WO2018163616A1 - Washing machine - Google Patents

Washing machine Download PDF

Info

Publication number
WO2018163616A1
WO2018163616A1 PCT/JP2018/001597 JP2018001597W WO2018163616A1 WO 2018163616 A1 WO2018163616 A1 WO 2018163616A1 JP 2018001597 W JP2018001597 W JP 2018001597W WO 2018163616 A1 WO2018163616 A1 WO 2018163616A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
washing tub
washing
fine bubble
water supply
Prior art date
Application number
PCT/JP2018/001597
Other languages
French (fr)
Japanese (ja)
Inventor
宏格 笹木
彩未 武次
弘暁 川口
ひとみ 佐伯
Original Assignee
東芝ライフスタイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝ライフスタイル株式会社 filed Critical 東芝ライフスタイル株式会社
Priority to CN201880014703.6A priority Critical patent/CN110366618A/en
Publication of WO2018163616A1 publication Critical patent/WO2018163616A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/08Liquid supply or discharge arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the embodiment of the present invention relates to a washing machine.
  • the outer peripheral wall of the rotating drum is moved by rotating the rotating drum at a predetermined rotation speed (400 rpm) equal to or lower than the dewatering rotation speed with the drain valve closed and water stored in the water receiving tank. I try to wash it.
  • the tank cleaning process is incorporated during the washing operation process as described above, the tank cleaning is performed using water supplied into the tank, generally tap water. Therefore, it cannot be said that the cleaning effect is so high, and it is desired for the user to perform the tank cleaning effectively in a short time.
  • washing machine that can perform tank cleaning effectively during the washing operation process and can perform tank cleaning effectively.
  • the washing machine includes a water tub, a washing tub provided in the water tub and containing clothes, an agitator provided at the bottom of the washing tub, and a water supply mechanism for supplying water into the washing tub.
  • a fine bubble generating device that generates fine bubble water mixed with fine bubbles, a drainage mechanism that drains water from the washing tub, a drive mechanism that rotationally drives the agitator and the washing tub, and the mechanisms
  • a control device that executes a process of washing, rinsing, and dewatering, and the control device is generated by the microbubble generator in the washing tub before shifting to the dewatering process after the rinsing process.
  • a residual water dewatering operation is performed to rotate the washing tub to a predetermined number of revolutions.
  • fine bubbles or “fine bubbles” in the embodiments is a concept including, for example, microbubbles having a diameter of about 1 ⁇ m to several hundred ⁇ m and ultrafine bubbles having a diameter of about 50 nm to 1 ⁇ m.
  • Fine bubble water refers to water containing a large amount of such fine bubbles.
  • FIG. 1 is a longitudinal side view schematically showing the configuration of the washing machine according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating a configuration of an assembly portion of the UFB unit according to the first embodiment.
  • FIG. 3 is a diagram schematically illustrating an electrical configuration of the washing machine according to the first embodiment.
  • FIG. 4 is a diagram illustrating a control state in a dehydration process from a rinsing process performed by the control device according to the first embodiment.
  • FIG. 5 is a diagram illustrating a control state from the rinsing process to the dehydration process performed by the control device according to the second embodiment.
  • FIG. 6 is a diagram illustrating a control state from the rinsing process to the dehydration process performed by the control device according to the third embodiment.
  • FIG. 7 is a diagram illustrating a control state from the rinsing process to the dehydration process performed by the control device according to the fourth embodiment.
  • FIG. 1 schematically shows the internal configuration of the washing machine 1 according to the present embodiment.
  • the washing machine 1 includes a top cover 3 made of a synthetic resin, for example, on an upper portion of an outer box 2 that is configured as a rectangular box as a whole from a steel plate.
  • a water tank 4 capable of storing washing water is provided by being elastically suspended and supported by an elastic suspension mechanism 5 having a well-known configuration.
  • a drain port 6 is formed at the bottom of the water tank 4.
  • a drainage channel 8 having an electronically controlled drainage valve 7 is connected to the drainage port 6.
  • a drainage mechanism is constituted by the drainage valve 7 and the like.
  • an air trap is provided at the bottom of the water tub 4, and a water level sensor 9 (for detecting the water level in the water tub 4 (washing tub 10) through an air tube connected to the air trap). 3) is provided.
  • a vertical washing tank 10 also serving as a dewatering tank is rotatably provided.
  • the washing tub 10 has a bottomed cylindrical shape, and a large number of dewatering holes 10a are formed in the peripheral wall portion.
  • a liquid-filled rotary balancer 11 is attached to the upper end of the washing tub 10.
  • a pulsator 12 as a stirring body is disposed at the inner bottom of the washing tub 10. Clothes (not shown) are accommodated in the washing tub 10, and a washing operation is performed in the washing tub 10, including washing, rinsing, and dehydration.
  • a water tank cover 13 is attached to the upper part of the water tank 4.
  • the water tank cover 13 is provided with an opening 13a for loading and unloading the laundry substantially at the center, and an inner lid 14 for opening and closing the opening 13a is attached.
  • a water supply port 20 for supplying water into the water tank 4 by a water supply mechanism which will be described later is provided in a portion near the rear part of the water tank cover 13.
  • An overflow port 4 a is provided at a position higher than the highest water level of the washing tub 10 at the upper part of the back wall portion of the water tub 4.
  • an overflow hose 22 is provided continuously to the overflow port 4a for discharging the overflowed water from the overflow port 4a.
  • the tip of the overflow hose 22 is connected to the drainage channel 8.
  • a well-known drive mechanism 15 is disposed on the outer bottom of the water tank 4.
  • the drive mechanism 15 includes a washing machine motor 16 (see FIG. 3) formed of, for example, an outer rotor type DC three-phase brushless motor.
  • the drive mechanism 15 includes a hollow tank shaft 18, a stirring shaft 19 that passes through the tank shaft 18, and a clutch mechanism 17 that selectively transmits the rotational driving force of the washing machine motor 16 to the shafts 18 and 19 (see FIG. 3).
  • the washing tub 10 is connected to the upper end of the tank shaft 18, and the pulsator 12 is connected to the upper end of the stirring shaft 19.
  • the drive mechanism 15 is also provided with a rotation sensor 33 that detects the rotation position of the washing machine motor 16 and thus the rotation speed, and a current sensor 34 that detects the current flowing through the washing machine motor 16. It has been.
  • the clutch mechanism 17 has a well-known configuration using, for example, a solenoid as a drive source, and is switched and controlled by a control device 21 configured mainly with a computer. As is well known, the clutch mechanism 17 switches between the first state and the second state.
  • the first state is a state in which the washing tub 10 is rotatable with respect to the water tub 4 and the rotational force of the washing machine motor 16 is transmitted to both the tub shaft 18 and the stirring shaft 19.
  • the second state is a state in which the washing tub 10 is locked in a fixed state with respect to the water tub 4 and the rotational force of the washing machine motor 16 is transmitted only to the stirring shaft 19.
  • the driving mechanism 15 causes the clutch mechanism 17 to apply the driving force of the washing machine motor 16 to the pulsator 12 through the agitation shaft 19 while the washing tub 10 is fixed or stopped in the washing process and the rinsing process. introduce.
  • the drive mechanism 15 applies the driving force of the washing machine motor 16 to the tank shaft 18 by the clutch mechanism 17 in a coupled state between the tank shaft 18 and the agitation shaft 19 during the dehydration process and the residual water dehydration operation described later. Is transmitted to the washing tub 10.
  • the washing tub 10 and the pulsator 12 are directly driven to rotate in one direction at a high speed.
  • the top cover 3 has a thin hollow box shape having an open bottom surface and an upper surface inclined downward.
  • a substantially circular laundry entrance / exit 3a is formed at the center of the top cover 3 so as to be located above the washing tub 10, that is, above the opening 13a of the water tub cover 13.
  • a horizontally long operation panel 24 is provided on the front side of the top surface of the top cover 3.
  • the operation panel 24 includes an operation unit for the user to turn on and off the washing machine 1 and various settings / instructions, a display unit for performing necessary display, and the like. Yes.
  • a control device 21 composed of an electronic unit is provided on the back side of the operation panel 24.
  • a water supply mechanism 25 is provided for supplying water supplied from a water supply source, in this case, water supply, into the water tank 4 or the washing tub 10 through the water supply path.
  • the water supply mechanism 25 opens and closes the connection port 26, the first and second two water supply paths 27 and 28 that extend in a bifurcated manner from the connection port 26, and the water supply paths 27 and 28, respectively.
  • First and second water supply valves 29 and 30 and a water injection case 32 are provided.
  • the first water supply path 27 is provided with a UFB unit 31 as a fine bubble generating device.
  • connection port 26 is connected to a tip end of a connection hose connected to a tap faucet (not shown), and a predetermined tap water pressure for home use (for example, 1.0 to 3.0 kgf / cm @ 2 (0.1 to 0.29 MPa). ) Grade), water is supplied.
  • the first water supply path 27 and the second water supply path 28 are each connected to the water injection case 32 at the tip.
  • the water injection case 32 is provided with a first inlet pipe 35 (shown only in FIG. 2) and a second inlet pipe (not shown) as water inlet portions.
  • An end pipe of the first water supply path 27, that is, an outlet pipe 37 as an outlet of the first water supply valve 29 shown in FIG. 2 is connected to the first inlet pipe 35.
  • the outlet of the second water supply valve 30 of the second water supply path 28 is connected to the second inlet pipe.
  • the first water supply valve 29 and the second water supply valve 30 are open / close valves that open and close electromagnetically, and open and close the first water supply path 27 and the second water supply path 28, respectively.
  • the first water supply valve 29 and the second water supply valve 30 are controlled by the control device 21.
  • the water injection case 32 has a box shape, and a detergent storage case (not shown) is provided in the interior thereof so that it can be drawn out.
  • a proximal end side of a flexible water supply hose 36 is connected to the outlet portion 32 a at the lower portion of the water injection case 32.
  • the tip of the water supply hose 36 is connected to the water supply port 20 of the water tank cover 13.
  • the tap water is supplied from the first inlet pipe 35 to the water injection case 32 through the first water supply path 27.
  • the detergent is stored in the detergent storage case 33, the detergent flows while being dissolved, and is supplied from the outlet portion 32 a into the water tank 4 through the water supply hose 36.
  • the water flowing through the first water supply path 27 passes through the UFB unit 31, becomes fine bubble water mixed with a large amount of fine bubbles, and is supplied into the water injection case 32.
  • the second water supply valve 30 when the second water supply valve 30 is opened, tap water is supplied to the water injection case 32 through the second water supply path 28.
  • the detergent When the detergent is stored in the detergent storage case, the detergent flows while being dissolved, and is supplied into the water tank 4 through the water supply hose 36 from the outlet 32a.
  • tap water not containing fine bubbles is supplied directly into the water tank 4 through the second water supply path 28.
  • the flow rate of the water in the second water supply path 28 is configured to be larger than the flow rate of the water in the first water supply path 27.
  • the UFB unit 31 which is a fine bubble generator is provided between the 1st water supply valve 29 of the 1st water supply path
  • the UFB unit 31 utilizes the Venturi principle.
  • the UFB unit 31 is positioned between the outlet pipe 37 of the first water supply valve 29 and the first inlet pipe 35 of the water injection case 32 so as to be sandwiched between them. It is attached. That is, the UFB unit 31 is provided at the outlet of the first water supply valve 29, and the outlet of the UFB unit 31 is connected to the water inlet of the water injection case 32.
  • the UFB unit 31 will be described with reference to FIG.
  • the outlet pipe 37 of the first water supply valve 29 has a tubular shape and extends toward the first inlet pipe 35 side (left side in the drawing) of the water injection case 32.
  • the front end portion of the outlet pipe 37 is formed with a step so that the outer peripheral surface thereof is reduced in diameter in two steps. These steps are arranged in order from the right side (larger diameter side) to the first small diameter portion 37a and the first small diameter portion 37a. This is referred to as a two-diameter small portion 37b.
  • the first inlet pipe 35 of the water injection case 32 extends rightward in the drawing toward the first water supply valve 29 side, and the inner peripheral portion of the first inlet pipe 35 is located on the distal end side and has an inner diameter.
  • the thin-walled portion 35a is formed so as to have a slightly larger diameter, that is, a smaller thickness.
  • the inside of the thin portion 35a is a small-diameter portion 35c via a step portion 35b.
  • the inner diameter of the thin portion 35a corresponds to the outer diameter of the first small diameter portion 37a of the outlet pipe 37.
  • the inner diameter dimension of the small-diameter portion 35 c corresponds to the outer dimension on the outlet side of the UFB unit 31.
  • the UFB unit 31 is inserted into the first inlet pipe 35 of the water injection case 32 from the right side in the figure.
  • the outlet pipe 37 of the first water supply valve 29 is connected such that the outer periphery of the first small diameter portion 37a is fitted to the inner peripheral surface of the thin portion 35a.
  • An O-ring 38 is provided between the outer peripheral surface of the second small diameter portion 37b of the outlet pipe 37 and the inner peripheral surface of the thin portion 35a.
  • the UFB unit 31 is made of, for example, a synthetic resin.
  • the UFB unit 31 as a whole has a cylindrical shape whose axial direction is the left-right direction in the drawing, and a flow path 39 penetrating in the left-right direction in FIG. 2 is formed in the center portion, that is, the axial center portion.
  • a flow path 39 penetrating in the left-right direction in FIG. 2 is formed in the center portion, that is, the axial center portion.
  • water flows in the direction of arrow A, that is, from right to left in FIG.
  • the outer diameter dimension of the UFB unit 31 corresponds to the inner diameter dimension of the first inlet pipe 35.
  • ring-shaped convex portions 41, 41 are integrally formed at two positions on the middle of the outer peripheral wall of the UFB unit 31 at a slight interval in the axial direction.
  • the UFB unit 31 is inserted and attached into the first inlet pipe 35 from the opening side (right side in the figure). At this time, one convex part 41 (left side in the figure) The stopper is engaged with the step 35b in the one inlet pipe 35. Further, at this time, an O-ring 42 is provided between the two convex portions 41 and 41 between the outer peripheral surface of the UFB unit 31 and the inner peripheral surface of the thin portion 35a of the first inlet pipe 35. .
  • the flow path 39 is opened at both left and right end faces in the figure of the UFB unit 31, and the right opening in the figure is an inlet 39a, and the left opening in the figure is an outlet 39b.
  • a narrowed portion 39c having the smallest channel cross-sectional area is formed in the middle portion of the channel 39 with a certain length.
  • the flow path 39 is configured in a tapered shape from the inlet 39a to the throttle portion 39c so that the cross-sectional area of the flow path gradually decreases. Between the throttle part 39c and the outlet 39b, the flow path cross-sectional area is configured in a cylindrical shape having the same inner diameter as the throttle part 39c.
  • the UFB unit 31 is provided with four projecting portions 40 (only two are shown) so as to further narrow the flow path of the throttle portion 39c.
  • These protrusions 40 have sharp tips and are provided so as to protrude inward from the outer peripheral side of the throttle portion 39c at intervals of 90 degrees.
  • the pointed portions of the tips of the protrusions 40 face each other at a predetermined interval, so that the gap is a cross-shaped (x-shaped) slit shape.
  • the protrusion 40 is made of synthetic resin and is provided integrally with the UFB unit 31. It is also possible to configure the protrusion 40 from a separate member.
  • the UFB unit 31 of the present embodiment can generate a large amount of fine bubbles (fine bubbles) including ultrafine bubbles having a diameter of about 50 nm to 1 ⁇ m and microbubbles having a diameter of about 1 ⁇ m to several hundred ⁇ m. .
  • fine bubble water water mixed with a large amount of fine bubbles
  • the fine bubble water flows into the detergent storage case of the water injection case 32 and is injected into the water tank 4 from the water supply port 20.
  • the UFB unit 31 is described in detail in Japanese Patent Application No. 2014-129097 related to the earlier application of the present applicant, for example.
  • FIG. 3 schematically shows an electrical configuration of the washing machine 1 with the above-described control device 21 as the center.
  • the control device 21 is mainly configured by a microcomputer including a CPU, a ROM, a RAM, and the like, and controls the entire washing machine 1 to execute each step of the washing operation.
  • the control device 21 receives an operation signal from the operation panel 24 and controls display on each display unit of the operation panel 24. Further, the control device 21 receives a water level detection signal in the washing tub 10 detected by the water level sensor 9 and detection signals from the rotation sensor 33 and the current sensor 34.
  • the control device 21 drives and controls the washing machine motor 16 and the clutch mechanism 17, and controls the first water supply valve 29, the second water supply valve 30, and the drain valve 7.
  • the control device 21 controls each mechanism of the washing machine 1 based on input signals from each sensor and a pre-stored control program in accordance with a user's setting operation of the washing course on the operation panel 24. Control.
  • the control device 21 automatically executes a washing operation including washing, rinsing, and dehydration processes.
  • a residual water dehydration operation described later that is, a course including tank cleaning and a course not including tank cleaning.
  • a dehydration rinsing (intermediate dehydration) operation and a rinsing operation for one time are sequentially performed. Therefore, after the rinsing operation, the draining operation is performed and the final dehydration process is started.
  • the cloth amount detection operation of the clothes in the washing tub 10 is executed at the start of driving. Based on the result of the cloth amount detection operation, the water level at the time of washing and rinsing is set in a plurality of stages, and the execution time of each process is automatically set. Water supply control into the washing tub 10 is performed based on the water level detection of the water level sensor 9. As is well known, the cloth amount detection operation is performed based on the fact that the pulsator 12 is rotationally driven for a short time by the drive mechanism 15 and the current flowing through the washing machine motor 16 is detected by the current sensor 34 at that time.
