene block copolymer resin used for the surface layer (A) may be a single copolymer or a plurality of copolymers. When using two or more, it is preferable to make the total content of the propylene-type block copolymer resin to be used into the following range.
 表面層(A)中に使用され、マット感や溶断強度や製袋適性とのバランスに優れたプロピレン系ブロック共重合体樹脂としては、BC8、BC7(日本ポリプロ社製)、E150GK,F704V(プライムポリマー社製)、PC480A、PC684S、PC380A、VB370A(サンアロマー社製)などが挙げられる。 BC8, BC7 (manufactured by Nippon Polypro Co., Ltd.), E150GK, F704V (Prime) are used in the surface layer (A) and have a good balance with mat feeling, fusing strength and bag making suitability. Polymer)), PC480A, PC684S, PC380A, VB370A (manufactured by Sun Allomer), and the like.
 プロピレン系樹脂としてプロピレン系ブロック共重合体樹脂を使用する場合には、表面層(A)に含まれる樹脂成分中のプロピレン系ブロック共重合体の含有量は、マット感や溶断強度や製袋適性のバランスで適宜調整すればよいが、表面層(A)に使用する樹脂成分中の50質量%以上含有することが好ましく、70質量%以上含有することがより好ましい。当該範囲とすることで、意匠性に優れた、均一性のあるマット感を得やすくなる。なかでも、耐衝撃性を高くする際には80~100質量%とすることが好ましく、マット感を向上させる際には、70~90質量%とすることが好ましい。 When a propylene-based block copolymer resin is used as the propylene-based resin, the content of the propylene-based block copolymer in the resin component contained in the surface layer (A) depends on mat feeling, fusing strength, and bag-making suitability. However, the content of the resin component used in the surface layer (A) is preferably 50% by mass or more, more preferably 70% by mass or more. By setting it as the said range, it becomes easy to obtain the uniform mat feeling excellent in the designability. In particular, when the impact resistance is increased, the content is preferably 80 to 100% by mass, and when the mat feeling is improved, the content is preferably 70 to 90% by mass.
 また、表面層(A)中に、プロピレン系ブロック共重合体樹脂以外の樹脂を使用する場合には、上記したプロピレン系樹脂以外にも、包装フィルムに使用される各種オレフィン系樹脂を使用できる。このような樹脂としては、例えば、プロピレン単独重合体、プロピレン-α-オレフィンランダム共重合体(プロピレン-エチレン共重合体、プロピレン-ブテン-1共重合体、プロピレン-エチレン-ブテン-1共重合体、メタロセン触媒系ポリプロピレン等)等のポリプロピレン系樹脂、超低密度ポリエチレン(VLDPE)、線状低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)等のポリエチレン系樹脂や、エチレン-酢酸ビニル共重合体(EVA)、エチレン-メチルメタアクリレート共重合体(EMMA)、エチレン-エチルアクリレート共重合体(EEA)、エチレン-メチルアクリレート(EMA)共重合体、エチレン-エチルアクリレート-無水マレイン酸共重合体(E-EA-MAH)、エチレン-アクリル酸共重合体(EAA)、エチレン-メタクリル酸共重合体(EMAA)等のエチレン系共重合体;更にはエチレン-アクリル酸共重合体のアイオノマー、エチレン-メタクリル酸共重合体のアイオノマー等の樹脂を使用できる。 In addition, when a resin other than the propylene block copolymer resin is used in the surface layer (A), various olefin resins used for the packaging film can be used in addition to the propylene resin described above. Examples of such resins include propylene homopolymer, propylene-α-olefin random copolymer (propylene-ethylene copolymer, propylene-butene-1 copolymer, propylene-ethylene-butene-1 copolymer). Polypropylene resins such as metallocene catalyst polypropylene), polyethylene resins such as very low density polyethylene (VLDPE), linear low density polyethylene (LLDPE), and low density polyethylene (LDPE), and ethylene-vinyl acetate copolymers (EVA), ethylene-methyl methacrylate copolymer (EMMA), ethylene-ethyl acrylate copolymer (EEA), ethylene-methyl acrylate (EMA) copolymer, ethylene-ethyl acrylate-maleic anhydride copolymer ( E-EA-MAH), ethylene Ethylene copolymers such as crylic acid copolymer (EAA) and ethylene-methacrylic acid copolymer (EMAA); further, ionomers of ethylene-acrylic acid copolymers, ionomers of ethylene-methacrylic acid copolymers, etc. Resin can be used.
 表面層(A)中には、本発明の効果を損なわない範囲で各種の添加剤を配合してもよい。当該添加剤としては、酸化防止剤、耐候安定剤、帯電防止剤、防曇剤、アンチブロッキング剤、滑剤、核剤、顔料等を例示できる。 Various additives may be blended in the surface layer (A) as long as the effects of the present invention are not impaired. Examples of the additive include an antioxidant, a weather resistance stabilizer, an antistatic agent, an antifogging agent, an antiblocking agent, a lubricant, a nucleating agent, and a pigment.
 表面層(A)のJIS B-0601に基づく表面粗さ(Ra)は0.2~1.0であることが好ましく、0.3~0.7であることがより好ましい。表面粗さを当該範囲とすることで、その他の成分(スリップ剤やアンチブロッキング剤等の添加剤)の追添量を低減、あるいは場合によっては併用しなくても、表面滑り性に優れるフィルムが得られ、製袋スピードの向上に繋がり、製袋後の付き揃え、梱包作業の向上・効率化になり、内容物を充填してから自動包装機等によって包装する際の作業性が向上する。 The surface roughness (Ra) of the surface layer (A) based on JIS B-0601 is preferably 0.2 to 1.0, and more preferably 0.3 to 0.7. By making the surface roughness within this range, the amount of other components (additives such as slip agents and antiblocking agents) can be reduced, or even if not used in combination, a film with excellent surface slipperiness can be obtained. As a result, the speed of bag making is improved, the associating after bag making and the improvement and efficiency of packing work are improved, and the workability at the time of packing by the automatic packing machine after filling the contents is improved.
 表面層(A)表面の摩擦係数(ASTM D-1894)としては、0.05~0.7が好ましく、0.07~0.6が更に好ましく、0.1~0.5がより好ましい。当該範囲とすることで、包装時のフィルム送り性や製袋後の付き揃え性、梱包作業性等を向上させやすく、またクロージャーによる結束時のフィルム破れを好適に抑制しやすくなる。なお、当該摩擦係数は、表面層に使用する樹脂成分に応じて、滑材及びアンチブロッキング剤等の添加剤を適宜添加して調整できる。 The friction coefficient (ASTM D-1894) of the surface layer (A) is preferably 0.05 to 0.7, more preferably 0.07 to 0.6, and more preferably 0.1 to 0.5. By setting it as the said range, it becomes easy to improve the film feeding property at the time of packaging, the alignment property after bag making, packing workability | operativity, etc., and it becomes easy to suppress suitably the film tear at the time of binding by a closure. The friction coefficient can be adjusted by appropriately adding additives such as a lubricant and an anti-blocking agent according to the resin component used for the surface layer.
[中間層(B)]
 本発明の積層フィルムの中間層は植物由来のバイオマスポリエチレン(b1)、化石燃料由来のポリエチレン(b2)及びプロピレン系ブロック共重合体樹脂(b3)を含有する層である。当該中間層を使用することで、優れた環境対応性を有しながらも、好適なマット性や優れた耐破袋性、特に低温下での優れた耐破袋性や耐摩擦性の積層フィルムを得ることができる。
[Intermediate layer (B)]
The intermediate layer of the laminated film of the present invention is a layer containing plant-derived biomass polyethylene (b1), fossil fuel-derived polyethylene (b2), and propylene-based block copolymer resin (b3). By using the intermediate layer, the laminated film has excellent matting properties, excellent bag breaking resistance, particularly excellent bag breaking resistance and friction resistance at low temperatures, while having excellent environmental compatibility. Can be obtained.
 中間層(B)に使用する植物由来のバイオマスポリエチレン(b1)は、サトウキビ、トウモロコシ、ビート等を出発原料とする植物由来のエチレンから生成されるポリエチレン系樹脂である。当該バイオマスポリエチレン(b1)としては、例えば、線状低密度ポリエチレン(LLDPE)、線状中密度ポリエチレン(LMDPE)、線状高密度ポリエチレン(LHDPE)、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)等が挙げられ、これらは単独でも、2種類以上を混合して使用してもよい。これらのなかでも、特に、直鎖状低密度ポリエチレンであることが好ましい。直鎖状低密度ポリエレンとしては、密度が0.925g/cm以下であることが好ましく、0.920g/cm以下であることがより好ましい。使用する直鎖状低密度ポリエチレンの密度を上記範囲とすることで、好適な溶断強度と高い耐衝撃性、耐破袋性を兼備しやすくなる。 The plant-derived biomass polyethylene (b1) used for the intermediate layer (B) is a polyethylene-based resin produced from plant-derived ethylene starting from sugarcane, corn, beet or the like. Examples of the biomass polyethylene (b1) include linear low density polyethylene (LLDPE), linear medium density polyethylene (LMDPE), linear high density polyethylene (LHDPE), low density polyethylene (LDPE), and medium density polyethylene (MDPE). ), High density polyethylene (HDPE), and the like. These may be used alone or in combination of two or more. Among these, linear low density polyethylene is particularly preferable. The linear low density Porieren, preferably density of 0.925 g / cm 3 or less, more preferably 0.920 g / cm 3 or less. By setting the density of the linear low-density polyethylene to be used within the above range, it is easy to combine suitable fusing strength, high impact resistance, and bag breaking resistance.
 中間層(B)に使用するバイオマスポリエチレン(b1)のMFRは、0.1~30g/10分が好ましく、0.5~20g/10分が特に好ましい。1g/10分以上とすることで、好適な製膜性を得やすくなり、20g/10分以下とすることで、好適な成形性を得やすくなる。 The MFR of the biomass polyethylene (b1) used for the intermediate layer (B) is preferably from 0.1 to 30 g / 10 minutes, particularly preferably from 0.5 to 20 g / 10 minutes. By setting it as 1 g / 10min or more, it becomes easy to obtain suitable film forming property, and it becomes easy to obtain suitable moldability by setting it as 20 g / 10 minutes or less.
 中間層(B)に用いられるバイオマスポリエチレン(b1)は、石油由来の製造方法に対して、原料がサトウキビなどの植物で、モノマー生成までは異なるが、それ以外は、製造方法は同一である。製造方法としては、特に制限はなく、公知の方法で製造されたものでできる。例えば、チーグラー・ナッタ触媒やメタロセン触媒を用いた製造法が上げられる。 Biomass polyethylene (b1) used for the intermediate layer (B) is a plant such as sugar cane, and the production method is the same except for the production of monomers, although the raw material is a plant such as sugar cane. There is no restriction | limiting in particular as a manufacturing method, It can manufacture by the well-known method. For example, a production method using a Ziegler-Natta catalyst or a metallocene catalyst can be raised.
 具体的には、チタン含有化合物自体またはチタン含有化合物をマグネシウム化合物等の担体に担持させたものを主触媒とし、有機アルミニウム化合物を助触媒とした触媒系で、プロピレン単独または所望のエチレンなどのα-オレフィンを添加して重合を行う方法を挙げることが出来る。この重合は、スラリー重合法、溶液重合法、気相重合法等のいずれのプロセスでもよい。 Specifically, a catalyst system in which a titanium-containing compound itself or a titanium-containing compound supported on a carrier such as a magnesium compound is used as a main catalyst and an organoaluminum compound is used as a co-catalyst, propylene alone or a desired α such as ethylene -A method of carrying out polymerization by adding an olefin can be mentioned. This polymerization may be any process such as a slurry polymerization method, a solution polymerization method, and a gas phase polymerization method.
