WO2018163433A1 - Communication device and decoding method - Google Patents

Communication device and decoding method Download PDF

Info

Publication number
WO2018163433A1
WO2018163433A1 PCT/JP2017/009846 JP2017009846W WO2018163433A1 WO 2018163433 A1 WO2018163433 A1 WO 2018163433A1 JP 2017009846 W JP2017009846 W JP 2017009846W WO 2018163433 A1 WO2018163433 A1 WO 2018163433A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
decoding
encoding
rnti
bit
Prior art date
Application number
PCT/JP2017/009846
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 佐野
聡 永田
ホイリン ジャン
ジュンシン ワン
スウネイ ナ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2017/009846 priority Critical patent/WO2018163433A1/en
Publication of WO2018163433A1 publication Critical patent/WO2018163433A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes

Definitions

  • the present invention relates to a communication apparatus used as a user apparatus or a base station in a wireless communication system.
  • a wireless communication system called 5G is being studied to achieve further increases in system capacity, higher data transmission speed, lower delay in the wireless section, etc. Is progressing.
  • 5G various wireless technologies are being studied in order to satisfy the requirement to achieve a delay of 1 ms or less while achieving a throughput of 10 Gbps or more. Since there is a high possibility that a wireless technology different from LTE will be adopted in 5G, in 3GPP, a wireless network supporting 5G is referred to as a new wireless network (NR: New Radio). Distinguish.
  • NR New Radio
  • eMBB extended Mobile Broadband
  • mMTC massive Machine Type Communication
  • URLLC Ultra Reliability and Low Latency Communication
  • eMBB requires higher speed and larger capacity
  • mMTC requires a large number of terminals and low power consumption
  • URLLC requires high reliability and low delay.
  • Non-Patent Document 1 There is a Polar code as a candidate that can realize the above requirement (Non-Patent Document 1).
  • the Polar code is an error correction code capable of realizing a characteristic asymptotic to the Shannon limit based on the concept of channel polarization.
  • SCD successive removal decoding method
  • SCLD sequential removal list decoding method
  • CRC Cyclic Redundancy Check
  • the base station can add a CRC (hereinafter referred to as “CRC” to mean a check value) to the downlink control information, and mask the CRC with an RNTI (Radio Network Temporary Identifier).
  • CRC Radio Network Temporary Identifier
  • the information is encoded and the information is transmitted to the user apparatus.
  • the user apparatus that has received the information determines whether the received information is information addressed to the user apparatus itself by performing determination using a CRC unmasked by the RNTI that the user apparatus itself has in the decoding process of the information. Make a decision.
  • the identifiers such as the Polar code and the RNTI are used not only for downlink communication from the base station to the user apparatus, but also for uplink communication from the user apparatus to the base station and for side link communication between the user apparatuses. It is assumed that it will be used. That is, the above problems may occur not only in downlink communication from the base station to the user apparatus, but also in uplink communication from the user apparatus to the base station and side link communication between the user apparatuses.
  • User devices and devices such as base stations are collectively referred to as communication devices.
  • the present invention has been made in view of the above points.
  • a wireless communication system that transmits encoded information to which a predetermined identifier is applied from the transmission side and detects information using the predetermined identifier on the reception side. Therefore, it is an object of the present invention to provide a technique that makes it possible to obtain a good false detection rate on the receiving side.
  • a communication device used in a wireless communication system An encoding unit that performs predetermined encoding on the input known bit value, information bit value, and padding bit value to generate encoded information; A transmission unit that creates a transmission signal from the encoding information generated by the encoding unit and transmits the transmission signal, and The padding bit value is a value converted into a predetermined identifier by the encoding, and the predetermined identifier is used for decoding the encoded information in another communication device that receives the transmission signal.
  • a featured communication device is provided.
  • a good error is detected on the reception side.
  • FIG. It is a block diagram of the radio
  • FIG. It is a block diagram of the radio
  • FIG. It is a figure for demonstrating the example of encoding of a Polar code
  • FIG. 10 is a diagram for describing an encoding process of method 2. It is a figure for demonstrating the decoding process of the method 2, and shows the outline
  • FIG. 11 is a diagram for explaining a decoding process of method 2.
  • FIG. It is a figure which shows the example of a Shorted Polar code
  • movement of encoding. 10 is a diagram for explaining an encoding process of method 3.
  • FIG. 10 is a diagram for explaining a decoding process of method 3.
  • FIG. It is a figure which shows the comparison between methods. It is a figure for demonstrating an effect.
  • 3 is a diagram illustrating an example of a functional configuration of a user device 10.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of a base station 20.
  • FIG. It is a figure which shows an example of the hardware constitutions of the user apparatus 10 and the base station 20.
  • existing technology can be used as appropriate.
  • the existing technology is, for example, existing LTE, but is not limited to existing LTE.
  • a Polar code is used, but this is only an example.
  • the present invention can be applied to other than the Polar code as long as it can transmit a known bit such as a frozen bit and sequentially decodes the received signal based on the likelihood of the received signal. It is.
  • the present invention can be applied to each of an LDPC (LOW DENCITY PARITY CHECK) code and a convolutional code.
  • the Polar code used in the present embodiment may be called by another name.
  • CRC CRC is used as an example of the error detection code, but the error detection code applicable to the present invention is not limited to CRC.
  • the target of encoding / decoding is control information.
  • the present invention can also be applied to information other than control information.
  • RNTI is used as an identifier, but the present invention is also applicable to identifiers other than RNTI.
  • RNTI is used as an example of means for identifying a signal transmitted to the user apparatus toward itself, but this is only an example.
  • the present invention is applicable not only to RNTI but also to other identifiers such as a user ID unique to the user apparatus.
  • the identifier may be assigned for each user device or may be assigned for each of a plurality of user devices. Alternatively, it may be determined in advance by specifications.
  • downlink communication is shown as a main example, but the present invention can be similarly applied to uplink communication and side link communication.
  • FIG. 1A and 1B are configuration diagrams of a radio communication system according to the present embodiment.
  • the radio communication system according to the present embodiment illustrated in FIG. 1A includes a user apparatus 10 and a base station 20.
  • a user apparatus 10 and a base station 20 are shown, but this is an example, and there may be a plurality of each.
  • the user device 10 is a communication device having a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, a communication module for M2M (Machine-to-Machine), and is wirelessly connected to the base station 20 and wireless communication system Use various communication services provided by.
  • the base station 20 is a communication device that provides one or more cells and wirelessly communicates with the user device 10.
  • the duplex method may be a TDD (Time Division Duplex) method or an FDD (Frequency Division Duplex) method.
  • the base station 20 encodes information obtained by adding CRC to downlink control information (DCI: Downlink Control Information) using a Polar code, and performs downlink control on the encoded information. It transmits using a channel (example: PDCCH (Physical Downlink Control Channel)).
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • the user apparatus 10 decodes information encoded by the Polar code by a sequential removal decoding method (SCD: Successive Canceling Decoding) or the like.
  • SCD Successive Canceling Decoding
  • a Polar code may be applied to the uplink control information.
  • the user apparatus 10 encodes information obtained by adding CRC to uplink control information (UCI: Uplink Control Information) using a Polar code, and encodes the encoded information to an uplink control channel (example: It transmits using PUCCH (Physical Uplink Control Channel).
  • the base station 20 decodes information encoded by the Polar code by, for example, a sequential removal decoding method (SCD: Successive Canceling Decoding) or the like.
  • FIG. 1B shows a case where side link communication is performed between user apparatuses as another example of the wireless communication system according to the present embodiment.
  • the user apparatus 10 encodes information obtained by adding CRC to control information (SCI: Sidelink Control Information) using the Polar code, and encodes the encoded information. It transmits using a control channel (example: PSCCH (Physical Sidelink Control Channel)).
  • the user apparatus 15 decodes the information encoded by the Polar code by, for example, a sequential removal decoding method (SCD: Successive Canceling Decoding) or the like. The same applies to communication from the user device 15 to the user device 10.
  • SCI Sidelink Control Information
  • PSCCH Physical Sidelink Control Channel
  • FIG. 2 shows a Polar code encoder in the case of three repetitions. As shown in FIG. 2, the encoder has a configuration in which communication paths are coupled by exclusive OR.
  • the encoded bits output from the encoder are N bits (x 0 ,..., X N ⁇ 1 ).
  • Polar encoding can be expressed by the following equation, and the following matrix G corresponds to the encoder portion of FIG.
  • the frozen bit may be any bit as long as it is a known bit on the transmission side and the reception side, but 0 is often used.
  • the likelihood (specifically, for example, log-likelihood ratio (LLR)) obtained by demodulation for each bit is input to the decoder on the receiving side, and the likelihood is calculated.
  • LLR log-likelihood ratio
  • the likelihood of each transmission bit is calculated, and the bit value is determined based on the likelihood.
  • the decoding result is the value of the frozen bit.
  • 3 to 5 show examples of sequential calculation.
  • Decoding of u 0 , u 1 , and u 2 is performed by the steps shown in FIGS.
  • f is a calculation that does not directly use known information (bit values for which decoding results have already been obtained, frozen bit values)
  • g is a calculation that uses known information.
  • u 0 to decode the u i, ..., u i- 1 is required to be known. Therefore, u 0 , u 1 , u 2. It is necessary to decrypt in this order.
  • method 1, method 2, and method 3 will be described as encoding and decoding methods in the present embodiment.
  • method 3 is the main method according to the present invention, since method 1 and / or method 2 can be combined with method 3, method 1 and method 2 are also methods according to the present embodiment. explain. Note that the present invention is not limited to the method 3.
  • each method it is assumed that downlink communication in which downlink control information is transmitted from the base station 20 to the user apparatus 10, but uplink communication from the user apparatus 10 to the base station 10 and user
  • the same methods as the encoding and decoding methods 1 to 3 described below can be applied to the side link communication between devices.
  • the target to which each method is applied is not limited to control information.
  • target information information to be encoded such as downlink control information
  • info abbreviation of information
  • frozen bit is written as “frozen”.
  • FIG. 6A shows an outline of the processing flow in the base station 20.
  • the base station 20 adds a CRC to the target information and masks the CRC with the RNTI (step S1).
  • the masking in the present embodiment is to take exclusive OR for each bit. Masking may be called scramble.
  • the RNTI is an identifier for identifying a user apparatus and / or a channel, and there are various types (Non-Patent Document 3).
  • C-RNTI is an RNTI for transmitting / receiving user data
  • SPS Semi Persistent Scheduling
  • P-RNTI is used for paging.
  • the RNTI is for transmitting / receiving
  • the SI-RNTI is an RNTI for transmitting / receiving broadcast information (broadcast system information).
  • the base station 20 selects an RNTI according to the current operation and uses it for masking.
  • the base station 20 performs Polar encoding on the information obtained in Step S1 (Step S2), and performs rate matching on the encoded information by puncturing or the like (Step S3).
  • a transmission signal is created from the encoded information that has undergone the rate matching, and the transmission signal is transmitted wirelessly.
  • the base station 20 adds a CRC to the information composed of the frozen bit and the target information, and masks the RNTI on the CRC.
  • a CRC masked with RNTI is represented as CRC ′.
  • the base station 20 may calculate the CRC from only the target information, or may calculate from the information including the frozen bit and the target information.
  • the base station 20 encodes the “frozen bit + target bit + CRC ′” generated as described above to obtain a code block.
  • FIG. 7A shows an outline of the flow of processing in the user apparatus 10.
  • the user apparatus 10 demodulates a signal received in the PDCCH search space and performs a decoding process (step S11), applies an RNTI to the information obtained by the decoding process, and performs a CRC check (step S12). ). If the CRC check is OK, the user device 10 uses the obtained target information.
  • the decoding operation will be described in more detail with reference to FIG. 7B.
  • the user apparatus 10 decodes the code block received from the base station 20. Then, CRC ′ is unmasked with RNTI, and CRC check is performed using the obtained CRC. When the CRC check is OK, it is determined that the target information is the target information addressed to the user device 10, and the target information is used. Further, the user apparatus 10 can determine the type of channel (data) based on the type of RNTI that has succeeded in the CRC check.
  • the user apparatus 10 may use only the SCD for decoding, may use a sequential removal list decoding method (SCLD: Successive Cancellation List Decoding), or a sequential removal list decoding method using CRC (CRC-aided SCLD). May be used.
  • SCLD Successive Cancellation List Decoding
  • CRC CRC-aided SCLD
  • the user apparatus 10 uses the L sequence with the highest likelihood as the surviving path (L is called a list size), and sets the sequence with the highest likelihood as the decoding result. I do.
  • RNTI is applied to each L sequence and CRC check is performed, and the sequence that succeeded in the CRC check is used as the decoding result.
  • FIG. 8A shows an overview of the flow of processing in the base station 20.
  • the base station 20 calculates the CRC and adds the CRC to the target information (step S21).
  • the base station 20 performs Polar encoding on the information in which the RNTI is applied to the frozen bit (Step S22), and performs rate matching on the encoded information by puncturing or the like (Step S23).
  • a transmission signal is created from the encoded information that has undergone the rate matching, and is transmitted wirelessly.
  • the base station 20 adds a frozen bit to “target information + CRC” in the process of Polar encoding.
  • the base station 20 creates “target information + frozen bit” before adding a CRC, calculates a CRC from “target information + frozen bit”, and adds the CRC to “target information + frozen bit”. It is good.
  • the base station 20 masks the RNTI on the portion of the frozen bit in the “target information + CRC + frozen bit”. For example, when the bit length of the frozen bit is the same as that of the RNTI and the frozen bits are all 0, the frozen bit after RNTI masking is the same bit as the RNTI.
  • the bit length of the frozen bit and the bit length of the RNTI may be different.
  • the bit length of RNTI is 4 bits, the values thereof are (a 0 , a 1 , a 2 , a 3 ), the bit length of the frozen bits is 8 bits, and the values are all 0. .
  • the base station 20 masks the frozen bit using “RNTI + RNTI”, and uses (a 0 , a 1 , a 2 , a 3 , a 0 , a 1 , a 2 , a 3) obtain.
  • it is known in the user apparatus 10 to use “RNTI + RNTI” for masking (use a connected RNTI).
  • the use of “RNTI + RNTI” may be notified from the base station 20 to the user apparatus 10 by higher layer signaling or broadcast information.
  • the base station 20 shortens the RNTI by applying a hash function to the RNTI so that it has the same length as the frozen bit.
  • the shortened RNTI is used for masking. It is known in the user apparatus 10 to use RNTI in which a hash function is applied to masking. Or it is good also as notifying to the user apparatus 10 from the base station 20 by higher layer signaling or broadcast information using RNTI which applied the hash function to masking.
  • the base station 20 encodes the “target information + CRC + frozen ′” generated as described above to obtain a code block.
  • RNTI bits (a 0 , a 1 , a 2 , a 3 ) are input to the encoder as frozen bits to which RNTI is applied, and information bits are input to the encoder.
  • the information bits here are “target information + CRC”.
  • x 0 ′ and x 1 ′ are punctured, and the remaining 6 bits are transmitted through resource mapping or the like. Puncturing is used, for example, to match the number of bits to be transmitted with the amount of transmission resources. Further, there are various existing methods (eg, QUP (quasi-uniform puncturing)) regarding the puncturing method of the Polar code, such as how to determine the puncturing bit, and this method can be used.
  • QUP quadsi-uniform puncturing
  • FIG. 10A shows an outline of the flow of processing in the user apparatus 10.
  • the user apparatus 10 demodulates a signal received in the PDCCH search space, and performs decoding processing using the RNTI on the obtained information (code block) (step S31).
  • a CRC check is performed on (step S32).
  • the decoding operation will be described in more detail with reference to FIG. 10B.
  • the frozen bit (frozen ') on the encoding side is the RNTI itself and is known in the user apparatus 10. Therefore, the user apparatus 10 performs the decoding process on the assumption that the frozen bit is RNTI. Thereafter, a CRC check is performed, and when the CRC check is OK, it is determined that the target information is the target information addressed to the user device 10, and the target information is used. Also, the type of channel (data) can be determined based on the type of RNTI that has been successfully CRC checked. Also in the method 2, as in the method 1, the user apparatus 10 may use SCD in decoding, SCLD, or CRC-aided SCLD.
  • RNTI is used as a frozen bit.
  • known (frozen bits or decoded bits) values u 0 ,..., U i ⁇ 1 are used. Therefore, in the decoding process shown in FIG. 11, a 0 , a 1 , and a 2 are used to decode u 3 , and when u 5 , u 6 , and u 7 are decoded, a 0 , a 1 , a 2 and a 3 are used.
  • the user apparatus 10 when there are a plurality of types of RNTIs that can be used by the base station 20, the user apparatus 10 performs decoding processing using each RNTI as a frozen bit and is used for a result of successful CRC check. It can be determined that the RNTI is the RNTI applied in the base station 20. For example, when the user apparatus 10 performs the decoding process and the CRC check using each of P-RNTI and SI-RNTI, and the user apparatus 10 succeeds in the CRC check when using the SI-RNTI, the user apparatus 10 It can be determined that broadcast information is received from the base station 20.
  • Method 3 a Shorted Polar code in which the length of input bits (information bits + frozen bits) is shortened is used on the encoding side.
  • FIG. 12 shows an example of encoding with the Shorted Polar code.
  • the number of information bits + freeze bits is 6 bits for an encoder that inputs 8 bits. In this case, 2 bits are used as padding bits.
  • the encoded bits corresponding to the padding bits are punctured.
  • the decoding processing is performed with the likelihood of the punctured bit as a likelihood (eg, + ⁇ ) indicating 0, for example.
  • the punctured bits are known at the receiving side.
  • FIG. 13A shows an overview of the processing flow in the base station 20.
  • the base station 20 calculates a CRC for the target information and adds the CRC to the target information (step S41).
  • the base station 20 adds padding bits, performs Polar encoding (step S42), and performs rate matching (shortening) on the encoded information by puncturing (step S43).
  • a transmission signal is created from the encoded information that has undergone the rate matching, and is transmitted wirelessly.
  • the base station 20 adds a frozen bit to “target information + CRC” in the process of Polar encoding.
  • the base station 20 creates “frozen bit + target information” before adding CRC, calculates CRC from “frozen bit + target information”, and adds the CRC to “frozen bit + target information”. It is good.
  • the base station 20 adds a padding bit to “frozen bit + target information + CRC”.
  • the padding bits in this embodiment are bits that become RNTI as a result of encoding. That is, the padding bits are obtained by applying an inverse function of encoding to RNTI.
  • the bit length of the padding bits and the bit length of the RNTI may be the same or different.
  • the bit length of the padding bit is longer than the bit length of the RNTI, for example, information obtained by concatenating a plurality of RNTIs (for example, RNTI + RNTI) is used as the RNTI to generate padding bits and a decoding process described later Is done.
  • the bit length of the padding bit is shorter than the bit length of the RNTI, for example, by applying a hash function to the RNTI, the RNTI is shortened, and the shortened RNTI is used as the RNTI to generate padding bits. And the decoding process mentioned later is performed.
  • Padding bits are known in the user device 10. Specifically, the user apparatus 10 holds the same inverse function as the inverse function held by the base station 20, and calculates padding bits from the RNTI using the inverse function. Alternatively, the base station 20 may notify the user apparatus 10 of the inverse function used by the base station 20 by higher layer signaling or broadcast information.
  • the base station 20 may notify the user apparatus 10 by higher layer signaling or broadcast information.
  • the base station 20 encodes “frozen bit + target information + CRC + padding bit” to obtain encoded information.
  • the encoded information includes a code block that is encoded information of “frozen bits + target information + CRC” and RNTI that is encoded information of padding bits.
  • the base station 20 punctures the RNTI in the rate matching process. For this reason, in FIG. 12, the corresponding part is described as shorted.
  • the frozen bits (u 0 , u 1 ), the information bits (u 2 to u 5 ), and the padding bits (u 6 , u 7 ) are input to the encoder, and the encoded bits are output.
  • the information bit corresponds to “target information + CRC”.
  • the coded bits (x 6 , ′, x 7 ′) corresponding to the padding bits (u 6 , u 7 ) are RNTI.
  • the RNTI bits are punctured, and the remaining 6 bits are transmitted through resource mapping or the like.
  • FIG. 15A shows an overview of the processing flow in the user apparatus 10.
  • the user apparatus 10 demodulates a signal received in a PDCCH search space, and performs decoding processing on the obtained information (likelihood for each bit) using RNTI. (Step S51), and CRC check is performed on the obtained information (step S52).
  • a frozen bit value and a padding bit value are also used as known information.
  • the decoding operation will be described in more detail with reference to FIGS. 15B and 16.
  • the bit obtained by encoding from the padding bits is RNTI, and it is punctured.
  • the user apparatus 10 performs a decoding process using the RNTI as the value of the punctured bit (shorted portion in FIG. 15B) among the received bits. Thereafter, a CRC check is performed, and when the CRC check is OK, it is determined that the target information is the target information addressed to the user device 10, and the target information is used. Also, the type of channel (data) can be determined based on the type of RNTI that has been successfully CRC checked. Also in the method 3, similarly to the methods 1 and 2, the user apparatus 10 may use SCD in decoding, SCLD, or CRC-aided SCLD.
  • the likelihood of each bit is input as an input to the decoder (right side in FIG. 16).
  • the likelihood indicating the value of RNTI is used. For example, if the bit value is 0, a large positive value (eg, + ⁇ ) is used as the likelihood. If the bit value is 1, a negative large value (eg, ⁇ ) is used as the likelihood.
  • the user apparatus 10 performs a decoding process using known information as the frozen bit value (u 0 , u 1 ) and the padding bit value (u 6 , u 7 ) on the output side.
  • the user apparatus 10 when there are a plurality of types of RNTI that can be applied in the base station 20, the user apparatus 10 performs a decoding process for each of the plurality of RNTIs using each likelihood corresponding to each bit of the RNTI as an input.
  • the CRC check is successful, it can be determined that the used RNTI is the RNTI applied in the base station 20.
  • the user apparatus 10 performs the decoding process and the CRC check using each of P-RNTI and SI-RNTI, and the user apparatus 10 succeeds in the CRC check when using the SI-RNTI, the user apparatus 10 It can be determined that broadcast information is received from the base station 20.
  • all bits corresponding to the RNTI are punctured on the transmission side, but this is an example. A part of all the bits corresponding to the RNTI may be punctured, or any of the bits corresponding to the RNTI may not be punctured. Even when puncturing is not performed, the decoding processing shown in FIG. 16 can be performed.
  • a value obtained by applying an inverse function to RNTI may be used as a value used as an input of likelihood on the decoding side, using RNTI for padding bits.
  • the base station 20 may combine the method 1 and / or the method 2 in the encoding process of the method 3, for example.
  • the base station 20 masks the RNTI on the CRC and / or frozen bit shown in FIG. 13B.
  • the user apparatus 10 performs a decoding process using the RNTI as the frozen bit.
  • the user apparatus 10 performs CRC check after unmasking the CRC portion obtained by the decoding process using the RNTI.
  • FIG. 17 shows the features of Method 1 to Method 3.
  • Method 1 RNTI is applied to CRC, and unmasking is performed using RNTI after decoding.
  • Method 2 the RNTI is applied to the frozen bit and the RNTI is used before decoding.
  • Method 3 RNTI is applied to padding bits, and RNTI is used before decoding.
  • FAR False Alarm Rate, false detection rate
  • CRC length in Method 1
  • more CRC bits are required to obtain a better FAR, and overhead increases.
  • the false detection rate can be reduced without increasing overhead, but the characteristics may be unstable or not robust.
  • the false detection rate can be reduced depending on the length of the padding bits. Note that some of the frozen bits may be padding bits, and the overhead in Method 3 can be reduced.
  • FIG. 18 shows the FAR evaluation results of Method 2 and Method 3.
  • “Frozen RNTI” indicates method 2
  • “Shortened RNTI” indicates method 3.
  • the horizontal axis in FIG. 18 is Es / N0 (signal to noise ratio), and the vertical axis is FAR.
  • FAR is better in method 3 than in method 2.
  • the method 3 can identify them better than the method 2.
  • Method 1 is similar to the existing LTE method, it is considered that implementation is relatively easy. Further, in Method 2, since RNTI is applied to the frozen bit, it is not necessary to add padding bits, and CRC unmasking or the like is unnecessary on the decoding side. Therefore, it can be considered that the processing load is low in these respects. As described above, the method 3 has an effect that a good FAR can be obtained.
  • FIG. 19 is a diagram illustrating an example of a functional configuration of the user device 10.
  • the user apparatus 10 includes a signal transmission unit 101, a signal reception unit 102, and a setting information management unit 103.
  • the functional configuration shown in FIG. 19 is merely an example. As long as the operation according to the present embodiment can be executed, the function classification and the name of the function unit may be anything.
  • the signal transmission unit 101 creates a transmission from the transmission data and transmits the transmission signal wirelessly.
  • the signal receiving unit 102 wirelessly receives various signals, and acquires higher layer signals from the received physical layer signals.
  • the setting information management unit 103 stores various setting information received from the base station 20 by the signal receiving unit 102, and preset setting information.
  • the contents of the setting information are, for example, one or a plurality of RNTIs, known bit values, and the like. Further, the setting information management unit 103 may store an inverse function used for calculating the value of the padding bit.
  • the signal transmission unit 101 includes an encoding unit 111 and a transmission unit 121.
  • the encoding unit 111 performs the encoding process of Method 3.
  • the encoding unit 111 is configured to perform encoding (eg, Polar encoding) on the known bit value, the information bit value, and the padding bit value to generate encoded information.
  • the encoding unit 111 has a function of calculating a CRC and including the CRC in the information bit value.
  • the encoding unit 111 may perform the encoding process of the method 1 and / or the method 2 in addition to the encoding process of the method 3.
  • the transmission unit 121 is configured to create a transmission signal from the encoded information generated by the encoding unit 111 and transmit the transmission signal wirelessly. For example, the transmission unit 121 punctures part of the bit values in the encoded information by rate matching, modulates the encoded information that has been punctured, and generates modulation symbols (complex-valued modulation symbols). Is generated. Also, the transmitter 121 maps modulation symbols to resource elements, generates a transmission signal (eg, OFDM signal, SC-FDMA signal), and transmits it from an antenna provided in the transmitter 121. The transmission signal is received by, for example, another communication device (eg, base station 20 or user device 15).
  • another communication device eg, base station 20 or user device 15.
  • the signal transmission unit 101 of the user apparatus 10 may not have a function of performing Polar encoding.
  • the signal receiving unit 102 includes a decoding unit 112 and a receiving unit 122.
  • the receiving unit 122 acquires the likelihood for each bit of the encoded information encoded by encoding (eg, Polar encoding) by demodulating a signal received from another communication apparatus. For example, the receiving unit 122 performs FFT on the received signal obtained by the detection, acquires the signal component of each subcarrier, and obtains the log likelihood ratio for each bit using the QRM-MLD method or the like.
  • encoding eg, Polar encoding
  • the decoding unit 112 decodes encoded information using the likelihood and the likelihood corresponding to a predetermined identifier (eg, RNTI). In addition, the decoding unit 112 performs a check on the information obtained by decoding the encoded information using an error detection code (eg, CRC), and determines that the information is the final decoding result when the check is successful. .
  • a predetermined identifier eg, RNTI
  • CRC error detection code
  • FIG. 20 is a diagram illustrating an example of a functional configuration of the base station 20.
  • the base station 20 includes a signal transmission unit 201, a signal reception unit 202, a setting information management unit 203, and a scheduling unit 204.
  • the functional configuration shown in FIG. 20 is merely an example. As long as the operation according to the present embodiment can be executed, the function classification and the name of the function unit may be anything.
  • the signal transmission unit 201 includes a function of generating a signal to be transmitted to the user apparatus 10 and transmitting the signal wirelessly.
  • the signal receiving unit 202 includes a function of receiving various signals transmitted from the user apparatus 10 and acquiring, for example, higher layer information from the received signals.
  • the setting information management unit 203 stores known setting information, for example.
  • the contents of the setting information are, for example, one or a plurality of RNTIs and known bit values. Further, the setting information management unit 203 may store an inverse function used for calculating the value of the padding bit.
  • the scheduling unit 204 for example, allocates resources (UL communication resource, DL communication resource, or SL communication resource) used by the user apparatus 10, passes the allocation information to the signal transmission unit 201, and the signal transmission unit 201 Downlink control information including the allocation information is transmitted to the user apparatus 10.
  • resources UL communication resource, DL communication resource, or SL communication resource
  • the signal transmission unit 201 includes an encoding unit 211 and a transmission unit 221.
  • the encoding unit 211 performs the encoding process of Method 3.
  • the encoding unit 211 is configured to perform encoding (for example, Polar encoding) on the known bit value, the information bit value, and the padding bit value to generate encoded information.
  • the encoding unit 211 has a function of calculating a CRC and including the CRC in the information bit value.
  • the encoding unit 211 may perform the encoding process of the method 1 and / or the method 2 in addition to the encoding process of the method 3.
  • the transmission unit 221 is configured to create a transmission signal from the encoded information generated by the encoding unit 211 and transmit the transmission signal wirelessly. For example, the transmission unit 221 punctures a part of bit values in the encoded information by rate matching, modulates the punctured encoded information, and modulates (modulated-valued modulation symbols). To get. Also, the transmission unit 221 maps modulation symbols to resource elements, generates a transmission signal (eg, OFDM signal, SC-FDMA signal), and transmits it from an antenna provided in the transmission unit 221. The transmission signal is received by another communication device (eg, user device 10).
  • another communication device eg, user device 10
  • the signal receiving unit 202 includes a decoding unit 212 and a receiving unit 222.
  • the receiving unit 222 acquires the likelihood for each bit of the encoded information encoded by encoding (eg, Polar encoding) by demodulating a signal received from another communication apparatus. For example, the reception unit 222 performs FFT on the reception signal obtained by detection, acquires the signal component of each subcarrier, and obtains the log likelihood ratio for each bit using the QRM-MLD method or the like.
  • the decoding unit 212 decodes encoded information using the likelihood of the received signal and the likelihood corresponding to a predetermined identifier (eg, RNTI). .
  • the decoding unit 212 performs an inspection using an error detection code (eg, CRC) on information obtained by decoding the encoded information, and determines that the information is the final decoding result when the inspection is successful.
  • CRC error detection code
  • the signal receiving unit 202 of the base station 20 may not have a function of performing Polar decoding.
  • each functional block may be realized by one device in which a plurality of elements are physically and / or logically combined, or two or more devices physically and / or logically separated may be directly and directly. It may be realized by a plurality of these devices connected indirectly (for example, wired and / or wirelessly).
  • both the user apparatus 10 and the base station 20 in the embodiment of the present invention may function as a computer that performs processing according to the present embodiment.
  • FIG. 21 is a diagram illustrating an example of a hardware configuration of the user apparatus 10 and the base station 20 according to the present embodiment.
  • Each of the above-described user apparatus 10 and base station 20 may be physically configured as a computer apparatus including a processor 1001, a memory 1002, a storage 1003, a communication apparatus 1004, an input apparatus 1005, an output apparatus 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the user apparatus 10 and the base station 20 may be configured to include one or a plurality of apparatuses indicated by 1001 to 1006 shown in the figure, or may be configured not to include some apparatuses. May be.
  • Each function in the user apparatus 10 and the base station 20 is performed by causing the processor 1001 to perform computation by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and performing communication by the communication apparatus 1004 and memory 1002. This is realized by controlling reading and / or writing of data in the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the signal transmission unit 101, the signal reception unit 102, and the setting information management unit 103 of the user apparatus 10 illustrated in FIG. 19 may be realized by a control program stored in the memory 1002 and operating on the processor 1001. Further, for example, the signal transmission unit 201, the signal reception unit 202, the setting information management unit 203, and the scheduling unit 204 of the base station 20 illustrated in FIG.
  • the processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the processing according to the embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the signal transmission unit 101 and the signal reception unit 102 of the user device 10 may be realized by the communication device 1004.
  • the signal transmission unit 201 and the signal reception unit 202 of the base station 20 may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the user apparatus 10 and the base station 20 are respectively a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), an ASIC (Fragable Logic Device), a PLD (Programmable Logic Device), an AFP It may be configured including hardware, and a part or all of each functional block may be realized by the hardware.
  • the processor 1001 may be implemented by at least one of these hardware.
  • a communication device used in a wireless communication system performs predetermined encoding on an input known bit value, information bit value, and padding bit value.
  • An encoding unit that generates encoding information, and a transmission unit that generates a transmission signal from the encoding information generated by the encoding unit and transmits the transmission signal, and the padding bit value is The communication device is a value converted into a predetermined identifier by the encoding, and the predetermined identifier is used for decoding the encoded information in another communication device that receives the transmission signal. Is provided.
  • the transmission unit may puncture the predetermined identifier obtained by the encoding from the encoded information. With this configuration, the number of bits of the transmission signal can be reduced.
  • a communication apparatus used in a wireless communication system which encodes information encoded by predetermined encoding by demodulating a signal received from another communication apparatus.
  • the decoding unit uses, for example, a frozen bit value and a known padding bit value as known bit values used in the decoding. With this configuration, decoding using known information (eg, Polar decoding) can be performed appropriately.
  • known information eg, Polar decoding
  • the decoding unit may check the information obtained by decoding the encoded information using an error detection code, and when the check is successful, determine the information as a final decoding result. With this configuration, it is possible to appropriately determine the correctness of the received information.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the user apparatus 10 and the base station 20 have been described using functional block diagrams. However, such an apparatus may be realized by hardware, software, or a combination thereof.
  • the software operated by the processor of the user apparatus 10 according to the embodiment of the present invention and the software operated by the processor of the base station 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only, respectively. It may be stored in any appropriate storage medium such as a memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or the like.
  • the notification of information is not limited to the aspect / embodiment described in the present specification, and may be performed by other methods.
  • the notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Accu), signaling (MediaColl). It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Fure Radio Access), and W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using other appropriate systems, and / or a next generation system extended based on these systems.
  • the specific operation assumed to be performed by the base station 20 in the present specification may be performed by the upper node in some cases.
  • various operations performed for communication with the user apparatus 10 may be performed in a manner other than the base station 20 and / or other than the base station 20.
  • a network node for example, but not limited to MME or S-GW.
  • MME and S-GW network nodes
  • User equipment 10 can be used by those skilled in the art to subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, It may also be referred to as a wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • Base station 20 may also be referred to by those skilled in the art as NB (NodeB), eNB (enhanced NodeB), base station (Base Station), or some other appropriate terminology.
  • NB NodeB
  • eNB enhanced NodeB
  • Base Station Base Station
  • determining may encompass a wide variety of actions.
  • “Judgment” and “determination” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (investigation), investigation (investigating), search (loking up) (for example, table , Searching in a database or another data structure), considering ascertaining “determining”, “determining”, and the like.
  • “determination” and “determination” are reception (for example, receiving information), transmission (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in a memory) may be considered as “determining” or “determining”.
  • determination and “determination” means that “resolving”, selection (selecting), selection (choosing), establishment (establishing), comparison (comparing), etc. are regarded as “determination” and “determination”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A communication device is used in a wireless communication system, and is provided with: a coding unit that generates coded information by performing predetermined coding with respect to an inputted known bit value, an information bit value and a padding bit value; and a transmission unit that creates a transmission signal from the coded information generated by the coding unit, and transmits the transmission signal, wherein the padding bit value is a value to be converted into a predetermined identifier by the coding, and the predetermined identifier is used to decode the coded information in another communication device that receives the transmission signal.