  • the control device 21 has an automatic operation course including a residual water dehydration operation, that is, a tank cleaning, mainly by its software configuration. If selected, before the rinsing process, in this case, the dehydration process after the rinsing operation is performed, the tank cleaning, that is, the residual water dehydrating operation for cleaning the outer peripheral surface of the washing tub 10 and the inner surface of the water tub 4 is executed. .
  • This residual water dewatering operation is performed by rotating the washing tub 10 to a predetermined number of revolutions in a state where water containing fine bubble water generated by the UFB unit 31 is stored in a predetermined water level in the washing tub 10. Done.
  • the control device 21 when executing the rinsing operation for the rinsing process, the control device 21 has a rinsing water level and a large amount of cloth in the washing tub 10, that is, the water tub 4 because of the amount of cloth.
  • water is supplied up to 58 liters in volume.
  • Water supply at this time includes the supply of fine bubble water through the first water supply path 27 by opening the first water supply valve 29, and the supply of tap water through the second water supply path 28 by opening the second water supply valve 30.
  • the pulsator 12 is intermittently rotated forward and backward to perform rinsing for the set time.
  • the control device 21 opens the drain valve 7 and drains until the inside of the washing tub 10 reaches a predetermined water level, for example, 25 liters in volume.
  • a predetermined water level for example, 25 liters in volume.
  • the drain valve 7 is closed.
  • the clutch mechanism 12 is switched from the pulsator 12 side to the washing tub 10 side, and the washing machine motor 16 is rotated at a predetermined rotational speed, for example, 150 rpm, whereby a residual water dewatering operation is performed for a predetermined time, for example, 1 minute.
  • the predetermined water level in the washing tub 10 and the predetermined rotation speed of the washing tub 10 in the residual water dewatering operation described above are the centrifugal force in the residual water dewatering operation, and the water in the washing tub 10 is in the vicinity of the overflow port 4a. It is set in advance so as to rise to the height of.
  • the control device 21 opens the drain valve 7 to drain the water from the washing tub 10, and further increases the number of rotations of the washing tub 10 to, for example, several hundred rpm.
  • the dehydration process is performed for a predetermined time. Even in the water supply at the start of the washing process, fine bubble water is supplied into the washing tub 10 through the first water supply path 27, and the washing process is executed using the fine bubble water. Also in this case, tap water and fine bubble water may be mixed and used.
  • FIG. 4 shows a state of control from the rinsing process to the final dehydration process, which is executed by the control device 21. That is, it shows how the first water supply valve 29 and the second water supply valve 30 are opened / closed, the drain valve 7 is opened / closed, the water level in the washing tub 10 and the rotation speed of the washing tub 10 change with time. .
  • the water level in the washing tub 10 is set to the reset water level, that is, 0 liter in capacity, and the drain valve 7 is closed.
  • the clutch mechanism 17 is on the pulsator 12 side, and the washing tub 10 is stopped, that is, in a fixed state.
  • the first water supply valve 29 is opened, and fine bubble water is supplied into the washing tub 10, that is, the water tub 4, through the first water supply path 27 of the water supply mechanism 25. It becomes like this.
  • the second water supply valve 30 is closed.
  • the first water supply valve 29 is closed and this time the second water supply valve 30 is opened.
  • water in this case, tap water, is supplied to the washing tub 10, that is, the water tub 4 by the second water supply path 28.
  • the water level in the washing tub 10 gradually rises, and when the set rinse water level, that is, the high water level is detected by the water level sensor 9, the second water supply valve 30 is closed and the water supply ends. (Time T2).
  • the washing tub 10 water in which tap water and fine bubble water are mixed is stored. Note that the order of opening the first water supply valve 29 and opening the second water supply valve 30 may be reversed.
  • the rinsing is performed for a predetermined time by intermittently rotating the pulsator 12 forward and backward. Thus, a water flow is generated by the pulsator 12 in the state where the clothes are immersed in the water of the rinsing water level in the washing tub 10, and the rinsing is performed.
  • time T3 When the rinsing operation is completed (time T3), the remaining water dewatering operation is started. In this residual water dewatering operation, the drain valve 7 is opened and the clutch mechanism 17 is switched to the washing tub 10 side. By opening the drain valve 7, the water level in the washing tub 10 gradually decreases.
  • the water level sensor 9 detects a predetermined water level, for example, 25 liters in volume (time T4), the drain valve 7 is closed, and the washing tub motor 16 is driven to rotate the washing tub 10 at a predetermined rotation speed, for example, 150 rpm. Will come to be.
  • the washing tub 10 rotates, a water flow is generated between the inner wall surface of the water tub 4 and the outer peripheral surface of the washing tub 10, and the outer peripheral surface of the washing tub 10 and the inner surface of the water tub 4 are washed with the water flow.
  • the tank is cleaned. Further, due to the centrifugal force accompanying the rotation of the washing tub 10, the pressure of water toward the outer peripheral side of the washing tub 10 and hence the inner surface of the water tub 4 is increased, and effective cleaning is performed.
  • a phenomenon occurs in which the water surface in the washing tub 10 is lifted up like a bowl by the centrifugal force. In this case, the higher the rotation speed of the washing tub 10, the greater the centrifugal force, and the higher the water surface lifting height on the outer peripheral side.
  • the predetermined water level and the predetermined rotation speed during the residual water dewatering operation are set so that the water in the washing tub 10 rises to a height near the overflow port 4a.
  • the overflow port 4a is provided at a position higher than the highest water level when the washing operation is performed, and it is mainly below the overflow port 4a that the dirt adheres to the inner surface of the water tub 4 and the outer surface of the washing tub 10. Therefore, at the time of residual water dewatering operation, the water surface on the outer peripheral side is lifted to the extent that it reaches the overflow port 4a, and the entire height direction of the water tub 4 and the washing tub 10 is suppressed while preventing the water from overflowing and wasting. It is possible to perform an effective cleaning for.
  • fine bubble water mixed with a large amount of fine bubbles is used in the residual water dewatering operation.
  • Fine bubbles have a property of staying in the liquid for a long time because they cause Brownian motion that causes irregular motion in the liquid, for example, in water, and the speed is higher than the flying speed.
  • the surface of the fine bubble is negatively charged, and the fine bubbles repel each other and do not bond.
  • the effect of washing the tank can be enhanced as compared with the case where only tap water is used.
  • the reason is presumed to be as follows. 1stly, the effect
  • the surface of the fine bubble is negatively charged, it functions to absorb dirt.
  • a residual water dewatering operation is performed for a certain time, for example, 1 minute (time T5), the residual water dewatering operation is finished, and the process proceeds to the final dewatering process.
  • the dewatering process is performed by opening the drain valve 7 and draining the water, and increasing the rotational speed of the washing tub 10 to a high speed, for example, several hundred rpm. This dehydration process is executed for a predetermined time, and the washing operation ends. If an automatic operation course that does not include tank washing is set at the start of the washing operation, the above-described residual water dewatering operation is omitted, and after rinsing, drainage is performed, and the dewatering process is continued. In this case, rinsing may be performed using only tap water.
  • the control device 21 performs the residual water dewatering operation between the rinsing process and the subsequent dewatering process in the rinsing process.
  • parts such as the outer peripheral surface of the washing tub 10 and the inner surface of the water tub 4 that are easily contaminated are washed with a water flow, so that the tub cleaning is automatically performed.
  • the residual water dewatering operation is not performed in a separate tank cleaning course but in a normal washing operation course, so that troublesome operations for the user are unnecessary.
  • the residual water dewatering operation is performed by using the water stored in the washing tub 10 at the time of rinsing, that is, the residual water, so that the tub cleaning is performed while saving water as compared with the case where all the water is replaced with new water. be able to.
  • the tank cleaning can be executed during the washing operation, and the tank cleaning can be effectively performed.
  • contamination removal of clothing can be heightened more by using a fine bubble water also in the washing
  • the water in the washing tub 10 overflows with the predetermined water level in the washing tub 10 during the remaining water dewatering operation and the predetermined rotation speed of the washing tub 10 by the centrifugal force in the remaining water dewatering operation.
  • the position and numerical value rising to the height near the mouth 4a were set. Therefore, it becomes possible to perform the effective washing
  • FIG. 5 shows a second embodiment.
  • the second embodiment differs from the first embodiment in the control from the rinsing process to the final dehydration process, which is executed by the control device 21. That is, in the present embodiment, the control device 21 performs a rinsing process by supplying tap water through the second water supply path 28, and after the rinsing process, the drain valve 7 is opened to open the washing tub 10, that is, the water tank 4. Drain all water. Thereafter, the control device 21 opens the first water supply valve 29, supplies fine bubble water into the washing tub 10 to a predetermined water level, for example, 25 liters in volume, through the first water supply path 27, and executes a residual water dewatering operation. .
  • the second water supply valve 30 is opened with the drain valve 7 closed, and the second water supply of the water supply mechanism 25 is performed.
  • the tap water is supplied into the washing tub 10, that is, the water tub 4 by the path 28.
  • the first water supply valve 29 is closed.
  • the rinsing water level in the washing tub 10 is set, in this case, the water level becomes high, the second water supply valve 30 is closed and water supply ends (time T11). Thereafter, rinsing is performed for a certain time.
  • the remaining water dewatering operation is started.
  • the drain valve 7 is opened, and the clutch mechanism 17 is switched to the washing tub 10 side.
  • the water level in the washing tub 10 gradually decreases, and in this case, drainage is performed until the water level becomes zero.
  • the drain valve 7 is closed, the first water supply valve 29 is opened, and fine bubble water is supplied into the washing tub 10 through the first water supply path 27.
  • fine bubble water can be stored in the washing tub 10, and when the water level sensor 9 detects a predetermined water level, for example, 25 liters in volume, the first water supply valve 29 is closed and the water supply ends. (Time T14). Then, the washing tub 10 is driven at a predetermined number of rotations, for example, 150 rpm by the driving of the washing machine motor 16, and effective tub cleaning using fine bubble water is performed. When the remaining water dewatering operation is performed for a certain time, for example, 1 minute (time T15), the remaining water dewatering operation is finished, and the process proceeds to the final dewatering process.
  • time T15 time T15
  • water used for rinsing in this case, tap water is drained, and then newly generated fine bubble water is supplied to perform a residual water dehydrating operation. Can do. Therefore, the tank cleaning can be effectively performed using fine bubble water, and in addition, the tank cleaning can be performed with clean water.
  • the water supply time at the time of rinsing can be shortened by using the water through the second water supply path 28, in this case tap water.
  • FIG. 6 shows a third embodiment.
  • FIG. 6 shows a control state from the rinsing process to the final dehydration process, which is also executed by the control device 21.
  • the third embodiment is different from the second embodiment in the following point, that is, the control device 21 opens the drain valve 7 after the rinsing process to open the washing tub 10, that is, the water tub 4.
  • a predetermined water level for example, 25 liters in volume, and a residual water dewatering operation is performed.
  • the rinsing process is executed in the same manner as in the second embodiment, and when the rinsing operation ends (time T12), the residual water dewatering operation is started.
  • the drain valve 7 is opened, and the clutch mechanism 17 is switched to the washing tub 10 side.
  • the water level in the washing tub 10 gradually decreases, and in this case, drainage is performed until the water level becomes zero.
  • the drain valve 7 is closed, and first, the first water supply valve 29 is opened, and fine bubble water is supplied into the washing tub 10 through the first water supply path 27.
  • the first water supply valve 29 When a certain time elapses or the inside of the washing tub 10 reaches a predetermined water level (time T22), the first water supply valve 29 is closed, and this time the second water supply valve 30 is opened. Thereby, water (tap water) is supplied into the washing tub 10, that is, the water tub 4 by the second water supply path 28. With these water supply operations, the water level in the washing tub 10 gradually rises from zero, and when the water level sensor 9 detects a predetermined water level, the second water supply valve 30 is closed and the water supply ends (time T23). At this time, in the washing tub 10, water in which tap water and fine bubble water are mixed, for example, mixed water containing 25% or more of fine bubble water, can be stored at a predetermined water level.
  • the washing tub motor 16 is driven to rotate the washing tub 10 at a predetermined rotation number, for example, 150 rpm, so that effective tub cleaning using the mixed water of fine bubble water is performed.
  • a predetermined rotation number for example, 150 rpm
  • the residual water dewatering operation is performed for a certain time, for example, 1 minute (time T24)
  • the residual water dewatering operation is finished, and the process proceeds to the final dewatering process.
  • the water used for rinsing in this case, after the tap water is drained, the newly generated fine bubble water and the newly supplied tap water are mixed. Residual water dehydration can be performed with water. Therefore, tank cleaning can be performed effectively using the mixed water of fine bubble water. In addition, tank cleaning can be performed using cleaner mixed water.
  • the time required for water supply for the residual water dewatering operation can also be made relatively shorter than when, for example, fine bubble water is used at 100%. Therefore, it goes without saying that the water supply time in the rinsing process can be shortened.
  • FIG. 7 shows a fourth embodiment.
  • FIG. 7 shows a control state from the rinsing process to the final dehydration process, which is also executed by the control device 21.
  • the fourth embodiment is different from the first to third embodiments in the following points. That is, in the present embodiment, the control device 21 performs a rinsing process by supplying tap water through the second water supply path 28, and after the rinsing process, the drain valve 7 is opened to open the washing tub 10, that is, the water tank 4. Drain some water. Then, the control device 21 opens the first water supply valve 29 for the water remaining in the washing tub 10 and supplies fine bubble water through the first water supply path 27 to a predetermined water level, for example, 25 liters in volume. The residual water dewatering operation is executed using the mixed water.
  • the rinsing process is executed in the same manner as in the second and third embodiments, and when the rinsing operation is completed (time T12), the residual water dewatering operation is started. Is done.
  • this residual water dewatering operation first, the drain valve 7 is opened, and the clutch mechanism 17 is switched to the washing tub 10 side. By opening the drain valve 7, the water level in the washing tub 10 gradually decreases. In this case, the water level is lower than a predetermined level, for example, about 15 liters in volume (indicated as “very low” level in FIG. 7). Is done.
  • the drain valve 7 is closed, the first water supply valve 29 is opened, and fine bubble water is supplied into the washing tub 10 through the first water supply path 27.
  • the water level sensor 9 detects a predetermined water level, for example, 25 liters in volume
  • the first water supply valve 29 is closed and the water supply ends (time T32).
  • the washing tub 10 mixed water in which tap water and fine bubble water are mixed is stored at a predetermined water level.
  • the washing tub motor 16 is driven to rotate the washing tub 10 at a predetermined rotation speed, for example, 150 rpm, so that effective tub cleaning using mixed water containing 25% or more of fine bubble water is performed.
  • the residual water dewatering operation is performed for a certain time, for example, 1 minute (time T33)
  • the residual water dewatering operation is finished, and the process proceeds to the final dewatering process.
  • the drainage after the rinsing is finished with the water used for the rinsing, in this case the tap water partially remaining in the washing tub 10.
  • generated from the state is supplied, and residual water dehydration operation
  • the time required for water supply for the residual water dewatering operation can be made relatively short.
  • the water supply time at the time of rinsing can be shortened.
  • the fifth embodiment can be configured as follows.
  • the predetermined water level for executing the residual water dewatering operation is set so that the water in the washing tub 10 rises to a height near the overflow port 4a by the centrifugal force in the residual water dewatering operation. Pre-set.
  • the predetermined water level in the residual water dewatering operation is set to a water level that does not exceed the upper end of the pulsator 12 in the washing tub 10. According to this, at the end of the residual water dewatering operation, since the water level in the washing tub 10 is lower than the clothing housed above the pulsator 12, the clothing is immersed in the water in the washing tub 10. None will happen. Therefore, the reattachment of dirt to the clothes can be prevented.
  • the predetermined number of rotations of the washing tub 10 in the residual water dewatering operation is fixedly provided.
  • the target rotation It is possible to change the number to be higher than usual, for example, 180 rpm.
  • the second water supply path 28 As water supplied by the water supply mechanism 25, that is, the second water supply path 28, not only simple tap water but also water is pumped from an external water supply source such as a water storage tank or a bathtub using a pump. Also good. Further, warm water or antibacterial water containing, for example, silver ions may be used.
  • the 1st water supply valve 29 and the 2nd water supply valve 30 are open
  • water pressure sufficient to produce fine bubble water is obtained in the first water path 27, it is possible to open both water supply valves at the same time.

