WO2018161337A1 - Techniques and apparatuses for scheduling request (sr) suppression during multimedia communication - Google Patents

Techniques and apparatuses for scheduling request (sr) suppression during multimedia communication Download PDF

Info

Publication number
WO2018161337A1
WO2018161337A1 PCT/CN2017/076244 CN2017076244W WO2018161337A1 WO 2018161337 A1 WO2018161337 A1 WO 2018161337A1 CN 2017076244 W CN2017076244 W CN 2017076244W WO 2018161337 A1 WO2018161337 A1 WO 2018161337A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
scheduling request
scheduling
uplink grant
transmission
Prior art date
Application number
PCT/CN2017/076244
Other languages
French (fr)
Inventor
Jiming Guo
Peng Wu
Saket BATHWAL
Reza Shahidi
Srinivasan Balasubramanian
Aziz Gholmieh
Arnaud Meylan
Feilu Liu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2017/076244 priority Critical patent/WO2018161337A1/en
Priority to PCT/CN2018/077881 priority patent/WO2018161856A1/en
Publication of WO2018161337A1 publication Critical patent/WO2018161337A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • aspects of the present disclosure generally relate to wireless communication, and more particularly to techniques and apparatuses for scheduling request suppression during multimedia communication.
  • Wireless communication systems are widely deployed to provide various telecommunication services, such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency divisional multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency divisional multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP Third Generation Partnership Project
  • LTE is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, using new spectrum, and integrating with other open standards using OFDMA on the downlink (DL) , SC-FDMA on the uplink (UL) , and multiple-input multiple-output (MIMO) antenna technology.
  • a method of wireless communication may include determining, by a user equipment when engaged in a multimedia communication, that the user equipment is receiving an uplink grant without sending a scheduling request.
  • a semi-persistent scheduling mode may not be activated when the user equipment is receiving the uplink grant.
  • the method may include forgoing, by the user equipment, transmission of at least one scheduling request based at least in part on determining that the user equipment is receiving the uplink grant.
  • a wireless communication device may include a memory and one or more processors operatively coupled to the memory.
  • the one or more processors may be configured to determine, when engaged in a multimedia communication, that the wireless communication device is receiving an uplink grant without sending a scheduling request.
  • a semi-persistent scheduling mode may not be activated when the wireless communication device is receiving the uplink grant.
  • the one or more processors may be configured to forgo transmission of at least one scheduling request based at least in part on determining that the wireless communication device is receiving the uplink grant.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a wireless communication device, may cause the one or more processors to determine, when engaged in a multimedia communication, that the wireless communication device is receiving an uplink grant without sending a scheduling request.
  • a semi-persistent scheduling mode may not be activated when the wireless communication device is receiving the uplink grant.
  • the one or more instructions when executed by the one or more processors, may cause the one or more processors to forgo transmission of at least one scheduling request based at least in part on determining that the wireless communication device is receiving the uplink grant.
  • an apparatus for wireless communication may include means for determining, when engaged in a multimedia communication, that the apparatus is receiving an uplink grant without sending a scheduling request.
  • a semi-persistent scheduling mode may not be activated when the apparatus is receiving the uplink grant.
  • the apparatus may include means for forgoing transmission of at least one scheduling request based at least in part on determining that the apparatus is receiving the uplink grant.
  • a method of wireless communication may include determining, by an access point, to perform scheduling to provide an uplink grant to a user equipment engaging in a multimedia communication.
  • the scheduling may be pre-scheduling or semi-persistent scheduling with a configured uplink grant cycle.
  • the method may include configuring, by the access point, semi-persistent scheduling and scheduling request masking for a logical channel to cause the user equipment to forgo transmission of the scheduling request.
  • a wireless communication device may include a memory and one or more processors operatively coupled to the memory.
  • the one or more processors may be configured to determine to perform scheduling to provide an uplink grant to a user equipment engaging in a multimedia communication.
  • the scheduling may be pre-scheduling or semi-persistent scheduling with a configured uplink grant cycle.
  • the one or more processors may be configured to configure semi-persistent scheduling and scheduling request masking for a logical channel to cause the user equipment to forgo transmission of a scheduling request.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a wireless communication device, may cause the one or more processors to determine to perform scheduling to provide an uplink grant to a user equipment engaging in a multimedia communication.
  • the scheduling may be pre-scheduling or semi-persistent scheduling with a configured uplink grant cycle.
  • the one or more instructions when executed by the one or more processors, may cause the one or more processors to configure semi-persistent scheduling and scheduling request masking for a logical channel to cause the user equipment to forgo transmission of a scheduling request.
  • an apparatus for wireless communication may include means for determining to perform scheduling to provide an uplink grant to a user equipment engaging in a multimedia communication.
  • the scheduling may be pre-scheduling or semi-persistent scheduling with a configured uplink grant cycle.
  • the apparatus may include means for configuring semi-persistent scheduling and scheduling request masking for a logical channel to cause the user equipment to forgo transmission of a scheduling request.
  • Fig. 1 is a diagram illustrating an example deployment in which multiple wireless networks have overlapping coverage, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a diagram illustrating an example access network in an LTE network architecture, in accordance with various aspects of the present disclosure.
  • Fig. 3 is a diagram illustrating an example of a downlink frame structure in LTE, in accordance with various aspects of the present disclosure.
  • Fig. 4 is a diagram illustrating an example of an uplink frame structure in LTE, in accordance with various aspects of the present disclosure.
  • Fig. 5 is a diagram illustrating an example of a radio protocol architecture for a user plane and a control plane in LTE, in accordance with various aspects of the present disclosure.
  • Fig. 6 is a diagram illustrating example components of an evolved Node B and a user equipment in an access network, in accordance with various aspects of the present disclosure.
  • Figs. 7A and 7B are diagrams illustrating an example of scheduling request suppression during multimedia communication, in accordance with various aspects of the present disclosure.
  • Fig. 8 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
  • Fig. 9 is a diagram illustrating an example process performed, for example, by an access point, in accordance with various aspects of the present disclosure.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single carrier FDMA
  • a CDMA network may implement a radio access technology (RAT) such as universal terrestrial radio access (UTRA) , CDMA2000, and/or the like.
  • RAT radio access technology
  • UTRA may include wideband CDMA (WCDMA) and/or other variants of CDMA.
  • CDMA2000 may include Interim Standard (IS) -2000, IS-95 and IS-856 standards.
  • IS-2000 may also be referred to as 1x radio transmission technology (1xRTT) , CDMA2000 1X, and/or the like.
  • a TDMA network may implement a RAT such as global system for mobile communications (GSM) , enhanced data rates for GSM evolution (EDGE) , or GSM/EDGE radio access network (GERAN) .
  • GSM global system for mobile communications
  • EDGE enhanced data rates for GSM evolution
  • GERAN GSM/EDGE radio access network
  • An OFDMA network may implement a RAT such as evolved UTRA (E-UTRA) , ultra mobile broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, and/or the like.
  • E-UTRA evolved UTRA
  • UMB ultra mobile broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Wi-Fi
  • WiMAX IEEE 802.16
  • UTRA and E-UTRA may be part of the universal mobile telecommunication system (UMTS) .
  • 3GPP long-term evolution (LTE) and LTE-Advanced (LTE-A) are example releases of UMTS that use E-UTRA, which employs OFDMA on the downlink and SC-FDMA on the uplink.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the techniques described herein may be used for the wireless networks and RATs mentioned above as well as other wireless networks and RATs.
  • New radio which may also be referred to as 5G
  • 5G is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDM with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread ODFM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • CP-OFDM OFDM with a cyclic prefix
  • SC-FDM e.g., also known as discrete Fourier transform spread ODFM (DFT-s
  • Fig. 1 is a diagram illustrating an example deployment 100 in which multiple wireless networks have overlapping coverage, in accordance with various aspects of the present disclosure. However, wireless networks may not have overlapping coverage in aspects.
  • example deployment 100 may include an evolved universal terrestrial radio access network (E-UTRAN) 105, which may include one or more evolved Node Bs (eNBs) 110, and which may communicate with other devices or networks via a serving gateway (SGW) 115 and/or a mobility management entity (MME) 120.
  • E-UTRAN evolved universal terrestrial radio access network
  • eNBs evolved Node Bs
  • MME mobility management entity
  • example deployment 100 may include a radio access network (RAN) 125, which may include one or more base stations 130, and which may communicate with other devices or networks via a mobile switching center (MSC) 135 and/or an inter-working function (IWF) 140.
  • example deployment 100 may include one or more user equipment (UEs) 145 capable of communicating via E-UTRAN 105 and/or RAN 125.
  • E-UTRAN 105 may support, for example, LTE or another type of RAT.
  • E-UTRAN 105 may include eNBs 110 and other network entities that can support wireless communication for UEs 145.
  • Each eNB 110 may provide communication coverage for a particular geographic area.
  • the term “cell” may refer to a coverage area of eNB 110 and/or an eNB subsystem serving the coverage area on a specific frequency channel.
  • SGW 115 may communicate with E-UTRAN 105 and may perform various functions, such as packet routing and forwarding, mobility anchoring, packet buffering, initiation of network-triggered services, and/or the like.
  • MME 120 may communicate with E-UTRAN 105 and SGW 115 and may perform various functions, such as mobility management, bearer management, distribution of paging messages, security control, authentication, gateway selection, and/or the like, for UEs 145 located within a geographic region served by MME 120 of E-UTRAN 105.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • RAN 125 may support, for example, GSM or another type of RAT.
  • RAN 125 may include base stations 130 and other network entities that can support wireless communication for UEs 145.
  • MSC 135 may communicate with RAN 125 and may perform various functions, such as voice services, routing for circuit-switched calls, and mobility management for UEs 145 located within a geographic region served by MSC 135 of RAN 125.