Description

通信装置、及び復号方法Communication apparatus and decoding method
 本発明は、無線通信システムにおけるユーザ装置あるいは基地局として使用される通信装置に関連するものである。 The present invention relates to a communication apparatus used as a user apparatus or a base station in a wireless communication system.
 3GPP(3rd Generation Partnership Project)では、システム容量の更なる大容量化、データ伝送速度の更なる高速化、無線区間における更なる低遅延化等を実現するために、5Gと呼ばれる無線通信方式の検討が進んでいる。5Gでは、10Gbps以上のスループットを実現しつつ無線区間の遅延を1ms以下にするという要求条件を満たすために、様々な無線技術の検討が行われている。5GではLTEと異なる無線技術が採用される可能性が高いことから、3GPPでは、5Gをサポートする無線ネットワークを新たな無線ネットワーク(NR:New Radio)と呼ぶことで、LTEをサポートする無線ネットワークと区別している。 In 3GPP (3rd Generation Partnership Project), a wireless communication system called 5G is being studied to achieve further increases in system capacity, higher data transmission speed, lower delay in the wireless section, etc. Is progressing. In 5G, various wireless technologies are being studied in order to satisfy the requirement to achieve a delay of 1 ms or less while achieving a throughput of 10 Gbps or more. Since there is a high possibility that a wireless technology different from LTE will be adopted in 5G, in 3GPP, a wireless network supporting 5G is referred to as a new wireless network (NR: New Radio). Distinguish.
 5Gでは、主にeMBB(extended Mobile Broadband)、mMTC(massive Machine Type Communication)、URLLC(Ultra Reliability and Low Latency Communication)の3つのユースケースが想定されている。 In 5G, there are three main use cases: eMBB (extended Mobile Broadband), mMTC (massible Machine Type Communication), and URLLC (Ultra Reliability and Low Latency Communication).
 例えば、eMBBでは、更なる高速・大容量化が求められているのに対して、mMTC では大量端末接続・低消費電力が求められ、URLLCでは高信頼・低遅延が求められている。これらの要求条件を実現するためには、移動通信において不可欠なチャネル符号化においてもこれら要求条件を満足する必要がある。 For example, eMBB requires higher speed and larger capacity, whereas mMTC requires a large number of terminals and low power consumption, and URLLC requires high reliability and low delay. In order to realize these requirements, it is necessary to satisfy these requirements even in channel coding which is indispensable in mobile communication.
 上記の要求条件を実現可能な候補としてPolar符号がある(非特許文献1)。Polar符号は、通信路分極という考え方に基づいて、シャノン限界に漸近する特性を実現することが可能な誤り訂正符号である。また、Polar符号の復号方法として、簡易な逐次除去復号方法(SCD:Successive Cancellation Decoding)を用いることで、低演算量、低消費電力で優れた特性を実現可能である。また、Polar符号の復号方法として、SCDの特性を改善した逐次除去リスト復号方法 (SCLD:Successive Cancellation List Decoding)、及び、更に特性を改善した、CRC(Cyclic Redundancy Check)を用いる逐次除去リスト復号方法(CRC-aided SCLD)が知られている(非特許文献2)。CRC-aided SCLDにおいては、尤度の高い複数の系列(ビット列)を得て、その中からCRC判定に成功した1つの系列が最終的な復号結果として選択される。 There is a Polar code as a candidate that can realize the above requirement (Non-Patent Document 1). The Polar code is an error correction code capable of realizing a characteristic asymptotic to the Shannon limit based on the concept of channel polarization. Further, by using a simple successive removal decoding method (SCD) as a Polar code decoding method, it is possible to realize excellent characteristics with low calculation amount and low power consumption. Also, as a decoding method of the Polar code, a sequential removal list decoding method (SCLD: Successive Cancellation List Decoding) with improved SCD characteristics, and a sequential removal list decoding method using CRC (Cyclic Redundancy Check) with further improved characteristics. (CRC-aided SCLD) is known (Non-Patent Document 2). In CRC-aided SCLD, a plurality of sequences (bit sequences) with high likelihood are obtained, and one sequence that succeeds in CRC determination is selected as a final decoding result.
 NRにおいて、下り制御チャネル(Downlink Control Channel)にPolar符号が適用されることが想定されている。 In NR, it is assumed that a Polar code is applied to a downlink control channel (Downlink Control Channel).
 既存のLTEでは、基地局は、下り制御情報にCRC(以下、"CRC"をチェック用の値を意味するものとして使用)を付加し、CRCをRNTI(Radio Network Temporary Identifier)でマスキングしてできた情報を符号化し、当該情報をユーザ装置に送信する。当該情報を受信したユーザ装置は、当該情報の復号処理において、ユーザ装置自身が持つRNTIによりアンマスキングしたCRCを用いた判定を行うことで、受信した情報がユーザ装置自身宛ての情報か否かの判定を行う。 In the existing LTE, the base station can add a CRC (hereinafter referred to as “CRC” to mean a check value) to the downlink control information, and mask the CRC with an RNTI (Radio Network Temporary Identifier). The information is encoded and the information is transmitted to the user apparatus. The user apparatus that has received the information determines whether the received information is information addressed to the user apparatus itself by performing determination using a CRC unmasked by the RNTI that the user apparatus itself has in the decoding process of the information. Make a decision.
 しかし、既存のLTEで使用されていないPolar符号を使用する場合において、RNTIをどのように適用するかは明らかではない。RNTIの適用方法によっては、ユーザ装置が、自分宛ての制御情報を、正しい制御情報ではない(つまり、CRCチェック失敗)と誤って認識したり、自分宛ての制御情報ではない制御情報を、自分宛ての制御情報であると誤って認識する可能性が高くなることが考えられる。これらの可能性は誤警報率(False Alarm Rate)と呼ばれる。また、これを誤検出率と呼んでもよい。 However, it is not clear how to apply RNTI when using a Polar code that is not used in the existing LTE. Depending on the application method of the RNTI, the user apparatus erroneously recognizes that the control information addressed to itself is not correct control information (that is, CRC check failure), or the control information that is not addressed to itself is addressed to itself. It is possible that the possibility that the control information is erroneously recognized as the control information will increase. These possibilities are called false alarm rates. This may also be called a false detection rate.
 なお、Polar符号、及び、RNTIのような識別子は、基地局からユーザ装置へのダウンリンク通信のみならず、ユーザ装置から基地局へのアップリンク通信、及びユーザ装置間でのサイドリンク通信にも使用されることが想定される。すなわち、上記のような課題は、基地局からユーザ装置へのダウンリンク通信のみならず、ユーザ装置から基地局へのアップリンク通信、ユーザ装置間でのサイドリンク通信にも生じ得る課題である。ユーザ装置、及び基地局等の装置を総称して通信装置と呼ぶ。 The identifiers such as the Polar code and the RNTI are used not only for downlink communication from the base station to the user apparatus, but also for uplink communication from the user apparatus to the base station and for side link communication between the user apparatuses. It is assumed that it will be used. That is, the above problems may occur not only in downlink communication from the base station to the user apparatus, but also in uplink communication from the user apparatus to the base station and side link communication between the user apparatuses. User devices and devices such as base stations are collectively referred to as communication devices.
 本発明は上記の点に鑑みてなされたものであり、所定の識別子が適用された符号化情報を送信側から送信し、受信側で当該所定の識別子を用いて情報の検出を行う無線通信システムにおいて、受信側で良好な誤検出率を得ることを可能とする技術を提供することを目的とする。 The present invention has been made in view of the above points. A wireless communication system that transmits encoded information to which a predetermined identifier is applied from the transmission side and detects information using the predetermined identifier on the reception side. Therefore, it is an object of the present invention to provide a technique that makes it possible to obtain a good false detection rate on the receiving side.
 開示の技術によれば、無線通信システムにおいて使用される通信装置であって、
 入力された既知ビット値、情報ビット値、及びパディングビット値に対する所定の符号化を行って、符号化情報を生成する符号化部と、
 前記符号化部により生成された前記符号化情報から送信信号を作成し、当該送信信号を送信する送信部と、を備え、
 前記パディングビット値は、前記符号化により所定の識別子に変換される値であり、当該所定の識別子は前記送信信号を受信する他の通信装置において、前記符号化情報の復号に使用される
 ことを特徴とする通信装置が提供される。
According to the disclosed technology, a communication device used in a wireless communication system,
An encoding unit that performs predetermined encoding on the input known bit value, information bit value, and padding bit value to generate encoded information;
A transmission unit that creates a transmission signal from the encoding information generated by the encoding unit and transmits the transmission signal, and
The padding bit value is a value converted into a predetermined identifier by the encoding, and the predetermined identifier is used for decoding the encoded information in another communication device that receives the transmission signal. A featured communication device is provided.
 開示の技術によれば、所定の識別子が適用された符号化情報を送信側から送信し、受信側で当該所定の識別子を用いて情報の検出を行う無線通信システムにおいて、受信側で良好な誤検出率を得ることを可能とする技術が提供される。 According to the disclosed technique, in a wireless communication system in which encoded information to which a predetermined identifier is applied is transmitted from the transmission side and information is detected using the predetermined identifier on the reception side, a good error is detected on the reception side. A technique is provided that makes it possible to obtain a detection rate.
本発明の実施の形態における無線通信システムの構成図であり、基地局20とユーザ装置10を有する構成を示す。It is a block diagram of the radio | wireless communications system in embodiment of this invention, and shows the structure which has the base station 20 and the user apparatus 10. FIG. 本発明の実施の形態における無線通信システムの構成図であり、ユーザ装置10とユーザ装置15を有する構成を示す。It is a block diagram of the radio | wireless communications system in embodiment of this invention, and shows the structure which has the user apparatus 10 and the user apparatus 15. FIG. Polar符号の符号化の例を説明するための図である。It is a figure for demonstrating the example of encoding of a Polar code | symbol. Polar符号の復号の例を説明するための図である。It is a figure for demonstrating the example of decoding of a Polar code. Polar符号の復号の例を説明するための図である。It is a figure for demonstrating the example of decoding of a Polar code. Polar符号の復号の例を説明するための図である。It is a figure for demonstrating the example of decoding of a Polar code. 方法1の符号化処理を説明するための図であり、処理の流れの概要を示す。It is a figure for demonstrating the encoding process of the method 1, and shows the outline | summary of the flow of a process. 方法1の符号化処理を説明するための図であり、符号化の動作を示す。It is a figure for demonstrating the encoding process of the method 1, and shows the operation | movement of encoding. 方法1の復号処理を説明するための図であり、処理の流れの概要を示す。It is a figure for demonstrating the decoding process of the method 1, and shows the outline | summary of the flow of a process. 方法1の復号処理を説明するための図であり、復号の動作を示す。It is a figure for demonstrating the decoding process of the method 1, and shows the operation | movement of decoding. 方法2の符号化処理を説明するための図であり、処理の流れの概要を示す。It is a figure for demonstrating the encoding process of the method 2, and shows the outline | summary of the flow of a process. 方法2の符号化処理を説明するための図であり、符号化の動作を示す。It is a figure for demonstrating the encoding process of the method 2, and shows the operation | movement of encoding. 方法2の符号化処理を説明するための図である。FIG. 10 is a diagram for describing an encoding process of method 2. 方法2の復号処理を説明するための図であり、処理の流れの概要を示す。It is a figure for demonstrating the decoding process of the method 2, and shows the outline | summary of the flow of a process. 方法2の復号処理を説明するための図であり、復号の動作を示す。It is a figure for demonstrating the decoding process of the method 2, and shows the operation | movement of decoding. 方法2の復号処理を説明するための図である。11 is a diagram for explaining a decoding process of method 2. FIG. Shortened Polar符号の例を示す図である。It is a figure which shows the example of a Shorted Polar code | symbol. 方法3の符号化処理を説明するための図であり、処理の流れの概要を示す。It is a figure for demonstrating the encoding process of the method 3, and shows the outline | summary of the flow of a process. 方法3の符号化処理を説明するための図であり、符号化の動作を示す。It is a figure for demonstrating the encoding process of the method 3, and shows the operation | movement of encoding. 方法3の符号化処理を説明するための図である。10 is a diagram for explaining an encoding process of method 3. FIG. 方法3の復号処理を説明するための図であり、処理の流れの概要を示す。It is a figure for demonstrating the decoding process of the method 3, and shows the outline | summary of the flow of a process. 方法3の復号処理を説明するための図であり、復号の動作を示す。It is a figure for demonstrating the decoding process of the method 3, and shows the operation | movement of decoding. 方法3の復号処理を説明するための図である。10 is a diagram for explaining a decoding process of method 3. FIG. 方法間の比較を示す図である。It is a figure which shows the comparison between methods. 効果を説明するための図である。It is a figure for demonstrating an effect. ユーザ装置10の機能構成の一例を示す図である。3 is a diagram illustrating an example of a functional configuration of a user device 10. FIG. 基地局20の機能構成の一例を示す図である。2 is a diagram illustrating an example of a functional configuration of a base station 20. FIG. ユーザ装置10及び基地局20のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the user apparatus 10 and the base station 20.
 以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。なお、以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。 Hereinafter, an embodiment (this embodiment) of the present invention will be described with reference to the drawings. The embodiment described below is only an example, and the embodiment to which the present invention is applied is not limited to the following embodiment.
 本実施の形態の無線通信システムが実際に動作するにあたっては、適宜、既存技術を使用できる。当該既存技術は例えば既存のLTEであるが、既存のLTEに限られない。 In the actual operation of the wireless communication system of the present embodiment, existing technology can be used as appropriate. The existing technology is, for example, existing LTE, but is not limited to existing LTE.
 また、以下で説明する実施の形態では、既存のLTEで使用されているPDCCH、DCI、RNTI等の用語を使用しているが、これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。 In the embodiments described below, terms such as PDCCH, DCI, and RNTI used in the existing LTE are used for the convenience of description. Functions etc. may be called by other names.
 また、本実施の形態では、Polar符号を使用するが、これは一例に過ぎない。本発明は、Polar符号と同様に、凍結ビットのような既知ビットを送信可能であり、受信側で受信信号の尤度に基づき逐次的に復号を行う符号であれば、Polar符号以外でも適用可能である。例えば、LDPC(LOW DENCITY PARITY CHECK)符号、及び畳込み符号のそれぞれに対して本発明を適用することができる。また、本実の形態で使用するPolar符号が、別の名称で呼ばれてもよい。 In this embodiment, a Polar code is used, but this is only an example. As in the case of the Polar code, the present invention can be applied to other than the Polar code as long as it can transmit a known bit such as a frozen bit and sequentially decodes the received signal based on the likelihood of the received signal. It is. For example, the present invention can be applied to each of an LDPC (LOW DENCITY PARITY CHECK) code and a convolutional code. Further, the Polar code used in the present embodiment may be called by another name.
 また、本実施の形態では、誤り検出符号の例としてCRCを使用するが、本発明に適用できる誤り検出符号はCRCに限られない。また、本実施の形態では、符号化/復号の対象が制御情報であるが、本発明は制御情報以外の情報にも適用可能である。また、本実施の形態では、識別子としてRNTIを使用するが、本発明はRNTI以外の識別子にも適用可能である。 In this embodiment, CRC is used as an example of the error detection code, but the error detection code applicable to the present invention is not limited to CRC. In this embodiment, the target of encoding / decoding is control information. However, the present invention can also be applied to information other than control information. In this embodiment, RNTI is used as an identifier, but the present invention is also applicable to identifiers other than RNTI.
 また、本実施の形態では、ユーザ装置が自身に向け送信された信号を識別する手段の例としてRNTIを使用するが、これは一例に過ぎない。本発明は、RNTIだけでなく、例えばユーザ装置固有のユーザID等、その他の識別子に対しても適用可能である。また、上記識別子は、ユーザ装置毎に割り当てられてもよいし、複数ユーザ装置毎に割り当てられてもよい。もしくは、仕様にて予め定められてもよい。 In this embodiment, RNTI is used as an example of means for identifying a signal transmitted to the user apparatus toward itself, but this is only an example. The present invention is applicable not only to RNTI but also to other identifiers such as a user ID unique to the user apparatus. The identifier may be assigned for each user device or may be assigned for each of a plurality of user devices. Alternatively, it may be determined in advance by specifications.
 また、本実施の形態では、ダウンリンク通信を主な例として示しているが、アップリンク通信、及びサイドリンク通信についても同様に本発明を適用できる。 Further, in the present embodiment, downlink communication is shown as a main example, but the present invention can be similarly applied to uplink communication and side link communication.
 (システム全体構成)
 図1A、図1Bに本実施の形態に係る無線通信システムの構成図を示す。図1Aに示す本実施の形態に係る無線通信システムは、ユーザ装置10、及び基地局20を含む。図1には、ユーザ装置10、及び基地局20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
(Whole system configuration)
1A and 1B are configuration diagrams of a radio communication system according to the present embodiment. The radio communication system according to the present embodiment illustrated in FIG. 1A includes a user apparatus 10 and a base station 20. In FIG. 1, one user apparatus 10 and one base station 20 are shown, but this is an example, and there may be a plurality of each.