Abstract

The washing machine (1) according an embodiment of the present invention includes: a water tank (4); a washing tub (10) which is provided inside the water tank (4) and accommodates clothes; an agitator (12) which is provided at the bottom of the washing tub (10); a water supply mechanism (25) which supplies water to the washing tub (10); a fine bubble generator (31) which generates fine bubble water in which fine bubbles are mixed; a drainage mechanism (7) which drains water from the washing tub (10); a drive mechanism (15) which rotates and drives the agitator (12) and the washing tub (10); and a control device (21) which controls each mechanism (25, 31, 7, 15) and performs washing, rinsing, and spin-drying. Before moving onto spin-drying after rinsing, the control device (21) performs a remaining-water dehydrating operation of rotating the washing tub (10) up to a predetermined rotation speed in a state in which water including the fine bubble water generated by the fine bubble generator (31) is left in the washing tub (10) at a predetermined water level.

Description

洗濯機Washing machine 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年3月7日に出願された日本出願番号2017-042735号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-042735 filed on March 7, 2017, the contents of which are incorporated herein by reference.
 本発明の実施形態は、洗濯機に関する。 The embodiment of the present invention relates to a washing machine.
 例えば、水槽内に脱水槽を兼用する洗濯槽を垂直軸回りに回転可能に設けたいわゆる縦軸型の洗濯機においては、洗濯槽の外周面や水槽の内面といったユーザにとって見えにくい場所に、汚れや洗剤カスが付着する問題がある。そのような汚れを放置しておくと、黒カビ等が発生し、においの発生や洗濯物への再付着といった問題が生ずる。従来、いわゆる横軸型のドラム式洗濯機にあっては、脱水行程中に、回転ドラム洗浄行程を実行することが考えられている(例えば特許文献1参照)。この回転ドラム洗浄行程では、排水弁を閉じて水受け槽内に水を溜めた状態で、回転ドラムを脱水回転数以下の所定回転数(400rpm)で回転させることにより、回転ドラムの外周壁を洗浄するようにしている。 For example, in a so-called vertical axis type washing machine in which a washing tub also serving as a dehydration tub is provided in the water tub so as to be rotatable about a vertical axis, dirt is present in places that are difficult for the user to see such as the outer peripheral surface of the washing tub and the inner surface of the water tub And there is a problem that the detergent residue adheres. If such dirt is left unattended, black mold or the like is generated, causing problems such as generation of odors and reattachment to the laundry. 2. Description of the Related Art Conventionally, in a so-called horizontal shaft type drum-type washing machine, it has been considered to perform a rotary drum cleaning process during a dehydration process (see, for example, Patent Document 1). In this rotating drum cleaning process, the outer peripheral wall of the rotating drum is moved by rotating the rotating drum at a predetermined rotation speed (400 rpm) equal to or lower than the dewatering rotation speed with the drain valve closed and water stored in the water receiving tank. I try to wash it.
特開2005-143533号公報JP 2005-143533 A
 上記のように洗濯運転の行程中に、槽洗浄の行程を組込むものでは、槽内に給水された水、一般に水道水を用いて槽洗浄が行われる。そのため、洗浄効果がさほど高いものとは言えず、ユーザにとっては、槽洗浄を短時間で効果的に行うことが望まれる。 In the case where the tank cleaning process is incorporated during the washing operation process as described above, the tank cleaning is performed using water supplied into the tank, generally tap water. Therefore, it cannot be said that the cleaning effect is so high, and it is desired for the user to perform the tank cleaning effectively in a short time.
 そこで、洗濯運転の行程中に槽洗浄を実行できるものにあって、槽洗浄を効果的に行うことができる洗濯機を提供する。 Therefore, there is provided a washing machine that can perform tank cleaning effectively during the washing operation process and can perform tank cleaning effectively.
 本実施形態に係る洗濯機は、水槽と、前記水槽の内部に設けられ衣類が収容される洗濯槽と、前記洗濯槽の底部に設けられた撹拌体と、前記洗濯槽内に給水する給水機構と、微細気泡が混入されたファインバブル水を生成する微細気泡発生装置と、前記洗濯槽内から排水を行う排水機構と、前記撹拌体及び前記洗濯槽を回転駆動する駆動機構と、前記各機構を制御して洗い、すすぎ、脱水の行程を実行する制御装置とを備え、前記制御装置は、すすぎ行程後の脱水行程に移行する前に、前記洗濯槽内に、前記微細気泡発生装置により生成されたファインバブル水を含んだ水が所定水位に溜められた状態で、該洗濯槽を所定回転数まで回転させる残水脱水動作を実行する。 The washing machine according to the present embodiment includes a water tub, a washing tub provided in the water tub and containing clothes, an agitator provided at the bottom of the washing tub, and a water supply mechanism for supplying water into the washing tub. A fine bubble generating device that generates fine bubble water mixed with fine bubbles, a drainage mechanism that drains water from the washing tub, a drive mechanism that rotationally drives the agitator and the washing tub, and the mechanisms And a control device that executes a process of washing, rinsing, and dewatering, and the control device is generated by the microbubble generator in the washing tub before shifting to the dewatering process after the rinsing process. In the state where the water containing the fine bubble water is stored at a predetermined water level, a residual water dewatering operation is performed to rotate the washing tub to a predetermined number of revolutions.
 尚、実施形態における「微細気泡」或いは「ファインバブル」とは、例えば直径が1μm~数百μm程度のマイクロバブル、及び、直径が50nm~1μm程度のウルトラファインバブルを含んだ概念である。ファインバブル水とは、そのような微細気泡を多量に含んだ水をいう。 The “fine bubbles” or “fine bubbles” in the embodiments is a concept including, for example, microbubbles having a diameter of about 1 μm to several hundred μm and ultrafine bubbles having a diameter of about 50 nm to 1 μm. Fine bubble water refers to water containing a large amount of such fine bubbles.
図1は、第1の実施形態に係る洗濯機の構成を概略的に示す縦断側面図であり、FIG. 1 is a longitudinal side view schematically showing the configuration of the washing machine according to the first embodiment. 図2は、第1の実施形態に係るUFBユニットの組付け部分の構成を示す断面図であり、FIG. 2 is a cross-sectional view illustrating a configuration of an assembly portion of the UFB unit according to the first embodiment. 図3は、第1の実施形態に係る洗濯機の電気的構成を概略的に示す図であり、FIG. 3 is a diagram schematically illustrating an electrical configuration of the washing machine according to the first embodiment. 図4は、第1の実施形態に係る制御装置が実行するすすぎ行程から脱水行程における制御状態を示す図であり、FIG. 4 is a diagram illustrating a control state in a dehydration process from a rinsing process performed by the control device according to the first embodiment. 図5は、第2の実施形態に係る制御装置が実行するすすぎ行程から脱水行程における制御状態を示す図であり、FIG. 5 is a diagram illustrating a control state from the rinsing process to the dehydration process performed by the control device according to the second embodiment. 図6は、第3の実施形態に係る制御装置が実行するすすぎ行程から脱水行程における制御状態を示す図であり、FIG. 6 is a diagram illustrating a control state from the rinsing process to the dehydration process performed by the control device according to the third embodiment. 図7は、第4の実施形態に係る制御装置が実行するすすぎ行程から脱水行程における制御状態を示す図である。FIG. 7 is a diagram illustrating a control state from the rinsing process to the dehydration process performed by the control device according to the fourth embodiment.
 以下、いわゆる縦軸型の洗濯機に適用したいくつかの実施形態について、図面を参照しながら説明する。尚、複数の実施形態間で、同一部分には同一符号を付して新たな図示や繰り返しの説明を省略する。 Hereinafter, some embodiments applied to a so-called vertical washing machine will be described with reference to the drawings. In addition, between several embodiment, the same code | symbol is attached | subjected to the same part and new illustration and repeated description are abbreviate | omitted.
 (1)第1の実施形態
 図1から図4を参照して第1の実施形態について説明する。図1は、本実施形態に係る洗濯機1の内部構成を概略的に示しており、まず、洗濯機1の全体構成について述べる。ここで、洗濯機1は、例えば鋼板から全体として矩形箱状に構成された外箱2の上部に、合成樹脂製のトップカバー3を備えている。
(1) First Embodiment A first embodiment will be described with reference to FIGS. FIG. 1 schematically shows the internal configuration of the washing machine 1 according to the present embodiment. First, the overall configuration of the washing machine 1 will be described. Here, the washing machine 1 includes a top cover 3 made of a synthetic resin, for example, on an upper portion of an outer box 2 that is configured as a rectangular box as a whole from a steel plate.
 前記外箱2内には、洗濯水を溜めることが可能な水槽4が、周知構成の弾性吊持機構5により弾性的に吊り下げ支持されて設けられている。前記水槽4の底部には、排水口6が形成されている。この排水口6には、電子制御式の排水弁7を備えた排水路8が接続されている。排水弁7などから排水機構が構成されている。尚、詳しく図示はしないが、水槽4の底部にはエアトラップが設けられ、このエアトラップに接続されたエアチューブを介して、水槽4(洗濯槽10)内の水位を検出する水位センサ9(図3参照)が設けられている。 In the outer box 2, a water tank 4 capable of storing washing water is provided by being elastically suspended and supported by an elastic suspension mechanism 5 having a well-known configuration. A drain port 6 is formed at the bottom of the water tank 4. A drainage channel 8 having an electronically controlled drainage valve 7 is connected to the drainage port 6. A drainage mechanism is constituted by the drainage valve 7 and the like. Although not shown in detail, an air trap is provided at the bottom of the water tub 4, and a water level sensor 9 (for detecting the water level in the water tub 4 (washing tub 10) through an air tube connected to the air trap). 3) is provided.
 前記水槽4内には、脱水槽を兼用する縦軸型の洗濯槽10が回転可能に設けられている。この洗濯槽10は、有底円筒状をなし、その周壁部には、多数個の脱水孔10aが形成されている。この洗濯槽10の上端部には、例えば液体封入形の回転バランサ11が取付けられている。また、洗濯槽10の内底部には、撹拌体としてのパルセータ12が配設されている。洗濯槽10内には、図示しない衣類が収容されるようになっており、洗濯槽10内で衣類に対する洗い、すすぎ、脱水等の行程からなる洗濯運転が行われる。 In the water tank 4, a vertical washing tank 10 also serving as a dewatering tank is rotatably provided. The washing tub 10 has a bottomed cylindrical shape, and a large number of dewatering holes 10a are formed in the peripheral wall portion. For example, a liquid-filled rotary balancer 11 is attached to the upper end of the washing tub 10. Further, a pulsator 12 as a stirring body is disposed at the inner bottom of the washing tub 10. Clothes (not shown) are accommodated in the washing tub 10, and a washing operation is performed in the washing tub 10, including washing, rinsing, and dehydration.
 このとき、前記水槽4の上部には、水槽カバー13が装着されている。この水槽カバー13には、ほぼ中央部に洗濯物出し入れ用の開口部13aが設けられていると共に、その開口部13aを開閉する内蓋14が取付けられている。更に、水槽カバー13の後部寄り部分には、後述する給水機構により、水槽4内に給水を行うための給水口20が設けられている。尚、前記水槽4の背壁部の上部には、洗濯槽10の最高水位よりも高い位置に、溢水口4aが設けられている。水槽4の外側には、溢水口4aに連続し該溢水口4aから溢れた水を排出するための溢水ホース22が設けられている。詳しく図示はしないが、溢水ホース22の先端部は、前記排水路8に接続されている。 At this time, a water tank cover 13 is attached to the upper part of the water tank 4. The water tank cover 13 is provided with an opening 13a for loading and unloading the laundry substantially at the center, and an inner lid 14 for opening and closing the opening 13a is attached. Further, a water supply port 20 for supplying water into the water tank 4 by a water supply mechanism which will be described later is provided in a portion near the rear part of the water tank cover 13. An overflow port 4 a is provided at a position higher than the highest water level of the washing tub 10 at the upper part of the back wall portion of the water tub 4. On the outside of the water tank 4, an overflow hose 22 is provided continuously to the overflow port 4a for discharging the overflowed water from the overflow port 4a. Although not shown in detail, the tip of the overflow hose 22 is connected to the drainage channel 8.
 そして、前記水槽4の外底部には、周知構成の駆動機構15が配設されている。詳しい図示及び説明は省略するが、この駆動機構15は、例えばアウタロータ形のDC三相ブラシレスモータからなる洗濯機モータ16(図3参照)を備えている。また、駆動機構15は、中空の槽軸18、該槽軸18を貫通する撹拌軸19、前記洗濯機モータ16の回転駆動力をそれら軸18、19に選択的に伝達するクラッチ機構17(図3参照)等を備えている。前記槽軸18の上端には、前記洗濯槽10が連結されており、前記撹拌軸19の上端に、前記パルセータ12が連結されている。尚、図3にのみ示すように、駆動機構15には、前記洗濯機モータ16の回転位置ひいては回転数を検知する回転センサ33や、洗濯機モータ16に流れる電流を検知する電流センサ34も設けられている。 A well-known drive mechanism 15 is disposed on the outer bottom of the water tank 4. Although detailed illustration and description are omitted, the drive mechanism 15 includes a washing machine motor 16 (see FIG. 3) formed of, for example, an outer rotor type DC three-phase brushless motor. The drive mechanism 15 includes a hollow tank shaft 18, a stirring shaft 19 that passes through the tank shaft 18, and a clutch mechanism 17 that selectively transmits the rotational driving force of the washing machine motor 16 to the shafts 18 and 19 (see FIG. 3). The washing tub 10 is connected to the upper end of the tank shaft 18, and the pulsator 12 is connected to the upper end of the stirring shaft 19. As shown only in FIG. 3, the drive mechanism 15 is also provided with a rotation sensor 33 that detects the rotation position of the washing machine motor 16 and thus the rotation speed, and a current sensor 34 that detects the current flowing through the washing machine motor 16. It has been.
 前記クラッチ機構17は、例えばソレノイドを駆動源とした周知構成を備えており、コンピュータを主体として構成された制御装置21により切替え制御される。周知のように、クラッチ機構17は、第1の状態と第2の状態とを切替える。第1の状態は、洗濯槽10を水槽4に対し回転自在にして、洗濯機モータ16の回転力を前記槽軸18及び撹拌軸19の双方に伝達する状態である。第2の状態は、洗濯槽10を水槽4に対し固定状態にロックして、洗濯機モータ16の回転力を撹拌軸19のみに伝達する状態である。 The clutch mechanism 17 has a well-known configuration using, for example, a solenoid as a drive source, and is switched and controlled by a control device 21 configured mainly with a computer. As is well known, the clutch mechanism 17 switches between the first state and the second state. The first state is a state in which the washing tub 10 is rotatable with respect to the water tub 4 and the rotational force of the washing machine motor 16 is transmitted to both the tub shaft 18 and the stirring shaft 19. The second state is a state in which the washing tub 10 is locked in a fixed state with respect to the water tub 4 and the rotational force of the washing machine motor 16 is transmitted only to the stirring shaft 19.
 これにて、駆動機構15は、クラッチ機構17により、洗い行程及びためすすぎの行程では洗濯槽10の固定つまり停止状態で、洗濯機モータ16の駆動力を、撹拌軸19を介してパルセータ12に伝達する。これにて、パルセータ12のみが、直接正逆回転駆動される。また、駆動機構15は、脱水行程及び後述の残水脱水動作時等には、クラッチ機構17により、槽軸18と撹拌軸19との連結状態で、洗濯機モータ16の駆動力を槽軸18を介して洗濯槽10に伝達する。これにて、洗濯槽10及びパルセータ12が一方向に高速で直接回転駆動される。 Thus, the driving mechanism 15 causes the clutch mechanism 17 to apply the driving force of the washing machine motor 16 to the pulsator 12 through the agitation shaft 19 while the washing tub 10 is fixed or stopped in the washing process and the rinsing process. introduce. As a result, only the pulsator 12 is directly driven forward and reverse. Further, the drive mechanism 15 applies the driving force of the washing machine motor 16 to the tank shaft 18 by the clutch mechanism 17 in a coupled state between the tank shaft 18 and the agitation shaft 19 during the dehydration process and the residual water dehydration operation described later. Is transmitted to the washing tub 10. Thereby, the washing tub 10 and the pulsator 12 are directly driven to rotate in one direction at a high speed.
 前記トップカバー3は、下面が開口すると共に、その上面が前方に向けて下降傾斜するような薄形の中空箱状をなす。このトップカバー3の中央部には、前記洗濯槽10の上方、即ち水槽カバー13の開口部13aの上方に位置して、ほぼ円形の洗濯物の出入口3aが形成されている。トップカバー3の上面には、全体として矩形パネル状をなし、前記出入口3aを開閉するための蓋23が設けられている。 The top cover 3 has a thin hollow box shape having an open bottom surface and an upper surface inclined downward. A substantially circular laundry entrance / exit 3a is formed at the center of the top cover 3 so as to be located above the washing tub 10, that is, above the opening 13a of the water tub cover 13. On the upper surface of the top cover 3, a rectangular panel is formed as a whole, and a lid 23 for opening and closing the entrance 3a is provided.
 また、このトップカバー3の上面の前辺部には、横長形状の操作パネル24が設けられている。詳しく図示はしないが、この操作パネル24は、ユーザが洗濯機1に対する電源の入り切りや各種の設定・指示等を行うための操作部や、必要な表示を行う表示部等を備えて構成されている。操作パネル24の裏面側には、電子ユニットからなる制御装置21が設けられている。 Further, a horizontally long operation panel 24 is provided on the front side of the top surface of the top cover 3. Although not shown in detail, the operation panel 24 includes an operation unit for the user to turn on and off the washing machine 1 and various settings / instructions, a display unit for performing necessary display, and the like. Yes. A control device 21 composed of an electronic unit is provided on the back side of the operation panel 24.
 そして、トップカバー3の後部には、給水源この場合水道から供給される水を、給水経路を通して水槽4内即ち洗濯槽10内に給水するための給水機構25が設けられている。本実施形態では、給水機構25は、接続口26、この接続口26から二股に分岐して延びる第1及び第2の2個の給水経路27及び28、各給水経路27及び28を夫々開閉する第1及び第2給水弁29及び30、注水ケース32を備えている。そして、前記第1給水経路27には、微細気泡発生装置としてのUFBユニット31が設けられている。 In the rear portion of the top cover 3, a water supply mechanism 25 is provided for supplying water supplied from a water supply source, in this case, water supply, into the water tank 4 or the washing tub 10 through the water supply path. In the present embodiment, the water supply mechanism 25 opens and closes the connection port 26, the first and second two water supply paths 27 and 28 that extend in a bifurcated manner from the connection port 26, and the water supply paths 27 and 28, respectively. First and second water supply valves 29 and 30 and a water injection case 32 are provided. The first water supply path 27 is provided with a UFB unit 31 as a fine bubble generating device.
 そのうち接続口26は、図示しない水道の蛇口に接続された接続ホースの先端部が接続され、家庭用の所定の水道水圧(例えば1.0~3.0kgf/cm2 (0.1~0.29MPa)程度)で、水が供給される。前記第1給水経路27及び第2給水経路28は、夫々、先端部が前記注水ケース32に接続されている。このとき、注水ケース32には、水の入口部として第1入口管35(図2にのみ図示)及び図示しない第2入口管が設けられている。前記第1給水経路27の終端部、即ち図2に示す第1給水弁29の出口部としての出口管37が前記第1入口管35に接続されている。また、図示はしないが、第2給水経路28の第2給水弁30の出口部が第2入口管に接続されている。 Among them, the connection port 26 is connected to a tip end of a connection hose connected to a tap faucet (not shown), and a predetermined tap water pressure for home use (for example, 1.0 to 3.0 kgf / cm @ 2 (0.1 to 0.29 MPa). ) Grade), water is supplied. The first water supply path 27 and the second water supply path 28 are each connected to the water injection case 32 at the tip. At this time, the water injection case 32 is provided with a first inlet pipe 35 (shown only in FIG. 2) and a second inlet pipe (not shown) as water inlet portions. An end pipe of the first water supply path 27, that is, an outlet pipe 37 as an outlet of the first water supply valve 29 shown in FIG. 2 is connected to the first inlet pipe 35. Although not shown, the outlet of the second water supply valve 30 of the second water supply path 28 is connected to the second inlet pipe.