  • IWF 140 may facilitate communication between MME 120 and MSC 135 (e.g., when E-UTRAN 105 and RAN 125 use different RATs) .
  • MME 120 may communicate directly with an MME that interfaces with RAN 125, for example, without IWF 140 (e.g., when E-UTRAN 105 and RAN 125 use a same RAT) .
  • E-UTRAN 105 and RAN 125 may use the same frequency and/or the same RAT to communicate with UE 145.
  • E-UTRAN 105 and RAN 125 may use different frequencies and/or RATs to communicate with UEs 145.
  • the term base station is not tied to any particular RAT, and may refer to an eNB (e.g., of an LTE network) or another type of base station associated with a different type of RAT.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency or frequency ranges may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency or frequency range may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • UE 145 may be stationary or mobile and may also be referred to as a mobile station, a terminal, an access terminal, a wireless communication device, a subscriber unit, a station, and/or the like.
  • UE 145 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, and/or the like.
  • PDA personal digital assistant
  • WLL wireless local loop
  • UE 145 may be included inside a housing 145’that houses components of UE 145, such as processor components, memory components, and/or the like.
  • UE 145 may search for wireless networks from which UE 145 can receive communication services. If UE 145 detects more than one wireless network, then a wireless network with the highest priority may be selected to serve UE 145 and may be referred to as the serving network. UE 145 may perform registration with the serving network, if necessary. UE 145 may then operate in a connected mode to actively communicate with the serving network. Alternatively, UE 145 may operate in an idle mode and camp on the serving network if active communication is not required by UE 145.
  • UE 145 may operate in the idle mode as follows. UE 145 may identify all frequencies/RATs on which it is able to find a “suitable” cell in a normal scenario or an “acceptable” cell in an emergency scenario, where “suitable” and “acceptable” are specified in the LTE standards. UE 145 may then camp on the frequency/RAT with the highest priority among all identified frequencies/RATs. UE 145 may remain camped on this frequency/RAT until either (i) the frequency/RAT is no longer available at a predetermined threshold or (ii) another frequency/RAT with a higher priority reaches this threshold.
  • UE 145 may receive a neighbor list when operating in the idle mode, such as a neighbor list included in a system information block type 5 (SIB 5) provided by an eNB of a RAT on which UE 145 is camped. Additionally, or alternatively, UE 145 may generate a neighbor list.
  • a neighbor list may include information identifying one or more frequencies, at which one or more RATs may be accessed, priority information associated with the one or more RATs, and/or the like.
  • the number and arrangement of devices and networks shown in Fig. 1 are provided as an example. In practice, there may be additional devices and/or networks, fewer devices and/or networks, different devices and/or networks, or differently arranged devices and/or networks than those shown in Fig. 1. Furthermore, two or more devices shown in Fig. 1 may be implemented within a single device, or a single device shown in Fig. 1 may be implemented as multiple, distributed devices. Additionally, or alternatively, a set of devices (e.g., one or more devices) shown in Fig. 1 may perform one or more functions described as being performed by another set of devices shown in Fig. 1.
  • Fig. 2 is a diagram illustrating an example access network 200 in an LTE network architecture, in accordance with various aspects of the present disclosure.
  • access network 200 may include one or more eNBs 210 (sometimes referred to as “base stations” herein) that serve a corresponding set of cellular regions (cells) 220, one or more low power eNBs 230 that serve a corresponding set of cells 240, and a set of UEs 250.
  • eNBs 210 sometimes referred to as “base stations” herein
  • base stations low power eNBs 230 that serve a corresponding set of cells 240
  • UEs 250 a set of UEs 250.
  • Each eNB 210 may be assigned to a respective cell 220 and may be configured to provide an access point to a RAN.
  • eNB 110, 210 may provide an access point for UE 145, 250 to E-UTRAN 105 (e.g., eNB 210 may correspond to eNB 110, shown in Fig. 1) or may provide an access point for UE 145, 250 to RAN 125 (e.g., eNB 210 may correspond to base station 130, shown in Fig. 1) .
  • the terms base station and eNB may be used interchangeably, and a base station, as used herein, is not tied to any particular RAT.
  • UE 145, 250 may correspond to UE 145, shown in Fig. 1.
  • the eNBs 210 may perform radio related functions including radio bearer control, admission control, mobility control, scheduling, security, and network connectivity (e.g., to SGW 115) .
  • one or more low power eNBs 230 may serve respective cells 240, which may overlap with one or more cells 220 served by eNBs 210.
  • the eNBs 230 may correspond to eNB 110 associated with E-UTRAN 105 and/or base station 130 associated with RAN 125, shown in Fig. 1.
  • a low power eNB 230 may be referred to as a remote radio head (RRH) .
  • the low power eNB 230 may include a femto cell eNB (e.g., home eNB (HeNB) ) , a pico cell eNB, a micro cell eNB, and/or the like.
  • HeNB home eNB
  • a modulation and multiple access scheme employed by access network 200 may vary depending on the particular telecommunications standard being deployed.
  • OFDM is used on the downlink (DL)
  • SC-FDMA is used on the uplink (UL) to support both frequency division duplexing (FDD) and time division duplexing (TDD) .
  • FDD frequency division duplexing
  • TDD time division duplexing
  • the various concepts presented herein are well suited for LTE applications. However, these concepts may be readily extended to other telecommunication standards employing other modulation and multiple access techniques. By way of example, these concepts may be extended to Evolution-Data Optimized (EV-DO) or Ultra Mobile Broadband (UMB) .
  • EV-DO Evolution-Data Optimized
  • UMB Ultra Mobile Broadband
  • EV-DO and UMB are air interface standards promulgated by the 3rd Generation Partnership Project 2 (3GPP2) as part of the CDMA2000 family of standards and employs CDMA to provide broadband Internet access to mobile stations.
  • 3GPP2 3rd Generation Partnership Project 2
  • these concepts may also be extended to UTRA employing WCDMA and other variants of CDMA (e.g., such as TD-SCDMA, GSM employing TDMA, E-UTRA, and/or the like) , UMB, IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM employing OFDMA, and/or the like.
  • WCDMA Wideband Code Division Multiple Access
  • UMB Universal Mobile Broadband Code Division Multiple Access 2000
  • CDMA2000 and UMB are described in documents from the 3GPP2 organization.
  • the actual wireless communication standard and the multiple access technology employed will depend on the specific application and the overall design constraints imposed on the system.
  • the eNBs 210 may have multiple antennas supporting MIMO technology.
  • MIMO technology enables eNBs 210 to exploit the spatial domain to support spatial multiplexing, beamforming, and transmit diversity.
  • Spatial multiplexing may be used to transmit different streams of data simultaneously on the same frequency.
  • the data streams may be transmitted to a single UE 145, 250 to increase the data rate or to multiple UEs 250 to increase the overall system capacity. This may be achieved by spatially precoding each data stream (e.g., applying a scaling of an amplitude and a phase) and then transmitting each spatially precoded stream through multiple transmit antennas on the DL.
  • the spatially precoded data streams arrive at the UE (s) 250 with different spatial signatures, which enables each of the UE (s) 250 to recover the one or more data streams destined for that UE 145, 250.
  • each UE 145, 250 transmits a spatially precoded data stream, which enables eNBs 210 to identify the source of each spatially precoded data stream.
  • Beamforming may be used to focus the transmission energy in one or more directions. This may be achieved by spatially precoding the data for transmission through multiple antennas. To achieve good coverage at the edges of the cell, a single stream beamforming transmission may be used in combination with transmit diversity.
  • OFDM is a spread-spectrum technique that modulates data over a number of subcarriers within an OFDM symbol.
  • the subcarriers are spaced apart at precise frequencies. The spacing provides “orthogonality” that enables a receiver to recover the data from the subcarriers.
  • a guard interval e.g., cyclic prefix
  • the UL may use SC-FDMA in the form of a DFT-spread OFDM signal to compensate for high peak-to-average power ratio (PAPR) .
  • PAPR peak-to-average power ratio
  • the number and arrangement of devices and cells shown in Fig. 2 are provided as an example. In practice, there may be additional devices and/or cells, fewer devices and/or cells, different devices and/or cells, or differently arranged devices and/or cells than those shown in Fig. 2. Furthermore, two or more devices shown in Fig. 2 may be implemented within a single device, or a single device shown in Fig. 2 may be implemented as multiple, distributed devices. Additionally, or alternatively, a set of devices (e.g., one or more devices) shown in Fig. 2 may perform one or more functions described as being performed by another set of devices shown in Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 of a downlink (DL) frame structure in LTE, in accordance with various aspects of the present disclosure.
  • a frame e.g., of 10 ms
  • Each sub-frame may include two consecutive time slots.
  • a resource grid may be used to represent two time slots, each time slot including a resource block (RB) .
  • the resource grid is divided into multiple resource elements.
  • a resource block includes 12 consecutive subcarriers in the frequency domain and, for a normal cyclic prefix in each OFDM symbol, 7 consecutive OFDM symbols in the time domain, or 84 resource elements.
  • a resource block For an extended cyclic prefix, a resource block includes 6 consecutive OFDM symbols in the time domain and has 72 resource elements. Some of the resource elements, as indicated as R 310 and R 320, include DL reference signals (DL-RS) .
  • the DL-RS include Cell-specific RS (CRS) (also sometimes called common RS) 310 and UE-specific RS (UE-RS) 320.
  • UE-RS 320 are transmitted only on the resource blocks upon which the corresponding physical DL shared channel (PDSCH) is mapped.
  • the number of bits carried by each resource element depends on the modulation scheme. Thus, the more resource blocks that a UE receives and the higher the modulation scheme, the higher the data rate for the UE.
  • an eNB may send a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) for each cell in the eNB.
  • the primary and secondary synchronization signals may be sent in symbol periods 6 and 5, respectively, in each of subframes 0 and 5 of each radio frame with the normal cyclic prefix (CP) .
