WO2018163627A1 - Pressure sensor - Google Patents

Pressure sensor Download PDF

Info

Publication number
WO2018163627A1
WO2018163627A1 PCT/JP2018/001886 JP2018001886W WO2018163627A1 WO 2018163627 A1 WO2018163627 A1 WO 2018163627A1 JP 2018001886 W JP2018001886 W JP 2018001886W WO 2018163627 A1 WO2018163627 A1 WO 2018163627A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
electrode
mountain
area
pressure sensor
Prior art date
Application number
PCT/JP2018/001886
Other languages
French (fr)
Japanese (ja)
Inventor
秀明 灘
Original Assignee
Nissha株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha株式会社 filed Critical Nissha株式会社
Publication of WO2018163627A1 publication Critical patent/WO2018163627A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present invention relates to a pressure sensor, and more particularly to a pressure sensor having a large number of electrodes.
  • the pressure sensitive resin is obtained by dispersing conductive particles in an insulating resin such as silicone rubber.
  • an insulating resin such as silicone rubber.
  • the resistance value decreases due to contact between the conductive particles in the insulating resin.
  • the pressure applied to the pressure sensitive resin can be detected.
  • Many thin film transistors are arranged in a matrix and function as electrodes. This makes it possible to increase the pressure detection speed, increase the resolution, and reduce the power consumption.
  • a pressure sensor in which a pressure sensitive layer and a plurality of pixel electrodes are arranged to face each other with a predetermined gap.
  • the inventor has devised a pressure sensor having a plurality of pixel electrodes and a pressure-sensitive element composed of a mountain-shaped pressure-sensitive layer formed thereon, and further studied the problem. In this case, it is considered that the resistance of the pressure sensitive element needs to be increased in order to match the resistance value level of the thin film transistor. Therefore, the inventor studied to increase the resistance value of the pressure sensitive element by reducing the pixel electrode.
  • the pixel electrode is simply made smaller, the pixel electrode is arranged at the center of the pressure sensitive layer, so there is no portion extending outside the mountain pressure sensitive layer, and therefore the resistance value decreases as the pressure increases. The effect of the mountain-type pressure-sensitive layer cannot be obtained.
  • An object of the present invention is to provide a pressure sensor having a plurality of electrodes arranged with a gap between each other, while maintaining the characteristic that the resistance value of the pressure sensitive element decreases as the pressure increases.
  • the purpose is to match the level of the thin film transistor.
  • a pressure sensor includes a common electrode, a plurality of adjustment electrodes, a plurality of mountain-shaped pressure sensitive layers, and a plurality of thin film transistors.
  • the common electrode is formed so as to spread over one surface.
  • the plurality of adjustment electrodes are provided in a matrix so as to face the common electrode.
  • the plurality of mountain-shaped pressure sensitive layers are respectively formed on the common electrode side of the plurality of adjustment electrodes.
  • the plurality of thin film transistors are provided on the side opposite to the common electrode of the plurality of adjustment electrodes corresponding to the plurality of adjustment electrodes, and one or two or more adjacent ones are connected to one adjustment electrode.
  • the contact area where the common electrode and each mountain-shaped pressure-sensitive layer are in contact is the initial contact area
  • the area of the adjustment electrode that overlaps the initial contact area in plan view is the initial effective area
  • the area of the initial effective area is 0 to 50% of the area of the initial contact area.
  • the adjustment electrode further has a pressure measurement area outside the initial contact area.
  • the “mountain shape” has an apex and a peripheral portion, and includes a dome shape, a cone shape, a frustum shape, and other shapes.
  • the mountain-shaped planar shape includes a circle, a square, and other shapes.
  • the contact region where the common electrode and the mountain-shaped pressure-sensitive layer are in contact is outward from the apex of the mountain-shaped pressure-sensitive layer in plan view. It spreads. At this time, the area of the portion sandwiched between the contact region and the adjustment electrode gradually increases. From the above, as the pressure increases, the resistance value of the mountain-shaped pressure sensitive layer decreases, and as a result, the detected current value increases. In particular, the sensitivity is sufficiently high even in a high pressure range, and the pressure can be accurately measured. As a result, the measurement range of pressure is widened.
  • the adjustment electrode does not correspond to the electrode contact portion of the mountain pressure-sensitive layer at all, or the corresponding ratio is less than a predetermined value.
  • the resistance value of the pressure sensitive element composed of the combination of the electrode and the mountain pressure sensitive layer is increased.
  • the resistance levels of the pressure sensitive element and the thin film transistor are matched.
  • the change in the resistance value of the mountain-shaped pressure-sensitive layer in the initial stage when a low pressure is generated is such that the area of the initial effective area exceeds 50% of the area of the initial contact area. Compared to it, it becomes moderate.
  • the area of the initial effective area may be 0 to 40% of the area of the initial contact area.
  • the area of the initial effective area may be 0 to 30% of the area of the initial contact area.
  • the area of the initial effective region is preferably 0% of the area of the initial contact region. This is because, in addition to the above principle, the shortest distance between the contact region and the adjustment electrode is longer than the film thickness of the mountain-shaped pressure-sensitive layer on the adjustment electrode. Therefore, the effect of controlling the resistance value is increased.
  • the adjustment electrode may not be formed at a position corresponding to the apex of the mountain-shaped pressure sensitive layer.
  • the detection current can be made relatively small by keeping the resistance high in the low pressure region.
  • the adjustment electrode may be arranged at a position shifted in one direction from the apex of the mountain-shaped pressure sensitive layer. In this pressure sensor, since the adjustment electrode can be formed in a wide shape, conduction with the thin film transistor is further ensured.
  • the pressure sensor may further include an insulating layer.
  • the insulating layer is formed on a part of the electrode to insulate part thereof, and a portion exposed to the mountain-shaped pressure sensitive layer of the electrode is configured as an adjustment electrode.
  • the electrode can be formed wide as much as the area of the portion not exposed to the mountain-shaped pressure sensitive layer, conduction with the thin film transistor becomes more reliable.
  • the pressure-sensitive element made of functions as a spacer. That is, it is not necessary to provide a dedicated spacer, and the density of the pressure sensitive elements can be increased, and as a result, the resolution of the pressure sensor is increased.
  • the pressure sensor may further include a temperature sensing element formed side by side on the plurality of adjustment electrodes.
  • a temperature sensing element formed side by side on the plurality of adjustment electrodes.
  • the temperature-sensitive element may function as a spacer by being closer to the common electrode than the plurality of mountain-shaped pressure-sensitive layers.
  • the use of the temperature sensitive element as a spacer eliminates the need to provide a dedicated spacer.
  • the pressure sensor may further include a pressure detection unit, a temperature detection unit, and a pressure correction unit.
  • the pressure detection unit may detect a pressure value based on signals from a plurality of adjustment electrodes and a plurality of mountain-shaped pressure sensitive layers.
  • the temperature detection unit may detect the temperature value based on a signal from the temperature sensitive element.
  • the pressure correction unit may correct the pressure value based on the temperature value from the temperature detection unit. In this pressure sensor, an accurate pressure value can be obtained by correcting the temperature.
  • the pressure measurement range that can be accurately measured is widened.
  • FIG. 1 is a schematic cross-sectional view of a pressure sensor according to a first embodiment of the present invention.
  • the partial schematic sectional drawing of a pressure sensor The schematic plan view of the lower electrode member of a pressure sensor.
  • the schematic plan view of an adjustment electrode and a mountain-shaped pressure-sensitive layer The equivalent circuit diagram of a pressure sensor.
  • the schematic sectional drawing of a pressure sensor in the state where the pressure acted. The typical top view which shows the relationship between an adjustment electrode and a contact area.
  • the typical top view which shows the relationship between an adjustment electrode and a contact area.
  • the schematic sectional drawing of a pressure sensor in the state where the pressure acted The typical top view which shows the relationship between an adjustment electrode and a contact area.
  • the typical top view which shows the relationship between an adjustment electrode and a contact area.
  • the graph which shows the relationship between the pressure of a pressure sensor, and a detection electric current.
  • a typical sectional view showing a manufacturing method of a pressure sensor. A typical sectional view showing a manufacturing method of a pressure sensor.
  • a typical sectional view showing a manufacturing method of a pressure sensor. A typical sectional view showing a manufacturing method of a pressure sensor.
  • a typical sectional view showing a manufacturing method of a pressure sensor A typical sectional view showing a manufacturing method of a pressure sensor.
  • a typical sectional view showing a manufacturing method of a pressure sensor. A typical sectional view showing a manufacturing method of a pressure sensor.
  • a typical sectional view showing a manufacturing method of a pressure sensor. A typical sectional view showing a manufacturing method of a pressure sensor.
  • a typical sectional view showing a manufacturing method of a pressure sensor. A typical sectional view showing a
  • a typical sectional view showing a manufacturing method of a pressure sensor The typical top view which shows the modification of the planar layout of a mountain-shaped pressure sensitive layer and an adjustment electrode. The typical top view which shows the modification of the planar layout of a mountain-shaped pressure sensitive layer and an adjustment electrode. The typical top view which shows the modification of the planar layout of a mountain-shaped pressure sensitive layer and an adjustment electrode.
  • the partial schematic sectional drawing of the pressure sensor in 2nd Embodiment. The schematic sectional drawing of a pressure sensor in the state where the pressure acted.
  • the schematic sectional drawing of a pressure sensor in the state where the pressure acted The typical top view which shows the relationship between an adjustment electrode and a contact area.
  • the partial schematic sectional drawing of the pressure sensor of 3rd Embodiment The block diagram which shows the detection control structure of a pressure sensor. The graph which shows the relationship of the resistance value with respect to temperature.
  • the partial schematic sectional drawing of the pressure sensor of the 1st modification of 3rd Embodiment The fragmentary schematic sectional drawing of the pressure sensor of the 2nd modification of 3rd Embodiment.
  • FIG. 1 is a schematic cross-sectional view of a pressure sensor according to a first embodiment of the present invention.
  • FIG. 2 is a partial schematic cross-sectional view of the pressure sensor.
  • FIG. 3 is a schematic plan view of the lower electrode member of the pressure sensor.
  • FIG. 4 is a schematic plan view of the adjustment electrode and the mountain-shaped pressure sensitive layer.
  • FIG. 5 is an equivalent circuit diagram of the pressure sensor.
  • the pressure sensor 1 is a device that detects a pressing position and a pressing force when a pressing force is applied.
  • the pressure sensor 1 is employed in a touch panel of a smartphone, a tablet PC, or a notebook PC.
  • the pressure sensor 1 has an upper electrode member 3.
  • the upper electrode member 3 is a planar member on which a pressing force acts.
  • the upper electrode member 3 has an insulating film 7 and a common electrode 9 formed on the entire lower surface thereof, that is, spread over one surface or patterned.
  • the pressure sensor 1 has a lower electrode member 5.
  • the lower electrode member 5 is a planar member disposed below the upper electrode member 3.
  • the lower electrode member 5 includes, for example, a rectangular insulating film 15 and a plurality of adjustment electrodes 31 formed on the upper surface via other members (described later).
  • the adjustment electrode is also referred to as an individual electrode or a pixel electrode.
  • the lower electrode member 5 has a plurality of mountain-shaped pressure sensitive layers 33.
  • the plurality of mountain-shaped pressure sensitive layers 33 are respectively formed on the common electrode 9 side of the plurality of adjustment electrodes 31.
  • the “mountain shape” has an apex and a peripheral portion, and includes a dome shape, a cone shape, a frustum shape, and other shapes.
  • the mountain-shaped planar shape includes a circle, a square, and other shapes. Due to the mountain shape, the contact area between the common electrode 9 and the mountain pressure-sensitive layer 33 increases according to the pressure. In addition, the thickness of the mountain-shaped pressure-sensitive layer 33 is reduced toward the outer periphery, and the resistance value is decreased. In other words, when the pressure is low, only the apex (center in the radial direction) of the mountain-shaped pressure sensitive layer 33 is in contact with the common electrode 9, and the contact area is small.
  • the common electrode 9 When the pressure is high, the common electrode 9 is in contact with the mountain-shaped middle (radially intermediate portion) or ridge (outer circumferential portion) of the mountain-shaped pressure-sensitive layer 33, and the contact area is large.
  • the height H of the mountain-shaped pressure sensitive layer 33 is 5 to 100 ⁇ m in a wide range and 10 to 30 ⁇ m in a narrow range.
  • the diameter L of the mountain-shaped pressure-sensitive layer 33 is 0.1 to 1.0 mm in a wide range, and 0.3 to 0.6 mm in a narrow range.
  • the mountain-shaped pressure sensitive layer 33 covers the entire adjustment electrode 31.
  • the adjustment electrode 31 has a circular shape in plan view, and is formed at a position shifted from the position of the apex T (center) of the mountain-shaped pressure-sensitive layer 33. That is, the adjustment electrode is not formed at a position corresponding to the apex (center portion) of the mountain-shaped pressure sensitive layer 33.
  • the adjustment electrode 31 has a circular shape in plan view, but may have another shape such as a square or a triangle.
  • the adjustment electrode 31 has a small area with respect to the mountain-shaped pressure-sensitive layer 33, but has a certain spread. For this reason, the adjustment electrode can be formed in a wide shape, so that conduction with the TFT 30 is further ensured.
  • the upper electrode member 3 and the lower electrode member 5 are bonded to each other by a frame spacer 13 at the peripheral portion as shown in FIG.
  • the frame spacer 13 is formed in a frame shape, and is made of, for example, an adhesive or a double-sided tape.
  • the pressure-sensitive elements including the plurality of adjustment electrodes 31 and the mountain-shaped pressure-sensitive layers 33 are arranged so as to be spread over the entire plane.
  • the matrix form means a state in which the matrix is two-dimensionally arranged.
  • the frame spacer 13 ensures a gap between the common electrode 9 and the mountain-shaped pressure sensitive layer 33 even in the initial state. Thereby, zero pressure can be measured reliably. Furthermore, the initial resistance value change can be reliably measured since it starts from zero contact area.
  • the common electrode 9 and the mountain-shaped pressure-sensitive layer 33 may be in contact with each other in the initial state.
  • the lower electrode member 5 includes a plurality of thin film transistors 30 (hereinafter referred to as “TFT 30”). Each TFT 30 is provided corresponding to each of the adjustment electrodes 31 and functions as an electrode for current value detection.
  • the TFT 30 includes a source electrode 17, a drain electrode 19, and a gate electrode 21.
  • the TFT 30 is a top gate type.
  • the material which comprises a gate electrode, a source electrode, and a drain electrode is not specifically limited.
  • the TFT may be a bottom gate type.
  • the source electrode 17 and the drain electrode 19 are formed on the upper surface of the insulating film 15.
  • the TFT 30 has a semiconductor layer 23 formed between the source electrode 17 and the drain electrode 19.
  • a known material such as silicon, an oxide semiconductor, or an organic semiconductor can be used.
  • the TFT 30 has a first insulating film 25 formed so as to cover the source electrode 17, the drain electrode 19 and the semiconductor layer 23.
  • the drain electrode 19 is connected to the adjustment electrode 31 as described later.
  • the gate electrode 21 is formed above the semiconductor layer 23 on the upper surface of the first insulating film 25.
  • the TFT 30 has a second insulating film 27 that is formed on the upper surface of the first insulating film 25 and covers the gate electrode 21.
  • the plurality of adjustment electrodes 31 are formed on the upper surface of the second insulating film 27.
  • the adjustment electrode 31 is connected to the TFT 30 via a conductive portion 29 formed in a through hole that penetrates the first insulating film 25 and the second insulating film 27.
  • the operation principle of the pressure sensor 1 will be described with reference to FIG.
  • a voltage is applied to the drain electrode 19 of the TFT 30 to which the gate voltage is input, a drain current corresponding to the resistance of the mountain-shaped pressure sensitive layer 33 flows. Since the resistance decreases as the pressure applied to the mountain-shaped pressure sensitive layer 33 increases, an increase in drain current is detected.
  • the pressure sensor 1 has a circuit part (not shown).
  • the circuit unit controls the drain electrode 19, the source electrode 17, and the common electrode 9. For example, according to the power supply voltage for applying a predetermined voltage to the common electrode 9 and the source electrode 17 and the current value between the source and drain.
  • a current detection circuit that generates a signal and outputs it to an external signal processing device.
  • the external signal processing device detects the pressing position and the pressing force based on the signal sent from the circuit unit.
  • FIGS. 6, 8 and 10 are schematic cross-sectional views of the pressure sensor in a state where pressure is applied.
  • 7, 9 and 11 are schematic plan views showing the relationship between the adjustment electrode and the contact area.
  • the shape of each region is square for convenience of understanding.
  • the resistance of the mountain-shaped pressure sensitive layer 33 decreases.
  • the potential difference between the source and the drain when a constant voltage is applied by the voltage power supply depends on the resistance value of the mountain-shaped pressure sensitive layer 33 connected in series with the drain electrode 19. As a result, the potential difference between the source and the drain increases, and the amount of current flowing increases.
  • the signal processing device (not shown) reads the change in the signal according to the current amount, so that the pressure sensor 1 The amount of pressure applied (pressing force) can be detected.
  • the above description shows the state when the initial contact pressure acts on the pressure sensor 1.
  • the contact region where the common electrode 9 and each mountain-shaped pressure-sensitive layer 33 are in contact is defined as the initial contact region, and the adjustment electrode 31 that overlaps the initial contact region in plan view.
  • the region is an initial effective region
  • the area of the initial effective region is 0% of the area of the initial contact region. This is because the initial effective area is zero.
  • the adjustment electrode 31 exists only outside the initial contact area.
  • the initial contact pressure is a pressure applied to the common electrode 9 immediately after the pressing force acts on the common electrode 9 and the common electrode 9 contacts one or a plurality of mountain-shaped pressure sensitive layers 33 corresponding to the pressing portion.
  • the ratio is small.
  • the ratio is set to 10% or less, 20% or less, 30% or less, 40% or less, 50% or less, or 60% or less.
  • it is preferably 50% or less. That is, when the area of the initial effective region is 0 to 50% of the area of the initial contact region, the adjustment electrode 31 does not correspond to the electrode contact portion of the mountain-shaped pressure sensitive layer 33 at all or the corresponding ratio is below a predetermined value.
  • the resistance value of the pressure sensitive element composed of the combination of the adjustment electrode 31 and the mountain pressure sensitive layer 33 is increased. As a result, the resistance levels of the pressure sensitive element and the TFT 30 are matched.
  • the area of the initial effective region is preferably 0% of the area of the initial contact region. This is because, in addition to the above principle, the shortest distance between the contact region and the adjustment electrode 31 is longer than the film thickness of the mountain-shaped pressure-sensitive layer 33 on the adjustment electrode 31. Therefore, the effect of controlling the resistance value is increased.
  • the adjustment electrode 31 further includes a pressure measurement region outside the initial contact region.
  • the initial effective area exceeds zero, the area of the contact region where the pressing force becomes greater than the initial contact pressure later, the area of the portion facing the adjustment electrode 31 (maximum in the case of high pressure described later)
  • the effective area is preferably larger than the initial effective area, for example, 2 times or more, 3 times or more, and 4 times or more. However, in order to sufficiently obtain the effects of the present embodiment, it is preferably twice or more.
  • the resistance value can be controlled by the conduction distance from the initial contact position of the mountain-shaped pressure-sensitive layer 33 with the common electrode 9 to the adjustment electrode 31 (the shortest distance in the mountain-shaped pressure-sensitive layer). .
  • the conduction distance in the present embodiment is preferably at least twice the conduction distance of the conventional example in which the electrode is directly below the initial contact position, and more preferably 5 to 10 times.
  • the initial contact pressure is 1 N
  • the initial contact area is the area at that time.
  • the initial contact pressure can be appropriately selected from the range of 0.8 to 1.2N.
  • the initial contact area is defined as an area having a height of 70% or more (for example, 14 um) of the pressure-sensitive layer height (for example, 20 um), more preferably an area having a height of 80% or more (for example, 16 um). It is good.
  • (3-2) Medium Pressure As shown in FIG. 8, a medium force F2 is applied to the upper electrode member 3, so that the common electrode 9 further moves from the vicinity of the apex T of the mountain-shaped pressure sensitive layer 33. It also contacts the outer peripheral part. That is, the contact surface between the common electrode 9 and the mountain pressure-sensitive layer 33 is widened.