 ユーザ装置10は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置であり、基地局20に無線接続し、無線通信システムにより提供される各種通信サービスを利用する。基地局20は、1つ以上のセルを提供し、ユーザ装置10と無線通信する通信装置である。本実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよい。 The user device 10 is a communication device having a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, a communication module for M2M (Machine-to-Machine), and is wirelessly connected to the base station 20 and wireless communication system Use various communication services provided by. The base station 20 is a communication device that provides one or more cells and wirelessly communicates with the user device 10. In the present embodiment, the duplex method may be a TDD (Time Division Duplex) method or an FDD (Frequency Division Duplex) method.
 図1Aに示す構成において、例えば、基地局20は、下り制御情報(DCI:Downlink Control Information)にCRCを付加して得られた情報をPolar符号を使用して符号化し、符号化情報を下り制御チャネル(例:PDCCH(Physical Downlink Control Channel))を用いて送信する。ユーザ装置10は、Polar符号により符号化された情報を、逐次除去復号方法(SCD:Successive Cancellation Decoding)等により復号する。 In the configuration shown in FIG. 1A, for example, the base station 20 encodes information obtained by adding CRC to downlink control information (DCI: Downlink Control Information) using a Polar code, and performs downlink control on the encoded information. It transmits using a channel (example: PDCCH (Physical Downlink Control Channel)). The user apparatus 10 decodes information encoded by the Polar code by a sequential removal decoding method (SCD: Successive Canceling Decoding) or the like.
 また、上り制御情報にPolar符号を適用してもよい。その場合、例えば、ユーザ装置10は、上り制御情報(UCI:Uplink Control Information)にCRCを付加して得られた情報をPolar符号を使用して符号化し、符号化情報を上り制御チャネル(例:PUCCH(Physical Uplink Control Channel))を用いて送信する。基地局20は、Polar符号により符号化された情報を、例えば、逐次除去復号方法(SCD:Successive Cancellation Decoding)等により復号する。 Further, a Polar code may be applied to the uplink control information. In this case, for example, the user apparatus 10 encodes information obtained by adding CRC to uplink control information (UCI: Uplink Control Information) using a Polar code, and encodes the encoded information to an uplink control channel (example: It transmits using PUCCH (Physical Uplink Control Channel). The base station 20 decodes information encoded by the Polar code by, for example, a sequential removal decoding method (SCD: Successive Canceling Decoding) or the like.
 図1Bは、本実施の形態に係る無線通信システムの他の例として、ユーザ装置間でサイドリンク通信を行う場合を示している。サイドリンクでPolar符号を適用する場合、例えば、ユーザ装置10は、制御情報(SCI:Sidelink Control Information)にCRCを付加して得られた情報をPolar符号を使用して符号化し、符号化情報を制御チャネル(例:PSCCH(Physical Sidelink Control Channel))を用いて送信する。ユーザ装置15は、Polar符号により符号化された情報を、例えば、逐次除去復号方法(SCD:Successive Cancellation Decoding)等により復号する。ユーザ装置15からユーザ装置10への通信についても同様である。 FIG. 1B shows a case where side link communication is performed between user apparatuses as another example of the wireless communication system according to the present embodiment. When applying the Polar code in the side link, for example, the user apparatus 10 encodes information obtained by adding CRC to control information (SCI: Sidelink Control Information) using the Polar code, and encodes the encoded information. It transmits using a control channel (example: PSCCH (Physical Sidelink Control Channel)). The user apparatus 15 decodes the information encoded by the Polar code by, for example, a sequential removal decoding method (SCD: Successive Canceling Decoding) or the like. The same applies to communication from the user device 15 to the user device 10.
 (Polar符号について)
 本実施の形態では、Polar符号を使用することから、Polar符号の符号化及び復号を説明する。なお、Polar符号の符号化及び復号の方法自体は良く知られたものであるため、以下では概要のみを説明する(詳細は非特許文献1参照)。
(About Polar code)
In this embodiment, since a Polar code is used, encoding and decoding of the Polar code will be described. Since the method of encoding and decoding the Polar code itself is well known, only the outline will be described below (refer to Non-Patent Document 1 for details).
 Polar符号では、複数のチャネルの合及び分離(Combine,Split)を繰り返して、分極化した通信路に変換することで、品質が良いチャネルと悪いチャネルに分離する。品質が良いチャネルに情報ビットを割り当て、品質が悪いチャネルには既知信号である凍結ビット(frozen bit)を割り当てる。図2は、3回繰り返しの場合のPolar符号の符号器を示している。図2に示すように、当該符号器は排他的論理和によって通信路が結合される構成を有する。 In the Polar code, a combination of a plurality of channels and separation (Combine, Split) are repeated and converted into a polarized communication path, thereby separating the channel into a good quality channel and a bad channel. An information bit is assigned to a channel with good quality, and a frozen bit that is a known signal is assigned to a channel with poor quality. FIG. 2 shows a Polar code encoder in the case of three repetitions. As shown in FIG. 2, the encoder has a configuration in which communication paths are coupled by exclusive OR.
 Polar符号器への入力は、u,…,uN-1のN=2ビットである。Kビット(v,…,vK-1)を情報ビットとすると、(N-K)ビットが凍結ビットになる。また、符号器から出力される符号化ビットはNビット(x,…,xN-1)である。図2は、N=8、K=4の例を示す。なお、本実施の形態の説明においては、「ビット」をビットの値の意味で使用する場合がある。 The input to the Polar encoder is N = 2 n bits of u 0 ,..., U N−1 . If K bits (v 0 ,..., V K−1 ) are information bits, (NK) bits become frozen bits. The encoded bits output from the encoder are N bits (x 0 ,..., X N−1 ). FIG. 2 shows an example where N = 8 and K = 4. In the description of this embodiment, “bit” may be used to mean a bit value.
 また、Polar符号化は、下記の式で表わすことができ、下記の行列Gが、図2の符号器部分に相当する。 Also, Polar encoding can be expressed by the following equation, and the following matrix G corresponds to the encoder portion of FIG.
Figure JPOXMLDOC01-appb-M000001
 凍結ビットは、送信側と受信側で既知のビットであればどのようなビットでもよいが、0が使用される場合が多い。
Figure JPOXMLDOC01-appb-M000001
The frozen bit may be any bit as long as it is a known bit on the transmission side and the reception side, but 0 is often used.
 次に、Polar符号の復号の基本的な方法として、逐次除去復号法(SCD: Successive Cancellation Decoding)を説明する。逐次除去復号法では、受信側において、各ビットについて復調により得られる尤度(具体的には、例えば、対数尤度比(LLR:Log-likelihood ratio))を復号器に入力し、尤度に対して所定の計算を順次行うことで、送信ビットを、uから順番に逐次的に復号する。具体的には、各送信ビットの尤度が算出され、尤度に基づきビットの値を決定する。ただし、凍結ビットについては、復号結果を凍結ビットの値とする。 Next, a successive cancellation decoding (SCD) will be described as a basic method for decoding a Polar code. In the successive removal decoding method, the likelihood (specifically, for example, log-likelihood ratio (LLR)) obtained by demodulation for each bit is input to the decoder on the receiving side, and the likelihood is calculated. by successively performing a predetermined calculation for a transmission bit, sequentially decode in order from u 0. Specifically, the likelihood of each transmission bit is calculated, and the bit value is determined based on the likelihood. However, for the frozen bit, the decoding result is the value of the frozen bit.
 図3~図5に、逐次計算の例を示す。図3~図5に示す各ステップにより、u、u、uの復号が行われている。図中のfは、既知情報(既に復号結果が得られたビットの値、凍結ビットの値)を直接には使用しない計算であり、gは、既知情報を使用する計算である。Polar符号の復号においては、uを復号するためにu,…,ui-1が既知である必要がある。従って、u、u、u....の順に復号する必要がある。 3 to 5 show examples of sequential calculation. Decoding of u 0 , u 1 , and u 2 is performed by the steps shown in FIGS. In the figure, f is a calculation that does not directly use known information (bit values for which decoding results have already been obtained, frozen bit values), and g is a calculation that uses known information. In decoding Polar codes, u 0 to decode the u i, ..., u i- 1 is required to be known. Therefore, u 0 , u 1 , u 2. It is necessary to decrypt in this order.
 以下、本実施の形態における符号化及び復号の方法として、方法1、方法2、方法3を説明する。方法3が本発明に係る主な方法であるが、方法3に対し、方法1及び/又は方法2を組合わせることが可能であるので、方法1と方法2も本実施の形態に係る方法として説明する。なお、本発明は方法3に限定されるわけではない。 Hereinafter, method 1, method 2, and method 3 will be described as encoding and decoding methods in the present embodiment. Although method 3 is the main method according to the present invention, since method 1 and / or method 2 can be combined with method 3, method 1 and method 2 are also methods according to the present embodiment. explain. Note that the present invention is not limited to the method 3.
 また、以下の各方法の説明では、基地局20からユーザ装置10に対して下り制御情報を送るダウンリンク通信を想定しているが、ユーザ装置10から基地局10へのアップリンク通信、及びユーザ装置間でのサイドリンク通信についても、以下で説明する符号化及び復号の方法1~3と同じ方法を適用できる。また、各方法を適用する対象は制御情報に限られない。 Further, in the following description of each method, it is assumed that downlink communication in which downlink control information is transmitted from the base station 20 to the user apparatus 10, but uplink communication from the user apparatus 10 to the base station 10 and user The same methods as the encoding and decoding methods 1 to 3 described below can be applied to the side link communication between devices. The target to which each method is applied is not limited to control information.
 以下では、下り制御情報のような符号化の対象となる情報を「対象情報」と呼ぶ。各図において、対象情報は「info」(informationの略)と表記される。また、凍結ビットは「frozen」と表記される。 Hereinafter, information to be encoded such as downlink control information is referred to as “target information”. In each figure, the target information is expressed as “info” (abbreviation of information). In addition, the frozen bit is written as “frozen”.
 (方法1)
 <方法1の符号化>
 図6A、Bを参照して方法1における符号化処理を説明する。図6Aは、基地局20における処理の流れの概要を示す。基地局20は、既存のLTEと同様に、対象情報にCRCを付加するとともに、当該CRCをRNTIでマスキングする(ステップS1)。なお、本実施の形態におけるマスキングとは、ビット毎の排他的論理和をとることである。マスキングをスクランブルと呼んでもよい。また、RNTIは、ユーザ装置及び/又はチャネルを識別する識別子であり、様々な種類がある(非特許文献3)。例えば、C-RNTIはユーザデータを送信/受信するためのRNTIであり、SPS(Semi Persistent Scheduling)‐RNTIは、SPSにおけるデータを送信/受信するためのRNTIであり、P-RNTIは、Pagingを送信/受信するためのRNTIであり、SI-RNTIはブロードキャスト情報(ブロードキャストされるシステム情報)を送信/受信するためのRNTIである。基地局20は、現在の動作に応じたRNTIを選択してマスキングに使用する。
(Method 1)
<Encoding of Method 1>
The encoding process in the method 1 will be described with reference to FIGS. 6A and 6B. FIG. 6A shows an outline of the processing flow in the base station 20. Similarly to the existing LTE, the base station 20 adds a CRC to the target information and masks the CRC with the RNTI (step S1). Note that the masking in the present embodiment is to take exclusive OR for each bit. Masking may be called scramble. The RNTI is an identifier for identifying a user apparatus and / or a channel, and there are various types (Non-Patent Document 3). For example, C-RNTI is an RNTI for transmitting / receiving user data, SPS (Semi Persistent Scheduling) -RNTI is an RNTI for transmitting / receiving data in SPS, and P-RNTI is used for paging. The RNTI is for transmitting / receiving, and the SI-RNTI is an RNTI for transmitting / receiving broadcast information (broadcast system information). The base station 20 selects an RNTI according to the current operation and uses it for masking.
 基地局20は、ステップS1で得られた情報に対してPolar符号化を行い(ステップS2)、符号化情報に対し、パンクチャ等によりレートマッチングを行う(ステップS3)。当該レートマッチングを経た符号化情報から送信信号が作成され、当該送信信号が無線で送信される。 The base station 20 performs Polar encoding on the information obtained in Step S1 (Step S2), and performs rate matching on the encoded information by puncturing or the like (Step S3). A transmission signal is created from the encoded information that has undergone the rate matching, and the transmission signal is transmitted wirelessly.
 図6Bを参照して、符号化の動作をより詳細に説明する。図6Bに示すように、基地局20は、凍結ビットと対象情報とからなる情報にCRCを付加し、CRCに対してRNTIをマスキングする。RNTIでマスキングされたCRCをCRC´と表記している。なお、基地局20は、CRCを、対象情報のみから計算してもよいし、凍結ビットと対象情報とからなる情報から計算してもよい。 The encoding operation will be described in more detail with reference to FIG. 6B. As shown in FIG. 6B, the base station 20 adds a CRC to the information composed of the frozen bit and the target information, and masks the RNTI on the CRC. A CRC masked with RNTI is represented as CRC ′. Note that the base station 20 may calculate the CRC from only the target information, or may calculate from the information including the frozen bit and the target information.
 基地局20は、上記のようにして生成された「凍結ビット+対象ビット+CRC´」を符号化し、コードブロックを得る。 The base station 20 encodes the “frozen bit + target bit + CRC ′” generated as described above to obtain a code block.
 <方法1の復号>
 図7A、Bを参照して方法1における復号処理を説明する。図7Aは、ユーザ装置10における処理の流れの概要を示す。ユーザ装置10は、例えば、PDCCHのサーチスペースで受信する信号を復調し、復号処理を行う(ステップS11)、復号処理で得られた情報に対してRNTIを適用し、CRCチェックを行う(ステップS12)。ユーザ装置10は、CRCチェックがOKであれば、得られた対象情報を使用する。
<Decoding method 1>
The decoding process in Method 1 will be described with reference to FIGS. 7A and 7B. FIG. 7A shows an outline of the flow of processing in the user apparatus 10. For example, the user apparatus 10 demodulates a signal received in the PDCCH search space and performs a decoding process (step S11), applies an RNTI to the information obtained by the decoding process, and performs a CRC check (step S12). ). If the CRC check is OK, the user device 10 uses the obtained target information.
 図7Bを参照して、復号の動作をより詳細に説明する。ユーザ装置10は、基地局20から受信したコードブロックを復号する。そして、CRC´をRNTIでアンマスキングし、得られたCRCを使用してCRCチェックを行う。CRCチェックがOKとなった場合、対象情報をユーザ装置10宛ての対象情報であると判断し、当該対象情報を使用する。また、ユーザ装置10は、CRCチェックに成功したRNTIの種類により、チャネル(データ)の種類を判別できる。 The decoding operation will be described in more detail with reference to FIG. 7B. The user apparatus 10 decodes the code block received from the base station 20. Then, CRC ′ is unmasked with RNTI, and CRC check is performed using the obtained CRC. When the CRC check is OK, it is determined that the target information is the target information addressed to the user device 10, and the target information is used. Further, the user apparatus 10 can determine the type of channel (data) based on the type of RNTI that has succeeded in the CRC check.
 ユーザ装置10は、復号においてSCDのみを用いてもよいし、逐次除去リスト復号方法(SCLD:Successive Cancellation List Decoding)を用いてもよいし、CRCを用いる逐次除去リスト復号方法(CRC-aided SCLD)を用いてもよい。 The user apparatus 10 may use only the SCD for decoding, may use a sequential removal list decoding method (SCLD: Successive Cancellation List Decoding), or a sequential removal list decoding method using CRC (CRC-aided SCLD). May be used.
 SCLDを用いる場合、ユーザ装置10は、尤度の高いL系列を生き残りパスとし(Lをリストサイズと呼ぶ)、最も尤度の高い系列を復号結果とし、それに対してRNTIの適用、及びCRCチェックを行う。 When SCLD is used, the user apparatus 10 uses the L sequence with the highest likelihood as the surviving path (L is called a list size), and sets the sequence with the highest likelihood as the decoding result. I do.
 また、CRC-aided SCLDを用いる場合、L系列のそれぞれに対してRNTIの適用、及びCRCチェックを行い、CRCチェックに成功した系列を復号結果として使用する。 Also, when CRC-aided SCLD is used, RNTI is applied to each L sequence and CRC check is performed, and the sequence that succeeded in the CRC check is used as the decoding result.
 (方法2)
  <方法2の符号化>
 図8A、B、及び図9を参照して方法2における符号化処理を説明する。図8Aは、基地局20における処理の流れの概要を示す。基地局20は、CRCを計算し、対象情報にCRCを付加する(ステップS21)。
(Method 2)
<Encoding of Method 2>
The encoding process in the method 2 will be described with reference to FIGS. 8A, 8B, and 9. FIG. 8A shows an overview of the flow of processing in the base station 20. The base station 20 calculates the CRC and adds the CRC to the target information (step S21).
 基地局20は、凍結ビットにRNTIを適用した情報に対してPolar符号化を行い(ステップS22)、符号化情報に対し、パンクチャ等によりレートマッチングを行う(ステップS23)。当該レートマッチングを経た符号化情報から送信信号が作成され、無線で送信される。 The base station 20 performs Polar encoding on the information in which the RNTI is applied to the frozen bit (Step S22), and performs rate matching on the encoded information by puncturing or the like (Step S23). A transmission signal is created from the encoded information that has undergone the rate matching, and is transmitted wirelessly.
 図8Bを参照して、符号化の動作をより詳細に説明する。基地局20は、Polar符号化の処理において、「対象情報+CRC」に凍結ビットを付加する。なお、基地局20は、「対象情報+凍結ビット」をCRC付加の前に作成し、「対象情報+凍結ビット」からCRCを計算し、当該CRCを「対象情報+凍結ビット」に付加することとしてもよい。 The encoding operation will be described in more detail with reference to FIG. 8B. The base station 20 adds a frozen bit to “target information + CRC” in the process of Polar encoding. The base station 20 creates “target information + frozen bit” before adding a CRC, calculates a CRC from “target information + frozen bit”, and adds the CRC to “target information + frozen bit”. It is good.
 そして、基地局20は、「対象情報+CRC+凍結ビット」における凍結ビットの部分にRNTIをマスキングする。例えば、凍結ビットのビット長とRNTIのビット長が同じ場合において、凍結ビットが全て0であるとすると、RNTIマスキング後の凍結ビットはRNTIと同じビットになる。 Then, the base station 20 masks the RNTI on the portion of the frozen bit in the “target information + CRC + frozen bit”. For example, when the bit length of the frozen bit is the same as that of the RNTI and the frozen bits are all 0, the frozen bit after RNTI masking is the same bit as the RNTI.