 また、均一系触媒を用いてもよく、従来から用いられているバナジュウム化合物と有機アルミニウム化合物とからなる触媒、あるいはシクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基、置換インデニル基等を1又は2個を配位子とするジルコニウム、チタン、ハフニウムなどの遷移金属化合物、該配位子が幾何学的に制御された遷移金属化合物とアルミノキサンやイオン性化合物などの助触媒からなるメタロセン系触媒等の均一系触媒系も挙げることができる。メタロセン触媒は、必要により有機アルミ化合物を用いて、溶媒存在下の均一系重合のほか、スラリー重合法、気相重合法等のいずれのプロセスでもよい。 In addition, a homogeneous catalyst may be used, and a conventionally used catalyst composed of a vanadium compound and an organoaluminum compound, or a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, etc. A metallocene system comprising a transition metal compound such as zirconium, titanium or hafnium having one or two ligands, a transition metal compound in which the ligand is geometrically controlled, and a promoter such as an aluminoxane or an ionic compound. Mention may also be made of homogeneous catalyst systems such as catalysts. The metallocene catalyst may be any process such as a slurry polymerization method and a gas phase polymerization method in addition to homogeneous polymerization in the presence of a solvent, if necessary, using an organoaluminum compound.
 このようなバイオマスポリエチレン(b1)の市販品としては、ブラスケム社製、SLL118、SLL118/21、SLL218、SLL318、SLH118、SLH218、SLH0820/30AF、SBC818、SPB208、STN7006、SEB853等が例示できる。 Examples of such commercially available products of biomass polyethylene (b1) include SLL118, SLL118 / 21, SLL218, SLL318, SLH118, SLH218, SLH0820 / 30AF, SBC818, SPB208, STN7006, SEB853, etc. manufactured by Braschem.
 中間層(B)に使用する化石燃料由来のポリエチレン(b2)は、石油等の化石燃料を原料とするポリエチレン系樹脂である。当該ポリエチレン(b2)としては、直鎖状低密度ポリエチレン(LLDPE)、直鎖状中密度ポリエチレン(LMDPE)、直鎖状高密度ポリエチレン(LHDPE)、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)等のポリエチレン樹脂や、エチレン-ブテン-ゴム共重合体(EBR)、エチレン-プロピレン-ゴム共重合体(EPR)、エチレン-酢酸ビニル共重合体(EVA)、エチレン-メチルメタアクリレート共重合体(EMMA)、エチレン-エチルアクリレート共重合体(EEA)、エチレン-メチルアクリレート(EMA)共重合体、エチレン-エチルアクリレート-無水マレイン酸共重合体(E-EA-MAH)、エチレン-アクリル酸共重合体(EAA)、エチレン-メタクリル酸共重合体(EMAA)、等のエチレン系共重合体;更にはエチレン-アクリル酸共重合体のアイオノマー、エチレン-メタクリル酸共重合体のアイオノマー等が挙げられ、単独でも、2種類以上を混合して使用して良い。これらのなかでも、直鎖状低密度ポリエチレンが好ましい。直鎖状低密度ポリエレンとしては、密度が0.915g/cm以下であることが好ましく、0.910g/cm以下であることがより好ましく、0.906g/cm以下であることがさらに好ましい。使用する直鎖状低密度ポリエチレンの密度を上記範囲とすることで、好適な溶断強度と高い耐衝撃性、耐破袋性を兼備しやすくなる。直鎖状低密度ポリエチレンは一種を使用しても複数種を併用してもよい。 The fossil fuel-derived polyethylene (b2) used for the intermediate layer (B) is a polyethylene-based resin made from fossil fuels such as petroleum. Examples of the polyethylene (b2) include linear low density polyethylene (LLDPE), linear medium density polyethylene (LMDPE), linear high density polyethylene (LHDPE), low density polyethylene (LDPE), and medium density polyethylene (MDPE). ), Polyethylene resin such as high density polyethylene (HDPE), ethylene-butene-rubber copolymer (EBR), ethylene-propylene-rubber copolymer (EPR), ethylene-vinyl acetate copolymer (EVA), ethylene -Methyl methacrylate copolymer (EMMA), ethylene-ethyl acrylate copolymer (EEA), ethylene-methyl acrylate (EMA) copolymer, ethylene-ethyl acrylate-maleic anhydride copolymer (E-EA-MAH) ), Ethylene-acrylic acid copolymer (EAA), Ethylene copolymers such as lene-methacrylic acid copolymer (EMAA); and ethylene-acrylic acid copolymer ionomers, ethylene-methacrylic acid copolymer ionomers, and the like. A mixture of the above may be used. Among these, linear low density polyethylene is preferable. The linear low density Porieren, preferably density of 0.915 g / cm 3 or less, more preferably 0.910 g / cm 3 or less, still be at 0.906 g / cm 3 or less preferable. By setting the density of the linear low-density polyethylene to be used within the above range, it is easy to combine suitable fusing strength, high impact resistance, and bag breaking resistance. One kind of linear low density polyethylene may be used, or a plurality of kinds may be used in combination.
 直鎖状低密度ポリエチレンのMFR(190℃、21.18N)は、10g/10分以下であることが好ましく、1~5g/10分であることがより好ましい。MFRを当該範囲とすることで、フィルムの成膜性を向上させやすく、分散性も良く、均一なフィルムを得られやすくなる。 The MFR (190 ° C., 21.18N) of the linear low density polyethylene is preferably 10 g / 10 minutes or less, more preferably 1 to 5 g / 10 minutes. By making MFR into the said range, it becomes easy to improve the film-forming property of a film, dispersibility is good, and it becomes easy to obtain a uniform film.
 中間層(B)に使用するプロピレン系ブロック共重合体樹脂(b3)は、上記表面層に使用するプロピレン系ブロック共重合体樹脂と同様のものを好ましく使用できる。当該プロピレン系ブロック共重合体は単一の共重合体を使用しても、複数の共重合体を使用してもよい。 As the propylene-based block copolymer resin (b3) used for the intermediate layer (B), the same propylene-based block copolymer resin used for the surface layer can be preferably used. The propylene-based block copolymer may be a single copolymer or a plurality of copolymers.
 中間層(B)に含まれる樹脂成分中の植物由来のバイオマスポリエチレン(b1)の含有量は、好適な剛性や耐衝撃性、包装袋としての製袋加工適性、等を得やすいことから、1質量%~35質量%であることが好ましく、2質量%~25質量%であることがより好ましい。環境負荷低減効果と最適な物性や加工適性の保持の点では、5質量%以上がさらに好ましく、10質量%以上であることが特に好ましい。また、20質量%以下がさらに好ましく、15質量%以下であることが特に好ましい。 Since the content of the plant-derived biomass polyethylene (b1) in the resin component contained in the intermediate layer (B) is easy to obtain suitable rigidity and impact resistance, suitability for bag making as a packaging bag, etc., 1 The mass is preferably from 35% by mass to 35% by mass, and more preferably from 2% by mass to 25% by mass. In view of reducing the environmental impact and maintaining optimum physical properties and processability, the content is more preferably 5% by mass or more, and particularly preferably 10% by mass or more. Moreover, 20 mass% or less is further more preferable, and it is especially preferable that it is 15 mass% or less.
 中間層(B)に含まれる樹脂成分中の化石燃料由来のポリエチレン(b2)の含有量は、好適な製袋適性や溶断シール強度と耐破袋性とを得やすいことから、3質量%以上であることが好ましく、5質量%以上であることがより好ましく、7質量%以上であることがさらに好ましい。また、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることがさらに好ましい。 The content of polyethylene (b2) derived from fossil fuel in the resin component contained in the intermediate layer (B) is 3% by mass or more because it is easy to obtain suitable bag making suitability, fusing seal strength, and bag breaking resistance. Preferably, it is 5 mass% or more, more preferably 7 mass% or more. Moreover, it is preferable that it is 30 mass% or less, It is more preferable that it is 20 mass% or less, It is further more preferable that it is 15 mass% or less.
 中間層(B)に含まれる樹脂成分中のプロピレン系ブロック共重合体(b3)の含有量は、好適な耐衝撃性やマット感を得やすいことから95質量%以下であることが好ましく、85質量%以下であることがより好ましく、80質量%以下であることがさらに好ましく、75質量%以下であることが特に好ましい。また、好適な製袋時の安定性を得やすいことから、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、25質量%以上であることがより好ましく、30質量%以上であることが特に好ましい。 The content of the propylene-based block copolymer (b3) in the resin component contained in the intermediate layer (B) is preferably 95% by mass or less because it is easy to obtain suitable impact resistance and mat feeling, 85 It is more preferably no greater than mass%, more preferably no greater than 80 mass%, and particularly preferably no greater than 75 mass%. Moreover, since it is easy to obtain the stability at the time of a bag making, it is preferable that it is 15 mass% or more, It is more preferable that it is 20 mass% or more, It is more preferable that it is 25 mass% or more, 30 mass % Or more is particularly preferable.
 また、中間層(B)に含まれる樹脂成分として、バイオマスポリエチレン(b1)、化石燃料由来のポリエチレン(b2)及びプロピレン系ブロック共重合体(b3)の3成分のみを使用する場合には、これらの含有量の比(バイオマスポリエチレン(b1)/化石燃料由来のポリエチレン(b2)/プロピレン系ブロック共重合体(b3))が、質量比で2/3/95~30/25/45とすることが好ましく、10/5/85~25/20/55とすることがより好ましい。当該比率とすることで、好適なマット調を有しつつ優れた耐破袋性、特に低温下での優れた耐破袋性・耐摩擦性の積層フィルムを得ることができる。 In addition, when only three components of biomass polyethylene (b1), fossil fuel-derived polyethylene (b2) and propylene-based block copolymer (b3) are used as the resin component contained in the intermediate layer (B), Content ratio (biomass polyethylene (b1) / fossil fuel-derived polyethylene (b2) / propylene block copolymer (b3)) is 2/3/95 to 30/25/45 by mass ratio Is preferably 10/5/85 to 25/20/55. By setting the ratio, it is possible to obtain a laminated film having an excellent rupture resistance while having a suitable matte tone, in particular, an excellent rupture resistance and friction resistance at low temperatures.
 中間層(B)には、上記以外の樹脂、例えば、上記したようなオレフィン系樹脂を併用してもよく、なかでも、プロピレン-α-オレフィンランダム共重合体を好ましく使用でき、特にプロピレン-エチレンランダム共重合体を好ましく使用できる。プロピレン-α-オレフィンランダム共重合体中のエチレン、ブテン-1、4-メチルペンテン-1、オクテン-1などのα-オレフィンの含有量は0.3~10質量%であることが好ましく、0.5~6質量%であることがより好ましい。α-オレフィンの含有量を当該範囲とすることで、好適な剛性や耐ブロッキング性を得やすく、好適な製袋適性、包装適性を実現しやすくなる。エチレンなどのα-オレフィン含有量は、赤外吸収スペクトル法により測定される。 In the intermediate layer (B), resins other than those described above, for example, olefinic resins as described above may be used in combination, and among them, propylene-α-olefin random copolymers can be preferably used, particularly propylene-ethylene. A random copolymer can be preferably used. The content of α-olefin such as ethylene, butene-1,4-methylpentene-1, and octene-1 in the propylene-α-olefin random copolymer is preferably 0.3 to 10% by mass. More preferably, the content is 5 to 6% by mass. By setting the α-olefin content in the above range, it is easy to obtain suitable rigidity and blocking resistance, and it becomes easy to realize suitable bag making aptitude and packaging aptitude. The content of α-olefin such as ethylene is measured by an infrared absorption spectrum method.
 中間層(B)中のプロピレン-エチレンランダム共重合体のメルトフローレート(MFR)は、積層フィルムを形成できる範囲であれば特に制限されないが、0.5g/10分以上であることが好ましく、3g/10分以上であることがより好ましく、5g/10分以上であることがより好ましい。また、良好な成型性を得るため、MFRは20g/10分以下であることが好ましく、15g/10分以下であることがより好ましく、12g/10分以下であることがより好ましい。 The melt flow rate (MFR) of the propylene-ethylene random copolymer in the intermediate layer (B) is not particularly limited as long as it can form a laminated film, but is preferably 0.5 g / 10 min or more, It is more preferably 3 g / 10 minutes or more, and more preferably 5 g / 10 minutes or more. In order to obtain good moldability, the MFR is preferably 20 g / 10 min or less, more preferably 15 g / 10 min or less, and more preferably 12 g / 10 min or less.
 プロピレン-エチレンランダム共重合体の密度は、0.880g/cm以上0.905g/cm以下であることが好ましく、0.890g/cm以上0.900g/cm以下であることがより好ましい。 Propylene - density of the ethylene random copolymer, more it is preferably at most 0.880 g / cm 3 or more 0.905 g / cm 3, is 0.890 g / cm 3 or more 0.900 g / cm 3 or less preferable.
