WO2018163353A1 - Method for manufacturing separator/air electrode assembly - Google Patents

Method for manufacturing separator/air electrode assembly Download PDF

Info

Publication number
WO2018163353A1
WO2018163353A1 PCT/JP2017/009483 JP2017009483W WO2018163353A1 WO 2018163353 A1 WO2018163353 A1 WO 2018163353A1 JP 2017009483 W JP2017009483 W JP 2017009483W WO 2018163353 A1 WO2018163353 A1 WO 2018163353A1
Authority
WO
WIPO (PCT)
Prior art keywords
ldh
separator
air electrode
powder
metal oxide
Prior art date
Application number
PCT/JP2017/009483
Other languages
French (fr)
Japanese (ja)
Inventor
服部 達哉
岩井 真
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2018533283A priority Critical patent/JP6550193B2/en
Priority to PCT/JP2017/009483 priority patent/WO2018163353A1/en
Publication of WO2018163353A1 publication Critical patent/WO2018163353A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a separator / air electrode composite.
  • an electrode including an electron conductive material as a main component and a layered double hydroxide (LDH) and a binder as subcomponents is known (for example, Patent Document 1 (Special No. 2012-43567))).
  • a carbon material or the like is used as an electron conductive material.
  • organic binders such as polyvinylidene fluoride, polytetrafluoroethylene and styrene / butadiene rubber are used as the binder.
  • Patent Document 2 International Publication No. 2016/208769 discloses an air electrode including a plurality of carbon nanotubes (CNT) and a plurality of layered composite hydroxide (LDH) particles supported by the carbon nanotubes. Is disclosed.
  • CNT is used as a material exhibiting three functions of an inorganic binder, an oxygen reduction generation catalyst, and an electron conductor
  • LDH particles are used as a material exhibiting hydroxide ion conductivity.
  • a separator structure including an LDH separator combined with a porous substrate, and the LDH separator is gas-impermeable and / or It is disclosed to have high density enough to have water impermeability. Further, the LDH separator is composed of an aggregate of a plurality of LDH plate-like particles, and the plurality of LDH plate-like particles are oriented so that their plate surfaces intersect the surface of the porous substrate perpendicularly or obliquely. It is also disclosed that it is oriented.
  • JP 2012-43567 A International Publication No. 2016/208769 International Publication No. 2013/073292 International Publication No. 2016/076047
  • Patent Document 2 also proposes providing an LDH separator between the air electrode and the negative electrode in order to prevent a short circuit due to zinc dendrite.
  • an LDH separator between the air electrode and the negative electrode in order to prevent a short circuit due to zinc dendrite.
  • the present inventors have recently converted LDH powder into metal oxide powder, applied a paste or slurry containing the obtained metal oxide powder and CNT to an LDH separator, and subjected to steam treatment to convert the metal oxide into LDH. It was found that the air electrode layer and the LDH separator can be directly joined while ensuring the desired adhesive strength by returning to the above.
  • an object of the present invention is to directly bond an air electrode layer containing LDH and CNT to an LDH separator while ensuring a desired adhesive strength.
  • a layered double hydroxide (LDH) powder providing a layered double hydroxide (LDH) powder; Firing the LDH powder at 400 to 850 ° C. for 1 to 10 hours to obtain a metal oxide powder; Mixing the metal oxide powder, carbon nanotubes and solvent to form a paste or slurry; Applying the paste or slurry to the surface of the LDH separator; Subjecting the LDH separator coated with the paste or slurry to steam treatment to convert the metal oxide into LDH, thereby obtaining an air electrode layer on the LDH separator; A method for producing a separator / air electrode composite is provided.
  • LDH layered double hydroxide
  • FIG. 3 is a diagram schematically showing the inside of an autoclave used in hydrothermal treatment in Example 1.
  • 3 is a diagram showing an XRD profile obtained by X-ray diffraction in Example 1.
  • FIG. The SEM secondary electron image observed by ion milling the cross section of the air electrode layer obtained in Example 1 is shown.
  • the SEM secondary electron image which observed the fracture surface of the air electrode layer obtained in Example 1 as it is is shown.
  • the present invention relates to a method for manufacturing a separator / air electrode composite.
  • a) an LDH powder is prepared, (b) the LDH powder is fired to obtain a metal oxide powder, (c) the metal oxide powder, the carbon nanotube and the solvent are mixed, and (d) obtained.
  • the paste or slurry containing the obtained metal oxide powder and CNT is applied to an LDH separator, and steam treatment is performed to return the metal oxide to LDH.
  • the air electrode layer and the LDH separator can be directly joined while ensuring a desired adhesive strength.
  • an air electrode containing LDH and CNT is already known (see, for example, Patent Document 2), but an LDH separator has an air electrode layer containing CNT and LDH particles (air electrode layer) having sufficient strength for the LDH separator. It was necessary to use a polymer adhesive in order to join them with each other. Otherwise, it was difficult to bond the air electrode layer to the LDH separator with sufficient strength. For this reason, if the air electrode layer and the LDH separator can be directly bonded without interposing an adhesive between the air electrode layer and the LDH separator, it can be said that it is more desirable from the viewpoint of reducing the resistance at the bonding interface. .
  • the above-mentioned problems can be solved and direct bonding between the CNT and LDH-containing air electrode layer and the LDH separator can be realized.
  • LDH powder a layered double hydroxide (LDH) powder is prepared.
  • Commercially available LDH powder can be used.
  • a typical LDH powder has the general formula: M 2+ 1-x M 3+ x (OH) 2 A n ⁇ x / n ⁇ mH 2 O (where M 2+ is a divalent cation and M 3+ is a trivalent).
  • a n ⁇ is an n-valent anion
  • n is an integer of 1 or more
  • x is 0.1 to 0.4
  • m is 0 or more.
  • M 2+ may be any divalent cation, and preferred examples include Mg 2+ , Ca 2+ and Zn 2+ , and more preferably Mg 2+ .
  • M 3+ may be any trivalent cation, but preferred examples include Al 3+ or Cr 3+ , and more preferred is Al 3+ .
  • a n- can be any anion, but preferred examples include OH - and CO 3 2- . Accordingly, the general formula is at least M 2+ is Mg 2+, include M 3+ is Al 3+, A n-is OH - and / or CO preferably contains 3 2-.
  • n is an integer of 1 or more, preferably 1 or 2.
  • x is 0.1 to 0.4, preferably 0.2 to 0.35.
  • m is a real number or an integer of 0 or more, typically more than 0 or 1 or more.
  • the average particle diameter D50 of the LDH powder is preferably from 0.1 to 50 ⁇ m, more preferably from 0.1 to 10 ⁇ m, still more preferably from 0.1 to 5 ⁇ m.
  • the average particle diameter D50 is such, it becomes easy to form an air electrode layer having a desired porosity, and the air electrode characteristics are easily improved.
  • the LDH powder is fired under predetermined conditions to obtain a metal oxide powder. That is, LDH, which is a metal-containing hydroxide, is converted into a metal oxide by firing.
  • a preferred firing temperature is 400 to 850 ° C., more preferably 700 to 800 ° C.
  • the preferred firing time at the above firing temperature is 1 to 10 hours, more preferably 3 to 10 hours.
  • the firing of the LDH powder is preferably performed in an oxidizing atmosphere from the viewpoint of promoting the addition to the metal oxide. Examples of the oxidizing atmosphere include air and oxygen. However, the firing atmosphere is not particularly limited as long as the metal oxide powder is obtained, and may be a non-oxidizing atmosphere such as nitrogen.
  • the metal oxide powder that is, LDH-derived metal oxide obtained in the above (b), the carbon nanotube (CNT), and the solvent are mixed to form a paste or slurry.
  • the mixture may be a paste or a slurry as long as it can be applied without problems in the subsequent application process.
  • a paste is preferred because it is easier to apply.
  • the paste or slurry is preferably adjusted to a viscosity of 0.1 to 200 Pa ⁇ s before application. The viscosity can be adjusted by mixing the paste or slurry while heating to volatilize the solvent.
  • CNT is a fibrous carbon material in which graphene having a hexagonal lattice structure is formed in a cylindrical shape.
  • the CNT may be a single-wall (single wall) carbon nanotube or a multi-wall (multi-wall) carbon nanotube. Both ends of the CNT may be closed or open.
  • -CNT functions as an inorganic binder. That is, CNT can contribute to maintaining the shape of the air electrode layer by binding LDH.
  • -CNT also functions as an air electrode catalyst (oxygen reduction generation catalyst). That is, by including CNT in the air electrode layer, the catalytic reaction activity of the air electrode layer can be improved.
  • -CNT also functions as an electron conductor. That is, by containing CNT in the air electrode layer, the electron conductivity of the air electrode layer can be improved.
  • the CNTs exist in the air electrode layer in a bundled state rather than in a bundle shape. Thereby, LDH can be bound efficiently. Therefore, when forming the paste or slurry, it is preferable that the mixing be performed carefully so that the CNTs are unbundled. For example, mortar mixing is preferred. However, some of the CNTs may exist in a bundle in the air electrode layer.
  • the mixing ratio of the metal oxide powder and CNT is not particularly limited.
  • the amount of CNT added is preferably such that the volume ratio (CNT volume / (CNT volume + metal oxide powder volume) to the total volume of the metal oxide powder and CNT is 0.001 to 0.9, more preferably 0.01 to 0.5.
  • the solvent used for mixing is not particularly limited as long as it does not deteriorate the properties of CNT and LDH.
  • alcohol such as ethanol or water may be used.
  • an air electrode catalyst other than CNTs may be added to the slurry or paste.
  • Preferred examples of such an air electrode catalyst other than CNT include carbon-based materials having a redox catalyst function such as graphite, metals having a redox catalyst function such as platinum and nickel, perovskite oxides, manganese dioxide, oxidation Examples thereof include inorganic oxides having a redox catalyst function such as nickel, cobalt oxide, and spinel oxide.
  • the shape of such an air electrode catalyst is not particularly limited, but is preferably a particle shape.
  • a binder other than CNT may be added to the slurry or paste.
  • the binder may be a thermoplastic resin or a thermosetting resin and is not particularly limited. Preferred examples include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, and tetrafluoro.
  • the paste or slurry obtained in the above step (c) is coated on the surface of the LDH separator.
  • the LDH separator is a known ceramic separator containing layered double hydroxide (LDH), and a preferred embodiment thereof will be described later.
  • LDH layered double hydroxide
  • FIG. 1 in the case of the LDH separator 12 combined with the porous substrate 14, the paste or slurry is applied to the exposed surface of the LDH separator 12 (the surface opposite to the porous substrate 14).
  • Application of the paste or slurry may be performed by a known method, but is preferably performed by a method that finally brings porosity to the air electrode layer.
  • Preferable examples of the application method include application and printing using an application tool (iron, spatula, brush, spray, dispenser, mono pump, etc.).
  • an appropriate application method may be appropriately selected according to the viscosity of the paste or slurry to be used.
  • (E) Steam treatment step The LDH separator coated with paste or slurry is subjected to steam treatment to convert the metal oxide into LDH, thereby forming the air electrode layer 16 on the LDH separator 12 as shown in FIG. obtain.
  • the steam treatment is performed by exposing the LDH separator to steam or moisture. Therefore, the steam treatment can be rephrased as a humidification treatment.
  • the steam treatment is preferably performed at 0 to 200 ° C., more preferably 50 to 180 ° C., and still more preferably 100 to 150 ° C.
  • the steam treatment is preferably performed in an autoclave (sealed container). In particular, steam treatment performed at a high temperature (for example, 100 ° C.
  • hydrothermal treatment or hydrothermal synthesis in an autoclave is generally referred to as hydrothermal treatment or hydrothermal synthesis, and can be said to be particularly preferable from the viewpoint of production efficiency and the like.
  • steam treatment at a low temperature of at least 0 ° C. can also be employed.
  • the time of the steam treatment at the above-mentioned temperature is preferably 0.1 hour or more, more preferably 0.5 to 20 hours, and further preferably 1 to 10 hours. With such a time, it is possible to avoid or reduce the occurrence of a heterogeneous phase by sufficiently reproducing the LDH.
  • the steam treatment time is not particularly problematic if it is too long, but it may be set in a timely manner with emphasis on efficiency.
  • the steam treatment is preferably performed in the presence of ion-exchanged water, and more preferably performed in an autoclave containing ion-exchanged water.
  • Conversion of metal oxide to LDH requires the incorporation of the above-described n-valent anion (A n ⁇ ) as an LDH component, but in the air when ion-exchanged water is used, LDH is regenerated by incorporating carbonate ions (CO 3 2 ⁇ ) derived from carbon dioxide.
  • the steam treatment may be performed in the presence of the above-described aqueous solution containing the n-valent anion (A n ⁇ ).
  • the air electrode layer obtained as described above is typically porous. By being porous, the surface area in contact with air can be increased, and the performance of the air electrode can be improved.
  • the separator / air electrode composite produced by the method of the present invention can be preferably used as a combination of an air electrode (also referred to as an oxygen electrode) and a separator in various electrochemical devices.
  • an air electrode also referred to as an oxygen electrode
  • electrochemical devices include metal-air batteries such as zinc-air batteries, alkaline fuel cells, salt electrolyzers, water electrolyzers and the like.
  • LDH separator LDH separator 12 is a ceramic separator containing layered double hydroxide (LDH). As described above, the LDH separator 12 is known as a dense separator having hydroxide ion conductivity in the field of zinc secondary batteries. A preferred LDH separator 12 is gas impermeable and / or water impermeable. In other words, the LDH separator 12 is preferably so dense that it has gas impermeability and / or water impermeability. In this specification, “having gas impermeability” means that an object to be measured (that is, LDH separator 12 and / or porous material) in water as described in Patent Document 4 (International Publication No. 2016/076047).
  • “having water impermeability” means that, as described in Patent Document 4, water in contact with one surface side of an object to be measured (for example, an LDH film and / or a porous substrate) is used. It means that it does not transmit to the other side. That is, the fact that the LDH separator 12 has gas impermeability and / or water impermeability means that the LDH separator 12 has a high degree of denseness that does not allow gas or water to pass through.
  • the LDH separator 12 selectively allows only hydroxide ions to pass due to its hydroxide ion conductivity. Accordingly, since the LDH separator 12 is interposed between the air electrode and the negative electrode in the metal-air secondary battery, it is possible to prevent the carbon dioxide from being mixed into the electrolytic solution. It is possible to prevent the deterioration of the battery and avoid the deterioration of the battery performance. Moreover, due to the denseness and hardness, it is possible to prevent a short circuit between the positive and negative electrodes due to zinc dendrite during charging of the zinc-air secondary battery.
  • the LDH separator 12 may be combined with the porous substrate 14 as shown in FIG.
  • the LDH separator 12 includes a layered double hydroxide (LDH), and is preferably composed of LDH.