 凍結ビットのビット長と、RNTIのビット長は異なっていてもよい。例えば、RNTIのビット長が4ビット、その値が(a,a,a,a)であり、また、凍結ビットのビット長が8ビット、値は全て0である場合を想定する。この場合、基地局20は、例えば、「RNTI+RNTI」を用いて凍結ビットをマスキングし、マスキング後の凍結ビットとして(a,a,a,a,a,a,a,a)を得る。この場合、マスキングに「RNTI+RNTI」を用いること(連結したRNTIを用いること)はユーザ装置10において既知である。あるいは、「RNTI+RNTI」を用いることを上位レイヤシグナリングもしくはブロードキャスト情報で基地局20からユーザ装置10に通知することとしてもよい。 The bit length of the frozen bit and the bit length of the RNTI may be different. For example, it is assumed that the bit length of RNTI is 4 bits, the values thereof are (a 0 , a 1 , a 2 , a 3 ), the bit length of the frozen bits is 8 bits, and the values are all 0. . In this case, for example, the base station 20 masks the frozen bit using “RNTI + RNTI”, and uses (a 0 , a 1 , a 2 , a 3 , a 0 , a 1 , a 2 , a 3) obtain. In this case, it is known in the user apparatus 10 to use “RNTI + RNTI” for masking (use a connected RNTI). Alternatively, the use of “RNTI + RNTI” may be notified from the base station 20 to the user apparatus 10 by higher layer signaling or broadcast information.
 また、RNTIのビット長が凍結ビットのビット長よりも長い場合には、例えば、基地局20は、RNTIにハッシュ関数を適用することで、RNTIを短縮し、凍結ビットと同じ長さにして、短縮したRNTIをマスキングに使用する。マスキングにハッシュ関数を適用したRNTIを用いることはユーザ装置10において既知である。あるいは、マスキングにハッシュ関数を適用したRNTIを用いることを上位レイヤシグナリングもしくはブロードキャスト情報で基地局20からユーザ装置10に通知することとしてもよい。 Further, when the bit length of the RNTI is longer than the bit length of the frozen bit, for example, the base station 20 shortens the RNTI by applying a hash function to the RNTI so that it has the same length as the frozen bit. The shortened RNTI is used for masking. It is known in the user apparatus 10 to use RNTI in which a hash function is applied to masking. Or it is good also as notifying to the user apparatus 10 from the base station 20 by higher layer signaling or broadcast information using RNTI which applied the hash function to masking.
 図8Bに示すように、基地局20は、上記のようにして生成された「対象情報+CRC+frozen´」を符号化し、コードブロックを得る。 As shown in FIG. 8B, the base station 20 encodes the “target information + CRC + frozen ′” generated as described above to obtain a code block.
 図9は、N=8、N-K=4の場合における符号化処理を示す。図9に示すように、RNTIが適用された凍結ビットとしてRNTIのビット(a,a,a,a)が符号器に入力されるとともに、情報ビットが符号器に入力される。ここでの情報ビットは「対象情報+CRC」である。 FIG. 9 shows an encoding process when N = 8 and NK = 4. As shown in FIG. 9, RNTI bits (a 0 , a 1 , a 2 , a 3 ) are input to the encoder as frozen bits to which RNTI is applied, and information bits are input to the encoder. The information bits here are “target information + CRC”.
 図9に示す例では、符号化ビットの8ビットのうち、x´、x´がパンクチャされ、残りの6ビットに対し、リソースマッピング等を経て送信が行われる。パンクチャは、例えば、送信するビット数を送信リソース量に合わせるために使用される。また、どのようにしてパンクチャビットを決めるか等、Polar符号のパンクチャ方法については種々の既存方法(例:QUP(quasi-uniform puncturing))があり、その方法を使用することができる。 In the example shown in FIG. 9, among the 8 encoded bits, x 0 ′ and x 1 ′ are punctured, and the remaining 6 bits are transmitted through resource mapping or the like. Puncturing is used, for example, to match the number of bits to be transmitted with the amount of transmission resources. Further, there are various existing methods (eg, QUP (quasi-uniform puncturing)) regarding the puncturing method of the Polar code, such as how to determine the puncturing bit, and this method can be used.
 <方法2の復号>
 次に、図10A、B、及び図11を参照して方法2における復号処理を説明する。図10Aは、ユーザ装置10における処理の流れの概要を示す。ユーザ装置10は、例えば、PDCCHのサーチスペース内で受信した信号の復調を行って、得られた情報(コードブロック)に対し、RNTIを用いて復号処理を行い(ステップS31)、得られた情報に対してCRCチェックを行う(ステップS32)。
<Decoding method 2>
Next, the decoding process in the method 2 will be described with reference to FIGS. 10A, 10B, and 11. FIG. 10A shows an outline of the flow of processing in the user apparatus 10. For example, the user apparatus 10 demodulates a signal received in the PDCCH search space, and performs decoding processing using the RNTI on the obtained information (code block) (step S31). A CRC check is performed on (step S32).
 図10Bを参照して、復号の動作をより詳細に説明する。ここでは、符号化側での凍結ビット(frozen´)がRNTIそのものであるとし、それがユーザ装置10において既知であるとする。よって、ユーザ装置10は、凍結ビットがRNTIであるとして復号処理を行う。その後、CRCチェックを行い、CRCチェックがOKとなった場合、対象情報をユーザ装置10宛ての対象情報であると判断し、当該対象情報を使用する。また、CRCチェックに成功したRNTIの種類により、チャネル(データ)の種類を判別できる。方法2においても、方法1と同様に、ユーザ装置10は、復号においてSCDを用いてもよいし、SCLDを用いてもよいし、CRC-aided SCLDを用いてもよい。 The decoding operation will be described in more detail with reference to FIG. 10B. Here, it is assumed that the frozen bit (frozen ') on the encoding side is the RNTI itself and is known in the user apparatus 10. Therefore, the user apparatus 10 performs the decoding process on the assumption that the frozen bit is RNTI. Thereafter, a CRC check is performed, and when the CRC check is OK, it is determined that the target information is the target information addressed to the user device 10, and the target information is used. Also, the type of channel (data) can be determined based on the type of RNTI that has been successfully CRC checked. Also in the method 2, as in the method 1, the user apparatus 10 may use SCD in decoding, SCLD, or CRC-aided SCLD.
 図11は、図9の符号化処理(N=8、N-K=4)に対応する復号処理を示す。図11に示すように、凍結ビットとしてRNTIを使用する。前述したように、復号処理では、uを復号する際には、既知(凍結ビット又は復号後ビット)の値u,…,ui-1を使用する。よって、図11に示す復号処理において、uを復号するためにa、a、aが使用され、u、u、uを復号する際には、a、a、a、aが使用される。 FIG. 11 shows a decoding process corresponding to the encoding process (N = 8, NK = 4) in FIG. As shown in FIG. 11, RNTI is used as a frozen bit. As described above, in the decoding process, when u i is decoded, known (frozen bits or decoded bits) values u 0 ,..., U i−1 are used. Therefore, in the decoding process shown in FIG. 11, a 0 , a 1 , and a 2 are used to decode u 3 , and when u 5 , u 6 , and u 7 are decoded, a 0 , a 1 , a 2 and a 3 are used.
 例えば、基地局20が使用し得るRNTIが複数種類ある場合には、ユーザ装置10は、各RNTIを凍結ビットとして使用して復号処理を行って、CRCチェックに成功した結果に対して使用されたRNTIが基地局20において適用されたRNTIであると判断できる。例えば、ユーザ装置10が、P-RNTIとSI-RNTIのそれぞれを使用して復号処理及びCRCチェックを行った結果、SI-RNTIを使用したときにCRCチェックに成功した場合、ユーザ装置10は、ブロードキャスト情報を基地局20から受信すると判断できる。 For example, when there are a plurality of types of RNTIs that can be used by the base station 20, the user apparatus 10 performs decoding processing using each RNTI as a frozen bit and is used for a result of successful CRC check. It can be determined that the RNTI is the RNTI applied in the base station 20. For example, when the user apparatus 10 performs the decoding process and the CRC check using each of P-RNTI and SI-RNTI, and the user apparatus 10 succeeds in the CRC check when using the SI-RNTI, the user apparatus 10 It can be determined that broadcast information is received from the base station 20.
 (方法3)
 方法3では、符号化側で、入力するビット(情報ビット+凍結ビット)の長さを短くしたShortened Polar符号が使用される。図12は、Shortened Polar符号での符号化の一例を示す。図12に示す例では、8ビットを入力する符号器に対し、情報ビット+凍結ビットが6ビットである。この場合、2ビットがパディングビットとして使用される。そして、パディングビットに対応する符号化ビットはパンクチャされる。受信側では、パンクチャされたビットの尤度を、例えば0を示す尤度(例:+∞)として、復号処理を行う。パンクチャされたビットは受信側で既知である。
(Method 3)
In the method 3, a Shorted Polar code in which the length of input bits (information bits + frozen bits) is shortened is used on the encoding side. FIG. 12 shows an example of encoding with the Shorted Polar code. In the example shown in FIG. 12, the number of information bits + freeze bits is 6 bits for an encoder that inputs 8 bits. In this case, 2 bits are used as padding bits. The encoded bits corresponding to the padding bits are punctured. On the receiving side, the decoding processing is performed with the likelihood of the punctured bit as a likelihood (eg, + ∞) indicating 0, for example. The punctured bits are known at the receiving side.
  <方法3の符号化>
 図13A、B、及び図14を参照して方法3における符号化処理を説明する。図13Aは、基地局20における処理の流れの概要を示す。基地局20は、対象情報に対するCRCを計算し、対象情報にCRCを付加する(ステップS41)。基地局20は、パディングビットの付加を行って、Polar符号化を行い(ステップS42)、符号化情報に対し、パンクチャによりレートマッチング(shortening,短縮化)を行う(ステップS43)。当該レートマッチングを経た符号化情報から送信信号が作成され、無線で送信される。
<Encoding of Method 3>
The encoding process in Method 3 will be described with reference to FIGS. 13A, 13B, and 14. FIG. 13A shows an overview of the processing flow in the base station 20. The base station 20 calculates a CRC for the target information and adds the CRC to the target information (step S41). The base station 20 adds padding bits, performs Polar encoding (step S42), and performs rate matching (shortening) on the encoded information by puncturing (step S43). A transmission signal is created from the encoded information that has undergone the rate matching, and is transmitted wirelessly.
 図13Bを参照して、符号化の動作をより詳細に説明する。基地局20は、Polar符号化の処理において、「対象情報+CRC」に凍結ビットを付加する。なお、基地局20は、「凍結ビット+対象情報」をCRC付加の前に作成し、「凍結ビット+対象情報」からCRCを計算し、当該CRCを「凍結ビット+対象情報」に付加することとしてもよい。 The encoding operation will be described in more detail with reference to FIG. 13B. The base station 20 adds a frozen bit to “target information + CRC” in the process of Polar encoding. The base station 20 creates “frozen bit + target information” before adding CRC, calculates CRC from “frozen bit + target information”, and adds the CRC to “frozen bit + target information”. It is good.
 そして、基地局20は、「凍結ビット+対象情報+CRC」にパディングビットを付加する。「凍結ビット+対象情報+CRC+パディングビット」のビット長は、Polar符号器への入力のビット長(N=2)である。 Then, the base station 20 adds a padding bit to “frozen bit + target information + CRC”. The bit length of “frozen bit + target information + CRC + padding bit” is the bit length (N = 2 n ) of the input to the Polar encoder.
 本実施の形態におけるパディングビットは、符号化を行った結果、RNTIになるビットである。つまり、パディングビットは、RNTIに符号化の逆関数を適用することにより得られる。パディングビットのビット長と、RNTIのビット長は同じであってもよいし、異なっていてもよい。 The padding bits in this embodiment are bits that become RNTI as a result of encoding. That is, the padding bits are obtained by applying an inverse function of encoding to RNTI. The bit length of the padding bits and the bit length of the RNTI may be the same or different.
 例えば、パディングビットのビット長がRNTIのビット長よりも長い場合には、例えば、RNTIを複数連結した情報(例:RNTI+RNTI)をRNTIとして使用して、パディングビットの生成、及び、後述する復号処理が行われる。また、パディングビットのビット長がRNTIのビット長よりも短い場合には、例えば、RNTIにハッシュ関数を適用して、RNTIを短縮し、短縮したRNTIをRNTIとして使用して、パディングビットの生成、及び、後述する復号処理が行われる。 For example, when the bit length of the padding bit is longer than the bit length of the RNTI, for example, information obtained by concatenating a plurality of RNTIs (for example, RNTI + RNTI) is used as the RNTI to generate padding bits and a decoding process described later Is done. When the bit length of the padding bit is shorter than the bit length of the RNTI, for example, by applying a hash function to the RNTI, the RNTI is shortened, and the shortened RNTI is used as the RNTI to generate padding bits. And the decoding process mentioned later is performed.
 パディングビット(ビット位置とその値)はユーザ装置10において既知である。具体的には、ユーザ装置10は、基地局20が保持する逆関数と同じ逆関数を保持し、当該逆関数を用いてRNTIからパディングビットを算出する。あるいは、基地局20は、基地局20で使用する逆関数を、上位レイヤシグナリングもしくはブロードキャスト情報でユーザ装置10に通知することとしてもよい。 Padding bits (bit positions and their values) are known in the user device 10. Specifically, the user apparatus 10 holds the same inverse function as the inverse function held by the base station 20, and calculates padding bits from the RNTI using the inverse function. Alternatively, the base station 20 may notify the user apparatus 10 of the inverse function used by the base station 20 by higher layer signaling or broadcast information.
 また、上記のように、基地局20においてRNTIよりも長いパディングビットを使用する場合、あるいは、RNTIよりも短いパディングビットを使用する場合、そのことはユーザ装置10において既知である。また、そのことを基地局20は、上位レイヤシグナリングもしくはブロードキャスト情報でユーザ装置10に通知することとしてもよい。 Further, as described above, when the base station 20 uses a padding bit longer than the RNTI or uses a padding bit shorter than the RNTI, this is known in the user apparatus 10. Further, the base station 20 may notify the user apparatus 10 by higher layer signaling or broadcast information.
 基地局20は、「凍結ビット+対象情報+CRC+パディングビット」を符号化し、符号化情報を得る。符号化情報には、「凍結ビット+対象情報+CRC」の符号化情報であるコードブロックと、パディングビットの符号化情報であるRNTIが含まれる。基地局20は、レートマッチング処理において、当該RNTIをパンクチャする。そのため、図12では、該当部分をshortenedと記載している。 The base station 20 encodes “frozen bit + target information + CRC + padding bit” to obtain encoded information. The encoded information includes a code block that is encoded information of “frozen bits + target information + CRC” and RNTI that is encoded information of padding bits. The base station 20 punctures the RNTI in the rate matching process. For this reason, in FIG. 12, the corresponding part is described as shorted.
 図14は、N=8(2)の場合における符号化処理を示す。Kを情報ビットのビット長、Mを「凍結ビット+情報ビット」のビット長とすると、凍結ビットのビット長はM-Kとなり、パディングビットのビット長はN-Mになる。図14は、K=4、M=6の場合を示しており、凍結ビットは2ビット(u,u)、パディングビットも2ビット(u,u)である。 FIG. 14 shows an encoding process when N = 8 (2 3 ). If K is the bit length of the information bit and M is the bit length of “frozen bit + information bit”, the bit length of the frozen bit is M−K and the bit length of the padding bit is NM. FIG. 14 shows a case where K = 4 and M = 6, where the frozen bits are 2 bits (u 0 , u 1 ) and the padding bits are 2 bits (u 6 , u 7 ).
 図14に示すように、凍結ビット(u,u)、情報ビット(u~u)、及びパディングビット(u,u)が符号器に入力され、符号化ビットが出力される。情報ビットは「対象情報+CRC」に相当する。パディングビット(u,u)に対応する符号化ビット(x,´,x´)はRNTIになる。RNTIのビットはパンクチャされ、残りの6ビットに対し、リソースマッピング等を経て送信が行われる。 As shown in FIG. 14, the frozen bits (u 0 , u 1 ), the information bits (u 2 to u 5 ), and the padding bits (u 6 , u 7 ) are input to the encoder, and the encoded bits are output. The The information bit corresponds to “target information + CRC”. The coded bits (x 6 , ′, x 7 ′) corresponding to the padding bits (u 6 , u 7 ) are RNTI. The RNTI bits are punctured, and the remaining 6 bits are transmitted through resource mapping or the like.
 例えば、入力情報(対象情報+CRC+凍結ビット)の長さがN=M=2となる場合でも、強制的に入力情報の短縮化を行って、方法3を適用することも可能である。 For example, even when the length of the input information (target information + CRC + frozen bit) is N = M = 2n , it is possible to apply the method 3 by forcibly shortening the input information.
 <方法3の復号>
 次に、図15A、B、及び図16を参照して方法3における復号処理を説明する。図15Aは、ユーザ装置10における処理の流れの概要を示す。図15Aに示すように、ユーザ装置10は、例えば、PDCCHのサーチスペース内で受信した信号の復調を行って、得られた情報(ビット毎の尤度)に対し、RNTIを用いて復号処理を行い(ステップS51)、得られた情報に対してCRCチェックを行う(ステップS52)。復号処理において、既知情報として凍結ビットの値とパディングビットの値も使用される。
<Decoding method 3>
Next, the decoding process in the method 3 will be described with reference to FIGS. 15A, 15B and 16. FIG. 15A shows an overview of the processing flow in the user apparatus 10. As illustrated in FIG. 15A, for example, the user apparatus 10 demodulates a signal received in a PDCCH search space, and performs decoding processing on the obtained information (likelihood for each bit) using RNTI. (Step S51), and CRC check is performed on the obtained information (step S52). In the decoding process, a frozen bit value and a padding bit value are also used as known information.
 図15B、図16を参照して、復号の動作をより詳細に説明する。ここでは、符号化側で、パディングビットから符号化により得られたビットがRNTIであるとし、それがパンクチャされたものとする。ユーザ装置10は、受信ビットのうち、パンクチャされたビット(図15Bのshortenedの部分)の値としてRNTIを使用して復号処理を行う。その後、CRCチェックを行い、CRCチェックがOKとなった場合、対象情報をユーザ装置10宛ての対象情報であると判断し、当該対象情報を使用する。また、CRCチェックに成功したRNTIの種類により、チャネル(データ)の種類を判別できる。方法3においても、方法1、2と同様に、ユーザ装置10は、復号においてSCDを用いてもよいし、SCLDを用いてもよいし、CRC-aided SCLDを用いてもよい。 The decoding operation will be described in more detail with reference to FIGS. 15B and 16. Here, on the encoding side, it is assumed that the bit obtained by encoding from the padding bits is RNTI, and it is punctured. The user apparatus 10 performs a decoding process using the RNTI as the value of the punctured bit (shorted portion in FIG. 15B) among the received bits. Thereafter, a CRC check is performed, and when the CRC check is OK, it is determined that the target information is the target information addressed to the user device 10, and the target information is used. Also, the type of channel (data) can be determined based on the type of RNTI that has been successfully CRC checked. Also in the method 3, similarly to the methods 1 and 2, the user apparatus 10 may use SCD in decoding, SCLD, or CRC-aided SCLD.
 図16は、図14の符号化処理(N=8、K=4、M=6)に対応する復号処理を示す。図16に示すように、復号器への入力(図16の右側)として、各ビットの尤度が入力される。パンクチャされたビットにおいては、RNTIの値を示す尤度を使用する。例えば、ビットの値が0であれば、プラスの大きな値(例:+∞)を尤度として使用し、ビットの値が1であれば、マイナスの大きな値(例:-∞)を尤度として使用する。 FIG. 16 shows a decoding process corresponding to the encoding process (N = 8, K = 4, M = 6) in FIG. As shown in FIG. 16, the likelihood of each bit is input as an input to the decoder (right side in FIG. 16). In the punctured bit, the likelihood indicating the value of RNTI is used. For example, if the bit value is 0, a large positive value (eg, + ∞) is used as the likelihood. If the bit value is 1, a negative large value (eg, −∞) is used as the likelihood. Use as