 プロピレン-エチレンランダム共重合体の融点は、製袋時の溶断シール刃への付着を防ぐ点から、110℃以上であることが好ましく、115℃以上であることがより好ましい。また、製袋時の溶断シール時に、溶断シール強度を発現させるために、十分な溶断玉形成が必要なため、150℃以下であることが好ましく、145℃以下であることがより好ましい。 The melting point of the propylene-ethylene random copolymer is preferably 110 ° C. or higher, and more preferably 115 ° C. or higher, from the viewpoint of preventing adhesion to the fusing seal blade during bag making. Moreover, in order to express the fusing seal strength at the time of fusing sealing at the time of bag making, since it is necessary to form sufficient fusing balls, it is preferably 150 ° C. or less, more preferably 145 ° C. or less.
 中間層(B)中に、プロピレン-α-オレフィンランダム共重合体を使用する場合には、中間層(B)に含まれる樹脂成分中のプロピレン-α-オレフィンランダム共重合体の含有量が5質量%以上であることが好ましく、15質量%以上であることがより好ましく、25質量%以上であることがさらに好ましい。また、50質量%以下とすることが好ましく、45質量%以下とすることがより好ましく、40質量%以下とすることがさらに好ましい。当該中間層にプロピレン-α―オレフィンランダム共重合体を使用することで、耐破袋性を維持しつつ製袋時により優れた溶断シール強度を得ることができる。 When a propylene-α-olefin random copolymer is used in the intermediate layer (B), the content of the propylene-α-olefin random copolymer in the resin component contained in the intermediate layer (B) is 5 It is preferably at least mass%, more preferably at least 15 mass%, and even more preferably at least 25 mass%. Moreover, it is preferable to set it as 50 mass% or less, It is more preferable to set it as 45 mass% or less, It is further more preferable to set it as 40 mass% or less. By using a propylene-α-olefin random copolymer for the intermediate layer, it is possible to obtain better fusing seal strength at the time of bag-making while maintaining the bag resistance.
 中間層(B)に含まれる樹脂成分は、上記の各種樹脂を適宜の含有量にて使用すればよいが、積層フィルムの全厚を薄く設計した際の剛性と衝撃強度の劣化を抑制しやすいことから、中間層(B)に含まれる樹脂成分中のプロピレン系樹脂の含有量を55質量%以上、かつ、エチレン系樹脂の含有量を7~45質量%とすることが好ましい。なかでも、プロピレン系樹脂として、プロピレン系ブロック共重合体(b3)とプロピレン-エチレンランダム共重合体とを使用して、これらの総量を55質量%以上とし、エチレン系樹脂として、植物由来のバイオマスポリエチレン(b1)と化石燃料由来のポリエチレン(b2)とを使用して、これらの総量を7~45質量%とすることが、特に好ましい。 The resin component contained in the intermediate layer (B) may be any of the above-mentioned various resins, but it is easy to suppress deterioration of rigidity and impact strength when the total thickness of the laminated film is designed to be thin. Therefore, it is preferable that the content of the propylene resin in the resin component contained in the intermediate layer (B) is 55% by mass or more and the content of the ethylene resin is 7 to 45% by mass. In particular, propylene block copolymer (b3) and propylene-ethylene random copolymer are used as the propylene resin, and the total amount of these is 55% by mass or more. As the ethylene resin, plant-derived biomass is used. It is particularly preferable that polyethylene (b1) and fossil fuel-derived polyethylene (b2) are used and the total amount thereof is 7 to 45% by mass.
 さらに、中間層(B)に含まれる樹脂成分として、バイオマスポリエチレン(b1)、化石燃料由来のポリエチレン(b2)、プロピレン系ブロック共重合体(b3)及びプロピレン-エチレンランダム共重合体のみを使用し、これらの含有量の比(バイオマスポリエチレン(b1)/化石燃料由来のポリエチレン(b2)/プロピレン系ブロック共重合体(b3)/プロピレン-エチレンランダム共重合体)が、質量比で2/3/65/30~25/20/15/40とすることが好ましく、10/5/50/35~15/15/30/40とすることがより好ましい。当該比率とすることで、好適なマット調を有しつつ優れた耐破袋性、特に低温下での優れた耐破袋性・耐摩擦性の積層フィルムを得ることができる Further, only the biomass polyethylene (b1), the fossil fuel-derived polyethylene (b2), the propylene-based block copolymer (b3) and the propylene-ethylene random copolymer are used as the resin component contained in the intermediate layer (B). The ratio of these contents (biomass polyethylene (b1) / polyethylene derived from fossil fuel (b2) / propylene-based block copolymer (b3) / propylene-ethylene random copolymer) is 2/3 / by mass. 65/30 to 25/20/15/40 is preferable, and 10/5/50/35 to 15/15/30/40 is more preferable. By setting the ratio, it is possible to obtain a laminated film having excellent tear resistance while having a suitable matte tone, particularly excellent tear resistance and friction resistance at low temperatures.
 なお、当該中間層においても上記表面層にて例示したような添加剤を適宜使用してもよい。 In addition, you may use suitably the additive which was illustrated in the said surface layer also in the said intermediate | middle layer.
[シール層(C)]
 本発明に使用するシール層(C)は、積層フィルムのシール層同士の接着や、積層フィルムと他の容器やフィルム等との接着に使用する層である。当該シール層は、使用態様や被シール対象に応じて、好適なシール強度が得られる樹脂種を適宜選択すればよい。例えば、シール層同士をシールして包装袋として使用する場合には、適度なシール強度が得られる点から、プロピレン-エチレンランダム共重合体、プロピレン-1-ブテン共重合体等のプロピレン-α-オレフィン共重合体、1-ブテン-プロピレン共重合体等のα-オレフィン-プロピレン共重合体を含有するシール層を好適に使用できる。なかでも、低温での易開封シール時のヒートシール温度や強度の調整が容易で、ヒートシール温度幅が広く、易開封シールとして適度なヒートシール強度を得やすいことから、プロピレン-1-ブテン共重合体又は1-ブテン-プロピレン共重合体等のブテン系樹脂が好ましい。
[Sealing layer (C)]
The sealing layer (C) used for this invention is a layer used for adhesion | attachment of the sealing layers of laminated | multilayer film, and adhesion | attachment with a laminated | multilayer film, another container, a film, etc. What is necessary is just to select suitably the resin seed | species from which the suitable sealing strength is obtained for the said sealing layer according to a use aspect or to-be-sealed object. For example, when used as a packaging bag by sealing the seal layers, propylene-α- such as propylene-ethylene random copolymer, propylene-1-butene copolymer, etc. is obtained from the point that an appropriate seal strength can be obtained. A seal layer containing an α-olefin-propylene copolymer such as an olefin copolymer or 1-butene-propylene copolymer can be suitably used. Among them, propylene-1-butene is easy to adjust heat seal temperature and strength at easy opening seal at low temperature, wide heat seal temperature range, and easy to obtain appropriate heat seal strength as easy open seal. A butene-based resin such as a polymer or a 1-butene-propylene copolymer is preferred.
 プロピレン-1-ブテン共重合体や1-ブテン-プロピレン共重合体を使用する場合には、好適なシール性や耐ブロッキング性を得やすいことから、共重合体中の1-ブテン含有量が60~95モル%であることが好ましく、65~95%であることがより好ましく、70~90モル%であることがさらに好ましい。また、好適な低温シール性を得やすいことから、プロピレン含有量が2~10モル%であることが好ましく、3~9モル%であることがより好ましく、4~8モル%であることがさらに好ましい。 When a propylene-1-butene copolymer or a 1-butene-propylene copolymer is used, it is easy to obtain suitable sealing properties and blocking resistance, so that the 1-butene content in the copolymer is 60%. It is preferably ˜95 mol%, more preferably 65 to 95%, and even more preferably 70 to 90 mol%. In addition, the propylene content is preferably 2 to 10% by mole, more preferably 3 to 9% by mole, and further preferably 4 to 8% by mole because a suitable low-temperature sealability is easily obtained. preferable.
 プロピレン-1-ブテン共重合体や1-ブテン-プロピレン共重合体等のブテン系樹脂を使用する場合には、ブテン系樹脂の含有量はシール層に含まれる樹脂成分中の50質量%以下とすることが好ましく、40質量%以下とすることがより好ましく、30質量%以下とすることがさらに好ましい。また、10質量%以上とすることが好ましく、15質量%以上とすることがより好ましい。ブテン系樹脂の含有量が当該範囲であると、好適な低温シール性や製袋品の溶断強度や耐裂け性を得やすく、また低コスト化にも有利である。 When a butene resin such as propylene-1-butene copolymer or 1-butene-propylene copolymer is used, the content of butene resin is 50% by mass or less in the resin component contained in the seal layer. Preferably, it is 40 mass% or less, more preferably 30 mass% or less. Moreover, it is preferable to set it as 10 mass% or more, and it is more preferable to set it as 15 mass% or more. When the content of the butene-based resin is within this range, it is easy to obtain suitable low-temperature sealing properties, fusing strength and tear resistance of bag-made products, and it is advantageous for cost reduction.
 上記ブテン系樹脂に併用する樹脂としては、他のポリオレフィン系樹脂を適宜使用できるが、シール強度を好適に調整しやすいことから、プロピレン-α-オレフィン共重合体や、エチレン-α-オレフィン共重合体を好ましく使用でき、プロピレン-α-オレフィン共重合体を特に好ましく使用できる。 As the resin used in combination with the butene-based resin, other polyolefin-based resins can be used as appropriate. However, since the seal strength is easily adjusted, a propylene-α-olefin copolymer or an ethylene-α-olefin copolymer can be used. Polymers can be preferably used, and propylene-α-olefin copolymers can be particularly preferably used.
 プロピレン-α-オレフィン共重合体中のα-オレフィンの含有量は、特に制限されないが1~20質量%であることが好ましく、1.5~15質量%がより好ましい。α-オレフィンとしては、エチレン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン等が例示できる。なかでも、上記中間層にて例示したようなプロピレン-エチレンランダム共重合体を好ましく使用できる。MFRは良好な成形性を得やすいことから、0.5~20g/10分であることが好ましく、2~10g/10分がより好ましい。 The α-olefin content in the propylene-α-olefin copolymer is not particularly limited, but is preferably 1 to 20% by mass, more preferably 1.5 to 15% by mass. Examples of the α-olefin include ethylene, 1-hexene, 4-methyl-1-pentene, 1-octene and the like. Of these, propylene-ethylene random copolymers as exemplified in the intermediate layer can be preferably used. The MFR is preferably from 0.5 to 20 g / 10 minutes, more preferably from 2 to 10 g / 10 minutes, since good moldability is easily obtained.
 他のオレフィン系樹脂の含有量は、好適な低温シール性を得やすいことから、シール層に含まれる樹脂成分中の90質量%以下とすることが好ましく、85質量%以下とすることがより好ましい。また、50質量%以上とすることが好ましく、60質量%以上とすることがより好ましい。 The content of the other olefinic resin is preferably 90% by mass or less, more preferably 85% by mass or less in the resin component contained in the seal layer, because it is easy to obtain suitable low-temperature sealing properties. . Moreover, it is preferable to set it as 50 mass% or more, and it is more preferable to set it as 60 mass% or more.
 特に、本発明の積層フィルムを使用して包装袋を形成する際に、シール層同士をヒートシールした易開封部を設ける場合には、ブテン系樹脂とプロピレン-α-オレフィン共重合体とを、ブテン系樹脂/プロピレン-α-オレフィン共重合体で表される質量比が20/80~50/50となる割合で併用することが好ましい。 In particular, when forming a packaging bag using the laminated film of the present invention, when providing an easy-opening part in which the sealing layers are heat-sealed, a butene-based resin and a propylene-α-olefin copolymer, It is preferable to use in combination at a ratio such that the mass ratio represented by the butene resin / propylene-α-olefin copolymer is 20/80 to 50/50.
 シール層(C)中には、本発明の効果を損なわない範囲で各種の添加剤を配合してもよい。当該添加剤としては、酸化防止剤、耐候安定剤、帯電防止剤、防曇剤、アンチブロッキング剤、滑剤、核剤、顔料等を例示できる。 In the seal layer (C), various additives may be blended within a range not impairing the effects of the present invention. Examples of the additive include an antioxidant, a weather resistance stabilizer, an antistatic agent, an antifogging agent, an antiblocking agent, a lubricant, a nucleating agent, and a pigment.