  • the synchronization signals may be used by UEs for cell detection and acquisition.
  • the eNB may send a Physical Broadcast Channel (PBCH) in symbol periods 0 to 3 in slot 1 of subframe 0.
  • PBCH Physical Broadcast Channel
  • the eNB may send a Physical Control Format Indicator Channel (PCFICH) in the first symbol period of each subframe.
  • the PCFICH may convey the number of symbol periods (M) used for control channels, where M may be equal to 1, 2, or 3 and may change from subframe to subframe. M may also be equal to 4 for a small system bandwidth, e.g., with less than 10 resource blocks.
  • the eNB may send a Physical HARQ Indicator Channel (PHICH) and a Physical Downlink Control Channel (PDCCH) in the first M symbol periods of each subframe.
  • the PHICH may carry information to support hybrid automatic repeat request (HARQ) .
  • the PDCCH may carry information on resource allocation for UEs and control information for downlink channels.
  • the eNB may send a Physical Downlink Shared Channel (PDSCH) in the remaining symbol periods of each subframe.
  • the PDSCH may carry data for UEs scheduled for data transmission on the downlink.
  • the eNB may send the PSS, SSS, and PBCH in the center 1.08 MHz of the system bandwidth used by the eNB.
  • the eNB may send the PCFICH and PHICH across the entire system bandwidth in each symbol period in which these channels are sent.
  • the eNB may send the PDCCH to groups of UEs in certain portions of the system bandwidth.
  • the eNB may send the PDSCH to specific UEs in specific portions of the system bandwidth.
  • the eNB may send the PSS, SSS, PBCH, PCFICH, and PHICH in a broadcast manner to all UEs, may send the PDCCH in a unicast manner to specific UEs, and may also send the PDSCH in a unicast manner to specific UEs.
  • Each resource element may cover one subcarrier in one symbol period and may be used to send one modulation symbol, which may be a real or complex value.
  • Resource elements not used for a reference signal in each symbol period may be arranged into resource element groups (REGs) .
  • Each REG may include four resource elements in one symbol period.
  • the PCFICH may occupy four REGs, which may be spaced approximately equally across frequency, in symbol period 0.
  • the PHICH may occupy three REGs, which may be spread across frequency, in one or more configurable symbol periods. For example, the three REGs for the PHICH may all belong in symbol period 0 or may be spread in symbol periods 0, 1, and 2.
  • the PDCCH may occupy 9, 18, 36, or 72 REGs, which may be selected from the available REGs, in the first M symbol periods, for example. Only certain combinations of REGs may be allowed for the PDCCH.
  • a UE may know the specific REGs used for the PHICH and the PCFICH.
  • the UE may search different combinations of REGs for the PDCCH.
  • the number of combinations to search is typically less than the number of allowed combinations for the PDCCH.
  • An eNB may send the PDCCH to the UE in any of the combinations that the UE will search.
  • Fig. 3 is provided as an example. Other examples are possible and may differ from what was described above in connection with Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of an uplink (UL) frame structure in LTE, in accordance with various aspects of the present disclosure.
  • the available resource blocks for the UL may be partitioned into a data section and a control section.
  • the control section may be formed at the two edges of the system bandwidth and may have a configurable size.
  • the resource blocks in the control section may be assigned to UEs for transmission of control information.
  • the data section may include all resource blocks not included in the control section.
  • the UL frame structure results in the data section including contiguous subcarriers, which may allow a single UE to be assigned all of the contiguous subcarriers in the data section.
  • a UE may be assigned resource blocks 410a, 410b in the control section to transmit control information to an eNB.
  • the UE may also be assigned resource blocks 420a, 420b in the data section to transmit data to the eNB.
  • the UE may transmit control information in a physical UL control channel (PUCCH) on the assigned resource blocks in the control section.
  • the UE may transmit only data or both data and control information in a physical UL shared channel (PUSCH) on the assigned resource blocks in the data section.
  • a UL transmission may span both slots of a subframe and may hop across frequencies.
  • a set of resource blocks may be used to perform initial system access and achieve UL synchronization in a physical random access channel (PRACH) 430.
  • the PRACH 430 carries a random sequence and cannot carry any UL data/signaling.
  • Each random access preamble occupies a bandwidth corresponding to six consecutive resource blocks.
  • the starting frequency is specified by the network. That is, the transmission of the random access preamble is restricted to certain time and frequency resources. There is no frequency hopping for the PRACH.
  • the PRACH attempt is carried in a single subframe (e.g., of 1 ms) or in a sequence of few contiguous subframes and a UE can make only a single PRACH attempt per frame (e.g., of 10 ms) .
  • Fig. 4 is provided as an example. Other examples are possible and may differ from what was described above in connection with Fig. 4.
  • Fig. 5 is a diagram illustrating an example 500 of a radio protocol architecture for a user plane and a control plane in LTE, in accordance with various aspects of the present disclosure.
  • the radio protocol architecture for the UE and the eNB is shown with three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various physical layer signal processing functions.
  • the L1 layer will be referred to herein as the physical layer 510.
  • Layer 2 (L2 layer) 520 is above the physical layer 510 and is responsible for the link between the UE and eNB over the physical layer 510.
  • the L2 layer 520 includes, for example, a media access control (MAC) sublayer 530, a radio link control (RLC) sublayer 540, and a packet data convergence protocol (PDCP) sublayer 550, which are terminated at the eNB on the network side.
  • MAC media access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • the UE may have several upper layers above the L2 layer 520 including a network layer (e.g., IP layer) that is terminated at a packet data network (PDN) gateway on the network side, and an application layer that is terminated at the other end of the connection (e.g., a far end UE, a server, and/or the like) .
  • IP layer e.g., IP layer
  • PDN packet data network gateway
  • the PDCP sublayer 550 provides retransmission of lost data in handover.
  • the PDCP sublayer 550 also provides header compression for upper layer data packets to reduce radio transmission overhead, security by ciphering the data packets, and handover support for UEs between eNBs.
  • the RLC sublayer 540 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to hybrid automatic repeat request (HARQ) .
  • HARQ hybrid automatic repeat request
  • the MAC sublayer 530 provides multiplexing between logical and transport channels.
  • the MAC sublayer 530 is also responsible for allocating the various radio resources (e.g., resource blocks) in one cell among the UEs.
  • the MAC sublayer 530 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and eNB is substantially the same for the physical layer 510 and the L2 layer 520 with the exception that there is no header compression function for the control plane.
  • the control plane also includes a radio resource control (RRC) sublayer 560 in Layer 3 (L3 layer) .
  • the RRC sublayer 560 is responsible for obtaining radio resources (i.e., radio bearers) and for configuring the lower layers using RRC signaling between the eNB and the UE.
  • Fig. 5 is provided as an example. Other examples are possible and may differ from what was described above in connection with Fig. 5.
  • Fig. 6 is a diagram illustrating example components 600 of eNB 110, 210, 230 and UE 145, 250 in an access network, in accordance with various aspects of the present disclosure.
  • eNB 110, 210, 230 may include a controller/processor 605, a TX processor 610, a channel estimator 615, an antenna 620, a transmitter 625TX, a receiver 625RX, an RX processor 630, and a memory 635.
  • Fig. 6 is a diagram illustrating example components 600 of eNB 110, 210, 230 and UE 145, 250 in an access network, in accordance with various aspects of the present disclosure.
  • eNB 110, 210, 230 may include a controller/processor 605, a TX processor 610, a channel estimator 615, an antenna 620, a transmitter 625TX, a receiver 625RX, an RX processor 630, and a memory 635.
  • Fig. 6 is a diagram illustrating
  • UE 145, 250 may include a receiver RX, for example, of a transceiver TX/RX 640, a transmitter TX, for example, of a transceiver TX/RX 640, an antenna 645, an RX processor 650, a channel estimator 655, a controller/processor 660, a memory 665, a data sink 670, a data source 675, and a TX processor 680.
  • a receiver RX for example, of a transceiver TX/RX 640
  • a transmitter TX for example, of a transceiver TX/RX 640
  • an antenna 645 for example, an RX processor 650, a channel estimator 655, a controller/processor 660, a memory 665, a data sink 670, a data source 675, and a TX processor 680.
  • controller/processor 605 implements the functionality of the L2 layer.
  • the controller/processor 605 provides header compression, ciphering, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocations to the UE 145, 250 based, at least in part, on various priority metrics.
  • the controller/processor 605 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 145, 250.
  • the TX processor 610 implements various signal processing functions for the L1 layer (e.g., physical layer) .
  • the signal processing functions includes coding and interleaving to facilitate forward error correction (FEC) at the UE 145, 250 and mapping to signal constellations based, at least in part, on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • FEC forward error correction
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • Each stream is then mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 615 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 145, 250.
  • Each spatial stream is then provided to a different antenna 620 via a separate transmitter TX, for example, of transceiver TX/RX 625. Each such transmitter TX modulates an RF carrier with a respective spatial stream for transmission.
  • each receiver RX for example, of a transceiver TX/RX 640 receives a signal through its respective antenna 645.
  • Each such receiver RX recovers information modulated onto an RF carrier and provides the information to the receiver (RX) processor 650.
  • the RX processor 650 implements various signal processing functions of the L1 layer.
  • the RX processor 650 performs spatial processing on the information to recover any spatial streams destined for the UE 145, 250. If multiple spatial streams are destined for the UE 145, 250, the spatial streams may be combined by the RX processor 650 into a single OFDM symbol stream.
  • the RX processor 650 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the eNB 110, 210, 230. These soft decisions may be based, at least in part, on channel estimates computed by the channel estimator 655.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the eNB 110, 210, 230 on the physical channel.
  • the data and control signals are then provided to the controller/processor 660.
  • the controller/processor 660 implements the L2 layer.