 また、ユーザ装置10は、出力側の凍結ビットの値(u,u)、及び、パディングビットの値(u,u)として既知情報を使用して復号処理を実行する。 Also, the user apparatus 10 performs a decoding process using known information as the frozen bit value (u 0 , u 1 ) and the padding bit value (u 6 , u 7 ) on the output side.
 例えば、基地局20において適用され得るRNTIが複数種類ある場合には、ユーザ装置10は、複数RNTIのそれぞれについて、RNTIの各ビットに対応する各尤度を入力として使用して復号処理を行って、CRCチェックに成功した場合に、使用されたRNTIが基地局20において適用されたRNTIであると判断できる。例えば、ユーザ装置10が、P-RNTIとSI-RNTIのそれぞれを使用して復号処理及びCRCチェックを行った結果、SI-RNTIを使用したときにCRCチェックに成功した場合、ユーザ装置10は、ブロードキャスト情報を基地局20から受信すると判断できる。 For example, when there are a plurality of types of RNTI that can be applied in the base station 20, the user apparatus 10 performs a decoding process for each of the plurality of RNTIs using each likelihood corresponding to each bit of the RNTI as an input. When the CRC check is successful, it can be determined that the used RNTI is the RNTI applied in the base station 20. For example, when the user apparatus 10 performs the decoding process and the CRC check using each of P-RNTI and SI-RNTI, and the user apparatus 10 succeeds in the CRC check when using the SI-RNTI, the user apparatus 10 It can be determined that broadcast information is received from the base station 20.
 なお、上記の例では、送信側において、RNTIに対応する全てのビットをパンクチャするが、これは例である。RNTIに対応する全てのビットのうちの一部のビットをパンクチャしてもよいし、RNTIに対応するいずれのビットに対してもパンクチャを行わないこととしてもよい。パンクチャを行わない場合でも、図16で示した復号処理を行うことができる。 In the above example, all bits corresponding to the RNTI are punctured on the transmission side, but this is an example. A part of all the bits corresponding to the RNTI may be punctured, or any of the bits corresponding to the RNTI may not be punctured. Even when puncturing is not performed, the decoding processing shown in FIG. 16 can be performed.
 また、方法3において、パディングビットにRNTIを使用し、復号側で尤度の入力として使用する値として、RNTIに逆関数を適用した値を使用してもよい。 Also, in Method 3, a value obtained by applying an inverse function to RNTI may be used as a value used as an input of likelihood on the decoding side, using RNTI for padding bits.
 (方法1~方法3の組み合わせ)
 基地局20は、例えば、方法3の符号化処理において、方法1及び/又は方法2を組み合わせてもよい。例えば、基地局20は、図13Bに示すCRC及び/又は凍結ビットにRNTIをマスキングする。凍結ビットにRNTIがマスキングされた場合、ユーザ装置10は、凍結ビットとしてRNTIを使用して復号処理を行う。また、CRCにRNTIがマスキングされた場合、ユーザ装置10は、復号処理で得られたCRCの部分に対し、RNTIを用いてアンマスキングを行った後に、CRCチェックを行う。
(Combination of Method 1 to Method 3)
The base station 20 may combine the method 1 and / or the method 2 in the encoding process of the method 3, for example. For example, the base station 20 masks the RNTI on the CRC and / or frozen bit shown in FIG. 13B. When the RNTI is masked on the frozen bit, the user apparatus 10 performs a decoding process using the RNTI as the frozen bit. Further, when the RNTI is masked in the CRC, the user apparatus 10 performs CRC check after unmasking the CRC portion obtained by the decoding process using the RNTI.
 上記のように組み合わせを実施することで、組み合わせを実施しない場合よりも、誤検出率が改善されることが考えられる。 It can be considered that by performing the combination as described above, the false detection rate is improved as compared with the case where the combination is not performed.
 (方法1~方法3のまとめ、効果等)
 図17は、方法1~方法3の特徴を示す。方法1では、RNTIはCRCに適用され、復号後にRNTIを用いてアンマスキングがなされる。方法2では、RNTIは凍結ビットに適用され、復号前にRNTIが使用される。方法3では、パディングビットにRNTIが適用され、復号前にRNTIが使用される。
(Summary of method 1 to method 3, effect, etc.)
FIG. 17 shows the features of Method 1 to Method 3. In Method 1, RNTI is applied to CRC, and unmasking is performed using RNTI after decoding. In Method 2, the RNTI is applied to the frozen bit and the RNTI is used before decoding. In method 3, RNTI is applied to padding bits, and RNTI is used before decoding.
 また、FAR(False Alarm Rate、誤検出率)については、方法1では、CRCの長さに依存するため、より良いFARを得るためには、より多くのCRCビットが必要となり、オーバーヘッドが増加する。方法2については、オーバーヘッドを増加させることなく誤検出率低減が可能となるが、その特性は不安定、もしくはロバストでない可能性がある。方法3については、パディングビットの長さに依存して誤検出率を低減できる。なお、凍結ビットの一部をパディングビットとしてもよく、方法3におけるオーバーヘッドを低減可能である。 In addition, since FAR (False Alarm Rate, false detection rate) depends on the CRC length in Method 1, more CRC bits are required to obtain a better FAR, and overhead increases. . With method 2, the false detection rate can be reduced without increasing overhead, but the characteristics may be unstable or not robust. For method 3, the false detection rate can be reduced depending on the length of the padding bits. Note that some of the frozen bits may be padding bits, and the overhead in Method 3 can be reduced.
 図18は、方法2と方法3のFARの評価結果を示している。図18において、「Frozen RNTI」が方法2を示し、「Shortened RNTI」が方法3を示す。図18の横軸はEs/N0(信号対雑音比)であり、縦軸がFARである。図18に示すように、方法2に比べて、方法3のほうがFARが良いことがわかる。例えば、2つRNTIが1ビットだけ異なる場合(例:RNTI=0000、RNTI=0001)において、方法3では、方法2よりも良くこれらを識別可能である。 FIG. 18 shows the FAR evaluation results of Method 2 and Method 3. In FIG. 18, “Frozen RNTI” indicates method 2, and “Shortened RNTI” indicates method 3. The horizontal axis in FIG. 18 is Es / N0 (signal to noise ratio), and the vertical axis is FAR. As shown in FIG. 18, it can be seen that FAR is better in method 3 than in method 2. For example, when two RNTIs differ by 1 bit (eg, RNTI = 0000, RNTI = 0001), the method 3 can identify them better than the method 2.
 なお、方法1は、既存のLTEの方式に類似しているため、実装が比較的容易であると考えられる。また、方法2では、凍結ビットにRNTIを適用するため、パディングビットの付加が不要であり、また、復号側では、CRCのアンマスキング等が不要である。よって、これらの点で処理負荷が低いことが考えられる。方法3は、上述したように、良いFARが得られるという効果がある。 In addition, since Method 1 is similar to the existing LTE method, it is considered that implementation is relatively easy. Further, in Method 2, since RNTI is applied to the frozen bit, it is not necessary to add padding bits, and CRC unmasking or the like is unnecessary on the decoding side. Therefore, it can be considered that the processing load is low in these respects. As described above, the method 3 has an effect that a good FAR can be obtained.
 (装置構成)
 次に、これまでに説明した処理動作を実行するユーザ装置10及び基地局20の機能構成例を説明する。
(Device configuration)
Next, functional configuration examples of the user apparatus 10 and the base station 20 that execute the processing operations described so far will be described.
 <ユーザ装置>
 図19は、ユーザ装置10の機能構成の一例を示す図である。図19に示すように、ユーザ装置10は、信号送信部101と、信号受信部102と、設定情報管理部103とを有する。図19に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<User device>
FIG. 19 is a diagram illustrating an example of a functional configuration of the user device 10. As illustrated in FIG. 19, the user apparatus 10 includes a signal transmission unit 101, a signal reception unit 102, and a setting information management unit 103. The functional configuration shown in FIG. 19 is merely an example. As long as the operation according to the present embodiment can be executed, the function classification and the name of the function unit may be anything.
 信号送信部101は、送信データから送信を作成し、当該送信信号を無線で送信する。信号受信部102は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。 The signal transmission unit 101 creates a transmission from the transmission data and transmits the transmission signal wirelessly. The signal receiving unit 102 wirelessly receives various signals, and acquires higher layer signals from the received physical layer signals.
 設定情報管理部103は、信号受信部102により基地局20から受信した各種の設定情報、及び、予め設定される設定情報を格納する。設定情報の内容は、例えば、1つ又は複数のRNTI、既知ビット値等である。また、設定情報管理部103は、パディングビットの値の計算に使用される逆関数を格納することとしてもよい。 The setting information management unit 103 stores various setting information received from the base station 20 by the signal receiving unit 102, and preset setting information. The contents of the setting information are, for example, one or a plurality of RNTIs, known bit values, and the like. Further, the setting information management unit 103 may store an inverse function used for calculating the value of the padding bit.
 図19に示すとおり、信号送信部101は、符号化部111と送信部121を含む。符号化部111は、方法3の符号化処理を行う。例えば、符号化部111は、既知ビット値、情報ビット値、及びパディングビット値に対して符号化(例:Polar符号化)を行って、符号化情報を生成するように構成される。また、符号化部111は、CRCを計算し、CRCを上記情報ビット値に含める機能を有する。また、符号化部111は、方法3の符号化処理に加えて、方法1及び/又は方法2の符号化処理を行うこととしてもよい。 As illustrated in FIG. 19, the signal transmission unit 101 includes an encoding unit 111 and a transmission unit 121. The encoding unit 111 performs the encoding process of Method 3. For example, the encoding unit 111 is configured to perform encoding (eg, Polar encoding) on the known bit value, the information bit value, and the padding bit value to generate encoded information. The encoding unit 111 has a function of calculating a CRC and including the CRC in the information bit value. The encoding unit 111 may perform the encoding process of the method 1 and / or the method 2 in addition to the encoding process of the method 3.
 送信部121は、符号化部111により生成された符号化情報から送信信号を作成し、当該送信信号を無線で送信するように構成される。例えば、送信部121は、レートマッチングにより、符号化情報の中の一部のビット値をパンクチャし、パンクチャがなされた符号化情報に対して、変調を行って変調シンボル(complex-valued modulation symbols)を生成する。また、送信部121は、変調シンボルをリソースエレメントにマッピングし、送信信号(例:OFDM信号、SC-FDMA信号)を生成し、送信部121が備えるアンテナから送信する。送信信号は、例えば、他の通信装置(例:基地局20、ユーザ装置15)が受信する。 The transmission unit 121 is configured to create a transmission signal from the encoded information generated by the encoding unit 111 and transmit the transmission signal wirelessly. For example, the transmission unit 121 punctures part of the bit values in the encoded information by rate matching, modulates the encoded information that has been punctured, and generates modulation symbols (complex-valued modulation symbols). Is generated. Also, the transmitter 121 maps modulation symbols to resource elements, generates a transmission signal (eg, OFDM signal, SC-FDMA signal), and transmits it from an antenna provided in the transmitter 121. The transmission signal is received by, for example, another communication device (eg, base station 20 or user device 15).
 なお、ユーザ装置10の信号送信部101は、Polar符号化を行う機能を備えないこととしてもよい。 Note that the signal transmission unit 101 of the user apparatus 10 may not have a function of performing Polar encoding.
 信号受信部102は、復号部112と受信部122を含む。受信部122は、他の通信装置から受信した信号の復調を行うことにより、符号化(例:Polar符号化)により符号化された符号化情報のビット毎の尤度を取得する。例えば、受信部122は、検波により得た受信信号に対してFFTを行って、各サブキャリアの信号成分を取得し、QRM-MLD法等を用いてビット毎の対数尤度比を求める。 The signal receiving unit 102 includes a decoding unit 112 and a receiving unit 122. The receiving unit 122 acquires the likelihood for each bit of the encoded information encoded by encoding (eg, Polar encoding) by demodulating a signal received from another communication apparatus. For example, the receiving unit 122 performs FFT on the received signal obtained by the detection, acquires the signal component of each subcarrier, and obtains the log likelihood ratio for each bit using the QRM-MLD method or the like.
 復号部112は、例えば、図16を参照して説明したように、尤度と、所定の識別子(例:RNTI)に対応する尤度とを使用して符号化情報の復号を行う。また、復号部112は、符号化情報の復号により得られた情報に対し、誤り検出符号(例:CRC)による検査を行い、当該検査に成功した場合に、当該情報を最終復号結果と判断する。 For example, as described with reference to FIG. 16, the decoding unit 112 decodes encoded information using the likelihood and the likelihood corresponding to a predetermined identifier (eg, RNTI). In addition, the decoding unit 112 performs a check on the information obtained by decoding the encoded information using an error detection code (eg, CRC), and determines that the information is the final decoding result when the check is successful. .
 <基地局20>
 図20は、基地局20の機能構成の一例を示す図である。図20に示すように、基地局20は、信号送信部201と、信号受信部202と、設定情報管理部203と、スケジューリング部204とを有する。図20に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<Base station 20>
FIG. 20 is a diagram illustrating an example of a functional configuration of the base station 20. As illustrated in FIG. 20, the base station 20 includes a signal transmission unit 201, a signal reception unit 202, a setting information management unit 203, and a scheduling unit 204. The functional configuration shown in FIG. 20 is merely an example. As long as the operation according to the present embodiment can be executed, the function classification and the name of the function unit may be anything.
 信号送信部201は、ユーザ装置10側に送信する信号を生成し、当該信号を無線で送信する機能を含む。信号受信部202は、ユーザ装置10から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。 The signal transmission unit 201 includes a function of generating a signal to be transmitted to the user apparatus 10 and transmitting the signal wirelessly. The signal receiving unit 202 includes a function of receiving various signals transmitted from the user apparatus 10 and acquiring, for example, higher layer information from the received signals.
 設定情報管理部203は、例えば、既知の設定情報を格納する。設定情報の内容は、例えば、1つ又は複数のRNTI、既知ビット値である。また、設定情報管理部203は、パディングビットの値の計算に使用される逆関数を格納することとしてもよい。 The setting information management unit 203 stores known setting information, for example. The contents of the setting information are, for example, one or a plurality of RNTIs and known bit values. Further, the setting information management unit 203 may store an inverse function used for calculating the value of the padding bit.
 スケジューリング部204は、例えば、ユーザ装置10が使用するリソース(UL通信のリソース、DL通信のリソース、又はSL通信のリソース)を割り当て、割り当て情報を信号送信部201に渡し、信号送信部201は、当該割り当て情報を含む下り制御情報をユーザ装置10に送信する。 The scheduling unit 204, for example, allocates resources (UL communication resource, DL communication resource, or SL communication resource) used by the user apparatus 10, passes the allocation information to the signal transmission unit 201, and the signal transmission unit 201 Downlink control information including the allocation information is transmitted to the user apparatus 10.
 図20に示すとおり、信号送信部201は、符号化部211と送信部221を含む。符号化部211は、方法3の符号化処理を行う。例えば、符号化部211は、既知ビット値、情報ビット値、及びパディングビット値に対して符号化(例:Polar符号化)を行って、符号化情報を生成するように構成される。また、符号化部211は、CRCを計算し、CRCを上記情報ビット値に含める機能を有する。また、符号化部211は、方法3の符号化処理に加えて、方法1及び/又は方法2の符号化処理を行うこととしてもよい。 As shown in FIG. 20, the signal transmission unit 201 includes an encoding unit 211 and a transmission unit 221. The encoding unit 211 performs the encoding process of Method 3. For example, the encoding unit 211 is configured to perform encoding (for example, Polar encoding) on the known bit value, the information bit value, and the padding bit value to generate encoded information. The encoding unit 211 has a function of calculating a CRC and including the CRC in the information bit value. The encoding unit 211 may perform the encoding process of the method 1 and / or the method 2 in addition to the encoding process of the method 3.
 送信部221は、符号化部211により生成された符号化情報から送信信号を作成し、当該送信信号を無線で送信するように構成される。例えば、送信部221は、レートマッチングにより、符号化情報の中の一部のビット値をパンクチャし、パンクチャがなされた符号化情報に対して、変調を行って変調シンボル(complex-valued modulation symbols)を取得する。また、送信部221は、変調シンボルをリソースエレメントにマッピングし、送信信号(例:OFDM信号、SC-FDMA信号)を生成し、送信部221が備えるアンテナから送信する。送信信号は、他の通信装置(例:ユーザ装置10)が受信する。 The transmission unit 221 is configured to create a transmission signal from the encoded information generated by the encoding unit 211 and transmit the transmission signal wirelessly. For example, the transmission unit 221 punctures a part of bit values in the encoded information by rate matching, modulates the punctured encoded information, and modulates (modulated-valued modulation symbols). To get. Also, the transmission unit 221 maps modulation symbols to resource elements, generates a transmission signal (eg, OFDM signal, SC-FDMA signal), and transmits it from an antenna provided in the transmission unit 221. The transmission signal is received by another communication device (eg, user device 10).
 信号受信部202は、復号部212と受信部222を含む。受信部222は、他の通信装置から受信した信号の復調を行うことにより、符号化(例:Polar符号化)により符号化された符号化情報のビット毎の尤度を取得する。例えば、受信部222は、検波により得た受信信号に対してFFTを行って、各サブキャリアの信号成分を取得し、QRM-MLD法等を用いてビット毎の対数尤度比を求める。 The signal receiving unit 202 includes a decoding unit 212 and a receiving unit 222. The receiving unit 222 acquires the likelihood for each bit of the encoded information encoded by encoding (eg, Polar encoding) by demodulating a signal received from another communication apparatus. For example, the reception unit 222 performs FFT on the reception signal obtained by detection, acquires the signal component of each subcarrier, and obtains the log likelihood ratio for each bit using the QRM-MLD method or the like.