 シール層(C)表面の摩擦係数(ASTM D1894)としては、0.01~0.4が好ましく、0.02~0.35が更に好ましく、0.05~0.30がより好ましい。当該範囲とすることで、包装時のフィルム送り性や製袋後のしわや盛上り抑制による梱包作業を向上させやすくなる。また、パン等の内容物を充填する際の内容物とフィルム内面との擦れによる傷の抑制や、耐摩耗性、対裂け性の向上がしやすく、フィルム破れを好適に抑制しやすくなる。なお、当該摩擦係数は、シール層に使用する樹脂成分に応じて、滑材及びアンチブロッキング剤等の添加剤を適宜添加して調整できる。 The friction coefficient (ASTM D1894) of the seal layer (C) surface is preferably 0.01 to 0.4, more preferably 0.02 to 0.35, and more preferably 0.05 to 0.30. By setting it as the said range, it becomes easy to improve the packaging work by the film feedability at the time of packaging, the wrinkle after bag making, and suppression of swell. In addition, it is easy to suppress scratches caused by rubbing between the contents when filling the contents such as bread and the film inner surface, and to improve wear resistance and tear resistance, and to easily suppress film tearing. The friction coefficient can be adjusted by appropriately adding additives such as a lubricant and an anti-blocking agent according to the resin component used for the seal layer.
[積層フィルム]
 本発明の積層フィルムは、少なくとも上記の表面層、中間層及びシール層を有する積層フィルムであり、積層フィルムの一方の表層が表面層であり、他方の表層がシール層からなる積層フィルムである。当該構成の積層フィルムは、好適な溶断シール強度を有し、かつ、耐衝撃性や耐破袋性に優れることから、各種包装用のフィルムとして好適に使用できる。
[Laminated film]
The laminated film of the present invention is a laminated film having at least the above-mentioned surface layer, intermediate layer and seal layer, and is a laminated film in which one surface layer of the laminated film is a surface layer and the other surface layer is a seal layer. The laminated film having such a configuration can be suitably used as a film for various packaging because it has a suitable fusing seal strength and is excellent in impact resistance and bag breaking resistance.
 本発明の積層フィルムの厚みは使用する用途や態様に応じて適宜調整すればよいが、包装用途における減容化や流通時の耐破袋性とを両立させやすいことから、その総厚みが20~60μmであることが好ましく、25~50μmであることがより好ましい。 The thickness of the laminated film of the present invention may be appropriately adjusted according to the use and mode to be used. However, the total thickness is 20 because it is easy to achieve both volume reduction in packaging applications and resistance to bag breakage during distribution. It is preferably ˜60 μm, more preferably 25˜50 μm.
 また、各層の厚みや厚み比率は、特に制限されるものではないが、例えば、表面層の厚みとしては、2~20μmであることが好ましく、3~15μmであることがより好ましい。中間層の厚みは3~30μmであることが好ましく、5~20μmであることがより好ましい。シール層の厚みが1~10μmであることが好ましく、2~8μmであることがより好ましい。 The thickness and thickness ratio of each layer are not particularly limited, but for example, the thickness of the surface layer is preferably 2 to 20 μm, and more preferably 3 to 15 μm. The thickness of the intermediate layer is preferably 3 to 30 μm, more preferably 5 to 20 μm. The thickness of the seal layer is preferably 1 to 10 μm, and more preferably 2 to 8 μm.
 また、表面層の厚み比率は、好適なマット感や溶断強度、製袋適性を得やすいことから、積層フィルムの総厚みの15%以上とすることが好ましく、20%以上とすることがより好ましい。また、40%以下とすることが好ましく、35%以下とすることがより好ましい。中間層の厚み比率は、好適なマット感や溶断強度、製袋適性を得やすいことから、積層フィルムの総厚みの30%以上とすることが好ましく、40%以上とすることがより好ましい。また、70%以下とすることが好ましく、65%以下とすることがより好ましい。シール層の厚み比率は、好適な易開封性や溶断強度、製袋適性を得やすいことから、積層フィルムの総厚みの5%~30%が好ましく、10~25%がより好ましい。 Further, the thickness ratio of the surface layer is preferably 15% or more, more preferably 20% or more of the total thickness of the laminated film, because it is easy to obtain a suitable matte feeling, fusing strength and bag-making suitability. . Moreover, it is preferable to set it as 40% or less, and it is more preferable to set it as 35% or less. The thickness ratio of the intermediate layer is preferably 30% or more, more preferably 40% or more of the total thickness of the laminated film because it is easy to obtain suitable matte feeling, fusing strength, and bag-making suitability. Moreover, it is preferable to set it as 70% or less, and it is more preferable to set it as 65% or less. The thickness ratio of the seal layer is preferably 5% to 30%, more preferably 10 to 25% of the total thickness of the laminated film, since it is easy to obtain suitable easy-openability, fusing strength, and bag-making suitability.
 本発明の積層フィルムは、積層フィルム全体に含まれる樹脂成分中の植物由来のバイオマスポリエチレンの含有量が、環境負荷低減の点から2質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることがより好ましい。 In the laminated film of the present invention, the content of plant-derived biomass polyethylene in the resin component contained in the entire laminated film is preferably 2% by mass or more from the viewpoint of reducing environmental burden, and is 3% by mass or more. Is more preferable, and it is more preferable that it is 5 mass% or more.
 本発明の積層フィルムの曇り度は、好適なマット調の意匠性を得やすいことから、その曇り度が35%以上であることが好ましく、55%以上であることがより好ましい。また、内容物の視認性を確保する場合には、曇り度を80%以下とすることが好ましく、70%以下とすることがより好ましい。 The haze of the laminated film of the present invention is preferably 35% or more, and more preferably 55% or more because it is easy to obtain a suitable matte design. Moreover, when ensuring the visibility of the contents, the haze is preferably 80% or less, and more preferably 70% or less.
 本発明の積層フィルムは、上記表面層、中間層及びシール層以外の任意の他の樹脂層が積層されていてもよいが、他の樹脂層の厚みは総厚み中の20%以下であることが好ましく、上記表面層、中間層及びシール層からなる構成が特に好ましい。なお、当該構成においては中間層が複数積層された中間層であってもよい。 The laminated film of the present invention may be laminated with any other resin layer other than the surface layer, intermediate layer and seal layer, but the thickness of the other resin layer is 20% or less of the total thickness. The structure composed of the surface layer, the intermediate layer, and the seal layer is particularly preferable. In this configuration, an intermediate layer in which a plurality of intermediate layers are stacked may be used.
 具体的な層構成の例としては、表面層とシール層との間に中間層を設けた表面層/中間層/シール層の三層構成、あるいは、中間層を複数層にて構成した表面層/中間層1/中間層2/シール層の四層構成、等を好ましく例示できる。なかでも、フィルムの特性の調整や、フィルムの製造が容易であることから、表面層/中間層/シール層からなる三層構成を好ましく使用できる。 Specific examples of the layer structure include a three-layer structure of surface layer / intermediate layer / sealing layer in which an intermediate layer is provided between the surface layer and the seal layer, or a surface layer in which the intermediate layer is composed of a plurality of layers. Preferred examples include: / intermediate layer 1 / intermediate layer 2 / four-layer structure of seal layer. Especially, since adjustment of the characteristic of a film and manufacture of a film are easy, the 3 layer structure which consists of a surface layer / intermediate layer / sealing layer can be used preferably.
 本発明の積層フィルムの製造方法としては、特に限定されないが、例えば、各層に用いる樹脂又は樹脂混合物を、それぞれ別々の押出機で加熱溶融させ、共押出多層ダイス法やフィードブロック法等の方法により溶融状態で積層した後、インフレーションやTダイ・チルロール法等によりフィルム状に成形する共押出法が挙げられる。この共押出法は、各層の厚さの比率を比較的自由に調整することが可能で、衛生性に優れ、コストパフォーマンスにも優れた積層フィルムが得られるので好ましい。当該製造方法により得られる積層フィルムは、実質的に無延伸の積層フィルムとして得られるため、真空成形による深絞り成形等の二次成形も可能となる。 Although it does not specifically limit as a manufacturing method of the laminated | multilayer film of this invention, For example, the resin or resin mixture used for each layer is heat-melted with a respectively separate extruder, By methods, such as a coextrusion multilayer die method and a feed block method, etc. Examples thereof include a coextrusion method in which a film is laminated in a molten state and then formed into a film by inflation, a T-die / chill roll method, or the like. This co-extrusion method is preferable because the thickness ratio of each layer can be adjusted relatively freely, and a laminated film having excellent hygiene and cost performance can be obtained. Since the laminated film obtained by the manufacturing method is obtained as a substantially unstretched laminated film, secondary molding such as deep drawing by vacuum molding is also possible.
 表面層には、印刷インキとの接着性等を向上させるため、表面処理を施すことも好ましい。このような表面処理としては、例えば、コロナ処理、プラズマ処理、クロム酸処理、火炎処理、熱風処理、オゾン・紫外線処理等の表面酸化処理、あるいはサンドブラスト等の表面凹凸処理を挙げることができるが、好ましくはコロナ処理である。 The surface layer is preferably subjected to a surface treatment in order to improve adhesion with printing ink. Examples of such surface treatment include corona treatment, plasma treatment, chromic acid treatment, flame treatment, hot air treatment, surface oxidation treatment such as ozone / ultraviolet treatment, and surface unevenness treatment such as sandblasting. Corona treatment is preferable.
 本発明の積層フィルムからなる包装材としては、食品、薬品、工業部品、雑貨、雑誌等の用途に用いる包装袋、容器、容器の蓋材等が挙げられる。 Examples of the packaging material made of the laminated film of the present invention include packaging bags, containers, container lids and the like used for foods, medicines, industrial parts, miscellaneous goods, magazines and the like.
 前記包装袋は、本発明の積層フィルムのシール層をヒートシール層として、シール層同士を重ねてヒートシール、あるいは表面層とシール層とを重ね合わせてヒートシールすることにより、シール層を内側として形成した包装袋であることが好ましい。例えば当該積層フィルム2枚を所望とする包装袋の大きさに切り出して、それらを重ねて3辺をヒートシールして袋状にした後、ヒートシールをしていない1辺から内容物を充填しヒートシールして密封することで包装袋として用いることができる。さらには自動包装機によりロール状のフィルムを円筒形に端部をシールした後、上下をシールすることにより包装袋を形成することも可能である。 In the packaging bag, the sealing layer of the laminated film of the present invention is used as a heat sealing layer, the sealing layers are overlapped and heat sealed, or the surface layer and the sealing layer are overlapped and heat sealed, so that the sealing layer is the inner side. A formed packaging bag is preferred. For example, after cutting the two laminated films into the desired size of the packaging bag, overlapping them and heat-sealing the three sides to form a bag, filling the contents from one side that is not heat-sealed It can be used as a packaging bag by heat sealing. Furthermore, it is also possible to form a packaging bag by sealing the upper and lower sides after sealing the end of a roll-shaped film into a cylindrical shape by an automatic packaging machine.