  • the controller/processor 660 can be associated with a memory 665 that stores program codes and data.
  • the memory 665 may include a non-transitory computer-readable medium.
  • the controller/processor 660 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the core network.
  • the upper layer packets are then provided to a data sink 670, which represents all the protocol layers above the L2 layer.
  • Various control signals may also be provided to the data sink 670 for L3 processing.
  • the controller/processor 660 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • a data source 675 is used to provide upper layer packets to the controller/processor 660.
  • the data source 675 represents all protocol layers above the L2 layer.
  • the controller/processor 660 implements the L2 layer for the user plane and the control plane by providing header compression, ciphering, packet segmentation and reordering, and multiplexing between logical and transport channels based, at least in part, on radio resource allocations by the eNB 110, 210, 230.
  • the controller/processor 660 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the eNB 110, 210, 230.
  • Channel estimates derived by a channel estimator 655 from a reference signal or feedback transmitted by the eNB 110, 210, 230 may be used by the TX processor 680 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 680 are provided to different antenna 645 via separate transmitters TX, for example, of transceivers TX/RX 640. Each transmitter TX, for example, of transceiver TX/RX 640 modulates an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the eNB 110, 210, 230 in a manner similar to that described in connection with the receiver function at the UE 145, 250.
  • Each receiver RX for example, of transceiver TX/RX 625 receives a signal through its respective antenna 620.
  • Each receiver RX for example, of transceiver TX/RX 625 recovers information modulated onto an RF carrier and provides the information to a RX processor 630.
  • the RX processor 630 may implement the L1 layer.
  • the controller/processor 605 implements the L2 layer.
  • the controller/processor 605 can be associated with a memory 635 that stores program code and data.
  • the memory 635 may be referred to as a computer-readable medium.
  • the control/processor 605 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the UE 145, 250.
  • Upper layer packets from the controller/processor 605 may be provided to the core network.
  • the controller/processor 605 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • one or more components of UE 145, 250 may be included in a housing 145’, as shown in Fig 1.
  • One or more components of UE 145, 250 or eNB 110, 210, 230 may be configured to perform scheduling request suppression during multimedia communication, as described in more detail elsewhere herein.
  • the controller/processor 660 and/or other processors and modules of UE 145, 250 may perform or direct operations of, for example, process 800 of Fig. 8 and/or other processes as described herein.
  • the controller/processor 605 and/or other processors and modules of eNB 110, 210, 230 may perform or direct operations of, for example, process 900 of Fig. 9 and/or other processes as described herein.
  • one or more of the components shown in Fig. 6 may be employed to perform process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes for the techniques described herein.
  • Fig. 6 The number and arrangement of components shown in Fig. 6 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 6. Furthermore, two or more components shown in Fig. 6 may be implemented within a single component, or a single component shown in Fig. 6 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of components (e.g., one or more components) shown in Fig. 6 may perform one or more functions described as being performed by another set of components shown in Fig. 6.
  • Figs. 7A and 7B are diagrams illustrating an example 700 of scheduling request suppression during multimedia communication, in accordance with various aspects of the present disclosure.
  • An eNB 110, 210, 230 may allocate network resources (e.g., uplink network resources) to facilitate communication by a UE 145, 250. For example, the eNB 110, 210, 230 may transmit information identifying an uplink grant to the UE 145, 250, and the UE 145, 250 may communicate with the eNB 110, 210, 230 using network resources (e.g., particular subframes and/or resource blocks) corresponding to the uplink grant. The eNB 110, 210, 230 may transmit the uplink grant as a response to receiving a scheduling request.
  • network resources e.g., uplink network resources
  • the UE 145, 250 may transmit a scheduling request to the eNB 110, 210, 230 to request network resources, and the eNB 110, 210, 230 may determine network resources for the UE 145, 250 and provide an uplink grant identifying the network resources based at least in part on receiving the scheduling request.
  • a control channel that is to be used to provide the uplink grant such as a PUSCH, may be associated with a limited network resource allocation.
  • the eNB 110, 210, 230 may be capacity limited to providing uplink grants to a particular quantity of UEs 145, 250 (e.g., fewer than all UEs 145, 250) .
  • the eNB 110, 210, 230 may enable a semi-persistent scheduling (SPS) mode.
  • SPS semi-persistent scheduling
  • UEs 145, 250 may be configured by the eNB 110, 210, 230 with an SPS-radio network temporary identifier (SPS-RNTI) , rather than a cell-RNTI (C-RNTI) .
  • SPS-RNTI SPS-radio network temporary identifier
  • C-RNTI cell-RNTI
  • the eNB 110, 210, 230 may facilitate repeated utilization of an uplink grant by the UEs 145, 250, such as for voice over LTE (VoLTE) communication.
  • VoIP voice over LTE
  • UE 145, 250 may receive a static assignment, such as a resource block assignment, a modulation and coding scheme assignment, and/or the like, and may utilize the static assignment for a plurality of time intervals without requiring a new uplink grant for each time interval.
  • a static assignment such as a resource block assignment, a modulation and coding scheme assignment, and/or the like
  • some deployments of semi-persistent scheduling may result in semi-persistent scheduling deactivation, which may result in a relatively large delay for voice traffic, when the voice traffic is transmitted with another bearer.
  • other deployments of semi-persistent scheduling may be inflexible in adapting to changes to voice traffic patterns and may result in an inefficient utilization of PUSCH resources.
  • LTE PUSCH pre-scheduling may be enabled for the eNB 110, 210, 230 to permit the eNB 110, 210, 230 to provide uplink grants for multiple time periods.
  • the eNB 110, 210, 230 may provide uplink grants to a UE 145, 250 without receiving scheduling requests to perform pre-scheduling.
  • the eNB 110, 210, 230 may utilize a best effort traffic algorithm to assign uplink grants to a group of UEs 145, 250. However, during pre-scheduling, the UEs 145, 250 may continue to provide scheduling requests when the eNB 110, 210, 230 is providing uplink grants that are not a response to receiving scheduling requests.
  • Techniques and apparatuses, described herein, permit a UE 145, 250 to suppress scheduling requests during multimedia communications. For example, based at least in part on determining that a set of criteria are satisfied, such as performing a multimedia communication, an SPS mode not being activated, a VoLTE silent mode not being activated, an uplink grant having been received without transmitting a scheduling request, and/or the like, the UE 145, 250 may forego transmission of at least one scheduling request. In this way, a power gain may be achieved for a VoLTE talk mode and a VoLTE silent mode. Moreover, a wakeup time (e.g., associated with transmission of a scheduling request) can be reduced and/or eliminated by suppressing transmission of the scheduling request.
  • a wakeup time e.g., associated with transmission of a scheduling request
  • aspects, described herein may enable the eNB 110, 210, 230 to trigger pre-scheduling, and/or configure semi-persistent scheduling and scheduling request masking for a logical channel based at least in part on the UE 145, 250 providing information identifying a type of network traffic that the UE 145, 250 is to communicate.
  • Fig. 7A is an example of suppressing transmission of a scheduling request.
  • an eNB 110, 210, 230 may communicate with a UE 145, 250.
  • UE 145, 250 may be transmitting a multimedia communication to the eNB 110, 210, 230, such as a streaming audio communication, a streaming video communication, and/or the like.
  • the UE 145, 250 may be engaging in a voice over Internet protocol (VoIP) or a VoLTE call.
  • the UE 145, 250 may provide audio data via a VoIP/VoLTE call to the eNB 110, 210, 230.
  • VoIP voice over Internet protocol
  • a semi-persistent scheduling mode may not be activated during the multimedia communication.
  • the eNB 110, 210, 230 may not be configured to use the semi-persistent scheduling mode.
  • the eNB 110, 210 may be configured to use the semi-persistent scheduling mode but may have the semi-persistent scheduling mode deactivated.
  • the eNB 110, 210, 230 may determine to provide uplink grants based at least in part on pre-scheduling. For example, the eNB 110, 210, 230 may determine to transmit the uplink grants without receiving a scheduling request from a UE 145, 250. In some aspects, the eNB 110, 210, 230 may trigger transmission of an uplink grant without receiving a scheduling request from, for example, the UE 145, 250. For example, the eNB 110, 210, 230 may determine that a set of criteria associated with pre-scheduling is satisfied, and may determine to utilize pre-scheduling to transmit uplink grants based at least in part on determining that the set of criteria is satisfied.
  • the set of criteria may include a traffic pattern criterion. For example, based at least in part on the eNB 110, 210, 230 receiving an indication or determining that VoLTE traffic is occurring, that best effort traffic assignment is occurring, and/or the like, the eNB 110, 210, 230 may determine to perform pre-scheduling. In some aspects, the set of criteria may include a network signaling criterion.
  • the eNB 110, 210, 230 may determine to perform pre-scheduling.
  • the set of criteria may include a PUSCH criterion.
  • the eNB 110, 210, 230 may determine to perform pre-scheduling.
  • the set of criteria may include a connected mode discontinuous reception (CDRX) mode criterion. For example, based at least in part on the eNB 110, 210, 230 determining that the UE 145, 250 is operating in a CDRX mode, that a CDRX mode cycle satisfies a threshold period of time, and/or the like, the eNB 110, 210, 230 may determine to perform pre-scheduling.
  • the set of criteria may include a VoLTE mode criterion or another media communication mode criterion.
  • the eNB 110, 210, 230 may determine to perform pre-scheduling.
  • the set of criteria may include a VoIP mode criterion.
  • the eNB 110, 210, 230 may determine to perform pre-scheduling.
  • another type of multimedia communication mode criterion may be utilized.
  • the set of criteria may include a scheduling request period criterion.
  • the eNB 110, 210, 230 may determine to perform pre-scheduling.