 第1給水弁29及び第2給水弁30は、電磁的に開閉動作する開閉弁からなり、夫々前記第1給水経路27及び第2給水経路28を開閉する。これら第1給水弁29及び第2給水弁30は、前記制御装置21により制御される。前記注水ケース32は、周知のように、箱状をなし、その内部には図示しない洗剤収容ケースが引出し可能に設けられている。注水ケース32の下部の出口部32aには、図1に示すように、可撓性を有する給水ホース36の基端側が接続されている。この給水ホース36の先端部が前記水槽カバー13の給水口20に接続されている。 The first water supply valve 29 and the second water supply valve 30 are open / close valves that open and close electromagnetically, and open and close the first water supply path 27 and the second water supply path 28, respectively. The first water supply valve 29 and the second water supply valve 30 are controlled by the control device 21. As is well known, the water injection case 32 has a box shape, and a detergent storage case (not shown) is provided in the interior thereof so that it can be drawn out. As shown in FIG. 1, a proximal end side of a flexible water supply hose 36 is connected to the outlet portion 32 a at the lower portion of the water injection case 32. The tip of the water supply hose 36 is connected to the water supply port 20 of the water tank cover 13.
 これにて、第1給水弁29が開放されると、水道水が第1給水経路27を通って、第1入口管35から注水ケース32に供給される。洗剤収容ケース33内に洗剤が収容されている場合には、その洗剤を溶かしながら流れ、出口部32aから給水ホース36を通して水槽4内に供給される。このとき、後述するように、第1給水経路27を流れる水が、UFBユニット31を通ることにより、多量のファインバブルが混入されたファインバブル水とされて、注水ケース32内に供給される。 Thus, when the first water supply valve 29 is opened, the tap water is supplied from the first inlet pipe 35 to the water injection case 32 through the first water supply path 27. When the detergent is stored in the detergent storage case 33, the detergent flows while being dissolved, and is supplied from the outlet portion 32 a into the water tank 4 through the water supply hose 36. At this time, as will be described later, the water flowing through the first water supply path 27 passes through the UFB unit 31, becomes fine bubble water mixed with a large amount of fine bubbles, and is supplied into the water injection case 32.
 一方、第2給水弁30が開放されると、水道水が第2給水経路28を通って、注水ケース32に供給される。洗剤収容ケース内に洗剤が収容されている場合には、その洗剤を溶かしながら流れ、出口部32aから給水ホース36を通して水槽4内に供給される。この場合、第2給水経路28を通して、ファインバブルを含まない水道水がそのまま水槽4内に供給される。またこのとき、第2給水経路28の水の流量は、第1給水経路27の水の流量よりも大きくなるように構成されている。 On the other hand, when the second water supply valve 30 is opened, tap water is supplied to the water injection case 32 through the second water supply path 28. When the detergent is stored in the detergent storage case, the detergent flows while being dissolved, and is supplied into the water tank 4 through the water supply hose 36 from the outlet 32a. In this case, tap water not containing fine bubbles is supplied directly into the water tank 4 through the second water supply path 28. At this time, the flow rate of the water in the second water supply path 28 is configured to be larger than the flow rate of the water in the first water supply path 27.
 そして、本実施形態では、第1給水経路27の第1給水弁29と注水ケース32の入口部との間に位置して、微細気泡発生装置であるUFBユニット31が設けられる。UFBユニット31は、ベンチュリ管の原理を利用したものである。このとき、図2に示すように、UFBユニット31は、第1給水弁29の出口管37と、注水ケース32の第1入口管35との間に位置して、それらに挟まれるように組付けられている。つまり、UFBユニット31は、第1給水弁29の出口部に設けられ、また、UFBユニット31の流出口が、注水ケース32の水の入口部に接続されている。以下、図2を参照して、UFBユニット31について述べる。 And in this embodiment, the UFB unit 31 which is a fine bubble generator is provided between the 1st water supply valve 29 of the 1st water supply path | route 27, and the inlet_port | entrance part of the water injection case 32. As shown in FIG. The UFB unit 31 utilizes the Venturi principle. At this time, as shown in FIG. 2, the UFB unit 31 is positioned between the outlet pipe 37 of the first water supply valve 29 and the first inlet pipe 35 of the water injection case 32 so as to be sandwiched between them. It is attached. That is, the UFB unit 31 is provided at the outlet of the first water supply valve 29, and the outlet of the UFB unit 31 is connected to the water inlet of the water injection case 32. Hereinafter, the UFB unit 31 will be described with reference to FIG.
 即ち、第1給水弁29の出口管37は、管状をなし、前記注水ケース32の第1入口管35側(図で左方)に向けて延びている。出口管37の先端部は、その外周面が、2段階に径小になるような段差が形成されており、これらを、右側(径大な側)から順に、第1径小部37a、第2径小部37bという。これに対し、前記注水ケース32の第1入口管35は、前記第1給水弁29側に向けて図で右方に延び、その先端内周部には、先端側に位置して、内径がやや径大となる、つまり肉厚が小さくなるようにして、薄肉部35aが形成されている。第1入口管35の内周部のうち、前記薄肉部35aよりも内側は、段部35bを介して径小部35cとされている。 That is, the outlet pipe 37 of the first water supply valve 29 has a tubular shape and extends toward the first inlet pipe 35 side (left side in the drawing) of the water injection case 32. The front end portion of the outlet pipe 37 is formed with a step so that the outer peripheral surface thereof is reduced in diameter in two steps. These steps are arranged in order from the right side (larger diameter side) to the first small diameter portion 37a and the first small diameter portion 37a. This is referred to as a two-diameter small portion 37b. On the other hand, the first inlet pipe 35 of the water injection case 32 extends rightward in the drawing toward the first water supply valve 29 side, and the inner peripheral portion of the first inlet pipe 35 is located on the distal end side and has an inner diameter. The thin-walled portion 35a is formed so as to have a slightly larger diameter, that is, a smaller thickness. Of the inner peripheral portion of the first inlet pipe 35, the inside of the thin portion 35a is a small-diameter portion 35c via a step portion 35b.
 このとき、薄肉部35aの内径寸法は、前記出口管37の第1径小部37aの外径寸法に対応している。径小部35cの内径寸法は、UFBユニット31の流出口側の外形寸法に対応している。注水ケース32の第1入口管35内に、UFBユニット31が図で右方から挿入される。この状態で、薄肉部35aの内周面に第1径小部37aの外周が嵌合するようにして、第1給水弁29の出口管37が接続される。また、出口管37の第2径小部37bの外周面と、薄肉部35aの内周面との間には、Oリング38が設けられる。 At this time, the inner diameter of the thin portion 35a corresponds to the outer diameter of the first small diameter portion 37a of the outlet pipe 37. The inner diameter dimension of the small-diameter portion 35 c corresponds to the outer dimension on the outlet side of the UFB unit 31. The UFB unit 31 is inserted into the first inlet pipe 35 of the water injection case 32 from the right side in the figure. In this state, the outlet pipe 37 of the first water supply valve 29 is connected such that the outer periphery of the first small diameter portion 37a is fitted to the inner peripheral surface of the thin portion 35a. An O-ring 38 is provided between the outer peripheral surface of the second small diameter portion 37b of the outlet pipe 37 and the inner peripheral surface of the thin portion 35a.
 前記UFBユニット31は、例えば合成樹脂からなる。UFBユニット31は、全体として、軸方向を図で左右方向とした円柱状をなし、その中心部即ち軸心部には、図2で左右方向に貫通する流路39が形成されている。この流路39内を、水が矢印A方向に、即ち図2で右から左に向けて流れる。UFBユニット31の外径寸法は、前記第1入口管35の内径寸法に対応している。これと共に、UFBユニット31の外周壁の途中部右寄り部位には、軸方向に僅かな間隔で2箇所に位置してリング状の凸部41、41が一体に形成されている。 The UFB unit 31 is made of, for example, a synthetic resin. The UFB unit 31 as a whole has a cylindrical shape whose axial direction is the left-right direction in the drawing, and a flow path 39 penetrating in the left-right direction in FIG. 2 is formed in the center portion, that is, the axial center portion. In this flow path 39, water flows in the direction of arrow A, that is, from right to left in FIG. The outer diameter dimension of the UFB unit 31 corresponds to the inner diameter dimension of the first inlet pipe 35. At the same time, ring-shaped convex portions 41, 41 are integrally formed at two positions on the middle of the outer peripheral wall of the UFB unit 31 at a slight interval in the axial direction.
 このUFBユニット31は、第1入口管35内に、開口側(図で右側)から挿入して取付けられるようになっており、その際に、一方(図で左側)の凸部41が、第1入口管35内の段差35b部分に係止してストッパとなる。またこのとき、UFBユニット31の外周面と、第1入口管35の薄肉部35a内周面との間には、2個の凸部41、41間に位置して、Oリング42が設けられる。 The UFB unit 31 is inserted and attached into the first inlet pipe 35 from the opening side (right side in the figure). At this time, one convex part 41 (left side in the figure) The stopper is engaged with the step 35b in the one inlet pipe 35. Further, at this time, an O-ring 42 is provided between the two convex portions 41 and 41 between the outer peripheral surface of the UFB unit 31 and the inner peripheral surface of the thin portion 35a of the first inlet pipe 35. .
 前記流路39は、UFBユニット31の図の左右両端面で開口し、図で右側の開口部が流入口39aとされ、図で左側の開口部が流出口39bとされている。そして、前記流路39の中間部に、流路断面積が最も小さくなる絞り部39cが一定長を有した形態で形成されている。流路39は、流入口39aから絞り部39cまでの間が、流路断面積が次第に小さくなっていくテーパ状に構成されている。絞り部39cから流出口39bまでの間が、流路断面積が絞り部39cと同一内径の円筒状に構成されている。 The flow path 39 is opened at both left and right end faces in the figure of the UFB unit 31, and the right opening in the figure is an inlet 39a, and the left opening in the figure is an outlet 39b. A narrowed portion 39c having the smallest channel cross-sectional area is formed in the middle portion of the channel 39 with a certain length. The flow path 39 is configured in a tapered shape from the inlet 39a to the throttle portion 39c so that the cross-sectional area of the flow path gradually decreases. Between the throttle part 39c and the outlet 39b, the flow path cross-sectional area is configured in a cylindrical shape having the same inner diameter as the throttle part 39c.
 更に、UFBユニット31には、絞り部39cの流路を更に狭めるようにして、4個の突出部40(2個のみ図示)が設けられている。これら突出部40は先端が尖っており、90度間隔で絞り部39cの外周側から内側に凸となるように設けられている。これら突出部40の各先端の尖った部分が互いに所定の間隔をもって向き合うことによって、その隙間が十文字(×字)のスリット状となっている。本実施形態では、突出部40は、合成樹脂製でありUFBユニット31に一体に設けられている。突出部40を別部材から構成することも可能である。 Furthermore, the UFB unit 31 is provided with four projecting portions 40 (only two are shown) so as to further narrow the flow path of the throttle portion 39c. These protrusions 40 have sharp tips and are provided so as to protrude inward from the outer peripheral side of the throttle portion 39c at intervals of 90 degrees. The pointed portions of the tips of the protrusions 40 face each other at a predetermined interval, so that the gap is a cross-shaped (x-shaped) slit shape. In the present embodiment, the protrusion 40 is made of synthetic resin and is provided integrally with the UFB unit 31. It is also possible to configure the protrusion 40 from a separate member.
 このようなUFBユニット31においては、第1給水弁29の開放によって水が流入口39aから流路39内に流入すると、絞り部39cまで流路断面積が絞られることによって、流体力学のいわゆるベンチュリ効果により流速が高められる。更に水流が突出部40先端の十文字状の隙間を通過することにより圧力が急激に低下される。これにより、水中に溶存している空気が、微細な気泡として多量に析出されるようになる。この場合、第1給水弁29の出口管37から排出される水の流れ方向と、UFBユニット31の流路39における水の流れ方向とが同方向、即ち矢印A方向になるように構成されている。 In such a UFB unit 31, when water flows into the flow path 39 from the inflow port 39a by opening the first water supply valve 29, the flow path cross-sectional area is reduced to the throttle portion 39c, so-called venturi of hydrodynamics. The effect increases the flow rate. Further, the water pressure passes through the cross-shaped gap at the tip of the protrusion 40, so that the pressure is rapidly reduced. Thereby, a large amount of air dissolved in water is deposited as fine bubbles. In this case, the flow direction of the water discharged from the outlet pipe 37 of the first water supply valve 29 and the flow direction of the water in the flow path 39 of the UFB unit 31 are configured in the same direction, that is, the direction of the arrow A. Yes.
 本実施形態のUFBユニット31により、直径が50nm~1μm程度のウルトラファインバブル、及び、直径が1μm~数百μm程度のマイクロバブルを含んだ微細気泡(ファインバブル)を多量に発生させることができる。このようにUFBユニット31を通ることによって、多量のファインバブルが混入された水(以下、「ファインバブル水」と称する)が、流出口39bから流出される。そのファインバブル水は、注水ケース32の洗剤収容ケース内に流入し、給水口20から水槽4内に注水される。尚、このUFBユニット31に関しては、例えば本出願人の先の出願に係る、特願2014-129097号に詳しい。 The UFB unit 31 of the present embodiment can generate a large amount of fine bubbles (fine bubbles) including ultrafine bubbles having a diameter of about 50 nm to 1 μm and microbubbles having a diameter of about 1 μm to several hundred μm. . By passing through the UFB unit 31 in this way, water mixed with a large amount of fine bubbles (hereinafter referred to as “fine bubble water”) flows out from the outflow port 39b. The fine bubble water flows into the detergent storage case of the water injection case 32 and is injected into the water tank 4 from the water supply port 20. The UFB unit 31 is described in detail in Japanese Patent Application No. 2014-129097 related to the earlier application of the present applicant, for example.
 図3は、上記した制御装置21を中心とした、洗濯機1の電気的構成を概略的に示している。制御装置21は、CPU、ROM、RAM等からなるマイクロコンピュータを主体として構成され、洗濯機1全体を制御して洗濯運転の各行程を実行する。この制御装置21は、前記操作パネル24からの操作信号が入力されると共に、操作パネル24の各表示部の表示を制御する。また、制御装置21には、前記水位センサ9の検知した洗濯槽10内の水位検知信号が入力されると共に、前記回転センサ33、電流センサ34からの検知信号が入力される。 FIG. 3 schematically shows an electrical configuration of the washing machine 1 with the above-described control device 21 as the center. The control device 21 is mainly configured by a microcomputer including a CPU, a ROM, a RAM, and the like, and controls the entire washing machine 1 to execute each step of the washing operation. The control device 21 receives an operation signal from the operation panel 24 and controls display on each display unit of the operation panel 24. Further, the control device 21 receives a water level detection signal in the washing tub 10 detected by the water level sensor 9 and detection signals from the rotation sensor 33 and the current sensor 34.
 制御装置21は、前記洗濯機モータ16、クラッチ機構17を駆動制御すると共に、前記第1給水弁29、第2給水弁30、排水弁7を制御する。以上の構成により、制御装置21は、操作パネル24におけるユーザの洗濯コースの設定操作等に応じて、各センサからの入力信号や予め記憶された制御プログラムに基づいて、洗濯機1の各機構を制御する。自動運転のコースにあっては、制御装置21は、洗い、すすぎ、脱水の各行程からなる洗濯運転を自動で実行する。このとき本実施形態では、自動運転のコースでは、後述する残水脱水動作、つまり槽洗浄が含まれるコースと、槽洗浄が含まれないコースとの選択が可能とされている。 The control device 21 drives and controls the washing machine motor 16 and the clutch mechanism 17, and controls the first water supply valve 29, the second water supply valve 30, and the drain valve 7. With the above configuration, the control device 21 controls each mechanism of the washing machine 1 based on input signals from each sensor and a pre-stored control program in accordance with a user's setting operation of the washing course on the operation panel 24. Control. In the course of automatic operation, the control device 21 automatically executes a washing operation including washing, rinsing, and dehydration processes. At this time, in this embodiment, in the course of automatic operation, it is possible to select a residual water dehydration operation described later, that is, a course including tank cleaning and a course not including tank cleaning.
 尚、自動運転のコースにおけるすすぎ行程では、例えば脱水すすぎ(中間脱水)動作と、1回のためすすぎ動作とが順に実行される。ためすすぎ動作の後に、排水動作が行われて最終の脱水行程に移行する。また、自動運転のコースにあっては、運転開始時に、洗濯槽10内の衣類の布量検知動作が実行される。その布量検知動作の結果に基づいて、洗いやためすすぎ時の水位が複数段階で設定されると共に、各行程の実行時間などが自動設定される。洗濯槽10内への給水制御は、水位センサ9の水位検知に基づいて行われる。布量検知動作は、周知のように、駆動機構15によりパルセータ12を短時間だけ回転駆動し、その時に洗濯機モータ16に流れる電流を電流センサ34により検出することに基づいて行われる。 In the rinsing process in the course of automatic driving, for example, a dehydration rinsing (intermediate dehydration) operation and a rinsing operation for one time are sequentially performed. Therefore, after the rinsing operation, the draining operation is performed and the final dehydration process is started. In the course of automatic driving, the cloth amount detection operation of the clothes in the washing tub 10 is executed at the start of driving. Based on the result of the cloth amount detection operation, the water level at the time of washing and rinsing is set in a plurality of stages, and the execution time of each process is automatically set. Water supply control into the washing tub 10 is performed based on the water level detection of the water level sensor 9. As is well known, the cloth amount detection operation is performed based on the fact that the pulsator 12 is rotationally driven for a short time by the drive mechanism 15 and the current flowing through the washing machine motor 16 is detected by the current sensor 34 at that time.
 さて、本実施形態では、次の動作説明(図4の説明)で詳述するように、制御装置21は、主としてそのソフトウエア構成により、残水脱水動作つまり槽洗浄が含まれる自動運転コースが選択された場合に、すすぎ行程この場合ためすすぎ動作後の脱水行程に移行する前に、槽洗浄、即ち洗濯槽10の外周面及び水槽4の内面の洗浄のための残水脱水動作を実行する。この残水脱水動作は、洗濯槽10内に、UFBユニット31により生成されたファインバブル水を含んだ水が所定水位に溜められた状態で、該洗濯槽10を所定回転数まで回転させることにより行われる。 In this embodiment, as will be described in detail in the next description of the operation (description of FIG. 4), the control device 21 has an automatic operation course including a residual water dehydration operation, that is, a tank cleaning, mainly by its software configuration. If selected, before the rinsing process, in this case, the dehydration process after the rinsing operation is performed, the tank cleaning, that is, the residual water dehydrating operation for cleaning the outer peripheral surface of the washing tub 10 and the inner surface of the water tub 4 is executed. . This residual water dewatering operation is performed by rotating the washing tub 10 to a predetermined number of revolutions in a state where water containing fine bubble water generated by the UFB unit 31 is stored in a predetermined water level in the washing tub 10. Done.