 また、食パン用の包装袋とする場合には、印刷面を折り込んでシールすることでガゼット部を有する包装袋とすることができる。具体的には、本発明の積層フィルムのシール層が袋の内側になるようにして製袋機、例えばトタニ技研工業(株)製HK-40等により底部ガゼット袋に加工する。本発明の積層フィルムは、好適な溶断強度や製袋適性を実現できることから、底部ガゼット袋用途として特に好適に使用できる。底部ガゼット袋のサイド部と底部ガゼット部(底部の折込部)の溶断シール強度は、7.5N~30N/15mm、好ましくは10~30N/15mmとなるよう溶断シール温度や製袋速度を調整することが好ましい。 Moreover, when it is set as the packaging bag for bread, it can be set as the packaging bag which has a gusset part by folding and sealing a printing surface. Specifically, it is processed into a bottom gusset bag by a bag making machine such as HK-40 manufactured by Totani Giken Kogyo Co., Ltd. so that the sealing layer of the laminated film of the present invention is inside the bag. Since the laminated film of the present invention can realize suitable fusing strength and bag making suitability, it can be particularly suitably used as a bottom gusset bag. The fusing seal temperature and the bag making speed are adjusted so that the fusing seal strength of the side part of the bottom gusset bag and the bottom gusset part (folded part of the bottom part) is 7.5 N to 30 N / 15 mm, preferably 10 to 30 N / 15 mm. It is preferable.
 得られた底部ガゼット袋は、食パン自動充填機に供給され、食パン充填後、易開封性でかつヒートシール強度が、0.1~5N/15mm、好ましくは0.2~4N/15mmとなる条件でヒートシールして、易開封性食パン包装袋とし、更に必要に応じて、袋の上部、好ましくは食パンの上部で易開封性シール部分の形成や、袋の上部をプラスチック板、テープ、ひも等の結束具を用いて結束により封止してもよい。 The obtained bottom gusset bag is supplied to a bread bread automatic filling machine, and after filling bread, is easy to open and has a heat seal strength of 0.1 to 5 N / 15 mm, preferably 0.2 to 4 N / 15 mm. Heat-sealed to make an easily openable bread wrapping bag, and if necessary, form an easily openable seal part at the top of the bag, preferably the top of the bread, and the top of the bag with a plastic plate, tape, string, etc. You may seal by bundling using this binding tool.
 また、バターロール等のような各種パンの集積包装とする場合には、横ピロー型自動包装機、例えばフジキカイ(株)製FW-3400αV型等に、シール層が袋の内側になるようにしてロール状形態で供給する。横ピロー型自動包装機では、フィルムのヒートシール面を重ね合わせてヒートシールして袋を形成しながらパンを内包させる。この際、該包装機によるピロー包装袋の底部と背貼り部分のシール強度が7.5N~30N/15mm、好ましくは8~20N/15mmになるようヒートシール温度や包装速度を調整することが好ましい。次いで、易開封性でかつヒートシール強度が0.1~5N/15mm、好ましくは0.2~4N/15mmとなる条件でヒートシールして易開封性シール部分を形成してもよく、その近傍をプラスチック板、テープ、ひも等の結束具を用いて結束してもよい。 Also, when collecting various types of bread such as butter rolls, use a horizontal pillow type automatic packaging machine such as FW-3400αV type manufactured by Fujikikai Co., Ltd. so that the seal layer is inside the bag. Supplied in roll form. In the horizontal pillow type automatic packaging machine, the heat seal surfaces of the film are overlapped and heat sealed to form a bag and to enclose the bread. At this time, it is preferable to adjust the heat sealing temperature and the packaging speed so that the sealing strength of the bottom portion and the back pasting portion of the pillow packaging bag by the packaging machine is 7.5 N to 30 N / 15 mm, preferably 8 to 20 N / 15 mm. . Next, an easily openable seal portion may be formed by heat sealing under conditions that allow easy opening and a heat seal strength of 0.1 to 5 N / 15 mm, preferably 0.2 to 4 N / 15 mm. May be bound using a binding tool such as a plastic plate, tape, or string.
 また、シール層とヒートシール可能な別のフィルムを重ねてヒートシールすることにより包装袋・容器・容器の蓋を形成することも可能である。その際、使用する別のフィルムとしては、比較的機械強度の弱いLDPE、EVA、ポリプロピレン等のフィルムを用いることができる。また、LDPE、EVA、ポリプロピレン等のフィルムと、比較的引き裂き性の良い延伸フィルム、例えば、二軸延伸ポリエチレンテレフタレートフィルム(OPET)、二軸延伸ポリプロピレンフィルム(OPP)等とを貼り合わせたラミネートフィルムも用いることができる。 It is also possible to form a packaging bag, a container, and a container lid by heat-sealing another film that can be heat-sealed with a sealing layer. In this case, as another film to be used, a film such as LDPE, EVA, or polypropylene having relatively low mechanical strength can be used. Also, a laminate film in which a film of LDPE, EVA, polypropylene, etc., and a stretched film having relatively good tearability, for example, a biaxially stretched polyethylene terephthalate film (OPET), a biaxially stretched polypropylene film (OPP), etc. are bonded together. Can be used.
 上記のとおり本発明の積層フィルムは好適な耐衝撃性や耐破袋性を実現できることから、各種の包装用途に好適に適用できる。特に低温でも優れた耐衝撃性を実現できることから、低温下での包装や流通がなされることの多い食品包装用途に好適である。 As described above, since the laminated film of the present invention can realize suitable impact resistance and bag breaking resistance, it can be suitably applied to various packaging applications. In particular, since excellent impact resistance can be realized even at low temperatures, it is suitable for food packaging applications that are often packaged and distributed at low temperatures.
 なかでも、本発明の積層フィルムは、鋭利な先端部や鉤部を有する結束具(クロージャー)が使用される食パンや菓子パン等のパン包装に適用した際に、結束時の破袋が生じにくく、また、移送時に当該結束具や搬送容器との接触が生じた場合にもピンホールや裂けが生じにくい。また内容物である食品とフィルム内面(シール面)とのこすれや混入されたプラスチックトレーとの摩擦、突き刺し等によるピンホールや裂けも生じにくい。さらに、本発明の積層フィルムは、ガゼット部を形成した場合にも好適な溶断シール強度を確保できることから、パン包装用途に特に好適に適用できる。 Among them, when the laminated film of the present invention is applied to bread packaging such as bread and confectionery bread in which a binding tool (closure) having a sharp tip portion and a heel portion is used, it is difficult for bag breakage at the time of binding to occur, In addition, even when contact with the binding tool or the transport container occurs during transfer, pinholes and tears are unlikely to occur. In addition, it is difficult to cause pinholes and tears due to rubbing between the food as the contents and the inner surface of the film (seal surface), friction between the mixed plastic tray and piercing. Furthermore, since the laminated film of the present invention can ensure a suitable fusing seal strength even when a gusset portion is formed, it can be particularly suitably applied to bread packaging applications.
 次に、実施例及び比較例を挙げて本発明をより詳しく説明する。以下、特に断りのない限り、「部」及び「%」は質量基準である。 Next, the present invention will be described in more detail with reference to examples and comparative examples. Hereinafter, unless otherwise specified, “part” and “%” are based on mass.
(実施例1)
 表面層、中間層及びシール層の各層を形成する樹脂成分として、各々下記の樹脂を使用して、各層を形成する樹脂混合物を調整した。これら混合物を3台の押出機に各々供給し、表面層/中間層/シール層にて形成される積層フィルムの各層の平均厚さが7/18/5μmとなるように共押出して、厚さ30μmの積層フィルムを成形した。次いで、得られた積層フィルムの表面層に、表面エネルギーが35mN/mになるようにコロナ放電処理を施して、積層フィルムを得た。
 表面層:プロピレン-エチレンブロック共重合体樹脂(プロピレン由来成分含量:90質量%、密度:0.90g/cm、MFR(測定温度230℃):5g/10分)(以下、プロピレン系ブロック共重合体(1)と称する)100質量部
 中間層:プロピレン-エチレンブロック共重合体(密度:0.90g/cm、MI:8g/10分間、融点160℃)(以下、プロピレン系ブロック共重合体(2)と称する)40質量部、プロピレン-エチレンランダム共重合体(エチレン含量:5.2%、密度:0.90g/cm、MFR:5.4g/10分間)(以下、COPP(1)と称する)35質量部、直鎖状低密度ポリエチレン(密度:0.905g/cm、MFRI:4.0g/10分間)(以下、LLDPE(1)と称する)10質量部、および、バイオポリエチレン(Braskem社 直鎖状低密度ポリエチレン SLH218(密度:0.916g/cm、MFR=2.3g/10分)(以下、バイオPE(1)と称する)15質量部の樹脂混合物
 シール層:プロピレン-エチレンランダム共重合体(エチレン由来成分含量:5.0質量%、密度:0.90g/cm、MFR(測定温度230℃):7g/10分間)(以下、COPP(2)と称する)70質量部、1-ブテン-プロピレン共重合体(密度:0.90g/cm、MFR(測定温度230℃):4g/10分間)(以下、1-ブテン系共重合体(1)と称する)30質量部
Example 1
A resin mixture for forming each layer was prepared by using the following resins as resin components for forming each layer of the surface layer, the intermediate layer, and the seal layer. Each of these mixtures was supplied to three extruders and coextruded so that the average thickness of each layer of the laminated film formed by the surface layer / intermediate layer / sealing layer was 7/18/5 μm. A 30 μm laminated film was formed. Subsequently, the surface layer of the obtained laminated film was subjected to a corona discharge treatment so that the surface energy was 35 mN / m to obtain a laminated film.
Surface layer: propylene-ethylene block copolymer resin (propylene-derived component content: 90% by mass, density: 0.90 g / cm 3 , MFR (measuring temperature 230 ° C.): 5 g / 10 min) (hereinafter referred to as propylene block copolymer) 100 parts by mass of polymer (referred to as polymer (1)) Intermediate layer: propylene-ethylene block copolymer (density: 0.90 g / cm 3 , MI: 8 g / 10 minutes, melting point 160 ° C.) (hereinafter referred to as propylene block copolymer) 40 parts by mass of a copolymer (referred to as (2)), a propylene-ethylene random copolymer (ethylene content: 5.2%, density: 0.90 g / cm 3 , MFR: 5.4 g / 10 minutes) (hereinafter referred to as COPP ( 1) and referred to) 35 parts by weight, linear low density polyethylene (density: 0.905g / cm 3, MFRI: 4.0g / 10 minutes) (hereinafter, the LLDPE (1) To) 10 parts by weight, and bio-polyethylene (Braskem Co. linear low density polyethylene SLH218 (density: 0.916g / cm 3, MFR = 2.3g / 10 min) (hereinafter, referred to as bio-PE (1)) 15 parts by mass of resin mixture Seal layer: propylene-ethylene random copolymer (ethylene-derived component content: 5.0% by mass, density: 0.90 g / cm 3 , MFR (measuring temperature 230 ° C.): 7 g / 10 minutes) 70 parts by mass (hereinafter referred to as COPP (2)), 1-butene-propylene copolymer (density: 0.90 g / cm 3 , MFR (measuring temperature 230 ° C.): 4 g / 10 minutes) 30 parts by weight of butene copolymer (referred to as (1))
(実施例2)
 中間層に使用する樹脂混合物の樹脂成分を下記とした以外は実施例1と同様にして積層フィルムを得た。
 中間層:プロピレン系ブロック共重合体(2)42質量部、COPP(1)35質量部、LLDPE(1)3質量部、バイオPE(1)20質量部
(Example 2)
A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
Intermediate layer: propylene block copolymer (2) 42 parts by mass, COPP (1) 35 parts by mass, LLDPE (1) 3 parts by mass, bio PE (1) 20 parts by mass
(実施例3)
 中間層に使用する樹脂混合物の樹脂成分を下記とした以外は実施例1と同様にして積層フィルムを得た。
 中間層:プロピレン系ブロック共重合体(2)45質量部、COPP(1)35質量部、LLDPE(1)15質量部、バイオPE(1)5質量部
(Example 3)
A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
Intermediate layer: 45 parts by mass of propylene-based block copolymer (2), 35 parts by mass of COPP (1), 15 parts by mass of LLDPE (1), 5 parts by mass of bio PE (1)
(実施例4)
 中間層に使用する樹脂混合物の樹脂成分を下記とした以外は実施例1と同様にして積層フィルムを得た。
 中間層:プロピレン系ブロック共重合体(2)45質量部、COPP(1)40質量部、LLDPE(1)13質量部、バイオPE(1)2質量部
Example 4
A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
Intermediate layer: 45 parts by mass of propylene-based block copolymer (2), 40 parts by mass of COPP (1), 13 parts by mass of LLDPE (1), 2 parts by mass of bio PE (1)
(実施例5)
 中間層に使用する樹脂混合物の樹脂成分を下記とした以外は実施例1と同様にして積層フィルムを得た。
 中間層:プロピレン系ブロック共重合体(2)35質量部、COPP(1)35質量部、LLDPE(1)5質量部、バイオPE(1)25質量部
(Example 5)
A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