  • the eNB 110, 210, 230 may perform the determining based at least in part on receiving information from the UE 145, 250, such as information identifying a mode of the UE 145, 250, a traffic indication identifying a type of traffic that the UE 145, 250 is to provide, and/or the like.
  • the eNB 110, 210, 230 may determine to provide the uplink grants based at least in part on a type of traffic being transmitted by UE 145, 250. For example, based at least in part on determining that UE 145, 250 is to transmit streaming voice traffic, streaming video traffic, VoIP traffic, and/or the like, the eNB 110, 210, 230 may determine to perform pre-scheduling. In some aspects, the eNB 110, 210, 230 may determine to provide the uplink grants when the UE 145, 250 is operating in a particular VoIP mode.
  • the eNB 110, 210, 230 may determine to provide the uplink grants when the UE 145, 250 is operating in a silent mode of a VoIP communication, a talk mode of a VoIP communication, and/or the like.
  • silent mode silence indication (SID) frames may be generated every 160ms.
  • SID frames may be generated every 20ms or 40ms.
  • the eNB 110, 210, 230 may determine to transmit uplink grants based at least in part on determining to perform pre-scheduling. For example, the eNB 110, 210, 230 may determine to perform pre-scheduling based at least in part on information received from the UE 145, 250, such as information from the UE 145, 250 indicating that the UE 145, 250 is transmitting or is to transmit VoLTE traffic. Additionally, or alternatively, the UE 145, 250 may transmit a traffic indication identifying another voice packet pattern, a packet size, and/or the like to the eNB 110, 210, 230 to trigger pre-scheduling by the eNB 110, 210 230.
  • the UE 145, 250 may receive, based at least in part on transmitting the traffic indication, a response message that causes the UE 145, 250 to forgo transmission of a scheduling request.
  • the UE 145, 250 may transmit a scheduling request to obtain an uplink grant.
  • the eNB 110, 210, 230 may determine to perform pre-scheduling based at least in part on information identifying a capability. For example, the eNB 110, 210, 230 may determine to configure a capability relating to scheduling request masking, and the eNB 110, 210, 230 may configure the UE 145, 250 to perform scheduling request masking based at least in part on the indication that the UE 145, 250 is capable of scheduling request masking.
  • the eNB 110, 210, 230 may determine to perform pre-scheduling based at least in part on determining that semi-persistent scheduling is active and that scheduling request masking is configured for a logical channel (e.g., a logical channel identifier (LCID) ) .
  • a logical channel e.g., a logical channel identifier (LCID)
  • the eNB 110, 210, 230 may override the semi-persistent scheduling grants based at least in part on performing dynamic grants and may configure scheduling request masking to perform pre-scheduling.
  • the eNB 110, 210, 230 may transmit a set of uplink grants to the UE 145, 250 and the UE 145, 250 may receive the set of uplink grants. For example, based at least in part on determining to perform pre-scheduling, the eNB 110, 210, 230 may provide a set of uplink grants that is not a response to a set of scheduling requests by the UE 145, 250. In some aspects, the eNB 110, 210, 230 may employ a cell radio network temporary identifier (C-RNTI) to provide a dynamic uplink grant to the UE 145, 250.
  • C-RNTI cell radio network temporary identifier
  • the eNB 110, 210, 230 may transmit the grant to the C-RNTI to identify a set of resources allocated for the UE 145, 250 (e.g., the uplink grant) .
  • the eNB 110, 210, 230 may provide the grant to the C-RNTI to override a semi-persistent grant provided to the SPS-RNTI (e.g., to override an SPS-RNTI, which may override semi-persistent scheduling) and scheduling request masking (e.g., to cause the UE 145, 250 to suppress transmission of scheduling requests) .
  • the eNB 110, 210, 230 may transmit an indication that the UE 145, 250 is to forgo transmission of the scheduling request. For example, the eNB 110, 210, 230 may transmit an uplink grant that is not a response to a scheduling request from the UE 145, 250 to cause the UE 145, 250 to forgo transmission of a scheduling request.
  • an indication to forgo transmission may be associated with a set of logical channels, such that scheduling requests are masked for some logical channels and not for other logical channels of the set of logical channels. In this case, the UE 145, 250 may determine to forgo transmission of the scheduling request based at least in part on receiving the uplink grant. In some aspects, the forgoing may occur with or without semi-persistent scheduling being activated.
  • the UE 145, 250 may forgo transmission of scheduling requests. For example, based at least in part on receiving the uplink grants during multimedia communication and when semi-persistent scheduling is not activated, the UE 145, 250 may forgo transmission of a scheduling request to the eNB 110, 210, 230. In some aspects, the UE 145, 250 may later transmit a scheduling request when forgoing transmission of a first scheduling request. For example, the UE 145, 250 may forgo transmission of a scheduling request to obtain an uplink grant for a VoIP call associated with a first logical channel, and may transmit a scheduling request to obtain another uplink grant for non-multimedia traffic associated with a second logical channel.
  • the UE 145, 250 may forgo the transmission of a scheduling request during a talk mode or a silent mode of a VoIP communication.
  • the UE 145, 250 may utilize a scheduling request mask to suppress transmission of a scheduling request. For example, based at least in part on the eNB 110, 210, 230 transmitting a C-RNTI to convey the uplink grants, the eNB 110, 210, 230 may configure semi-persistent scheduling (e.g., override semi-persistent scheduling) and scheduling request masking to suppress transmission of scheduling requests for a logical channel (e.g., an LCID) associated with the UE 145, 250.
  • a logical channel e.g., an LCID
  • the UE 145, 250 may forgo transmitting a scheduling request based at least in part on signaling from the eNB 110, 210, 230.
  • the eNB 110, 210, 230 may transmit signaling (e.g., via a signaling protocol) indicating that the eNB 110, 210, 230 is to periodically schedule uplink grants based at least in part on a talk state of the UE 145, 250 and without a scheduling request being transmitted.
  • signaling e.g., via a signaling protocol
  • the UE 145, 250 may override scheduling request masking to transmit a scheduling request.
  • the UE 145, 250 may transmit the multimedia communication.
  • the UE 145, 250 may transmit the multimedia communication using the uplink grants.
  • the UE 145, 250 may transmit a streaming video communication, a streaming audio communication, a VoIP communication, a VoLTE communication, and/or the like.
  • the UE 145, 250 may determine to transmit a scheduling request. For example, the UE 145, 250 may determine to transmit a scheduling request to obtain an uplink grant for non-multimedia traffic concurrent with forgoing transmission of a scheduling request to obtain an uplink grant for multimedia traffic. Additionally, or alternatively, the UE 145, 250 may determine to transmit a scheduling request subsequent to forgoing transmission of a scheduling request and based at least in part on transferring from a first mode that is associated with forgoing transmission of scheduling requests to a second mode that is not associated with forgoing transmission of scheduling requests.
  • the UE 145, 250 may determine to transmit a scheduling request.
  • the UE 145, 250 may determine to transmit a scheduling request. Additionally, or alternatively, the UE 145, 250 may determine to transmit a scheduling request based at least in part on an expiration of a timer and a configuration of a scheduling request mask.
  • the UE 145, 250 may transmit a scheduling request. Additionally, or alternatively, the UE 145, 250 may determine to transmit the scheduling request based at least in part on failing to receiving an uplink grant. For example, after failing to receiving an uplink grant for a threshold period of time, the UE 145, 250 may transmit a scheduling request to obtain an uplink grant.
  • the UE 145, 250 may transmit a scheduling request based at least in part on a parameter relating to a network. For example, based at least in part on the UE 145, 250 determining that a voice frame delay, such as an uplink one-way delay between the UE 145, 250 and another entity, satisfies a threshold, the UE 145, 250 may transmit a scheduling request to the eNB 110, 210, 230 to obtain an uplink grant. In some aspects, the UE 145, 250 may transmit the scheduling request based at least in part on transferring from a silent mode to an active mode.
  • a voice frame delay such as an uplink one-way delay between the UE 145, 250 and another entity
  • the UE 145, 250 may overwrite a scheduling request mask configuration for active voice burst transmission to transmit a scheduling request.
  • the UE 145, 250 may transmit an uplink grant for burst transmission, and may provide a talk state packet pattern indication, which the eNB 110, 210, 230 may utilize to configure pre-scheduling for subsequent uplink grants.
  • the eNB 110, 210, 230 may determine to transmit uplink grants to the UE 145, 250 as a response to the scheduling request, and may transmit the uplink grants. For example, after transmitting an uplink grant during pre-scheduling and receiving a scheduling request, the eNB 110, 210, 230 may deactivate pre-scheduling and may transmit an uplink grant as a response to the scheduling request.
  • the eNB 110, 210, 230 may provide the second uplink grants to the UE 145, 250.
  • Figs. 7A and 7B are provided as an example. Other examples are possible and may differ from what was described with respect to Fig. 7A and 7B.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
  • Example process 800 is an example where a user equipment (e.g., UE 145, 250) performs suppression of scheduling requests during multimedia communication.
  • a user equipment e.g., UE 145, 250
  • process 800 may include determining, by a user equipment when engaged in a multimedia communication, that the user equipment is receiving an uplink grant without sending a scheduling request (block 810) .
  • the UE 145, 250 may determine, when engaged in a multimedia communication, that the UE 145, 250 is receiving an uplink grant without sending a scheduling request.
  • a semi-persistent scheduling mode may not be activated when the user equipment is receiving the uplink grant.
  • the UE 145, 250 may receive an uplink grant sized to accommodate a voice frame while the UE is in the silence portion.
  • the UE 145, 250 may transmit padding.
  • the UE 145, 250 may determine that pre-scheduling is used.
  • process 800 may include forgoing, by the user equipment, transmission of at least one scheduling request based at least in part on determining that the user equipment is receiving the uplink grant (block 820) .
  • the UE 145, 250 may forgo transmission of at least one scheduling request based at least in part on determining that the UE 145, 250 is receiving the uplink grant.