  • the contact region 36 ⁇ / b> B where the common electrode 9 is in contact with the mountain-shaped pressure-sensitive layer 33 is medium. Therefore, the contact region 36 ⁇ / b> B overlaps a part of the adjustment electrode 31 in a plan view. As a result, in the case of FIGS. 8 and 9, the area of the overlap region is medium, that is, the detection current is medium.
  • the insulating film 7 and the common electrode 9 have elasticity. Thereby, the followability of the common electrode 9 to the mountain-shaped pressure-sensitive layer 33 is improved when pressure is applied. In other words, when the pressure is high, the common electrode 9 is likely to be in close contact with the outer peripheral side of the mountain-shaped pressure sensitive layer 33 (the thin portion of the mountain-shaped pressure sensitive layer 33). As a result, the difference in contact resistance of the mountain-shaped pressure sensitive layer 33 is increased, that is, the measurement range is increased. In addition, since the insulating film 7 and the common electrode 9 have elasticity, the performance of restoring the insulating film 7 and the common electrode 9 when the pressure is removed is improved. As a result, reproducibility of repeated measurement is improved.
  • the insulating film 7 and the common electrode 9 have elasticity, so that the common electrode 9 is unlikely to crack or deform in the mountain-shaped pressure sensitive layer 33. As a result, the reliability of the pressure sensor 1 is improved.
  • the soft and thin base material is brought to the upper side as described above, the contact area does not change any more when the common electrode 9 is completely in contact with the top of the mountain-shaped pressure-sensitive layer 33.
  • the measurement range is narrow, the pressure resolution is increased because the difference in contact area is large.
  • the thickness and hardness of the substrate are appropriately selected according to the range to be measured.
  • FIG. 12 is a graph showing the relationship between the pressure of the pressure sensor and the detected current.
  • Comparative Example 1 is a conventional example using a flat pressure-sensitive layer. The change rate of the current value is small in the entire region from low pressure to high pressure. That is, the sensitivity is low. Further, when a high pressure is applied, the rate of change of resistance is close to 0%, that is, an accurate pressure cannot be measured.
  • Comparative Example 2 is not an active matrix system, and a solid electrode is provided to face the common electrode. Further, when a high pressure is applied, the rate of change of resistance is close to 0%, that is, an accurate pressure cannot be measured. Comparative Example 3 is an example in which the electrodes are entirely formed from the top of the mountain-shaped pressure sensitive layer to the periphery of the mountain-shaped pressure sensitive layer. In this case, a high rate of change is obtained over the entire region, that is, high sensitivity.
  • the adjustment electrode 31 has a contact surface between the common electrode 9 and the mountain-shaped pressure-sensitive layer 33 as a result of a pressing force acting on the common electrode 9 toward the mountain-shaped pressure-sensitive layer 33. It spreads outward from the vertex T. At this time, the area of the portion sandwiched between the contact region and the adjustment electrode 31 (the area of the contact regions 36A to 36C described above) gradually increases. From the above, as the pressure increases, the resistance value of the mountain-shaped pressure-sensitive layer 33 decreases, and as a result, the detected current value increases. In particular, the sensitivity is sufficiently high even in a high pressure range (for example, a test force of 50 N or more), and the pressure can be accurately measured. As a result, the measurement range of pressure is widened.
  • a high pressure range for example, a test force of 50 N or more
  • the pressure measurement region of the adjustment electrode 31 is located at a position deviated from the apex T (center) of the mountain-shaped pressure sensitive layer 33, the following effects can be obtained. That is, the change in the resistance value of the mountain-shaped pressure sensitive layer 33 in the initial stage when a low pressure is generated (that is, the change in the detected current value) is gentler than that in which the electrode is at the apex T of the mountain-shaped pressure sensitive layer. Become. This is because the contact area between the common electrode 9 and the adjustment electrode 31 continues to be small in the low pressure region. As a result, the detection accuracy of the low pressure is increased. In the embodiment described above, the adjustment electrode 31 is not formed at a position corresponding to the apex T of the mountain-shaped pressure sensitive layer 33. Therefore, the detection current can be made relatively small by keeping the resistance high in the low pressure region.
  • insulating film 7 and the insulating film 15 Materials As the insulating film 7 and the insulating film 15, engineering plastics such as polycarbonate, polyamide, or polyether ketone, or resin films such as acrylic, polyethylene terephthalate, or polybutylene terephthalate are used. Can be used. In the case where the insulating film 7 requires stretchability, for example, a urethane film, silicon, or rubber is used.
  • the insulating film 7 and the insulating film 15 are preferably made of a material having heat resistance because the electrodes are printed and dried.
  • a metal oxide film such as tin oxide, indium oxide, antimony oxide, zinc oxide, cadmium oxide, or indium tin oxide (ITO), or a composite mainly composed of these metal oxides.
  • a film or a metal film such as gold, silver, copper, tin, nickel, aluminum, or palladium is used.
  • stretchable Ag paste is used.
  • the mountain pressure-sensitive layer 33 is made of, for example, pressure-sensitive ink.
  • Pressure-sensitive ink is a material that enables pressure detection by changing the contact resistance with an opposing electrode in accordance with an external force.
  • the pressure sensitive ink layer can be arranged by coating.
  • a printing method such as screen printing, offset printing, gravure printing, or flexographic printing, or application by a dispenser can be used.
  • FIGS. 13 to 22 are schematic cross-sectional views showing a manufacturing method of the pressure sensor. First, each step of the method for manufacturing the lower electrode member 5 will be described with reference to FIGS.
  • an electrode material 37 is formed on one surface of the insulating film 15 by, for example, sputtering.
  • the film exposure part 39 is formed by removing a part of electrode material 37, for example by the photolithographic method. Thereby, the source electrode 17 and the drain electrode 19 are formed.
  • the formation method of the source electrode 17 and the drain electrode 19 is not specifically limited.
  • the semiconductor layer 23 is formed in the film exposed portion 39.
  • the method for forming the semiconductor layer 23 is a known technique.
  • a first insulating film 25 is formed so as to cover the surface on which the source electrode 17, the drain electrode 19 and the semiconductor layer 23 are formed.
  • the gate electrode 21 is formed above the semiconductor layer 23 on the upper surface of the first insulating film 25.
  • the formation method of the gate electrode 21 is a known technique.
  • the second insulating film 27 is formed so as to cover the entire first insulating film 25 on which the gate electrode 21 is formed. As shown in FIG. 19, a through hole reaching the drain electrode 19 is formed in the first insulating film 25 and the second insulating film 27 by a laser, and a conductive material 29 is filled therein to form a conductive portion 29.
  • the adjustment electrode 31 is formed by a printing method and connected to the TFT 30 via the conductive portion 29. As shown in FIG. 21, a mountain-shaped pressure-sensitive layer 33 is formed on the adjustment electrode 31 by a printing method.
  • the common electrode 9 is formed on one surface of the insulating film 7 by a printing method. Note that the material of the common electrode 9 may be formed on one surface of the insulating film 7 by sputtering, for example, and then the common electrode 9 may be formed by photolithography. Finally, the upper electrode member 3 and the lower electrode member 5 are bonded together via a frame-shaped frame spacer 13 (FIG. 2) made of an adhesive, thereby completing the pressure sensor 1.
  • the adjustment electrode 31 is a circular shape at a position shifted in one direction from the apex T of the mountain-shaped pressure-sensitive layer 33.
  • the planar position of the adjustment electrode is not particularly limited.
  • the adjustment electrode 31 ⁇ / b> A has a circular belt shape concentric with the mountain-shaped pressure-sensitive layer 33. That is, the adjustment electrode 31 ⁇ / b> A does not have an electrode portion corresponding to the apex T of the mountain-shaped pressure sensitive layer 33.
  • the adjustment electrode 31 ⁇ / b> B has a linear shape shifted to one side from the center of the mountain-shaped pressure-sensitive layer 33. That is, the adjustment electrode 31 ⁇ / b> A does not have an electrode portion corresponding to the apex T of the mountain-shaped pressure sensitive layer 33.
  • the adjustment electrode 31 ⁇ / b> C has an arc shape along the outer periphery of the mountain-shaped pressure sensitive layer 33. That is, the adjustment electrode 31 ⁇ / b> C does not have an electrode portion corresponding to the apex T of the mountain-shaped pressure sensitive layer 33.
  • the adjustment electrode may have a portion disposed at a position corresponding to the vicinity of the apex of the mountain-shaped pressure-sensitive layer in addition to the pressure measurement region described above. .
  • the pressure measurement region of the adjustment electrode is realized by forming the electrode at a position shifted from the vicinity of the apex of the mountain-shaped pressure sensitive layer.
  • the adjustment electrode may be realized by another structure.
  • a pressure sensor 1A as such an embodiment will be described with reference to FIG.
  • FIG. 26 is a schematic plan view illustrating a modification of the planar layout of the pressure-sensitive layer and the adjustment electrode in the second embodiment.
  • the electrode 31D is formed in substantially the same shape corresponding to the mountain-shaped pressure-sensitive layer 33D. That is, the electrode 31D is entirely formed from the apex T to the periphery of the mountain-shaped pressure sensitive layer 33D.
  • An insulating layer 51 is formed on the upper surface of the electrode 31D. The insulating layer 51 is formed on the periphery of the apex T (center) of the electrode 31D to insulate the portion, and the adjustment electrode 31a that is the annular peripheral portion of the electrode 31D is exposed to the mountain-shaped pressure-sensitive layer 33D. I am letting.
  • FIGS. 27, 29 and 31 are schematic cross-sectional views of the pressure sensor in a state where pressure is applied.
  • 28, 30 and 32 are schematic plan views showing the relationship between the adjustment electrode and the contact area.
  • the shape of each region is square for convenience.
  • the above description shows the state when the initial contact pressure acts on the pressure sensor 1.
  • the contact region where the common electrode 9 and each mountain-shaped pressure-sensitive layer 33 are in contact is defined as the initial contact region, and the adjustment electrode 31a overlapping the initial contact region in plan view
  • the area of the initial effective region is 0% of the area of the initial contact region. This is because the initial effective area is zero.
  • the ratio is small. For example, the ratio is set to 10% or less, 20% or less, 30% or less, 40% or less, 50% or less, or 60% or less.
  • the adjustment electrode 31a does not correspond to the electrode contact portion of the mountain-shaped pressure sensitive layer 33 at all, or the corresponding ratio is below a predetermined value.
  • the resistance value of the pressure sensitive element composed of the combination of the adjustment electrode 31a and the mountain pressure sensitive layer 33 is increased. As a result, the resistance levels of the pressure sensitive element and the TFT 30 are matched.
  • the area of the initial effective region is preferably 0% of the area of the initial contact region.
  • the adjustment electrode 31a further includes a pressure measurement region outside the initial contact region. Furthermore, when the effective area is the area of the contact area where the adjustment electrode 31a overlaps (maximum in the case of high pressure described later), the effective area is preferably larger than the initial effective area. It is set to more than double and four times. However, in order to sufficiently obtain the effects of the present embodiment, it is preferably twice or more.
  • the electrode 31D can be formed wide as much as the area not exposed to the mountain-shaped pressure-sensitive layer 33, conduction with the TFT 30 becomes more reliable. Further, if the adjustment electrode 31a does not exist below the initial contact position of the mountain-shaped pressure-sensitive layer 33 with the common electrode 9, the resistance value becomes high and current does not flow easily.
  • a pressure sensitive element composed of the pressure sensitive layer 33D functions as a spacer. That is, it is not necessary to provide a dedicated spacer, and the density of the pressure sensitive elements can be increased. As a result, the resolution of the pressure sensor 1A is increased.
  • the position where the insulating layer is formed is around the apex T (center) of the electrode.
  • the adjustment electrode has an initial effective area in the initial contact. Since the area may be 50% or less of the area, the formation position of the insulating layer is not particularly limited.
  • the exposed portion of the electrode (that is, the adjustment electrode) may be a linear portion corresponding to one side or a plurality of sides around the electrode. Further, the exposed portion of the electrode (that is, the adjustment electrode) may be a portion having a predetermined spread at one or a plurality of locations around the electrode.
  • the insulating layer is completely covered with the mountain-shaped pressure-sensitive layer. However, as a modification, the insulating layer may protrude from the mountain-shaped pressure-sensitive layer.
  • the pressure sensitive element for measuring pressure is arranged in the pressure sensor, but the measuring element for measuring other physical phenomena is also arranged in the pressure sensor. May be.
  • the pressure sensors described in the first and second embodiments are excellent in that an output (change in resistance value) corresponding to the applied pressure is obtained.
  • the electrical characteristic value such as the electrical resistance value changes greatly depending on the temperature and humidity, for example, the electrical resistance value changes when the temperature changes, and the detected pressure value even if the pressure is the same. May be different.
  • FIG. 33 is a partial schematic cross-sectional view of the pressure sensor of the third embodiment.
  • the basic structure of the pressure sensor 1B is the same as that of the first embodiment.
  • the pressure sensor 1B has a plurality of temperature sensitive elements 71.
  • the temperature sensing element 71 is formed side by side with the plurality of adjustment electrodes 31.
  • the temperature sensitive element 71 is incorporated in the pressure sensor 1B, the temperature of the object can be detected together with the pressure from the object.
  • the temperature sensing element 71 functions as a spacer by being closer to the common electrode 9 than the plurality of mountain-shaped pressure sensitive layers 33.
  • the temperature sensing element 71 as a spacer ensures a gap between the common electrode 9 and the mountain-shaped pressure-sensitive layer 33 when no pressure is applied, so that the pressure acting on the mountain-shaped pressure-sensitive layer 33 can be reduced to zero. .
  • the temperature sensitive element 71 By using the temperature sensitive element 71 as a spacer in this way, it is not necessary to provide a dedicated spacer.
  • the structure and operation of the temperature sensitive element 71 are known techniques. Hereinafter, the structure of the temperature sensing element 71 will be briefly described.
  • the temperature sensitive element 71 has a first electrode 73A and a second electrode 73B.
  • the first electrode 73 ⁇ / b> A and the second electrode 73 ⁇ / b> B are formed on the upper surface of the second insulating film 27.
  • the temperature sensing element 71 has a temperature sensing layer 75.
  • the temperature sensitive layer 75 extends between the first electrode 73A and the second electrode 73B and further covers the upper surfaces of both.
  • the temperature sensitive layer 75 is made of a material whose resistance value changes depending on the temperature.
  • the temperature sensitive element 71 has an insulating layer 77.
  • the insulating layer 77 covers the temperature sensitive layer 75. The surface of the insulating layer 77 is close to or in contact with the lower surface of the common electrode 9.
  • FIG. 34 is a block diagram showing a detection control configuration of the pressure sensor.
  • FIG. 35 is a graph showing the relationship of the resistance value with respect to temperature.
  • the pressure sensor 1B includes a temperature detection unit 83, a pressure detection unit 85, and a pressure correction unit 87.
  • the temperature detector 83 detects a temperature value based on a signal from the temperature sensing element 71. Specifically, the temperature detection unit 83 converts an analog signal into a digital signal and outputs it to the pressure correction unit 87 as temperature value information.
  • the pressure detection unit 85 detects a pressure value based on signals from the pressure-sensitive element 35 including a plurality of adjustment electrodes and a plurality of mountain-shaped pressure-sensitive layers. Specifically, the pressure detection unit 85 converts an analog signal into a digital signal and outputs it as pressure value information to the pressure correction unit 87.
  • the pressure correction unit 87 corrects the pressure value based on the temperature value.
  • the pressure sensor 1 has a storage unit in which the temperature characteristics (for example, information of the graph shown in FIG. 35) of each pressure-sensitive element 35 are stored, and the pressure correction unit 87 is stored in the storage unit.
  • the pressure value obtained from the pressure detector 85 is corrected based on the stored temperature characteristic of the pressure sensitive element 35 (that is, the change in electrical resistance due to temperature is removed by calculation). By correcting the pressure value, an accurate pressure distribution applied to the pressure sensor 1B can be obtained.
  • the corrected pressure value is output to the outside or stored in the storage unit.
  • the pressure sensitive element 35A may be the same as that of the second embodiment.
  • FIG. 36 is a partial schematic cross-sectional view of a pressure sensor according to a first modification of the third embodiment.
  • the temperature sensing element 71 is formed higher than the pressure sensing element 35A, and realizes a function as a spacer.
  • the temperature sensitive element has an insulating layer.
  • the common electrode and the temperature sensitive layer may be insulated, the insulating layer may be omitted.
  • FIG. FIG. 37 is a partial schematic cross-sectional view of a pressure sensor according to a second modification of the third embodiment.
  • no insulating layer is formed on the temperature sensitive element 71A.
  • the common electrode 9 has a missing portion 9a at a location corresponding to the temperature sensitive element 71A.
  • the lower surface of the insulating film 7 has the facing portion 7a facing the temperature sensitive element 71A due to the missing portion 9a.
  • the common electrode 9 and the temperature sensitive element 71A do not contact each other.
  • FIG. 38 is a partial schematic cross-sectional view of a pressure sensor according to a third modification of the third embodiment.
  • a pressure-sensitive element having a flat pressure-sensitive layer and a temperature-sensitive element may be combined. That is, the type of the pressure sensitive element is not particularly limited in the combination of the temperature sensitive element and the pressure sensitive element.
  • the pressure sensitive element composed of the adjustment electrode 31 and the mountain pressure sensitive layer 33 is completely aligned in rows and columns. Arranged in a matrix shape.
  • the pressure sensitive elements need only be arranged in a matrix shape in a broad sense.
  • the layout of the pressure sensitive elements may be a polygonal (for example, hexagonal, parallelogram) repetitive lattice.
  • the layout of the pressure sensitive elements is not uniformly arranged, and gaps may be formed at a plurality of locations.
  • planar shape of adjustment electrode and mountain-shaped pressure-sensitive layer is the same, but is not particularly limited. Both shapes may be different.
  • the common electrode 9 is in direct contact with the mountain-shaped pressure sensitive layer 33, but may be in contact with another layer.
  • a pressure sensitive layer may be formed on the common electrode 9.
  • the mountain-shaped pressure-sensitive layer 33 has a dome shape and the side surface shape has a semicircular shape. Not. However, in order to obtain a desired effect, the mountain-shaped pressure-sensitive layer 33 needs to have a predetermined height or more for the purpose of making contact with the common electrode 9 in a stepwise manner. Further, in order to bring the common electrode into contact with the side surface portion on the outer peripheral side, the angled pressure-sensitive layer 33 needs to have an inclination angle of a predetermined value or less.
  • the mountain-shaped pressure-sensitive layer 33D may have a conical shape or a truncated cone shape. Furthermore, the mountain-shaped shape of the mountain-shaped pressure-sensitive layer may be provided only on the top of the mountain-shaped pressure-sensitive layer.
  • the peak of the mountain-shaped pressure-sensitive layer is formed in the center in plan view. May be formed off the center.
  • the mountain-shaped pressure sensitive layer may have a convex portion including a vertex at a position other than the center.
  • the plurality of mountain-shaped pressure-sensitive layers 33 are electrically independent from each other, but are not particularly limited.
  • the plurality of mountain-shaped pressure sensitive layers may be in contact with each other or continuous.
  • a thin film transistor is associated with each individual electrode, and the current of each thin film transistor is detected.
  • one thin film transistor is connected to one adjustment electrode.
  • a plurality of thin film transistors may correspond to one adjustment electrode, and currents of the plurality of thin film transistors may be detected.
  • two or more thin film transistors adjacent to one adjustment electrode are connected. As a result, the detected current value is increased, and the circuit can be made redundant.
  • FIG. 5 An example in the case where a total of four 2 ⁇ 2 thin film transistors shown in FIG. 5 correspond to one adjustment electrode will be described.
  • the gate lines G1 and G2 are short-circuited
  • the source lines S1 and S2 are short-circuited
  • the four drain electrodes are short-circuited to be connected to one adjustment electrode through the through hole and the conductive portion.
  • a plurality of combination patterns may exist in one pressure device.
  • the present invention can be widely applied to pressure sensors having a pressure-sensitive layer and a large number of thin film transistors.
  • the pressure sensor according to the present invention is suitable for a sheet sensor having a large area other than a touch panel.
  • the pressure sensor according to the present invention can be applied to walking measurement technology (medical, sports, and security fields) and bed bed slip measurement technology.
  • Pressure sensor 3 Upper electrode member 5: Lower electrode member 7: Insulating film 9: Common electrode 13: Frame spacer 15: Insulating film 30: Thin film transistor 31: Adjustment electrode 31a: Peripheral part 33: Mountain type pressure sensitive layer 35 : Pressure sensitive element 51: Insulating layer