  • LDH is composed of a plurality of hydroxide base layers and an intermediate layer interposed between the plurality of hydroxide base layers.
  • the hydroxide base layer is mainly composed of metal elements (typically metal ions) and OH groups.
  • the intermediate layer of LDH is composed of anions and H 2 O.
  • the anion is a monovalent or higher anion, preferably a monovalent or divalent ion.
  • the anion in LDH comprises OH - and / or CO 3 2- .
  • LDH has excellent ionic conductivity due to its inherent properties.
  • LDH is M 2+ 1-x M 3+ x (OH) 2 A n ⁇ x / n ⁇ mH 2 O (where M 2+ is a divalent cation and M 3+ is a trivalent cation).
  • a n ⁇ is an n-valent anion, n is an integer of 1 or more, x is 0.1 to 0.4, and m is 0 or more). It is known as a representative.
  • M 2+ may be any divalent cation, and preferred examples include Mg 2+ , Ca 2+ and Zn 2+ , and more preferably Mg 2+ .
  • M 3+ may be any trivalent cation, but preferred examples include Al 3+ or Cr 3+ , and more preferred is Al 3+ .
  • a n- can be any anion, but preferred examples include OH - and CO 3 2- .
  • M 2+ comprises Mg 2+
  • M 3+ comprises Al 3+
  • a n-is OH - and / or CO preferably contains 3 2-.
  • n is an integer of 1 or more, preferably 1 or 2.
  • x is 0.1 to 0.4, preferably 0.2 to 0.35.
  • m is an arbitrary number which means the number of moles of water, and is a real number of 0 or more, typically more than 0 or 1 or more.
  • the above basic composition formula is merely a formula of “basic composition” that is typically exemplified with respect to LDH in general, and the constituent ions can be appropriately replaced.
  • the constituent ions can be appropriately replaced.
  • it may be replaced with some or all of the M 3+ tetravalent or higher valency cations in the basic formula, in which case, the anion A coefficient of n-x / n in the general formula May be changed as appropriate.
  • the hydroxide base layer of LDH may be composed of Ni, Ti, OH groups and possibly inevitable impurities.
  • the intermediate layer of LDH is composed of an anion and H 2 O.
  • the alternate layered structure of the hydroxide basic layer and the intermediate layer itself is basically the same as the commonly known alternate layered structure of LDH, but the LDH of this embodiment is mainly composed of Ni, By comprising Ti and OH groups, excellent alkali resistance can be exhibited.
  • an element for example, Al
  • the LDH of this embodiment can also exhibit high ionic conductivity suitable for use as a separator for an alkaline secondary battery.
  • Ni in LDH can take the form of nickel ions.
  • the nickel ions in LDH are typically considered to be Ni 2+ , but are not particularly limited because other valences such as Ni 3+ may also exist.
  • Ti in LDH can take the form of titanium ions.
  • the titanium ion in LDH is typically considered to be Ti 4+ , but is not particularly limited because other valences such as Ti 3+ may also exist.
  • Inevitable impurities are optional elements that can be inevitably mixed in the manufacturing process, and can be mixed in LDH, for example, derived from raw materials and base materials.
  • the hydroxide base layer is mainly composed of Ni 2+ , Ti 4+ and OH groups
  • the corresponding LDH has the general formula: Ni 2+ 1-x Ti 4+ x (OH) 2 An - 2x / n ⁇ mH 2 O (wherein, a n-n-valent anion, n is an integer of 1 or more, preferably 1 or 2, 0 ⁇ x ⁇ 1, preferably 0.01 ⁇ x ⁇ 0.5, m is 0 or more, typically greater than 0 or 1 or more real number).
  • the hydroxide basic layer of LDH may contain Ni, Al, Ti and OH groups.
  • the intermediate layer is composed of an anion and H 2 O.
  • the alternate layered structure of the hydroxide basic layer and the intermediate layer itself is basically the same as the generally known alternate layered structure of LDH, but the LDH of this embodiment uses the basic hydroxide layer of LDH as Ni, Al.
  • the LDH of this embodiment uses the basic hydroxide layer of LDH as Ni, Al.
  • the LDH of this embodiment is thought to be because Al, which was previously thought to be easily eluted in an alkaline solution, is less likely to be eluted in an alkaline solution due to some interaction with Ni and Ti.
  • the LDH of this embodiment can also exhibit high ionic conductivity suitable for use as a separator for an alkaline secondary battery.
  • Ni in LDH can take the form of nickel ions.
  • the nickel ions in LDH are typically considered to be Ni 2+ , but are not particularly limited because other valences such as Ni 3+ may also exist.
  • Al in LDH can take the form of aluminum ions.
  • Aluminum ions in LDH are typically considered to be Al 3+ , but are not particularly limited because other valences are possible.
  • Ti in LDH can take the form of titanium ions.
  • the titanium ion in LDH is typically considered to be Ti 4+ , but is not particularly limited because other valences such as Ti 3+ may also exist.
  • the hydroxide base layer may contain other elements or ions as long as it contains Ni, Al, Ti and OH groups. However, it is preferable that the hydroxide base layer contains Ni, Al, Ti, and OH groups as main components. That is, the hydroxide base layer is preferably mainly composed of Ni, Al, Ti and OH groups. Therefore, the hydroxide base layer is typically composed of Ni, Al, Ti, OH groups and possibly inevitable impurities. Inevitable impurities are optional elements that can be inevitably mixed in the manufacturing process, and can be mixed in LDH, for example, derived from raw materials and base materials. As described above, since the valences of Ni, Al, and Ti are not necessarily certain, it is impractical or impossible to specify LDH strictly by a general formula.
  • the hydroxide base layer is mainly composed of Ni 2+ , Al 3+ , Ti 4+ and OH groups
  • the corresponding LDH has the general formula: Ni 2+ 1-xy Al 3+ x Ti 4+ y (OH) 2 A n ⁇ (x + 2y) / n ⁇ mH 2 O
  • a n ⁇ is an n-valent anion
  • n is an integer of 1 or more, preferably 1 or 2, and 0 ⁇ x ⁇ 1, preferably 0.01 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 1, preferably 0.01 ⁇ y ⁇ 0.5, 0 ⁇ x + y ⁇ 1, m is 0 or more, typically 0.
  • the LDH separator 12 may be in the form of a plate, a film, or a layer.
  • the film or layer LDH separator 12 is combined with the porous substrate 14.
  • a preferable thickness of the plate-like LDH separator 12 is 0.01 to 0.5 mm, more preferably 0.02 to 0.2 mm, and still more preferably 0.05 to 0.1 mm.
  • the hydroxide ion conductivity of the LDH separator 12 is preferably as high as possible, but typically has a conductivity of 10 ⁇ 4 to 10 ⁇ 1 S / m.
  • the thickness is preferably 100 ⁇ m or less, more preferably 75 ⁇ m or less, still more preferably 50 ⁇ m or less, particularly preferably 25 ⁇ m or less, and most preferably 5 ⁇ m or less.
  • the lower limit of the thickness is not particularly limited because it varies depending on the application, but in order to ensure a certain degree of rigidity desired as a separator film or layer, the thickness is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more. is there.
  • the LDH separator 12 is preferably combined with the porous substrate 14.
  • the porous substrate 14 is preferably provided on one side of the LDH separator 12.
  • the porous substrate 14 is provided on the surface of the LDH separator 12 opposite to the air electrode layer 16 (surface on the negative side in the metal-air battery).
  • the porous substrate 14 has water permeability, so that the electrolytic solution can reach the LDH separator 12.
  • the LDH separator 12 can be thinned to reduce the resistance.
  • a dense film or dense layer of LDH can be formed on or in the porous substrate 14. In the case where a porous substrate is provided on one side of the LDH separator 12, a method of preparing a porous substrate and depositing LDH on the porous substrate is conceivable.
  • the porous substrate 14 is preferably composed of at least one selected from the group consisting of a ceramic material, a metal material, and a polymer material, more preferably a ceramic material and / or a polymer material, still more preferably. It is a polymer material. More preferably, the porous substrate is made of a ceramic material. In this case, preferable examples of the ceramic material include alumina, zirconia, titania, magnesia, spinel, calcia, cordierite, zeolite, mullite, ferrite, zinc oxide, silicon carbide, and any combination thereof, and more preferable.
  • the metal material include aluminum and zinc.
  • Preferable examples of the polymer material include polystyrene, polyether sulfone, polypropylene, epoxy resin, polyphenylene sulfide, hydrofluorinated fluororesin (tetrafluorinated resin: PTFE, etc.), and any combination thereof. It is further preferable to appropriately select a material excellent in alkali resistance as the resistance to the electrolytic solution from the various preferable materials described above.
  • the LDH separator 12 is composed of an aggregate of a plurality of LDH plate-like particles, and the plurality of LDH plate-like particles have their plate surfaces on the surface of the porous substrate 14 (ignoring fine irregularities caused by the porous structure).
  • the orientation is such that it intersects perpendicularly or diagonally with the main surface of the porous substrate when observed macroscopically as much as possible.
  • the LDH separator 12 may be at least partially incorporated in the pores of the porous base material 14, and in that case, LDH plate-like particles may also exist in the pores of the porous base material 14.
  • the manufacturing method of the LDH separator 12, for example, the LDH separator 12 combined with the porous substrate 14 is not particularly limited, and the LDH separator 12 is manufactured by referring to a known manufacturing method (for example, Patent Documents 3 and 4). be able to.
  • Example 1 (1) Production of Separator / Air Electrode Composite Commercially available Mg—Al LDH powder (DHT-6, manufactured by Kyowa Chemical Industry Co., Ltd., composition: Mg 2+ 0.75 Al 3+ 0.25 (OH) 2 CO 3 n - 0.25 / n ⁇ mH 2 O ) was prepared. This LDH powder was calcined at 650 ° C. for 5 hours in the air atmosphere to be converted into a metal oxide powder. On the other hand, single-walled CNT (product name: SWNT dispersion, manufactured by Meijo Nano Carbon Co., Ltd.) was dispersed in ethanol to obtain a CNT dispersion.
  • DHT-6 manufactured by Kyowa Chemical Industry Co., Ltd.
  • This LDH powder was calcined at 650 ° C. for 5 hours in the air atmosphere to be converted into a metal oxide powder.
  • single-walled CNT product name: SWNT dispersion, manufactured by Meijo Nano Carbon Co., Ltd.
  • the metal oxide powder and the CNT dispersion were weighed so that the volume ratio of (CNT) :( metal oxide) was 5:95, and placed in a mortar and mixed thoroughly. At this time, by mixing while heating the mortar with a hot stirrer, ethanol was volatilized to adjust the viscosity of the mixture.
  • the paste thus obtained was applied with a trowel onto the surface of an LDH separator combined with porous alumina. This porous alumina / LDH separator composite material was prepared according to Example 2 described later. The LDH separator coated with the paste was placed in an autoclave and hydrothermally treated at 100 ° C. for 5 hours. At this time, as shown in FIG.
  • ion-exchanged water 102 is contained in the autoclave 100, and an LDH separator 106 coated with a paste is placed on a Teflon (registered trademark) dish 104 floated on the ion-exchanged water 102.
  • the metal oxide was converted to LDH (that is, LDH was regenerated) to obtain a separator / air electrode composite.
  • FIG. 3 shows the XRD profile of the composite before hydrothermal treatment and the XRD profile of the LDH separator without the air electrode layer.
  • the metal oxide was converted to LDH by hydrothermal treatment, that is, the air electrode layer containing CNT and LDH powder was formed in a form that was directly bonded onto the LDH separator. I understand.
  • the XRD profile of LDH separator without the air electrode layer seen the peak derived from Al 2 O 3, which is understood to be due to the porous alumina complexed with LDH separator.
  • FIG. 4 shows a secondary electron image observed by ion milling the cross section of the air electrode layer
  • FIG. 5 shows a secondary electron image obtained by observing the broken surface of the air electrode layer as it is.
  • FIG. 4 clearly confirms that the air electrode layer is porous including LDH plate-like particles
  • FIG. 5 clearly confirms the presence of CNT as the fibrous material.
  • Example 2 (Reference) A functional layer and a composite material containing Mg and Al-containing LDH were prepared and evaluated by the following procedure.
  • the functional layer in this example corresponds to an LDH separator.
  • porous substrate 70 parts by weight of a dispersion medium (xylene: butanol 1: 1) and binder (polyvinyl butyral: Sekisui Chemical) with respect to 100 parts by weight of alumina powder (AES-12, manufactured by Sumitomo Chemical Co., Ltd.) BM-2 manufactured by Kogyo Co., Ltd. 11.1 parts by weight, 5.5 parts by weight of a plasticizer (DOP: manufactured by Kurokin Kasei Co., Ltd.), and 2.9 parts by weight of a dispersant (Rheodor SP-O30 manufactured by Kao Corporation)
  • a dispersant Rosodor SP-O30 manufactured by Kao Corporation
  • the slurry was molded into a sheet shape on a PET film using a tape molding machine so that the film thickness after drying was 220 ⁇ m to obtain a sheet molded body.
  • the obtained molded body was cut out to have a size of 2.0 cm ⁇ 2.0 cm ⁇ thickness 0.022 cm and fired at 1300 ° C. for 2 hours to obtain an alumina porous substrate.
  • the porosity of the porous substrate was measured by the Archimedes method and found to be 40%.
  • the average pore diameter of the porous substrate was measured, it was 0.3 ⁇ m.
  • the average pore diameter was measured by measuring the longest distance of the pores based on an electron microscope (SEM) image of the surface of the porous substrate.
  • the magnification of the electron microscope (SEM) image used for this measurement is 20000 times, and all the obtained pore diameters are arranged in order of size, and the top 15 points and the bottom 15 points from the average value, and 30 points per visual field in total.
  • the average value for two visual fields was calculated to obtain the average pore diameter.
  • the length measurement function of SEM software was used.
  • magnesium nitrate hexahydrate (Mg (NO 3) 2 ⁇ 6H 2 O, manufactured by Kanto Chemical Co., Inc.), aluminum nitrate nonahydrate (Al (NO 3) 3 ⁇ 9H 2 O, manufactured by Kanto Chemical Co., Ltd.) and urea ((NH 2 ) 2 CO, manufactured by Sigma-Aldrich) were prepared.
  • Mg (NO 3) 2 ⁇ 6H 2 O manufactured by Kanto Chemical Co., Inc.
  • Al (NO 3) 3 ⁇ 9H 2 O manufactured by Kanto Chemical Co., Ltd.
  • urea ((NH 2 ) 2 CO, manufactured by Sigma-Aldrich)
  • ion exchange water was added to make a total volume of 70 ml.
  • the substrate was taken out from the sealed container, washed with ion-exchanged water, dried at 70 ° C. for 10 hours, and a part of the functional layer containing LDH was incorporated into the porous substrate. Got in shape.
  • the thickness of the functional layer obtained was about 3 ⁇ m (including the thickness of the portion incorporated in the porous substrate).
  • the surface microstructure of the functional layer was observed using a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL) at an acceleration voltage of 10 to 20 kV. Further, after obtaining a cross-sectional polished surface of a functional layer (a film-shaped portion made of an LDH film and a composite portion made of LDH and a base material) with an ion milling device (manufactured by Hitachi High-Technologies Corporation, IM4000) The structure was observed by SEM under the same conditions as the observation of the surface microstructure, and as a result, the functional layer was composed of a film-shaped portion composed of an LDH film and a composite composed of LDH and a porous substrate located under the film-shaped portion.
  • SEM scanning electron microscope
  • the LDH constituting the film-like part is composed of an aggregate of a plurality of plate-like particles, and the plate-like surfaces of the plurality of plate-like particles are porous bases. Oriented perpendicularly or diagonally to the surface of the material (the surface of the porous substrate when macroscopic observations resulting from the porous structure are negligibly macroscopic). In the pores of the porous substrate LDH has constituted the dense layer is filled.