Intermediate layer: propylene block copolymer (2) 35 parts by mass, COPP (1) 35 parts by mass, LLDPE (1) 5 parts by mass, bio PE (1) 25 parts by mass
(実施例6)
 中間層に使用する樹脂混合物の樹脂成分を下記とした以外は実施例1と同様にして積層フィルムを得た。
 中間層:プロピレン系ブロック共重合体(2)75質量部、LLDPE(1)10質量部、バイオPE(1)15質量部
(Example 6)
A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
Intermediate layer: 75 parts by mass of propylene-based block copolymer (2), 10 parts by mass of LLDPE (1), 15 parts by mass of bio PE (1)
(実施例7)
 中間層に使用する樹脂混合物の樹脂成分を下記とした以外は実施例1と同様にして積層フィルムを得た。
 中間層:プロピレン系ブロック共重合体(2)72質量部、LLDPE(1)3質量部、バイオPE(1)25質量部
(Example 7)
A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
Intermediate layer: 72 parts by mass of propylene-based block copolymer (2), 3 parts by mass of LLDPE (1), 25 parts by mass of bio PE (1)
(実施例8)
 中間層に使用する樹脂混合物の樹脂成分を下記とした以外は実施例1と同様にして積層フィルムを得た。
 中間層:プロピレン系ブロック共重合体(2)75質量部、LLDPE(1)15質量部、バイオPE(1)10質量部
(Example 8)
A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
Intermediate layer: 75 parts by mass of propylene-based block copolymer (2), 15 parts by mass of LLDPE (1), 10 parts by mass of bio PE (1)
(実施例9)
 中間層に使用する樹脂混合物の樹脂成分を下記とした以外は実施例1と同様にして積層フィルムを得た。
 中間層:プロピレン系ブロック共重合体(2)65質量部、LLDPE(1)10質量部、バイオPE(1)25質量部
Example 9
A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
Intermediate layer: 65 parts by mass of propylene-based block copolymer (2), 10 parts by mass of LLDPE (1), 25 parts by mass of bio PE (1)
(実施例10)
 中間層に使用する樹脂混合物の樹脂成分を下記とした以外は実施例1と同様にして積層フィルムを得た。
 中間層:プロピレン系ブロック共重合体(2)65質量部、LLDPE(1)20質量部、バイオPE(1)15質量部
(Example 10)
A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
Intermediate layer: 65 parts by mass of propylene-based block copolymer (2), 20 parts by mass of LLDPE (1), 15 parts by mass of bio PE (1)
(比較例1)
 中間層に使用する樹脂混合物の樹脂成分を下記とした以外は実施例1と同様にして積層フィルムを得た。
 中間層:プロピレン系ブロック共重合体(2)55質量部、LLDPE(1)5質量部、バイオPE(1)40質量部
(Comparative Example 1)
A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
Intermediate layer: 55 parts by mass of propylene-based block copolymer (2), 5 parts by mass of LLDPE (1), 40 parts by mass of bio PE (1)
(比較例2)
 中間層に使用する樹脂混合物の樹脂成分を下記とした以外は実施例1と同様にして積層フィルムを得た。
 中間層:プロピレン単独重合体(密度:0.90g/cm3、MFR:8g/10分)(以下、HOPP(1)と称する)85質量部、バイオPE(1)15質量部
(Comparative Example 2)
A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
Intermediate layer: propylene homopolymer (density: 0.90 g / cm 3, MFR: 8 g / 10 min) (hereinafter referred to as HOPP (1)) 85 parts by mass, bio PE (1) 15 parts by mass
(参考例1)
 中間層に使用する樹脂混合物の樹脂成分を下記とした以外は実施例1と同様にして積層フィルムを得た。
 中間層:プロピレン系ブロック共重合体(2)45質量部、COPP(1)40質量部、LLDPE(1)15質量部
(Reference Example 1)
A laminated film was obtained in the same manner as in Example 1 except that the resin component of the resin mixture used for the intermediate layer was as follows.
Intermediate layer: 45 parts by mass of propylene-based block copolymer (2), 40 parts by mass of COPP (1), 15 parts by mass of LLDPE (1)
 上記の実施例及び比較例で得られた積層フィルムを用いて、下記の試験及び評価を行った。得られた結果は下表のとおりである。 The following tests and evaluations were performed using the laminated films obtained in the above examples and comparative examples. The results obtained are as shown in the table below.
[剛性の測定]
 実施例及び比較例にて得られたフィルムの23℃における1%接線モジュラス(単位:MPa)を、ASTM D-882に基づき、テンシロン引張試験機〔株式会社エー・アンド・デー製〕を用いて測定した。測定はフィルム製造時の押出方向(以下、「MD」という)及びフィルム幅方向(以下、「CD」という)にて実施した。
 ○:剛性が550MPa以上
 △:剛性が450以上550MPa未満
 ×:剛性が450Mpa未満
[Measurement of rigidity]
Using a Tensilon tensile tester (manufactured by A & D Co., Ltd.) based on ASTM D-882, the 1% tangential modulus (unit: MPa) at 23 ° C. of the films obtained in Examples and Comparative Examples was used. It was measured. The measurement was performed in the extrusion direction (hereinafter referred to as “MD”) and the film width direction (hereinafter referred to as “CD”) during film production.
○: Rigidity is 550 MPa or more Δ: Rigidity is 450 or more and less than 550 MPa ×: Rigidity is less than 450 MPa
[曇り度の測定、マット性評価]
 実施例及び比較例にて得られたフィルムの曇り度を、JIS K7105に基づきヘーズメーター(日本電飾工業株式会社製)を用いて測定した(単位:%)。マット性は下記基準にて評価した。
 ○:曇り度が55%以上
 △:曇り度が35%以上、55%未満
 ×:曇り度が35%未満
[Measurement of haze, matte evaluation]
The haze of the films obtained in Examples and Comparative Examples was measured (unit:%) using a haze meter (manufactured by Nippon Denshoku Kogyo Co., Ltd.) based on JIS K7105. The mat property was evaluated according to the following criteria.
○: Haze of 55% or more Δ: Haze of 35% or more and less than 55% ×: Haze of less than 35%
[製袋適性評価]
 実施例及び比較例にて得られたフィルムのシール層を内側にしてフィルムを半折後、底部にガセットを入れて、シール温度(製袋温度)300℃で溶断シールして製袋(製袋機:トタニ技研工場(株)製HK-40、製袋速度:120枚/分)して底ガゼット袋(縦:345mm(サイド部:245mm、ガゼット部:60mm)、横235mm)を作製し、製袋適性を評価した。また、300枚を1組として、付き揃えて束にしてまとめ、付き揃え性を評価した。
 ○:120ショットの製袋速度でもフィルムが追随し、付き揃え性も問題ない
 △:120ショットの製袋速度でもフィルムは追随するが、一部付き揃え性が問題となる
 ×:120ショットの製袋速度に追随出来ないものがあり、付き揃え性が悪い
[Evaluation of bag aptitude]
The film obtained in the Examples and Comparative Examples was folded in half with the sealing layer inside, and then gusseted in the bottom, and fused and sealed at a sealing temperature (bag-making temperature) of 300 ° C. Machine: Tokani Giken Factory Co., Ltd. HK-40, bag making speed: 120 sheets / min) to produce a bottom gusset bag (length: 345 mm (side portion: 245 mm, gusset portion: 60 mm), width 235 mm), The suitability for bag making was evaluated. In addition, 300 sheets were grouped together as a set and bundled into a bundle to evaluate the alignment characteristics.
○: The film follows the bag even at a bag-making speed of 120 shots, and there is no problem with the alignment. Δ: The film follows the bag-making speed at 120 shots, but the alignment property becomes a problem. There are things that can not follow the bag speed, poor alignment
[溶断強度]
 実施例及び比較例にて得られたフィルムを用いて上記製袋適性評価と同様にして底ガゼット袋を作製した。得られた底ガゼット袋5枚の両側のガゼット部中央と、ガゼット以外のサイド部の中央から、それぞれ長さ70mm、幅15mmの試験片を、溶断シール部が長さ方向の中央部となるよう10枚ずつ切り出して、23℃、引張速度300mm/分でテンシロン引張試験機((株)エー・アンド・デー製)で引っ張った際の最大荷重を溶断強度として測定した。
 ○:ガゼット部及びサイド部の溶断強度がいずれも15N/15mm以上
 △:ガゼット部及びサイド部の溶断強度がいずれも12N/15mm以上15N/15mm未満
 ×:ガゼット部及びサイド部の少なくとも一方の溶断強度が12N/15mm未満
[Fusing strength]
Using the films obtained in Examples and Comparative Examples, bottom gusset bags were produced in the same manner as in the bag-making suitability evaluation. From the center of the gusset portion on both sides of the obtained five bottom gusset bags and the center of the side portion other than the gusset, respectively, a test piece having a length of 70 mm and a width of 15 mm is set so that the fusing seal portion is the center portion in the length direction. 10 sheets were cut out each, and the maximum load at the time of pulling with a Tensilon tensile tester (manufactured by A & D Co., Ltd.) at 23 ° C. and a tensile speed of 300 mm / min was measured as the fusing strength.
○: The fusing strength of the gusset part and the side part is 15 N / 15 mm or more. Δ: The fusing strength of the gusset part and the side part is both 12 N / 15 mm and less than 15 N / 15 mm. X: At least one fusing of the gusset part and the side part. Strength is less than 12N / 15mm
[ヒートシール強度]
 実施例及び比較例にて得られたフィルムを用いて上記製袋適性評価と同様にして底ガゼット袋を作製した。得られた底ガゼット袋の開口部上端から下に50mmの部分と開口部と平行にヒートシーラー(テスター産業(株)製:圧力0.2MPa、時間1秒間、シール温度:上部シールバー95℃,下部シールバー50℃、シールバー形状:300m×10mmの平面)でヒートシールした。得られた底ガゼット袋5枚のヒートシール部から、それぞれ長さ70mm、幅15mmの試験片を、ヒートシール部が幅方向の中央部となるよう2枚ずつそれぞれ10枚ずつ切り出して、23℃、引張速度300mm/分でテンシロン引張試験機((株)エー・アンド・デー製)で引き剥がすときの最大荷重をヒートシール強度として測定した。
 ○:ヒートシール強度が5N/15mm未満であり、引き剥がした際のフィルム破れ無し
 ×:ヒートシール強度が5N/15mm以上、又は、引き剥がした際のフィルム破れあり
[Heat seal strength]
Using the films obtained in Examples and Comparative Examples, bottom gusset bags were produced in the same manner as in the bag-making suitability evaluation. A heat sealer (Tester Sangyo Co., Ltd .: pressure 0.2 MPa, time 1 second, seal temperature: upper seal bar 95 ° C., parallel to the 50 mm portion and the opening downward from the upper end of the opening of the obtained bottom gusset bag. Heat sealing was performed at a lower seal bar of 50 ° C. and a seal bar shape: a plane of 300 m × 10 mm. From the obtained heat-seal part of the five bottom gusset bags, 10 pieces of test pieces each having a length of 70 mm and a width of 15 mm were cut out by two pieces each so that the heat-seal part was the central part in the width direction, and 23 ° C. The maximum load when peeling with a Tensilon tensile tester (manufactured by A & D Co., Ltd.) at a tensile speed of 300 mm / min was measured as the heat seal strength.
○: Heat seal strength is less than 5N / 15mm, no film tear when peeled off ×: Heat seal strength is 5N / 15mm or more, or film tear when peeled off
[衝撃強度の測定]
 実施例及び比較例にて得られたフィルムを、0℃下に調整した恒温室内で6時間保持した後、直径1.5インチの球状の金属性の衝撃頭を用いてフィルムインパクト法による衝撃強度を測定した。
 ◎:衝撃強度が0.3(J)以上
 ○:衝撃強度が0.2(J)以上0.3未満
 △:衝撃強度が0.1(J)以上0.2未満
 ×:衝撃強度が0.1(J)未満
[Measurement of impact strength]
The films obtained in Examples and Comparative Examples were held in a thermostatic chamber adjusted to 0 ° C. for 6 hours, and then impact strength by a film impact method using a spherical metallic impact head having a diameter of 1.5 inches. Was measured.
◎: Impact strength is 0.3 (J) or more ○: Impact strength is 0.2 (J) or more and less than 0.3 △: Impact strength is 0.1 (J) or more and less than 0.2 ×: Impact strength is 0 Less than 1 (J)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表から明らかなとおり、実施例1~10の本発明の積層フィルムは、良好なマット調の外観と共に、好適なシール強度や耐衝撃性、耐摩擦性を有し、耐破袋性に優れるものであった。一方、比較例1~2の積層フィルムは、好適な耐衝撃性と溶断シール強度とを兼備できないものであった。 As is clear from the above table, the laminated films of the present invention of Examples 1 to 10 have favorable matte appearance, suitable seal strength, impact resistance, and friction resistance, and excellent bag breaking resistance. It was a thing. On the other hand, the laminated films of Comparative Examples 1 and 2 were unable to combine suitable impact resistance and fusing seal strength.