  • the user equipment may determine that a set of criteria relating to the user equipment is satisfied and forgo the transmission of the at least one scheduling request based at least in part on determining that the set of criteria relating to the user equipment is satisfied.
  • the set of criteria may include at least one of a traffic pattern criterion, a network signaling criterion, a physical uplink shared channel (PUSCH) criterion, a connected mode discontinuous reception (CDRX) mode criterion, a voice over long term evolution (VoLTE) mode criterion, or a scheduling request period criterion.
  • a traffic pattern criterion a network signaling criterion
  • PUSCH physical uplink shared channel
  • CDRX connected mode discontinuous reception
  • VoIP voice over long term evolution
  • transmission of the uplink grant without the user equipment transmitting the scheduling request may be triggered by an access point associated with the multimedia communication.
  • the user equipment may be operating in a silent mode of the user equipment.
  • the transmission of the at least one scheduling request may be suppressed using a scheduling request mask.
  • the user equipment may determine that a set of criteria relating to the user equipment is not satisfied after forgoing the transmission of the at least one scheduling request and the user equipment may transmit a scheduling request to obtain another uplink grant based at least in part on determining that the set of criteria relating to the user equipment is not satisfied.
  • the multimedia communication may include at least one of a streaming audio call, a streaming video call, or a VoIP call.
  • the user equipment may receive the uplink grant based at least in part on a pre-scheduling of uplink grants.
  • the user equipment may transmit the multimedia communication using the uplink grant.
  • the user equipment may transmit a scheduling request to obtain another uplink grant for non-multimedia traffic.
  • the user equipment may transmit a scheduling request to obtain another uplink grant based at least in part on a transfer from a first mode associated with forgoing the transmission of the at least one scheduling request to a second mode.
  • the user equipment may transmit a scheduling request to obtain another uplink grant based at least in part on determining that a response message relating to a traffic pattern indicator is not received.
  • the user equipment may transmit a scheduling request to obtain another uplink grant based at least in part on a timer indication and a configuration of a scheduling request mask.
  • the user equipment may perform the determining during at least one of a talk mode or a silent mode of a VoIP communication.
  • the user equipment may perform the forgoing of the transmission during at least one of a talk mode or a silent mode of a VoIP communication.
  • process 8 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 800. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • Fig. 9 is a diagram illustrating an example process 900 performed, for example, by an access point, in accordance with various aspects of the present disclosure.
  • Example process 900 is an example where an access point (e.g., eNB 110, 210, 230) performs pre-scheduling of uplink grants for a UE that is forgoing transmission of scheduling requests during multimedia communication.
  • an access point e.g., eNB 110, 210, 230
  • process 900 may include determining, by an access point, to perform scheduling to provide an uplink grant to a user equipment engaging in a multimedia communication (block 910) .
  • the eNB 110, 210, 230 may determine to perform pre-scheduling to provide an uplink grant to a UE 145, 250 engaging in a multimedia communication.
  • the scheduling may be pre-scheduling or semi-persistent scheduling with a configured uplink grant cycle.
  • the scheduling may be semi-persistent scheduling using a different uplink grant cycle from a stored uplink grant cycle.
  • process 900 may include configuring, by the access point, semi-persistent scheduling and scheduling request masking for a logical channel to cause the user equipment to forgo transmission of a scheduling request (block 920) .
  • the eNB 110, 210, 230 may configure semi-persistent scheduling and scheduling request masking for a logical channel to cause the UE 145, 250 to forgo transmission of the scheduling request.
  • the process 900 further comprises performing pre-scheduling to provide an uplink grant to the user equipment engaging in a multimedia communication.
  • the access point may employ a grant to C-RNTI to override a semi-persistent RNTI (SPS-RNTI) uplink grant.
  • SPS-RNTI semi-persistent RNTI
  • the access point may determine to perform the scheduling (e.g., pre-scheduling) based at least in part on determining that the traffic is VoLTE traffic or based at least in part on a received indication of VoLTE traffic from the user equipment.
  • the scheduling e.g., pre-scheduling
  • the access point may transmit, to the user equipment, an indication that the user equipment is to forgo transmission of the scheduling request.
  • the access point may receive the scheduling request from the user equipment and may provide another uplink grant as a response to the scheduling request.
  • the scheduling request may be provided based at least in part on the uplink grant not being received by the user equipment.
  • the scheduling request may be provided based at least in part on the semi-persistent scheduling and scheduling request masking being overridden by the user equipment.
  • the scheduling request may be provided based at least in part on a transfer of the user equipment from a first mode to a second mode.
  • the access point may receive, from the user equipment, an indication that the user equipment is to communicate voice traffic and may disable the scheduling based at least in part on the indication that the user equipment is to communicate voice traffic.
  • the access point may receive, from the user equipment, an indication that the user equipment is capable of scheduling request masking, and may determining to perform the scheduling based at least in part on the indication. In some aspects, the access point may perform pre-scheduling to provide the uplink grant to the user equipment engaging in the multimedia communication.
  • process 9 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 900. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • a utilization of power resources and network resources may be reduced.
  • a delay in processing of other information by the UE 145, 250 may be reduced relative to the UE 145, 250 performing processing to transmit the scheduling request.
  • the eNB 110, 210, 230 communicating with the UE 145, 250 to configure pre-scheduling, the eNB 110, 210, 230 reduces a likelihood of excessive utilization of PUSCH resources relative to performing semi-persistent scheduling.
  • a voice traffic delay associated with deactivation of semi-persistent scheduling may be reduced by performing pre-scheduling based at least in part on communication between the UE 145, 250 and the eNB 110, 210, 230 (e.g., the UE 145, 250 providing a traffic pattern indication to the eNB 110, 210, 230, the eNB 110, 210, 230 configuring scheduling request masking and overriding semi-persistent scheduling for the UE 145, 250, and/or the like) .
  • the term component is intended to be broadly construed as hardware, firmware, or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, or a combination of hardware and software.
  • satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may determine, when engaged in a multimedia communication, that the user equipment is receiving an uplink grant without sending a scheduling request. A semi-persistent scheduling mode may not be activated when the user equipment is receiving the uplink grant. In some aspects, the user equipment may forgo transmission of at least one scheduling request based at least in part on determining that the user equipment is receiving the uplink grant. In some aspects, an access point may determine to perform scheduling to provide an uplink grant to a user equipment engaging in a multimedia communication. In some aspects, the access point may configure semi-persistent scheduling and scheduling request masking for a logical channel to cause the user equipment to forgo transmission of a scheduling request. Numerous other aspects are provided.

Description

TECHNIQUES AND APPARATUSES FOR SCHEDULING REQUEST (SR) SUPPRESSION DURING MULTIMEDIA COMMUNICATION
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication, and more particularly to techniques and apparatuses for scheduling request suppression during multimedia communication.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services, such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency divisional multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, a national, a regional, and even a global level. An example of a telecommunication standard is Long Term Evolution (LTE) . LTE is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by Third Generation Partnership Project  (3GPP) . LTE is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, using new spectrum, and integrating with other open standards using OFDMA on the downlink (DL) , SC-FDMA on the uplink (UL) , and multiple-input multiple-output (MIMO) antenna technology.
SUMMARY
In some aspects, a method of wireless communication may include determining, by a user equipment when engaged in a multimedia communication, that the user equipment is receiving an uplink grant without sending a scheduling request. A semi-persistent scheduling mode may not be activated when the user equipment is receiving the uplink grant. In some aspects, the method may include forgoing, by the user equipment, transmission of at least one scheduling request based at least in part on determining that the user equipment is receiving the uplink grant.
In some aspects, a wireless communication device may include a memory and one or more processors operatively coupled to the memory. The one or more processors may be configured to determine, when engaged in a multimedia communication, that the wireless communication device is receiving an uplink grant without sending a scheduling request. A semi-persistent scheduling mode may not be activated when the wireless communication device is receiving the uplink grant. In some aspects, the one or more processors may be configured to forgo transmission of at least one scheduling request based at least in part on determining that the wireless communication device is receiving the uplink grant.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when  executed by one or more processors of a wireless communication device, may cause the one or more processors to determine, when engaged in a multimedia communication, that the wireless communication device is receiving an uplink grant without sending a scheduling request. A semi-persistent scheduling mode may not be activated when the wireless communication device is receiving the uplink grant. In some aspects, the one or more instructions, when executed by the one or more processors, may cause the one or more processors to forgo transmission of at least one scheduling request based at least in part on determining that the wireless communication device is receiving the uplink grant.
In some aspects, an apparatus for wireless communication may include means for determining, when engaged in a multimedia communication, that the apparatus is receiving an uplink grant without sending a scheduling request. A semi-persistent scheduling mode may not be activated when the apparatus is receiving the uplink grant. In some aspects, the apparatus may include means for forgoing transmission of at least one scheduling request based at least in part on determining that the apparatus is receiving the uplink grant.
In some aspects, a method of wireless communication may include determining, by an access point, to perform scheduling to provide an uplink grant to a user equipment engaging in a multimedia communication. The scheduling may be pre-scheduling or semi-persistent scheduling with a configured uplink grant cycle. In some aspects, the method may include configuring, by the access point, semi-persistent scheduling and scheduling request masking for a logical channel to cause the user equipment to forgo transmission of the scheduling request.
In some aspects, a wireless communication device may include a memory and one or more processors operatively coupled to the memory. The one or more  processors may be configured to determine to perform scheduling to provide an uplink grant to a user equipment engaging in a multimedia communication. The scheduling may be pre-scheduling or semi-persistent scheduling with a configured uplink grant cycle. In some aspects, the one or more processors may be configured to configure semi-persistent scheduling and scheduling request masking for a logical channel to cause the user equipment to forgo transmission of a scheduling request.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a wireless communication device, may cause the one or more processors to determine to perform scheduling to provide an uplink grant to a user equipment engaging in a multimedia communication. The scheduling may be pre-scheduling or semi-persistent scheduling with a configured uplink grant cycle. In some aspects, the one or more instructions, when executed by the one or more processors, may cause the one or more processors to configure semi-persistent scheduling and scheduling request masking for a logical channel to cause the user equipment to forgo transmission of a scheduling request.