 より具体的には、本実施形態では、制御装置21は、すすぎ行程のためすすぎ動作を実行する際には、洗濯槽10つまり水槽4内に、布量に応じたためすすぎ水位、布量大のときには例えば容量で58リットルまで給水を行う。このときの給水は、第1給水弁29の開放による第1給水経路27を通したファインバブル水の給水と、第2給水弁30の開放による第2給水経路28を通した水道水の給水とが順に行われる。従って、水道水とファインバブル水とが混合した状態の給水が行われる。この場合、ファインバブル水の混合比率は、例えば25%以上とされる。給水後、パルセータ12が間欠的に正逆回転されることにより、設定された時間のためすすぎが行われる。 More specifically, in this embodiment, when executing the rinsing operation for the rinsing process, the control device 21 has a rinsing water level and a large amount of cloth in the washing tub 10, that is, the water tub 4 because of the amount of cloth. Sometimes, for example, water is supplied up to 58 liters in volume. Water supply at this time includes the supply of fine bubble water through the first water supply path 27 by opening the first water supply valve 29, and the supply of tap water through the second water supply path 28 by opening the second water supply valve 30. Are performed in order. Therefore, water supply in a state where tap water and fine bubble water are mixed is performed. In this case, the mixing ratio of fine bubble water is, for example, 25% or more. After the water supply, the pulsator 12 is intermittently rotated forward and backward to perform rinsing for the set time.
 そして、制御装置21は、ためすすぎの終了後に、排水弁7を開いて洗濯槽10内が所定水位、例えば容量で25リットルになるまで、排水を行う。洗濯槽10内が所定水位となったら排水弁7を閉じる。これと共に、クラッチ機構12をパルセータ12側から洗濯槽10側に切替え、洗濯機モータ16を所定回転数、例えば150rpmで回転させることにより、所定時間、例えば1分間の残水脱水動作が行われる。また、上記した残水脱水動作における、洗濯槽10内の所定水位、及び、洗濯槽10の所定回転数は、残水脱水動作における遠心力で、洗濯槽10内の水が前記溢水口4a近傍の高さまで上昇するように予め設定されている。 Then, after the end of rinsing, the control device 21 opens the drain valve 7 and drains until the inside of the washing tub 10 reaches a predetermined water level, for example, 25 liters in volume. When the inside of the washing tub 10 reaches a predetermined water level, the drain valve 7 is closed. At the same time, the clutch mechanism 12 is switched from the pulsator 12 side to the washing tub 10 side, and the washing machine motor 16 is rotated at a predetermined rotational speed, for example, 150 rpm, whereby a residual water dewatering operation is performed for a predetermined time, for example, 1 minute. Further, the predetermined water level in the washing tub 10 and the predetermined rotation speed of the washing tub 10 in the residual water dewatering operation described above are the centrifugal force in the residual water dewatering operation, and the water in the washing tub 10 is in the vicinity of the overflow port 4a. It is set in advance so as to rise to the height of.
 上記残水脱水動作が行われた後、制御装置21は、排水弁7を開いて洗濯槽10内からの排水を行うと共に、洗濯槽10の回転数を例えば数百rpmまで更に上昇させ、最終の脱水行程を所定時間実行する。尚、洗い行程の開始時の給水にあっても、洗濯槽10内には、第1給水経路27を通してファインバブル水が給水され、ファインバブル水を用いて洗い行程が実行される。この場合も、水道水とファインバブル水とを混合させて使用するようにしても良い。 After the residual water dewatering operation is performed, the control device 21 opens the drain valve 7 to drain the water from the washing tub 10, and further increases the number of rotations of the washing tub 10 to, for example, several hundred rpm. The dehydration process is performed for a predetermined time. Even in the water supply at the start of the washing process, fine bubble water is supplied into the washing tub 10 through the first water supply path 27, and the washing process is executed using the fine bubble water. Also in this case, tap water and fine bubble water may be mixed and used.
 次に、上記構成の洗濯機1の動作について、主として図4を参照して述べる。図4は、制御装置21が実行する、すすぎ行程かから最終の脱水行程における制御の状態を示している。即ち、時間経過に伴う、第1給水弁29、第2給水弁30の開閉状態、排水弁7の開閉状態、洗濯槽10内の水位、洗濯槽10の回転数の変化の様子を示している。ここで、ためすすぎの開始時点においては、洗濯槽10の水位はリセット水位、即ち容量で0リットルとされ、排水弁7は閉じられる。尚、クラッチ機構17はパルセータ12側にあり、洗濯槽10は停止つまり固定状態にある。 Next, the operation of the washing machine 1 configured as described above will be described mainly with reference to FIG. FIG. 4 shows a state of control from the rinsing process to the final dehydration process, which is executed by the control device 21. That is, it shows how the first water supply valve 29 and the second water supply valve 30 are opened / closed, the drain valve 7 is opened / closed, the water level in the washing tub 10 and the rotation speed of the washing tub 10 change with time. . Here, at the start of rinsing, the water level in the washing tub 10 is set to the reset water level, that is, 0 liter in capacity, and the drain valve 7 is closed. The clutch mechanism 17 is on the pulsator 12 side, and the washing tub 10 is stopped, that is, in a fixed state.
 ためすすぎが開始されると(時刻T0)、まず、第1給水弁29が開放され、給水機構25の第1給水経路27により、洗濯槽10、即ち水槽4内にファインバブル水が供給されるようになる。このとき第2給水弁30は閉じられている。一定時間が経過する、或いは洗濯槽10内が予め決められた水位になると(時刻T1)、第1給水弁29が閉じられ、今度は第2給水弁30が開放される。これにより、今度は、第2給水経路28により洗濯槽10即ち水槽4内に、水この場合水道水が給水される。 Therefore, when rinsing is started (time T0), first, the first water supply valve 29 is opened, and fine bubble water is supplied into the washing tub 10, that is, the water tub 4, through the first water supply path 27 of the water supply mechanism 25. It becomes like this. At this time, the second water supply valve 30 is closed. When a certain time elapses or the inside of the washing tub 10 reaches a predetermined water level (time T1), the first water supply valve 29 is closed and this time the second water supply valve 30 is opened. Thereby, water, in this case, tap water, is supplied to the washing tub 10, that is, the water tub 4 by the second water supply path 28.
 これら給水の動作により、洗濯槽10内の水位は次第に上昇していき、設定されたすすぎ水位、つまり高水位が水位センサ9により検出されると、第2給水弁30が閉じられ、給水が終了する(時刻T2)。このとき、洗濯槽10内においては、水道水とファインバブル水とが混合された水が、溜められるようになる。尚、第1給水弁29の開放と第2給水弁30の開放との順序は逆であっても良い。ためすすぎは、パルセータ12を間欠的に正逆回転させることにより一定時間行われる。これにて、洗濯槽10内で衣類がすすぎ水位の水に浸かった状態で、パルセータ12により水流が生成され、すすぎが行われる。 By these water supply operations, the water level in the washing tub 10 gradually rises, and when the set rinse water level, that is, the high water level is detected by the water level sensor 9, the second water supply valve 30 is closed and the water supply ends. (Time T2). At this time, in the washing tub 10, water in which tap water and fine bubble water are mixed is stored. Note that the order of opening the first water supply valve 29 and opening the second water supply valve 30 may be reversed. The rinsing is performed for a predetermined time by intermittently rotating the pulsator 12 forward and backward. Thus, a water flow is generated by the pulsator 12 in the state where the clothes are immersed in the water of the rinsing water level in the washing tub 10, and the rinsing is performed.
 ためすすぎの動作が終了すると(時刻T3)、残水脱水動作が開始される。この残水脱水動作では、排水弁7が開放されると共に、クラッチ機構17が洗濯槽10側に切替えられる。排水弁7の開放により、洗濯槽10内の水位が次第に低下していく。そして、水位センサ9により所定水位、例えば容量で25リットルが検出されると(時刻T4)、排水弁7が閉塞され、洗濯機モータ16の駆動により洗濯槽10が所定回転数、例えば150rpmで回転されるようになる。 When the rinsing operation is completed (time T3), the remaining water dewatering operation is started. In this residual water dewatering operation, the drain valve 7 is opened and the clutch mechanism 17 is switched to the washing tub 10 side. By opening the drain valve 7, the water level in the washing tub 10 gradually decreases. When the water level sensor 9 detects a predetermined water level, for example, 25 liters in volume (time T4), the drain valve 7 is closed, and the washing tub motor 16 is driven to rotate the washing tub 10 at a predetermined rotation speed, for example, 150 rpm. Will come to be.
 これにより、洗濯槽10が回転して、水槽4の内壁面と洗濯槽10の外周面との間で、水流が生じ、洗濯槽10の外周面や水槽4の内面などが水流で洗われるいわゆる槽洗浄がなされる。また、洗濯槽10の回転に伴う遠心力により、洗濯槽10の外周側ひいては水槽4の内面に向かう水の圧力が大きくなり、効果的な洗浄が行われる。このとき、残水脱水動作の開始時の水位は比較的低くても、残水脱水動作中においては、洗濯槽10内の水面が、遠心力により、外周側がいわばすり鉢状に持ち上がる現象が生ずる。この場合、洗濯槽10の回転数が高いほど遠心力も大きいので、外周側での水面の持ち上がり高さも大きくなる。 Thereby, the washing tub 10 rotates, a water flow is generated between the inner wall surface of the water tub 4 and the outer peripheral surface of the washing tub 10, and the outer peripheral surface of the washing tub 10 and the inner surface of the water tub 4 are washed with the water flow. The tank is cleaned. Further, due to the centrifugal force accompanying the rotation of the washing tub 10, the pressure of water toward the outer peripheral side of the washing tub 10 and hence the inner surface of the water tub 4 is increased, and effective cleaning is performed. At this time, even if the water level at the start of the residual water dewatering operation is relatively low, during the residual water dewatering operation, a phenomenon occurs in which the water surface in the washing tub 10 is lifted up like a bowl by the centrifugal force. In this case, the higher the rotation speed of the washing tub 10, the greater the centrifugal force, and the higher the water surface lifting height on the outer peripheral side.
 本実施形態では、残水脱水動作時の所定水位及び所定回転数が、洗濯槽10内の水が溢水口4a近傍の高さまで上昇するように設定されている。溢水口4aは、洗濯運転を行う際の最高水位より高い位置に設けられ、水槽4の内面や洗濯槽10の外面に汚れが付着するのは、主として溢水口4aよりも下方である。従って、残水脱水動作時には、溢水口4aに届く程度まで外周側での水面が持ち上がるようになり、水を溢水させて無駄にすることを抑えつつ、水槽4及び洗濯槽10の高さ方向全体に対する効果的な洗浄を行うことが可能となる。 In this embodiment, the predetermined water level and the predetermined rotation speed during the residual water dewatering operation are set so that the water in the washing tub 10 rises to a height near the overflow port 4a. The overflow port 4a is provided at a position higher than the highest water level when the washing operation is performed, and it is mainly below the overflow port 4a that the dirt adheres to the inner surface of the water tub 4 and the outer surface of the washing tub 10. Therefore, at the time of residual water dewatering operation, the water surface on the outer peripheral side is lifted to the extent that it reaches the overflow port 4a, and the entire height direction of the water tub 4 and the washing tub 10 is suppressed while preventing the water from overflowing and wasting. It is possible to perform an effective cleaning for.
 ここで、残水脱水動作の開始時には、洗濯槽10つまり水槽4内には、UFBユニット31により生成されたファインバブル水を含んだ水が溜められている。これにより、残水脱水動作には、ファインバブルが多量に混入されたファインバブル水が用いられる。ファインバブルは、液体中例えば水中で、不規則な運動を生ずるブラウン運動を起こし、その速度は浮上速度よりも速いため、長時間に渡って液体中に止まる性質を有する。ファインバブルの表面はマイナスに帯電しており、ファインバブル同士は反発し合い、結合することがない。 Here, at the start of the residual water dewatering operation, water containing fine bubble water generated by the UFB unit 31 is stored in the washing tub 10, that is, the water tub 4. As a result, fine bubble water mixed with a large amount of fine bubbles is used in the residual water dewatering operation. Fine bubbles have a property of staying in the liquid for a long time because they cause Brownian motion that causes irregular motion in the liquid, for example, in water, and the speed is higher than the flying speed. The surface of the fine bubble is negatively charged, and the fine bubbles repel each other and do not bond.
 このようなファインバブル水を残水脱水動作に用いることにより、例えば水道水のみを用いた場合と比べて槽洗浄の効果を高めることができる。その理由は、次のようなことであると推測される。第1に、ファインバブルが、水槽4や洗濯槽10の表面に当たることによる物理的な衝撃によって、水だけの場合と比べて汚れを剥がす作用が得られる。第2に、ファインバブルがはじけることによるキャビテーション効果によっても、水槽4や洗濯槽10の表面から汚れを剥がすことが期待できる。第3に、ファインバブルの表面はマイナスに帯電しているため、汚れを吸着する機能を果たす。 By using such fine bubble water for the residual water dewatering operation, for example, the effect of washing the tank can be enhanced as compared with the case where only tap water is used. The reason is presumed to be as follows. 1stly, the effect | action which removes dirt compared with the case of only water is acquired by the physical impact by a fine bubble hitting the surface of the water tub 4 or the washing tub 10. FIG. Secondly, it can be expected that the dirt is removed from the surface of the water tub 4 or the washing tub 10 also by the cavitation effect caused by the fine bubbles repelling. Third, since the surface of the fine bubble is negatively charged, it functions to absorb dirt.
 一定時間、例えば1分間の残水脱水動作が行われると(時刻T5)、残水脱水動作が終了し、最終の脱水行程に移行される。脱水行程は、排水弁7が開放されて排水が行われると共に、洗濯槽10の回転数が、高速の回転数、例えば数百rpmまで上昇されることにより行われる。この脱水行程は所定時間実行され、洗濯運転が終了する。尚、洗濯運転開始時に、槽洗浄を含まない自動運転コースが設定されていた場合には、上記した残水脱水動作が省略され、ためすすぎ後、排水が行われ、引続き脱水行程が行われる。この場合のためすすぎは、水道水のみを用いて行うようにしても良い。 When a residual water dewatering operation is performed for a certain time, for example, 1 minute (time T5), the residual water dewatering operation is finished, and the process proceeds to the final dewatering process. The dewatering process is performed by opening the drain valve 7 and draining the water, and increasing the rotational speed of the washing tub 10 to a high speed, for example, several hundred rpm. This dehydration process is executed for a predetermined time, and the washing operation ends. If an automatic operation course that does not include tank washing is set at the start of the washing operation, the above-described residual water dewatering operation is omitted, and after rinsing, drainage is performed, and the dewatering process is continued. In this case, rinsing may be performed using only tap water.
 このように本実施形態の洗濯機1によれば、次のような作用・効果を得ることができる。即ち、上記構成においては、制御装置21は、すすぎ行程において、ためすすぎの行程とその後の脱水行程との間に、残水脱水動作を実行する。これにより、洗濯槽10の外周面や水槽4の内面などの汚れが付着しやすい部位が、水流で洗われるようになり、いわば自動的に槽洗浄が行われるようになる。残水脱水動作は、別途の槽洗浄コースではなく、通常の洗濯運転のコースの実行時に行われるので、ユーザにとって煩わしい操作などが不要となる。残水脱水動作は、ためすすぎ時に洗濯槽10内に溜められる水、いわば残水を利用して行われるので、全部を新たな水に入れ替える場合と比べて、水を節約しながら槽洗浄を行うことができる。 Thus, according to the washing machine 1 of the present embodiment, the following actions and effects can be obtained. That is, in the above configuration, the control device 21 performs the residual water dewatering operation between the rinsing process and the subsequent dewatering process in the rinsing process. As a result, parts such as the outer peripheral surface of the washing tub 10 and the inner surface of the water tub 4 that are easily contaminated are washed with a water flow, so that the tub cleaning is automatically performed. The residual water dewatering operation is not performed in a separate tank cleaning course but in a normal washing operation course, so that troublesome operations for the user are unnecessary. The residual water dewatering operation is performed by using the water stored in the washing tub 10 at the time of rinsing, that is, the residual water, so that the tub cleaning is performed while saving water as compared with the case where all the water is replaced with new water. be able to.
 このとき、残水脱水動作には、UFBユニット31により生成されたファインバブルが混入されたファインバブル水を含んだ水が用いられるので、例えば水道水のみを用いた場合と比べて槽洗浄の効果を高めることができる。この結果、本実施形態によれば、洗濯運転の行程中に槽洗浄を実行できるものにあって、槽洗浄を効果的に行うことができるという優れた効果を奏する。尚、本実施形態では、ファインバブル水を洗い行程及びためすすぎの行程でも使用することにより、衣類の汚れ落ちの効果をより高めることができる。 At this time, since the water containing fine bubble water mixed with fine bubbles generated by the UFB unit 31 is used for the residual water dewatering operation, for example, the effect of washing the tank as compared with the case of using only tap water. Can be increased. As a result, according to the present embodiment, the tank cleaning can be executed during the washing operation, and the tank cleaning can be effectively performed. In addition, in this embodiment, the effect of the stain | pollution | contamination removal of clothing can be heightened more by using a fine bubble water also in the washing | cleaning process and the rinse process.
 また、特に本実施形態では、残水脱水動作時の洗濯槽10内の所定水位、及び、洗濯槽10の所定回転数を、残水脱水動作における遠心力で、洗濯槽10内の水が溢水口4a近傍の高さまで上昇する位置及び数値に設定した。これにより、溢水口4aから水を溢水させて無駄にすることを抑えつつ、水槽4及び洗濯槽10の高さ方向全体に対する効果的な洗浄を行うことが可能となる。 In particular, in the present embodiment, the water in the washing tub 10 overflows with the predetermined water level in the washing tub 10 during the remaining water dewatering operation and the predetermined rotation speed of the washing tub 10 by the centrifugal force in the remaining water dewatering operation. The position and numerical value rising to the height near the mouth 4a were set. Thereby, it becomes possible to perform the effective washing | cleaning with respect to the whole height direction of the water tub 4 and the washing tub 10, suppressing the overflow of water from the overflow opening 4a.
 更に本実施形態では、ためすすぎの行程を実行する際に、洗濯槽10内に、第1給水経路27を通してUFBユニット31により生成されたファインバブル水、及び、第2給水経路28を通した水、この場合水道水を混合した水を用いるようにした。そして、すすぎ行程後に、洗濯槽10内の一部の水を排水した上で、残水脱水動作を実行するように構成した。これにより、残水脱水動作を行うにあたり、ファインバブル水、或いは水を追加することはなく、水の無駄なく済ませることができる。 Further, in the present embodiment, when performing the rinsing process, fine bubble water generated by the UFB unit 31 through the first water supply path 27 and water through the second water supply path 28 in the washing tub 10. In this case, water mixed with tap water was used. Then, after the rinsing process, a portion of the water in the washing tub 10 is drained and the remaining water dewatering operation is executed. As a result, when performing the residual water dewatering operation, fine bubble water or water is not added, and water can be wasted.
 尚、すすぎ行程において、ファインバブル水のみを100%で用いると、高水位までの給水に比較的に時間がかかってしまう事情がある。そのため、水道水との混合水を用いることにより、通常の水道水を給水する分だけ、全体としての給水時間を短く済ませることができる。ちなみに、本発明者の研究によれば、ファインバブル水を少なくとも25%以上含む、言い換えると水道水を75%以下とすることにより、高いすすぎの効果や、十分な槽洗浄の効果を得ることができた。 In the rinsing process, if only fine bubble water is used at 100%, there is a situation that it takes a relatively long time to supply water to a high water level. Therefore, by using the mixed water with tap water, the water supply time as a whole can be shortened by the amount of supplying normal tap water. By the way, according to the study of the present inventor, by containing at least 25% fine bubble water, in other words, by making tap water 75% or less, a high rinsing effect and a sufficient tank washing effect can be obtained. did it.
 (2)第2の実施形態
 図5は、第2の実施形態を示すものである。この第2の実施形態が、上記第1の実施形態と異なるところは、制御装置21が実行する、すすぎ行程から最終の脱水行程における制御にある。即ち、本実施形態では、制御装置21は、第2給水経路28により水道水を給水してためすすぎの行程を実行し、すすぎ行程後に、排水弁7を開いて洗濯槽10即ち水槽4内の全ての水を排水する。制御装置21は、その後、第1給水弁29を開放して第1給水経路27によりファインバブル水を洗濯槽10内に所定水位、例えば容量で25リットルまで給水し、残水脱水動作を実行する。