Abstract

The present invention addresses the problem of, in a pressure sensor having a plurality of electrodes arranged so as to have gaps therebetween, maintaining a characteristic in which a pressure sensing element resistance value decreases as pressure increases and making the resistance value of the pressure sensing element match the level of a thin film transistor. This pressure sensor 1 is capable of solving this problem and is such that there is an initial contact area that is the contact area where a common electrode 9 and each mountain-type pressure sensing layer 33 come into contact when the pressing force on the common electrode 9 is an initial contact force and an initial effective area that is the area of an adjustment electrode 31 overlapping with the initial contact area in a plan view and the surface area of the initial effective area is 0-50% of the surface area of the initial contact area. The adjustment electrode 31 also has a pressure measurement area outside of the initial contact area.

Description

圧力センサPressure sensor
 本発明は、圧力センサ、特に、多数の電極を有する圧力センサに関する。 The present invention relates to a pressure sensor, and more particularly to a pressure sensor having a large number of electrodes.
 圧力センサとして、感圧樹脂に多数の薄膜トランジスタを組み合せたものが知られている(例えば、特許文献1を参照)。
 感圧樹脂は、シリコーンゴム等の絶縁樹脂内に導電性粒子を分散させたものである。感圧樹脂では、圧力が加えられると、絶縁樹脂内において導電性粒子同士が接触することで、抵抗値が低下する。これにより、感圧樹脂に加えられた圧力を検知できる。
 多数の薄膜トランジスタは、マトリクス状に配置されており、電極として機能する。これにより、圧力検出の高速化、高解像度化、低消費電力化が可能になる。
As a pressure sensor, a combination of a number of thin film transistors with a pressure sensitive resin is known (see, for example, Patent Document 1).
The pressure sensitive resin is obtained by dispersing conductive particles in an insulating resin such as silicone rubber. In the pressure-sensitive resin, when pressure is applied, the resistance value decreases due to contact between the conductive particles in the insulating resin. Thereby, the pressure applied to the pressure sensitive resin can be detected.
Many thin film transistors are arranged in a matrix and function as electrodes. This makes it possible to increase the pressure detection speed, increase the resolution, and reduce the power consumption.
特開2016―4940号公報Japanese Unexamined Patent Publication No. 2016-4940
 感圧層と複数の画素電極が所定の隙間を空けて対向配置された圧力センサも知られている。
 発明者は、複数の画素電極とその上に形成された山型感圧層からなる感圧素子を有する圧力センサを考案し、さらにその課題を検討した。この場合、薄膜トランジスタに抵抗値レベルを合わせるために、感圧素子の高抵抗化が必要であると考えられる。そこで、発明者は、画素電極を小さくして感圧素子の抵抗値を上げることを検討した。しかし、画素電極を単に小さくすれば、画素電極は感圧層の中央に配置されているので、山型感圧層の外側へ延長する部分が無くなり、そのため圧力が高くなるにつれて抵抗値が低くなっていくという山型感圧層の効果が得られなくなる。
There is also known a pressure sensor in which a pressure sensitive layer and a plurality of pixel electrodes are arranged to face each other with a predetermined gap.
The inventor has devised a pressure sensor having a plurality of pixel electrodes and a pressure-sensitive element composed of a mountain-shaped pressure-sensitive layer formed thereon, and further studied the problem. In this case, it is considered that the resistance of the pressure sensitive element needs to be increased in order to match the resistance value level of the thin film transistor. Therefore, the inventor studied to increase the resistance value of the pressure sensitive element by reducing the pixel electrode. However, if the pixel electrode is simply made smaller, the pixel electrode is arranged at the center of the pressure sensitive layer, so there is no portion extending outside the mountain pressure sensitive layer, and therefore the resistance value decreases as the pressure increases. The effect of the mountain-type pressure-sensitive layer cannot be obtained.
 本発明の目的は、互いに隙間を空けて配置された複数の電極を有する圧力センサにおいて、圧力が高くなるにつれて感圧素子の抵抗値が低くなる特性を維持しつつ、感圧素子の抵抗値を薄膜トランジスタのレベルに合わせることにある。 An object of the present invention is to provide a pressure sensor having a plurality of electrodes arranged with a gap between each other, while maintaining the characteristic that the resistance value of the pressure sensitive element decreases as the pressure increases. The purpose is to match the level of the thin film transistor.
 以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。 Hereinafter, a plurality of modes will be described as means for solving the problem. These aspects can be arbitrarily combined as necessary.
 本発明の一見地に係る圧力センサは、共通電極と、複数の調整電極と、複数の山型感圧層と、複数の薄膜トランジスタとを備えている。
 共通電極は、一面に広がって形成されている。
 複数の調整電極は、共通電極に対向してマトリクス状に設けられている。
 複数の山型感圧層は、複数の調整電極の共通電極側の上にそれぞれ形成されている。
 複数の薄膜トランジスタは、複数の調整電極に対応して複数の調整電極の共通電極と反対側に設けられ、1又は隣接する2以上が1つの調整電極に接続される。
 共通電極に対する押圧力が初期接触圧力のときに共通電極と各山型感圧層が接触する接触領域を初期接触領域とし、初期接触領域に平面視で重なる調整電極の領域を初期有効領域とすると、初期有効領域の面積は初期接触領域の面積の0~50%である。
 調整電極は初期接触領域の外側にある圧力測定領域をさらに有する。
 なお、「山型」とは、頂点と周縁部とを有しており、ドーム形状、錐体形状、錐台形状、その他の形状を含む。山型の平面形状は、円、四角、その他の形状を含む。
A pressure sensor according to an aspect of the present invention includes a common electrode, a plurality of adjustment electrodes, a plurality of mountain-shaped pressure sensitive layers, and a plurality of thin film transistors.
The common electrode is formed so as to spread over one surface.
The plurality of adjustment electrodes are provided in a matrix so as to face the common electrode.
The plurality of mountain-shaped pressure sensitive layers are respectively formed on the common electrode side of the plurality of adjustment electrodes.
The plurality of thin film transistors are provided on the side opposite to the common electrode of the plurality of adjustment electrodes corresponding to the plurality of adjustment electrodes, and one or two or more adjacent ones are connected to one adjustment electrode.
When the pressing force against the common electrode is the initial contact pressure, the contact area where the common electrode and each mountain-shaped pressure-sensitive layer are in contact is the initial contact area, and the area of the adjustment electrode that overlaps the initial contact area in plan view is the initial effective area The area of the initial effective area is 0 to 50% of the area of the initial contact area.
The adjustment electrode further has a pressure measurement area outside the initial contact area.
The “mountain shape” has an apex and a peripheral portion, and includes a dome shape, a cone shape, a frustum shape, and other shapes. The mountain-shaped planar shape includes a circle, a square, and other shapes.
 押圧力が共通電極に対して山型感圧層及び調整電極に向かって作用すると、共通電極と山型感圧層が接触する接触領域が、山型感圧層の平面視の頂点から外側に広がっていく。このとき、接触領域と調整電極との間で挟まれる部分の面積が徐々に広くなる。以上より、圧力が高くなるにつれて山型感圧層の抵抗値が低くなり、その結果、検出される電流値が高くなる。特に、圧力が高い範囲でも感度が十分に高くなって、圧力を正確に測定できる。この結果、圧力の測定範囲が広くなっている。
 さらに、初期有効領域の面積が初期接触領域の面積の0~50%である場合、調整電極は山型感圧層の電極接触部には全く対応していない又は対応割合が所定以下なので、調整電極と山型感圧層の組み合わせからなる感圧素子の抵抗値が高くなる。その結果、感圧素子と薄膜トランジスタの抵抗値のレベルが合わせられる。
 さらに、低圧力発生時の初期における山型感圧層の抵抗値の変化(つまり、検出される電流値の変化)は、初期有効領域の面積が初期接触領域の面積の50%を超えるものに比べて、緩やかになる。これは低圧域において、共通電極と山型感圧層の接触面積が小さい状態が続くからである。この結果、低圧力の検出精度が高くなる。
 初期有効領域の面積が初期接触領域の面積の0~40%であってもよい。
 初期有効領域の面積が初期接触領域の面積の0~30%であってもよい。
 なお、初期有効領域の面積が初期接触領域の面積の0%であることが好ましい。その理由は、上記の原理に加えて、接触領域と調整電極との最短距離が、調整電極上の山型感圧層の膜厚より長くなるからである。そのため、抵抗値を制御する効果が大きくなる。
When the pressing force acts on the common electrode toward the mountain-shaped pressure-sensitive layer and the adjustment electrode, the contact region where the common electrode and the mountain-shaped pressure-sensitive layer are in contact is outward from the apex of the mountain-shaped pressure-sensitive layer in plan view. It spreads. At this time, the area of the portion sandwiched between the contact region and the adjustment electrode gradually increases. From the above, as the pressure increases, the resistance value of the mountain-shaped pressure sensitive layer decreases, and as a result, the detected current value increases. In particular, the sensitivity is sufficiently high even in a high pressure range, and the pressure can be accurately measured. As a result, the measurement range of pressure is widened.
Furthermore, when the area of the initial effective area is 0 to 50% of the area of the initial contact area, the adjustment electrode does not correspond to the electrode contact portion of the mountain pressure-sensitive layer at all, or the corresponding ratio is less than a predetermined value. The resistance value of the pressure sensitive element composed of the combination of the electrode and the mountain pressure sensitive layer is increased. As a result, the resistance levels of the pressure sensitive element and the thin film transistor are matched.
Furthermore, the change in the resistance value of the mountain-shaped pressure-sensitive layer in the initial stage when a low pressure is generated (that is, the change in the detected current value) is such that the area of the initial effective area exceeds 50% of the area of the initial contact area. Compared to it, it becomes moderate. This is because the contact area between the common electrode and the mountain-shaped pressure sensitive layer continues to be small in the low pressure region. As a result, the detection accuracy of the low pressure is increased.
The area of the initial effective area may be 0 to 40% of the area of the initial contact area.
The area of the initial effective area may be 0 to 30% of the area of the initial contact area.
The area of the initial effective region is preferably 0% of the area of the initial contact region. This is because, in addition to the above principle, the shortest distance between the contact region and the adjustment electrode is longer than the film thickness of the mountain-shaped pressure-sensitive layer on the adjustment electrode. Therefore, the effect of controlling the resistance value is increased.
 調整電極は、山型感圧層の頂点に対応する位置には形成されていなくてもよい。
 この圧力センサでは、低圧域において、抵抗を高く維持することで検出電流を比較的小さくできる。
The adjustment electrode may not be formed at a position corresponding to the apex of the mountain-shaped pressure sensitive layer.
In this pressure sensor, the detection current can be made relatively small by keeping the resistance high in the low pressure region.
 調整電極は、山型感圧層の頂点から一方向にずれた位置に配置されていてもよい。
 この圧力センサでは、調整電極を広がりを有する形状にできるので、薄膜トランジスタとの導通がより確実になる。
The adjustment electrode may be arranged at a position shifted in one direction from the apex of the mountain-shaped pressure sensitive layer.
In this pressure sensor, since the adjustment electrode can be formed in a wide shape, conduction with the thin film transistor is further ensured.
 圧力センサは、絶縁層をさらに備えていてもよい。絶縁層は、電極の一部の上に形成されて一部を絶縁するとともに、電極の山型感圧層に対して露出する部分を調整電極として構成する。
 この圧力センサでは、山型感圧層に対して露出しない部分の面積だけ電極を広く形成できるので、薄膜トランジスタとの導通がより確実になる。
The pressure sensor may further include an insulating layer. The insulating layer is formed on a part of the electrode to insulate part thereof, and a portion exposed to the mountain-shaped pressure sensitive layer of the electrode is configured as an adjustment electrode.
In this pressure sensor, since the electrode can be formed wide as much as the area of the portion not exposed to the mountain-shaped pressure sensitive layer, conduction with the thin film transistor becomes more reliable.
 また、山型感圧層の共通電極との初期接触位置の下に調整電極が存在しないようにすれば、抵抗値が高くなって電流が流れにくくなり、そのため、調整電極と山型感圧層からなる感圧素子がスペーサとして機能する。つまり、専用のスペーサを設ける必要がなくなり、感圧素子の密度を高くでき、その結果、圧力センサの解像度が高くなる。 Also, if the adjustment electrode does not exist under the initial contact position with the common electrode of the mountain pressure-sensitive layer, the resistance value becomes high and current does not flow easily. The pressure-sensitive element made of functions as a spacer. That is, it is not necessary to provide a dedicated spacer, and the density of the pressure sensitive elements can be increased, and as a result, the resolution of the pressure sensor is increased.
 圧力センサは、複数の調整電極の側方に並んで形成された感温素子をさらに備えていてもよい。
 この圧力センサでは、感温素子が圧力センサ内に組み込まれているので、圧力と共に温度を検出できる。
The pressure sensor may further include a temperature sensing element formed side by side on the plurality of adjustment electrodes.
In this pressure sensor, since the temperature sensitive element is incorporated in the pressure sensor, the temperature can be detected together with the pressure.
 感温素子は、複数の山型感圧層より共通電極に近接することで、スペーサとして機能してもよい。
 この圧力センサでは、感温素子をスペーサとして用いることで、専用のスペーサを設ける必要がなくなる。
The temperature-sensitive element may function as a spacer by being closer to the common electrode than the plurality of mountain-shaped pressure-sensitive layers.
In this pressure sensor, the use of the temperature sensitive element as a spacer eliminates the need to provide a dedicated spacer.
 圧力センサは、圧力検出部と、温度検出部と、圧力補正部とをさらに備えていてもよい。
 圧力検出部は、複数の調整電極と複数の山型感圧層からの信号によって圧力値を検出してもよい。
 温度検出部は、感温素子からの信号によって温度値を検出してもよい。
 圧力補正部は、温度検出部からの温度値に基づいて圧力値を補正してもよい。
 この圧力センサでは、温度補正することで正確な圧力値が得られる。
The pressure sensor may further include a pressure detection unit, a temperature detection unit, and a pressure correction unit.
The pressure detection unit may detect a pressure value based on signals from a plurality of adjustment electrodes and a plurality of mountain-shaped pressure sensitive layers.
The temperature detection unit may detect the temperature value based on a signal from the temperature sensitive element.
The pressure correction unit may correct the pressure value based on the temperature value from the temperature detection unit.
In this pressure sensor, an accurate pressure value can be obtained by correcting the temperature.
 本発明に係る圧力センサでは、正確に測定できる圧力測定範囲が広くなる。 In the pressure sensor according to the present invention, the pressure measurement range that can be accurately measured is widened.
本発明の第1実施形態に係る圧力センサの概略断面図。1 is a schematic cross-sectional view of a pressure sensor according to a first embodiment of the present invention. 圧力センサの部分概略断面図。The partial schematic sectional drawing of a pressure sensor. 圧力センサの下側電極部材の概略平面図。The schematic plan view of the lower electrode member of a pressure sensor. 調整電極と山型感圧層の模式的平面図。The schematic plan view of an adjustment electrode and a mountain-shaped pressure-sensitive layer. 圧力センサの等価回路図。The equivalent circuit diagram of a pressure sensor. 圧力が作用した状態での圧力センサの概略断面図。The schematic sectional drawing of a pressure sensor in the state where the pressure acted. 調整電極と接触面積の関係を示す模式的平面図。The typical top view which shows the relationship between an adjustment electrode and a contact area. 圧力が作用した状態での圧力センサの概略断面図。The schematic sectional drawing of a pressure sensor in the state where the pressure acted. 調整電極と接触面積の関係を示す模式的平面図。The typical top view which shows the relationship between an adjustment electrode and a contact area. 圧力が作用した状態での圧力センサの概略断面図。The schematic sectional drawing of a pressure sensor in the state where the pressure acted. 調整電極と接触面積の関係を示す模式的平面図。The typical top view which shows the relationship between an adjustment electrode and a contact area. 圧力センサの圧力と検出電流との関係を示すグラフ。The graph which shows the relationship between the pressure of a pressure sensor, and a detection electric current. 圧力センサの製造方法を示す模式的断面図。A typical sectional view showing a manufacturing method of a pressure sensor. 圧力センサの製造方法を示す模式的断面図。A typical sectional view showing a manufacturing method of a pressure sensor. 圧力センサの製造方法を示す模式的断面図。A typical sectional view showing a manufacturing method of a pressure sensor. 圧力センサの製造方法を示す模式的断面図。A typical sectional view showing a manufacturing method of a pressure sensor. 圧力センサの製造方法を示す模式的断面図。A typical sectional view showing a manufacturing method of a pressure sensor. 圧力センサの製造方法を示す模式的断面図。A typical sectional view showing a manufacturing method of a pressure sensor. 圧力センサの製造方法を示す模式的断面図。A typical sectional view showing a manufacturing method of a pressure sensor. 圧力センサの製造方法を示す模式的断面図。A typical sectional view showing a manufacturing method of a pressure sensor. 圧力センサの製造方法を示す模式的断面図。A typical sectional view showing a manufacturing method of a pressure sensor. 圧力センサの製造方法を示す模式的断面図。A typical sectional view showing a manufacturing method of a pressure sensor. 山型感圧層及び調整電極の平面レイアウトの変形例を示す模式的平面図。The typical top view which shows the modification of the planar layout of a mountain-shaped pressure sensitive layer and an adjustment electrode. 山型感圧層及び調整電極の平面レイアウトの変形例を示す模式的平面図。The typical top view which shows the modification of the planar layout of a mountain-shaped pressure sensitive layer and an adjustment electrode. 山型感圧層及び調整電極の平面レイアウトの変形例を示す模式的平面図。The typical top view which shows the modification of the planar layout of a mountain-shaped pressure sensitive layer and an adjustment electrode. 第2実施形態における圧力センサの部分概略断面図。The partial schematic sectional drawing of the pressure sensor in 2nd Embodiment. 圧力が作用した状態での圧力センサの概略断面図。The schematic sectional drawing of a pressure sensor in the state where the pressure acted. 調整電極と接触面積の関係を示す模式的平面図。The typical top view which shows the relationship between an adjustment electrode and a contact area. 圧力が作用した状態での圧力センサの概略断面図。The schematic sectional drawing of a pressure sensor in the state where the pressure acted. 調整電極と接触面積の関係を示す模式的平面図。The typical top view which shows the relationship between an adjustment electrode and a contact area. 圧力が作用した状態での圧力センサの概略断面図。The schematic sectional drawing of a pressure sensor in the state where the pressure acted. 調整電極と接触面積の関係を示す模式的平面図。The typical top view which shows the relationship between an adjustment electrode and a contact area. 第3実施形態の圧力センサの部分概略断面図。The partial schematic sectional drawing of the pressure sensor of 3rd Embodiment. 圧力センサの検出制御構成を示すブロック図。The block diagram which shows the detection control structure of a pressure sensor. 温度に対する抵抗値の関係を示すグラフ。The graph which shows the relationship of the resistance value with respect to temperature. 第3実施形態の第1変形例の圧力センサの部分概略断面図。The partial schematic sectional drawing of the pressure sensor of the 1st modification of 3rd Embodiment. 第3実施形態の第2変形例の圧力センサの部分概略断面図。The fragmentary schematic sectional drawing of the pressure sensor of the 2nd modification of 3rd Embodiment. 第3実施形態の第3変形例の圧力センサの部分概略断面図。The partial schematic sectional drawing of the pressure sensor of the 3rd modification of 3rd Embodiment.
1.第1実施形態
(1)圧力センサの基本構成
 図1~図5を用いて、第1実施形態に係る圧力センサ1を説明する。図1は、本発明の第1実施形態に係る圧力センサの概略断面図である。図2は、圧力センサの部分概略断面図である。図3は、圧力センサの下側電極部材の概略平面図である。図4は、調整電極と山型感圧層の模式的平面図である。図5は、圧力センサの等価回路図である。
1. First Embodiment (1) Basic Configuration of Pressure Sensor A pressure sensor 1 according to a first embodiment will be described with reference to FIGS. FIG. 1 is a schematic cross-sectional view of a pressure sensor according to a first embodiment of the present invention. FIG. 2 is a partial schematic cross-sectional view of the pressure sensor. FIG. 3 is a schematic plan view of the lower electrode member of the pressure sensor. FIG. 4 is a schematic plan view of the adjustment electrode and the mountain-shaped pressure sensitive layer. FIG. 5 is an equivalent circuit diagram of the pressure sensor.
 圧力センサ1は、押圧力が作用すると押圧位置と押圧力を検出する装置である。圧力センサ1は、例えば、スマートフォン、タブレットPC、ノートPCのタッチパネルに採用される。
 圧力センサ1は、上側電極部材3を有している。上側電極部材3は、押圧力が作用する平面状の部材である。上側電極部材3は、絶縁フィルム7と、その下面に全面的につまり一面に広がって又はパターニングされて形成された共通電極9とを有している。
The pressure sensor 1 is a device that detects a pressing position and a pressing force when a pressing force is applied. For example, the pressure sensor 1 is employed in a touch panel of a smartphone, a tablet PC, or a notebook PC.
The pressure sensor 1 has an upper electrode member 3. The upper electrode member 3 is a planar member on which a pressing force acts. The upper electrode member 3 has an insulating film 7 and a common electrode 9 formed on the entire lower surface thereof, that is, spread over one surface or patterned.
 圧力センサ1は、下側電極部材5を有している。下側電極部材5は、上側電極部材3の下方に配置された平面状の部材である。下側電極部材5は、例えば矩形の絶縁フィルム15と、その上面に他の部材(後述)を介して形成された複数の調整電極31を有している。調整電極は、個別電極又は画素電極ともいう。
 下側電極部材5は、複数の山型感圧層33を有している。複数の山型感圧層33は、複数の調整電極31の共通電極9側の上にそれぞれ形成されている。
The pressure sensor 1 has a lower electrode member 5. The lower electrode member 5 is a planar member disposed below the upper electrode member 3. The lower electrode member 5 includes, for example, a rectangular insulating film 15 and a plurality of adjustment electrodes 31 formed on the upper surface via other members (described later). The adjustment electrode is also referred to as an individual electrode or a pixel electrode.
The lower electrode member 5 has a plurality of mountain-shaped pressure sensitive layers 33. The plurality of mountain-shaped pressure sensitive layers 33 are respectively formed on the common electrode 9 side of the plurality of adjustment electrodes 31.
 なお、「山型」とは、頂点と周縁部とを有しており、ドーム形状、錐体形状、錐台形状、その他の形状を含む。山型の平面形状は、丸、四角、その他の形状を含む。
 山型であることで、圧力に応じて共通電極9と山型感圧層33の接触面積が増加する。また、外周にいくほど山型感圧層33の厚みが小さくなり、抵抗値が下がる。言い換えると、低圧力のときは、山型感圧層33の頂点(半径方向中心)のみが共通電極9に接触しており接触面積が小さい。高圧力のときは、山型感圧層33の山型の中腹(半径方向中間部)又は麓(外周部)まで共通電極9が接触しており接触面積が大きい。