Abstract

Provided is a method for manufacturing a separator/air electrode assembly in which it is possible to carry out direct bonding while ensuring a desired adhesive strength of an air electrode layer containing LDH and CNT with respect to an LDH separator. This method includes: a step for preparing a layered double hydroxide (LDH) powder; a step for obtaining a metal oxide powder by baking the LDH powder at 400-850°C for 1-10 hours; a step for mixing a metal oxide powder, carbon nanotubes, and a solvent to form a paste or slurry; a step for applying the paste or slurry to the surface of the LDH separator; and a step for carrying out steam treatment of the LDH separator coated with the paste or the slurry, converting a metal oxide to LDH, and thereby obtaining an air electrode layer on the LDH separator.

Description

セパレータ/空気極複合体の製造方法Method for manufacturing separator / air electrode composite
 本発明は、セパレータ/空気極複合体の製造方法に関する The present invention relates to a method for producing a separator / air electrode composite.
 金属空気電池用の空気極として、電子伝導性材料を主成分として含み、層状複水酸化物(LDH)と結着剤を副成分として含むものが知られている(例えば、特許文献1(特開2012-43567号公報))。このような空気極においては、電子伝導性材料として、炭素材料等が使用される。また、結着剤として、ポリフッ化ビニリデン、ポリテトラフルオロエチレン及びスチレン/ブタジエンゴム等の有機バインダーが使用される。 As an air electrode for a metal-air battery, an electrode including an electron conductive material as a main component and a layered double hydroxide (LDH) and a binder as subcomponents is known (for example, Patent Document 1 (Special No. 2012-43567))). In such an air electrode, a carbon material or the like is used as an electron conductive material. Further, organic binders such as polyvinylidene fluoride, polytetrafluoroethylene and styrene / butadiene rubber are used as the binder.
 ところで、最近、カーボンナノチューブをバインダーとして用いることで、空気極の特性(水酸化物イオン伝導性、電子伝導性及び触媒反応活性)を向上させる技術が提案された。例えば、特許文献2(国際公開第2016/208769号)には、複数本のカーボンナノチューブ(CNT)と、カーボンナノチューブに支持された複数個の層状複合水酸化物(LDH)粒子とを含む空気極が開示されている。この文献において、CNTは、無機バインダー、酸素還元発生触媒、及び電子伝導体の3つの機能を呈する材料として用いられる一方、LDH粒子は水酸化物イオン伝導性を呈する材料として用いられている。 Recently, a technique for improving the characteristics of the air electrode (hydroxide ion conductivity, electron conductivity and catalytic reaction activity) by using carbon nanotubes as a binder has been proposed. For example, Patent Document 2 (International Publication No. 2016/208769) discloses an air electrode including a plurality of carbon nanotubes (CNT) and a plurality of layered composite hydroxide (LDH) particles supported by the carbon nanotubes. Is disclosed. In this document, CNT is used as a material exhibiting three functions of an inorganic binder, an oxygen reduction generation catalyst, and an electron conductor, while LDH particles are used as a material exhibiting hydroxide ion conductivity.
 一方、亜鉛空気二次電池の分野において、水酸化物イオン(OH)伝導性を有する層状複水酸化物(LDH)セパレータが提案されている。例えば、特許文献3(国際公開第2013/073292号)には、亜鉛空気二次電池において、充電時における亜鉛デンドライトによる正負極間の短絡と、二酸化炭素の電解液への混入との両方を防止するために、LDHセパレータで空気極と負極とを隔離することが開示されている。また、特許文献4(国際公開第2016/076047号)には、多孔質基材と複合化されたLDHセパレータを備えたセパレータ構造体が開示されており、LDHセパレータがガス不透過性及び/又は水不透過性を有する程の高い緻密性を有することが開示されている。また、LDHセパレータが、複数のLDH板状粒子の集合体で構成され、複数のLDH板状粒子がそれらの板面が前記多孔質基材の表面と垂直に又は斜めに交差するような向きに配向していることも開示されている。 On the other hand, a layered double hydroxide (LDH) separator having hydroxide ion (OH ) conductivity has been proposed in the field of zinc-air secondary batteries. For example, in Patent Document 3 (International Publication No. 2013/073292), in a zinc-air secondary battery, both short-circuit between positive and negative electrodes due to zinc dendrite during charging and mixing of carbon dioxide into the electrolyte are prevented. Therefore, it is disclosed that the air electrode and the negative electrode are separated from each other by an LDH separator. Patent Document 4 (International Publication No. 2016/076047) discloses a separator structure including an LDH separator combined with a porous substrate, and the LDH separator is gas-impermeable and / or It is disclosed to have high density enough to have water impermeability. Further, the LDH separator is composed of an aggregate of a plurality of LDH plate-like particles, and the plurality of LDH plate-like particles are oriented so that their plate surfaces intersect the surface of the porous substrate perpendicularly or obliquely. It is also disclosed that it is oriented.
特開2012-43567号公報JP 2012-43567 A 国際公開第2016/208769号International Publication No. 2016/208769 国際公開第2013/073292号International Publication No. 2013/073292 国際公開第2016/076047号International Publication No. 2016/076047
 特許文献2においても亜鉛デンドライトによる短絡を防止するため、LDHセパレータを空気極と負極の間に設けることが提案されている。しかしながら、実際には、LDHセパレータにCNTとLDH粒子を含む空気極層をLDHセパレータに十分な強度で接合させるためには、ポリマー接着剤を用いる必要があった。そうでなければ空気極層をLDHセパレータに十分な強度で接合させることは困難であった。このため、空気極層とLDHセパレータとの間に接着剤を介在させることなく、空気極層とLDHセパレータとをダイレクトに接合することができれば、接合界面における低抵抗化の観点からより望ましいといえる。 Patent Document 2 also proposes providing an LDH separator between the air electrode and the negative electrode in order to prevent a short circuit due to zinc dendrite. However, actually, in order to join the air electrode layer containing CNT and LDH particles to the LDH separator with sufficient strength, it is necessary to use a polymer adhesive. Otherwise, it was difficult to bond the air electrode layer to the LDH separator with sufficient strength. For this reason, if the air electrode layer and the LDH separator can be directly bonded without interposing an adhesive between the air electrode layer and the LDH separator, it can be said that it is more desirable from the viewpoint of reducing the resistance at the bonding interface. .
 本発明者らは、今般、LDH粉末を金属酸化物粉末に転化させ、得られた金属酸化物粉末及びCNTを含むペースト又はスラリーをLDHセパレータに塗布し、水蒸気処理を施して金属酸化物をLDHに戻すことで、空気極層とLDHセパレータとを所望の接着強度を確保しながら直接接合できることを知見した。 The present inventors have recently converted LDH powder into metal oxide powder, applied a paste or slurry containing the obtained metal oxide powder and CNT to an LDH separator, and subjected to steam treatment to convert the metal oxide into LDH. It was found that the air electrode layer and the LDH separator can be directly joined while ensuring the desired adhesive strength by returning to the above.
 したがって、本発明の目的は、LDH及びCNTを含む空気極層をLDHセパレータに所望の接着強度を確保しながら直接接合することにある。 Therefore, an object of the present invention is to directly bond an air electrode layer containing LDH and CNT to an LDH separator while ensuring a desired adhesive strength.
 本発明の一態様によれば、層状複水酸化物(LDH)粉末を用意する工程と、
 前記LDH粉末を400~850℃で1~10時間焼成して金属酸化物粉末を得る工程と、
 前記金属酸化物粉末、カーボンナノチューブ及び溶媒を混合してペースト又はスラリーを形成する工程と、
 前記ペースト又はスラリーをLDHセパレータの表面に塗布する工程と、
 前記ペースト又はスラリーが塗布されたLDHセパレータを水蒸気処理に付して前記金属酸化物をLDHに転化させ、それによりLDHセパレータ上に空気極層を得る工程と、
を含む、セパレータ/空気極複合体の製造方法が提供される。
According to one aspect of the invention, providing a layered double hydroxide (LDH) powder;
Firing the LDH powder at 400 to 850 ° C. for 1 to 10 hours to obtain a metal oxide powder;
Mixing the metal oxide powder, carbon nanotubes and solvent to form a paste or slurry;
Applying the paste or slurry to the surface of the LDH separator;
Subjecting the LDH separator coated with the paste or slurry to steam treatment to convert the metal oxide into LDH, thereby obtaining an air electrode layer on the LDH separator;
A method for producing a separator / air electrode composite is provided.
セパレータ/空気極複合体の模式断面図である。It is a schematic cross section of a separator / air electrode composite. 例1における水熱処理で用いられたオートクレーブ内の様子を模式的に示す図である。FIG. 3 is a diagram schematically showing the inside of an autoclave used in hydrothermal treatment in Example 1. 例1におけるX線回折で得られたXRDプロファイルを示す図である。3 is a diagram showing an XRD profile obtained by X-ray diffraction in Example 1. FIG. 例1で得られた空気極層の断面をイオンミリング研磨して観察したSEM二次電子像を示す。The SEM secondary electron image observed by ion milling the cross section of the air electrode layer obtained in Example 1 is shown. 例1で得られた空気極層の破断面をそのまま観察したSEM二次電子像を示す。The SEM secondary electron image which observed the fracture surface of the air electrode layer obtained in Example 1 as it is is shown.
 セパレータ/空気極複合体の製造方法
 本発明は、セパレータ/空気極複合体の製造方法に関する。本発明の方法は、(a)LDH粉末を用意し、(b)LDH粉末を焼成して金属酸化物粉末とし、(c)金属酸化物粉末、カーボンナノチューブ及び溶媒を混合し、(d)得られたペースト又はスラリーをLDHセパレータの表面に塗布し、(e)塗布されたLDHセパレータを水蒸気処理に付して金属酸化物をLDHに転化させ、それによりLDHセパレータ上に空気極層を得ることを含む。このように、LDH粉末を金属酸化物粉末に転化させ、得られた金属酸化物粉末及びCNTを含むペースト又はスラリーをLDHセパレータに塗布し、水蒸気処理を施して金属酸化物をLDHに戻すことで、空気極層とLDHセパレータとを所望の接着強度を確保しながら直接接合することができる。前述のとおり、LDH及びCNTを含む空気極は既に知られているが(例えば特許文献2参照)、LDHセパレータにCNTとLDH粒子を含む空気極層(空気極層)をLDHセパレータに十分な強度で接合させるためには、ポリマー接着剤を用いる必要があった。そうでなければ空気極層をLDHセパレータに十分な強度で接合させることは困難であった。このため、空気極層とLDHセパレータとの間に接着剤を介在させることなく、空気極層とLDHセパレータとをダイレクトに接合することができれば、接合界面における低抵抗化の観点からより望ましいといえる。この点、本発明の方法によれば上記問題を解消して、CNT及びLDH含有空気極層とLDHセパレータとの直接接合を実現することができる。
TECHNICAL FIELD The present invention relates to a method for manufacturing a separator / air electrode composite. In the method of the present invention, (a) an LDH powder is prepared, (b) the LDH powder is fired to obtain a metal oxide powder, (c) the metal oxide powder, the carbon nanotube and the solvent are mixed, and (d) obtained. (E) Applying the applied LDH separator to steam treatment to convert the metal oxide into LDH, thereby obtaining an air electrode layer on the LDH separator. including. Thus, by converting the LDH powder into a metal oxide powder, the paste or slurry containing the obtained metal oxide powder and CNT is applied to an LDH separator, and steam treatment is performed to return the metal oxide to LDH. The air electrode layer and the LDH separator can be directly joined while ensuring a desired adhesive strength. As described above, an air electrode containing LDH and CNT is already known (see, for example, Patent Document 2), but an LDH separator has an air electrode layer containing CNT and LDH particles (air electrode layer) having sufficient strength for the LDH separator. It was necessary to use a polymer adhesive in order to join them with each other. Otherwise, it was difficult to bond the air electrode layer to the LDH separator with sufficient strength. For this reason, if the air electrode layer and the LDH separator can be directly bonded without interposing an adhesive between the air electrode layer and the LDH separator, it can be said that it is more desirable from the viewpoint of reducing the resistance at the bonding interface. . In this regard, according to the method of the present invention, the above-mentioned problems can be solved and direct bonding between the CNT and LDH-containing air electrode layer and the LDH separator can be realized.
(a)LDH粉末の用意
 まず、層状複水酸化物(LDH)粉末を用意する。市販のLDH粉末が使用可能である。典型的なLDH粉末は、一般式:M2+ 1-x3+ (OH)n- x/n・mHO(式中、M2+は2価の陽イオン、M3+は3価の陽イオンであり、An-はn価の陰イオン、nは1以上の整数、xは0.1~0.4、mは0以上である)の基本組成を有するものが好ましい。上記一般式において、M2+は任意の2価の陽イオンでありうるが、好ましい例としてはMg2+、Ca2+及びZn2+が挙げられ、より好ましくはMg2+である。M3+は任意の3価の陽イオンでありうるが、好ましい例としてはAl3+又はCr3+が挙げられ、より好ましくはAl3+である。An-は任意の陰イオンでありうるが、好ましい例としてはOH及びCO 2-が挙げられる。したがって、上記一般式は、少なくともM2+がMg2+を、M3+がAl3+を含み、An-がOH及び/又はCO 2-を含むのが好ましい。nは1以上の整数であるが、好ましくは1又は2である。xは0.1~0.4であるが、好ましくは0.2~0.35である。mは0以上、典型的には0を超える又は1以上の実数ないし整数である。
(A) Preparation of LDH powder First, a layered double hydroxide (LDH) powder is prepared. Commercially available LDH powder can be used. A typical LDH powder has the general formula: M 2+ 1-x M 3+ x (OH) 2 A n− x / n · mH 2 O (where M 2+ is a divalent cation and M 3+ is a trivalent). A n− is an n-valent anion, n is an integer of 1 or more, x is 0.1 to 0.4, and m is 0 or more. In the above general formula, M 2+ may be any divalent cation, and preferred examples include Mg 2+ , Ca 2+ and Zn 2+ , and more preferably Mg 2+ . M 3+ may be any trivalent cation, but preferred examples include Al 3+ or Cr 3+ , and more preferred is Al 3+ . A n- can be any anion, but preferred examples include OH - and CO 3 2- . Accordingly, the general formula is at least M 2+ is Mg 2+, include M 3+ is Al 3+, A n-is OH - and / or CO preferably contains 3 2-. n is an integer of 1 or more, preferably 1 or 2. x is 0.1 to 0.4, preferably 0.2 to 0.35. m is a real number or an integer of 0 or more, typically more than 0 or 1 or more.