Claims (13)

  1.  表面層(A)、中間層(B)及びシール層(C)とが積層された積層フィルムであって、
     前記表面層(A)及びシール層(C)がプロピレン系樹脂を含有し、
     前記中間層(B)が、植物由来のバイオマスポリエチレン(b1)、化石燃料由来のポリエチレン(b2)及びプロピレン系ブロック共重合体樹脂(b3)を含有することを特徴とする積層フィルム。
    A laminated film in which a surface layer (A), an intermediate layer (B), and a seal layer (C) are laminated,
    The surface layer (A) and the seal layer (C) contain a propylene resin,
    The said intermediate | middle layer (B) contains the biomass polyethylene (b1) derived from a plant, the polyethylene (b2) derived from a fossil fuel, and the propylene-type block copolymer resin (b3), The laminated film characterized by the above-mentioned.
  2.  前記中間層(B)中の化石燃料由来のポリエチレン(b2)が直鎖低密度ポリエチレンである請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein the fossil fuel-derived polyethylene (b2) in the intermediate layer (B) is a linear low density polyethylene.
  3.  前記中間層(B)に含まれる樹脂成分中の植物由来のバイオマスポリエチレン(b1)の含有量が1~35質量%、化石燃料由来のポリエチレン(b2)の含有量が3~30質量%である請求項1又は2に記載の積層フィルム。 The content of plant-derived biomass polyethylene (b1) in the resin component contained in the intermediate layer (B) is 1 to 35% by mass, and the content of polyethylene (b2) derived from fossil fuel is 3 to 30% by mass. The laminated film according to claim 1 or 2.
  4.  前記中間層(B)に含まれる樹脂成分が、バイオマスポリエチレン(b1)、化石燃料由来のポリエチレン(b2)及びプロピレン系ブロック共重合体(b3)からなり、中間層(B)中のバイオマスポリエチレン(b1)/化石燃料由来のポリエチレン(b2)/プロピレン系ブロック共重合体(b3)で表される含有量の比が、質量比で2/3/95~30/25/45である請求項1~3のいずれかに記載の積層フィルム。 The resin component contained in the intermediate layer (B) is composed of biomass polyethylene (b1), polyethylene (b2) derived from fossil fuel, and propylene-based block copolymer (b3), and the biomass polyethylene in the intermediate layer (B) ( 2. The content ratio represented by (b1) / polyethylene derived from fossil fuel (b2) / propylene block copolymer (b3) is 2/3/95 to 30/25/45 in mass ratio. 4. The laminated film according to any one of items 1 to 3.
  5.  前記中間層(B)が、プロピレン-エチレンランダム共重合体樹脂を含有する請求項1~3のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 3, wherein the intermediate layer (B) contains a propylene-ethylene random copolymer resin.
  6.  前記中間層(B)に含まれる樹脂成分が、バイオマスポリエチレン(b1)、化石燃料由来のポリエチレン(b2)、プロピレン系ブロック共重合体(b3)及びプロピレン-エチレンランダム共重合体からなり、中間層(B)中のバイオマスポリエチレン(b1)/化石燃料由来のポリエチレン(b2)/プロピレン系ブロック共重合体(b3)/プロピレン-エチレンランダム共重合体で表される含有量の比が、質量比で2/3/65/30~25/20/15/40である請求項5に記載の積層フィルム。 The resin component contained in the intermediate layer (B) is composed of biomass polyethylene (b1), fossil fuel-derived polyethylene (b2), propylene-based block copolymer (b3), and propylene-ethylene random copolymer. The ratio of the content expressed by biomass polyethylene (b1) / polyethylene derived from fossil fuel (b2) / propylene block copolymer (b3) / propylene-ethylene random copolymer in (B) is in mass ratio. The laminated film according to claim 5, which is 2/3/65/30 to 25/20/15/40.
  7.  前記表面層(A)が、プロピレン系ブロック共重合体樹脂を、表面層(A)に含まれる樹脂成分中の50質量%以上含有する請求項1~6のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 6, wherein the surface layer (A) contains 50% by mass or more of a propylene-based block copolymer resin in the resin component contained in the surface layer (A).
  8.  前記シール層(C)が、プロピレン-エチレン共重合体樹脂及びブテン系樹脂を含有する請求項1~7のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 7, wherein the seal layer (C) contains a propylene-ethylene copolymer resin and a butene resin.
  9.  ヘイズ値が30%以上である請求項1~8のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 8, which has a haze value of 30% or more.
  10.  前記中間層(B)中の植物由来のバイオマスポリエチレン(b1)のメルトフローレートが0.50~5[g/10min]であり、化石燃料由来のポリエチレン(b2)のメルトフローレートが3~10[g/10min]である請求項1~9のいずれかに記載の積層フィルム。 The melt flow rate of the plant-derived biomass polyethylene (b1) in the intermediate layer (B) is 0.50 to 5 [g / 10 min], and the melt flow rate of the fossil fuel-derived polyethylene (b2) is 3 to 10 The laminated film according to any one of claims 1 to 9, which is [g / 10 min].
  11.  請求項1~10の何れかに記載の積層フィルムを使用した食品包装袋。 A food packaging bag using the laminated film according to any one of claims 1 to 10.
  12.  ガゼット部を有する請求項11に記載の食品包装袋。 The food packaging bag according to claim 11, further comprising a gusset portion.
  13.  パン包装に使用する請求項11又は12に記載の食品包装袋。 The food packaging bag according to claim 11 or 12, which is used for bread packaging.
PCT/JP2018/006387 2017-03-07 2018-02-22 Laminated film and food packaging bag WO2018163835A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019504460A JP7140104B2 (en) 2017-03-07 2018-02-22 Laminated film and food packaging bag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-042800 2017-03-07
JP2017042800 2017-03-07