 一例として、山型感圧層33の高さHは、広い範囲では5~100μmであり、狭い範囲では10~30μmである。山型感圧層33の径Lは、広い範囲では0.1~1.0mmであり、狭い範囲では0.3~0.6mmである。
The “mountain shape” has an apex and a peripheral portion, and includes a dome shape, a cone shape, a frustum shape, and other shapes. The mountain-shaped planar shape includes a circle, a square, and other shapes.
Due to the mountain shape, the contact area between the common electrode 9 and the mountain pressure-sensitive layer 33 increases according to the pressure. In addition, the thickness of the mountain-shaped pressure-sensitive layer 33 is reduced toward the outer periphery, and the resistance value is decreased. In other words, when the pressure is low, only the apex (center in the radial direction) of the mountain-shaped pressure sensitive layer 33 is in contact with the common electrode 9, and the contact area is small. When the pressure is high, the common electrode 9 is in contact with the mountain-shaped middle (radially intermediate portion) or ridge (outer circumferential portion) of the mountain-shaped pressure-sensitive layer 33, and the contact area is large.
As an example, the height H of the mountain-shaped pressure sensitive layer 33 is 5 to 100 μm in a wide range and 10 to 30 μm in a narrow range. The diameter L of the mountain-shaped pressure-sensitive layer 33 is 0.1 to 1.0 mm in a wide range, and 0.3 to 0.6 mm in a narrow range.
 図2及び図4に示すように、山型感圧層33は調整電極31全体を覆っている。調整電極31は、平面視円形であって、山型感圧層33の頂点T(中心)の位置からずれた位置に形成されている。つまり、山型感圧層33の頂点(中心部)に対応する位置には、調整電極が形成されていない。
 調整電極31は、平面視円形であるが、四角、三角等の他の形状であってもよい。調整電極31は、山型感圧層33に対して面積が小さいが、一定の広がりを有している。そのため、調整電極を広がりを有する形状にできるので、TFT30との導通がより確実になる。
As shown in FIGS. 2 and 4, the mountain-shaped pressure sensitive layer 33 covers the entire adjustment electrode 31. The adjustment electrode 31 has a circular shape in plan view, and is formed at a position shifted from the position of the apex T (center) of the mountain-shaped pressure-sensitive layer 33. That is, the adjustment electrode is not formed at a position corresponding to the apex (center portion) of the mountain-shaped pressure sensitive layer 33.
The adjustment electrode 31 has a circular shape in plan view, but may have another shape such as a square or a triangle. The adjustment electrode 31 has a small area with respect to the mountain-shaped pressure-sensitive layer 33, but has a certain spread. For this reason, the adjustment electrode can be formed in a wide shape, so that conduction with the TFT 30 is further ensured.
 上側電極部材3と下側電極部材5は、図2に示すように、周縁部において額縁スペーサ13によって互いに接着されている。額縁スペーサ13は額縁状に形成されており、例えば、粘着剤、両面テープからなる。 The upper electrode member 3 and the lower electrode member 5 are bonded to each other by a frame spacer 13 at the peripheral portion as shown in FIG. The frame spacer 13 is formed in a frame shape, and is made of, for example, an adhesive or a double-sided tape.
 図3に示すように、複数の調整電極31及び山型感圧層33からなる感圧素子は、平面全体に敷き詰められて配置されている。マトリクス状とは、行列状に二次元配列されている状態をいう。また、図1及び図2に示すように、額縁スペーサ13によって、初期状態でも共通電極9と山型感圧層33との間には、隙間が確保されている。これにより、圧力ゼロを確実に測定できる。さらに初期の抵抗値変化も、接触面積ゼロからのスタートになるので確実に測定できる。ただし、初期状態で共通電極9と山型感圧層33が接触していてもよい。 As shown in FIG. 3, the pressure-sensitive elements including the plurality of adjustment electrodes 31 and the mountain-shaped pressure-sensitive layers 33 are arranged so as to be spread over the entire plane. The matrix form means a state in which the matrix is two-dimensionally arranged. As shown in FIGS. 1 and 2, the frame spacer 13 ensures a gap between the common electrode 9 and the mountain-shaped pressure sensitive layer 33 even in the initial state. Thereby, zero pressure can be measured reliably. Furthermore, the initial resistance value change can be reliably measured since it starts from zero contact area. However, the common electrode 9 and the mountain-shaped pressure-sensitive layer 33 may be in contact with each other in the initial state.
 共通電極9の領域が山型感圧層33に向かって押し下げられると、共通電極9と押し下げ領域に位置付けられている調整電極31が電気的に導通する。押し下げは、例えば、指、スタイラスペン、棒、手の平、足裏で行えばよい。電極ピッチは例えば0.3~1.5mmである。
 下側電極部材5は、複数の薄膜トランジスタ30(以下、「TFT30」という)を有している。各TFT30は、調整電極31の各々に対応して設けられており、電流値検出用の電極として機能する。
When the region of the common electrode 9 is pushed down toward the mountain-shaped pressure sensitive layer 33, the common electrode 9 and the adjustment electrode 31 positioned in the pushed-down region are electrically connected. The depression may be performed with, for example, a finger, a stylus pen, a stick, a palm, or a sole. The electrode pitch is, for example, 0.3 to 1.5 mm.
The lower electrode member 5 includes a plurality of thin film transistors 30 (hereinafter referred to as “TFT 30”). Each TFT 30 is provided corresponding to each of the adjustment electrodes 31 and functions as an electrode for current value detection.
(2)TFT及び調整電極の関係
 TFT30は、図1及び図2に示すように、ソース電極17と、ドレイン電極19と、ゲート電極21とを有している。TFT30は、トップゲート型である。ゲート電極、ソース電極及びドレイン電極を構成する材料は、特に限定されない。また、TFTはボトムゲート型であってもよい。
(2) Relationship between TFT and Adjustment Electrode As shown in FIGS. 1 and 2, the TFT 30 includes a source electrode 17, a drain electrode 19, and a gate electrode 21. The TFT 30 is a top gate type. The material which comprises a gate electrode, a source electrode, and a drain electrode is not specifically limited. The TFT may be a bottom gate type.
 ソース電極17とドレイン電極19は、絶縁フィルム15の上面に形成されている。TFT30は、ソース電極17及びドレイン電極19間に形成された半導体層23を有している。このような半導体層を構成する材料としては、公知の材料、例えば、シリコン、酸化物半導体、有機半導体を用いることができる。
 TFT30は、ソース電極17、ドレイン電極19及び半導体層23を覆うように形成された第1絶縁膜25を有している。
The source electrode 17 and the drain electrode 19 are formed on the upper surface of the insulating film 15. The TFT 30 has a semiconductor layer 23 formed between the source electrode 17 and the drain electrode 19. As a material for forming such a semiconductor layer, a known material such as silicon, an oxide semiconductor, or an organic semiconductor can be used.
The TFT 30 has a first insulating film 25 formed so as to cover the source electrode 17, the drain electrode 19 and the semiconductor layer 23.
 ドレイン電極19は、後述するように、調整電極31に接続されている。ゲート電極21は、第1絶縁膜25の上面において半導体層23の上方に形成されている。
 TFT30は、第1絶縁膜25の上面に形成されゲート電極21を覆う第2絶縁膜27を有している。
 複数の調整電極31は、第2絶縁膜27の上面に形成されている。調整電極31は、第1絶縁膜25及び第2絶縁膜27を貫通する貫通孔に形成された導電部29を介して、TFT30に接続されている。
The drain electrode 19 is connected to the adjustment electrode 31 as described later. The gate electrode 21 is formed above the semiconductor layer 23 on the upper surface of the first insulating film 25.
The TFT 30 has a second insulating film 27 that is formed on the upper surface of the first insulating film 25 and covers the gate electrode 21.
The plurality of adjustment electrodes 31 are formed on the upper surface of the second insulating film 27. The adjustment electrode 31 is connected to the TFT 30 via a conductive portion 29 formed in a through hole that penetrates the first insulating film 25 and the second insulating film 27.
 図5を用いて、圧力センサ1の動作原理を説明する。ゲート電圧を入力したTFT30のドレイン電極19に電圧を印加すると、山型感圧層33の抵抗に対応するドレイン電流が流れる。そして、山型感圧層33に加わる圧力が高くなると抵抗が下がるので、ドレイン電流の増加が検出される。圧力センサ1上のTFT30を掃引してゲート電圧を加えドレイン電流を測定することにより、シート表面の圧力分布を観測できる。
 圧力センサ1は、回路部(図示せず)を有している。回路部は、ドレイン電極19、ソース電極17及び共通電極9を制御するものであり、例えば、共通電極9、ソース電極17に所定電圧を印加する電源電圧と、ソース-ドレイン間の電流値に応じた信号を発生して外部の信号処理装置へ出力する電流検出回路とを有している。外部の信号処理装置は、回路部から送られてきた信号に基づいて、押圧位置及び押圧力を検出する。
The operation principle of the pressure sensor 1 will be described with reference to FIG. When a voltage is applied to the drain electrode 19 of the TFT 30 to which the gate voltage is input, a drain current corresponding to the resistance of the mountain-shaped pressure sensitive layer 33 flows. Since the resistance decreases as the pressure applied to the mountain-shaped pressure sensitive layer 33 increases, an increase in drain current is detected. By sweeping the TFT 30 on the pressure sensor 1 and applying a gate voltage and measuring the drain current, the pressure distribution on the sheet surface can be observed.
The pressure sensor 1 has a circuit part (not shown). The circuit unit controls the drain electrode 19, the source electrode 17, and the common electrode 9. For example, according to the power supply voltage for applying a predetermined voltage to the common electrode 9 and the source electrode 17 and the current value between the source and drain. And a current detection circuit that generates a signal and outputs it to an external signal processing device. The external signal processing device detects the pressing position and the pressing force based on the signal sent from the circuit unit.
(3)押圧動作及び圧力測定動作
 図6~図12を用いて、押圧動作及び圧力測定動作を説明する。図6、図8及び図10は、圧力が作用した状態での圧力センサの概略断面図である。図7、図9及び図11は、調整電極と接触面積の関係を示す模式的平面図である。なお、図6~図11では、理解を容易にするために各領域の形状を便宜的に正方形にしている。
 圧力が加えられると、山型感圧層33の抵抗が低下する。電圧電源により一定の電圧を加えたときのソース-ドレイン間の電位差は、ドレイン電極19と直列に接続された山型感圧層33の抵抗値に依存する。その結果、ソース-ドレイン間の電位差が大きくなり、流れる電流量が増加する。したがって山型感圧層33に与える押圧力と電流量とを予め取得しておけば、信号処理装置(図示せず)は、電流量に応じた信号の変化を読み取ることで、圧力センサ1に印加される圧力量(押圧力)を検知できる。
(3) Pressing Operation and Pressure Measuring Operation The pressing operation and pressure measuring operation will be described with reference to FIGS. 6, 8 and 10 are schematic cross-sectional views of the pressure sensor in a state where pressure is applied. 7, 9 and 11 are schematic plan views showing the relationship between the adjustment electrode and the contact area. In FIGS. 6 to 11, the shape of each region is square for convenience of understanding.
When pressure is applied, the resistance of the mountain-shaped pressure sensitive layer 33 decreases. The potential difference between the source and the drain when a constant voltage is applied by the voltage power supply depends on the resistance value of the mountain-shaped pressure sensitive layer 33 connected in series with the drain electrode 19. As a result, the potential difference between the source and the drain increases, and the amount of current flowing increases. Therefore, if the pressing force and current amount to be applied to the mountain-shaped pressure-sensitive layer 33 are acquired in advance, the signal processing device (not shown) reads the change in the signal according to the current amount, so that the pressure sensor 1 The amount of pressure applied (pressing force) can be detected.
 (3-1)低圧力の場合
 図6に示すように、上側電極部材3に小さな力F1が作用しており、したがって共通電極9は山型感圧層33の頂点T(中心)周辺のみに接触する。
 図6及び図7に示すように、共通電極9が山型感圧層33に接触している接触領域36Aは小さい。したがって、平面視において接触領域36Aは調整電極31に重なっていない。この接触領域36Aと調整電極31が重なる部分が主に電流が流れる領域であり、図6及び図7の場合は上記領域の面積がゼロである。その結果、検出電流が低い。
(3-1) Low Pressure As shown in FIG. 6, a small force F1 acts on the upper electrode member 3, and therefore the common electrode 9 is only around the apex T (center) of the mountain-shaped pressure sensitive layer 33. Contact.
As shown in FIGS. 6 and 7, the contact area 36 </ b> A where the common electrode 9 is in contact with the mountain-shaped pressure-sensitive layer 33 is small. Therefore, the contact area 36 </ b> A does not overlap the adjustment electrode 31 in plan view. A portion where the contact region 36A and the adjustment electrode 31 overlap is a region where current mainly flows. In the case of FIGS. 6 and 7, the area of the region is zero. As a result, the detection current is low.
 言い換えると、前記の説明は初期接触圧力が圧力センサ1に作用したときの状態を示している。この場合、共通電極9に対する押圧力が初期接触圧力のときに共通電極9と各山型感圧層33が接触する接触領域を初期接触領域とし、初期接触領域に平面視で重なる調整電極31の領域を初期有効領域とすると、初期有効領域の面積は初期接触領域の面積の0%である。初期有効面積がゼロだからである。言い換えると、調整電極31は初期接触領域の外側にのみ存在する。なお、初期接触圧力とは、共通電極9に押圧力が作用して、共通電極9が押圧部に対応する一又は複数の山型感圧層33に接触した直後の共通電極9に対する押圧力である。
 初期有効面積がゼロを超える場合には、上記割合は小さい方が好ましく、例えば、10%以下、20%以下、30%以下、40%以下、50%以下、60%以下に設定される。ただし、本実施形態の効果を十分に得るには、50%以下であることが好ましい。つまり初期有効領域の面積が初期接触領域の面積の0~50%である場合、調整電極31は山型感圧層33の電極接触部には全く対応していない又は対応割合が所定以下なので、調整電極31と山型感圧層33の組み合わせからなる感圧素子の抵抗値が高くなる。その結果、感圧素子とTFT30の抵抗値のレベルが合わせられる。
 なお、初期有効領域の面積が初期接触領域の面積の0%であることが好ましい。その理由は、上記の原理に加えて、接触領域と調整電極31との最短距離が、調整電極31上の山型感圧層33の膜厚より長くなるからである。そのため、抵抗値を制御する効果が大きくなる。
 なお、いずれの場合も、調整電極31は初期接触領域の外側にある圧力測定領域をさらに有する。
In other words, the above description shows the state when the initial contact pressure acts on the pressure sensor 1. In this case, when the pressing force on the common electrode 9 is the initial contact pressure, the contact region where the common electrode 9 and each mountain-shaped pressure-sensitive layer 33 are in contact is defined as the initial contact region, and the adjustment electrode 31 that overlaps the initial contact region in plan view. When the region is an initial effective region, the area of the initial effective region is 0% of the area of the initial contact region. This is because the initial effective area is zero. In other words, the adjustment electrode 31 exists only outside the initial contact area. The initial contact pressure is a pressure applied to the common electrode 9 immediately after the pressing force acts on the common electrode 9 and the common electrode 9 contacts one or a plurality of mountain-shaped pressure sensitive layers 33 corresponding to the pressing portion. is there.
When the initial effective area exceeds zero, it is preferable that the ratio is small. For example, the ratio is set to 10% or less, 20% or less, 30% or less, 40% or less, 50% or less, or 60% or less. However, in order to sufficiently obtain the effects of the present embodiment, it is preferably 50% or less. That is, when the area of the initial effective region is 0 to 50% of the area of the initial contact region, the adjustment electrode 31 does not correspond to the electrode contact portion of the mountain-shaped pressure sensitive layer 33 at all or the corresponding ratio is below a predetermined value. The resistance value of the pressure sensitive element composed of the combination of the adjustment electrode 31 and the mountain pressure sensitive layer 33 is increased. As a result, the resistance levels of the pressure sensitive element and the TFT 30 are matched.
The area of the initial effective region is preferably 0% of the area of the initial contact region. This is because, in addition to the above principle, the shortest distance between the contact region and the adjustment electrode 31 is longer than the film thickness of the mountain-shaped pressure-sensitive layer 33 on the adjustment electrode 31. Therefore, the effect of controlling the resistance value is increased.
In any case, the adjustment electrode 31 further includes a pressure measurement region outside the initial contact region.
 さらに、初期有効面積がゼロを超える場合は、のちに押圧力が初期接触圧力より大きくなったときの接触領域の面積のうち調整電極31が対向する部分の面積(後述する高圧力の場合に最大になる)を有効面積とすると、有効面積は初期有効面積より大きいことが好ましく、例えば2倍以上、3倍以上、4倍以上に設定される。ただし、本実施形態の効果を十分に得るには、2倍以上であることが好ましい。
 さらに、初期有効面積がゼロの場合は、山型感圧層33の共通電極9との初期接触位置から調整電極31までの導通距離(山形感圧層内の最短距離)によって抵抗値を制御できる。具体的には、前記初期接触位置の真下に電極がある従来例の導通距離に対して、本実施形態における導通距離は2倍以上あることが好ましく、5~10倍であればさらに良い。
 なお、上記の例では、初期接触圧力は1Nであり、初期接触面積はそのときの面積である。初期接触圧力は0.8~1.2Nの範囲から適宜選択可能である。
 なお、初期接触面積の定義は、感圧層高さ(例えば、20um)の70%以上の高さ(例えば、14um)の面積、より好ましくは80%以上の高さ(例えば、16um)の面積としてもよい。
Further, when the initial effective area exceeds zero, the area of the contact region where the pressing force becomes greater than the initial contact pressure later, the area of the portion facing the adjustment electrode 31 (maximum in the case of high pressure described later) The effective area is preferably larger than the initial effective area, for example, 2 times or more, 3 times or more, and 4 times or more. However, in order to sufficiently obtain the effects of the present embodiment, it is preferably twice or more.
Furthermore, when the initial effective area is zero, the resistance value can be controlled by the conduction distance from the initial contact position of the mountain-shaped pressure-sensitive layer 33 with the common electrode 9 to the adjustment electrode 31 (the shortest distance in the mountain-shaped pressure-sensitive layer). . Specifically, the conduction distance in the present embodiment is preferably at least twice the conduction distance of the conventional example in which the electrode is directly below the initial contact position, and more preferably 5 to 10 times.
In the above example, the initial contact pressure is 1 N, and the initial contact area is the area at that time. The initial contact pressure can be appropriately selected from the range of 0.8 to 1.2N.
The initial contact area is defined as an area having a height of 70% or more (for example, 14 um) of the pressure-sensitive layer height (for example, 20 um), more preferably an area having a height of 80% or more (for example, 16 um). It is good.
 (3-2)中圧力の場合
 図8に示すように、上側電極部材3に中くらいの力F2が作用しており、したがって共通電極9は、山型感圧層33の頂点T付近からさらに外周側の部分にも接触する。つまり、共通電極9と山型感圧層33の接触面が広がっている。
 図8及び図9に示すように、共通電極9が山型感圧層33に接触している接触領域36Bは中程度になっている。したがって、平面視において接触領域36Bは調整電極31の一部に重なっている。その結果、図8及び図9の場合は、重なり領域の面積が中程度になっており、つまり、検出電流が中程度になっている。
(3-2) Medium Pressure As shown in FIG. 8, a medium force F2 is applied to the upper electrode member 3, so that the common electrode 9 further moves from the vicinity of the apex T of the mountain-shaped pressure sensitive layer 33. It also contacts the outer peripheral part. That is, the contact surface between the common electrode 9 and the mountain pressure-sensitive layer 33 is widened.
As shown in FIGS. 8 and 9, the contact region 36 </ b> B where the common electrode 9 is in contact with the mountain-shaped pressure-sensitive layer 33 is medium. Therefore, the contact region 36 </ b> B overlaps a part of the adjustment electrode 31 in a plan view. As a result, in the case of FIGS. 8 and 9, the area of the overlap region is medium, that is, the detection current is medium.
 (3-3)高圧力の場合
 図10では、上側電極部材3に大きな力F3が作用しており、したがって共通電極9は、山型感圧層33のさらに外周側の部分まで接触している。つまり、共通電極9と山型感圧層33の接触面がさらに広がっている。
 図10及び図11に示すように、共通電極9が山型感圧層33に接触している接触領域36Cは大きい。したがって、平面視において接触領域36Cは調整電極31の全体に重なっている。その結果、図10及び図11の場合は、重なり領域の面積が大きくなっており、検出電流が大きくなっている。
(3-3) In the case of high pressure In FIG. 10, a large force F3 is applied to the upper electrode member 3, and therefore the common electrode 9 is in contact with the outer peripheral side portion of the mountain-shaped pressure sensitive layer 33. . That is, the contact surface between the common electrode 9 and the mountain-shaped pressure sensitive layer 33 is further expanded.
As shown in FIGS. 10 and 11, the contact area 36 </ b> C where the common electrode 9 is in contact with the mountain-shaped pressure-sensitive layer 33 is large. Therefore, the contact region 36 </ b> C overlaps the entire adjustment electrode 31 in plan view. As a result, in the case of FIG. 10 and FIG. 11, the area of the overlapping region is large and the detection current is large.
 絶縁フィルム7と共通電極9とは、伸縮性を有していることが好ましい。それにより、圧力が作用したとき共通電極9の山型感圧層33に対する追従性が向上する。言い換えると、高圧力の場合に共通電極9が山型感圧層33の外周側(山型感圧層33の薄い部分)にまで密着しやすい。この結果、山型感圧層33の接触抵抗の差が大きくなり、つまり測定範囲が大きくなる。
 また、絶縁フィルム7と共通電極9が伸縮性を有することで、圧力がなくなったときに絶縁フィルム7と共通電極9が復元する性能が向上する。この結果、繰り返し測定の再現性が向上する。
It is preferable that the insulating film 7 and the common electrode 9 have elasticity. Thereby, the followability of the common electrode 9 to the mountain-shaped pressure-sensitive layer 33 is improved when pressure is applied. In other words, when the pressure is high, the common electrode 9 is likely to be in close contact with the outer peripheral side of the mountain-shaped pressure sensitive layer 33 (the thin portion of the mountain-shaped pressure sensitive layer 33). As a result, the difference in contact resistance of the mountain-shaped pressure sensitive layer 33 is increased, that is, the measurement range is increased.
In addition, since the insulating film 7 and the common electrode 9 have elasticity, the performance of restoring the insulating film 7 and the common electrode 9 when the pressure is removed is improved. As a result, reproducibility of repeated measurement is improved.
 一般的に、絶縁フィルム7及び共通電極9に圧力が加わると大面積の撓みが発生するが、複数の小面積の感圧層及び電極に集中して荷重が作用することになり、その場合に共通電極9にクラックや変形が発生するおそれがあった。しかし、本実施形態では、絶縁フィルム7と共通電極9が伸縮性を有することで、山型感圧層33に共通電極9にクラックや変形が生じにくい。この結果、圧力センサ1の信頼性が向上する。
 なお、上記のように柔らかく薄い基材を上部に持ってきた場合は、共通電極9が山型感圧層33の山の麓まで完全に接触した場合にそれ以上接触面積は変化しなくなるので圧力測定範囲は狭くなるが、接触面積の差が大きいので圧力の分解能が大きくなる。なお、基材の厚みや硬さは、測定したい範囲に応じて適宜選択される。
In general, when pressure is applied to the insulating film 7 and the common electrode 9, a large area of bending occurs, but a load acts on a plurality of small area pressure-sensitive layers and electrodes, and in that case There was a risk that the common electrode 9 would crack or deform. However, in this embodiment, the insulating film 7 and the common electrode 9 have elasticity, so that the common electrode 9 is unlikely to crack or deform in the mountain-shaped pressure sensitive layer 33. As a result, the reliability of the pressure sensor 1 is improved.