In some aspects, an apparatus for wireless communication may include means for determining to perform scheduling to provide an uplink grant to a user equipment engaging in a multimedia communication. The scheduling may be pre-scheduling or semi-persistent scheduling with a configured uplink grant cycle. In some aspects, the apparatus may include means for configuring semi-persistent scheduling and scheduling request masking for a logical channel to cause the user equipment to forgo transmission of a scheduling request.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, wireless  communication device, access point, base station, and processing system as substantially described herein with reference to and as illustrated by the accompanying drawings.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purpose of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example deployment in which multiple wireless networks have overlapping coverage, in accordance with various aspects of the present disclosure.
Fig. 2 is a diagram illustrating an example access network in an LTE network architecture, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example of a downlink frame structure in LTE, in accordance with various aspects of the present disclosure.
Fig. 4 is a diagram illustrating an example of an uplink frame structure in LTE, in accordance with various aspects of the present disclosure.
Fig. 5 is a diagram illustrating an example of a radio protocol architecture for a user plane and a control plane in LTE, in accordance with various aspects of the present disclosure.
Fig. 6 is a diagram illustrating example components of an evolved Node B and a user equipment in an access network, in accordance with various aspects of the present disclosure.
Figs. 7A and 7B are diagrams illustrating an example of scheduling request suppression during multimedia communication, in accordance with various aspects of the present disclosure.
Fig. 8 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
Fig. 9 is a diagram illustrating an example process performed, for example, by an access point, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details.
The techniques described herein may be used for one or more of various wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single carrier FDMA (SC-FDMA) networks, or other types of networks. A CDMA network may implement a radio access technology (RAT) such as universal terrestrial radio access (UTRA) , CDMA2000, and/or the like. UTRA may include wideband CDMA (WCDMA) and/or other variants of CDMA. CDMA2000 may include Interim Standard (IS) -2000, IS-95 and IS-856 standards. IS-2000 may also be referred to as 1x radio transmission technology (1xRTT) , CDMA2000 1X, and/or the like. A TDMA network may implement a RAT such as global system for mobile communications (GSM) , enhanced data rates for GSM evolution (EDGE) , or GSM/EDGE radio access network (GERAN) . An OFDMA network may implement a RAT such as evolved UTRA (E-UTRA) , ultra mobile broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, and/or the like. UTRA and E-UTRA may be part of the universal mobile telecommunication system (UMTS) . 3GPP long-term evolution (LTE) and LTE-Advanced (LTE-A) are example releases of UMTS that use E-UTRA, which employs OFDMA on the downlink and SC-FDMA on the uplink. UTRA, E-UTRA, UMTS,  LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the wireless networks and RATs mentioned above as well as other wireless networks and RATs.
New radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDM with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread ODFM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
Fig. 1 is a diagram illustrating an example deployment 100 in which multiple wireless networks have overlapping coverage, in accordance with various aspects of the present disclosure. However, wireless networks may not have overlapping coverage in aspects. As shown, example deployment 100 may include an evolved universal terrestrial radio access network (E-UTRAN) 105, which may include one or more evolved Node Bs (eNBs) 110, and which may communicate with other devices or networks via a serving gateway (SGW) 115 and/or a mobility management entity  (MME) 120. As further shown, example deployment 100 may include a radio access network (RAN) 125, which may include one or more base stations 130, and which may communicate with other devices or networks via a mobile switching center (MSC) 135 and/or an inter-working function (IWF) 140. As further shown, example deployment 100 may include one or more user equipment (UEs) 145 capable of communicating via E-UTRAN 105 and/or RAN 125.
E-UTRAN 105 may support, for example, LTE or another type of RAT. E-UTRAN 105 may include eNBs 110 and other network entities that can support wireless communication for UEs 145. Each eNB 110 may provide communication coverage for a particular geographic area. The term “cell” may refer to a coverage area of eNB 110 and/or an eNB subsystem serving the coverage area on a specific frequency channel.
SGW 115 may communicate with E-UTRAN 105 and may perform various functions, such as packet routing and forwarding, mobility anchoring, packet buffering, initiation of network-triggered services, and/or the like. MME 120 may communicate with E-UTRAN 105 and SGW 115 and may perform various functions, such as mobility management, bearer management, distribution of paging messages, security control, authentication, gateway selection, and/or the like, for UEs 145 located within a geographic region served by MME 120 of E-UTRAN 105. The network entities in LTE are described in 3GPP TS 36.300, entitled “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN) ; Overall description, ” which is publicly available.
RAN 125 may support, for example, GSM or another type of RAT. RAN 125 may include base stations 130 and other network entities that can support wireless communication for UEs 145. MSC 135 may communicate with RAN 125 and may perform various functions, such as voice services, routing for circuit-switched calls, and  mobility management for UEs 145 located within a geographic region served by MSC 135 of RAN 125. In some aspects, IWF 140 may facilitate communication between MME 120 and MSC 135 (e.g., when E-UTRAN 105 and RAN 125 use different RATs) . Additionally, or alternatively, MME 120 may communicate directly with an MME that interfaces with RAN 125, for example, without IWF 140 (e.g., when E-UTRAN 105 and RAN 125 use a same RAT) . In some aspects, E-UTRAN 105 and RAN 125 may use the same frequency and/or the same RAT to communicate with UE 145. In some aspects, E-UTRAN 105 and RAN 125 may use different frequencies and/or RATs to communicate with UEs 145. As used herein, the term base station is not tied to any particular RAT, and may refer to an eNB (e.g., of an LTE network) or another type of base station associated with a different type of RAT.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency or frequency ranges may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency or frequency range may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
UE 145 may be stationary or mobile and may also be referred to as a mobile station, a terminal, an access terminal, a wireless communication device, a subscriber unit, a station, and/or the like. UE 145 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, and/or the like. UE 145 may be included inside a housing 145’that houses components of UE 145, such as processor components, memory components, and/or the like.
Upon power up, UE 145 may search for wireless networks from which UE 145 can receive communication services. If UE 145 detects more than one wireless network, then a wireless network with the highest priority may be selected to serve UE 145 and may be referred to as the serving network. UE 145 may perform registration with the serving network, if necessary. UE 145 may then operate in a connected mode to actively communicate with the serving network. Alternatively, UE 145 may operate in an idle mode and camp on the serving network if active communication is not required by UE 145.
UE 145 may operate in the idle mode as follows. UE 145 may identify all frequencies/RATs on which it is able to find a “suitable” cell in a normal scenario or an “acceptable” cell in an emergency scenario, where “suitable” and “acceptable” are specified in the LTE standards. UE 145 may then camp on the frequency/RAT with the highest priority among all identified frequencies/RATs. UE 145 may remain camped on this frequency/RAT until either (i) the frequency/RAT is no longer available at a predetermined threshold or (ii) another frequency/RAT with a higher priority reaches this threshold. In some aspects, UE 145 may receive a neighbor list when operating in the idle mode, such as a neighbor list included in a system information block type 5 (SIB 5) provided by an eNB of a RAT on which UE 145 is camped. Additionally, or alternatively, UE 145 may generate a neighbor list. A neighbor list may include information identifying one or more frequencies, at which one or more RATs may be accessed, priority information associated with the one or more RATs, and/or the like.
The number and arrangement of devices and networks shown in Fig. 1 are provided as an example. In practice, there may be additional devices and/or networks, fewer devices and/or networks, different devices and/or networks, or differently arranged devices and/or networks than those shown in Fig. 1. Furthermore, two or more  devices shown in Fig. 1 may be implemented within a single device, or a single device shown in Fig. 1 may be implemented as multiple, distributed devices. Additionally, or alternatively, a set of devices (e.g., one or more devices) shown in Fig. 1 may perform one or more functions described as being performed by another set of devices shown in Fig. 1.
Fig. 2 is a diagram illustrating an example access network 200 in an LTE network architecture, in accordance with various aspects of the present disclosure. As shown, access network 200 may include one or more eNBs 210 (sometimes referred to as “base stations” herein) that serve a corresponding set of cellular regions (cells) 220, one or more low power eNBs 230 that serve a corresponding set of cells 240, and a set of UEs 250.
Each eNB 210 may be assigned to a respective cell 220 and may be configured to provide an access point to a RAN. For example,  eNB  110, 210 may provide an access point for  UE  145, 250 to E-UTRAN 105 (e.g., eNB 210 may correspond to eNB 110, shown in Fig. 1) or may provide an access point for  UE  145, 250 to RAN 125 (e.g., eNB 210 may correspond to base station 130, shown in Fig. 1) . In some cases, the terms base station and eNB may be used interchangeably, and a base station, as used herein, is not tied to any particular RAT.  UE  145, 250 may correspond to UE 145, shown in Fig. 1. Fig. 2 does not illustrate a centralized controller for example access network 200, but access network 200 may use a centralized controller in some aspects. The eNBs 210 may perform radio related functions including radio bearer control, admission control, mobility control, scheduling, security, and network connectivity (e.g., to SGW 115) .
As shown in Fig. 2, one or more low power eNBs 230 may serve respective cells 240, which may overlap with one or more cells 220 served by eNBs 210. The  eNBs 230 may correspond to eNB 110 associated with E-UTRAN 105 and/or base station 130 associated with RAN 125, shown in Fig. 1. A low power eNB 230 may be referred to as a remote radio head (RRH) . The low power eNB 230 may include a femto cell eNB (e.g., home eNB (HeNB) ) , a pico cell eNB, a micro cell eNB, and/or the like.