Publications (1)

Publication Number Publication Date
WO2018163835A1 true WO2018163835A1 (en) 2018-09-13

Family

ID=63448694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006387 WO2018163835A1 (en) 2017-03-07 2018-02-22 Laminated film and food packaging bag

Country Status (3)

Country Link
JP (1) JP7140104B2 (en)
TW (1) TW201834862A (en)
WO (1) WO2018163835A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075400A (en) * 2018-11-07 2020-05-21 フタムラ化学株式会社 Unstretched polypropylene-based resin film
JP2020082391A (en) * 2018-11-16 2020-06-04 Dic株式会社 Laminated film and packaging
JP2021102277A (en) * 2019-12-25 2021-07-15 Dic株式会社 Laminate film and packaging bag
WO2022004701A1 (en) 2020-06-30 2022-01-06 株式会社クラレ Gas-barrier resin composition, method for producing gas-barrier resin composition, and molded body
JP7471852B2 (en) 2020-02-21 2024-04-22 フタムラ化学株式会社 Biaxially oriented polypropylene film for melt-cutting bags

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194588A (en) * 2010-03-17 2011-10-06 Dic Corp Mat-style laminated film and packaging material made of the film
JP2013136689A (en) * 2011-12-28 2013-07-11 Dainippon Printing Co Ltd Polyethylene-based resin film for packaging material sealant
JP2013155343A (en) * 2012-01-31 2013-08-15 Dainippon Printing Co Ltd Polyethylene-based resin composition
JP2016007792A (en) * 2014-06-25 2016-01-18 藤森工業株式会社 Laminate
WO2017018282A1 (en) * 2015-07-24 2017-02-02 Dic株式会社 Laminate film and packaging material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194588A (en) * 2010-03-17 2011-10-06 Dic Corp Mat-style laminated film and packaging material made of the film
JP2013136689A (en) * 2011-12-28 2013-07-11 Dainippon Printing Co Ltd Polyethylene-based resin film for packaging material sealant
JP2013155343A (en) * 2012-01-31 2013-08-15 Dainippon Printing Co Ltd Polyethylene-based resin composition
JP2016007792A (en) * 2014-06-25 2016-01-18 藤森工業株式会社 Laminate
WO2017018282A1 (en) * 2015-07-24 2017-02-02 Dic株式会社 Laminate film and packaging material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075400A (en) * 2018-11-07 2020-05-21 フタムラ化学株式会社 Unstretched polypropylene-based resin film
JP7193307B2 (en) 2018-11-07 2022-12-20 フタムラ化学株式会社 Unstretched polypropylene resin film
JP2020082391A (en) * 2018-11-16 2020-06-04 Dic株式会社 Laminated film and packaging
JP7257777B2 (en) 2018-11-16 2023-04-14 Dic株式会社 Laminated films and packaging materials
JP2021102277A (en) * 2019-12-25 2021-07-15 Dic株式会社 Laminate film and packaging bag
JP7380189B2 (en) 2019-12-25 2023-11-15 Dic株式会社 Laminated film and packaging bags
JP7471852B2 (en) 2020-02-21 2024-04-22 フタムラ化学株式会社 Biaxially oriented polypropylene film for melt-cutting bags
WO2022004701A1 (en) 2020-06-30 2022-01-06 株式会社クラレ Gas-barrier resin composition, method for producing gas-barrier resin composition, and molded body

Also Published As

Publication number Publication date
TW201834862A (en) 2018-10-01
JPWO2018163835A1 (en) 2020-01-09
JP7140104B2 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
JP7140105B2 (en) Laminated film and food packaging bag
JP6863483B2 (en) Laminated film and food packaging bag
JP6160798B2 (en) Laminated film and packaging material
JP7140104B2 (en) Laminated film and food packaging bag
JP5845936B2 (en) Polyethylene resin composition
JP7045450B2 (en) Food packaging bag
JP6819820B2 (en) Laminated film and food packaging bag
JP6160797B2 (en) Laminated film and packaging material
WO2019220912A1 (en) Multilayer film and packaging material
WO2017018283A1 (en) Multilayer film and packaging material
CN109562612B (en) Laminated film, laminated film and packaging container
JP4692818B2 (en) Co-extrusion laminated film and laminate film and packaging container using the same
JP7095412B2 (en) Laminated film and packaging material
JP2014034424A (en) Easily-to-open multilayer container
JP7380189B2 (en) Laminated film and packaging bags
JP7306098B2 (en) Laminated films and packaging materials
JP7257777B2 (en) Laminated films and packaging materials
JP6590235B1 (en) Easy-open laminated film, easy-open laminated film
JP2017165432A (en) Lid material
JP2022080921A (en) Easily-openable film
JP2020055636A (en) Polyethylene-based resin composition for sealant film containing plant-derived polyethylene and sealant film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763545

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504460

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763545

Country of ref document: EP

Kind code of ref document: A1