When the soft and thin base material is brought to the upper side as described above, the contact area does not change any more when the common electrode 9 is completely in contact with the top of the mountain-shaped pressure-sensitive layer 33. Although the measurement range is narrow, the pressure resolution is increased because the difference in contact area is large. In addition, the thickness and hardness of the substrate are appropriately selected according to the range to be measured.
 (3―4)実施形態と比較例の比較
 図12を用いて、本実施形態、比較例1、比較例2、比較例3について、圧力に対する抵抗の変化率を説明する。図12は、圧力センサの圧力と検出電流との関係を示すグラフである。
 比較例1は、平坦な感圧層を用いた従来例である。低圧力から高圧力の領域全体において、電流値の変化率が小さい。つまり、低感度である。また、高圧力が作用しているときに、抵抗の変化率が0%に近くなり、つまり正確な圧力を測定できない。
(3-4) Comparison of Embodiment and Comparative Example With reference to FIG. 12, the rate of change in resistance with respect to pressure will be described for the present embodiment, Comparative Example 1, Comparative Example 2, and Comparative Example 3. FIG. 12 is a graph showing the relationship between the pressure of the pressure sensor and the detected current.
Comparative Example 1 is a conventional example using a flat pressure-sensitive layer. The change rate of the current value is small in the entire region from low pressure to high pressure. That is, the sensitivity is low. Further, when a high pressure is applied, the rate of change of resistance is close to 0%, that is, an accurate pressure cannot be measured.
 比較例2は、アクティブマトリクス方式ではなく、共通電極に対向してベタ電極が設けられている。また、高圧力が作用しているときに、抵抗の変化率が0%に近くなり、つまり正確な圧力を測定できない。
 比較例3は、山型感圧層に対して電極が山型感圧層の頂点から周辺にまで全体的に形成されている例である。この場合、全領域にわたって、高い変化率が得られ、つまり高感度である。
Comparative Example 2 is not an active matrix system, and a solid electrode is provided to face the common electrode. Further, when a high pressure is applied, the rate of change of resistance is close to 0%, that is, an accurate pressure cannot be measured.
Comparative Example 3 is an example in which the electrodes are entirely formed from the top of the mountain-shaped pressure sensitive layer to the periphery of the mountain-shaped pressure sensitive layer. In this case, a high rate of change is obtained over the entire region, that is, high sensitivity.
 本実施形態は、低圧領域において、比較例3よりは低いが十分感度を実現する変化率を有している。以下、その理由を説明する。
 調整電極31は、共通電極9に対して山型感圧層33に向かって押圧力が作用することによって共通電極9と山型感圧層33が接触する接触面が山型感圧層33の頂点Tから外側に広がっていく。このとき、接触領域と調整電極31との間で挟まれる部分の面積(前述の接触領域36A~36Cの面積)が徐々に広くなる。以上より、圧力が高くなるにつれて山型感圧層33の抵抗値が低くなり、その結果、検出される電流値が高くなる。特に、圧力が高い範囲(例えば、試験力50N以上)でも感度が十分に高くなって、圧力を正確に測定できる。この結果、圧力の測定範囲が広くなっている。
This embodiment has a rate of change that achieves sufficient sensitivity in the low-pressure region, although it is lower than that of Comparative Example 3. The reason will be described below.
The adjustment electrode 31 has a contact surface between the common electrode 9 and the mountain-shaped pressure-sensitive layer 33 as a result of a pressing force acting on the common electrode 9 toward the mountain-shaped pressure-sensitive layer 33. It spreads outward from the vertex T. At this time, the area of the portion sandwiched between the contact region and the adjustment electrode 31 (the area of the contact regions 36A to 36C described above) gradually increases. From the above, as the pressure increases, the resistance value of the mountain-shaped pressure-sensitive layer 33 decreases, and as a result, the detected current value increases. In particular, the sensitivity is sufficiently high even in a high pressure range (for example, a test force of 50 N or more), and the pressure can be accurately measured. As a result, the measurement range of pressure is widened.
 さらに、調整電極31の圧力測定領域は、山型感圧層33の頂点T(中心)から外れた位置にあるので、下記の作用効果が得られる。つまり、低圧力発生時の初期における山型感圧層33の抵抗値の変化(つまり、検出電流値の変化)は、電極が山型感圧層の頂点Tにあるものに比べて、緩やかになる。これは低圧域において、共通電極9と調整電極31の接触面積が小さい状態が続くからである。この結果、低圧力の検出精度が高くなる。
 以上に述べた実施形態では、調整電極31は、山型感圧層33の頂点Tに対応する位置には形成されていない。したがって、低圧域において、抵抗を高く維持することで検出電流を比較的小さくできる。
Furthermore, since the pressure measurement region of the adjustment electrode 31 is located at a position deviated from the apex T (center) of the mountain-shaped pressure sensitive layer 33, the following effects can be obtained. That is, the change in the resistance value of the mountain-shaped pressure sensitive layer 33 in the initial stage when a low pressure is generated (that is, the change in the detected current value) is gentler than that in which the electrode is at the apex T of the mountain-shaped pressure sensitive layer. Become. This is because the contact area between the common electrode 9 and the adjustment electrode 31 continues to be small in the low pressure region. As a result, the detection accuracy of the low pressure is increased.
In the embodiment described above, the adjustment electrode 31 is not formed at a position corresponding to the apex T of the mountain-shaped pressure sensitive layer 33. Therefore, the detection current can be made relatively small by keeping the resistance high in the low pressure region.
(4)材料
 絶縁フィルム7、絶縁フィルム15としては、ポリカーボネート系、ポリアミド系、若しくは、ポリエーテルケトン系などのエンジニアリングプラスチック、又は、アクリル系、ポリエチレンテレフタレート系、若しくは、ポリブチレンテレフタレート系などの樹脂フィルムを用いることができる。
 絶縁フィルム7に伸縮性を要求する場合は、例えばウレタンフィルム、シリコン、ゴムである。絶縁フィルム7及び絶縁フィルム15は、電極を印刷して乾燥するので耐熱性を有する材料が好ましい。
(4) Materials As the insulating film 7 and the insulating film 15, engineering plastics such as polycarbonate, polyamide, or polyether ketone, or resin films such as acrylic, polyethylene terephthalate, or polybutylene terephthalate are used. Can be used.
In the case where the insulating film 7 requires stretchability, for example, a urethane film, silicon, or rubber is used. The insulating film 7 and the insulating film 15 are preferably made of a material having heat resistance because the electrodes are printed and dried.
 共通電極9、調整電極31としては、酸化錫、酸化インジウム、酸化アンチモン、酸化亜鉛、酸化カドミウム、若しくは、インジウムチンオキサイド(ITO)などの金属酸化物膜、これらの金属酸化物を主体とする複合膜、又は金、銀、銅、錫、ニッケル、アルミニウム、若しくは、パラジウムなどの金属膜によって、形成する。共通電極9に伸縮性を要求する場合は、例えば、伸縮性Agペーストである。
 山型感圧層33は、例えば感圧インキからなる。感圧インキは、外力に応じて対向する電極との接触抵抗が変化することよって圧力検出を可能にする材料である。感圧インキ層は、塗布により配置できる。感圧インキ層の塗布方法としては、スクリーン印刷、オフセット印刷、グラビア印刷、又はフレキソ印刷などの印刷法、又はディスペンサによる塗布を用いることができる。
As the common electrode 9 and the adjustment electrode 31, a metal oxide film such as tin oxide, indium oxide, antimony oxide, zinc oxide, cadmium oxide, or indium tin oxide (ITO), or a composite mainly composed of these metal oxides. A film or a metal film such as gold, silver, copper, tin, nickel, aluminum, or palladium is used. When the common electrode 9 requires stretchability, for example, stretchable Ag paste is used.
The mountain pressure-sensitive layer 33 is made of, for example, pressure-sensitive ink. Pressure-sensitive ink is a material that enables pressure detection by changing the contact resistance with an opposing electrode in accordance with an external force. The pressure sensitive ink layer can be arranged by coating. As a method for applying the pressure-sensitive ink layer, a printing method such as screen printing, offset printing, gravure printing, or flexographic printing, or application by a dispenser can be used.
(5)圧力センサの製造方法
 図13~図22を用いて、圧力センサ1の製造方法を説明する。図13~図22は、圧力センサの製造方法を示す模式的断面図である。
 最初に、図13~図21を用いて、下側電極部材5の製造方法の各ステップを説明する。
(5) Manufacturing Method of Pressure Sensor A manufacturing method of the pressure sensor 1 will be described with reference to FIGS. 13 to 22 are schematic cross-sectional views showing a manufacturing method of the pressure sensor.
First, each step of the method for manufacturing the lower electrode member 5 will be described with reference to FIGS.
 図13に示すように、絶縁フィルム15の一面に、例えばスパッタリングによって電極材料37を形成する。
 図14に示すように、例えばフォトリソグラフィー法によって電極材料37の一部を除去することで、フィルム露出部39を形成する。また、これにより、ソース電極17とドレイン電極19を形成する。なお、ソース電極17とドレイン電極19の形成手法は特に限定されない。
As shown in FIG. 13, an electrode material 37 is formed on one surface of the insulating film 15 by, for example, sputtering.
As shown in FIG. 14, the film exposure part 39 is formed by removing a part of electrode material 37, for example by the photolithographic method. Thereby, the source electrode 17 and the drain electrode 19 are formed. In addition, the formation method of the source electrode 17 and the drain electrode 19 is not specifically limited.
 図15に示すように、フィルム露出部39において半導体層23を形成する。半導体層23の形成方法は公知の技術である。
 図16に示すように、ソース電極17、ドレイン電極19及び半導体層23が形成された面を覆うように、第1絶縁膜25を形成する。
 図17に示すように、第1絶縁膜25の上面において半導体層23の上方に、ゲート電極21を形成する。ゲート電極21の形成手法は公知の技術である。
As shown in FIG. 15, the semiconductor layer 23 is formed in the film exposed portion 39. The method for forming the semiconductor layer 23 is a known technique.
As shown in FIG. 16, a first insulating film 25 is formed so as to cover the surface on which the source electrode 17, the drain electrode 19 and the semiconductor layer 23 are formed.
As shown in FIG. 17, the gate electrode 21 is formed above the semiconductor layer 23 on the upper surface of the first insulating film 25. The formation method of the gate electrode 21 is a known technique.
 図18に示すように、ゲート電極21の形成された第1絶縁膜25全体を覆うように、第2絶縁膜27を形成する。
 図19に示すように、第1絶縁膜25と第2絶縁膜27にレーザによってドレイン電極19に至る貫通孔を形成し、そこに導電材料を埋めることで導電部29を形成する。
As shown in FIG. 18, the second insulating film 27 is formed so as to cover the entire first insulating film 25 on which the gate electrode 21 is formed.
As shown in FIG. 19, a through hole reaching the drain electrode 19 is formed in the first insulating film 25 and the second insulating film 27 by a laser, and a conductive material 29 is filled therein to form a conductive portion 29.
 図20に示すように、調整電極31を印刷法によって形成し、導電部29を介してTFT30と接続する。
 図21に示すように、調整電極31の上に山型感圧層33を印刷法によって形成する。
As shown in FIG. 20, the adjustment electrode 31 is formed by a printing method and connected to the TFT 30 via the conductive portion 29.
As shown in FIG. 21, a mountain-shaped pressure-sensitive layer 33 is formed on the adjustment electrode 31 by a printing method.
 次に、図22を用いて、上側電極部材3の製造を説明する。
 図22に示すように、印刷法によって絶縁フィルム7の一面に共通電極9を形成する。
なお、絶縁フィルム7の一面に例えばスパッタリングによって共通電極9の材料を形成し、続いてフォトリソグラフィー法によって共通電極9を形成してもよい。
 最後に、上側電極部材3と下側電極部材5とを接着剤からなる額縁状の額縁スペーサ13(図2)を介して貼り合わせることで、圧力センサ1を完成させる。
Next, the manufacture of the upper electrode member 3 will be described with reference to FIG.
As shown in FIG. 22, the common electrode 9 is formed on one surface of the insulating film 7 by a printing method.
Note that the material of the common electrode 9 may be formed on one surface of the insulating film 7 by sputtering, for example, and then the common electrode 9 may be formed by photolithography.
Finally, the upper electrode member 3 and the lower electrode member 5 are bonded together via a frame-shaped frame spacer 13 (FIG. 2) made of an adhesive, thereby completing the pressure sensor 1.
(6)調整電極の平面位置の変形例
 第1実施形態では調整電極31は山型感圧層33の頂点Tから一方向にずれた位置にある円形であったが、調整電極は、前述の通り、初期有効領域の面積が初期接触領域の面積の50%以下であればよいので、調整電極の平面位置は特に限定されない。
 以下、上記の条件を満たす変形例を説明する。
(6) Modification Example of Planar Position of Adjustment Electrode In the first embodiment, the adjustment electrode 31 is a circular shape at a position shifted in one direction from the apex T of the mountain-shaped pressure-sensitive layer 33. As described above, since the area of the initial effective region may be 50% or less of the area of the initial contact region, the planar position of the adjustment electrode is not particularly limited.
Hereinafter, modified examples that satisfy the above conditions will be described.
 図23に示す変形例では、調整電極31Aは、山型感圧層33と同心の円形帯状である。つまり、調整電極31Aは、山型感圧層33の頂点Tに対応する電極部を有していない。
 図24に示す変形例では、調整電極31Bは、山型感圧層33の中心から一方にずれた直線状である。つまり、調整電極31Aは、山型感圧層33の頂点Tに対応する電極部を有していない。
In the modification shown in FIG. 23, the adjustment electrode 31 </ b> A has a circular belt shape concentric with the mountain-shaped pressure-sensitive layer 33. That is, the adjustment electrode 31 </ b> A does not have an electrode portion corresponding to the apex T of the mountain-shaped pressure sensitive layer 33.
In the modification shown in FIG. 24, the adjustment electrode 31 </ b> B has a linear shape shifted to one side from the center of the mountain-shaped pressure-sensitive layer 33. That is, the adjustment electrode 31 </ b> A does not have an electrode portion corresponding to the apex T of the mountain-shaped pressure sensitive layer 33.
 図25に示す変形例では、調整電極31Cは、山型感圧層33の外周に沿った円弧状である。つまり、調整電極31Cは、山型感圧層33の頂点Tに対応する電極部を有していない。
 さらなる変形例として、前記実施形態及び変形例において、調整電極は、前述の圧力測定領域に加えて、山型感圧層の頂点付近に対応する位置に配置された部分を有していてもよい。
In the modification shown in FIG. 25, the adjustment electrode 31 </ b> C has an arc shape along the outer periphery of the mountain-shaped pressure sensitive layer 33. That is, the adjustment electrode 31 </ b> C does not have an electrode portion corresponding to the apex T of the mountain-shaped pressure sensitive layer 33.
As a further modification, in the embodiment and the modification, the adjustment electrode may have a portion disposed at a position corresponding to the vicinity of the apex of the mountain-shaped pressure-sensitive layer in addition to the pressure measurement region described above. .
2.第2実施形態
 前記実施形態では調整電極の圧力測定領域は、電極を山型感圧層の頂点付近からずれた位置に形成することで実現されていた。しかし、調整電極は、前述の通り、初期有効領域の面積が初期接触領域の面積の50%以下であればよいので、調整電極は他の構造によって実現されてもよい。
 図26を用いて、そのような実施形態としての圧力センサ1Aを説明する。図26は、第2実施形態における感圧層及び調整電極の平面レイアウトの変形例を示す模式的平面図である。
2. Second Embodiment In the above-described embodiment, the pressure measurement region of the adjustment electrode is realized by forming the electrode at a position shifted from the vicinity of the apex of the mountain-shaped pressure sensitive layer. However, as described above, since the area of the initial effective region may be 50% or less of the area of the initial contact region, the adjustment electrode may be realized by another structure.
A pressure sensor 1A as such an embodiment will be described with reference to FIG. FIG. 26 is a schematic plan view illustrating a modification of the planar layout of the pressure-sensitive layer and the adjustment electrode in the second embodiment.
(1)第1実施形態と異なる点
 基本的な構造は、第1実施形態の圧力センサ1と同じである。したがって、以下は異なる点を中心に説明する。
(1) Points different from the first embodiment The basic structure is the same as the pressure sensor 1 of the first embodiment. Therefore, the following description will focus on the different points.
 電極31Dは、前記実施形態と異なり、山型感圧層33Dに対応して概ね同じ形状で形成されている。すなわち、電極31Dは、山型感圧層33Dの頂点Tから周辺まで全体的に形成されている。
 電極31Dの上面には、絶縁層51が形成されている。絶縁層51は、電極31Dの頂点T(中心)周辺の上に形成されてその部分を絶縁するとともに、電極31Dの環状の周辺部である調整電極31aを山型感圧層33Dに対して露出させている。
Unlike the embodiment, the electrode 31D is formed in substantially the same shape corresponding to the mountain-shaped pressure-sensitive layer 33D. That is, the electrode 31D is entirely formed from the apex T to the periphery of the mountain-shaped pressure sensitive layer 33D.
An insulating layer 51 is formed on the upper surface of the electrode 31D. The insulating layer 51 is formed on the periphery of the apex T (center) of the electrode 31D to insulate the portion, and the adjustment electrode 31a that is the annular peripheral portion of the electrode 31D is exposed to the mountain-shaped pressure-sensitive layer 33D. I am letting.
(2)押圧動作及び圧力測定動作
 図27~図32を用いて、押圧動作及び圧力測定動作を説明する。図27、図29及び図31は、圧力が作用した状態での圧力センサの概略断面図である。図28、図30及び図32は、調整電極と接触面積の関係を示す模式的平面図である。なお、図27~図32では、理解を容易にするために各領域の形状を便宜的に正方形にしている。
(2) Pressing Operation and Pressure Measuring Operation The pressing operation and the pressure measuring operation will be described with reference to FIGS. 27, 29 and 31 are schematic cross-sectional views of the pressure sensor in a state where pressure is applied. 28, 30 and 32 are schematic plan views showing the relationship between the adjustment electrode and the contact area. In FIG. 27 to FIG. 32, for easy understanding, the shape of each region is square for convenience.
 (2-1)低圧力の場合
 図27に示すように、上側電極部材3に小さな力F1が作用しており、したがって共通電極9は山型感圧層33Dの頂点T(中心)周辺のみに接触する。
 図27及び図28に示すように、共通電極9が山型感圧層33Dに接触している接触領域53Aは小さい。したがって、平面視において接触領域53Aは、調整電極31aに重なっていない。接触領域と調整電極31aが重なる部分が主に電流が流れる領域であり、図27及び図28の場合は前述のように上記領域の面積がゼロなので、検出電流が低い。
(2-1) Low Pressure As shown in FIG. 27, a small force F1 acts on the upper electrode member 3, and therefore the common electrode 9 is only around the apex T (center) of the mountain-shaped pressure sensitive layer 33D. Contact.
As shown in FIGS. 27 and 28, the contact region 53A where the common electrode 9 is in contact with the mountain-shaped pressure sensitive layer 33D is small. Therefore, the contact region 53A does not overlap the adjustment electrode 31a in plan view. A portion where the contact region and the adjustment electrode 31a overlap is a region where current mainly flows. In the case of FIGS. 27 and 28, the area of the region is zero as described above, and thus the detection current is low.
 言い換えると、前記の説明は初期接触圧力が圧力センサ1に作用したときの状態を示している。この場合、共通電極9に対する押圧力が初期接触圧力のときに共通電極9と各山型感圧層33が接触する接触領域を初期接触領域とし、初期接触領域に平面視で重なる調整電極31aの領域を初期有効領域とすると、初期有効領域の面積は初期接触領域の面積の0%である。初期有効面積がゼロだからである。
 初期有効面積がゼロを超える場合には、上記割合は小さい方が好ましく、例えば、10%以下、20%以下、30%以下、40%以下、50%以下、60%以下に設定される。ただし、本実施形態の効果を十分に得るには、50%以下であることが好ましい。つまり初期有効領域の面積が初期接触領域の面積の0~50%である場合、調整電極31aは山型感圧層33の電極接触部には全く対応していない又は対応割合が所定以下なので、調整電極31aと山型感圧層33の組み合わせからなる感圧素子の抵抗値が高くなる。その結果、感圧素子とTFT30の抵抗値のレベルが合わせられる。
 なお、初期有効領域の面積が初期接触領域の面積の0%であることが好ましい。その理由は、上記の原理に加えて、接触領域と調整電極31aとの最短距離が、調整電極31上の山型感圧層33の膜厚より長くなるからである。そのため、抵抗値を制御する効果が大きくなる。
 なお、いずれの場合も、調整電極31aは初期接触領域の外側にある圧力測定領域をさらに有する。
 さらに、接触面積のうち調整電極31aが重なる部分の面積(後述する高圧力の場合に最大になる)を有効面積とすると、有効面積は初期有効面積より大きいことが好ましく、例えば2倍以上、3倍以上、4倍以上に設定される。ただし、本実施形態の効果を十分に得るには、2倍以上であることが好ましい。
In other words, the above description shows the state when the initial contact pressure acts on the pressure sensor 1. In this case, when the pressing force on the common electrode 9 is the initial contact pressure, the contact region where the common electrode 9 and each mountain-shaped pressure-sensitive layer 33 are in contact is defined as the initial contact region, and the adjustment electrode 31a overlapping the initial contact region in plan view When the region is an initial effective region, the area of the initial effective region is 0% of the area of the initial contact region. This is because the initial effective area is zero.
When the initial effective area exceeds zero, it is preferable that the ratio is small. For example, the ratio is set to 10% or less, 20% or less, 30% or less, 40% or less, 50% or less, or 60% or less. However, in order to sufficiently obtain the effects of the present embodiment, it is preferably 50% or less. That is, when the area of the initial effective region is 0 to 50% of the area of the initial contact region, the adjustment electrode 31a does not correspond to the electrode contact portion of the mountain-shaped pressure sensitive layer 33 at all, or the corresponding ratio is below a predetermined value. The resistance value of the pressure sensitive element composed of the combination of the adjustment electrode 31a and the mountain pressure sensitive layer 33 is increased. As a result, the resistance levels of the pressure sensitive element and the TFT 30 are matched.
The area of the initial effective region is preferably 0% of the area of the initial contact region. The reason is that, in addition to the above principle, the shortest distance between the contact region and the adjustment electrode 31 a is longer than the film thickness of the mountain-shaped pressure sensitive layer 33 on the adjustment electrode 31. Therefore, the effect of controlling the resistance value is increased.
In any case, the adjustment electrode 31a further includes a pressure measurement region outside the initial contact region.
Furthermore, when the effective area is the area of the contact area where the adjustment electrode 31a overlaps (maximum in the case of high pressure described later), the effective area is preferably larger than the initial effective area. It is set to more than double and four times. However, in order to sufficiently obtain the effects of the present embodiment, it is preferably twice or more.
 (2-2)中圧力の場合
 図29に示すように、上側電極部材3に中くらいの力F2が作用しており、したがって共通電極9は、山型感圧層33Dの頂点T(中心)の周辺からさらに外周側の部分にも接触する。つまり、共通電極9と山型感圧層33Dの接触面が広がっている。
 図29及び図30に示すように、共通電極9が山型感圧層33Dに接触している接触領域53Bは中程度になっている。したがって、平面視において接触領域53Bは、絶縁層51よりさらに広がっており、そのため調整電極31aの一部に重なっている。その結果、図29及び図30の場合は、重なり領域の面積が中程度になっており、そのため検出電流が中程度になっている。
(2-2) Medium Pressure As shown in FIG. 29, a medium force F2 is applied to the upper electrode member 3, so that the common electrode 9 has an apex T (center) of the mountain-shaped pressure sensitive layer 33D. It also contacts the outer peripheral part from the periphery. That is, the contact surface between the common electrode 9 and the mountain-shaped pressure sensitive layer 33D is widened.