 復号部212は、例えば、図16を参照して説明したように、受信信号の尤度と、所定の識別子(例:RNTI)に対応する尤度とを使用して符号化情報の復号を行う。また、復号部212は、符号化情報の復号により得られた情報に対し、誤り検出符号(例:CRC)による検査を行い、当該検査に成功した場合に、当該情報を最終復号結果と判断する。 For example, as described with reference to FIG. 16, the decoding unit 212 decodes encoded information using the likelihood of the received signal and the likelihood corresponding to a predetermined identifier (eg, RNTI). . In addition, the decoding unit 212 performs an inspection using an error detection code (eg, CRC) on information obtained by decoding the encoded information, and determines that the information is the final decoding result when the inspection is successful. .
 なお、基地局20の信号受信部202は、Polar復号を行う機能を備えないこととしてもよい。 Note that the signal receiving unit 202 of the base station 20 may not have a function of performing Polar decoding.
 <ハードウェア構成>
 上記実施の形態の説明に用いたブロック図(図19~図20)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に複数要素が結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
<Hardware configuration>
The block diagrams (FIGS. 19 to 20) used in the description of the above embodiment show functional unit blocks. These functional blocks (components) are realized by any combination of hardware and / or software. Further, the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one device in which a plurality of elements are physically and / or logically combined, or two or more devices physically and / or logically separated may be directly and directly. It may be realized by a plurality of these devices connected indirectly (for example, wired and / or wirelessly).
 また、例えば、本発明の一実施の形態におけるユーザ装置10と基地局20はいずれも、本実施の形態に係る処理を行うコンピュータとして機能してもよい。図21は、本実施の形態に係るユーザ装置10と基地局20のハードウェア構成の一例を示す図である。上述のユーザ装置10と基地局20はそれぞれ、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 Also, for example, both the user apparatus 10 and the base station 20 in the embodiment of the present invention may function as a computer that performs processing according to the present embodiment. FIG. 21 is a diagram illustrating an example of a hardware configuration of the user apparatus 10 and the base station 20 according to the present embodiment. Each of the above-described user apparatus 10 and base station 20 may be physically configured as a computer apparatus including a processor 1001, a memory 1002, a storage 1003, a communication apparatus 1004, an input apparatus 1005, an output apparatus 1006, a bus 1007, and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。ユーザ装置10と基地局20のハードウェア構成は、図に示した1001~1006で示される各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configurations of the user apparatus 10 and the base station 20 may be configured to include one or a plurality of apparatuses indicated by 1001 to 1006 shown in the figure, or may be configured not to include some apparatuses. May be.
 ユーザ装置10と基地局20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。 Each function in the user apparatus 10 and the base station 20 is performed by causing the processor 1001 to perform computation by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and performing communication by the communication apparatus 1004 and memory 1002. This is realized by controlling reading and / or writing of data in the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図19に示したユーザ装置10の信号送信部101、信号受信部102、設定情報管理部103は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図20に示した基地局20の信号送信部201と、信号受信部202と、設定情報管理部203と、スケジューリング部204は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。 Further, the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the signal transmission unit 101, the signal reception unit 102, and the setting information management unit 103 of the user apparatus 10 illustrated in FIG. 19 may be realized by a control program stored in the memory 1002 and operating on the processor 1001. Further, for example, the signal transmission unit 201, the signal reception unit 202, the setting information management unit 203, and the scheduling unit 204 of the base station 20 illustrated in FIG. 20 are stored in the memory 1002, and are controlled by the processor 1001. It may be realized by. Although the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る処理を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. May be. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the processing according to the embodiment of the present invention.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. The storage 1003 may be referred to as an auxiliary storage device. The storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、ユーザ装置10の信号送信部101及び信号受信部102は、通信装置1004で実現されてもよい。また、基地局20の信号送信部201及び信号受信部202は、通信装置1004で実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. For example, the signal transmission unit 101 and the signal reception unit 102 of the user device 10 may be realized by the communication device 1004. Further, the signal transmission unit 201 and the signal reception unit 202 of the base station 20 may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
 また、ユーザ装置10と基地局20はそれぞれ、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。 In addition, the user apparatus 10 and the base station 20 are respectively a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), an ASIC (Fragable Logic Device), a PLD (Programmable Logic Device), an AFP It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
 (実施の形態のまとめ)
 以上、説明したように、本実施の形態によれば、無線通信システムにおいて使用される通信装置であって、入力された既知ビット値、情報ビット値、及びパディングビット値に対する所定の符号化を行って、符号化情報を生成する符号化部と、前記符号化部により生成された前記符号化情報から送信信号を作成し、当該送信信号を送信する送信部と、を備え、前記パディングビット値は、前記符号化により所定の識別子に変換される値であり、当該所定の識別子は前記送信信号を受信する他の通信装置において、前記符号化情報の復号に使用されることを特徴とする通信装置が提供される。
(Summary of embodiment)
As described above, according to the present embodiment, a communication device used in a wireless communication system performs predetermined encoding on an input known bit value, information bit value, and padding bit value. An encoding unit that generates encoding information, and a transmission unit that generates a transmission signal from the encoding information generated by the encoding unit and transmits the transmission signal, and the padding bit value is The communication device is a value converted into a predetermined identifier by the encoding, and the predetermined identifier is used for decoding the encoded information in another communication device that receives the transmission signal. Is provided.
 上記の構成により、所定の識別子が適用された符号化情報を送信側から送信し、受信側で当該所定の識別子を用いて情報の検出を行う無線通信システムにおいて、受信側で良好な誤検出率を得ることを可能とする技術が提供される。 With the above configuration, in a wireless communication system in which encoded information to which a predetermined identifier is applied is transmitted from the transmission side and information is detected using the predetermined identifier on the reception side, a good false detection rate on the reception side Technology is provided that makes it possible to obtain
 前記送信部は、前記符号化により得られた前記所定の識別子を前記符号化情報からパンクチャすることとしてもよい。この構成により、送信信号のビット数を削減できる。 The transmission unit may puncture the predetermined identifier obtained by the encoding from the encoded information. With this configuration, the number of bits of the transmission signal can be reduced.
 また、本実施の形態によれば、無線通信システムにおいて使用される通信装置であって、他の通信装置から受信した信号の復調を行うことにより、所定の符号化により符号化された符号化情報のビット毎の尤度を取得する受信部と、前記尤度と、所定の識別子に対応する尤度とを使用して前記符号化情報の復号を行う復号部とを備えることを特徴とする通信装置が提供される。 In addition, according to the present embodiment, a communication apparatus used in a wireless communication system, which encodes information encoded by predetermined encoding by demodulating a signal received from another communication apparatus. A receiving unit that obtains a likelihood for each bit of the signal, and a decoding unit that decodes the encoded information using the likelihood and a likelihood corresponding to a predetermined identifier. An apparatus is provided.
 上記の構成により、所定の識別子が適用された符号化情報を送信側から送信し、受信側で当該所定の識別子を用いて情報の検出を行う無線通信システムにおいて、受信側で良好な誤検出率を得ることを可能とする技術が提供される。 With the above configuration, in a wireless communication system in which encoded information to which a predetermined identifier is applied is transmitted from the transmission side and information is detected using the predetermined identifier on the reception side, a good false detection rate on the reception side Technology is provided that makes it possible to obtain
 前記復号部は、例えば、前記復号で使用する既知のビット値として、凍結ビット値と、既知のパディングビット値とを使用する。この構成により、既知情報を使用した復号(例:Polar復号)を適切に実施できる。 The decoding unit uses, for example, a frozen bit value and a known padding bit value as known bit values used in the decoding. With this configuration, decoding using known information (eg, Polar decoding) can be performed appropriately.
 前記復号部は、前記符号化情報の復号により得られた情報に対し、誤り検出符号による検査を行い、当該検査に成功した場合に、当該情報を最終復号結果と決定することとしてもよい。この構成により、受信した情報の正しさを適切に判断することができる。 The decoding unit may check the information obtained by decoding the encoded information using an error detection code, and when the check is successful, determine the information as a final decoding result. With this configuration, it is possible to appropriately determine the correctness of the received information.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、ユーザ装置10と基地局20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従ってユーザ装置10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って基地局20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplement of embodiment)
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art will understand various variations, modifications, alternatives, substitutions, and the like. I will. Although specific numerical examples have been described in order to facilitate understanding of the invention, these numerical values are merely examples and any appropriate values may be used unless otherwise specified. The classification of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, or the items described in one item may be used in different items. It may be applied to the matters described in (if not inconsistent). The boundaries between functional units or processing units in the functional block diagram do not necessarily correspond to physical component boundaries. The operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components. About the processing procedure described in the embodiment, the processing order may be changed as long as there is no contradiction. For convenience of description of the processing, the user apparatus 10 and the base station 20 have been described using functional block diagrams. However, such an apparatus may be realized by hardware, software, or a combination thereof. The software operated by the processor of the user apparatus 10 according to the embodiment of the present invention and the software operated by the processor of the base station 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only, respectively. It may be stored in any appropriate storage medium such as a memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or the like.
 また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the aspect / embodiment described in the present specification, and may be performed by other methods. For example, the notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Accu), signaling (MediaColl). It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. Further, the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Fureure Radio Access), and W-CDMA. (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), The present invention may be applied to a Bluetooth (registered trademark), a system using other appropriate systems, and / or a next generation system extended based on these systems.
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The processing procedures, sequences, flowcharts and the like of each aspect / embodiment described in this specification may be switched in order as long as there is no contradiction. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
 本明細書において基地局20によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局20を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、ユーザ装置10との通信のために行われる様々な動作は、基地局20および/または基地局20以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局20以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。 The specific operation assumed to be performed by the base station 20 in the present specification may be performed by the upper node in some cases. In a network composed of one or a plurality of network nodes having a base station 20, various operations performed for communication with the user apparatus 10 may be performed in a manner other than the base station 20 and / or other than the base station 20. Obviously, it can be done by a network node (for example, but not limited to MME or S-GW). Although the case where there is one network node other than the base station 20 in the above is illustrated, a combination of a plurality of other network nodes (for example, MME and S-GW) may be used.
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。 Each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution.
 ユーザ装置10は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 User equipment 10 can be used by those skilled in the art to subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, It may also be referred to as a wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
 基地局20は、当業者によって、NB(NodeB)、eNB(enhanced NodeB)、ベースステーション(Base Station)、またはいくつかの他の適切な用語で呼ばれる場合もある。 Base station 20 may also be referred to by those skilled in the art as NB (NodeB), eNB (enhanced NodeB), base station (Base Station), or some other appropriate terminology.
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。 As used herein, the terms “determining” and “determining” may encompass a wide variety of actions. “Judgment” and “determination” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (investigation), investigation (investigating), search (loking up) (for example, table , Searching in a database or another data structure), considering ascertaining “determining”, “determining”, and the like. Further, “determination” and “determination” are reception (for example, receiving information), transmission (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in a memory) may be considered as “determining” or “determining”. In addition, “determination” and “determination” means that “resolving”, selection (selecting), selection (choosing), establishment (establishing), comparison (comparing), etc. are regarded as “determination” and “determination”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used herein, the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
 「含む(include)」、「含んでいる(including)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 As long as the terms “including”, “including”, and variations thereof are used herein or in the claims, these terms are similar to the term “comprising”. It is intended to be comprehensive. Furthermore, the term “or” as used herein or in the claims is not intended to be an exclusive OR.
 本開示の全体において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含み得る。 Throughout this disclosure, if articles are added by translation, for example, a, an, and the in English, these articles are not clearly indicated otherwise from the context, Multiple can be included.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。 Although the present invention has been described in detail above, it will be apparent to those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be implemented as modified and changed modes without departing from the spirit and scope of the present invention defined by the description of the scope of claims. Therefore, the description of the present specification is for illustrative purposes and does not have any limiting meaning to the present invention.
10、15 ユーザ装置
101 信号送信部
102 信号受信部
103 設定情報管理部
20 基地局
201 信号送信部
202 信号受信部
203 設定情報管理部
204 スケジューリング部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
10, 15 User device 101 Signal transmission unit 102 Signal reception unit 103 Setting information management unit 20 Base station 201 Signal transmission unit 202 Signal reception unit 203 Setting information management unit 204 Scheduling unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device