 LDH粉末の平均粒径D50は、0.1~50μmであるのが好ましく、より好ましくは0.1~10μm、さらに好ましくは0.1~5μmである。このような平均粒径D50であると、所望の多孔性を有する空気極層を形成しやすくなり、空気極特性を向上しやすい。 The average particle diameter D50 of the LDH powder is preferably from 0.1 to 50 μm, more preferably from 0.1 to 10 μm, still more preferably from 0.1 to 5 μm. When the average particle diameter D50 is such, it becomes easy to form an air electrode layer having a desired porosity, and the air electrode characteristics are easily improved.
(b)焼成工程
 LDH粉末を所定の条件で焼成して金属酸化物粉末を得る。すなわち、金属含有水酸化物であるLDHは焼成によって金属酸化物に転化する。好ましい焼成温度は400~850℃であり、より好ましくは700~800℃である。また、上記焼成温度での好ましい焼成時間は1~10時間であり、より好ましくは3~10時間である。LDH粉末の焼成は酸化性雰囲気下で行われるのが金属酸化物への添加を促進する観点から好ましい。酸化性雰囲気の例としては、空気、酸素が挙げられる。もっとも、金属酸化物粉末が得られるかぎり焼成雰囲気は特に限定されず、窒素等の非酸化性雰囲気であってもよい。
(B) Firing step The LDH powder is fired under predetermined conditions to obtain a metal oxide powder. That is, LDH, which is a metal-containing hydroxide, is converted into a metal oxide by firing. A preferred firing temperature is 400 to 850 ° C., more preferably 700 to 800 ° C. The preferred firing time at the above firing temperature is 1 to 10 hours, more preferably 3 to 10 hours. The firing of the LDH powder is preferably performed in an oxidizing atmosphere from the viewpoint of promoting the addition to the metal oxide. Examples of the oxidizing atmosphere include air and oxygen. However, the firing atmosphere is not particularly limited as long as the metal oxide powder is obtained, and may be a non-oxidizing atmosphere such as nitrogen.
(c)混合工程
 上記(b)で得られた金属酸化物粉末(すなわちLDH由来金属酸化物)、カーボンナノチューブ(CNT)及び溶媒を混合してペースト又はスラリーを形成する。後続の塗布工程で問題無く塗布できるかぎり、混合物の形態はペーストであってもスラリーであってもよい。ペーストの方が塗布しやすい点で好ましい。ペースト又はスラリーは塗布前に0.1~200Pa・sの粘度に調整されるのが好ましい。粘度調整は、ペースト又はスラリーを加熱しながら混合して溶媒を揮発させることで行うことができる。
(C) Mixing Step The metal oxide powder (that is, LDH-derived metal oxide) obtained in the above (b), the carbon nanotube (CNT), and the solvent are mixed to form a paste or slurry. The mixture may be a paste or a slurry as long as it can be applied without problems in the subsequent application process. A paste is preferred because it is easier to apply. The paste or slurry is preferably adjusted to a viscosity of 0.1 to 200 Pa · s before application. The viscosity can be adjusted by mixing the paste or slurry while heating to volatilize the solvent.
 CNTは、六角形格子構造のグラフェンを円筒状に形成した繊維状炭素材料である。CNTは、単層(シングルウォール)カーボンナノチューブであってもよいし、多層(マルチウォール)カーボンナノチューブであってもよい。CNTの両端は、閉口していてもよいし、開口していてもよい。CNTは、空気極層において主に以下の3つの機能を呈することが知られている(例えば特許文献2を参照)。
‐CNTは、無機バインダーとして機能する。すなわち、CNTは、LDHを結着することによって空気極層の形状維持に寄与することができる。
‐CNTは、空気極触媒(酸素還元発生触媒)としても機能する。すなわち、空気極層にCNTを含有させることによって、空気極層の触媒反応活性を向上させることができる。
‐CNTは、電子伝導体としても機能する。すなわち、空気極層にCNTを含有させることによって、空気極層の電子伝導性を向上させることができる。
CNT is a fibrous carbon material in which graphene having a hexagonal lattice structure is formed in a cylindrical shape. The CNT may be a single-wall (single wall) carbon nanotube or a multi-wall (multi-wall) carbon nanotube. Both ends of the CNT may be closed or open. It is known that CNT mainly exhibits the following three functions in the air electrode layer (see, for example, Patent Document 2).
-CNT functions as an inorganic binder. That is, CNT can contribute to maintaining the shape of the air electrode layer by binding LDH.
-CNT also functions as an air electrode catalyst (oxygen reduction generation catalyst). That is, by including CNT in the air electrode layer, the catalytic reaction activity of the air electrode layer can be improved.
-CNT also functions as an electron conductor. That is, by containing CNT in the air electrode layer, the electron conductivity of the air electrode layer can be improved.
 CNTは、空気極層において、束状ではなく束の解かれた状態で存在していることが好ましい。これによって、LDHを効率的に結着させることができる。したがって、ペースト又はスラリーを形成する際、CNTが束の解かれた状態となるように入念に混合が行われるのが好ましい。例えば乳鉢混合が好ましい。ただし、CNTの一部は、空気極層内において束状に存在していてもよい。 It is preferable that the CNTs exist in the air electrode layer in a bundled state rather than in a bundle shape. Thereby, LDH can be bound efficiently. Therefore, when forming the paste or slurry, it is preferable that the mixing be performed carefully so that the CNTs are unbundled. For example, mortar mixing is preferred. However, some of the CNTs may exist in a bundle in the air electrode layer.
 金属酸化物粉末とCNTの混合割合は特に限定されない。CNTの添加量は、金属酸化物粉末とCNTを合わせた総体積に対する体積比(CNT体積/(CNT体積+金属酸化物粉末体積))が、0.001~0.9が好ましく、より好ましくは0.01~0.5である。 The mixing ratio of the metal oxide powder and CNT is not particularly limited. The amount of CNT added is preferably such that the volume ratio (CNT volume / (CNT volume + metal oxide powder volume) to the total volume of the metal oxide powder and CNT is 0.001 to 0.9, more preferably 0.01 to 0.5.
 混合に用いられる溶媒はCNTやLDHの特性を劣化させないものであれば特に限定されず、例えば、エタノール等のアルコールや水を使用すればよい。 The solvent used for mixing is not particularly limited as long as it does not deteriorate the properties of CNT and LDH. For example, alcohol such as ethanol or water may be used.
 所望により、スラリー又はペーストには、CNT以外の空気極触媒を添加してもよい。そのようなCNT以外の空気極触媒の好ましい例としては、黒鉛等の酸化還元触媒機能を有するカーボン系材料、白金、ニッケル等の酸化還元触媒機能を有する金属、ペロブスカイト型酸化物、二酸化マンガン、酸化ニッケル、酸化コバルト、スピネル酸化物等の酸化還元触媒機能を有する無機酸化物が挙げられる。そのような空気極触媒の形状は特に限定されないが、粒子形状であるのが好ましい。 If desired, an air electrode catalyst other than CNTs may be added to the slurry or paste. Preferred examples of such an air electrode catalyst other than CNT include carbon-based materials having a redox catalyst function such as graphite, metals having a redox catalyst function such as platinum and nickel, perovskite oxides, manganese dioxide, oxidation Examples thereof include inorganic oxides having a redox catalyst function such as nickel, cobalt oxide, and spinel oxide. The shape of such an air electrode catalyst is not particularly limited, but is preferably a particle shape.
 所望により、スラリー又はペーストにはCNT以外のバインダーを添加してもよい。バインダーは、熱可塑性樹脂や熱硬化性樹脂であってよく特に限定されないが、好ましい例としては、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体、エチレン-アクリル酸共重合体、カルボキシメチルセルロール(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシプロピルメチルセルロースフタレート(HPMCP)、ポリビニルアルコール(PVA)及びこれらの任意の混合物が挙げられる。 If desired, a binder other than CNT may be added to the slurry or paste. The binder may be a thermoplastic resin or a thermosetting resin and is not particularly limited. Preferred examples include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, and tetrafluoro. Ethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, fluorine Vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene Pyrene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether -Tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer, carboxymethylcellulose (CMC), methylcellulose (MC), cellulose acetate phthalate (CAP), hydroxypropylmethylcellulose (HPMC), hydroxypropylmethylcellulose phthalate (HPMCP) ), Polyvinyl alcohol (PVA) and any mixtures thereof.
(d)塗布工程
 上記(c)工程で得られたペースト又はスラリーをLDHセパレータの表面に塗布する。LDHセパレータは層状複水酸化物(LDH)を含む公知のセラミックスセパレータであり、その好ましい態様については後述する。図1に示されるように多孔質基材14と複合化されたLDHセパレータ12の場合、ペースト又はスラリーはLDHセパレータ12の露出表面(多孔質基材14と反対側の表面)に塗布される。ペースト又はスラリーの塗布は公知の方法により行えばよいが、最終的に空気極層に多孔性をもたらす手法により行われるのが好ましい。塗布方法の好ましい例としては、塗布器具(コテ、ヘラ、刷毛、スプレー、ディスペンサ、モーノポンプ等)を用いた塗布、印刷が挙げられる。いずれにしても、使用するペースト又はスラリーの粘度に応じて適切な塗布方法を適宜すればよい。
(D) Coating step The paste or slurry obtained in the above step (c) is coated on the surface of the LDH separator. The LDH separator is a known ceramic separator containing layered double hydroxide (LDH), and a preferred embodiment thereof will be described later. As shown in FIG. 1, in the case of the LDH separator 12 combined with the porous substrate 14, the paste or slurry is applied to the exposed surface of the LDH separator 12 (the surface opposite to the porous substrate 14). Application of the paste or slurry may be performed by a known method, but is preferably performed by a method that finally brings porosity to the air electrode layer. Preferable examples of the application method include application and printing using an application tool (iron, spatula, brush, spray, dispenser, mono pump, etc.). In any case, an appropriate application method may be appropriately selected according to the viscosity of the paste or slurry to be used.
(e)水蒸気処理工程
 ペースト又はスラリーが塗布されたLDHセパレータを水蒸気処理に付して金属酸化物をLDHに転化させ、それにより図1に示されるようにLDHセパレータ12上に空気極層16を得る。水蒸気処理は、LDHセパレータを水蒸気又は湿気に曝すことにより行われる。したがって、水蒸気処理は加湿処理と言い換えることもできる。水蒸気処理は0~200℃で行われるのが好ましく、より好ましくは50~180℃、さらに好ましくは100~150℃ある。また、水蒸気処理はオートクレーブ(密閉容器)内で行われるのが好ましい。特に、オートクレーブ内で高温(例えば100℃以上)で行われる水蒸気処理は水熱処理ないし水熱合成と一般に称されるものであり、製造効率等の観点から特に好ましいといえる。もっとも、単に加湿するだけでも金属酸化物をLDHに転化することは可能であるため、最低0℃までの低温での水蒸気処理も採用可能である。
(E) Steam treatment step The LDH separator coated with paste or slurry is subjected to steam treatment to convert the metal oxide into LDH, thereby forming the air electrode layer 16 on the LDH separator 12 as shown in FIG. obtain. The steam treatment is performed by exposing the LDH separator to steam or moisture. Therefore, the steam treatment can be rephrased as a humidification treatment. The steam treatment is preferably performed at 0 to 200 ° C., more preferably 50 to 180 ° C., and still more preferably 100 to 150 ° C. The steam treatment is preferably performed in an autoclave (sealed container). In particular, steam treatment performed at a high temperature (for example, 100 ° C. or higher) in an autoclave is generally referred to as hydrothermal treatment or hydrothermal synthesis, and can be said to be particularly preferable from the viewpoint of production efficiency and the like. However, since it is possible to convert the metal oxide to LDH simply by humidification, steam treatment at a low temperature of at least 0 ° C. can also be employed.
 上述した温度での水蒸気処理の時間は0.1時間以上が好ましく、より好ましくは0.5~20時間、さらに好ましくは1~10時間である。このような時間であるとLDHの再生を十分に進行させて異相が残るのを回避又は低減できる。なお、水蒸気処理の時間は、長すぎても特に問題はないが、効率性を重視して適時設定すればよい。 The time of the steam treatment at the above-mentioned temperature is preferably 0.1 hour or more, more preferably 0.5 to 20 hours, and further preferably 1 to 10 hours. With such a time, it is possible to avoid or reduce the occurrence of a heterogeneous phase by sufficiently reproducing the LDH. The steam treatment time is not particularly problematic if it is too long, but it may be set in a timely manner with emphasis on efficiency.
 水蒸気処理はイオン交換水の共存下で行われるのが好ましく、イオン交換水を入れたオートクレーブ内で行われるのがより好ましい。金属酸化物のLDHへの転化(LDHの再生)にはLDH構成要素としての上述したn価の陰イオン(An-)の取り込みを要するが、イオン交換水を用いた場合には、空気中の二酸化炭素に由来する炭酸イオン(CO 2-)を取り込んだ形でLDHが再生される。勿論、イオン交換水の代わりに、上述したn価の陰イオン(An-)を含む水溶液の共存下で水蒸気処理を行ってもよい。 The steam treatment is preferably performed in the presence of ion-exchanged water, and more preferably performed in an autoclave containing ion-exchanged water. Conversion of metal oxide to LDH (regeneration of LDH) requires the incorporation of the above-described n-valent anion (A n− ) as an LDH component, but in the air when ion-exchanged water is used, LDH is regenerated by incorporating carbonate ions (CO 3 2− ) derived from carbon dioxide. Of course, instead of the ion-exchanged water, the steam treatment may be performed in the presence of the above-described aqueous solution containing the n-valent anion (A n− ).
 上記のようにして得られる空気極層は典型的には多孔質である。多孔質であることで、空気と接触する表面積を増やして、空気極性能を向上することができる。 The air electrode layer obtained as described above is typically porous. By being porous, the surface area in contact with air can be increased, and the performance of the air electrode can be improved.
 本発明の方法により製造されるセパレータ/空気極複合体は、各種電気化学装置における空気極(酸素極とも称される)及びセパレータの組合せとして好ましく用いることができる。そのような電気化学装置の好ましい例としては、亜鉛空気電池等の金属空気電池、アルカリ形燃料電池、食塩電解装置、水電解装置等が挙げられる。 The separator / air electrode composite produced by the method of the present invention can be preferably used as a combination of an air electrode (also referred to as an oxygen electrode) and a separator in various electrochemical devices. Preferable examples of such electrochemical devices include metal-air batteries such as zinc-air batteries, alkaline fuel cells, salt electrolyzers, water electrolyzers and the like.
 LDHセパレータ
 LDHセパレータ12は層状複水酸化物(LDH)を含むセラミックスセパレータである。LDHセパレータ12は、前述したように、亜鉛二次電池の分野において水酸化物イオン伝導性を有する緻密セパレータとして知られている。好ましいLDHセパレータ12はガス不透過性及び/又は水不透過性を有する。換言すれば、LDHセパレータ12はガス不透過性及び/又は水不透過性を有するほどに緻密化されているのが好ましい。なお、本明細書において「ガス不透過性を有する」とは、特許文献4(国際公開第2016/076047号)に記載されるように、水中で測定対象物(すなわちLDHセパレータ12及び/又は多孔質基材14)の一面側にヘリウムガスを0.5atmの差圧で接触させても他面側からヘリウムガスに起因する泡の発生がみられないことを意味する。また、本明細書において「水不透過性を有する」とは、特許文献4に記載されるように、測定対象物(例えばLDH膜及び/又は多孔質基材)の一面側に接触した水が他面側に透過しないことを意味する。すなわち、LDHセパレータ12がガス不透過性及び/又は水不透過性を有するということは、LDHセパレータ12が気体又は水を通さない程の高度な緻密性を有することを意味し、透水性及び/又は通気性を有する多孔性フィルムやその他の多孔質材料ではないことを意味する。こうすることで、LDHセパレータ12は、その水酸化物イオン伝導性に起因して水酸化物イオンのみを選択的に通すものとなる。したがって、LDHセパレータ12は金属空気二次電池において空気極と負極の間に介在されることで、二酸化炭素の電解液への混入等を防止することができ、その結果、炭酸イオンの生成による電解液の劣化を防止して電池性能の低下を回避することができる。また、その緻密性及び硬さに起因して、亜鉛空気二次電池の充電時における亜鉛デンドライトによる正負極間の短絡を防止することもできる。その結果、特性劣化しにくく信頼性の高い金属空気電池(特に金属空気二次電池)を構成することが可能となる。もっとも、図1に示されるようにLDHセパレータ12が多孔質基材14と複合化されてよいのはいうまでもない。
LDH separator LDH separator 12 is a ceramic separator containing layered double hydroxide (LDH). As described above, the LDH separator 12 is known as a dense separator having hydroxide ion conductivity in the field of zinc secondary batteries. A preferred LDH separator 12 is gas impermeable and / or water impermeable. In other words, the LDH separator 12 is preferably so dense that it has gas impermeability and / or water impermeability. In this specification, “having gas impermeability” means that an object to be measured (that is, LDH separator 12 and / or porous material) in water as described in Patent Document 4 (International Publication No. 2016/076047). This means that even if helium gas is brought into contact with one surface side of the porous substrate 14) with a differential pressure of 0.5 atm, no bubbles are generated due to helium gas from the other surface side. Further, in this specification, “having water impermeability” means that, as described in Patent Document 4, water in contact with one surface side of an object to be measured (for example, an LDH film and / or a porous substrate) is used. It means that it does not transmit to the other side. That is, the fact that the LDH separator 12 has gas impermeability and / or water impermeability means that the LDH separator 12 has a high degree of denseness that does not allow gas or water to pass through. Or it means that it is not a porous film or other porous material having air permeability. By doing so, the LDH separator 12 selectively allows only hydroxide ions to pass due to its hydroxide ion conductivity. Accordingly, since the LDH separator 12 is interposed between the air electrode and the negative electrode in the metal-air secondary battery, it is possible to prevent the carbon dioxide from being mixed into the electrolytic solution. It is possible to prevent the deterioration of the battery and avoid the deterioration of the battery performance. Moreover, due to the denseness and hardness, it is possible to prevent a short circuit between the positive and negative electrodes due to zinc dendrite during charging of the zinc-air secondary battery. As a result, it is possible to configure a highly reliable metal-air battery (particularly a metal-air secondary battery) that is less susceptible to characteristic deterioration. Needless to say, the LDH separator 12 may be combined with the porous substrate 14 as shown in FIG.
 LDHセパレータ12は層状複水酸化物(LDH)を含み、好ましくはLDHで構成される。一般的に知られているように、LDHは、複数の水酸化物基本層と、これら複数の水酸化物基本層間に介在する中間層とから構成される。水酸化物基本層は主として金属元素(典型的には金属イオン)とOH基で構成される。LDHの中間層は、陰イオン及びHOで構成される。陰イオンは1価以上の陰イオン、好ましくは1価又は2価のイオンである。好ましくは、LDH中の陰イオンはOH及び/又はCO 2-を含む。また、LDHはその固有の性質に起因して優れたイオン伝導性を有する。 The LDH separator 12 includes a layered double hydroxide (LDH), and is preferably composed of LDH. As is generally known, LDH is composed of a plurality of hydroxide base layers and an intermediate layer interposed between the plurality of hydroxide base layers. The hydroxide base layer is mainly composed of metal elements (typically metal ions) and OH groups. The intermediate layer of LDH is composed of anions and H 2 O. The anion is a monovalent or higher anion, preferably a monovalent or divalent ion. Preferably, the anion in LDH comprises OH - and / or CO 3 2- . LDH has excellent ionic conductivity due to its inherent properties.
 一般的に、LDHは、M2+ 1-x3+ (OH)n- x/n・mHO(式中、M2+は2価の陽イオンであり、M3+は3価の陽イオンであり、An-はn価の陰イオンであり、nは1以上の整数であり、xは0.1~0.4であり、mは0以上である)の基本組成式で代表されるものとして知られている。上記基本組成式において、M2+は任意の2価の陽イオンでありうるが、好ましい例としてはMg2+、Ca2+及びZn2+が挙げられ、より好ましくはMg2+である。M3+は任意の3価の陽イオンでありうるが、好ましい例としてはAl3+又はCr3+が挙げられ、より好ましくはAl3+である。An-は任意の陰イオンでありうるが、好ましい例としてはOH及びCO 2-が挙げられる。したがって、上記基本組成式において、M2+がMg2+を含み、M3+がAl3+を含み、An-がOH及び/又はCO 2-を含むのが好ましい。nは1以上の整数であるが、好ましくは1又は2である。xは0.1~0.4であるが、好ましくは0.2~0.35である。mは水のモル数を意味する任意の数であり、0以上、典型的には0を超える又は1以上の実数である。もっとも、上記基本組成式は、一般にLDHに関して代表的に例示される「基本組成」の式にすぎず、構成イオンを適宜置き換え可能なものである。例えば、上記基本組成式においてM3+の一部または全部を4価またはそれ以上の価数の陽イオンで置き換えてもよく、その場合は、上記一般式における陰イオンAn-の係数x/nは適宜変更されてよい。 In general, LDH is M 2+ 1-x M 3+ x (OH) 2 A n− x / n · mH 2 O (where M 2+ is a divalent cation and M 3+ is a trivalent cation). A n− is an n-valent anion, n is an integer of 1 or more, x is 0.1 to 0.4, and m is 0 or more). It is known as a representative. In the above basic composition formula, M 2+ may be any divalent cation, and preferred examples include Mg 2+ , Ca 2+ and Zn 2+ , and more preferably Mg 2+ . M 3+ may be any trivalent cation, but preferred examples include Al 3+ or Cr 3+ , and more preferred is Al 3+ . A n- can be any anion, but preferred examples include OH - and CO 3 2- . Accordingly, in the above basic formula, M 2+ comprises Mg 2+, M 3+ comprises Al 3+, A n-is OH - and / or CO preferably contains 3 2-. n is an integer of 1 or more, preferably 1 or 2. x is 0.1 to 0.4, preferably 0.2 to 0.35. m is an arbitrary number which means the number of moles of water, and is a real number of 0 or more, typically more than 0 or 1 or more. However, the above basic composition formula is merely a formula of “basic composition” that is typically exemplified with respect to LDH in general, and the constituent ions can be appropriately replaced. For example, it may be replaced with some or all of the M 3+ tetravalent or higher valency cations in the basic formula, in which case, the anion A coefficient of n-x / n in the general formula May be changed as appropriate.
 例えば、LDHの水酸化物基本層は、Ni、Ti、OH基、及び場合により不可避不純物で構成されてもよい。LDHの中間層は、上述のとおり、陰イオン及びHOで構成される。水酸化物基本層と中間層の交互積層構造自体は一般的に知られるLDHの交互積層構造と基本的に同じであるが、本態様のLDHは、LDHの水酸化物基本層を主としてNi、Ti及びOH基で構成することで、優れた耐アルカリ性を呈することができる。その理由は必ずしも定かではないが、本態様のLDHにはアルカリ溶液に溶出しやすいと考えられる元素(例えばAl)が意図的又は積極的に添加されていないためと考えられる。そうでありながらも、本態様のLDHは、アルカリ二次電池用セパレータとしての使用に適した高いイオン伝導性も呈することができる。LDH中のNiはニッケルイオンの形態を採りうる。LDH中のニッケルイオンは典型的にはNi2+であると考えられるが、Ni3+等の他の価数もありうるため、特に限定されない。LDH中のTiはチタンイオンの形態を採りうる。LDH中のチタンイオンは典型的にはTi4+であると考えられるが、Ti3+等の他の価数もありうるため、特に限定されない。不可避不純物は製法上不可避的に混入されうる任意元素であり、例えば原料や基材に由来してLDH中に混入しうる。上記のとおり、Ni及びTiの価数は必ずしも定かではないため、LDHを一般式で厳密に特定することは非実際的又は不可能である。仮に水酸化物基本層が主としてNi2+、Ti4+及びOH基で構成されるものと想定した場合には、対応するLDHは、一般式:Ni2+ 1-xTi4+ (OH)n- 2x/n・mHO(式中、An-はn価の陰イオン、nは1以上の整数、好ましくは1又は2であり、0<x<1、好ましくは0.01≦x≦0.5、mは0以上、典型的には0を超える又は1以上の実数である)なる基本組成で表すことができる。もっとも、上記一般式はあくまで「基本組成」と解されるべきであり、Ni2+やTi4+等の元素がLDHの基本的特性を損なわない程度に他の元素又はイオン(同じ元素の他の価数の元素又はイオンや製法上不可避的に混入されうる元素又はイオンを含む)で置き換え可能なものとして解されるべきである。 For example, the hydroxide base layer of LDH may be composed of Ni, Ti, OH groups and possibly inevitable impurities. As described above, the intermediate layer of LDH is composed of an anion and H 2 O. The alternate layered structure of the hydroxide basic layer and the intermediate layer itself is basically the same as the commonly known alternate layered structure of LDH, but the LDH of this embodiment is mainly composed of Ni, By comprising Ti and OH groups, excellent alkali resistance can be exhibited. Although the reason is not necessarily clear, it is considered that an element (for example, Al) that is considered to be easily eluted in an alkaline solution is not intentionally or actively added to the LDH of this embodiment. Nevertheless, the LDH of this embodiment can also exhibit high ionic conductivity suitable for use as a separator for an alkaline secondary battery. Ni in LDH can take the form of nickel ions. The nickel ions in LDH are typically considered to be Ni 2+ , but are not particularly limited because other valences such as Ni 3+ may also exist. Ti in LDH can take the form of titanium ions. The titanium ion in LDH is typically considered to be Ti 4+ , but is not particularly limited because other valences such as Ti 3+ may also exist. Inevitable impurities are optional elements that can be inevitably mixed in the manufacturing process, and can be mixed in LDH, for example, derived from raw materials and base materials. As described above, since the valences of Ni and Ti are not necessarily certain, it is impractical or impossible to specify LDH strictly by a general formula. If it is assumed that the hydroxide base layer is mainly composed of Ni 2+ , Ti 4+ and OH groups, the corresponding LDH has the general formula: Ni 2+ 1-x Ti 4+ x (OH) 2 An - 2x / n · mH 2 O ( wherein, a n-n-valent anion, n is an integer of 1 or more, preferably 1 or 2, 0 <x <1, preferably 0.01 ≦ x ≦ 0.5, m is 0 or more, typically greater than 0 or 1 or more real number). However, the above general formula should be construed as “basic composition” only, and other elements or ions (other valences of the same element) to the extent that elements such as Ni 2+ and Ti 4+ do not impair the basic characteristics of LDH. It should be understood that it can be replaced by a number of elements or ions, or elements or ions that may be inevitably mixed in the manufacturing process.
 あるいは、LDHの水酸化物基本層は、Ni、Al、Ti及びOH基を含むものであってもよい。中間層は、上述のとおり、陰イオン及びHOで構成される。水酸化物基本層と中間層の交互積層構造自体は一般的に知られるLDHの交互積層構造と基本的に同じであるが、本態様のLDHは、LDHの水酸化物基本層をNi、Al、Ti及びOH基を含む所定の元素ないしイオンで構成することで、優れた耐アルカリ性を呈することができる。その理由は必ずしも定かではないが、本態様のLDHは、従来はアルカリ溶液に溶出しやすいと考えられていたAlが、Ni及びTiとの何らかの相互作用によりアルカリ溶液に溶出しにくくなるためと考えられる。そうでありながらも、本態様のLDHは、アルカリ二次電池用セパレータとしての使用に適した高いイオン伝導性も呈することができる。LDH中のNiはニッケルイオンの形態を採りうる。LDH中のニッケルイオンは典型的にはNi2+であると考えられるが、Ni3+等の他の価数もありうるため、特に限定されない。LDH中のAlはアルミニウムイオンの形態を採りうる。LDH中のアルミニウムイオンは典型的にはAl3+であると考えられるが、他の価数もありうるため、特に限定されない。LDH中のTiはチタンイオンの形態を採りうる。LDH中のチタンイオンは典型的にはTi4+であると考えられるが、Ti3+等の他の価数もありうるため、特に限定されない。水酸化物基本層は、Ni、Al、Ti及びOH基を含んでいさえすれば、他の元素ないしイオンを含んでいてもよい。もっとも、水酸化物基本層は、Ni、Al、Ti及びOH基を主要構成要素として含むのが好ましい。すなわち、水酸化物基本層は、主としてNi、Al、Ti及びOH基からなるのが好ましい。したがって、水酸化物基本層は、Ni、Al、Ti、OH基及び場合により不可避不純物で構成されるのが典型的である。不可避不純物は製法上不可避的に混入されうる任意元素であり、例えば原料や基材に由来してLDH中に混入しうる。上記のとおり、Ni、Al及びTiの価数は必ずしも定かではないため、LDHを一般式で厳密に特定することは非実際的又は不可能である。仮に水酸化物基本層が主としてNi2+、Al3+、Ti4+及びOH基で構成されるものと想定した場合には、対応するLDHは、一般式:Ni2+ 1-x-yAl3+ Ti4+ (OH)n- (x+2y)/n・mHO(式中、An-はn価の陰イオン、nは1以上の整数、好ましくは1又は2であり、0<x<1、好ましくは0.01≦x≦0.5、0<y<1、好ましくは0.01≦y≦0.5、0<x+y<1、mは0以上、典型的には0を超える又は1以上の実数である)なる基本組成で表すことができる。もっとも、上記一般式はあくまで「基本組成」と解されるべきであり、Ni2+、Al3+、Ti4+等の元素がLDHの基本的特性を損なわない程度に他の元素又はイオン(同じ元素の他の価数の元素又はイオンや製法上不可避的に混入されうる元素又はイオンを含む)で置き換え可能なものとして解されるべきである。 Alternatively, the hydroxide basic layer of LDH may contain Ni, Al, Ti and OH groups. As described above, the intermediate layer is composed of an anion and H 2 O. The alternate layered structure of the hydroxide basic layer and the intermediate layer itself is basically the same as the generally known alternate layered structure of LDH, but the LDH of this embodiment uses the basic hydroxide layer of LDH as Ni, Al. By comprising a predetermined element or ion containing Ti and OH groups, excellent alkali resistance can be exhibited. The reason for this is not necessarily clear, but the LDH of this embodiment is thought to be because Al, which was previously thought to be easily eluted in an alkaline solution, is less likely to be eluted in an alkaline solution due to some interaction with Ni and Ti. It is done. Nevertheless, the LDH of this embodiment can also exhibit high ionic conductivity suitable for use as a separator for an alkaline secondary battery. Ni in LDH can take the form of nickel ions. The nickel ions in LDH are typically considered to be Ni 2+ , but are not particularly limited because other valences such as Ni 3+ may also exist. Al in LDH can take the form of aluminum ions. Aluminum ions in LDH are typically considered to be Al 3+ , but are not particularly limited because other valences are possible. Ti in LDH can take the form of titanium ions. The titanium ion in LDH is typically considered to be Ti 4+ , but is not particularly limited because other valences such as Ti 3+ may also exist. The hydroxide base layer may contain other elements or ions as long as it contains Ni, Al, Ti and OH groups. However, it is preferable that the hydroxide base layer contains Ni, Al, Ti, and OH groups as main components. That is, the hydroxide base layer is preferably mainly composed of Ni, Al, Ti and OH groups. Therefore, the hydroxide base layer is typically composed of Ni, Al, Ti, OH groups and possibly inevitable impurities. Inevitable impurities are optional elements that can be inevitably mixed in the manufacturing process, and can be mixed in LDH, for example, derived from raw materials and base materials. As described above, since the valences of Ni, Al, and Ti are not necessarily certain, it is impractical or impossible to specify LDH strictly by a general formula. If it is assumed that the hydroxide base layer is mainly composed of Ni 2+ , Al 3+ , Ti 4+ and OH groups, the corresponding LDH has the general formula: Ni 2+ 1-xy Al 3+ x Ti 4+ y (OH) 2 A n− (x + 2y) / n · mH 2 O (where A n− is an n-valent anion, n is an integer of 1 or more, preferably 1 or 2, and 0 <x <1, preferably 0.01 ≦ x ≦ 0.5, 0 <y <1, preferably 0.01 ≦ y ≦ 0.5, 0 <x + y <1, m is 0 or more, typically 0. It can be represented by a basic composition that exceeds or is one or more real numbers. However, the above general formula should be construed as “basic composition” only, and other elements or ions (of the same element) such that Ni 2+ , Al 3+ , Ti 4+ and the like do not impair the basic characteristics of LDH. It should be understood that it can be replaced by other valence elements or ions or elements or ions that may be inevitably mixed in the manufacturing process.
 LDHセパレータ12は、板状、膜状又は層状のいずれの形態であってもよく、膜状又は層状の形態である場合、膜状又は層状のLDHセパレータ12が多孔質基材14と複合化されている、例えば多孔質基材14上又はその中に形成されたものであるのが好ましい。板状のLDHセパレータ12の好ましい厚さは、0.01~0.5mmであり、より好ましくは0.02~0.2mm、さらに好ましくは0.05~0.1mmである。また、LDHセパレータ12の水酸化物イオン伝導度は高ければ高い方が望ましいが、典型的には10-4~10-1S/mの伝導度を有する。一方、膜状又は層状の形態の場合には、厚さが100μm以下であるのが好ましく、より好ましくは75μm以下、さらに好ましくは50μm以下、特に好ましくは25μm以下、最も好ましくは5μm以下である。このように薄いことでLDHセパレータ12の低抵抗化を実現できる。厚さの下限値は用途に応じて異なるため特に限定されないが、セパレータ膜ないし層として望まれるある程度の堅さを確保するためには厚さ1μm以上であるのが好ましく、より好ましくは2μm以上である。 The LDH separator 12 may be in the form of a plate, a film, or a layer. When the LDH separator 12 is in the form of a film or a layer, the film or layer LDH separator 12 is combined with the porous substrate 14. For example, it is preferably formed on or in the porous substrate 14. A preferable thickness of the plate-like LDH separator 12 is 0.01 to 0.5 mm, more preferably 0.02 to 0.2 mm, and still more preferably 0.05 to 0.1 mm. The hydroxide ion conductivity of the LDH separator 12 is preferably as high as possible, but typically has a conductivity of 10 −4 to 10 −1 S / m. On the other hand, in the case of a film-like or layered form, the thickness is preferably 100 μm or less, more preferably 75 μm or less, still more preferably 50 μm or less, particularly preferably 25 μm or less, and most preferably 5 μm or less. Thus, the resistance of the LDH separator 12 can be reduced by being thin. The lower limit of the thickness is not particularly limited because it varies depending on the application, but in order to ensure a certain degree of rigidity desired as a separator film or layer, the thickness is preferably 1 μm or more, more preferably 2 μm or more. is there.
 LDHセパレータ12は多孔質基材14と複合化されているのが好ましい。特に、LDHセパレータ12の片面に多孔質基材14を設けられるのが好ましい。LDHセパレータ12の片面に多孔質基材14が設けられる場合、多孔質基材14は、LDHセパレータ12の空気極層16と反対側の面(金属空気電池において負極側となる面)に設けられる。多孔質基材14は透水性を有し、それ故電解液がLDHセパレータ12に到達可能となる。また、多孔質基材14により強度を付与できるため、LDHセパレータ12を薄くして低抵抗化を図ることもできる。また、多孔質基材14上又はその中にLDHの緻密膜ないし緻密層を形成することもできる。LDHセパレータ12の片面に多孔質基材を設ける場合には、多孔質基材を用意して、この多孔質基材にLDHを成膜する手法が考えられる。 The LDH separator 12 is preferably combined with the porous substrate 14. In particular, the porous substrate 14 is preferably provided on one side of the LDH separator 12. When the porous substrate 14 is provided on one side of the LDH separator 12, the porous substrate 14 is provided on the surface of the LDH separator 12 opposite to the air electrode layer 16 (surface on the negative side in the metal-air battery). . The porous substrate 14 has water permeability, so that the electrolytic solution can reach the LDH separator 12. In addition, since the strength can be imparted by the porous base material 14, the LDH separator 12 can be thinned to reduce the resistance. In addition, a dense film or dense layer of LDH can be formed on or in the porous substrate 14. In the case where a porous substrate is provided on one side of the LDH separator 12, a method of preparing a porous substrate and depositing LDH on the porous substrate is conceivable.
 多孔質基材14は、セラミックス材料、金属材料、及び高分子材料からなる群から選択される少なくとも1種で構成されるのが好ましく、より好ましくはセラミックス材料及び/又は高分子材料、さらに好ましくは高分子材料である。多孔質基材は、セラミックス材料で構成されるのがより好ましい。この場合、セラミックス材料の好ましい例としては、アルミナ、ジルコニア、チタニア、マグネシア、スピネル、カルシア、コージライト、ゼオライト、ムライト、フェライト、酸化亜鉛、炭化ケイ素、及びそれらの任意の組合せが挙げられ、より好ましくは、アルミナ、ジルコニア、チタニア、及びそれらの任意の組合せであり、特に好ましくはアルミナ及びジルコニアであり、最も好ましくはアルミナである。これらの多孔質セラミックスを用いると緻密性に優れたLDHセパレータ12を形成しやすい。金属材料の好ましい例としては、アルミニウム及び亜鉛が挙げられる。高分子材料の好ましい例としては、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、親水化したフッ素樹脂(四フッ素化樹脂:PTFE等)、及びそれらの任意の組合せが挙げられる。上述した各種の好ましい材料から電解液に対する耐性として耐アルカリ性に優れたものを適宜選択するのが更に好ましい。 The porous substrate 14 is preferably composed of at least one selected from the group consisting of a ceramic material, a metal material, and a polymer material, more preferably a ceramic material and / or a polymer material, still more preferably. It is a polymer material. More preferably, the porous substrate is made of a ceramic material. In this case, preferable examples of the ceramic material include alumina, zirconia, titania, magnesia, spinel, calcia, cordierite, zeolite, mullite, ferrite, zinc oxide, silicon carbide, and any combination thereof, and more preferable. Is alumina, zirconia, titania, and any combination thereof, particularly preferably alumina and zirconia, most preferably alumina. When these porous ceramics are used, it is easy to form the LDH separator 12 having excellent denseness. Preferable examples of the metal material include aluminum and zinc. Preferable examples of the polymer material include polystyrene, polyether sulfone, polypropylene, epoxy resin, polyphenylene sulfide, hydrofluorinated fluororesin (tetrafluorinated resin: PTFE, etc.), and any combination thereof. It is further preferable to appropriately select a material excellent in alkali resistance as the resistance to the electrolytic solution from the various preferable materials described above.
 好ましくは、LDHセパレータ12が、複数のLDH板状粒子の集合体で構成され、複数のLDH板状粒子がそれらの板面が多孔質基材14の表面(多孔構造に起因する微細凹凸を無視できる程度に巨視的に観察した場合における多孔質基材の主面)と垂直に又は斜めに交差するような向きに配向している。なお、LDHセパレータ12は多孔質基材14の孔内に少なくとも部分的に組み込まれていてもよく、その場合、多孔質基材14の孔内にもLDH板状粒子は存在しうる。 Preferably, the LDH separator 12 is composed of an aggregate of a plurality of LDH plate-like particles, and the plurality of LDH plate-like particles have their plate surfaces on the surface of the porous substrate 14 (ignoring fine irregularities caused by the porous structure). The orientation is such that it intersects perpendicularly or diagonally with the main surface of the porous substrate when observed macroscopically as much as possible. The LDH separator 12 may be at least partially incorporated in the pores of the porous base material 14, and in that case, LDH plate-like particles may also exist in the pores of the porous base material 14.
 LDHセパレータ12、例えば多孔質基材14と複合化されたLDHセパレータ12の製造方法は特に限定されず、既に知られるLDHセパレータの製造方法(例えば特許文献3及び4)を参照することにより作製することができる。 The manufacturing method of the LDH separator 12, for example, the LDH separator 12 combined with the porous substrate 14 is not particularly limited, and the LDH separator 12 is manufactured by referring to a known manufacturing method (for example, Patent Documents 3 and 4). be able to.
 本発明を以下の例によってさらに具体的に説明する。 The present invention will be described more specifically with reference to the following examples.
 例1
(1)セパレータ/空気極複合体の作製
 市販のMg-Al系LDH粉末(DHT-6、協和化学工業株式会社製、組成:Mg2+ 0.75Al3+ 0.25(OH)CO n- 0.25/n・mHO)を用意した。このLDH粉末を大気雰囲気中650℃で5時間焼成して金属酸化物粉末に転化させた。一方、単層CNT(製品名:SWNT分散液、(株)名城ナノカーボン製)をエタノールに分散させて、CNT分散液を得た。金属酸化物粉末とCNT分散液とを(CNT):(金属酸化物)の体積比が5:95となるようにそれぞれ秤量し、乳鉢に入れて十分に混合した。このとき、乳鉢をホットスターラで加熱しながら混合を行うことで、エタノールを揮発させて混合物の粘度を調整した。こうして得られたペーストを、図1に示されるように、多孔質アルミナと複合化されたLDHセパレータの表面にコテで塗布した。この多孔質アルミナ/LDHセパレータの複合材料は後述する例2に準じて作製されたものである。ペーストが塗布されたLDHセパレータをオートクレーブに入れ、100℃で5時間水熱処理を行った。このとき、図2に示されるように、オートクレーブ100にイオン交換水102が入っており、イオン交換水102に浮かせたテフロン(登録商標)製の皿104に、ペーストが塗布されたLDHセパレータ106が載置された。こうして金属酸化物をLDHに転化させ(すなわちLDHを再生させ)、セパレータ/空気極複合体を得た。
Example 1
(1) Production of Separator / Air Electrode Composite Commercially available Mg—Al LDH powder (DHT-6, manufactured by Kyowa Chemical Industry Co., Ltd., composition: Mg 2+ 0.75 Al 3+ 0.25 (OH) 2 CO 3 n - 0.25 / n · mH 2 O ) was prepared. This LDH powder was calcined at 650 ° C. for 5 hours in the air atmosphere to be converted into a metal oxide powder. On the other hand, single-walled CNT (product name: SWNT dispersion, manufactured by Meijo Nano Carbon Co., Ltd.) was dispersed in ethanol to obtain a CNT dispersion. The metal oxide powder and the CNT dispersion were weighed so that the volume ratio of (CNT) :( metal oxide) was 5:95, and placed in a mortar and mixed thoroughly. At this time, by mixing while heating the mortar with a hot stirrer, ethanol was volatilized to adjust the viscosity of the mixture. As shown in FIG. 1, the paste thus obtained was applied with a trowel onto the surface of an LDH separator combined with porous alumina. This porous alumina / LDH separator composite material was prepared according to Example 2 described later. The LDH separator coated with the paste was placed in an autoclave and hydrothermally treated at 100 ° C. for 5 hours. At this time, as shown in FIG. 2, ion-exchanged water 102 is contained in the autoclave 100, and an LDH separator 106 coated with a paste is placed on a Teflon (registered trademark) dish 104 floated on the ion-exchanged water 102. Was placed. Thus, the metal oxide was converted to LDH (that is, LDH was regenerated) to obtain a separator / air electrode composite.
(2)セパレータ/空気極複合体の評価
 セパレータ/空気極複合体に対して以下の評価を行った。
(2) Evaluation of separator / air electrode composite The following evaluation was performed on the separator / air electrode composite.
(2a)X線回折
 セパレータ/空気極複合体の空気極層に対してX線回折を行ったところ、図3に示されるXRDプロファイルが得られた。また、図3には、水熱処理前における複合体のXRDプロファイルと、空気極層なしのLDHセパレータのXRDプロファイルも併せて示す。図3に示される結果から明らかなように、水熱処理によって金属酸化物がLDHに転化したこと、すなわちCNTとLDH粉末を含む空気極層がLDHセパレータ上に直接接合される形で形成されたことが分かる。なお、空気極層無しのLDHセパレータのXRDプロファイルにはAl由来のピークも見受けられるが、これはLDHセパレータと複合化された多孔質アルミナに起因するものと解される。
(2a) X-ray diffraction When X-ray diffraction was performed on the air electrode layer of the separator / air electrode composite, the XRD profile shown in FIG. 3 was obtained. FIG. 3 also shows the XRD profile of the composite before hydrothermal treatment and the XRD profile of the LDH separator without the air electrode layer. As is clear from the results shown in FIG. 3, the metal oxide was converted to LDH by hydrothermal treatment, that is, the air electrode layer containing CNT and LDH powder was formed in a form that was directly bonded onto the LDH separator. I understand. Although the XRD profile of LDH separator without the air electrode layer seen the peak derived from Al 2 O 3, which is understood to be due to the porous alumina complexed with LDH separator.
(2b)接着強度の評価
 この空気極層がLDHセパレータに対してどの程度の強さで接合しているかを剥離試験により評価した。剥離試験では空気極部分のみを持ち上げ、その際にセパレータが自重により剥離して落下しないかを確認した。その結果、空気極層はLDHセパレータに十分な強度で接合されていることが確認された。上記の剥離試験以外でも、島津製作所製のオートグラフを用いて引張強度を評価してもよい。
(2b) Evaluation of adhesive strength The strength of the air electrode layer bonded to the LDH separator was evaluated by a peel test. In the peel test, only the air electrode part was lifted, and it was confirmed that the separator peeled off due to its own weight and did not fall. As a result, it was confirmed that the air electrode layer was bonded to the LDH separator with sufficient strength. In addition to the above peel test, the tensile strength may be evaluated using an autograph manufactured by Shimadzu Corporation.
(2c)微構造観察
 空気極層の表面微構造及び断面微構造を走査型電子顕微鏡(SEM)(日本電子株式会社製、JSM-6610LV)を用いて加速電圧20kVで観察したところ、空気極層が十分に多孔質であることを確認した。図4に空気極層の断面をイオンミリング研磨して観察した二次電子像を、図5に空気極層の破断面をそのまま観察した二次電子像を示す。図4から空気極層がLDH板状粒子を含んだ多孔質であることが明確に確認される一方、図5から繊維状物質としてのCNTの存在が明確に確認される。
(2c) Microstructure observation The surface microstructure and the cross-sectional microstructure of the air electrode layer were observed at an acceleration voltage of 20 kV using a scanning electron microscope (SEM) (JSM-6610LV, manufactured by JEOL Ltd.). Was sufficiently porous. FIG. 4 shows a secondary electron image observed by ion milling the cross section of the air electrode layer, and FIG. 5 shows a secondary electron image obtained by observing the broken surface of the air electrode layer as it is. FIG. 4 clearly confirms that the air electrode layer is porous including LDH plate-like particles, while FIG. 5 clearly confirms the presence of CNT as the fibrous material.
 例2(参考)
 Mg及びAl含有LDHを含む機能層及び複合材料を以下の手順により作製し、評価した。なお、本例における機能層はLDHセパレータに相当するものである。
Example 2 (Reference)
A functional layer and a composite material containing Mg and Al-containing LDH were prepared and evaluated by the following procedure. The functional layer in this example corresponds to an LDH separator.
(1)多孔質基材の作製
 アルミナ粉末(住友化学社製、AES-12)100重量部に対して、分散媒(キシレン:ブタノール=1:1)70重量部、バインダー(ポリビニルブチラール:積水化学工業株式会社製BM-2)11.1重量部、可塑剤(DOP:黒金化成株式会社製)5.5重量部、及び分散剤(花王株式会社製レオドールSP-O30)2.9重量部を混合し、この混合物を減圧下で攪拌して脱泡することにより、スラリーを得た。このスラリーを、テープ成型機を用いてPETフィルム上に、乾燥後膜厚が220μmとなるようにシート状に成型してシート成形体を得た。得られた成形体を2.0cm×2.0cm×厚さ0.022cmの大きさになるよう切り出し、1300℃で2時間焼成して、アルミナ製多孔質基材を得た。
(1) Preparation of porous substrate 70 parts by weight of a dispersion medium (xylene: butanol = 1: 1) and binder (polyvinyl butyral: Sekisui Chemical) with respect to 100 parts by weight of alumina powder (AES-12, manufactured by Sumitomo Chemical Co., Ltd.) BM-2 manufactured by Kogyo Co., Ltd. 11.1 parts by weight, 5.5 parts by weight of a plasticizer (DOP: manufactured by Kurokin Kasei Co., Ltd.), and 2.9 parts by weight of a dispersant (Rheodor SP-O30 manufactured by Kao Corporation) The mixture was stirred and degassed by stirring under reduced pressure to obtain a slurry. The slurry was molded into a sheet shape on a PET film using a tape molding machine so that the film thickness after drying was 220 μm to obtain a sheet molded body. The obtained molded body was cut out to have a size of 2.0 cm × 2.0 cm × thickness 0.022 cm and fired at 1300 ° C. for 2 hours to obtain an alumina porous substrate.
 得られた多孔質基材について、多孔質基材の気孔率をアルキメデス法により測定したところ、40%であった。 For the obtained porous substrate, the porosity of the porous substrate was measured by the Archimedes method and found to be 40%.
 また、多孔質基材の平均気孔径を測定したところ0.3μmであった。本発明において、平均気孔径の測定は多孔質基材の表面の電子顕微鏡(SEM)画像をもとに気孔の最長距離を測長することにより行った。この測定に用いた電子顕微鏡(SEM)画像の倍率は20000倍であり、得られた全ての気孔径をサイズ順に並べて、その平均値から上位15点及び下位15点、合わせて1視野あたり30点で2視野分の平均値を算出して、平均気孔径を得た。測長には、SEMのソフトウェアの測長機能を用いた。 Further, when the average pore diameter of the porous substrate was measured, it was 0.3 μm. In the present invention, the average pore diameter was measured by measuring the longest distance of the pores based on an electron microscope (SEM) image of the surface of the porous substrate. The magnification of the electron microscope (SEM) image used for this measurement is 20000 times, and all the obtained pore diameters are arranged in order of size, and the top 15 points and the bottom 15 points from the average value, and 30 points per visual field in total. The average value for two visual fields was calculated to obtain the average pore diameter. For length measurement, the length measurement function of SEM software was used.
(2)ポリスチレンスピンコート及びスルホン化
 ポリスチレン基板0.6gをキシレン溶液10mlに溶かして、ポリスチレン濃度0.06g/mlのスピンコート液を作製した。得られたスピンコート液0.1mlをアルミナ多孔質基材上に滴下し、回転数8000rpmでスピンコートにより塗布した。このスピンコートは、滴下と乾燥を含めて200秒間行った。スピンコート液を塗布した多孔質基材を95%硫酸に25℃で4日間浸漬してスルホン化した。
(2) Polystyrene spin coating and sulfonation 0.6 g of a polystyrene substrate was dissolved in 10 ml of a xylene solution to prepare a spin coating solution having a polystyrene concentration of 0.06 g / ml. 0.1 ml of the obtained spin coating solution was dropped onto an alumina porous substrate and applied by spin coating at a rotation speed of 8000 rpm. This spin coating was performed for 200 seconds including dripping and drying. The porous substrate coated with the spin coating solution was immersed in 95% sulfuric acid at 25 ° C. for 4 days for sulfonation.
(3)原料水溶液の作製
 原料として、硝酸マグネシウム六水和物(Mg(NO・6HO、関東化学株式会社製)、硝酸アルミニウム九水和物(Al(NO・9HO、関東化学株式会社製)、及び尿素((NHCO、シグマアルドリッチ製)を用意した。カチオン比(Mg2+/Al3+)が2となり且つ全金属イオンモル濃度(Mg2++Al3+)が0.320mol/Lとなるように、硝酸マグネシウム六水和物と硝酸アルミニウム九水和物を秤量してビーカーに入れ、そこにイオン交換水を加えて全量を70mlとした。得られた溶液を攪拌した後、溶液中に尿素/NO =4の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
(3) As the manufacturing raw material of the raw aqueous solution, magnesium nitrate hexahydrate (Mg (NO 3) 2 · 6H 2 O, manufactured by Kanto Chemical Co., Inc.), aluminum nitrate nonahydrate (Al (NO 3) 3 · 9H 2 O, manufactured by Kanto Chemical Co., Ltd.) and urea ((NH 2 ) 2 CO, manufactured by Sigma-Aldrich) were prepared. Weigh magnesium nitrate hexahydrate and aluminum nitrate nonahydrate so that the cation ratio (Mg 2+ / Al 3+ ) is 2 and the total metal ion molar concentration (Mg 2+ + Al 3+ ) is 0.320 mol / L. In a beaker, ion exchange water was added to make a total volume of 70 ml. After stirring the obtained solution, urea weighed at a ratio of urea / NO 3 = 4 was added to the solution, and further stirred to obtain an aqueous raw material solution.
(4)水熱処理による成膜
 テフロン(登録商標)製密閉容器(内容量100ml、外側がステンレス製ジャケット)に上記(3)で作製した原料水溶液と上記(2)でスルホン化した多孔質基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように水平に設置した。その後、水熱温度70℃で168時間(7日間)水熱処理を施すことにより基材表面にLDH配向膜の形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、LDHを含む機能層を、その一部が多孔質基材中に組み込まれた形で得た。得られた機能層の厚さは(多孔質基材に組み込まれた部分の厚さを含めて)約3μmであった。
(4) Film formation by hydrothermal treatment A Teflon (registered trademark) sealed container (with an internal volume of 100 ml, the outside is a stainless steel jacket) and the raw material aqueous solution prepared in (3) above and the porous substrate sulfonated in (2) above Was enclosed together. At this time, the base material was fixed by being floated from the bottom of a Teflon (registered trademark) sealed container, and placed horizontally so that the solution was in contact with both surfaces of the base material. Thereafter, a hydrothermal treatment was performed at a hydrothermal temperature of 70 ° C. for 168 hours (7 days) to form an LDH alignment film on the substrate surface. After a lapse of a predetermined time, the substrate was taken out from the sealed container, washed with ion-exchanged water, dried at 70 ° C. for 10 hours, and a part of the functional layer containing LDH was incorporated into the porous substrate. Got in shape. The thickness of the functional layer obtained was about 3 μm (including the thickness of the portion incorporated in the porous substrate).
(5)評価結果
 得られた機能層ないし複合材料に対して以下の評価を行った。
(5) Evaluation result The following evaluation was performed with respect to the obtained functional layer or composite material.
(5a)機能層の同定
 X線回折装置(リガク社製 RINT TTR III)にて、電圧:50kV、電流値:300mA、測定範囲:10~70°の測定条件で、機能層の結晶相を測定してXRDプロファイルを得た。得られたXRDプロファイルについて、JCPDSカードNO.35-0964に記載されるLDH(ハイドロタルサイト類化合物)の回折ピークを用いて同定を行った。その結果、得られたXRDプロファイルから、機能層はLDH(ハイドロタルサイト類化合物)であることが同定された。
(5a) Identification of functional layer Using an X-ray diffractometer (RINT TTR III manufactured by Rigaku Corporation), the crystal phase of the functional layer is measured under the measurement conditions of voltage: 50 kV, current value: 300 mA, measurement range: 10 to 70 °. As a result, an XRD profile was obtained. About the obtained XRD profile, JCPDS card NO. Identification was performed using a diffraction peak of LDH (hydrotalcite compound) described in 35-0964. As a result, it was identified from the obtained XRD profile that the functional layer was LDH (hydrotalcite compound).
(5b)微構造の観察
 機能層の表面微構造を走査型電子顕微鏡(SEM、JSM-6610LV、JEOL社製)を用いて10~20kVの加速電圧で観察した。また、イオンミリング装置(日立ハイテクノロジーズ社製、IM4000によって、機能層(LDH膜からなる膜状部とLDH及び基材からなる複合部)の断面研磨面を得た後に、この断面研磨面の微構造を表面微構造の観察と同様の条件でSEMにより観察した。その結果、機能層は、LDH膜からなる膜状部と、膜状部の下に位置するLDH及び多孔質基材からなる複合部とから構成されていることが分かった。また、膜状部を構成するLDHは、複数の板状粒子の集合体で構成され、これら複数の板状粒子がそれらの板面が多孔質基材の表面(多孔構造に起因する微細凹凸を無視できる程度に巨視的に観察した場合における多孔質基材の面)と垂直に又は斜めに交差するような向きに配向していた。一方、複合部は、多孔質基材の孔内にLDHが充填されて緻密な層を構成していた。
(5b) Observation of microstructure The surface microstructure of the functional layer was observed using a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL) at an acceleration voltage of 10 to 20 kV. Further, after obtaining a cross-sectional polished surface of a functional layer (a film-shaped portion made of an LDH film and a composite portion made of LDH and a base material) with an ion milling device (manufactured by Hitachi High-Technologies Corporation, IM4000) The structure was observed by SEM under the same conditions as the observation of the surface microstructure, and as a result, the functional layer was composed of a film-shaped portion composed of an LDH film and a composite composed of LDH and a porous substrate located under the film-shaped portion. In addition, the LDH constituting the film-like part is composed of an aggregate of a plurality of plate-like particles, and the plate-like surfaces of the plurality of plate-like particles are porous bases. Oriented perpendicularly or diagonally to the surface of the material (the surface of the porous substrate when macroscopic observations resulting from the porous structure are negligibly macroscopic). In the pores of the porous substrate LDH has constituted the dense layer is filled.
(5c)ガス不透過性及び水不透過性
 機能層に対して、特許文献4(国際公開第2016/076047号)に記載される手法に基づき、水中で複合材料の一面側にヘリウムガスを0.5atmの差圧で接触させたところ、他面側からヘリウムガスに起因する泡の発生がみられなかった。また、特許文献4に記載される手法に基づき、複合材料の一面側に接触した水が他面側に透過しないことも確認した。すなわち、機能層ないし複合材料がガス不透過性及び/又は水不透過性を有することを確認した。