As shown in FIGS. 29 and 30, the contact region 53B where the common electrode 9 is in contact with the mountain-shaped pressure-sensitive layer 33D is intermediate. Therefore, the contact region 53B further extends from the insulating layer 51 in plan view, and thus overlaps a part of the adjustment electrode 31a. As a result, in the case of FIG. 29 and FIG. 30, the area of the overlapping region is medium, so that the detection current is medium.
 (2-3)高圧力の場合
 図31では、上側電極部材3に大きな力F3が作用しており、したがって共通電極9は、山型感圧層33Dのさらに外周側の部分まで接触している。つまり、共通電極9と山型感圧層33Dの接触面がさらに広がっている。
 図31及び図32に示すように、共通電極9が山型感圧層33に接触している接触領域53Cは大きい。したがって、平面視において接触領域53Cは、絶縁層51よりさらに広がっており、そのため調整電極31aの大半に重なっている。その結果、図31及び図32の場合は、重なり領域の面積が大きくなっている。その結果、検出電流が大きくなっている。
(2-3) In the case of high pressure In FIG. 31, a large force F3 is applied to the upper electrode member 3, and therefore the common electrode 9 is in contact with the portion on the outer peripheral side of the mountain-shaped pressure-sensitive layer 33D. . That is, the contact surface between the common electrode 9 and the mountain-shaped pressure sensitive layer 33D is further expanded.
As shown in FIGS. 31 and 32, the contact region 53C where the common electrode 9 is in contact with the mountain-shaped pressure-sensitive layer 33 is large. Therefore, the contact region 53C further extends from the insulating layer 51 in plan view, and therefore overlaps most of the adjustment electrode 31a. As a result, in the case of FIGS. 31 and 32, the area of the overlapping region is large. As a result, the detection current is increased.
 この圧力センサでは、山型感圧層33に対して露出しない部分の面積だけ電極31Dを広く形成できるので、TFT30との導通がより確実になる。また、山型感圧層33の共通電極9との初期接触位置の下に調整電極31aが存在しないようにすれば、抵抗値が高くなって電流が流れにくくなり、そのため調整電極31aと山型感圧層33Dからなる感圧素子がスペーサとして機能する。つまり、専用のスペーサを設ける必要がなくなり、感圧素子の密度を高くでき、その結果、圧力センサ1Aの解像度が高くなる。 In this pressure sensor, since the electrode 31D can be formed wide as much as the area not exposed to the mountain-shaped pressure-sensitive layer 33, conduction with the TFT 30 becomes more reliable. Further, if the adjustment electrode 31a does not exist below the initial contact position of the mountain-shaped pressure-sensitive layer 33 with the common electrode 9, the resistance value becomes high and current does not flow easily. A pressure sensitive element composed of the pressure sensitive layer 33D functions as a spacer. That is, it is not necessary to provide a dedicated spacer, and the density of the pressure sensitive elements can be increased. As a result, the resolution of the pressure sensor 1A is increased.
(3)第1変形例
 第2実施形態では絶縁層が形成された位置は電極の頂点T(中心)の周辺であったが、前述の通り、調整電極は、初期有効領域の面積が初期接触領域の面積の50%以下であればよいので、絶縁層の形成位置は特に限定されない。
 例えば、電極の露出部分(つまり、調整電極)は、電極の周辺の一辺又は複数辺に対応する線状部であってもよい。また、電極の露出部分(つまり、調整電極)は電極の周辺の一箇所又は複数箇所の所定の広がりを有する部分であってもよい。
(4)第2変形例
 第2実施形態では絶縁層は山型感圧層に完全に覆われていたが、変形例として、絶縁層は山型感圧層からはみ出ていてもよい。
(3) First Modification In the second embodiment, the position where the insulating layer is formed is around the apex T (center) of the electrode. As described above, the adjustment electrode has an initial effective area in the initial contact. Since the area may be 50% or less of the area, the formation position of the insulating layer is not particularly limited.
For example, the exposed portion of the electrode (that is, the adjustment electrode) may be a linear portion corresponding to one side or a plurality of sides around the electrode. Further, the exposed portion of the electrode (that is, the adjustment electrode) may be a portion having a predetermined spread at one or a plurality of locations around the electrode.
(4) Second Modification In the second embodiment, the insulating layer is completely covered with the mountain-shaped pressure-sensitive layer. However, as a modification, the insulating layer may protrude from the mountain-shaped pressure-sensitive layer.
3.第3実施形態
 第1実施形態及び第2実施形態では、圧力センサには圧力を測定する感圧素子のみが配置されていたが、他の物理現象を測定するための測定素子も圧力センサに配置されていてもよい。
 第1実施形態及び第2実施形態に記載された圧力センサは、加わる圧力に応じた出力(抵抗値の変化)が得られる点で優れている。しかし、温度や湿度により、電気抵抗値などの電気的特性値が大きく変化してしまうため、例えば、温度が変わると電気抵抗値などが変化し、同一圧力であったとしても検出される圧力値が異なってしまう場合がある。
3. Third Embodiment In the first embodiment and the second embodiment, only the pressure sensitive element for measuring pressure is arranged in the pressure sensor, but the measuring element for measuring other physical phenomena is also arranged in the pressure sensor. May be.
The pressure sensors described in the first and second embodiments are excellent in that an output (change in resistance value) corresponding to the applied pressure is obtained. However, since the electrical characteristic value such as the electrical resistance value changes greatly depending on the temperature and humidity, for example, the electrical resistance value changes when the temperature changes, and the detected pressure value even if the pressure is the same. May be different.
 図33を用いて、上記の問題を解決可能な実施形態を説明する。図33は、第3実施形態の圧力センサの部分概略断面図ある。
 圧力センサ1Bの基本的な構造は、第1実施形態と同じである。
An embodiment capable of solving the above problem will be described with reference to FIG. FIG. 33 is a partial schematic cross-sectional view of the pressure sensor of the third embodiment.
The basic structure of the pressure sensor 1B is the same as that of the first embodiment.
(1)感温素子
 図33に示すように、圧力センサ1Bは、複数の感温素子71を有している。感温素子71は、複数の調整電極31の側方に並んで形成されている。このように感温素子71が圧力センサ1B内に組み込まれているので、物体からの圧力と共に物体の温度を検出できる。
(1) Temperature Sensitive Element As shown in FIG. 33, the pressure sensor 1B has a plurality of temperature sensitive elements 71. The temperature sensing element 71 is formed side by side with the plurality of adjustment electrodes 31. Thus, since the temperature sensitive element 71 is incorporated in the pressure sensor 1B, the temperature of the object can be detected together with the pressure from the object.
 感温素子71は、複数の山型感圧層33より共通電極9に近接することで、スペーサとして機能している。スペーサとしての感温素子71によって、非加圧時に共通電極9と山型感圧層33との間には隙間が確実に確保され、そのため山型感圧層33に作用する圧力をゼロにできる。このように感温素子71をスペーサとして用いることで、専用のスペーサを設ける必要がなくなる。 The temperature sensing element 71 functions as a spacer by being closer to the common electrode 9 than the plurality of mountain-shaped pressure sensitive layers 33. The temperature sensing element 71 as a spacer ensures a gap between the common electrode 9 and the mountain-shaped pressure-sensitive layer 33 when no pressure is applied, so that the pressure acting on the mountain-shaped pressure-sensitive layer 33 can be reduced to zero. . By using the temperature sensitive element 71 as a spacer in this way, it is not necessary to provide a dedicated spacer.
 感温素子71の構造及び動作は公知の技術である。以下、感温素子71の構造を簡単に説明する。
 感温素子71は、第1電極73Aと、第2電極73Bとを有している。第1電極73A及び第2電極73Bは、第2絶縁膜27の上面に形成されている。
 感温素子71は、感温層75を有している。感温層75は、第1電極73Aと第2電極73Bとの間に延びてさらに両者の上面を覆っている。感温層75は、温度によって抵抗値が変化する材料から構成されている。
 感温素子71は、絶縁層77を有している。絶縁層77は、感温層75を覆っている。絶縁層77の表面は、共通電極9の下面に近接又は当接している。
The structure and operation of the temperature sensitive element 71 are known techniques. Hereinafter, the structure of the temperature sensing element 71 will be briefly described.
The temperature sensitive element 71 has a first electrode 73A and a second electrode 73B. The first electrode 73 </ b> A and the second electrode 73 </ b> B are formed on the upper surface of the second insulating film 27.
The temperature sensing element 71 has a temperature sensing layer 75. The temperature sensitive layer 75 extends between the first electrode 73A and the second electrode 73B and further covers the upper surfaces of both. The temperature sensitive layer 75 is made of a material whose resistance value changes depending on the temperature.
The temperature sensitive element 71 has an insulating layer 77. The insulating layer 77 covers the temperature sensitive layer 75. The surface of the insulating layer 77 is close to or in contact with the lower surface of the common electrode 9.
(2)圧力検出制御構成
 図34及び図35を用いて、圧力と温度を検出するための制御構成及び制御動作を説明する。図34は、圧力センサの検出制御構成を示すブロック図ある。図35は、温度に対する抵抗値の関係を示すグラフである。
 図34に示すように、圧力センサ1Bは、温度検出部83と、圧力検出部85と、圧力補正部87とを有している。
(2) Pressure Detection Control Configuration A control configuration and control operation for detecting pressure and temperature will be described with reference to FIGS. 34 and 35. FIG. FIG. 34 is a block diagram showing a detection control configuration of the pressure sensor. FIG. 35 is a graph showing the relationship of the resistance value with respect to temperature.
As shown in FIG. 34, the pressure sensor 1B includes a temperature detection unit 83, a pressure detection unit 85, and a pressure correction unit 87.
 温度検出部83は、感温素子71からの信号によって温度値を検出する。具体的には温度検出部83は、アナログ信号をデジタル信号に変換して、それを温度値情報として圧力補正部87に出力する。
 圧力検出部85は、複数の調整電極と複数の山型感圧層からなる感圧素子35からの信号によって圧力値を検出する。具体的には、圧力検出部85は、アナログ信号をデジタル信号に変換して、それを圧力値情報として圧力補正部87に出力する。
The temperature detector 83 detects a temperature value based on a signal from the temperature sensing element 71. Specifically, the temperature detection unit 83 converts an analog signal into a digital signal and outputs it to the pressure correction unit 87 as temperature value information.
The pressure detection unit 85 detects a pressure value based on signals from the pressure-sensitive element 35 including a plurality of adjustment electrodes and a plurality of mountain-shaped pressure-sensitive layers. Specifically, the pressure detection unit 85 converts an analog signal into a digital signal and outputs it as pressure value information to the pressure correction unit 87.
 圧力補正部87は、温度値に基づいて圧力値を補正する。具体的には、圧力センサ1は、個々の感圧素子35の温度特性(例えば、図35に示すグラフの情報)が記憶された記憶部を有しており、圧力補正部87が記憶部に記憶された感圧素子35の温度特性に基づいて圧力検出部85から得られる圧力値を補正する(つまり、温度による電気抵抗変化分を計算によって取り除く)。圧力値を補正することによって、圧力センサ1Bに加わる正確な圧力分布を求めることができる。補正後の圧力値は外部に出力される又は記憶部に保存される。 The pressure correction unit 87 corrects the pressure value based on the temperature value. Specifically, the pressure sensor 1 has a storage unit in which the temperature characteristics (for example, information of the graph shown in FIG. 35) of each pressure-sensitive element 35 are stored, and the pressure correction unit 87 is stored in the storage unit. The pressure value obtained from the pressure detector 85 is corrected based on the stored temperature characteristic of the pressure sensitive element 35 (that is, the change in electrical resistance due to temperature is removed by calculation). By correcting the pressure value, an accurate pressure distribution applied to the pressure sensor 1B can be obtained. The corrected pressure value is output to the outside or stored in the storage unit.
(3)第1変形例
 第3実施形態において、感圧素子35Aは第2実施形態のものと同じでもよい。
 そのような変形例を図36に示す。図36は、第3実施形態の第1変形例の圧力センサの部分概略断面図である。
 図36に示すように、感温素子71は、感圧素子35Aより高く形成されており、スペーサとしての機能を実現している。
(3) First Modification In the third embodiment, the pressure sensitive element 35A may be the same as that of the second embodiment.
Such a modification is shown in FIG. FIG. 36 is a partial schematic cross-sectional view of a pressure sensor according to a first modification of the third embodiment.
As shown in FIG. 36, the temperature sensing element 71 is formed higher than the pressure sensing element 35A, and realizes a function as a spacer.
(4)第2変形例
 第3実施形態では感温素子は絶縁層を有していたが、共通電極と感温層が絶縁されればよいので、絶縁層は省略されてもよい。
 そのような変形例を図37に示す。図37は、第3実施形態の第2変形例の圧力センサの部分概略断面図である。
 図37に示すように、感温素子71Aには絶縁層が形成されていない。代わりに、共通電極9は、感温素子71Aに対応する箇所には欠落部9aを有している。つまり、欠落部9aによって、絶縁フィルム7の下面が感温素子71Aに対向する対向部7aを有している。
 この結果、共通電極9と感温素子71Aは接触しない。
(4) Second Modification In the third embodiment, the temperature sensitive element has an insulating layer. However, since the common electrode and the temperature sensitive layer may be insulated, the insulating layer may be omitted.
Such a modification is shown in FIG. FIG. 37 is a partial schematic cross-sectional view of a pressure sensor according to a second modification of the third embodiment.
As shown in FIG. 37, no insulating layer is formed on the temperature sensitive element 71A. Instead, the common electrode 9 has a missing portion 9a at a location corresponding to the temperature sensitive element 71A. In other words, the lower surface of the insulating film 7 has the facing portion 7a facing the temperature sensitive element 71A due to the missing portion 9a.
As a result, the common electrode 9 and the temperature sensitive element 71A do not contact each other.
(5)第3変形例
 感圧層と感温層の材料を共通にすることで、一度の印刷で同時に形成できる工程を実現してもよい。すなわち、感圧層と感温層を含む圧力センサの製造方法において製造工程を減らせる。
 図38において、感圧層33と感温層75Aは同じ材料で形成されている。図38は、図38は、第3実施形態の第3変形例の圧力センサの部分概略断面図である。
(6)第4変形例
 平坦な感圧層を有する感圧素子と、感温素子とを組み合わせてもよい。すなわち、感温素子と感圧素子との組み合わせにおいて感圧素子の種類は特に限定されない。
(5) Third Modification By using the same material for the pressure-sensitive layer and the temperature-sensitive layer, a process that can be simultaneously formed by one printing may be realized. That is, the manufacturing process can be reduced in the manufacturing method of the pressure sensor including the pressure-sensitive layer and the temperature-sensitive layer.
In FIG. 38, the pressure sensitive layer 33 and the temperature sensitive layer 75A are formed of the same material. FIG. 38 is a partial schematic cross-sectional view of a pressure sensor according to a third modification of the third embodiment.
(6) Fourth Modification A pressure-sensitive element having a flat pressure-sensitive layer and a temperature-sensitive element may be combined. That is, the type of the pressure sensitive element is not particularly limited in the combination of the temperature sensitive element and the pressure sensitive element.
4.他の実施形態
 以上、本発明の複数の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施形態及び変形例は必要に応じて任意に組み合せ可能である。
4). Other Embodiments Although a plurality of embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. In particular, a plurality of embodiments and modifications described in this specification can be arbitrarily combined as necessary.
(1)調整電極及び山型感圧層の平面レイアウトの変形例
 第1~第3実施形態では調整電極31と山型感圧層33とからなる感圧素子は、行と列が完全にそろったマトリクス形状に配置されていた。しかし、感圧素子は、広い意味でのマトリクス形状に配置されていればよい。例えば、感圧素子のレイアウトは、多角形(例えば、六角形、平行四辺形)の繰り返し格子であってもよい。さらに、感圧素子のレイアウトは、均一に並んでおらず、複数箇所に隙間が形成されていてもよい。
(1) Modification Example of Planar Layout of Adjustment Electrode and Mountain Pressure Sensitive Layer In the first to third embodiments, the pressure sensitive element composed of the adjustment electrode 31 and the mountain pressure sensitive layer 33 is completely aligned in rows and columns. Arranged in a matrix shape. However, the pressure sensitive elements need only be arranged in a matrix shape in a broad sense. For example, the layout of the pressure sensitive elements may be a polygonal (for example, hexagonal, parallelogram) repetitive lattice. Furthermore, the layout of the pressure sensitive elements is not uniformly arranged, and gaps may be formed at a plurality of locations.
(2)調整電極及び山型感圧層の平面形状の変形例
 第1~第3実施形態では調整電極31と山型感圧層33の平面形状は同じであったが、特に限定されない。両者の形状は異なっていてもよい。
(2) Modification of planar shape of adjustment electrode and mountain-shaped pressure-sensitive layer In the first to third embodiments, the planar shape of the adjustment electrode 31 and the mountain-shaped pressure-sensitive layer 33 is the same, but is not particularly limited. Both shapes may be different.
(3)共通電極の変形例
 第1~第3実施形態では共通電極9は山型感圧層33に直接接触するようになっていたが、他の層を介して接触してもよい。例えば、共通電極9に感圧層が形成されていてもよい。
(3) Modified Example of Common Electrode In the first to third embodiments, the common electrode 9 is in direct contact with the mountain-shaped pressure sensitive layer 33, but may be in contact with another layer. For example, a pressure sensitive layer may be formed on the common electrode 9.
(4)山型感圧層の側面形状の第1変形例
 第1~第3実施形態では、山型感圧層33はドーム形状であって側面形状は半円形状であったが、特に限定されない。ただし、所望の効果を得るためには、共通電極9と段階的に接触することを目的として、山型感圧層33は高さが所定以上であることが必要である。また、共通電極を外周側の側面部に接触させるためには、山型感圧層33は傾斜角度が所定以下であることが必要である。
(4) First modified example of side shape of mountain-shaped pressure-sensitive layer In the first to third embodiments, the mountain-shaped pressure-sensitive layer 33 has a dome shape and the side surface shape has a semicircular shape. Not. However, in order to obtain a desired effect, the mountain-shaped pressure-sensitive layer 33 needs to have a predetermined height or more for the purpose of making contact with the common electrode 9 in a stepwise manner. Further, in order to bring the common electrode into contact with the side surface portion on the outer peripheral side, the angled pressure-sensitive layer 33 needs to have an inclination angle of a predetermined value or less.
 以上より、山型感圧層33Dは円錐形状、円錐台形状であってもよい。
 さらに、山型感圧層の山型形状は山型感圧層の上部のみに設けられていてもよい。
As described above, the mountain-shaped pressure-sensitive layer 33D may have a conical shape or a truncated cone shape.
Furthermore, the mountain-shaped shape of the mountain-shaped pressure-sensitive layer may be provided only on the top of the mountain-shaped pressure-sensitive layer.
(5)山型感圧層の側面形状の第2変形例
 第1~第3実施形態では山型感圧層の頂点は平面視で中心に形成されていたが、山型感圧層の頂点は中心からずれて形成されていてもよい。例えば、山型感圧層は中心以外の位置に頂点を含む凸部を有していてもよい。
(5) Second modification of side shape of mountain-shaped pressure-sensitive layer In the first to third embodiments, the peak of the mountain-shaped pressure-sensitive layer is formed in the center in plan view. May be formed off the center. For example, the mountain-shaped pressure sensitive layer may have a convex portion including a vertex at a position other than the center.
(6)山型感圧層同士の関係の変形例
 第1~第3実施形態では、複数の山型感圧層33は互いに電気的に独立していたが、特に限定されない。複数の山型感圧層は互いに接触又は連続していてもよい。
(6) Modified example of relationship between mountain-shaped pressure-sensitive layers In the first to third embodiments, the plurality of mountain-shaped pressure-sensitive layers 33 are electrically independent from each other, but are not particularly limited. The plurality of mountain-shaped pressure sensitive layers may be in contact with each other or continuous.
(7)薄膜トランジスタの変形例
 第1~第3実施形態では、各個別電極に薄膜トランジスタを対応させ、さらに各薄膜トランジスタの電流を検出していた。言い換えると、1つの調整電極に1つの薄膜トランジスタが接続されていた。
 しかし、1つの調整電極に複数の薄膜トランジスタを対応させ、複数の薄膜トランジスタの電流を検出するようにしてもよい。具体的には、1つの調整電極に隣接する2以上の薄膜トランジスタが接続される。これにより検出される電流値が大きくなり、さらに、回路に冗長性をもたすことができる。
(7) Modified Example of Thin Film Transistor In the first to third embodiments, a thin film transistor is associated with each individual electrode, and the current of each thin film transistor is detected. In other words, one thin film transistor is connected to one adjustment electrode.
However, a plurality of thin film transistors may correspond to one adjustment electrode, and currents of the plurality of thin film transistors may be detected. Specifically, two or more thin film transistors adjacent to one adjustment electrode are connected. As a result, the detected current value is increased, and the circuit can be made redundant.
 図5に示す2×2の合計4個の薄膜トランジスタを1個の調整電極に対応させる場合の例を説明する。その場合は、ゲートラインG1、G2を短絡し、ソースラインS1、S2を短絡し、さらに4個のドレイン電極を短絡させて貫通孔及び導電部を介して1個の調整電極に接続する。
 薄膜トランジスタの組み合せパターンは複数可能であり、例えば、2×3、3×2、4×4、5×2でもよい。また、1つの圧力装置に複数の組み合せパターンが存在してもよい。
An example in the case where a total of four 2 × 2 thin film transistors shown in FIG. 5 correspond to one adjustment electrode will be described. In that case, the gate lines G1 and G2 are short-circuited, the source lines S1 and S2 are short-circuited, and the four drain electrodes are short-circuited to be connected to one adjustment electrode through the through hole and the conductive portion.
There can be a plurality of combinations of thin film transistors, for example, 2 × 3, 3 × 2, 4 × 4, and 5 × 2. A plurality of combination patterns may exist in one pressure device.
 本発明は、感圧層と多数の薄膜トランジスタとを有する圧力センサに広く適用できる。特に、本発明に係る圧力センサは、タッチパネル以外に、大面積のシートセンサに適している。具体的には、本発明に係る圧力センサは、歩行の測定技術(医療、スポーツ、セキュリティの分野)、ベッドの床ずれ測定技術に適用できる。 The present invention can be widely applied to pressure sensors having a pressure-sensitive layer and a large number of thin film transistors. In particular, the pressure sensor according to the present invention is suitable for a sheet sensor having a large area other than a touch panel. Specifically, the pressure sensor according to the present invention can be applied to walking measurement technology (medical, sports, and security fields) and bed bed slip measurement technology.
1   :圧力センサ
3   :上側電極部材
5   :下側電極部材
7   :絶縁フィルム
9   :共通電極
13  :額縁スペーサ
15  :絶縁フィルム
30  :薄膜トランジスタ
31  :調整電極
31a :周辺部
33  :山型感圧層
35  :感圧素子
51  :絶縁層
1: Pressure sensor 3: Upper electrode member 5: Lower electrode member 7: Insulating film 9: Common electrode 13: Frame spacer 15: Insulating film 30: Thin film transistor 31: Adjustment electrode 31a: Peripheral part 33: Mountain type pressure sensitive layer 35 : Pressure sensitive element 51: Insulating layer