(2) Second Embodiment FIG. 5 shows a second embodiment. The second embodiment differs from the first embodiment in the control from the rinsing process to the final dehydration process, which is executed by the control device 21. That is, in the present embodiment, the control device 21 performs a rinsing process by supplying tap water through the second water supply path 28, and after the rinsing process, the drain valve 7 is opened to open the washing tub 10, that is, the water tank 4. Drain all water. Thereafter, the control device 21 opens the first water supply valve 29, supplies fine bubble water into the washing tub 10 to a predetermined water level, for example, 25 liters in volume, through the first water supply path 27, and executes a residual water dewatering operation. .
 具体的には、図5に示すように、ためすすぎが開始されると(時刻T0)、排水弁7が閉じられた状態で、第2給水弁30が開放され、給水機構25の第2給水経路28により、洗濯槽10即ち水槽4内に水道水が供給される。このとき、第1給水弁29は閉じられている。洗濯槽10内が設定されたすすぎ水位、この場合高水位になると、第2給水弁30が閉じられて給水が終了する(時刻T11)。その後一定時間のためすすぎが実行される。 Specifically, as shown in FIG. 5, when rinsing is started (time T0), the second water supply valve 30 is opened with the drain valve 7 closed, and the second water supply of the water supply mechanism 25 is performed. The tap water is supplied into the washing tub 10, that is, the water tub 4 by the path 28. At this time, the first water supply valve 29 is closed. When the rinsing water level in the washing tub 10 is set, in this case, the water level becomes high, the second water supply valve 30 is closed and water supply ends (time T11). Thereafter, rinsing is performed for a certain time.
 ためすすぎの動作が終了すると(時刻T12)、残水脱水動作が開始される。この残水脱水動作では、まず、排水弁7が開放されると共に、クラッチ機構17が洗濯槽10側に切替えられる。排水弁7の開放により、洗濯槽10内の水位が次第に低下していき、この場合、水位がゼロになるまで排水が行われる。排水が終了すると(時刻T13)、排水弁7が閉塞されると共に、第1給水弁29が開放されて、第1給水経路27を通してファインバブル水が洗濯槽10内に給水される。 When the rinsing operation is completed (time T12), the remaining water dewatering operation is started. In this residual water dewatering operation, first, the drain valve 7 is opened, and the clutch mechanism 17 is switched to the washing tub 10 side. By opening the drain valve 7, the water level in the washing tub 10 gradually decreases, and in this case, drainage is performed until the water level becomes zero. When drainage ends (time T13), the drain valve 7 is closed, the first water supply valve 29 is opened, and fine bubble water is supplied into the washing tub 10 through the first water supply path 27.
 これにて、洗濯槽10内においてファインバブル水が溜められるようになり、水位センサ9により所定水位、例えば容量で25リットルが検出されると、第1給水弁29が閉塞されて給水が終了する(時刻T14)。そして、洗濯機モータ16の駆動により洗濯槽10が所定回転数、例えば150rpmで回転され、ファインバブル水を用いた効果的な槽洗浄が行われるようになる。一定時間、例えば1分間の残水脱水動作が行われると(時刻T15)、残水脱水動作が終了し、最終の脱水行程に移行される。 As a result, fine bubble water can be stored in the washing tub 10, and when the water level sensor 9 detects a predetermined water level, for example, 25 liters in volume, the first water supply valve 29 is closed and the water supply ends. (Time T14). Then, the washing tub 10 is driven at a predetermined number of rotations, for example, 150 rpm by the driving of the washing machine motor 16, and effective tub cleaning using fine bubble water is performed. When the remaining water dewatering operation is performed for a certain time, for example, 1 minute (time T15), the remaining water dewatering operation is finished, and the process proceeds to the final dewatering process.
 このような第2の実施形態によれば、ためすすぎに用いられた水この場合水道水が排水された上で、新たに生成されたファインバブル水を供給して、残水脱水動作を行うことができる。そのため、ファインバブル水を用いて槽洗浄を効果的に行うことができ、それに加え、よりきれいな水で槽洗浄を行うことができる。また、ためすすぎの行程については、第2給水経路28を通した水この場合水道水を用いることにより、すすぎ時の給水時間を短く済ませることができることは勿論である。 According to the second embodiment, water used for rinsing, in this case, tap water is drained, and then newly generated fine bubble water is supplied to perform a residual water dehydrating operation. Can do. Therefore, the tank cleaning can be effectively performed using fine bubble water, and in addition, the tank cleaning can be performed with clean water. In addition, as for the rinsing process, it is a matter of course that the water supply time at the time of rinsing can be shortened by using the water through the second water supply path 28, in this case tap water.
 (3)第3の実施形態
 図6は、第3の実施形態を示すものである。この図6は、やはり制御装置21が実行する、すすぎ行程から最終の脱水行程における制御状態を示している。この第3の実施形態が、上記第2の実施形態と異なるところは、次の点にある、即ち、制御装置21は、すすぎ行程後に、排水弁7を開いて洗濯槽10即ち水槽4内の全ての水を排水した後、洗濯槽10内に、ファインバブル水と、水道水とを混合した状態の水を所定水位、例えば容量で25リットルまで給水し、残水脱水動作を実行する。
(3) Third Embodiment FIG. 6 shows a third embodiment. FIG. 6 shows a control state from the rinsing process to the final dehydration process, which is also executed by the control device 21. The third embodiment is different from the second embodiment in the following point, that is, the control device 21 opens the drain valve 7 after the rinsing process to open the washing tub 10, that is, the water tub 4. After all the water has been drained, water in a state where fine bubble water and tap water are mixed is supplied into the washing tub 10 to a predetermined water level, for example, 25 liters in volume, and a residual water dewatering operation is performed.
 具体的には、図6に示すように、上記第2の実施形態と同様にためすすぎの行程が実行され、ためすすぎの動作が終了すると(時刻T12)、残水脱水動作が開始される。この残水脱水動作では、まず、排水弁7が開放されると共に、クラッチ機構17が洗濯槽10側に切替えられる。排水弁7の開放により、洗濯槽10内の水位が次第に低下していき、この場合、水位がゼロになるまで排水が行われる。排水が終了すると(時刻T21)、排水弁7が閉塞されると共に、まず、第1給水弁29が開放されて、第1給水経路27を通してファインバブル水が洗濯槽10内に給水される。 Specifically, as shown in FIG. 6, the rinsing process is executed in the same manner as in the second embodiment, and when the rinsing operation ends (time T12), the residual water dewatering operation is started. In this residual water dewatering operation, first, the drain valve 7 is opened, and the clutch mechanism 17 is switched to the washing tub 10 side. By opening the drain valve 7, the water level in the washing tub 10 gradually decreases, and in this case, drainage is performed until the water level becomes zero. When drainage is completed (time T21), the drain valve 7 is closed, and first, the first water supply valve 29 is opened, and fine bubble water is supplied into the washing tub 10 through the first water supply path 27.
 一定時間が経過する、或いは洗濯槽10内が予め決められた水位になると(時刻T22)、第1給水弁29が閉じられ、今度は第2給水弁30が開放される。これにより、今度は、第2給水経路28により洗濯槽10即ち水槽4内に水(水道水)が給水される。これら給水の動作により、洗濯槽10内の水位はゼロから次第に上昇していき、水位センサ9が所定水位を検出すると、第2給水弁30が閉塞されて給水が終了する(時刻T23)。このとき、洗濯槽10内においては、水道水とファインバブル水とが混合された水、例えばファインバブル水を25%以上含む混合水が、所定水位で溜められるようになる。 When a certain time elapses or the inside of the washing tub 10 reaches a predetermined water level (time T22), the first water supply valve 29 is closed, and this time the second water supply valve 30 is opened. Thereby, water (tap water) is supplied into the washing tub 10, that is, the water tub 4 by the second water supply path 28. With these water supply operations, the water level in the washing tub 10 gradually rises from zero, and when the water level sensor 9 detects a predetermined water level, the second water supply valve 30 is closed and the water supply ends (time T23). At this time, in the washing tub 10, water in which tap water and fine bubble water are mixed, for example, mixed water containing 25% or more of fine bubble water, can be stored at a predetermined water level.
 そして、洗濯機モータ16の駆動により洗濯槽10が所定回転数、例えば150rpmで回転され、ファインバブル水の混合水を用いた効果的な槽洗浄が行われるようになる。一定時間、例えば1分間の残水脱水動作が行われると(時刻T24)、残水脱水動作が終了し、最終の脱水行程に移行される。 Then, the washing tub motor 16 is driven to rotate the washing tub 10 at a predetermined rotation number, for example, 150 rpm, so that effective tub cleaning using the mixed water of fine bubble water is performed. When the residual water dewatering operation is performed for a certain time, for example, 1 minute (time T24), the residual water dewatering operation is finished, and the process proceeds to the final dewatering process.
 このような第3の実施形態によれば、ためすすぎに用いられた水この場合水道水が排水された上で、新たに生成されたファインバブル水と、新たに給水された水道水との混合水により、残水脱水動作を行うことができる。そのため、ファインバブル水の混合水を用いて槽洗浄を効果的に行うことができる。それに加え、よりきれいな混合水を用いて槽洗浄を行うことができる。残水脱水動作のための給水に要する時間も、例えばファインバブル水を100%で用いた場合等よりも、比較的短く済ませることができる。ためすすぎの行程における給水時間を短く済ませることができることは勿論である。 According to the third embodiment, the water used for rinsing, in this case, after the tap water is drained, the newly generated fine bubble water and the newly supplied tap water are mixed. Residual water dehydration can be performed with water. Therefore, tank cleaning can be performed effectively using the mixed water of fine bubble water. In addition, tank cleaning can be performed using cleaner mixed water. The time required for water supply for the residual water dewatering operation can also be made relatively shorter than when, for example, fine bubble water is used at 100%. Therefore, it goes without saying that the water supply time in the rinsing process can be shortened.
 (4)第4の実施形態
 図7は、第4の実施形態を示すものである。この図7は、やはり制御装置21が実行する、すすぎ行程から最終の脱水行程における制御状態を示している。この第4の実施形態が、上記第1~第3の実施形態と異なるところは、次の点にある。即ち、本実施形態では、制御装置21は、第2給水経路28により水道水を給水してためすすぎの行程を実行し、すすぎ行程後に、排水弁7を開いて洗濯槽10即ち水槽4内の一部の水を排水する。そして、制御装置21は、洗濯槽10内に残った水に対し、第1給水弁29を開放して第1給水経路27によりファインバブル水を所定水位、例えば容量で25リットルまで給水し、溜められた混合水を用いて残水脱水動作を実行する。
(4) Fourth Embodiment FIG. 7 shows a fourth embodiment. FIG. 7 shows a control state from the rinsing process to the final dehydration process, which is also executed by the control device 21. The fourth embodiment is different from the first to third embodiments in the following points. That is, in the present embodiment, the control device 21 performs a rinsing process by supplying tap water through the second water supply path 28, and after the rinsing process, the drain valve 7 is opened to open the washing tub 10, that is, the water tank 4. Drain some water. Then, the control device 21 opens the first water supply valve 29 for the water remaining in the washing tub 10 and supplies fine bubble water through the first water supply path 27 to a predetermined water level, for example, 25 liters in volume. The residual water dewatering operation is executed using the mixed water.
 具体的には、図7に示すように、上記第2、第3の実施形態と同様にためすすぎの行程が実行され、ためすすぎの動作が終了すると(時刻T12)、残水脱水動作が開始される。この残水脱水動作では、まず、排水弁7が開放されると共に、クラッチ機構17が洗濯槽10側に切替えられる。排水弁7の開放により、洗濯槽10内の水位が次第に低下していき、この場合、所定水位よりも低い水位、例えば容量で15リットル程度(図7では「極低」水位と表示)まで排水が行われる。排水が終了すると(時刻T31)、排水弁7が閉塞されると共に、第1給水弁29が開放されて、第1給水経路27を通してファインバブル水が洗濯槽10内に給水される。 Specifically, as shown in FIG. 7, the rinsing process is executed in the same manner as in the second and third embodiments, and when the rinsing operation is completed (time T12), the residual water dewatering operation is started. Is done. In this residual water dewatering operation, first, the drain valve 7 is opened, and the clutch mechanism 17 is switched to the washing tub 10 side. By opening the drain valve 7, the water level in the washing tub 10 gradually decreases. In this case, the water level is lower than a predetermined level, for example, about 15 liters in volume (indicated as “very low” level in FIG. 7). Is done. When drainage is completed (time T31), the drain valve 7 is closed, the first water supply valve 29 is opened, and fine bubble water is supplied into the washing tub 10 through the first water supply path 27.
 これにて、洗濯槽10内に残っている水に、ファインバブル水が追加混合されながら溜められるようになる。水位センサ9により所定水位、例えば容量で25リットルが検出されると、第1給水弁29が閉塞されて給水が終了する(時刻T32)。この状態では、洗濯槽10内には、水道水とファインバブル水とが混合した混合水が所定水位で溜められている。そして、洗濯機モータ16の駆動により洗濯槽10が所定回転数、例えば150rpmで回転され、ファインバブル水を25%以上含む混合水を用いた効果的な槽洗浄が行われるようになる。一定時間、例えば1分間の残水脱水動作が行われると(時刻T33)、残水脱水動作が終了し、最終の脱水行程に移行される。 This will allow fine bubble water to be stored while being mixed with the water remaining in the washing tub 10. When the water level sensor 9 detects a predetermined water level, for example, 25 liters in volume, the first water supply valve 29 is closed and the water supply ends (time T32). In this state, in the washing tub 10, mixed water in which tap water and fine bubble water are mixed is stored at a predetermined water level. Then, the washing tub motor 16 is driven to rotate the washing tub 10 at a predetermined rotation speed, for example, 150 rpm, so that effective tub cleaning using mixed water containing 25% or more of fine bubble water is performed. When the residual water dewatering operation is performed for a certain time, for example, 1 minute (time T33), the residual water dewatering operation is finished, and the process proceeds to the final dewatering process.
 このような第4の実施形態によれば、ためすすぎ後の排水が、ためすすぎに用いた水この場合水道水が洗濯槽10内に一部残った状態で終了する。そして、その状態から新たに生成されたファインバブル水が供給され、それらの混合水により、残水脱水動作を行うことができる。そのため、ファインバブル水の混合水を用いて槽洗浄を効果的に行うことができる。残水脱水動作を行うにあたり、ためすすぎに用いた水を一部残すので、その分だけ水の無駄を少なく済ませることができる。これと共に、残水脱水動作のための給水に要する時間も比較的短く済ませることができる。すすぎ行程について水道水を用いることにより、すすぎ時の給水時間を短く済ませることができることは勿論である。 According to the fourth embodiment, the drainage after the rinsing is finished with the water used for the rinsing, in this case the tap water partially remaining in the washing tub 10. And the fine bubble water newly produced | generated from the state is supplied, and residual water dehydration operation | movement can be performed with those mixed water. Therefore, tank cleaning can be performed effectively using the mixed water of fine bubble water. In performing the residual water dewatering operation, a part of the water used for rinsing is left, so that waste of water can be reduced accordingly. At the same time, the time required for water supply for the residual water dewatering operation can be made relatively short. Of course, by using tap water for the rinsing process, the water supply time at the time of rinsing can be shortened.
 (5)第5の実施形態、その他の実施形態
 以下、図示は省略するが、第5の実施形態並びにその他の実施形態について述べる。まず、第5の実施形態として、次のように構成することができる。
(5) Fifth Embodiment and Other Embodiments Hereinafter, although not shown, the fifth embodiment and other embodiments will be described. First, the fifth embodiment can be configured as follows.
 即ち上記第1~第4の実施形態では、残水脱水動作を実行する所定水位を、残水脱水動作における遠心力で、洗濯槽10内の水が溢水口4a近傍の高さまで上昇するように予め設定した。第5の実施形態では、これに代えて、残水脱水動作における所定水位を、洗濯槽10内のパルセータ12の上端を超えない水位とする。これによれば、残水脱水動作の終了時においては、パルセータ12の上方に収容されている衣類よりも、洗濯槽10内の水位の方が低いため、洗濯槽10内の水に衣類が浸かることがなくなる。従って、衣類への汚れの再付着を防止することができる。 That is, in the first to fourth embodiments, the predetermined water level for executing the residual water dewatering operation is set so that the water in the washing tub 10 rises to a height near the overflow port 4a by the centrifugal force in the residual water dewatering operation. Pre-set. In the fifth embodiment, instead of this, the predetermined water level in the residual water dewatering operation is set to a water level that does not exceed the upper end of the pulsator 12 in the washing tub 10. According to this, at the end of the residual water dewatering operation, since the water level in the washing tub 10 is lower than the clothing housed above the pulsator 12, the clothing is immersed in the water in the washing tub 10. Nothing will happen. Therefore, the reattachment of dirt to the clothes can be prevented.
 尚、上記各実施形態では、残水脱水動作における洗濯槽10の所定回転数を固定的に設けるようにしたが、布量検知に基づき、布量が小さい即ち重量が軽い場合には、目標回転数を通常よりも高くする、例えば180rpmとする等の変更も可能である。また、残水脱水動作時に、洗濯槽10のアンバランス回転の虞を検知した場合には、回転数を所定回転数よりも低下させる、例えば120rpmとする制御を行うことも可能である。 In each of the above embodiments, the predetermined number of rotations of the washing tub 10 in the residual water dewatering operation is fixedly provided. However, based on the detection of the amount of cloth, when the amount of cloth is small, that is, the weight is light, the target rotation It is possible to change the number to be higher than usual, for example, 180 rpm. Further, when the possibility of unbalanced rotation of the washing tub 10 is detected during the residual water dewatering operation, it is also possible to perform control to reduce the rotational speed to a predetermined rotational speed, for example, 120 rpm.
 給水機構25つまり第2給水経路28により給水する水として、単純な水道水だけでなく、貯水タンクや浴槽等の外部の給水源からポンプを用いて貯留水等を汲み上げて給水するものであっても良い。また、温水や例えば銀イオンを含む抗菌水等を用いても良い。上記各実施形態では、水道水とファインバブル水との双方を洗濯槽10内に供給する場合、第1給水弁29と第2給水弁30とを交互に開放、即ちどちらか一方を開放させる構成とした。これに対し、第1水経路27においてファインバブル水を生成するに十分な水圧が得られるのであれば、同時に両方の給水弁を開放させるといったことも可能である。 As water supplied by the water supply mechanism 25, that is, the second water supply path 28, not only simple tap water but also water is pumped from an external water supply source such as a water storage tank or a bathtub using a pump. Also good. Further, warm water or antibacterial water containing, for example, silver ions may be used. In each said embodiment, when supplying both tap water and fine bubble water in the washing tub 10, the 1st water supply valve 29 and the 2nd water supply valve 30 are open | released alternately, ie, either one is opened. It was. On the other hand, if water pressure sufficient to produce fine bubble water is obtained in the first water path 27, it is possible to open both water supply valves at the same time.
 その他、上記各実施形態で説明した、動作時間、洗濯槽10の回転数、水位や水量等の具体的数値は、一例を示したものに過ぎず、適宜変更して実施し得る。洗濯運転のコースの内容についても、ためすすぎを複数回行うなど様々な変更が可能である。更には、洗濯機の各機構のハードウエア構成、微細気泡発生装置の具体的構造等についても、様々な変更が可能である。上記実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。本実施形態およびその変形は、発明の範囲および要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 In addition, the specific numerical values such as the operation time, the rotation speed of the washing tub 10, the water level, and the water amount described in each of the above embodiments are merely examples, and can be changed as appropriate. Various changes can be made to the contents of the washing driving course, such as multiple rinsings. Furthermore, various changes can be made to the hardware configuration of each mechanism of the washing machine, the specific structure of the fine bubble generating device, and the like. The above embodiments are presented as examples, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (7)