Claims (6)

  1.  無線通信システムにおいて使用される通信装置であって、
     入力された既知ビット値、情報ビット値、及びパディングビット値に対する所定の符号化を行って、符号化情報を生成する符号化部と、
     前記符号化部により生成された前記符号化情報から送信信号を作成し、当該送信信号を送信する送信部と、を備え、
     前記パディングビット値は、前記符号化により所定の識別子に変換される値であり、当該所定の識別子は前記送信信号を受信する他の通信装置において、前記符号化情報の復号に使用される
     ことを特徴とする通信装置。
    A communication device used in a wireless communication system,
    An encoding unit that performs predetermined encoding on the input known bit value, information bit value, and padding bit value to generate encoded information;
    A transmission unit that creates a transmission signal from the encoding information generated by the encoding unit and transmits the transmission signal, and
    The padding bit value is a value converted into a predetermined identifier by the encoding, and the predetermined identifier is used for decoding the encoded information in another communication device that receives the transmission signal. A communication device.
  2.  前記送信部は、前記符号化により得られた前記所定の識別子を前記符号化情報からパンクチャする
     ことを特徴とする請求項1に記載の通信装置。
    The communication apparatus according to claim 1, wherein the transmission unit punctures the predetermined identifier obtained by the encoding from the encoded information.
  3.  無線通信システムにおいて使用される通信装置であって、
     他の通信装置から受信した信号の復調を行うことにより、所定の符号化により符号化された符号化情報のビット毎の尤度を取得する受信部と、
     前記尤度と、所定の識別子に対応する尤度とを使用して前記符号化情報の復号を行う復号部と
     を備えることを特徴とする通信装置。
    A communication device used in a wireless communication system,
    A receiver that acquires the likelihood of each bit of encoded information encoded by predetermined encoding by demodulating a signal received from another communication device;
    A communication apparatus comprising: a decoding unit that decodes the encoded information using the likelihood and a likelihood corresponding to a predetermined identifier.
  4.  前記復号部は、前記復号で使用する既知のビット値として、凍結ビット値と、既知のパディングビット値とを使用する
     ことを特徴とする請求項3に記載の通信装置。
    The communication device according to claim 3, wherein the decoding unit uses a frozen bit value and a known padding bit value as known bit values used in the decoding.
  5.  前記復号部は、前記符号化情報の復号により得られた情報に対し、誤り検出符号による検査を行い、当該検査に成功した場合に、当該情報を最終復号結果と決定する
     ことを特徴とする請求項3又は4に記載の通信装置。
    The decoding unit performs a check with an error detection code on information obtained by decoding the encoded information, and determines the information as a final decoding result when the check is successful. Item 5. The communication device according to Item 3 or 4.
  6.  無線通信システムにおいて使用される通信装置が実行する復号方法であって、
     他の通信装置から受信した信号の復調を行うことにより、所定の符号化により符号化された符号化情報のビット毎の尤度を取得する受信ステップと、
     前記尤度と、所定の識別子に対応する尤度とを使用して前記符号化情報の復号を行う復号ステップと
     を備えることを特徴とする復号方法。
    A decoding method executed by a communication device used in a wireless communication system,
    A reception step of acquiring a likelihood for each bit of encoded information encoded by a predetermined encoding by demodulating a signal received from another communication device;
    A decoding method comprising: a decoding step of decoding the encoded information using the likelihood and a likelihood corresponding to a predetermined identifier.
PCT/JP2017/009846 2017-03-10 2017-03-10 Communication device and decoding method WO2018163433A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/009846 WO2018163433A1 (en) 2017-03-10 2017-03-10 Communication device and decoding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/009846 WO2018163433A1 (en) 2017-03-10 2017-03-10 Communication device and decoding method