Claims (9)

  1.  一面に広がって形成された共通電極と、
     前記共通電極に対向してマトリクス状に設けられた複数の調整電極と、
     前記複数の調整電極の前記共通電極側の上にそれぞれ形成された複数の山型感圧層と、
     前記複数の調整電極に対応して前記複数の調整電極の前記共通電極と反対側に設けられ、1又は隣接する2以上が1つの調整電極に接続される複数の薄膜トランジスタと、を備え、
     前記共通電極に対する押圧力が初期接触圧力のときに前記共通電極と各山型感圧層が接触する接触領域を初期接触領域とし、前記初期接触領域に平面視で重なる前記調整電極の領域を初期有効領域とすると、前記初期有効領域の面積は前記初期接触領域の面積の0~50%であり、
     前記調整電極は前記初期接触領域の外側にある圧力測定領域をさらに有する、圧力センサ。
    A common electrode formed on one side,
    A plurality of adjusting electrodes provided in a matrix facing the common electrode;
    A plurality of mountain-shaped pressure-sensitive layers respectively formed on the common electrode side of the plurality of adjustment electrodes;
    A plurality of thin film transistors provided corresponding to the plurality of adjustment electrodes on the side opposite to the common electrode of the plurality of adjustment electrodes, wherein one or two or more adjacent ones are connected to one adjustment electrode,
    When the pressing force against the common electrode is the initial contact pressure, a contact region where the common electrode and each mountain-shaped pressure-sensitive layer are in contact is defined as an initial contact region, and the region of the adjustment electrode that overlaps the initial contact region in plan view is the initial region. As an effective region, the area of the initial effective region is 0 to 50% of the area of the initial contact region,
    The pressure sensor further includes a pressure measurement region outside the initial contact region.
  2.  前記初期有効領域の面積が前記初期接触領域の面積の0~40%である、請求項1に記載の圧力センサ。 The pressure sensor according to claim 1, wherein an area of the initial effective region is 0 to 40% of an area of the initial contact region.
  3.  前記初期有効領域の面積が前記初期接触領域の面積の0~30%である、請求項2に記載の圧力センサ。 The pressure sensor according to claim 2, wherein an area of the initial effective area is 0 to 30% of an area of the initial contact area.
  4.  前記調整電極は、前記山型感圧層の頂点に対応する位置には形成されていない、請求項1~3のいずれかに記載の圧力センサ。 The pressure sensor according to any one of claims 1 to 3, wherein the adjustment electrode is not formed at a position corresponding to an apex of the mountain-shaped pressure-sensitive layer.
  5.  前記調整電極は、前記山型感圧層の前記頂点から一方向にずれた位置に配置されている、請求項4に記載の圧力センサ。 The pressure sensor according to claim 4, wherein the adjustment electrode is disposed at a position shifted in one direction from the apex of the mountain-shaped pressure-sensitive layer.
  6.  電極の一部の上に形成されて前記一部を絶縁するとともに、前記電極の前記山型感圧層に対して露出する部分を前記調整電極として構成する絶縁層をさらに備えている、請求項1~5のいずれかに記載の圧力センサ。 The semiconductor device further comprises an insulating layer that is formed on a part of the electrode to insulate the part and that configures a portion exposed to the mountain-shaped pressure-sensitive layer of the electrode as the adjustment electrode. The pressure sensor according to any one of 1 to 5.
  7.  前記複数の調整電極の側方に並んで形成された感温素子をさらに備える、請求項1~6のいずれかに記載の圧力センサ。 The pressure sensor according to any one of claims 1 to 6, further comprising a temperature sensitive element formed side by side on the plurality of adjustment electrodes.
  8.  前記感温素子は、前記複数の山型感圧層より前記共通電極に近接することで、スペーサとして機能する、請求項7に記載の圧力センサ。 The pressure sensor according to claim 7, wherein the temperature sensing element functions as a spacer by being closer to the common electrode than the plurality of mountain-shaped pressure sensitive layers.
  9.  前記複数の調整電極と前記複数の山型感圧層からの信号によって圧力値を検出する圧力検出部と、
     前記感温素子からの信号によって温度値を検出する温度検出部と、
     前記温度検出部からの前記温度値に基づいて前記圧力値を温度補正する圧力補正部と、
    をさらに備える、請求項7又は8に記載の圧力センサ。
    A pressure detector that detects pressure values by signals from the plurality of adjustment electrodes and the plurality of mountain-shaped pressure-sensitive layers;
    A temperature detection unit for detecting a temperature value by a signal from the temperature sensing element;
    A pressure correction unit for correcting the temperature of the pressure value based on the temperature value from the temperature detection unit;
    The pressure sensor according to claim 7 or 8, further comprising:
PCT/JP2018/001886 2017-03-08 2018-01-23 Pressure sensor WO2018163627A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-044030 2017-03-08
JP2017044030A JP2018146489A (en) 2017-03-08 2017-03-08 Pressure sensor