  1.  水槽(4)と、
     前記水槽(4)の内部に設けられ衣類が収容される洗濯槽(10)と、
     前記洗濯槽(10)の底部に設けられた撹拌体(12)と、
     前記洗濯槽(10)内に給水する給水機構(25)と、
     微細気泡が混入されたファインバブル水を生成する微細気泡発生装置(31)と、
     前記洗濯槽(10)内から排水を行う排水機構(7)と、
     前記撹拌体(12)及び前記洗濯槽(10)を回転駆動する駆動機構(15)と、
     前記各機構(25、31、7、15)を制御して洗い、すすぎ、脱水の行程を実行する制御装置(21)とを備え、
     前記制御装置(21)は、すすぎ行程後の脱水行程に移行する前に、前記洗濯槽(10)内に、前記微細気泡発生装置(31)により生成されたファインバブル水を含んだ水が所定水位に溜められた状態で、該洗濯槽(10)を所定回転数まで回転させる残水脱水動作を実行する洗濯機。
    Aquarium (4),
    A washing tub (10) provided inside the water tub (4) and containing clothes;
    A stirring body (12) provided at the bottom of the washing tub (10);
    A water supply mechanism (25) for supplying water into the washing tub (10);
    A fine bubble generator (31) for producing fine bubble water mixed with fine bubbles;
    A drainage mechanism (7) for draining from the washing tub (10);
    A drive mechanism (15) for rotationally driving the agitator (12) and the washing tub (10);
    A control device (21) for controlling the respective mechanisms (25, 31, 7, 15) to perform washing, rinsing and dehydration processes;
    Before the control device (21) shifts to the dehydration process after the rinsing process, the water containing fine bubble water generated by the fine bubble generator (31) is predetermined in the washing tub (10). A washing machine that performs a residual water dewatering operation of rotating the washing tub (10) to a predetermined number of revolutions while being stored in a water level.
  2.  前記水槽(4)の上部には溢水口(4a)が設けられていると共に、
     前記残水脱水動作における遠心力で、前記洗濯槽(10)内の水が前記溢水口(4a)近傍の高さまで上昇するように、該残水脱水動作時の所定水位及び所定回転数が設定されている請求項1記載の洗濯機。
    The upper part of the water tank (4) is provided with an overflow port (4a),
    The predetermined water level and the predetermined rotation speed during the residual water dewatering operation are set so that the water in the washing tub (10) rises to a height near the overflow port (4a) by the centrifugal force in the residual water dewatering operation. The washing machine according to claim 1, wherein
  3.  前記残水脱水動作における所定水位は、前記撹拌体(12)の上端を超えない水位である請求項1記載の洗濯機。 The washing machine according to claim 1, wherein the predetermined water level in the residual water dewatering operation is a water level not exceeding an upper end of the stirring body (12).
  4.  前記制御装置(21)は、すすぎ行程を実行する際に、前記洗濯槽(10)内に、前記微細気泡発生装置(31)により生成されたファインバブル水を含んだ水を給水し、前記すすぎ行程後に、前記排水機構(7)により該洗濯槽(10)内の一部の水を排水した上で、残水脱水動作を実行する請求項1から3のいずれか一項に記載の洗濯機。 The control device (21) supplies water containing fine bubble water generated by the fine bubble generating device (31) into the washing tub (10) when the rinsing process is performed, and the rinsing is performed. The washing machine according to any one of claims 1 to 3, wherein after the stroke, the drainage mechanism (7) drains a part of the water in the washing tub (10) and then performs a residual water dewatering operation. .
  5.  前記制御装置(21)は、前記給水機構(25)による給水を行ってすすぎ行程を実行し、すすぎ行程後に、前記排水機構(7)により前記洗濯槽(10)内の水を排水し、その後、前記微細気泡発生装置(31)により生成されたファインバブル水を給水した上で、残水脱水動作を実行する請求項1から3のいずれか一項に記載の洗濯機。 The control device (21) performs the rinsing process by supplying water by the water supply mechanism (25), and after the rinsing process, drains the water in the washing tub (10) by the drainage mechanism (7). The washing machine according to any one of claims 1 to 3, wherein the fine water is generated by the fine bubble generator (31) and then the residual water dewatering operation is performed.
  6.  前記制御装置(21)は、前記給水機構(25)による給水を行ってすすぎ行程を実行し、すすぎ行程後に、前記排水機構(7)により排水を行った後、前記洗濯槽(10)内に、前記給水機構(25)による水と、前記微細気泡発生装置(31)により生成されたファインバブル水とを混合するように供給した上で、残水脱水動作を実行する請求項1から3のいずれか一項に記載の洗濯機。 The said control apparatus (21) performs water supply by the said water supply mechanism (25), performs a rinse process, and after draining by the said drainage mechanism (7) after a rinse process, in the said washing tub (10) The residual water dewatering operation is performed after supplying water by the water supply mechanism (25) and fine bubble water generated by the fine bubble generator (31) to be mixed. The washing machine according to any one of the above.
  7.  前記制御装置(21)は、前記給水機構(25)による給水を行ってすすぎ行程を実行し、すすぎ行程後に、前記排水機構(7)により前記洗濯槽(10)内の一部の水を排水し、その後、前記洗濯槽(10)内に残った水に、前記微細気泡発生装置(31)により生成されファインバブル水を混合した上で、残水脱水動作を実行する請求項1から3のいずれか一項に記載の洗濯機。 The said control apparatus (21) performs water supply by the said water supply mechanism (25), performs a rinse process, and drains some water in the said washing tub (10) by the said drainage mechanism (7) after a rinse process. The water remaining in the washing tub (10) is then mixed with fine bubble water generated by the fine bubble generator (31), and the residual water dewatering operation is performed. The washing machine according to any one of the above.
PCT/JP2018/001597 2017-03-07 2018-01-19 Washing machine WO2018163616A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880014703.6A CN110366618A (en) 2017-03-07 2018-01-19 Washing machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017042735A JP7268954B2 (en) 2017-03-07 2017-03-07 washing machine
JP2017-042735 2017-03-07