Publications (1)

Publication Number Publication Date
WO2018163433A1 true WO2018163433A1 (en) 2018-09-13

Family

ID=63447411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009846 WO2018163433A1 (en) 2017-03-10 2017-03-10 Communication device and decoding method

Country Status (1)

Country Link
WO (1) WO2018163433A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107452A1 (en) * 2017-11-29 2019-06-06 株式会社Nttドコモ Communication device and decoding method
CN111200442A (en) * 2018-11-20 2020-05-26 华为技术有限公司 Coding and decoding method, coding and decoding device and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505975A (en) * 1999-07-22 2003-02-12 シーメンス アクチエンゲゼルシヤフト Data Bitstream Error Prevention Method
JP2010537460A (en) * 2007-08-17 2010-12-02 パナソニック株式会社 Perform cyclic redundancy check across multiple encoded segments
WO2011021617A1 (en) * 2009-08-18 2011-02-24 株式会社エヌ・ティ・ティ・ドコモ Wireless communication control method, radio base station apparatus and mobile terminal apparatus
JP2011507362A (en) * 2007-12-14 2011-03-03 パナソニック株式会社 Wireless communication apparatus and puncturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505975A (en) * 1999-07-22 2003-02-12 シーメンス アクチエンゲゼルシヤフト Data Bitstream Error Prevention Method
JP2010537460A (en) * 2007-08-17 2010-12-02 パナソニック株式会社 Perform cyclic redundancy check across multiple encoded segments
JP2011507362A (en) * 2007-12-14 2011-03-03 パナソニック株式会社 Wireless communication apparatus and puncturing method
WO2011021617A1 (en) * 2009-08-18 2011-02-24 株式会社エヌ・ティ・ティ・ドコモ Wireless communication control method, radio base station apparatus and mobile terminal apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAGATA, MOTOKI ET AL.: "A hybrid-ARQ scheme with a polar code", IEICE TECHNICAL REPORT, vol. 112, no. 124, 12 July 2012 (2012-07-12), pages 97 - 102, XP055605315 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107452A1 (en) * 2017-11-29 2019-06-06 株式会社Nttドコモ Communication device and decoding method
JPWO2019107452A1 (en) * 2017-11-29 2021-01-07 株式会社Nttドコモ Communication device and decryption method
JP7028891B2 (en) 2017-11-29 2022-03-02 株式会社Nttドコモ Communication device and communication method
CN111200442A (en) * 2018-11-20 2020-05-26 华为技术有限公司 Coding and decoding method, coding and decoding device and system

Similar Documents

Publication Publication Date Title
US11146358B2 (en) Polar codes for downlink control channels for wireless networks
JP2019534656A (en) Encoding and decoding method and device
AU2021286440B2 (en) Rate matching for block encoding
CN109792298B (en) Sub-channel mapping
US20180249366A1 (en) User apparatus, base station, and communication method
JP7028891B2 (en) Communication device and communication method
WO2018203417A1 (en) Base station device, user device and communication method
JP2018064253A (en) User device and signal receiving method
US11026244B2 (en) Method and device in terminal and base station for dynamic scheduling
WO2018163433A1 (en) Communication device and decoding method
CN111194523A (en) Rate matching interleaving method and device for polarization code
WO2018167980A1 (en) Communication device, encoding method, and decoding method
WO2018143124A1 (en) Communication device and sequence selection method
WO2019062360A1 (en) Scrambling method, method for use in sending rnti, and corresponding device
JP2018064252A (en) User device and signal receiving method
WO2018207377A1 (en) Communication device, coding method, and decoding method
WO2018220857A1 (en) Communication device, encoding method and decoding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP