WO2018163250A1 - Semiconductor device manufacturing method, substrate processing device, and recording medium - Google Patents

Semiconductor device manufacturing method, substrate processing device, and recording medium Download PDF

Info

Publication number
WO2018163250A1
WO2018163250A1 PCT/JP2017/008796 JP2017008796W WO2018163250A1 WO 2018163250 A1 WO2018163250 A1 WO 2018163250A1 JP 2017008796 W JP2017008796 W JP 2017008796W WO 2018163250 A1 WO2018163250 A1 WO 2018163250A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
supply
film
raw material
substrate
Prior art date
Application number
PCT/JP2017/008796
Other languages
French (fr)
Japanese (ja)
Inventor
中谷 公彦
隆史 佐々木
司 鎌倉
花島 建夫
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2017/008796 priority Critical patent/WO2018163250A1/en
Priority to JP2019503841A priority patent/JP6778318B2/en
Publication of WO2018163250A1 publication Critical patent/WO2018163250A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a semiconductor device manufacturing method, a substrate processing apparatus, and a recording medium.
  • a process of forming a film on a substrate may be performed (see, for example, Patent Document 1).
  • An object of the present invention is to provide a technique capable of controlling the in-plane film thickness distribution of a film formed on a substrate.
  • the raw material containing the main element constituting the film from the first supply unit to the substrate and exhausting it from the exhaust unit;
  • B From the pair of second supply parts disposed adjacent to the first supply part so as to sandwich a straight line passing through the first supply part and the exhaust part, the main element-free reactant is obtained.
  • the technique for forming the film on the substrate is provided by simultaneously performing at least a certain period under the condition that the raw material is not thermally decomposed.
  • the present invention it is possible to control the in-plane film thickness distribution of the film formed on the substrate.
  • FIG. 2 is a schematic configuration diagram of a part of a vertical processing furnace of a substrate processing apparatus suitably used in an embodiment of the present invention, and is a diagram showing a part of the processing furnace as a cross-sectional view taken along line AA of FIG.
  • the controller of the substrate processing apparatus used suitably by embodiment of this invention, and is a figure which shows the control system of a controller with a block diagram. It is a figure which shows the film-forming sequence of one Embodiment of this invention.
  • (A) is a schematic diagram which shows a mode that a reactant is supplied only from either one of a pair of 2nd supply parts, when supplying a raw material from a 1st supply part
  • (b) It is a schematic diagram which shows a mode that a reactant is supplied using both of a pair of 2nd supply part when supplying a raw material from a 1st supply part.
  • (A) is a figure which shows the evaluation result of the film thickness distribution in the substrate surface of the film
  • (b) is a figure which extracts and shows a part of process conditions at the time of forming a film
  • (A), (b) is a cross-sectional view which respectively shows the modification of a vertical processing furnace, and is a figure which extracts and shows a reaction tube, a buffer chamber, a nozzle, etc. partially.
  • the processing furnace 202 has a heater 207 as heating means (heating mechanism).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a holding plate.
  • the heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) gas with heat.
  • a reaction tube 203 is disposed inside the heater 207 concentrically with the heater 207.
  • the reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end opened.
  • a manifold 209 is disposed below the reaction tube 203 concentrically with the reaction tube 203.
  • the manifold 209 is made of a metal material such as stainless steel (SUS), for example, and has a cylindrical shape with an upper end and a lower end opened. The upper end portion of the manifold 209 is engaged with the lower end portion of the reaction tube 203 and is configured to support the reaction tube 203.
  • An O-ring 220a as a seal member is provided between the manifold 209 and the reaction tube 203.
  • the reaction tube 203 is installed vertically like the heater 207.
  • the reaction vessel 203 and the manifold 209 mainly constitute a processing vessel (reaction vessel).
  • a processing chamber 201 is formed in the hollow cylindrical portion of the processing container.
  • the processing chamber 201 is configured to accommodate a wafer 200 as a substrate.
  • a nozzle 249 a as a first supply unit and nozzles 249 b and 249 c as a pair of second supply units are provided so as to penetrate the side wall of the manifold 209.
  • Gas supply pipes 232a to 232c are connected to the nozzles 249a to 249c, respectively.
  • the gas supply pipes 232a to 232c are provided with mass flow controllers (MFC) 241a to 241c, which are flow rate controllers (flow rate control units), and valves 243a to 243c, which are on-off valves, in order from the upstream side of the gas flow.
  • MFC mass flow controllers
  • valves 243a to 243c which are on-off valves, in order from the upstream side of the gas flow.
  • Gas supply pipes 232d to 232f for supplying an inert gas are connected to the gas supply pipes 232a to 232c on the downstream side of the valves 243a to 243c, respectively.
  • the gas supply pipes 232d to 232f are respectively provided with MFCs 241d to 241f and valves 243d to 243f in order from the upstream side of the gas flow.
  • the nozzles 249a to 249c are arranged in an annular space in a plan view between the inner wall of the reaction tube 203 and the wafer 200, along the upper part from the lower part of the inner wall of the reaction tube 203. Each is provided so as to rise upward in the arrangement direction. That is, the nozzles 249a to 249c are provided along the wafer arrangement area in the area horizontally surrounding the wafer arrangement area on the side of the wafer arrangement area where the wafers 200 are arranged.
  • the nozzle 249a is arranged so as to face an exhaust portion 231a (described later) on a straight line (straight line 201b) across the center of the wafer 200 carried into the processing chamber 201 in plan view.
  • the center of the nozzle 249a and the exhaust part 231a are opposed to each other across the center of the wafer 200, and the respective centers are positioned on a straight line 201b passing through the center of the wafer 200.
  • the nozzles 249b and 249c are disposed adjacent to the nozzle 249a so as to sandwich a straight line 201b passing through the nozzle 249a and the exhaust part 231a.
  • the nozzles 249b and 249c are disposed on both sides of the nozzle 249a, that is, along the inner wall of the reaction tube 203 (the outer periphery of the wafer 200) so as to sandwich the nozzle 249a from both sides.
  • Gas supply holes 250a to 250c for supplying gas are provided on the side surfaces of the nozzles 249a to 249c, respectively.
  • Each of the gas supply holes 250a to 250c is opened so as to face the exhaust part 231a in plan view, and can supply gas toward the wafer 200.
  • the gas supply holes 250 a to 250 c may be opened so as to face the center of the wafer 200.
  • the center of the gas supply hole 250a is located on a straight line 201b passing through the center of the wafer 200 and the center of the exhaust part 231a in plan view.
  • a plurality of gas supply holes 250 a to 250 c are provided from the lower part to the upper part of the reaction tube 203.
  • a silicon hydride gas containing silicon (Si) as a main element constituting a film to be formed is supplied from the gas supply pipe 232a through the MFC 241a, the valve 243a, and the nozzle 249a. Supplied into 201.
  • the raw material gas is a gaseous raw material, for example, a gas obtained by vaporizing a raw material that is in a liquid state under normal temperature and normal pressure, or a raw material that is in a gaseous state under normal temperature and normal pressure.
  • Silicon hydride is a silane raw material containing a chemical bond (Si—H bond) between Si and hydrogen (H) and containing no carbon (C) and nitrogen (N).
  • Silicon hydride is also a silane raw material containing no halogen element such as chlorine (Cl), fluorine (F), bromine (Br), iodine (I) and the like.
  • halogen element such as chlorine (Cl), fluorine (F), bromine (Br), iodine (I) and the like.
  • silicon hydride gas for example, disilane (Si 2 H 6 , abbreviation: DS) gas can be used.
  • Si-free alkylborane gas is supplied as a reactant (reaction gas) into the processing chamber 201 through the MFCs 241b and 241c, valves 243b and 243c, and nozzles 249b and 249c.
  • Alkylborane is a halogen-free gas containing boron (B), containing an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group.
  • the alkylborane-based gas for example, triethylborane ((CH 3 CH 2 ) 3 B, abbreviation: TEB) gas can be used.
  • the DS gas is a gas that satisfies the octet rule
  • the TEB gas is a gas that does not satisfy the octet rule.
  • the octet rule is an empirical rule that a compound or ion exists stably when the number of outermost electrons of an atom is 8, that is, an empirical rule that the reactivity of a compound or ion is stabilized by having a closed shell structure. That is.
  • the adsorption force on the surface of the wafer 200 tends to be weak, that is, the DS gas tends not to be adsorbed on the surface of the wafer 200. is there. Further, since the pyrolysis temperature of the DS gas is higher than the pyrolysis temperature of the TEB gas, the DS gas tends to be harder to decompose than the TEB gas. Further, since the TEB gas that does not satisfy the octet law has a strong reaction force to satisfy the octet law and is unstable, when it is supplied into the processing chamber 201, the adsorption force to the surface of the wafer 200 is increased.
  • TEB gas tends to be more thermally decomposed than DS gas.
  • nitrogen (N 2 ) gas as an inert gas passes through the MFCs 241d to 241f, valves 243d to 243f, gas supply pipes 232a to 232c, and nozzles 249a to 249c, respectively. Supplied into 201.
  • the N 2 gas acts as a purge gas and a carrier gas, and further acts as a film thickness distribution control gas for controlling the in-plane film thickness distribution of the film formed on the wafer 200.
  • the raw material supply system is configured by the gas supply pipe 232a, the MFC 241a, and the valve 243a.
  • a reactant supply system is mainly configured by the gas supply pipes 232b and 232c, the MFCs 241b and 241c, and the valves 243b and 243c.
  • an inert gas supply system is mainly configured by the gas supply pipes 232d to 232f, the MFCs 241d to 241f, and the valves 243d to 243f.
  • any or all of the various supply systems described above may be configured as an integrated supply system 248 in which valves 243a to 243f, MFCs 241a to 241f, and the like are integrated.
  • the integrated supply system 248 is connected to each of the gas supply pipes 232a to 232f, and supplies various gases into the gas supply pipes 232a to 232f, that is, opens and closes the valves 243a to 243f and MFCs 241a to 241f.
  • the flow rate adjusting operation and the like are configured to be controlled by a controller 121 described later.
  • the integrated supply system 248 is configured as an integrated or divided type integrated unit, and can be attached to and detached from the gas supply pipes 232a to 232f in units of integrated units. Maintenance, replacement, expansion, etc. can be performed in units of integrated units.
  • the reaction tube 203 is provided with an exhaust part (exhaust port) 231a for exhausting the atmosphere in the processing chamber 201.
  • the exhaust unit 231a is provided at a position facing (facing) the nozzles 249a to 249c (gas supply holes 250a to 250c) across the wafer 200 in plan view.
  • An exhaust pipe 231 is connected to the exhaust part 231a.
  • the exhaust pipe 231 is connected to a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure adjustment unit).
  • a vacuum pump 246 as a vacuum exhaust device is connected.
  • the APC valve 244 can perform vacuum evacuation and vacuum evacuation stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 activated, and further, with the vacuum pump 246 activated,
  • the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245.
  • An exhaust system is mainly configured by the exhaust part 231a, the exhaust pipe 231, the APC valve 244, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 is provided as a furnace opening lid capable of airtightly closing the lower end opening of the manifold 209.
  • the seal cap 219 is made of a metal material such as SUS and is formed in a disk shape.
  • an O-ring 220b is provided as a seal member that comes into contact with the lower end of the manifold 209.
  • a rotation mechanism 267 for rotating a boat 217 described later is installed below the seal cap 219.
  • a rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be raised and lowered in the vertical direction by a boat elevator 115 as an elevating mechanism installed outside the reaction tube 203.
  • the boat elevator 115 is configured as a transfer device (transfer mechanism) that carries the wafer 200 in and out of the processing chamber 201 by moving the seal cap 219 up and down.
  • a shutter 219s is provided below the manifold 209 as a furnace opening lid capable of airtightly closing the lower end opening of the manifold 209 with the seal cap 219 lowered and the boat 217 carried out of the processing chamber 201. Yes.
  • the shutter 219s is made of a metal material such as SUS, and is formed in a disk shape.
  • an O-ring 220c as a seal member that comes into contact with the lower end of the manifold 209 is provided.
  • the opening / closing operation (elevating operation, rotating operation, etc.) of the shutter 219s is controlled by the shutter opening / closing mechanism 115s.
  • the boat 217 as a substrate support is configured to support a plurality of, for example, 25 to 200, wafers 200 in a multi-stage manner by aligning them vertically in a horizontal posture and with their centers aligned. It is configured to arrange at intervals.
  • the boat 217 is made of a heat-resistant material such as quartz or SiC. Under the boat 217, heat insulating plates 218 made of a heat resistant material such as quartz or SiC are supported in multiple stages.
  • a temperature sensor 263 is installed as a temperature detector. By adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution.
  • the temperature sensor 263 is provided along the inner wall of the reaction tube 203.
  • the controller 121 which is a control unit (control means), is configured as a computer having a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
  • an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
  • the storage device 121c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
  • a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner.
  • the process recipe is a combination of processes so that a predetermined result can be obtained by causing the controller 121 to execute each procedure in substrate processing to be described later, and functions as a program.
  • process recipes, control programs, and the like are collectively referred to simply as programs.
  • the process recipe is also simply called a recipe.
  • program When the term “program” is used in this specification, it may include only a recipe, only a control program, or both.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d includes the above-described MFCs 241a to 241f, valves 243a to 243f, pressure sensor 245, APC valve 244, vacuum pump 246, temperature sensor 263, heater 207, rotation mechanism 267, boat elevator 115, shutter opening / closing mechanism 115s, etc. It is connected to the.
  • the CPU 121a is configured to read out and execute a control program from the storage device 121c and to read a recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rate of various gases by the MFCs 241a to 241f, the opening / closing operation of the valves 243a to 243f, the opening / closing operation of the APC valve 244, and the pressure adjustment by the APC valve 244 based on the pressure sensor 245 so as to follow the contents of the read recipe.
  • the controller 121 installs the above-described program stored in an external storage device (for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory) 123 in a computer.
  • an external storage device for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them.
  • the program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • the film forming sequence shown in FIG. 4 may be shown as follows for convenience.
  • wafer When the term “wafer” is used in this specification, it may mean the wafer itself or a laminate of the wafer and a predetermined layer or film formed on the surface thereof.
  • wafer surface When the term “wafer surface” is used in this specification, it may mean the surface of the wafer itself, or may mean the surface of a predetermined layer or the like formed on the wafer.
  • the phrase “form a predetermined layer on the wafer” means that the predetermined layer is directly formed on the surface of the wafer itself, a layer formed on the wafer, etc. It may mean that a predetermined layer is formed on the substrate.
  • substrate is also synonymous with the term “wafer”.
  • the inside of the processing chamber 201 is evacuated (reduced pressure) by the vacuum pump 246 so that the space in which the wafer 200 exists is at a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information. Further, the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to reach a desired temperature. At this time, the power supply to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution. Further, the rotation of the wafer 200 by the rotation mechanism 267 is started. The exhaust in the processing chamber 201 and the heating and rotation of the wafer 200 are all continuously performed at least until the processing on the wafer 200 is completed.
  • valves 243a to 243c are opened, and DS gas is allowed to flow into the gas supply pipe 232a, and TEB gas is allowed to flow into the gas supply pipes 232b and 232c.
  • the DS gas and the TEB gas are adjusted in flow rates by the MFCs 241a to 241c, supplied into the processing chamber 201 through the nozzles 249a to 249c, mixed in the processing chamber 201, and exhausted from the exhaust unit 231a.
  • the DS gas and the TEB gas are supplied to the wafer 200 together, that is, simultaneously.
  • the valves 243d to 243f are opened, and N 2 gas is allowed to flow into the gas supply pipes 232d to 232f.
  • the N 2 gas is supplied into the processing chamber 201 together with the DS gas and the TEB gas, and is exhausted from the exhaust unit 231a.
  • DS gas supply flow rate 1 to 2000 sccm
  • TEB gas supply flow rate 1 ⁇ 1000sccm
  • N 2 gas supply flow rate 100 to 10000 sccm
  • Gas supply time 10 to 60 minutes
  • Processing temperature 200 to 400 ° C, preferably 300 to 400 ° C
  • Processing pressure 1 to 1000 Pa, preferably 20 to 100 Pa Is exemplified.
  • the film formation reaction on the wafer 200 is difficult to proceed, and a practical film formation rate may not be obtained.
  • the processing temperature is set to a temperature of 200 ° C. or higher, or the processing pressure to a pressure of 1 Pa or higher, the film forming reaction on the wafer 200 is advanced, and a practical film forming rate can be obtained.
  • the processing temperature is set to 300 ° C. or higher or the processing pressure to 20 Pa or higher, the film forming reaction on the wafer 200 can be promoted, and the film forming rate can be further increased.
  • the processing temperature exceeds 400 ° C. or the processing pressure exceeds 1000 Pa
  • the DS gas is thermally decomposed without supplying the TEB gas together with the DS gas (simultaneously), and the TEB gas is supplied. May lose its significance.
  • the film thickness uniformity is likely to deteriorate due to excessive gas phase reaction, making it difficult to control it.
  • the processing temperature exceeds 400 ° C. or lower or the processing pressure to 1000 Pa or lower, it becomes possible to effectively use the catalytic action of TEB gas when decomposing DS gas.
  • the technical significance of supplying the TEB gas together can be obtained.
  • the DS gas and the TEB gas By supplying the DS gas and the TEB gas together (simultaneously) to the wafer 200 under the above-described conditions, these gases can be appropriately mixed and reacted in the processing chamber 201. Then, it becomes possible to decompose the DS gas and cut at least part of the Si—H bonds in the DS gas.
  • the DS gas Si that has dangling bonds due to the extraction of H is quickly adsorbed and deposited on the wafer 200. As a result, the formation of the Si film on the wafer 200 proceeds at a practical rate.
  • the thermal decomposition temperature of the DS gas varies depending on the pressure conditions in the processing chamber 201, but exceeds 400 ° C. under the pressure conditions described above, for example, a temperature in the range of 440 to 460 ° C. That is, the above-described processing temperature is a temperature lower than the thermal decomposition temperature of the DS gas, and is a temperature at which the DS gas does not thermally decompose when the DS gas exists alone in the processing chamber 201. In addition, the temperature within the range of 200 to 325 ° C. (200 ° C. or more and 325 ° C. or less) among the above processing temperatures is a temperature lower than the thermal decomposition temperature of the TEB gas, and the TEB gas is alone in the processing chamber 201. The temperature at which the TEB gas does not thermally decompose when present.
  • the TEB gas acts to promote the decomposition of the DS gas supplied into the processing chamber 201 and promote the film forming process. It is considered that the TEB gas acts as a catalyst due to the polarity of the TEB molecule.
  • the polarity means an electric bias existing in a molecule (or chemical bond).
  • the state where polarity exists means that the distribution of positive and negative charges in the molecule is uneven, for example, the charge distribution on one side in the molecule is positive and the charge distribution on the other side is negative. In other words, a state where the centroid of positive charge and the centroid of negative charge in the molecule are inconsistent.
  • TEB gas having a polarity equivalent to or higher than that of the DS gas as the reactant, it is possible to cause this gas to act as a catalyst and to proceed the film forming process at a practical rate.
  • the TEB gas in this embodiment is decomposed by reacting with the DS gas and changes itself before and after the reaction. Therefore, although the TEB gas in the reaction system of the present embodiment has a catalytic action, strictly speaking, it can be considered as a pseudo catalyst different from the catalyst.
  • Si n H 2n + 2 (n is 1 or more) such as DS gas, monosilane (SiH 4 , abbreviation: MS) gas, trisilane (Si 3 H 8 ) gas, tetrasilane (Si 4 H 10 ) gas, etc. Or a silicon hydride gas can be used.
  • Bistally butylaminosilane (SiH 2 [NH (C 4 H 9 )] 2 , abbreviation: BTBAS) gas, trisdimethylaminosilane (SiH [N (CH 3 ) 2 ] 3 , abbreviation: 3DMAS) gas An aminosilane-based gas such as trisilylamine ((SiH 3 ) 3 N, abbreviation: TSA) gas can be used. In this case, N can be added to the Si film formed on the wafer 200.
  • TMB trimethylborane
  • TPB tripropylborane
  • TBB tributylborane
  • B or C can be added to the Si film formed on the wafer 200.
  • a gas represented by the general formula B (NR 2 ) 3 such as an aminoborane-based gas can also be used.
  • B, N, or C can be added to the Si film formed on the wafer 200.
  • the Si film to which B, N, and C are added can also be referred to as a SiBCN film.
  • the SiBCN film is also a film containing Si as a main element.
  • B, O, or C can be added to the Si film formed on the wafer 200.
  • a Si film to which B, O, and C are added can also be referred to as a SiBOC film.
  • the SiBOC film is also a film containing Si as a main element.
  • the inert gas for example, a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
  • a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
  • N 2 gas as a purge gas is supplied into the processing chamber 201 from each of the nozzles 249a to 249c and exhausted from the exhaust unit 231a.
  • the inside of the processing chamber 201 is purged, and the gas and reaction byproducts remaining in the processing chamber 201 are removed from the processing chamber 201 (after purge).
  • the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
  • the seal cap 219 is lowered by the boat elevator 115 and the lower end of the manifold 209 is opened. Then, the processed wafer 200 is unloaded from the lower end of the manifold 209 to the outside of the reaction tube 203 while being supported by the boat 217 (boat unloading). After the boat unloading, the shutter 219s is moved, and the lower end opening of the manifold 209 is sealed by the shutter 219s via the O-ring 220c (shutter close). The processed wafer 200 is taken out of the reaction tube 203 and then taken out from the boat 217 (wafer discharge).
  • the DS gas is supplied from the nozzle 249a, and the TEB gas is supplied from the nozzles 249b and 249c provided adjacent to the nozzle 249a so as to sandwich the straight line 201b. It is possible to control the in-plane film thickness distribution (hereinafter also simply referred to as “in-plane film thickness distribution”) of the Si film formed on the substrate.
  • FIG. 5A shows a case where the DS gas is supplied from the nozzle 249a, the TEB gas is supplied from the nozzle 249b, and the TEB gas is not supplied from the nozzle 249c. It is a figure which shows density distribution typically. When each gas is supplied in this way, the gas concentration distribution on the surface of the wafer 200 may become nonuniform (biased). For example, as shown in FIG. 5A, the concentration of the DS gas is locally high (part of the TEB gas) in a partial region A (region closer to the nozzle 249c than the nozzle 249a) on the surface of the wafer 200.
  • the concentration of the TEB gas is locally high (the concentration of the DS gas) in the region B (region closer to the nozzle 249b than the nozzle 249a) on the surface of the wafer 200, which is different from the region A. May be locally low).
  • the in-plane film thickness distribution of the Si film formed on the wafer 200 is, for example, the thickest at the peripheral portion of the wafer 200 and gradually decreasing as it approaches the central portion (hereinafter also referred to as a central concave distribution). It may become.
  • the film thickness distribution of the Si film formed on the wafer 200 is a flat film thickness distribution (hereinafter also referred to as flat distribution) with little film thickness change from the center to the periphery, or the thickest at the center of the wafer 200. It has been found that it is difficult to obtain a distribution that is gradually thinner as it approaches the periphery (hereinafter also referred to as a central convex distribution).
  • FIG. 5B schematically shows the gas concentration distribution on the surface of the wafer 200 when the DS gas is supplied from the nozzle 249a and the TEB gas is supplied from both the nozzles 249b and 249c. is there.
  • each gas is supplied in this manner, mixing of the DS gas and the TEB gas in the processing chamber 201 can be promoted, and the gas concentration distribution on the surface of the wafer 200 can be made uniform.
  • each generation can be prevented, and as a result, substantially the entire surface of the wafer 200 can be covered with the region C in which the DS gas and the TEB gas are substantially uniformly mixed.
  • the in-plane film thickness distribution of the Si film formed on the wafer 200 can be controlled.
  • the degree of central concave distribution of the in-plane film thickness distribution of the Si film formed on the wafer 200 can be weakened.
  • the in-plane film thickness distribution of the Si film formed on the wafer 200 can be changed from the central concave distribution to the flat distribution, or further changed to the central convex distribution.
  • Step B the in-plane film thickness distribution of the Si film formed on the wafer 200 can be controlled by supplying N 2 gas together with the TEB gas from the nozzles 249b and 249c. .
  • Step B TEB gas and N 2 gas are supplied together from the nozzles 249b and 249c, and at this time, the flow rate of the N 2 gas supplied from the nozzles 249b and 249c is changed to the TEB gas supplied from the nozzles 249b and 249c.
  • Such a control of the flow rate balance between the N 2 gas and the TEB gas may be realized by adjusting the flow rate of the N 2 gas supplied from the nozzles 249b and 249c, or may be supplied from the nozzles 249b and 249c.
  • This may be realized by adjusting the flow rate of the TEB gas, or may be realized by adjusting the flow rates of both the N 2 gas and the TEB gas supplied from the nozzles 249b and 249c.
  • Step B by adjusting at least one of the supply flow rate of N 2 gas and the supply flow rate of TEB gas supplied from the nozzles 249b and 249c, the in-plane of the Si film formed on the wafer 200 is adjusted. It is possible to control the film thickness distribution.
  • step A the in-plane film thickness distribution of the Si film formed on the wafer 200 can be controlled by supplying N 2 gas together with the DS gas from the nozzle 249a.
  • step A DS gas and N 2 gas are supplied together from the nozzle 249a, and at this time, the flow rate of N 2 gas supplied from the nozzle 249a is made larger than the flow rate of DS gas supplied from the nozzle 249a.
  • the film thickness on the outer periphery of the Si film formed on the wafer 200 can be reduced.
  • step A DS gas and N 2 gas are supplied together from the nozzle 249a, and at this time, the flow rate of the DS gas supplied from the nozzle 249a is made larger than the flow rate of the N 2 gas supplied from the nozzle 249a.
  • Such control of the flow rate balance between the N 2 gas and the DS gas may be realized by adjusting the flow rate of the N 2 gas supplied from the nozzle 249a, or the flow rate of the DS gas supplied from the nozzle 249a. May be realized by adjusting the flow rate, or may be realized by adjusting the flow rates of both the N 2 gas and the DS gas supplied from the nozzle 249a.
  • the in-plane film thickness of the Si film formed on the wafer 200 is adjusted by adjusting at least one of the supply flow rate of N 2 gas and the supply flow rate of DS gas supplied from the nozzle 249a.
  • the distribution can be controlled.
  • the supply of N 2 gas from the nozzle 249a and the flow control of the DS gas and N 2 gas supplied from the nozzle 249a are particularly effective for fine adjustment of the film thickness on the outer periphery of the Si film formed on the wafer 200.
  • the catalytic action of the TEB gas makes it possible to form the Si film under low temperature conditions, for example, in the range of 200 to 400 ° C., preferably 300 to 400 ° C. As a result, the thermal history of the wafer 200 can be favorably controlled. This technique is particularly effective in a process (for example, middle end) in which a process temperature is required to be lowered among semiconductor device manufacturing processes.
  • (E) Suppressing the decomposition of the DS gas in the nozzle 249a by performing the film forming step under the above-described temperature condition in which the DS gas is not thermally decomposed when the DS gas is present alone in the processing chamber 201. Is possible. Thereby, Si deposition in the nozzle 249a can be suppressed, and the maintenance frequency of the substrate processing apparatus can be reduced.
  • the film forming step is performed in a temperature condition in which the TEB gas is not thermally decomposed when the TEB gas is present alone in the processing chamber 201 among the above-described temperature conditions, whereby in the nozzles 249b and 249c. It becomes possible to suppress decomposition of the TEB gas. Thereby, accumulation of B or the like in the nozzles 249b and 249c can be suppressed, and the maintenance frequency of the substrate processing apparatus can be reduced.
  • the gas state between the upstream portion and the downstream portion in the processing chamber 201 (For example, the degree of mixing and decomposition, concentration, etc.) may change, and the inter-wafer film quality uniformity and inter-wafer film thickness uniformity of the Si film formed on the wafer 200 may be reduced. According to the present embodiment that employs the Post-Mix method, such a problem can be solved.
  • (H) B and C can be added to the Si film formed on the wafer 200 by appropriately selecting and adjusting (controlling) the processing conditions in the film forming step. Thereby, this film can be made into a film excellent in processing resistance such as etching resistance.
  • one of the DS gas and the TEB gas may be continuously supplied, and the other gas may be intermittently supplied a plurality of times.
  • the TEB gas may be intermittently supplied several times during a period in which the DS gas is continuously supplied, and the DS gas is intermittently supplied several times during the period in which the TEB gas is continuously supplied. You may make it supply.
  • both the DS gas and the TEB gas may be intermittently supplied a plurality of times.
  • the DS gas supply period and the TEB gas supply period may be the same or different.
  • the TEB gas may be supplied during the DS gas supply period, or the DS gas is supplied during the TEB gas supply period. You may make it do.
  • the DS gas supply period and the TEB gas supply period are partially overlapped with each other. Also good.
  • a cycle including a step of supplying only TEB gas, a step of supplying DS gas and TEB gas at the same time, and a step of supplying only DS gas may be performed a plurality of times.
  • the processing conditions can be the same as the film forming sequence shown in FIG. Also in these modified examples, the same effect as the film forming sequence shown in FIG. 4 can be obtained. Furthermore, according to these modified examples, the film thickness can be controlled by changing the number of intermittent supply repetitions, and the controllability of the film thickness can be improved. Further, according to these modified examples, reaction by-products generated during the film forming step can be efficiently removed from the processing chamber 201, and the quality of the film forming process can be improved.
  • the recipe used for the substrate processing is preferably prepared individually according to the processing content and stored in the storage device 121c via the telecommunication line or the external storage device 123. And when starting a process, it is preferable that CPU121a selects a suitable recipe suitably from the some recipe stored in the memory
  • the above-described recipe is not limited to a case of newly creating, but may be prepared by changing an existing recipe that has already been installed in the substrate processing apparatus, for example.
  • the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium on which the recipe is recorded.
  • an existing recipe that has already been installed in the substrate processing apparatus may be directly changed by operating the input / output device 122 provided in the existing substrate processing apparatus.
  • the vertical processing furnace has a cross-sectional structure.
  • a buffer chamber is provided on the side wall of the reaction tube, and the first and second supply units having the same configuration as that of the above-described embodiment are provided in the buffer chamber. May be provided in the same arrangement as in the above-described embodiment.
  • FIG. 7A shows an example in which a supply buffer chamber and an exhaust buffer chamber are provided on the side wall of the reaction tube, and they are arranged at positions facing each other across the wafer.
  • FIG. 7A shows an example in which the supply buffer chamber is partitioned into a plurality of (three) spaces and each nozzle is arranged in each space.
  • the arrangement of the three spaces in the buffer chamber is the same as the arrangement of the first and second supply units.
  • the vertical processing furnace has a sectional structure, a buffer chamber is provided in the same arrangement as in FIG. 7A, a first supply unit is provided in the buffer chamber, You may make it provide a 2nd supply part so that a communication part with a process chamber may be pinched
  • the configuration other than the reaction tube described in FIGS. 7A and 7B is the same as the configuration of each part of the processing furnace shown in FIG. Even when these processing furnaces are used, the same effects as those of the above-described embodiment can be obtained.
  • a film is formed using a batch-type substrate processing apparatus that processes a plurality of substrates at one time.
  • the present invention is not limited to the above-described embodiment, and can be suitably applied to a case where a film is formed using, for example, a single-wafer type substrate processing apparatus that processes one or several substrates at a time.
  • a film is formed using a substrate processing apparatus having a hot wall type processing furnace.
  • the present invention is not limited to the above-described embodiment, and can be suitably applied to a case where a film is formed using a substrate processing apparatus having a cold wall type processing furnace.
  • processing procedure and processing conditions at this time can be the same as the processing procedure and processing conditions of the above-described embodiment, for example.
  • Gas supply from the other supply part (hereinafter, nozzle C) different from the one supply part in the pair of second supply parts was not performed.
  • the supply flow rates of the gases from the nozzles A and B were set to predetermined flow rates within the range shown in the column of the sample 1 in FIG.
  • the other processing conditions are set to predetermined values within the processing condition range described in the above embodiment.
  • the substrate processing apparatus shown in FIG. 1 is used, and the step of supplying the DS gas independently from the nozzle A and the step of supplying the TEB gas and N 2 gas from the nozzles B and C are performed simultaneously.
  • an Si film was formed on the wafer (bare wafer).
  • the gas supply flow rates from the nozzles A to C were set to predetermined flow rates within the ranges shown in the rows of samples 2 to 4 in FIG.
  • the other processing conditions are set to predetermined values within the processing condition range described in the above embodiment.
  • the step of supplying the DS gas and the N 2 gas from the nozzle A and the step of supplying the TEB gas and the N 2 gas from the nozzles B and C are performed simultaneously.
  • a Si film was formed on the wafer (bare wafer).
  • the gas supply flow rates from the nozzles A to C were set to predetermined flow rates within the range shown in the column of the sample 5 in FIG.
  • the other processing conditions are set to predetermined values within the processing condition range described in the above embodiment.
  • FIG. 6A shows the measurement result.
  • the vertical axis in FIG. 6A represents the difference from the average film thickness / average film thickness [a. u.
  • the horizontal axis indicates the distance [mm] from the center of the wafer at the measurement position.
  • ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ indicate samples 1 to 5, respectively.
  • FIG. 6A shows that the in-plane film thickness distribution of the Si film of sample 1 is a central concave distribution, and the degree thereof is strong. That is, when the DS gas is supplied from the nozzle A, when the TEB gas is supplied from the nozzle B and the TEB gas is not supplied from the nozzle C, the central concave portion having a strong in-plane film thickness distribution of the Si film is used. It can be seen that there may be a distribution.
  • the in-plane film thickness distribution of the Si film of Sample 2 has a lower degree of central concave distribution than that of the Si film of Sample 1. That is, when supplying the DS gas from the nozzle A, when supplying the TEB gas from both the nozzles B and C, the degree of the central concave distribution of the in-plane film thickness distribution of the Si film is reduced. It can be seen that the in-plane film thickness distribution can be controlled.
  • the in-plane film thickness distribution of the sample 3 Si film has a lower degree of central concave distribution than that of the sample 2 Si film, and is close to a flat distribution. That is, when the DS gas is supplied from the nozzle A, not only the TEB gas is supplied from both the nozzles B and C, but also the flow rate of the N 2 gas supplied from the nozzles B and C is increased, so that the surface of the Si film It can be seen that the in-plane film thickness distribution of the Si film can be controlled over a wide range, for example, by bringing the inner film thickness distribution closer to a flat distribution.
  • the in-plane film thickness distribution of the sample 4 Si film has a higher degree of central convex distribution than that of the sample 3 Si film. That is, when the DS gas is supplied from the nozzle A, not only the TEB gas is supplied from both the nozzles B and C, but also the flow rate of the TEB gas supplied from the nozzles B and C is increased to increase the in-plane of the Si film. It can be seen that the in-plane film thickness distribution of the Si film can be controlled over a wide range, such as by central convex differentiation of the film thickness distribution.
  • the in-plane film thickness distribution of the Si film of Sample 5 shows a clear central convex distribution as compared with that of the Si film of Sample 4, and the degree thereof is strong.
  • the in-plane film thickness distribution of the Si film can be controlled over a wide range, for example, by making the thickness thinner than the film thickness in other regions and making the in-plane film thickness distribution of the Si film a strong central convex distribution.
  • a central convex distribution Si film can be formed on a bare wafer with a small surface area where no uneven structure is formed on the surface, on a pattern wafer with a large surface area where a fine uneven structure is formed on the surface, It is possible to form a flat distribution Si film.

Abstract

A film is formed on a substrate by performing (a) a step of supplying, from a first supply section, raw materials including a main element constituting the film to a substrate, and exhausting the raw materials via an exhaust section, and (b) a step of supplying, from a pair of second supply sections disposed adjacent to the first supply section so as to sandwich a straight line passing through the first supply section and the exhaust section, a reactant not containing the main element to the substrate, and exhausting the reactant via the exhaust section. The steps are performed under a condition such that the raw materials, when present independently, are not thermally decomposed, and simultaneously for at least a certain period.

Description

半導体装置の製造方法、基板処理装置および記録媒体Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
 本発明は、半導体装置の製造方法、基板処理装置および記録媒体に関する。 The present invention relates to a semiconductor device manufacturing method, a substrate processing apparatus, and a recording medium.
 半導体装置の製造工程の一工程として、基板上に膜を形成する処理が行われることがある(例えば特許文献1参照)。 As a process of manufacturing a semiconductor device, a process of forming a film on a substrate may be performed (see, for example, Patent Document 1).
特開2014-99427号公報JP 2014-99427 A
 本発明の目的は、基板上に形成する膜の基板面内膜厚分布を制御することが可能な技術を提供することにある。 An object of the present invention is to provide a technique capable of controlling the in-plane film thickness distribution of a film formed on a substrate.
 本発明の一態様によれば、
 (a)第1供給部より、膜を構成する主元素を含む原料を、基板に対して供給し排気部より排気する工程と、
 (b)前記第1供給部と前記排気部とを通る直線を挟むように前記第1供給部に隣接して配置された一対の第2供給部より、前記主元素非含有の反応体を、前記基板に対して供給し前記排気部より排気する工程と、
 を前記原料が単独で存在した場合に前記原料が熱分解しない条件下で、少なくとも一定期間同時に行うことで、前記基板上に前記膜を形成する技術が提供される。
According to one aspect of the invention,
(A) supplying the raw material containing the main element constituting the film from the first supply unit to the substrate and exhausting it from the exhaust unit;
(B) From the pair of second supply parts disposed adjacent to the first supply part so as to sandwich a straight line passing through the first supply part and the exhaust part, the main element-free reactant is obtained. Supplying to the substrate and exhausting from the exhaust unit;
When the raw material is present alone, the technique for forming the film on the substrate is provided by simultaneously performing at least a certain period under the condition that the raw material is not thermally decomposed.
 本発明によれば、基板上に形成される膜の基板面内膜厚分布を制御することが可能となる。 According to the present invention, it is possible to control the in-plane film thickness distribution of the film formed on the substrate.
本発明の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。It is a schematic block diagram of the vertical processing furnace of the substrate processing apparatus used suitably by embodiment of this invention, and is a figure which shows a processing furnace part with a longitudinal cross-sectional view. 本発明の実施形態で好適に用いられる基板処理装置の縦型処理炉の一部の概略構成図であり、処理炉の一部を図1のA-A線断面図で示す図である。FIG. 2 is a schematic configuration diagram of a part of a vertical processing furnace of a substrate processing apparatus suitably used in an embodiment of the present invention, and is a diagram showing a part of the processing furnace as a cross-sectional view taken along line AA of FIG. 本発明の実施形態で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。It is a schematic block diagram of the controller of the substrate processing apparatus used suitably by embodiment of this invention, and is a figure which shows the control system of a controller with a block diagram. 本発明の一実施形態の成膜シーケンスを示す図である。It is a figure which shows the film-forming sequence of one Embodiment of this invention. (a)は、第1供給部より原料の供給を行う際に、一対の第2供給部のうちいずれか一方のみから反応体の供給を行う様子を示す模式図であり、(b)は、第1供給部より原料の供給を行う際に、一対の第2供給部の両方を用いて反応体の供給を行う様子を示す模式図である。(A) is a schematic diagram which shows a mode that a reactant is supplied only from either one of a pair of 2nd supply parts, when supplying a raw material from a 1st supply part, (b) It is a schematic diagram which shows a mode that a reactant is supplied using both of a pair of 2nd supply part when supplying a raw material from a 1st supply part. (a)は、基板上に形成した膜の基板面内膜厚分布の評価結果を示す図であり、(b)は、膜を形成する際の処理条件の一部を抜粋して示す図である。(A) is a figure which shows the evaluation result of the film thickness distribution in the substrate surface of the film | membrane formed on the board | substrate, (b) is a figure which extracts and shows a part of process conditions at the time of forming a film | membrane. is there. (a)、(b)は、それぞれ、縦型処理炉の変形例を示す横断面図であり、反応管、バッファ室およびノズル等を部分的に抜き出して示す図である。(A), (b) is a cross-sectional view which respectively shows the modification of a vertical processing furnace, and is a figure which extracts and shows a reaction tube, a buffer chamber, a nozzle, etc. partially.
<本発明の一実施形態>
 以下、本発明の一実施形態について図1~図4を参照しながら説明する。
<One Embodiment of the Present Invention>
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
(1)基板処理装置の構成
 図1に示すように、処理炉202は加熱手段(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板に支持されることにより垂直に据え付けられている。ヒータ207は、ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
(1) Configuration of Substrate Processing Apparatus As shown in FIG. 1, the processing furnace 202 has a heater 207 as heating means (heating mechanism). The heater 207 has a cylindrical shape and is vertically installed by being supported by a holding plate. The heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) gas with heat.
 ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド209が配設されている。マニホールド209は、例えばステンレス(SUS)等の金属材料により構成され、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。反応管203はヒータ207と同様に垂直に据え付けられている。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成される。処理容器の筒中空部には処理室201が形成される。処理室201は、基板としてのウエハ200を収容可能に構成されている。 A reaction tube 203 is disposed inside the heater 207 concentrically with the heater 207. The reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end opened. A manifold 209 is disposed below the reaction tube 203 concentrically with the reaction tube 203. The manifold 209 is made of a metal material such as stainless steel (SUS), for example, and has a cylindrical shape with an upper end and a lower end opened. The upper end portion of the manifold 209 is engaged with the lower end portion of the reaction tube 203 and is configured to support the reaction tube 203. An O-ring 220a as a seal member is provided between the manifold 209 and the reaction tube 203. The reaction tube 203 is installed vertically like the heater 207. The reaction vessel 203 and the manifold 209 mainly constitute a processing vessel (reaction vessel). A processing chamber 201 is formed in the hollow cylindrical portion of the processing container. The processing chamber 201 is configured to accommodate a wafer 200 as a substrate.
 処理室201内には、第1供給部としてのノズル249a、および、一対の第2供給部としてのノズル249b,249cが、マニホールド209の側壁を貫通するように設けられている。ノズル249a~249cには、ガス供給管232a~232cが、それぞれ接続されている。 In the processing chamber 201, a nozzle 249 a as a first supply unit and nozzles 249 b and 249 c as a pair of second supply units are provided so as to penetrate the side wall of the manifold 209. Gas supply pipes 232a to 232c are connected to the nozzles 249a to 249c, respectively.
 ガス供給管232a~232cには、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a~241cおよび開閉弁であるバルブ243a~243cがそれぞれ設けられている。ガス供給管232a~232cのバルブ243a~243cよりも下流側には、不活性ガスを供給するガス供給管232d~232fがそれぞれ接続されている。ガス供給管232d~232fには、ガス流の上流側から順に、MFC241d~241fおよびバルブ243d~243fがそれぞれ設けられている。 The gas supply pipes 232a to 232c are provided with mass flow controllers (MFC) 241a to 241c, which are flow rate controllers (flow rate control units), and valves 243a to 243c, which are on-off valves, in order from the upstream side of the gas flow. . Gas supply pipes 232d to 232f for supplying an inert gas are connected to the gas supply pipes 232a to 232c on the downstream side of the valves 243a to 243c, respectively. The gas supply pipes 232d to 232f are respectively provided with MFCs 241d to 241f and valves 243d to 243f in order from the upstream side of the gas flow.
 ノズル249a~249cは、図2に示すように、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の配列方向上方に向かって立ち上がるようにそれぞれ設けられている。すなわち、ノズル249a~249cは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにそれぞれ設けられている。ノズル249aは、平面視において、処理室201内に搬入されるウエハ200の中心を挟んで、後述する排気部231aと一直線(直線201b)上に対向するように配置されている。正確には、ノズル249aと排気部231aは、それぞれの中心が、ウエハ200の中心を挟んで対向するように、また、それぞれの中心が、ウエハ200の中心を通る直線201b上に位置するように配置されている。ノズル249b,249cは、ノズル249aと排気部231aとを通る直線201bを挟むように、ノズル249aに隣接して配置されている。言い換えれば、ノズル249b,249cは、ノズル249aを挟んでその両側に、すなわち、反応管203の内壁(ウエハ200の外周)に沿ってノズル249aを両側から挟み込むように配置されている。ノズル249a~249cの側面には、ガスを供給するガス供給孔250a~250cがそれぞれ設けられている。ガス供給孔250a~250cは、それぞれが、平面視において、排気部231aと対向するように開口しており、ウエハ200に向けてガスを供給することが可能となっている。なお、ガス供給孔250a~250cは、それぞれが、ウエハ200の中心を向くように開口していてもよい。いずれにしても、ガス供給孔250aの中心は、平面視において、ウエハ200の中心および排気部231aの中心を通る直線201b上に位置することとなる。ガス供給孔250a~250cは、反応管203の下部から上部にわたって複数設けられている。 As shown in FIG. 2, the nozzles 249a to 249c are arranged in an annular space in a plan view between the inner wall of the reaction tube 203 and the wafer 200, along the upper part from the lower part of the inner wall of the reaction tube 203. Each is provided so as to rise upward in the arrangement direction. That is, the nozzles 249a to 249c are provided along the wafer arrangement area in the area horizontally surrounding the wafer arrangement area on the side of the wafer arrangement area where the wafers 200 are arranged. The nozzle 249a is arranged so as to face an exhaust portion 231a (described later) on a straight line (straight line 201b) across the center of the wafer 200 carried into the processing chamber 201 in plan view. Precisely, the center of the nozzle 249a and the exhaust part 231a are opposed to each other across the center of the wafer 200, and the respective centers are positioned on a straight line 201b passing through the center of the wafer 200. Has been placed. The nozzles 249b and 249c are disposed adjacent to the nozzle 249a so as to sandwich a straight line 201b passing through the nozzle 249a and the exhaust part 231a. In other words, the nozzles 249b and 249c are disposed on both sides of the nozzle 249a, that is, along the inner wall of the reaction tube 203 (the outer periphery of the wafer 200) so as to sandwich the nozzle 249a from both sides. Gas supply holes 250a to 250c for supplying gas are provided on the side surfaces of the nozzles 249a to 249c, respectively. Each of the gas supply holes 250a to 250c is opened so as to face the exhaust part 231a in plan view, and can supply gas toward the wafer 200. The gas supply holes 250 a to 250 c may be opened so as to face the center of the wafer 200. In any case, the center of the gas supply hole 250a is located on a straight line 201b passing through the center of the wafer 200 and the center of the exhaust part 231a in plan view. A plurality of gas supply holes 250 a to 250 c are provided from the lower part to the upper part of the reaction tube 203.
 ガス供給管232aからは、原料(原料ガス)として、形成しようとする膜を構成する主元素としてのシリコン(Si)を含む水素化ケイ素ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。原料ガスとは、気体状態の原料、例えば、常温常圧下で液体状態である原料を気化することで得られるガスや、常温常圧下で気体状態である原料等のことである。水素化ケイ素とは、Siと水素(H)との化学結合(Si-H結合)を含み、炭素(C)および窒素(N)非含有のシラン原料である。水素化ケイ素は、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)等のハロゲン元素非含有のシラン原料でもある。水素化ケイ素ガスとしては、例えば、ジシラン(Si、略称:DS)ガスを用いることができる。 From the gas supply pipe 232a, a silicon hydride gas containing silicon (Si) as a main element constituting a film to be formed is supplied from the gas supply pipe 232a through the MFC 241a, the valve 243a, and the nozzle 249a. Supplied into 201. The raw material gas is a gaseous raw material, for example, a gas obtained by vaporizing a raw material that is in a liquid state under normal temperature and normal pressure, or a raw material that is in a gaseous state under normal temperature and normal pressure. Silicon hydride is a silane raw material containing a chemical bond (Si—H bond) between Si and hydrogen (H) and containing no carbon (C) and nitrogen (N). Silicon hydride is also a silane raw material containing no halogen element such as chlorine (Cl), fluorine (F), bromine (Br), iodine (I) and the like. As the silicon hydride gas, for example, disilane (Si 2 H 6 , abbreviation: DS) gas can be used.
 ガス供給管232bからは、反応体(反応ガス)として、Si非含有のアルキルボラン系ガスが、MFC241b,241c、バルブ243b,243c、ノズル249b,249cを介して処理室201内へ供給される。アルキルボランとは、ボロン(B)を含み、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基等のアルキル基を含み、ハロゲン元素非含有のガスである。アルキルボラン系ガスとしては、例えば、トリエチルボラン((CHCHB、略称:TEB)ガスを用いることができる。 From the gas supply pipe 232b, Si-free alkylborane gas is supplied as a reactant (reaction gas) into the processing chamber 201 through the MFCs 241b and 241c, valves 243b and 243c, and nozzles 249b and 249c. Alkylborane is a halogen-free gas containing boron (B), containing an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group. As the alkylborane-based gas, for example, triethylborane ((CH 3 CH 2 ) 3 B, abbreviation: TEB) gas can be used.
 なお、DSガスはオクテット則を満たすガスであり、TEBガスはオクテット則を満たさないガスである。オクテット則とは、原子の最外殻電子の数が8個あると化合物やイオンが安定に存在するという経験則、すなわち、閉殻構造を有することにより化合物やイオンの反応性が安定するという経験則のことである。 The DS gas is a gas that satisfies the octet rule, and the TEB gas is a gas that does not satisfy the octet rule. The octet rule is an empirical rule that a compound or ion exists stably when the number of outermost electrons of an atom is 8, that is, an empirical rule that the reactivity of a compound or ion is stabilized by having a closed shell structure. That is.
 オクテット則を満たすDSガスは、安定であることから、処理室201内へ供給された際に、ウエハ200の表面への吸着力が弱くなる傾向、すなわち、ウエハ200の表面へ吸着しにくい傾向がある。また、DSガスの熱分解温度は、TEBガスの熱分解温度よりも高いことから、DSガスはTEBガスよりも熱分解しにくい傾向がある。また、オクテット則を満たさないTEBガスは、オクテット則を満たすように反応する力が強く、不安定であることから、処理室201内へ供給された際に、ウエハ200の表面への吸着力が強くなる傾向、すなわち、ウエハ200の表面へ吸着しやすい傾向がある。また、TEBガスの熱分解温度は、DSガスの熱分解温度よりも低いことから、TEBガスはDSガスよりも熱分解しやすい傾向がある。 Since DS gas satisfying the octet rule is stable, when supplied into the processing chamber 201, the adsorption force on the surface of the wafer 200 tends to be weak, that is, the DS gas tends not to be adsorbed on the surface of the wafer 200. is there. Further, since the pyrolysis temperature of the DS gas is higher than the pyrolysis temperature of the TEB gas, the DS gas tends to be harder to decompose than the TEB gas. Further, since the TEB gas that does not satisfy the octet law has a strong reaction force to satisfy the octet law and is unstable, when it is supplied into the processing chamber 201, the adsorption force to the surface of the wafer 200 is increased. There is a tendency to become stronger, that is, to be easily adsorbed to the surface of the wafer 200. Moreover, since the thermal decomposition temperature of TEB gas is lower than the thermal decomposition temperature of DS gas, TEB gas tends to be more thermally decomposed than DS gas.
 ガス供給管232d~232fからは、不活性ガスとして、例えば、窒素(N)ガスが、それぞれMFC241d~241f、バルブ243d~243f、ガス供給管232a~232c、ノズル249a~249cを介して処理室201内へ供給される。Nガスは、パージガス、キャリアガスとして作用し、さらに、ウエハ200上に形成される膜の面内膜厚分布を制御する膜厚分布制御ガスとして作用する。 From the gas supply pipes 232d to 232f, for example, nitrogen (N 2 ) gas as an inert gas passes through the MFCs 241d to 241f, valves 243d to 243f, gas supply pipes 232a to 232c, and nozzles 249a to 249c, respectively. Supplied into 201. The N 2 gas acts as a purge gas and a carrier gas, and further acts as a film thickness distribution control gas for controlling the in-plane film thickness distribution of the film formed on the wafer 200.
 主に、ガス供給管232a、MFC241a、バルブ243aにより、原料供給系が構成される。また、主に、ガス供給管232b,232c、MFC241b,241c、バルブ243b,243cにより、反応体供給系が構成される。また、主に、ガス供給管232d~232f、MFC241d~241f、バルブ243d~243fにより、不活性ガス供給系が構成される。 Mainly, the raw material supply system is configured by the gas supply pipe 232a, the MFC 241a, and the valve 243a. In addition, a reactant supply system is mainly configured by the gas supply pipes 232b and 232c, the MFCs 241b and 241c, and the valves 243b and 243c. Further, an inert gas supply system is mainly configured by the gas supply pipes 232d to 232f, the MFCs 241d to 241f, and the valves 243d to 243f.
 上述の各種供給系のうち、いずれか、或いは、全ての供給系は、バルブ243a~243fやMFC241a~241f等が集積されてなる集積型供給システム248として構成されていてもよい。集積型供給システム248は、ガス供給管232a~232fのそれぞれに対して接続され、ガス供給管232a~232f内への各種ガスの供給動作、すなわち、バルブ243a~243fの開閉動作やMFC241a~241fによる流量調整動作等が、後述するコントローラ121によって制御されるように構成されている。集積型供給システム248は、一体型、或いは、分割型の集積ユニットとして構成されており、ガス供給管232a~232f等に対して集積ユニット単位で着脱を行うことができ、集積型供給システム248のメンテナンス、交換、増設等を、集積ユニット単位で行うことが可能なように構成されている。 Any or all of the various supply systems described above may be configured as an integrated supply system 248 in which valves 243a to 243f, MFCs 241a to 241f, and the like are integrated. The integrated supply system 248 is connected to each of the gas supply pipes 232a to 232f, and supplies various gases into the gas supply pipes 232a to 232f, that is, opens and closes the valves 243a to 243f and MFCs 241a to 241f. The flow rate adjusting operation and the like are configured to be controlled by a controller 121 described later. The integrated supply system 248 is configured as an integrated or divided type integrated unit, and can be attached to and detached from the gas supply pipes 232a to 232f in units of integrated units. Maintenance, replacement, expansion, etc. can be performed in units of integrated units.
 反応管203には、処理室201内の雰囲気を排気する排気部(排気口)231aが設けられている。図2に示すように、排気部231aは、平面視において、ウエハ200を挟んでノズル249a~249c(ガス供給孔250a~250c)と対向(対面)する位置に設けられている。排気部231aには排気管231が接続されている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されている。主に、排気部231a、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。 The reaction tube 203 is provided with an exhaust part (exhaust port) 231a for exhausting the atmosphere in the processing chamber 201. As shown in FIG. 2, the exhaust unit 231a is provided at a position facing (facing) the nozzles 249a to 249c (gas supply holes 250a to 250c) across the wafer 200 in plan view. An exhaust pipe 231 is connected to the exhaust part 231a. The exhaust pipe 231 is connected to a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure adjustment unit). A vacuum pump 246 as a vacuum exhaust device is connected. The APC valve 244 can perform vacuum evacuation and vacuum evacuation stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 activated, and further, with the vacuum pump 246 activated, The pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245. An exhaust system is mainly configured by the exhaust part 231a, the exhaust pipe 231, the APC valve 244, and the pressure sensor 245. The vacuum pump 246 may be included in the exhaust system.
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、例えばSUS等の金属材料により構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の下方には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ウエハ200を処理室201内外に搬入および搬出(搬送)する搬送装置(搬送機構)として構成されている。また、マニホールド209の下方には、シールキャップ219を降下させボート217を処理室201内から搬出した状態で、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ219sが設けられている。シャッタ219sは、例えばSUS等の金属材料により構成され、円盤状に形成されている。シャッタ219sの上面には、マニホールド209の下端と当接するシール部材としてのOリング220cが設けられている。シャッタ219sの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構115sにより制御される。 Below the manifold 209, a seal cap 219 is provided as a furnace opening lid capable of airtightly closing the lower end opening of the manifold 209. The seal cap 219 is made of a metal material such as SUS and is formed in a disk shape. On the upper surface of the seal cap 219, an O-ring 220b is provided as a seal member that comes into contact with the lower end of the manifold 209. Below the seal cap 219, a rotation mechanism 267 for rotating a boat 217 described later is installed. A rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217. The rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217. The seal cap 219 is configured to be raised and lowered in the vertical direction by a boat elevator 115 as an elevating mechanism installed outside the reaction tube 203. The boat elevator 115 is configured as a transfer device (transfer mechanism) that carries the wafer 200 in and out of the processing chamber 201 by moving the seal cap 219 up and down. Below the manifold 209, a shutter 219s is provided as a furnace opening lid capable of airtightly closing the lower end opening of the manifold 209 with the seal cap 219 lowered and the boat 217 carried out of the processing chamber 201. Yes. The shutter 219s is made of a metal material such as SUS, and is formed in a disk shape. On the upper surface of the shutter 219s, an O-ring 220c as a seal member that comes into contact with the lower end of the manifold 209 is provided. The opening / closing operation (elevating operation, rotating operation, etc.) of the shutter 219s is controlled by the shutter opening / closing mechanism 115s.
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料により構成される断熱板218が多段に支持されている。 The boat 217 as a substrate support is configured to support a plurality of, for example, 25 to 200, wafers 200 in a multi-stage manner by aligning them vertically in a horizontal posture and with their centers aligned. It is configured to arrange at intervals. The boat 217 is made of a heat-resistant material such as quartz or SiC. Under the boat 217, heat insulating plates 218 made of a heat resistant material such as quartz or SiC are supported in multiple stages.
 反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、反応管203の内壁に沿って設けられている。 In the reaction tube 203, a temperature sensor 263 is installed as a temperature detector. By adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution. The temperature sensor 263 is provided along the inner wall of the reaction tube 203.
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。 As shown in FIG. 3, the controller 121, which is a control unit (control means), is configured as a computer having a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d. Has been. The RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e. For example, an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理における各手順をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 121c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like. In the storage device 121c, a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner. The process recipe is a combination of processes so that a predetermined result can be obtained by causing the controller 121 to execute each procedure in substrate processing to be described later, and functions as a program. Hereinafter, process recipes, control programs, and the like are collectively referred to simply as programs. The process recipe is also simply called a recipe. When the term “program” is used in this specification, it may include only a recipe, only a control program, or both. The RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
 I/Oポート121dは、上述のMFC241a~241f、バルブ243a~243f、圧力センサ245、APCバルブ244、真空ポンプ246、温度センサ263、ヒータ207、回転機構267、ボートエレベータ115、シャッタ開閉機構115s等に接続されている。 The I / O port 121d includes the above-described MFCs 241a to 241f, valves 243a to 243f, pressure sensor 245, APC valve 244, vacuum pump 246, temperature sensor 263, heater 207, rotation mechanism 267, boat elevator 115, shutter opening / closing mechanism 115s, etc. It is connected to the.
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC241a~241fによる各種ガスの流量調整動作、バルブ243a~243fの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、シャッタ開閉機構115sによるシャッタ219sの開閉動作等を制御するように構成されている。 The CPU 121a is configured to read out and execute a control program from the storage device 121c and to read a recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like. The CPU 121a adjusts the flow rate of various gases by the MFCs 241a to 241f, the opening / closing operation of the valves 243a to 243f, the opening / closing operation of the APC valve 244, and the pressure adjustment by the APC valve 244 based on the pressure sensor 245 so as to follow the contents of the read recipe. Operation, start and stop of the vacuum pump 246, temperature adjustment operation of the heater 207 based on the temperature sensor 263, rotation and rotation speed adjustment operation of the boat 217 by the rotation mechanism 267, raising / lowering operation of the boat 217 by the boat elevator 115, shutter opening / closing mechanism 115s Is configured to control the opening / closing operation and the like of the shutter 219s.
 コントローラ121は、外部記憶装置(例えば、ハードディスク等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。 The controller 121 installs the above-described program stored in an external storage device (for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory) 123 in a computer. Can be configured. The storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them. The program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
(2)成膜処理
 上述の基板処理装置を用い、半導体装置の製造工程の一工程として、基板としてのウエハ200上に膜を形成するシーケンス例について、図4を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
(2) Film Forming Process A sequence example in which a film is formed on a wafer 200 as a substrate as one step of a semiconductor device manufacturing process using the substrate processing apparatus described above will be described with reference to FIG. In the following description, the operation of each part constituting the substrate processing apparatus is controlled by the controller 121.
 図4に示す成膜シーケンスは、
 ノズル249aより、DSガスを、ウエハ200に対して供給し排気部231aより排気するステップAと、
 ノズル249b,249cより、TEBガスを、ウエハ200に対して供給し排気部231aより排気するステップBと、
 をDSガスが単独で存在した場合にDSガスが熱分解しない条件下で、少なくとも一定期間同時に行うことで、ウエハ200上に、Siを含む膜(Si膜)を形成する。なお、このとき形成されるSi膜中には、BやCが添加される場合がある。B,Cが添加されたSi膜、すなわち、Si,B,およびCを含む膜を、SiBC膜と称することもできる。SiBC膜もSiを主元素として含む膜である。ただし、本明細書では、BやCが添加されたSi膜のことを、便宜上、単にSi膜と称する場合がある。
The film forming sequence shown in FIG.
Step A in which DS gas is supplied from the nozzle 249a to the wafer 200 and exhausted from the exhaust unit 231a;
Step B in which TEB gas is supplied to the wafer 200 from the nozzles 249b and 249c and exhausted from the exhaust unit 231a;
When a DS gas is present alone, a film containing Si (Si film) is formed on the wafer 200 by simultaneously performing at least a certain period of time under the condition that the DS gas is not thermally decomposed. Note that B or C may be added to the Si film formed at this time. A Si film to which B and C are added, that is, a film containing Si, B, and C can also be referred to as a SiBC film. The SiBC film is also a film containing Si as a main element. However, in this specification, a Si film to which B or C is added may be simply referred to as a Si film for convenience.
 本明細書では、図4に示す成膜シーケンスを、便宜上、以下のように示すこともある。 In this specification, the film forming sequence shown in FIG. 4 may be shown as follows for convenience.
 DS+TEB ⇒ Si DS + TEB ⇒ Si
 本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。 When the term “wafer” is used in this specification, it may mean the wafer itself or a laminate of the wafer and a predetermined layer or film formed on the surface thereof. When the term “wafer surface” is used in this specification, it may mean the surface of the wafer itself, or may mean the surface of a predetermined layer or the like formed on the wafer. In this specification, the phrase “form a predetermined layer on the wafer” means that the predetermined layer is directly formed on the surface of the wafer itself, a layer formed on the wafer, etc. It may mean that a predetermined layer is formed on the substrate. In this specification, the term “substrate” is also synonymous with the term “wafer”.
(ウエハチャージおよびボートロード)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、シャッタ開閉機構115sによりシャッタ219sが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。
(Wafer charge and boat load)
When a plurality of wafers 200 are loaded into the boat 217 (wafer charge), the shutter 219s is moved by the shutter opening / closing mechanism 115s, and the lower end opening of the manifold 209 is opened (shutter open). Thereafter, as shown in FIG. 1, the boat 217 that supports the plurality of wafers 200 is lifted by the boat elevator 115 and loaded into the processing chamber 201 (boat loading). In this state, the seal cap 219 seals the lower end of the manifold 209 via the O-ring 220b.
(圧力調整および温度調整)
 処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって処理室201内が真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。また、処理室201内のウエハ200が所望の温度となるように、ヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。また、回転機構267によるウエハ200の回転を開始する。処理室201内の排気、ウエハ200の加熱および回転は、いずれも、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。
(Pressure adjustment and temperature adjustment)
The inside of the processing chamber 201 is evacuated (reduced pressure) by the vacuum pump 246 so that the space in which the wafer 200 exists is at a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information. Further, the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to reach a desired temperature. At this time, the power supply to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution. Further, the rotation of the wafer 200 by the rotation mechanism 267 is started. The exhaust in the processing chamber 201 and the heating and rotation of the wafer 200 are all continuously performed at least until the processing on the wafer 200 is completed.
(成膜ステップ)
 その後、上述のステップA,Bを同時に行う。すなわち、処理室201内のウエハに対し、DSガスとTEBガスとを同時に供給し、排気部231aより排気する。
(Deposition step)
Thereafter, the above steps A and B are performed simultaneously. That is, DS gas and TEB gas are simultaneously supplied to the wafer in the processing chamber 201 and exhausted from the exhaust unit 231a.
 具体的には、バルブ243a~243cを開き、ガス供給管232a内へDSガスを、ガス供給管232b,232c内へTEBガスをそれぞれ流す。DSガスおよびTEBガスは、MFC241a~241cによりそれぞれ流量調整され、ノズル249a~249cを介して処理室201内へ供給されて処理室201内で混合され、排気部231aより排気される。このとき、ウエハ200に対してDSガスとTEBガスとが一緒に、すなわち、同時に供給される。このときバルブ243d~243fを開き、ガス供給管232d~232f内へNガスを流す。Nガスは、DSガス、TEBガスと一緒に処理室201内へ供給され、排気部231aより排気される。 Specifically, the valves 243a to 243c are opened, and DS gas is allowed to flow into the gas supply pipe 232a, and TEB gas is allowed to flow into the gas supply pipes 232b and 232c. The DS gas and the TEB gas are adjusted in flow rates by the MFCs 241a to 241c, supplied into the processing chamber 201 through the nozzles 249a to 249c, mixed in the processing chamber 201, and exhausted from the exhaust unit 231a. At this time, the DS gas and the TEB gas are supplied to the wafer 200 together, that is, simultaneously. At this time, the valves 243d to 243f are opened, and N 2 gas is allowed to flow into the gas supply pipes 232d to 232f. The N 2 gas is supplied into the processing chamber 201 together with the DS gas and the TEB gas, and is exhausted from the exhaust unit 231a.
 本ステップの処理条件としては、
 DSガス供給流量:1~2000sccm
 TEBガス供給流量:1~1000sccm
 Nガス供給流量(各ガス供給管):100~10000sccm
 ガス供給時間:10~60分
 処理温度:200~400℃、好ましくは300~400℃
 処理圧力:1~1000Pa、好ましくは20~100Pa
 が例示される。
As processing conditions for this step,
DS gas supply flow rate: 1 to 2000 sccm
TEB gas supply flow rate: 1 ~ 1000sccm
N 2 gas supply flow rate (each gas supply pipe): 100 to 10000 sccm
Gas supply time: 10 to 60 minutes Processing temperature: 200 to 400 ° C, preferably 300 to 400 ° C
Processing pressure: 1 to 1000 Pa, preferably 20 to 100 Pa
Is exemplified.
 処理温度が200℃未満となったり、処理圧力が1Pa未満となったりすると、ウエハ200上への成膜反応が進行しにくくなり、実用的な成膜レートが得られなくなる場合がある。処理温度を200℃以上の温度としたり、処理圧力を1Pa以上の圧力としたりすることで、ウエハ200上への成膜反応を進行させ、実用的な成膜レートが得られるようになる。処理温度を300℃以上の温度としたり、処理圧力を20Pa以上の圧力としたりすることで、ウエハ200上への成膜反応を促進させ、成膜レートをより高めることが可能となる。 When the processing temperature is less than 200 ° C. or the processing pressure is less than 1 Pa, the film formation reaction on the wafer 200 is difficult to proceed, and a practical film formation rate may not be obtained. By setting the processing temperature to a temperature of 200 ° C. or higher, or the processing pressure to a pressure of 1 Pa or higher, the film forming reaction on the wafer 200 is advanced, and a practical film forming rate can be obtained. By setting the processing temperature to 300 ° C. or higher or the processing pressure to 20 Pa or higher, the film forming reaction on the wafer 200 can be promoted, and the film forming rate can be further increased.
 処理温度が400℃を超えたり、処理圧力が1000Paを超えたりすると、TEBガスをDSガスと一緒に(同時に)供給しなくてもDSガスが熱分解するようになり、TEBガスを供給する技術的意義が失われる場合がある。また、このような処理条件下においてDSガスとTEBガスとを一緒に供給する場合には、過剰な気相反応が生じることで膜厚均一性が悪化しやすくなり、その制御が困難となる場合がある。処理温度を400℃以下の温度としたり、処理圧力を1000Pa以下の圧力としたりすることで、DSガスを分解させる際にTEBガスの触媒的作用を有効に利用することが可能となり、DSガスと一緒にTEBガスを供給することの技術的意義が得られるようになる。また、DSガスとTEBガスとを一緒に供給する際に、適正な気相反応を生じさせることができ、膜厚均一性の悪化を抑制でき、その制御が可能となる。処理圧力を100Pa以下とすることで、この効果をより高めることが可能となる。 When the processing temperature exceeds 400 ° C. or the processing pressure exceeds 1000 Pa, the DS gas is thermally decomposed without supplying the TEB gas together with the DS gas (simultaneously), and the TEB gas is supplied. May lose its significance. Also, when DS gas and TEB gas are supplied together under such processing conditions, the film thickness uniformity is likely to deteriorate due to excessive gas phase reaction, making it difficult to control it. There is. By setting the processing temperature to 400 ° C. or lower or the processing pressure to 1000 Pa or lower, it becomes possible to effectively use the catalytic action of TEB gas when decomposing DS gas. The technical significance of supplying the TEB gas together can be obtained. Further, when supplying the DS gas and the TEB gas together, an appropriate gas phase reaction can be caused, deterioration of the film thickness uniformity can be suppressed, and the control thereof can be performed. This effect can be further enhanced by setting the processing pressure to 100 Pa or less.
 上述の条件下でウエハ200に対してDSガスとTEBガスとを一緒に(同時に)供給することにより、これらのガスを処理室201内で適正に混合させて反応させることが可能となる。そして、DSガスを分解させ、DSガスにおけるSi-H結合の少なくとも一部を切断することが可能となる。Hが引き抜かれることにより未結合手(ダングリングボンド)を有することとなったDSガスのSiは、ウエハ200上に速やかに吸着、堆積する。その結果、ウエハ200上へのSi膜の形成が、実用的なレートで進行する。なお、処理条件によっては、Si膜中に、TEBガスに含まれていたB成分やC成分を添加することも可能である。 By supplying the DS gas and the TEB gas together (simultaneously) to the wafer 200 under the above-described conditions, these gases can be appropriately mixed and reacted in the processing chamber 201. Then, it becomes possible to decompose the DS gas and cut at least part of the Si—H bonds in the DS gas. The DS gas Si that has dangling bonds due to the extraction of H is quickly adsorbed and deposited on the wafer 200. As a result, the formation of the Si film on the wafer 200 proceeds at a practical rate. Depending on the processing conditions, it is possible to add a B component or a C component contained in the TEB gas into the Si film.
 なお、DSガスの熱分解温度は、処理室201内の圧力条件等によって変動するが、上述した圧力条件下では400℃を超え、例えば440~460℃の範囲内の温度となる。すなわち、上述の処理温度は、DSガスの熱分解温度よりも低い温度であり、DSガスが処理室201内に単独で存在した場合にDSガスが熱分解しない温度である。また、上述の処理温度のうち200~325℃(200℃以上325℃以下)の範囲内の温度は、TEBガスの熱分解温度よりも低い温度であり、TEBガスが処理室201内に単独で存在した場合にTEBガスが熱分解しない温度である。 Note that the thermal decomposition temperature of the DS gas varies depending on the pressure conditions in the processing chamber 201, but exceeds 400 ° C. under the pressure conditions described above, for example, a temperature in the range of 440 to 460 ° C. That is, the above-described processing temperature is a temperature lower than the thermal decomposition temperature of the DS gas, and is a temperature at which the DS gas does not thermally decompose when the DS gas exists alone in the processing chamber 201. In addition, the temperature within the range of 200 to 325 ° C. (200 ° C. or more and 325 ° C. or less) among the above processing temperatures is a temperature lower than the thermal decomposition temperature of the TEB gas, and the TEB gas is alone in the processing chamber 201. The temperature at which the TEB gas does not thermally decompose when present.
 このような低温条件下であっても実用的なレートで成膜処理を進行させることが可能となるのは、TEBガスが有する触媒的作用のためと考えられる。TEBガスは、処理室201内へ供給されたDSガスの分解を促し、成膜処理を促進させるように作用する。TEBガスが触媒として作用するのは、TEB分子が有する極性によるものと考えられる。ここで極性とは、分子(或いは化学結合)内に存在する電気的な偏りを意味する。極性が存在する状態とは、例えば、分子内における一方の側における電荷の分布が正となり、他方の側の電荷の分布が負となる等、分子内における正負電荷の分布が不均等となっている状態、すなわち、分子内における正電荷の重心と負電荷の重心とが不一致となっている状態を意味する。反応体として、DSガスと同等もしくはそれよりも高い極性を有するTEBガスを用いることで、このガスを触媒として作用させ、実用的なレートで成膜処理を進行させることが可能となる。なお、本実施形態におけるTEBガスは、DSガスと反応することで分解し、それ自身が反応の前後で変化する。従って、本実施形態の反応系におけるTEBガスは、触媒的な作用をするが、厳密には触媒とは異なる擬似触媒として考えることができる。 It is considered that the film forming process can proceed at a practical rate even under such a low temperature condition because of the catalytic action of the TEB gas. The TEB gas acts to promote the decomposition of the DS gas supplied into the processing chamber 201 and promote the film forming process. It is considered that the TEB gas acts as a catalyst due to the polarity of the TEB molecule. Here, the polarity means an electric bias existing in a molecule (or chemical bond). The state where polarity exists means that the distribution of positive and negative charges in the molecule is uneven, for example, the charge distribution on one side in the molecule is positive and the charge distribution on the other side is negative. In other words, a state where the centroid of positive charge and the centroid of negative charge in the molecule are inconsistent. By using a TEB gas having a polarity equivalent to or higher than that of the DS gas as the reactant, it is possible to cause this gas to act as a catalyst and to proceed the film forming process at a practical rate. Note that the TEB gas in this embodiment is decomposed by reacting with the DS gas and changes itself before and after the reaction. Therefore, although the TEB gas in the reaction system of the present embodiment has a catalytic action, strictly speaking, it can be considered as a pseudo catalyst different from the catalyst.
 原料としては、DSガスの他、モノシラン(SiH、略称:MS)ガス、トリシラン(Si)ガス、テトラシラン(Si10)ガス等の一般式Si2n+2(nは1以上の整数)で表されるガス、すなわち、水素化ケイ素ガスを用いることができる。 As a raw material, general formula Si n H 2n + 2 (n is 1 or more) such as DS gas, monosilane (SiH 4 , abbreviation: MS) gas, trisilane (Si 3 H 8 ) gas, tetrasilane (Si 4 H 10 ) gas, etc. Or a silicon hydride gas can be used.
 また、原料としては、モノメチルシラン(SiHCH、略称:MMS)ガス、ジメチルシラン(SiH(CH、略称:DMS)ガス、モノエチルシラン(SiH、略称:MES)ガス、ビニルシラン(SiH、略称:VS)ガス、モノメチルジシラン(SiHSiHCH、略称:MMDS)ガス、ヘキサメチルジシラン((CH-Si-Si-(CH、略称:HMDS)ガス、1,4-ジシラブタン(SiHCHCHSiH、略称:1,4-DSB)ガス、1,3-ジシラブタン(SiHCHSiHCH、略称:1,3-DSB)ガス、1,3,5-トリシラペンタン(SiHCHSiHCHSiH、略称:1,3,5-TSP)ガス等のアルキルシラン系ガスを用いることもできる。この場合、ウエハ200上に形成されるSi膜中にCを添加することが可能となる。 As raw materials, monomethylsilane (SiH 3 CH 3 , abbreviation: MMS) gas, dimethylsilane (SiH 2 (CH 3 ) 2 , abbreviation: DMS) gas, monoethylsilane (SiH 3 C 2 H 5 , abbreviation: MES) gas, vinylsilane (SiH 3 C 2 H 3 , abbreviation: VS) gas, monomethyldisilane (SiH 3 SiH 2 CH 3 , abbreviation: MMDS) gas, hexamethyldisilane ((CH 3 ) 3 —Si—Si— ( CH 3 ) 3 , abbreviation: HMDS) gas, 1,4-disilabutane (SiH 3 CH 2 CH 2 SiH 3 , abbreviation: 1,4-DSB) gas, 1,3-disilabutane (SiH 3 CH 2 SiH 2 CH 3 , abbreviation: 1, 3-DSB) gas, 1,3,5-sila-pentane (SiH 3 CH 2 SiH 2 CH 2 SiH 3, abbreviation: 1 3, 5-TSP) can also be used alkyl silane gas such as a gas. In this case, C can be added to the Si film formed on the wafer 200.
 また、原料としては、ビスターシャリーブチルアミノシラン(SiH[NH(C)]、略称:BTBAS)ガス、トリスジメチルアミノシラン(SiH[N(CH、略称:3DMAS)ガス、トリシリルアミン((SiHN、略称:TSA)ガス等のアミノシラン系ガスを用いることができる。この場合、ウエハ200上に形成されるSi膜中にNを添加することが可能となる。 In addition, as raw materials, Bistally butylaminosilane (SiH 2 [NH (C 4 H 9 )] 2 , abbreviation: BTBAS) gas, trisdimethylaminosilane (SiH [N (CH 3 ) 2 ] 3 , abbreviation: 3DMAS) gas An aminosilane-based gas such as trisilylamine ((SiH 3 ) 3 N, abbreviation: TSA) gas can be used. In this case, N can be added to the Si film formed on the wafer 200.
 反応体としては、TEBガスの他、トリメチルボラン(B(CH、略称:TMB)ガス、トリプロピルボラン(B(C、略称:TPB)ガス、トリブチルボラン(B(C、略称:TBB)ガス等の一般式BR(Rはアルキル基)で表されるアルキルボラン系ガスを用いることができる。この場合、ウエハ200上に形成されるSi膜中にBやCを添加することが可能となる。 As the reactant, in addition to TEB gas, trimethylborane (B (CH 3 ) 3 , abbreviation: TMB) gas, tripropylborane (B (C 3 H 7 ) 3 , abbreviation: TPB) gas, tributylborane (B ( An alkylborane-based gas represented by a general formula BR 3 (R is an alkyl group) such as C 4 H 9 ) 3 , abbreviation: TBB) gas, can be used. In this case, B or C can be added to the Si film formed on the wafer 200.
 また、反応体としては、トリスジメチルアミノボラン(B(N(CH、略称:TDMAB)ガス、トリスジエチルアミノボラン(B(N(C、略称:TDEAB)ガス、トリスジプロピルアミノボラン(B(N(C、略称:TDPAB)ガス、トリスジブチルアミノボラン(B(N(C、略称:TDBAB)ガス等の一般式B(NRで表されるガス、すなわち、アミノボラン系ガスを用いることもできる。この場合、ウエハ200上に形成されるSi膜中にBやNやCを添加することが可能となる。B,N,Cが添加されたSi膜を、SiBCN膜と称することもできる。SiBCN膜もSiを主元素として含む膜である。 As reactants, trisdimethylaminoborane (B (N (CH 3 ) 2 ) 3 , abbreviation: TDMAB) gas, trisdiethylaminoborane (B (N (C 2 H 5 ) 2 ) 3 , abbreviation: TDAB) Gas, trisdipropylaminoborane (B (N (C 3 H 7 ) 2 ) 3 , abbreviation: TDPAB) gas, trisdibutylaminoborane (B (N (C 4 H 9 ) 2 ) 3 , abbreviation: TDAB) gas A gas represented by the general formula B (NR 2 ) 3 such as an aminoborane-based gas can also be used. In this case, B, N, or C can be added to the Si film formed on the wafer 200. The Si film to which B, N, and C are added can also be referred to as a SiBCN film. The SiBCN film is also a film containing Si as a main element.
 また、反応体としては、ホウ酸トリメチル(B(OCH、略称:TMOB)ガス、ホウ酸トリエチル(B(OC、略称:EOB)ガス、ホウ酸トリプロピル(B(OC、略称:TPOB)ガス、ホウ酸トリブチル(B(OC、略称:TBOB)ガス等の一般式B(OR)で表されるガス、すなわち、アルコキシボラン系ガスを用いることもできる。この場合、ウエハ200上に形成されるSi膜中にBやOやCを添加することが可能となる。B,O,Cが添加されたSi膜をSiBOC膜と称することもできる。SiBOC膜もSiを主元素として含む膜である。 As reactants, trimethyl borate (B (OCH 3 ) 3 , abbreviation: TMOB) gas, triethyl borate (B (OC 2 H 5 ) 3 , abbreviation: EOB) gas, tripropyl borate (B ( OC 3 H 7 ) 3 , abbreviation: TPOB) gas, tributyl borate (B (OC 4 H 9 ) 3 , abbreviation: TBOB) gas, etc., gas represented by the general formula B (OR) 3 , that is, alkoxyborane A system gas can also be used. In this case, B, O, or C can be added to the Si film formed on the wafer 200. A Si film to which B, O, and C are added can also be referred to as a SiBOC film. The SiBOC film is also a film containing Si as a main element.
 なお、これらの反応体は、いずれもBを含み、オクテット則を満たさないガスであり、上述した原料に対して触媒的に作用する。 These reactants all contain B and do not satisfy the octet rule, and act catalytically on the above-described raw materials.
 不活性ガスとしては、Nガスの他、例えば、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。 As the inert gas, for example, a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
(アフターパージ~大気圧復帰)
 ウエハ200上に所望膜厚のSi膜が形成された後、ノズル249a~249cのそれぞれからパージガスとしてのNガスを処理室201内へ供給し、排気部231aより排気する。これにより、処理室201内がパージされ、処理室201内に残留するガスや反応副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(After purge to return to atmospheric pressure)
After the Si film having a desired film thickness is formed on the wafer 200, N 2 gas as a purge gas is supplied into the processing chamber 201 from each of the nozzles 249a to 249c and exhausted from the exhaust unit 231a. As a result, the inside of the processing chamber 201 is purged, and the gas and reaction byproducts remaining in the processing chamber 201 are removed from the processing chamber 201 (after purge). Thereafter, the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
(ボートアンロード及びウエハディスチャージ)
 ボートエレベータ115によりシールキャップ219が下降され、マニホールド209の下端が開口される。そして、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される。ボートアンロードの後は、シャッタ219sが移動させられ、マニホールド209の下端開口がOリング220cを介してシャッタ219sによりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出される(ウエハディスチャージ)。
(Boat unload and wafer discharge)
The seal cap 219 is lowered by the boat elevator 115 and the lower end of the manifold 209 is opened. Then, the processed wafer 200 is unloaded from the lower end of the manifold 209 to the outside of the reaction tube 203 while being supported by the boat 217 (boat unloading). After the boat unloading, the shutter 219s is moved, and the lower end opening of the manifold 209 is sealed by the shutter 219s via the O-ring 220c (shutter close). The processed wafer 200 is taken out of the reaction tube 203 and then taken out from the boat 217 (wafer discharge).
(3)本実施形態による効果
 本実施形態によれば、以下に示す1つ又は複数の効果が得られる。
(3) Effects According to the Present Embodiment According to the present embodiment, one or more effects shown below can be obtained.
(a)成膜ステップでは、ノズル249aよりDSガスの供給を行い、直線201bを挟むようにノズル249aに隣接して設けられたノズル249b,249cよりTEBガスの供給を行うことで、ウエハ200上に形成されるSi膜のウエハ面内膜厚分布(以下、単に面内膜厚分布とも称する)を制御することが可能となる。 (A) In the film forming step, the DS gas is supplied from the nozzle 249a, and the TEB gas is supplied from the nozzles 249b and 249c provided adjacent to the nozzle 249a so as to sandwich the straight line 201b. It is possible to control the in-plane film thickness distribution (hereinafter also simply referred to as “in-plane film thickness distribution”) of the Si film formed on the substrate.
 図5(a)は、DSガスの供給をノズル249aより行い、TEBガスの供給をノズル249bより行い、ノズル249cからのTEBガスの供給を不実施とした場合の、ウエハ200の表面におけるガスの濃度分布を模式的に示す図である。各ガスの供給をこのように行った場合、ウエハ200の表面におけるガスの濃度分布が不均一となる(偏る)場合がある。例えば、図5(a)に示すように、ウエハ200の表面のうち一部の領域A(ノズル249aよりもノズル249cに近い側の領域)ではDSガスの濃度が局所的に高く(TEBガスの濃度が局所的に低く)なり、ウエハ200の表面のうち領域Aとは異なる領域B(ノズル249aよりもノズル249bに近い側の領域)ではTEBガスの濃度が局所的に高く(DSガスの濃度が局所的に低く)なる場合がある。結果として、ウエハ200上に形成されるSi膜の面内膜厚分布が、例えば、ウエハ200の周縁部で最も厚く、中央部に近づくにつれて徐々に薄くなる分布(以下、中央凹分布とも称する)となる場合がある。なお、発明者等は、ノズル249a,249bからのDSガス、TEBガスの供給を行う際、ノズル249cからのNガスの供給を同時に行うことにより、ウエハ200上に形成されるSi膜の面内膜厚分布の制御を試みた。しかしながら、ノズル249cからのNガスの供給を実施しても、また、その供給流量を変化させても、ウエハ200上に形成されるSi膜の面内膜厚分布を制御することは困難であることが分かった。すなわち、ウエハ200上に形成されるSi膜の膜厚分布を、中央から周縁にわたって膜厚変化の少ない平坦な膜厚分布(以下、フラット分布とも称する)としたり、ウエハ200の中央部で最も厚く、周縁部に近づくにつれて徐々に薄くなる分布(以下、中央凸分布とも称する)としたりすることは困難であることが分かった。 FIG. 5A shows a case where the DS gas is supplied from the nozzle 249a, the TEB gas is supplied from the nozzle 249b, and the TEB gas is not supplied from the nozzle 249c. It is a figure which shows density distribution typically. When each gas is supplied in this way, the gas concentration distribution on the surface of the wafer 200 may become nonuniform (biased). For example, as shown in FIG. 5A, the concentration of the DS gas is locally high (part of the TEB gas) in a partial region A (region closer to the nozzle 249c than the nozzle 249a) on the surface of the wafer 200. The concentration of the TEB gas is locally high (the concentration of the DS gas) in the region B (region closer to the nozzle 249b than the nozzle 249a) on the surface of the wafer 200, which is different from the region A. May be locally low). As a result, the in-plane film thickness distribution of the Si film formed on the wafer 200 is, for example, the thickest at the peripheral portion of the wafer 200 and gradually decreasing as it approaches the central portion (hereinafter also referred to as a central concave distribution). It may become. In addition, when the inventors supply the DS gas and the TEB gas from the nozzles 249a and 249b, the surface of the Si film formed on the wafer 200 is supplied by simultaneously supplying the N 2 gas from the nozzle 249c. We tried to control the inner film thickness distribution. However, it is difficult to control the in-plane film thickness distribution of the Si film formed on the wafer 200 even if the N 2 gas is supplied from the nozzle 249c or the supply flow rate is changed. I found out. That is, the film thickness distribution of the Si film formed on the wafer 200 is a flat film thickness distribution (hereinafter also referred to as flat distribution) with little film thickness change from the center to the periphery, or the thickest at the center of the wafer 200. It has been found that it is difficult to obtain a distribution that is gradually thinner as it approaches the periphery (hereinafter also referred to as a central convex distribution).
 図5(b)は、DSガスの供給をノズル249aより行い、TEBガスの供給をノズル249b,249cの両方より行った場合の、ウエハ200の表面におけるガスの濃度分布を模式的に示す図である。各ガスの供給をこのように行った場合、処理室201内におけるDSガスとTEBガスとの混合を促すことができ、ウエハ200の表面におけるガスの濃度分布を均一化させることが可能となる。例えば、図5(b)に示すように、ウエハ200の表面の略全域にわたって、DSガスの濃度が局所的に高くなる領域Aの発生や、TEBガスの濃度が局所的に高くなる領域Bの発生をそれぞれ防止することができ、結果として、ウエハ200の表面の略全域を、DSガスとTEBガスとが略均一に混合した領域Cによって覆うことが可能となる。結果として、ウエハ200上に形成されるSi膜の面内膜厚分布を制御することが可能となる。例えば、ウエハ200上に形成されるSi膜の面内膜厚分布の中央凹分布の度合を弱めることが可能となる。また例えば、ウエハ200上に形成されるSi膜の面内膜厚分布を、中央凹分布からフラット分布へと変化させたり、さらには中央凸分布へと変化させたりすることが可能となる。 FIG. 5B schematically shows the gas concentration distribution on the surface of the wafer 200 when the DS gas is supplied from the nozzle 249a and the TEB gas is supplied from both the nozzles 249b and 249c. is there. When each gas is supplied in this manner, mixing of the DS gas and the TEB gas in the processing chamber 201 can be promoted, and the gas concentration distribution on the surface of the wafer 200 can be made uniform. For example, as shown in FIG. 5B, the generation of a region A in which the concentration of DS gas is locally increased over almost the entire surface of the wafer 200, or the region B in which the concentration of TEB gas is locally increased. Each generation can be prevented, and as a result, substantially the entire surface of the wafer 200 can be covered with the region C in which the DS gas and the TEB gas are substantially uniformly mixed. As a result, the in-plane film thickness distribution of the Si film formed on the wafer 200 can be controlled. For example, the degree of central concave distribution of the in-plane film thickness distribution of the Si film formed on the wafer 200 can be weakened. Further, for example, the in-plane film thickness distribution of the Si film formed on the wafer 200 can be changed from the central concave distribution to the flat distribution, or further changed to the central convex distribution.
(b)ステップBでは、ノズル249b,249cより、TEBガスと一緒にNガスを供給することで、ウエハ200上に形成されるSi膜の面内膜厚分布を制御することが可能となる。 (B) In Step B, the in-plane film thickness distribution of the Si film formed on the wafer 200 can be controlled by supplying N 2 gas together with the TEB gas from the nozzles 249b and 249c. .
 例えば、ステップBでは、ノズル249b,249cよりTEBガスとNガスとを一緒に供給し、この際、ノズル249b,249cより供給するNガスの流量をノズル249b,249cより供給するTEBガスの流量よりもそれぞれ大きくすることで、ウエハ200上に形成されるSi膜の面内膜厚分布の中央凹分布の度合を弱めることが可能となる。このような、NガスとTEBガスの流量バランスの制御は、ノズル249b,249cより供給するNガスの流量を調整することで実現するようにしてもよいし、ノズル249b,249cより供給するTEBガスの流量を調整することで実現するようにしてもよいし、ノズル249b,249cより供給するNガスおよびTEBガスの両方の流量を調整することで実現するようにしてもよい。 For example, in Step B, TEB gas and N 2 gas are supplied together from the nozzles 249b and 249c, and at this time, the flow rate of the N 2 gas supplied from the nozzles 249b and 249c is changed to the TEB gas supplied from the nozzles 249b and 249c. By making each larger than the flow rate, it becomes possible to weaken the degree of the central concave distribution of the in-plane film thickness distribution of the Si film formed on the wafer 200. Such a control of the flow rate balance between the N 2 gas and the TEB gas may be realized by adjusting the flow rate of the N 2 gas supplied from the nozzles 249b and 249c, or may be supplied from the nozzles 249b and 249c. This may be realized by adjusting the flow rate of the TEB gas, or may be realized by adjusting the flow rates of both the N 2 gas and the TEB gas supplied from the nozzles 249b and 249c.
 このように、ステップBでは、ノズル249b,249cより供給するNガスの供給流量およびTEBガスの供給流量のうち少なくともいずれかを調整することにより、ウエハ200上に形成されるSi膜の面内膜厚分布を制御することが可能となる。 As described above, in Step B, by adjusting at least one of the supply flow rate of N 2 gas and the supply flow rate of TEB gas supplied from the nozzles 249b and 249c, the in-plane of the Si film formed on the wafer 200 is adjusted. It is possible to control the film thickness distribution.
(c)ステップAでは、ノズル249aより、DSガスと一緒にNガスを供給することで、ウエハ200上に形成されるSi膜の面内膜厚分布を制御することが可能となる。 (C) In step A, the in-plane film thickness distribution of the Si film formed on the wafer 200 can be controlled by supplying N 2 gas together with the DS gas from the nozzle 249a.
 例えば、ステップAでは、ノズル249aよりDSガスとNガスとを一緒に供給し、この際、ノズル249aより供給するNガスの流量をノズル249aより供給するDSガスの流量よりも大きくすることで、ウエハ200上に形成されるSi膜の外周における膜厚を低減させることが可能となる。また例えば、ステップAでは、ノズル249aよりDSガスとNガスとを一緒に供給し、この際、ノズル249aより供給するDSガスの流量をノズル249aより供給するNガスの流量よりも大きくすることで、ウエハ200上に形成されるSi膜の外周における膜厚を増加させることが可能となる。このような、NガスとDSガスの流量バランスの制御は、ノズル249aより供給するNガスの流量を調整することで実現するようにしてもよいし、ノズル249aより供給するDSガスの流量を調整することで実現するようにしてもよいし、ノズル249aより供給するNガスおよびDSガスの両方の流量を調整することで実現するようにしてもよい。 For example, in step A, DS gas and N 2 gas are supplied together from the nozzle 249a, and at this time, the flow rate of N 2 gas supplied from the nozzle 249a is made larger than the flow rate of DS gas supplied from the nozzle 249a. Thus, the film thickness on the outer periphery of the Si film formed on the wafer 200 can be reduced. Further, for example, in step A, DS gas and N 2 gas are supplied together from the nozzle 249a, and at this time, the flow rate of the DS gas supplied from the nozzle 249a is made larger than the flow rate of the N 2 gas supplied from the nozzle 249a. As a result, it is possible to increase the film thickness on the outer periphery of the Si film formed on the wafer 200. Such control of the flow rate balance between the N 2 gas and the DS gas may be realized by adjusting the flow rate of the N 2 gas supplied from the nozzle 249a, or the flow rate of the DS gas supplied from the nozzle 249a. May be realized by adjusting the flow rate, or may be realized by adjusting the flow rates of both the N 2 gas and the DS gas supplied from the nozzle 249a.
 このように、ステップAでは、ノズル249aより供給するNガスの供給流量およびDSガスの供給流量のうち少なくともいずれかを調整することにより、ウエハ200上に形成されるSi膜の面内膜厚分布を制御することが可能となる。ノズル249aからのNガスの供給や、ノズル249aから供給するDSガスおよびNガスの流量制御は、ウエハ200上に形成されるSi膜の外周における膜厚の微調整に特に有効である。 As described above, in Step A, the in-plane film thickness of the Si film formed on the wafer 200 is adjusted by adjusting at least one of the supply flow rate of N 2 gas and the supply flow rate of DS gas supplied from the nozzle 249a. The distribution can be controlled. The supply of N 2 gas from the nozzle 249a and the flow control of the DS gas and N 2 gas supplied from the nozzle 249a are particularly effective for fine adjustment of the film thickness on the outer periphery of the Si film formed on the wafer 200.
(d)TEBガスの触媒的作用により、Si膜の形成を、例えば200~400℃、好ましくは300~400℃の範囲内の低温条件下で行うことが可能となる。これにより、ウエハ200の熱履歴を良好に制御することが可能となる。本手法は、半導体装置の製造工程の中でも、処理温度の低温化が要求される工程(例えばミドルエンド)において、特に有効となる。 (D) The catalytic action of the TEB gas makes it possible to form the Si film under low temperature conditions, for example, in the range of 200 to 400 ° C., preferably 300 to 400 ° C. As a result, the thermal history of the wafer 200 can be favorably controlled. This technique is particularly effective in a process (for example, middle end) in which a process temperature is required to be lowered among semiconductor device manufacturing processes.
(e)成膜ステップを、処理室201内にDSガスが単独で存在した場合にDSガスが熱分解しない上述の温度条件下で行うことにより、ノズル249a内におけるDSガスの分解を抑制することが可能となる。これにより、ノズル249a内におけるSiの堆積を抑制することができ、基板処理装置のメンテナンス頻度を低減させることが可能となる。 (E) Suppressing the decomposition of the DS gas in the nozzle 249a by performing the film forming step under the above-described temperature condition in which the DS gas is not thermally decomposed when the DS gas is present alone in the processing chamber 201. Is possible. Thereby, Si deposition in the nozzle 249a can be suppressed, and the maintenance frequency of the substrate processing apparatus can be reduced.
(f)成膜ステップを、上述の温度条件下のうち、処理室201内にTEBガスが単独で存在した場合にTEBガスが熱分解しない温度条件下で行うことにより、ノズル249b,249c内におけるTEBガスの分解を抑制することが可能となる。これにより、ノズル249b,249c内におけるB等の堆積を抑制することができ、基板処理装置のメンテナンス頻度を低減させることが可能となる。 (F) The film forming step is performed in a temperature condition in which the TEB gas is not thermally decomposed when the TEB gas is present alone in the processing chamber 201 among the above-described temperature conditions, whereby in the nozzles 249b and 249c. It becomes possible to suppress decomposition of the TEB gas. Thereby, accumulation of B or the like in the nozzles 249b and 249c can be suppressed, and the maintenance frequency of the substrate processing apparatus can be reduced.
(g)DSガスとTEBガスとを異なるノズルを用いて別々に処理室201内へ供給し、これらのガスを処理室201内で初めて混合(Post-Mix)させることから、ノズル249a~249c内におけるこれらのガス同士の反応を回避することが可能となる。これにより、ノズル249a~249c内へのSi膜の堆積を抑制することができ、基板処理装置のメンテナンス頻度を低減させることが可能となる。 (G) Since DS gas and TEB gas are separately supplied into the processing chamber 201 using different nozzles, and these gases are mixed (Post-Mix) for the first time in the processing chamber 201, the inside of the nozzles 249a to 249c It is possible to avoid the reaction between these gases. Thereby, the deposition of the Si film in the nozzles 249a to 249c can be suppressed, and the maintenance frequency of the substrate processing apparatus can be reduced.
 なお、DSガスとTEBガスとを処理室201外で予め混合(Pre-Mix)させてから処理室201内へ供給する場合には、処理室201内の上流部と下流部とでガスの状態(例えば、混合や分解の度合、濃度など)が変化してしまい、ウエハ200上に形成されるSi膜のウエハ間膜質均一性やウエハ間膜厚均一性が低下する場合がある。Post-Mix方式を採用する本実施形態によれば、このような課題を解消することが可能となる。 Note that when the DS gas and the TEB gas are mixed (Pre-Mix) outside the processing chamber 201 in advance and then supplied into the processing chamber 201, the gas state between the upstream portion and the downstream portion in the processing chamber 201 (For example, the degree of mixing and decomposition, concentration, etc.) may change, and the inter-wafer film quality uniformity and inter-wafer film thickness uniformity of the Si film formed on the wafer 200 may be reduced. According to the present embodiment that employs the Post-Mix method, such a problem can be solved.
(h)成膜ステップにおける処理条件を適正に選択、調整(制御)することにより、ウエハ200上に形成されるSi膜中にBやCを添加することが可能となる。これにより、この膜を、エッチング耐性等の加工耐性に優れた膜とすることが可能となる。 (H) B and C can be added to the Si film formed on the wafer 200 by appropriately selecting and adjusting (controlling) the processing conditions in the film forming step. Thereby, this film can be made into a film excellent in processing resistance such as etching resistance.
(i)上述の効果は、DSガス以外の上述の原料を用いる場合や、TEBガス以外の上述の反応体を用いる場合や、Nガス以外の上述の不活性ガスを用いる場合にも、同様に得ることができる。 (I) The above-mentioned effect is the same when using the above-mentioned raw material other than DS gas, when using the above-mentioned reactant other than TEB gas, or when using the above-mentioned inert gas other than N 2 gas. Can get to.
(4)変形例
 本実施形態は、以下の変形例のように変更することができる。また、これらの変形例は任意に組み合わせることができる。
(4) Modification This embodiment can be modified as in the following modification. Moreover, these modifications can be combined arbitrarily.
 成膜ステップでは、DSガスおよびTEBガスのうち一方のガスの供給を連続的に行い、他方のガスの供給を間欠的に複数回行うようにしてもよい。例えば、DSガスを連続的に供給する期間中にTEBガスを間欠的に複数回供給するようにしてもよく、また、TEBガスを連続的に供給する期間中にDSガスを間欠的に複数回供給するようにしてもよい。 In the film forming step, one of the DS gas and the TEB gas may be continuously supplied, and the other gas may be intermittently supplied a plurality of times. For example, the TEB gas may be intermittently supplied several times during a period in which the DS gas is continuously supplied, and the DS gas is intermittently supplied several times during the period in which the TEB gas is continuously supplied. You may make it supply.
 また、成膜ステップでは、DSガスおよびTEBガスの両方のガスの供給を間欠的に複数回行うようにしてもよい。このとき、DSガスの供給期間とTEBガスの供給期間とを同じとしてもよく、異ならせてもよい。DSガスの供給期間とTEBガスの供給期間とを異ならせる場合、例えば、DSガスの供給期間中にTEBガスを供給するようにしてもよく、また、TEBガスの供給期間中にDSガスを供給するようにしてもよい。 Further, in the film forming step, both the DS gas and the TEB gas may be intermittently supplied a plurality of times. At this time, the DS gas supply period and the TEB gas supply period may be the same or different. When the DS gas supply period and the TEB gas supply period are different, for example, the TEB gas may be supplied during the DS gas supply period, or the DS gas is supplied during the TEB gas supply period. You may make it do.
 また、成膜ステップにおいてDSガスおよびTEBガスの両方のガスの供給を間欠的に複数回行う場合には、DSガスの供給期間とTEBガスの供給期間とを互いに一部のみ重複させるようにしてもよい。例えば、成膜ステップでは、TEBガスのみを供給するステップと、DSガスおよびTEBガスを同時に供給するステップと、DSガスのみを供給するステップと、を含むサイクルを複数回行うようにしてもよい。 In addition, when both the DS gas and the TEB gas are intermittently supplied a plurality of times in the film forming step, the DS gas supply period and the TEB gas supply period are partially overlapped with each other. Also good. For example, in the film forming step, a cycle including a step of supplying only TEB gas, a step of supplying DS gas and TEB gas at the same time, and a step of supplying only DS gas may be performed a plurality of times.
 これらの変形例においても、処理条件は、図4に示す成膜シーケンスと同様な処理条件とすることができる。また、これらの変形例においても、図4に示す成膜シーケンスと同様の効果が得られる。さらに、これらの変形例によれば、間欠供給の繰り返し回数を変更することで膜厚を制御することができ、膜厚の制御性を高めることが可能となる。また、これらの変形例によれば、成膜ステップの途中で生じた反応副生成物を処理室201内から効率よく除去することができ、成膜処理の品質を向上させることが可能となる。 Also in these modified examples, the processing conditions can be the same as the film forming sequence shown in FIG. Also in these modified examples, the same effect as the film forming sequence shown in FIG. 4 can be obtained. Furthermore, according to these modified examples, the film thickness can be controlled by changing the number of intermittent supply repetitions, and the controllability of the film thickness can be improved. Further, according to these modified examples, reaction by-products generated during the film forming step can be efficiently removed from the processing chamber 201, and the quality of the film forming process can be improved.
<他の実施形態>
 以上、本発明の実施形態を具体的に説明した。但し、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other embodiments>
The embodiment of the present invention has been specifically described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
 例えば、上述の実施形態では、原料として1種類のシラン原料を用いる場合について説明したが、原料として2種類以上のシラン原料を同時に用いるようにしてもよい。 For example, in the above-described embodiment, the case where one kind of silane raw material is used as the raw material has been described.
 基板処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、基板処理の内容に応じて、適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の膜を、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、処理を迅速に開始できるようになる。 The recipe used for the substrate processing is preferably prepared individually according to the processing content and stored in the storage device 121c via the telecommunication line or the external storage device 123. And when starting a process, it is preferable that CPU121a selects a suitable recipe suitably from the some recipe stored in the memory | storage device 121c according to the content of the board | substrate process. Accordingly, it is possible to form films having various film types, composition ratios, film qualities, and film thicknesses with a single substrate processing apparatus with good reproducibility. Further, the burden on the operator can be reduced, and the processing can be started quickly while avoiding an operation error.
 上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。 The above-described recipe is not limited to a case of newly creating, but may be prepared by changing an existing recipe that has already been installed in the substrate processing apparatus, for example. When changing the recipe, the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium on which the recipe is recorded. Further, an existing recipe that has already been installed in the substrate processing apparatus may be directly changed by operating the input / output device 122 provided in the existing substrate processing apparatus.
 上述の実施形態では、第1、第2供給部が反応管の内壁に沿うように処理室内に設けられている例について説明した。しかしながら、本発明は上述の実施形態に限定されない。例えば図7(a)に縦型処理炉の断面構造を示すように、反応管の側壁にバッファ室を設け、このバッファ室内に、上述の実施形態と同様の構成の第1、第2供給部を、上述の実施形態と同様の配置で設けるようにしてもよい。図7(a)では、反応管の側壁に供給用のバッファ室と排気用のバッファ室とを設け、それぞれを、ウエハを挟んで対向する位置に配置した例を示している。また、図7(a)では、供給用のバッファ室を複数(3つ)の空間に仕切り、それぞれの空間に各ノズルを配置した例を示している。バッファ室の3つの空間の配置は、第1、第2供給部の配置と同様となる。また例えば、図7(b)に縦型処理炉の断面構造を示すように、図7(a)と同様の配置でバッファ室を設け、バッファ室内に第1供給部を設け、このバッファ室の処理室との連通部を両側から挟むとともに反応管の内壁に沿うように第2供給部を設けるようにしてもよい。なお、図7(a)、図7(b)で説明した反応管以外の構成は、図1に示す処理炉の各部の構成と同様である。これらの処理炉を用いた場合であっても、上述の実施形態と同様の効果が得られる。 In the above-described embodiment, the example in which the first and second supply units are provided in the processing chamber so as to follow the inner wall of the reaction tube has been described. However, the present invention is not limited to the above-described embodiment. For example, as shown in FIG. 7A, the vertical processing furnace has a cross-sectional structure. A buffer chamber is provided on the side wall of the reaction tube, and the first and second supply units having the same configuration as that of the above-described embodiment are provided in the buffer chamber. May be provided in the same arrangement as in the above-described embodiment. FIG. 7A shows an example in which a supply buffer chamber and an exhaust buffer chamber are provided on the side wall of the reaction tube, and they are arranged at positions facing each other across the wafer. FIG. 7A shows an example in which the supply buffer chamber is partitioned into a plurality of (three) spaces and each nozzle is arranged in each space. The arrangement of the three spaces in the buffer chamber is the same as the arrangement of the first and second supply units. Also, for example, as shown in FIG. 7B, the vertical processing furnace has a sectional structure, a buffer chamber is provided in the same arrangement as in FIG. 7A, a first supply unit is provided in the buffer chamber, You may make it provide a 2nd supply part so that a communication part with a process chamber may be pinched | interposed from both sides, and it may follow an inner wall of a reaction tube. The configuration other than the reaction tube described in FIGS. 7A and 7B is the same as the configuration of each part of the processing furnace shown in FIG. Even when these processing furnaces are used, the same effects as those of the above-described embodiment can be obtained.
 上述の実施形態では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて膜を形成する例について説明した。本発明は上述の実施形態に限定されず、例えば、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて膜を形成する場合にも、好適に適用できる。また、上述の実施形態では、ホットウォール型の処理炉を有する基板処理装置を用いて膜を形成する例について説明した。本発明は上述の実施形態に限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて膜を形成する場合にも、好適に適用できる。 In the above-described embodiment, an example in which a film is formed using a batch-type substrate processing apparatus that processes a plurality of substrates at one time has been described. The present invention is not limited to the above-described embodiment, and can be suitably applied to a case where a film is formed using, for example, a single-wafer type substrate processing apparatus that processes one or several substrates at a time. In the above-described embodiment, an example in which a film is formed using a substrate processing apparatus having a hot wall type processing furnace has been described. The present invention is not limited to the above-described embodiment, and can be suitably applied to a case where a film is formed using a substrate processing apparatus having a cold wall type processing furnace.
 これらの基板処理装置を用いる場合においても、上述の実施形態や変形例と同様なシーケンス、処理条件にて成膜を行うことができ、これらと同様の効果が得られる。 Even when these substrate processing apparatuses are used, film formation can be performed with the same sequence and processing conditions as those of the above-described embodiments and modifications, and the same effects as these can be obtained.
 また、上述の実施形態や変形例等は、適宜組み合わせて用いることができる。このときの処理手順、処理条件は、例えば、上述の実施形態の処理手順、処理条件と同様とすることができる。 Also, the above-described embodiments and modifications can be used in appropriate combination. The processing procedure and processing conditions at this time can be the same as the processing procedure and processing conditions of the above-described embodiment, for example.
 以下、実施例について説明する。 Hereinafter, examples will be described.
 サンプル1として、図1に示す基板処理装置を用い、第1供給部(以下、ノズルA)よりDSガスおよびNガスを供給するステップと、一対の第2供給部のうち一方の供給部(以下、ノズルB)よりTEBガスを単独で供給するステップと、を同時に行うことで、ウエハ(ベアウエハ)上にSi膜を形成した。一対の第2供給部のうち前記一方の供給部とは異なる他方の供給部(以下、ノズルC)からは、ガスの供給を不実施とした。ノズルA,Bからのガスの供給流量は、それぞれ、図6(b)のサンプル1の列に示す範囲内の所定の流量とした。他の処理条件は、上述の実施形態に記載の処理条件範囲内の所定の値とした。 As the sample 1, using the substrate processing apparatus shown in FIG. 1, a step of supplying DS gas and N 2 gas from a first supply unit (hereinafter referred to as nozzle A), and one of the pair of second supply units ( The Si film was formed on the wafer (bare wafer) by simultaneously performing the step of independently supplying the TEB gas from the nozzle B). Gas supply from the other supply part (hereinafter, nozzle C) different from the one supply part in the pair of second supply parts was not performed. The supply flow rates of the gases from the nozzles A and B were set to predetermined flow rates within the range shown in the column of the sample 1 in FIG. The other processing conditions are set to predetermined values within the processing condition range described in the above embodiment.
 サンプル2~4として、図1に示す基板処理装置を用い、ノズルAよりDSガスを単独で供給するステップと、ノズルB,CよりTEBガスおよびNガスをそれぞれ供給するステップと、を同時に行うことで、ウエハ(ベアウエハ)上にSi膜を形成した。ノズルA~Cからのガスの供給流量は、それぞれ、図6(b)のサンプル2~4の列に示す範囲内の所定の流量とした。他の処理条件は、上述の実施形態に記載の処理条件範囲内の所定の値とした。 As the samples 2 to 4, the substrate processing apparatus shown in FIG. 1 is used, and the step of supplying the DS gas independently from the nozzle A and the step of supplying the TEB gas and N 2 gas from the nozzles B and C are performed simultaneously. Thus, an Si film was formed on the wafer (bare wafer). The gas supply flow rates from the nozzles A to C were set to predetermined flow rates within the ranges shown in the rows of samples 2 to 4 in FIG. The other processing conditions are set to predetermined values within the processing condition range described in the above embodiment.
 サンプル5として、図1に示す基板処理装置を用い、ノズルAよりDSガスおよびNガスを供給するステップと、ノズルB,CよりTEBガスおよびNガスをそれぞれ供給するステップと、を同時に行うことで、ウエハ(ベアウエハ)上にSi膜を形成した。ノズルA~Cからのガスの供給流量は、それぞれ、図6(b)のサンプル5の列に示す範囲内の所定の流量とした。他の処理条件は、上述の実施形態に記載の処理条件範囲内の所定の値とした。 Using the substrate processing apparatus shown in FIG. 1 as the sample 5, the step of supplying the DS gas and the N 2 gas from the nozzle A and the step of supplying the TEB gas and the N 2 gas from the nozzles B and C are performed simultaneously. Thus, a Si film was formed on the wafer (bare wafer). The gas supply flow rates from the nozzles A to C were set to predetermined flow rates within the range shown in the column of the sample 5 in FIG. The other processing conditions are set to predetermined values within the processing condition range described in the above embodiment.
 そして、サンプル1~5のSi膜の面内膜厚分布をそれぞれ測定した。図6(a)に測定結果を示す。図6(a)の縦軸は、平均膜厚からの差分/平均膜厚[a.u.]を、横軸は測定位置のウエハの中心からの距離[mm]をそれぞれ示している。図6(a)において、■,□,◇,▲,〇はそれぞれサンプル1~5を示している。 Then, the in-plane film thickness distributions of the Si films of Samples 1 to 5 were measured. FIG. 6A shows the measurement result. The vertical axis in FIG. 6A represents the difference from the average film thickness / average film thickness [a. u. The horizontal axis indicates the distance [mm] from the center of the wafer at the measurement position. In FIG. 6 (a), ■, □, ◇, ▲, and ○ indicate samples 1 to 5, respectively.
 図6(a)によれば、サンプル1のSi膜の面内膜厚分布は中央凹分布となっており、また、その度合が強いことが分かる。すなわち、ノズルAよりDSガスを供給する際、ノズルBよりTEBガスを供給し、ノズルCからのTEBガスの供給を不実施とする場合には、Si膜の面内膜厚分布が強い中央凹分布を示す場合があることが分かる。 FIG. 6A shows that the in-plane film thickness distribution of the Si film of sample 1 is a central concave distribution, and the degree thereof is strong. That is, when the DS gas is supplied from the nozzle A, when the TEB gas is supplied from the nozzle B and the TEB gas is not supplied from the nozzle C, the central concave portion having a strong in-plane film thickness distribution of the Si film is used. It can be seen that there may be a distribution.
 また図6(a)によれば、サンプル2のSi膜の面内膜厚分布は、サンプル1のSi膜のそれに比べて中央凹分布の度合が弱いことが分かる。すなわち、ノズルAよりDSガスを供給する際、ノズルB,Cの両方よりTEBガスを供給する場合には、Si膜の面内膜厚分布が有する中央凹分布の度合を和らげる等、Si膜の面内膜厚分布を制御することができることが分かる。 Further, according to FIG. 6A, it can be seen that the in-plane film thickness distribution of the Si film of Sample 2 has a lower degree of central concave distribution than that of the Si film of Sample 1. That is, when supplying the DS gas from the nozzle A, when supplying the TEB gas from both the nozzles B and C, the degree of the central concave distribution of the in-plane film thickness distribution of the Si film is reduced. It can be seen that the in-plane film thickness distribution can be controlled.
 また図6(a)によれば、サンプル3のSi膜の面内膜厚分布は、サンプル2のSi膜のそれに比べて中央凹分布の度合が弱く、フラット分布に近いことが分かる。すなわち、ノズルAよりDSガスを供給する際、ノズルB,Cの両方よりTEBガスを供給するだけでなく、ノズルB,Cから供給するNガスの流量を増加させることにより、Si膜の面内膜厚分布をフラット分布へ近づける等、Si膜の面内膜厚分布を広範囲に制御することができることが分かる。 Further, according to FIG. 6A, the in-plane film thickness distribution of the sample 3 Si film has a lower degree of central concave distribution than that of the sample 2 Si film, and is close to a flat distribution. That is, when the DS gas is supplied from the nozzle A, not only the TEB gas is supplied from both the nozzles B and C, but also the flow rate of the N 2 gas supplied from the nozzles B and C is increased, so that the surface of the Si film It can be seen that the in-plane film thickness distribution of the Si film can be controlled over a wide range, for example, by bringing the inner film thickness distribution closer to a flat distribution.
 また図6(a)によれば、サンプル4のSi膜の面内膜厚分布は、サンプル3のSi膜のそれに比べて中央凸分布の度合が強いことが分かる。すなわち、ノズルAよりDSガスを供給する際、ノズルB,Cの両方よりTEBガスを供給するだけでなく、ノズルB,Cから供給するTEBガスの流量を増加させることにより、Si膜の面内膜厚分布を中央凸分化する等、Si膜の面内膜厚分布を広範囲に制御することができることが分かる。 Further, according to FIG. 6A, it can be seen that the in-plane film thickness distribution of the sample 4 Si film has a higher degree of central convex distribution than that of the sample 3 Si film. That is, when the DS gas is supplied from the nozzle A, not only the TEB gas is supplied from both the nozzles B and C, but also the flow rate of the TEB gas supplied from the nozzles B and C is increased to increase the in-plane of the Si film. It can be seen that the in-plane film thickness distribution of the Si film can be controlled over a wide range, such as by central convex differentiation of the film thickness distribution.
 また図6(a)によれば、サンプル5のSi膜の面内膜厚分布は、サンプル4のSi膜のそれに比べ、明らかな中央凸分布を示しており、その度合が強くなっていることが分かる。すなわち、ノズルAよりDSガスを供給する際、ノズルB,Cの両方よりTEBガスを供給するだけでなく、ノズルAから供給するNガスの流量を増加させることにより、Si膜の外周における膜厚を他の領域にける膜厚よりも薄くし、Si膜の面内膜厚分布を強い中央凸分布とする等、Si膜の面内膜厚分布を広範囲に制御することができることが分かる。そして、表面に凹凸構造が作り込まれていない表面積の小さなベアウエハ上に中央凸分布のSi膜を形成することができれば、表面に微細な凹凸構造が作り込まれた表面積の大きなパターンウエハ上に、フラット分布のSi膜を形成することが可能となる。 Further, according to FIG. 6A, the in-plane film thickness distribution of the Si film of Sample 5 shows a clear central convex distribution as compared with that of the Si film of Sample 4, and the degree thereof is strong. I understand. That is, when the DS gas is supplied from the nozzle A, not only the TEB gas is supplied from both the nozzles B and C, but also the flow rate of the N 2 gas supplied from the nozzle A is increased, so that the film on the outer periphery of the Si film is increased. It can be seen that the in-plane film thickness distribution of the Si film can be controlled over a wide range, for example, by making the thickness thinner than the film thickness in other regions and making the in-plane film thickness distribution of the Si film a strong central convex distribution. And, if a central convex distribution Si film can be formed on a bare wafer with a small surface area where no uneven structure is formed on the surface, on a pattern wafer with a large surface area where a fine uneven structure is formed on the surface, It is possible to form a flat distribution Si film.
200  ウエハ(基板)
249a ノズル(第1供給部)
249b ノズル(第2供給部)
249c ノズル(第2供給部)
200 wafer (substrate)
249a Nozzle (first supply unit)
249b Nozzle (second supply unit)
249c Nozzle (second supply unit)

Claims (18)

  1.  (a)第1供給部より、膜を構成する主元素を含む原料を、基板に対して供給し排気部より排気する工程と、
     (b)前記第1供給部と前記排気部とを通る直線を挟むように前記第1供給部に隣接して配置された一対の第2供給部より、前記主元素非含有の反応体を、前記基板に対して供給し前記排気部より排気する工程と、
     を前記原料が単独で存在した場合に前記原料が熱分解しない条件下で、少なくとも一定期間同時に行うことで、前記基板上に前記膜を形成する工程を有する半導体装置の製造方法。
    (A) supplying the raw material containing the main element constituting the film from the first supply unit to the substrate and exhausting it from the exhaust unit;
    (B) From the pair of second supply parts disposed adjacent to the first supply part so as to sandwich a straight line passing through the first supply part and the exhaust part, the main element-free reactant is obtained. Supplying to the substrate and exhausting from the exhaust unit;
    A method of manufacturing a semiconductor device, comprising: forming the film on the substrate by simultaneously performing at least a certain period of time under the condition that the raw material is not thermally decomposed when the raw material is present alone.
  2.  前記膜を形成する工程では、前記(a)(b)を前記原料および前記反応体のそれぞれが単独で存在した場合にそれぞれが熱分解しない条件下で、少なくとも一定期間同時に行う請求項1に記載の半導体装置の製造方法。 2. The step of forming the film, wherein (a) and (b) are performed simultaneously for at least a certain period under a condition that each of the raw material and the reactant does not thermally decompose when each of the raw material and the reactant exists alone. Semiconductor device manufacturing method.
  3.  前記原料は前記反応体の熱分解温度よりも高い熱分解温度を有する請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the raw material has a thermal decomposition temperature higher than a thermal decomposition temperature of the reactant.
  4.  前記原料はオクテット則を満たし、前記反応体はオクテット則を満たさない請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the raw material satisfies an octet rule, and the reactant does not satisfy an octet rule.
  5.  前記反応体は前記原料に対して触媒的に作用する請求項1に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the reactant acts catalytically on the raw material.
  6.  前記原料はSi-H結合を含み、前記反応体はボロンを含む請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the raw material includes Si—H bonds, and the reactant includes boron.
  7.  前記反応体は塩素非含有である請求項6に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 6, wherein the reactant does not contain chlorine.
  8.  前記原料は水素化ケイ素を含み、前記反応体はアルキルボランを含む請求項7に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 7, wherein the raw material includes silicon hydride, and the reactant includes alkylborane.
  9.  前記(b)では、前記第2供給部より、前記反応体と一緒に不活性ガスを供給する請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein in (b), an inert gas is supplied together with the reactant from the second supply unit.
  10.  前記第2供給部より供給する不活性ガスの供給流量および前記反応体の供給流量のうち少なくともいずれかを調整することにより、形成される前記膜の膜厚分布を制御する請求項9に記載の半導体装置の製造方法。 The film thickness distribution of the film to be formed is controlled by adjusting at least one of a supply flow rate of an inert gas supplied from the second supply unit and a supply flow rate of the reactant. A method for manufacturing a semiconductor device.
  11.  前記第2供給部より供給する不活性ガスの供給流量を調整することにより、形成される前記膜の膜厚分布を制御する請求項9に記載の半導体装置の製造方法。 10. The method of manufacturing a semiconductor device according to claim 9, wherein a film thickness distribution of the film to be formed is controlled by adjusting a supply flow rate of an inert gas supplied from the second supply unit.
  12.  前記(a)では、前記第1供給部より、前記原料と一緒に不活性ガスを供給する請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein in (a), an inert gas is supplied together with the raw material from the first supply unit.
  13.  前記第1供給部より供給する不活性ガスの供給流量および前記原料の供給流量のうち少なくともいずれかを調整することにより、形成される前記膜の膜厚分布を制御する請求項12に記載の半導体装置の製造方法。 The semiconductor according to claim 12, wherein the film thickness distribution of the film to be formed is controlled by adjusting at least one of a supply flow rate of an inert gas supplied from the first supply unit and a supply flow rate of the raw material. Device manufacturing method.
  14.  前記第1供給部より供給する不活性ガスの供給流量を調整することにより、形成される前記膜の膜厚分布を制御する請求項12に記載の半導体装置の製造方法。 13. The method of manufacturing a semiconductor device according to claim 12, wherein the film thickness distribution of the formed film is controlled by adjusting a supply flow rate of the inert gas supplied from the first supply unit.
  15.  前記一対の第2供給部は、前記第1供給部を挟むように前記第1供給部に隣接して配置される請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the pair of second supply units are arranged adjacent to the first supply unit so as to sandwich the first supply unit.
  16.  前記排気部は、平面視において、前記基板を挟んで前記第1供給部と対向する位置に配置される請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the exhaust unit is disposed at a position facing the first supply unit across the substrate in plan view.
  17.  基板に対して処理が行われる処理室と、
     前記処理室内の雰囲気を排気部より排気する排気系と、
     第1供給部より、膜を構成する主元素を含む原料を、前記処理室内の基板に対して供給する原料供給系と、
     前記第1供給部と前記排気部とを通る直線を挟むように前記第1供給部に隣接して配置された一対の第2供給部より、前記主元素非含有の反応体を、前記基板に対して供給する反応体供給系と、
     前記処理室内の基板を加熱するヒータと、
     前記処理室内において、(a)前記第1供給部より前記原料を基板に対して供給し前記排気部より排気する処理と、(b)前記第2供給部より前記反応体を前記基板に対して供給し前記排気部より排気する処理と、を前記原料が単独で存在した場合に前記原料が熱分解しない条件下で、少なくとも一定期間同時に行うことで、前記基板上に前記膜を形成する処理を行わせるように、前記原料供給系、前記反応体供給系、前記排気系、および前記ヒータを制御するよう構成される制御部と、
     を有する基板処理装置。
    A processing chamber in which processing is performed on the substrate;
    An exhaust system for exhausting the atmosphere in the processing chamber from an exhaust unit;
    A raw material supply system for supplying a raw material containing a main element constituting the film to the substrate in the processing chamber from the first supply unit;
    From the pair of second supply parts arranged adjacent to the first supply part so as to sandwich a straight line passing through the first supply part and the exhaust part, the reactant containing no main element is transferred to the substrate. A reactant supply system to be supplied to
    A heater for heating the substrate in the processing chamber;
    In the processing chamber, (a) a process of supplying the raw material from the first supply unit to the substrate and exhausting from the exhaust unit, and (b) the reactant from the second supply unit to the substrate. A process of forming the film on the substrate by simultaneously performing at least a certain period of time under the condition that the raw material is not thermally decomposed when the raw material is present alone. A controller configured to control the raw material supply system, the reactant supply system, the exhaust system, and the heater,
    A substrate processing apparatus.
  18.  基板処理装置の処理室内において、
     (a)第1供給部より、膜を構成する主元素を含む原料を、基板に対して供給し排気部より排気する手順と、
     (b)前記第1供給部と前記排気部とを通る直線を挟むように前記第1供給部に隣接して配置された一対の第2供給部より、前記主元素非含有の反応体を、前記基板に対して供給し前記排気部より排気する手順と、
     を前記原料が単独で存在した場合に前記原料が熱分解しない条件下で、少なくとも一定期間同時に行うことで、前記基板上に前記膜を形成する手順をコンピュータによって前記基板処理装置に実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体。
    In the processing chamber of the substrate processing apparatus,
    (A) A procedure for supplying a raw material containing a main element constituting the film from the first supply unit to the substrate and exhausting it from the exhaust unit;
    (B) From the pair of second supply parts disposed adjacent to the first supply part so as to sandwich a straight line passing through the first supply part and the exhaust part, the main element-free reactant is obtained. A procedure for supplying to the substrate and exhausting from the exhaust unit;
    A program for causing the substrate processing apparatus to execute a procedure for forming the film on the substrate by a computer by simultaneously performing at least a certain period of time under the condition that the raw material is not thermally decomposed when the raw material is present alone. A recorded computer-readable recording medium.
PCT/JP2017/008796 2017-03-06 2017-03-06 Semiconductor device manufacturing method, substrate processing device, and recording medium WO2018163250A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/008796 WO2018163250A1 (en) 2017-03-06 2017-03-06 Semiconductor device manufacturing method, substrate processing device, and recording medium
JP2019503841A JP6778318B2 (en) 2017-03-06 2017-03-06 Semiconductor device manufacturing methods, substrate processing devices and programs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/008796 WO2018163250A1 (en) 2017-03-06 2017-03-06 Semiconductor device manufacturing method, substrate processing device, and recording medium

Publications (1)

Publication Number Publication Date
WO2018163250A1 true WO2018163250A1 (en) 2018-09-13

Family

ID=63449064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008796 WO2018163250A1 (en) 2017-03-06 2017-03-06 Semiconductor device manufacturing method, substrate processing device, and recording medium

Country Status (2)

Country Link
JP (1) JP6778318B2 (en)
WO (1) WO2018163250A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206489A (en) * 2008-01-31 2009-09-10 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2013197507A (en) * 2012-03-22 2013-09-30 Hitachi Kokusai Electric Inc Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
JP2014056871A (en) * 2012-09-11 2014-03-27 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device, substrate processing method, substrate processing device, and program
JP2014099427A (en) * 2011-03-08 2014-05-29 Hitachi Kokusai Electric Inc Substrate processing apparatus and process of manufacturing substrate
JP2016164932A (en) * 2015-03-06 2016-09-08 東京エレクトロン株式会社 Method and device for forming silicon nitride film
JP2017063137A (en) * 2015-09-25 2017-03-30 株式会社日立国際電気 Method of manufacturing semiconductor device, substrate processing device, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206489A (en) * 2008-01-31 2009-09-10 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2014099427A (en) * 2011-03-08 2014-05-29 Hitachi Kokusai Electric Inc Substrate processing apparatus and process of manufacturing substrate
JP2013197507A (en) * 2012-03-22 2013-09-30 Hitachi Kokusai Electric Inc Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
JP2014056871A (en) * 2012-09-11 2014-03-27 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device, substrate processing method, substrate processing device, and program
JP2016164932A (en) * 2015-03-06 2016-09-08 東京エレクトロン株式会社 Method and device for forming silicon nitride film
JP2017063137A (en) * 2015-09-25 2017-03-30 株式会社日立国際電気 Method of manufacturing semiconductor device, substrate processing device, and program

Also Published As

Publication number Publication date
JPWO2018163250A1 (en) 2019-11-07
JP6778318B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
JP7464638B2 (en) Substrate processing apparatus, plasma generating apparatus, reaction tube, plasma generating method, substrate processing method, semiconductor device manufacturing method and program
KR101968414B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and program
KR101995135B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and program
TWI819348B (en) Semiconductor device manufacturing method, substrate processing method, substrate processing device and program
US20210296110A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP6529927B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
KR102121482B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus and program
KR102142813B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and program
KR102297247B1 (en) Method of cleaning member in process container, method of manufacturing semiconductor device, substrate processing apparatus, and program
US10032629B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP6613213B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
WO2020008682A1 (en) Method for manufacturing semiconductor device, substrate-processing device, and program
JP2020017571A (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
WO2018163250A1 (en) Semiconductor device manufacturing method, substrate processing device, and recording medium
JP6731527B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
WO2022180825A1 (en) Method for producing semiconductor device, substrate processing apparatus, and program
JP6857759B2 (en) Semiconductor device manufacturing methods, substrate processing devices, and programs
US20210217608A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP2010147139A (en) Method of manufacturing semiconductor device and substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899645

Country of ref document: EP

Kind code of ref document: A1