Publications (1)

Publication Number Publication Date
WO2018163616A1 true WO2018163616A1 (en) 2018-09-13

Family

ID=63448873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001597 WO2018163616A1 (en) 2017-03-07 2018-01-19 Washing machine

Country Status (3)

Country Link
JP (1) JP7268954B2 (en)
CN (1) CN110366618A (en)
WO (1) WO2018163616A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7204320B2 (en) * 2017-08-04 2023-01-16 三星電子株式会社 Vertical washing machine and its tub cleaning method
CN111206383A (en) * 2018-11-21 2020-05-29 无锡小天鹅电器有限公司 Clothes treating device
CN112899992A (en) * 2019-12-04 2021-06-04 青岛海尔洗衣机有限公司 Microbubble shower nozzle and have washing equipment of this microbubble shower nozzle
CN111962249A (en) * 2020-08-13 2020-11-20 海信(山东)冰箱有限公司 Washing machine and control method thereof
JP2022168527A (en) * 2021-04-26 2022-11-08 青島海爾洗衣机有限公司 washing machine
JP2022168538A (en) * 2021-04-26 2022-11-08 青島海爾洗衣机有限公司 washing machine
CN115637566A (en) * 2021-07-19 2023-01-24 青岛海尔洗衣机有限公司 Clothes treating apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090090388A1 (en) * 2005-11-11 2009-04-09 Jong Min Kim Drum-type washing machine and tub cleaning method of the same
JP2009077860A (en) * 2007-09-26 2009-04-16 Panasonic Corp Drum type washing machine
JP2014133182A (en) * 2014-04-28 2014-07-24 Hitachi Appliances Inc Washing machine
JP2016002263A (en) * 2014-06-17 2016-01-12 株式会社東芝 Washing/dewatering machine
JP2016007308A (en) * 2014-06-24 2016-01-18 株式会社東芝 Washing machine
JP2016059652A (en) * 2014-09-19 2016-04-25 日立アプライアンス株式会社 Drum type washing machine
WO2017018143A1 (en) * 2015-07-29 2017-02-02 東芝ライフスタイル株式会社 Solenoid valve for liquid, method for producing solenoid valve for liquid, and washing machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090090388A1 (en) * 2005-11-11 2009-04-09 Jong Min Kim Drum-type washing machine and tub cleaning method of the same
JP2009077860A (en) * 2007-09-26 2009-04-16 Panasonic Corp Drum type washing machine
JP2014133182A (en) * 2014-04-28 2014-07-24 Hitachi Appliances Inc Washing machine
JP2016002263A (en) * 2014-06-17 2016-01-12 株式会社東芝 Washing/dewatering machine
JP2016007308A (en) * 2014-06-24 2016-01-18 株式会社東芝 Washing machine
JP2016059652A (en) * 2014-09-19 2016-04-25 日立アプライアンス株式会社 Drum type washing machine
WO2017018143A1 (en) * 2015-07-29 2017-02-02 東芝ライフスタイル株式会社 Solenoid valve for liquid, method for producing solenoid valve for liquid, and washing machine

Also Published As

Publication number Publication date
JP7268954B2 (en) 2023-05-08
CN110366618A (en) 2019-10-22
JP2018143570A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
WO2018163616A1 (en) Washing machine
CN110552155B (en) Washing machine
JP6346164B2 (en) Washing machine
JP3993156B2 (en) Drum washing machine
CN110494606B (en) Washing machine
JP6936594B2 (en) Washing machine
WO2016170726A1 (en) Washing machine
JP5641839B2 (en) Drum washing machine
JP6522385B2 (en) Washing machine
JP2019097964A (en) Washing machine
JP6920860B2 (en) Washing machine
JP2018130376A (en) Washing machine
JP2019107066A (en) Washing machine
JP2021087611A (en) Washing machine
JP6908397B2 (en) washing machine
JP2016123538A (en) Washing machine
JP6251349B1 (en) Washing machine
JP5879490B2 (en) Washing machine
JP6449419B2 (en) Washing machine
JP7085377B2 (en) washing machine
JP2015195948A (en) washing machine
KR101708639B1 (en) A washing machine and controlling method of the washing machine
JP2000037590A (en) Washing machine
WO2020216252A1 (en) Washing machine
KR102317045B1 (en) Control Method for Laundry Treating Apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764861

Country of ref document: EP

Kind code of ref document: A1