 
(5c) Gas impermeability and water impermeability For the functional layer, based on the technique described in Patent Document 4 (International Publication No. 2016/076047), helium gas is reduced to 0 on one side of the composite material in water. When contact was made at a differential pressure of .5 atm, generation of bubbles due to helium gas was not observed from the other side. Moreover, based on the method described in patent document 4, it confirmed that the water which contacted the one surface side of the composite material did not permeate | transmit the other surface side. That is, it was confirmed that the functional layer or the composite material has gas impermeability and / or water impermeability.

Claims (9)

  1.  層状複水酸化物(LDH)粉末を用意する工程と、
     前記LDH粉末を400~850℃で1~10時間焼成して金属酸化物粉末を得る工程と、
     前記金属酸化物粉末、カーボンナノチューブ(CNT)及び溶媒を混合してペースト又はスラリーを形成する工程と、
     前記ペースト又はスラリーをLDHセパレータの表面に塗布する工程と、
     前記ペースト又はスラリーが塗布されたLDHセパレータを水蒸気処理に付して前記金属酸化物をLDHに転化させ、それによりLDHセパレータ上に空気極層を得る工程と、
    を含む、セパレータ/空気極複合体の製造方法。
    Preparing a layered double hydroxide (LDH) powder;
    Firing the LDH powder at 400 to 850 ° C. for 1 to 10 hours to obtain a metal oxide powder;
    Mixing the metal oxide powder, carbon nanotubes (CNT) and a solvent to form a paste or slurry;
    Applying the paste or slurry to the surface of the LDH separator;
    Subjecting the LDH separator coated with the paste or slurry to steam treatment to convert the metal oxide into LDH, thereby obtaining an air electrode layer on the LDH separator;
    A method for producing a separator / air electrode composite, comprising:
  2.  前記LDH粉末の焼成が酸化性雰囲気下で行われる、請求項1に記載の方法。 The method according to claim 1, wherein the firing of the LDH powder is performed in an oxidizing atmosphere.
  3.  前記水蒸気処理が0~200℃で行われる、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the steam treatment is performed at 0 to 200 ° C.
  4.  前記水蒸気処理がオートクレーブ内で行われる、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the steam treatment is performed in an autoclave.
  5.  前記LDH粉末の平均粒径D50が、0.1~50μmである、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein an average particle diameter D50 of the LDH powder is 0.1 to 50 µm.
  6.  前記空気極層が多孔質である、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the air electrode layer is porous.
  7.  前記LDHセパレータがガス不透過性及び/又は水不透過性を有する、請求項1~6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein the LDH separator has gas impermeability and / or water impermeability.
  8.  前記LDHセパレータが多孔質基材と複合化されている、請求項1~7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the LDH separator is combined with a porous substrate.
  9.  前記LDHセパレータが、複数のLDH板状粒子の集合体で構成され、該複数のLDH板状粒子がそれらの板面が前記多孔質基材の表面と垂直に又は斜めに交差するような向きに配向している、請求項8に記載の方法。
     
     

     
    The LDH separator is composed of an aggregate of a plurality of LDH plate-like particles, and the plurality of LDH plate-like particles are oriented so that their plate surfaces intersect perpendicularly or obliquely with the surface of the porous substrate. The method of claim 8, wherein the method is oriented.



PCT/JP2017/009483 2017-03-09 2017-03-09 Method for manufacturing separator/air electrode assembly WO2018163353A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018533283A JP6550193B2 (en) 2017-03-09 2017-03-09 Method of manufacturing separator / air electrode composite
PCT/JP2017/009483 WO2018163353A1 (en) 2017-03-09 2017-03-09 Method for manufacturing separator/air electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/009483 WO2018163353A1 (en) 2017-03-09 2017-03-09 Method for manufacturing separator/air electrode assembly

Publications (1)

Publication Number Publication Date
WO2018163353A1 true WO2018163353A1 (en) 2018-09-13

Family

ID=63447386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009483 WO2018163353A1 (en) 2017-03-09 2017-03-09 Method for manufacturing separator/air electrode assembly

Country Status (2)

Country Link
JP (1) JP6550193B2 (en)
WO (1) WO2018163353A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111193034A (en) * 2018-11-14 2020-05-22 株式会社电装 Structure and solid oxide fuel cell stack
WO2020246178A1 (en) * 2019-06-05 2020-12-10 日本碍子株式会社 Air electrode/separator assembly and metal-air secondary battery
DE112020002680T5 (en) 2019-06-05 2022-03-10 Ngk Insulators, Ltd. air electrode/separator assembly and a metal-air accumulator
CN114391198A (en) * 2019-09-25 2022-04-22 日本碍子株式会社 Air electrode/separator assembly and zinc-air secondary battery
DE112021000456T5 (en) 2020-03-02 2022-10-27 Ngk Insulators, Ltd. LAYERED DOUBLE HYDROXIDE AND METHOD OF PRODUCTION, AND AIR ELECTRODE AND METAL-AIR SECONDARY BATTERY USING THE LAYERED DOUBLE HYDROXIDE
DE112021007028T5 (en) 2021-03-30 2023-11-16 Ngk Insulators, Ltd. AIR ELECTRODE/SEPARATOR ASSEMBLY AND METAL-AIR SECONDARY BATTERY
DE112021006974T5 (en) 2021-03-30 2023-11-16 Ngk Insulators, Ltd. AIR ELECTRODE/SEPARATOR ASSEMBLY AND METAL-AIR SECONDARY BATTERY
DE112021007019T5 (en) 2021-03-30 2023-12-07 Ngk Insulators, Ltd. AIR ELECTRODE/SEPARATOR ASSEMBLY AND METAL-AIR SECONDARY BATTERY
DE112022003391T5 (en) 2021-07-02 2024-04-18 Ngk Insulators, Ltd. LAYERED DOUBLE HYDROXIDE, METHOD FOR PRODUCING LAYERED DOUBLE HYDROXIDE, AIR ELECTRODE AND METAL-AIR SECONDARY BATTERY

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156578A1 (en) * 2013-03-25 2014-10-02 日本碍子株式会社 Dense layered double hydroxide, and method for producing same
WO2015146671A1 (en) * 2014-03-28 2015-10-01 日本碍子株式会社 Air electrode for metal-air battery
WO2016208769A1 (en) * 2015-06-26 2016-12-29 日本碍子株式会社 Air electrode, metal air battery, and air electrode material
JP2017010914A (en) * 2015-06-26 2017-01-12 日本碍子株式会社 Air electrode, metal-air battery, air electrode material, and method for producing air electrode material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156578A1 (en) * 2013-03-25 2014-10-02 日本碍子株式会社 Dense layered double hydroxide, and method for producing same
WO2015146671A1 (en) * 2014-03-28 2015-10-01 日本碍子株式会社 Air electrode for metal-air battery
WO2016208769A1 (en) * 2015-06-26 2016-12-29 日本碍子株式会社 Air electrode, metal air battery, and air electrode material
JP2017010914A (en) * 2015-06-26 2017-01-12 日本碍子株式会社 Air electrode, metal-air battery, air electrode material, and method for producing air electrode material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111193034A (en) * 2018-11-14 2020-05-22 株式会社电装 Structure and solid oxide fuel cell stack
CN111193034B (en) * 2018-11-14 2023-10-03 株式会社电装 Structure and solid oxide fuel cell stack
DE112020002681T5 (en) 2019-06-05 2022-03-10 Ngk Insulators, Ltd. Air Electrode/Separator Assembly and Metal-Air Accumulator
JPWO2020246178A1 (en) * 2019-06-05 2020-12-10
DE112020002680T5 (en) 2019-06-05 2022-03-10 Ngk Insulators, Ltd. air electrode/separator assembly and a metal-air accumulator
JP7195425B2 (en) 2019-06-05 2022-12-23 日本碍子株式会社 Air electrode/separator assembly and metal-air secondary battery
WO2020246178A1 (en) * 2019-06-05 2020-12-10 日本碍子株式会社 Air electrode/separator assembly and metal-air secondary battery
US11862815B2 (en) 2019-06-05 2024-01-02 Ngk Insulators, Ltd. Air electrode/separator assembly and metal-air secondary battery
CN114391198A (en) * 2019-09-25 2022-04-22 日本碍子株式会社 Air electrode/separator assembly and zinc-air secondary battery
DE112020004526T5 (en) 2019-09-25 2022-06-09 Ngk Insulators, Ltd. Air Electrode/Separator Assembly and Zinc Air Secondary Battery
DE112021000456T5 (en) 2020-03-02 2022-10-27 Ngk Insulators, Ltd. LAYERED DOUBLE HYDROXIDE AND METHOD OF PRODUCTION, AND AIR ELECTRODE AND METAL-AIR SECONDARY BATTERY USING THE LAYERED DOUBLE HYDROXIDE
DE112021007028T5 (en) 2021-03-30 2023-11-16 Ngk Insulators, Ltd. AIR ELECTRODE/SEPARATOR ASSEMBLY AND METAL-AIR SECONDARY BATTERY
DE112021006974T5 (en) 2021-03-30 2023-11-16 Ngk Insulators, Ltd. AIR ELECTRODE/SEPARATOR ASSEMBLY AND METAL-AIR SECONDARY BATTERY
DE112021007019T5 (en) 2021-03-30 2023-12-07 Ngk Insulators, Ltd. AIR ELECTRODE/SEPARATOR ASSEMBLY AND METAL-AIR SECONDARY BATTERY
DE112022003391T5 (en) 2021-07-02 2024-04-18 Ngk Insulators, Ltd. LAYERED DOUBLE HYDROXIDE, METHOD FOR PRODUCING LAYERED DOUBLE HYDROXIDE, AIR ELECTRODE AND METAL-AIR SECONDARY BATTERY

Also Published As

Publication number Publication date
JPWO2018163353A1 (en) 2019-03-22
JP6550193B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
WO2018163353A1 (en) Method for manufacturing separator/air electrode assembly
JP6441900B2 (en) Air electrode for metal-air battery
JP6067925B2 (en) Zinc-air secondary battery
JP6246364B2 (en) Air electrode with separator for metal-air battery
JP6722170B2 (en) Air electrode, water electrolysis anode, metal-air battery and water electrolysis device
JP6570545B2 (en) Air electrode, metal-air battery and air electrode material
Lee et al. Cobalt-based compounds and composites as electrode materials for high-performance electrochemical capacitors
JP6517606B2 (en) Air electrode, metal-air battery, air electrode material, and method of manufacturing air electrode material
JP5714353B2 (en) Multi-oxide stack, solid electrolyte membrane / electrode assembly including the multi-oxide stack, lithium secondary battery, and method for producing multi-oxide stack
JP7195425B2 (en) Air electrode/separator assembly and metal-air secondary battery
JP7162133B2 (en) Air electrode/separator assembly and metal-air secondary battery
JP6313156B2 (en) Zinc-air secondary battery
JP6619164B2 (en) Manufacturing method of air electrode material
JP6618484B2 (en) Air electrode material, air electrode and metal-air battery
JP2008041468A (en) Base material for interconector of solid oxide fuel cell, interconnector of solid oxide fuel cell, and its manufacturing method, and solid oxide fuel cell

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018533283

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899993

Country of ref document: EP

Kind code of ref document: A1