Publications (1)

Publication Number Publication Date
WO2018163627A1 true WO2018163627A1 (en) 2018-09-13

Family

ID=63448701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001886 WO2018163627A1 (en) 2017-03-08 2018-01-23 Pressure sensor

Country Status (3)

Country Link
JP (1) JP2018146489A (en)
TW (1) TW201843577A (en)
WO (1) WO2018163627A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0162627U (en) * 1987-10-15 1989-04-21
JP2013068563A (en) * 2011-09-26 2013-04-18 Fujikura Ltd Pressure sensor
US20150059486A1 (en) * 2013-09-05 2015-03-05 Samsung Electronics Co., Ltd. Resistive pressure sensor including piezo-resistive electrode
JP2016017753A (en) * 2014-07-04 2016-02-01 大日本印刷株式会社 Pressure sensor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0162627U (en) * 1987-10-15 1989-04-21
JP2013068563A (en) * 2011-09-26 2013-04-18 Fujikura Ltd Pressure sensor
US20150059486A1 (en) * 2013-09-05 2015-03-05 Samsung Electronics Co., Ltd. Resistive pressure sensor including piezo-resistive electrode
JP2016017753A (en) * 2014-07-04 2016-02-01 大日本印刷株式会社 Pressure sensor device

Also Published As

Publication number Publication date
TW201843577A (en) 2018-12-16
JP2018146489A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
US10180747B2 (en) Touch display panel having touch electrodes and pressure sensing element and touch display device thereof
US20190234818A1 (en) Pressure sensor
US8079272B2 (en) Tactile sensor
JP2011159599A (en) Input device
KR102252054B1 (en) Sensor device, display device, and input device
CN107340914B (en) Display substrate, display panel and display device
US10216309B2 (en) Touch screen that includes a plurality of strain sensors
KR102475958B1 (en) Touch sensor
JP6316371B2 (en) Pressure sensor
US8674952B2 (en) Touch display panel, pixel structure and multi-sensing structure
US20150070600A1 (en) Sensor device, method of manufacturing sensor device, display apparatus, and input apparatus
TW201531900A (en) Input device and input device production method
WO2018163627A1 (en) Pressure sensor
US10620064B2 (en) Pressure sensor
WO2020022078A1 (en) Pressure sensor and method for manufacturing pressure sensor
JP6914816B2 (en) Pressure sensor
JP2019138690A (en) Pressure sensor
JP3139264U (en) Coordinate reading device
JPS648370B2 (en)
JP2003344195A (en) Pressure distribution sensor and manufacturing method therefor
JP2003344198A (en) Pressure distribution sensor and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763672

Country of ref document: EP

Kind code of ref document: A1