A modulation and multiple access scheme employed by access network 200 may vary depending on the particular telecommunications standard being deployed. In LTE applications, OFDM is used on the downlink (DL) and SC-FDMA is used on the uplink (UL) to support both frequency division duplexing (FDD) and time division duplexing (TDD) . The various concepts presented herein are well suited for LTE applications. However, these concepts may be readily extended to other telecommunication standards employing other modulation and multiple access techniques. By way of example, these concepts may be extended to Evolution-Data Optimized (EV-DO) or Ultra Mobile Broadband (UMB) . EV-DO and UMB are air interface standards promulgated by the 3rd Generation Partnership Project 2 (3GPP2) as part of the CDMA2000 family of standards and employs CDMA to provide broadband Internet access to mobile stations. As another example, these concepts may also be extended to UTRA employing WCDMA and other variants of CDMA (e.g., such as TD-SCDMA, GSM employing TDMA, E-UTRA, and/or the like) , UMB, IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM employing OFDMA, and/or the like. UTRA, E-UTRA, UMTS, LTE, and GSM are described in documents from the 3GPP organization. CDMA2000 and UMB are described in documents from the 3GPP2 organization. The actual wireless communication standard and the multiple access technology employed will depend on the specific application and the overall design constraints imposed on the system.
The eNBs 210 may have multiple antennas supporting MIMO technology. The use of MIMO technology enables eNBs 210 to exploit the spatial domain to support spatial multiplexing, beamforming, and transmit diversity. Spatial multiplexing may be used to transmit different streams of data simultaneously on the same frequency. The data streams may be transmitted to a  single UE  145, 250 to increase the data rate or to multiple UEs 250 to increase the overall system capacity. This may be achieved by spatially precoding each data stream (e.g., applying a scaling of an amplitude and a phase) and then transmitting each spatially precoded stream through multiple transmit antennas on the DL. The spatially precoded data streams arrive at the UE (s) 250 with different spatial signatures, which enables each of the UE (s) 250 to recover the one or more data streams destined for that  UE  145, 250. On the UL, each  UE  145, 250 transmits a spatially precoded data stream, which enables eNBs 210 to identify the source of each spatially precoded data stream.
Spatial multiplexing is generally used when channel conditions are good. When channel conditions are less favorable, beamforming may be used to focus the transmission energy in one or more directions. This may be achieved by spatially precoding the data for transmission through multiple antennas. To achieve good coverage at the edges of the cell, a single stream beamforming transmission may be used in combination with transmit diversity.
In the detailed description that follows, various aspects of an access network will be described with reference to a MIMO system supporting OFDM on the DL. OFDM is a spread-spectrum technique that modulates data over a number of subcarriers within an OFDM symbol. The subcarriers are spaced apart at precise frequencies. The spacing provides “orthogonality” that enables a receiver to recover the data from the subcarriers. In the time domain, a guard interval (e.g., cyclic prefix) may be added to  each OFDM symbol to combat inter-OFDM-symbol interference. The UL may use SC-FDMA in the form of a DFT-spread OFDM signal to compensate for high peak-to-average power ratio (PAPR) .
The number and arrangement of devices and cells shown in Fig. 2 are provided as an example. In practice, there may be additional devices and/or cells, fewer devices and/or cells, different devices and/or cells, or differently arranged devices and/or cells than those shown in Fig. 2. Furthermore, two or more devices shown in Fig. 2 may be implemented within a single device, or a single device shown in Fig. 2 may be implemented as multiple, distributed devices. Additionally, or alternatively, a set of devices (e.g., one or more devices) shown in Fig. 2 may perform one or more functions described as being performed by another set of devices shown in Fig. 2.
Fig. 3 is a diagram illustrating an example 300 of a downlink (DL) frame structure in LTE, in accordance with various aspects of the present disclosure. A frame (e.g., of 10 ms) may be divided into 10 equally sized sub-frames with indices of 0 through 9. Each sub-frame may include two consecutive time slots. A resource grid may be used to represent two time slots, each time slot including a resource block (RB) . The resource grid is divided into multiple resource elements. In LTE, a resource block includes 12 consecutive subcarriers in the frequency domain and, for a normal cyclic prefix in each OFDM symbol, 7 consecutive OFDM symbols in the time domain, or 84 resource elements. For an extended cyclic prefix, a resource block includes 6 consecutive OFDM symbols in the time domain and has 72 resource elements. Some of the resource elements, as indicated as R 310 and R 320, include DL reference signals (DL-RS) . The DL-RS include Cell-specific RS (CRS) (also sometimes called common RS) 310 and UE-specific RS (UE-RS) 320. UE-RS 320 are transmitted only on the resource blocks upon which the corresponding physical DL shared channel (PDSCH) is  mapped. The number of bits carried by each resource element depends on the modulation scheme. Thus, the more resource blocks that a UE receives and the higher the modulation scheme, the higher the data rate for the UE.
In LTE, an eNB may send a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) for each cell in the eNB. The primary and secondary synchronization signals may be sent in  symbol periods  6 and 5, respectively, in each of  subframes  0 and 5 of each radio frame with the normal cyclic prefix (CP) . The synchronization signals may be used by UEs for cell detection and acquisition. The eNB may send a Physical Broadcast Channel (PBCH) in symbol periods 0 to 3 in slot 1 of subframe 0. The PBCH may carry certain system information.
The eNB may send a Physical Control Format Indicator Channel (PCFICH) in the first symbol period of each subframe. The PCFICH may convey the number of symbol periods (M) used for control channels, where M may be equal to 1, 2, or 3 and may change from subframe to subframe. M may also be equal to 4 for a small system bandwidth, e.g., with less than 10 resource blocks. The eNB may send a Physical HARQ Indicator Channel (PHICH) and a Physical Downlink Control Channel (PDCCH) in the first M symbol periods of each subframe. The PHICH may carry information to support hybrid automatic repeat request (HARQ) . The PDCCH may carry information on resource allocation for UEs and control information for downlink channels. The eNB may send a Physical Downlink Shared Channel (PDSCH) in the remaining symbol periods of each subframe. The PDSCH may carry data for UEs scheduled for data transmission on the downlink.
The eNB may send the PSS, SSS, and PBCH in the center 1.08 MHz of the system bandwidth used by the eNB. The eNB may send the PCFICH and PHICH across the entire system bandwidth in each symbol period in which these channels are  sent. The eNB may send the PDCCH to groups of UEs in certain portions of the system bandwidth. The eNB may send the PDSCH to specific UEs in specific portions of the system bandwidth. The eNB may send the PSS, SSS, PBCH, PCFICH, and PHICH in a broadcast manner to all UEs, may send the PDCCH in a unicast manner to specific UEs, and may also send the PDSCH in a unicast manner to specific UEs.
A number of resource elements may be available in each symbol period. Each resource element (RE) may cover one subcarrier in one symbol period and may be used to send one modulation symbol, which may be a real or complex value. Resource elements not used for a reference signal in each symbol period may be arranged into resource element groups (REGs) . Each REG may include four resource elements in one symbol period. The PCFICH may occupy four REGs, which may be spaced approximately equally across frequency, in symbol period 0. The PHICH may occupy three REGs, which may be spread across frequency, in one or more configurable symbol periods. For example, the three REGs for the PHICH may all belong in symbol period 0 or may be spread in  symbol periods  0, 1, and 2. The PDCCH may occupy 9, 18, 36, or 72 REGs, which may be selected from the available REGs, in the first M symbol periods, for example. Only certain combinations of REGs may be allowed for the PDCCH.
A UE may know the specific REGs used for the PHICH and the PCFICH. The UE may search different combinations of REGs for the PDCCH. The number of combinations to search is typically less than the number of allowed combinations for the PDCCH. An eNB may send the PDCCH to the UE in any of the combinations that the UE will search.
As indicated above, Fig. 3 is provided as an example. Other examples are possible and may differ from what was described above in connection with Fig. 3.
Fig. 4 is a diagram illustrating an example 400 of an uplink (UL) frame structure in LTE, in accordance with various aspects of the present disclosure. The available resource blocks for the UL may be partitioned into a data section and a control section. The control section may be formed at the two edges of the system bandwidth and may have a configurable size. The resource blocks in the control section may be assigned to UEs for transmission of control information. The data section may include all resource blocks not included in the control section. The UL frame structure results in the data section including contiguous subcarriers, which may allow a single UE to be assigned all of the contiguous subcarriers in the data section.
A UE may be assigned  resource blocks  410a, 410b in the control section to transmit control information to an eNB. The UE may also be assigned  resource blocks  420a, 420b in the data section to transmit data to the eNB. The UE may transmit control information in a physical UL control channel (PUCCH) on the assigned resource blocks in the control section. The UE may transmit only data or both data and control information in a physical UL shared channel (PUSCH) on the assigned resource blocks in the data section. A UL transmission may span both slots of a subframe and may hop across frequencies.
A set of resource blocks may be used to perform initial system access and achieve UL synchronization in a physical random access channel (PRACH) 430. The PRACH 430 carries a random sequence and cannot carry any UL data/signaling. Each random access preamble occupies a bandwidth corresponding to six consecutive resource blocks. The starting frequency is specified by the network. That is, the transmission of the random access preamble is restricted to certain time and frequency resources. There is no frequency hopping for the PRACH. The PRACH attempt is  carried in a single subframe (e.g., of 1 ms) or in a sequence of few contiguous subframes and a UE can make only a single PRACH attempt per frame (e.g., of 10 ms) .
As indicated above, Fig. 4 is provided as an example. Other examples are possible and may differ from what was described above in connection with Fig. 4.
Fig. 5 is a diagram illustrating an example 500 of a radio protocol architecture for a user plane and a control plane in LTE, in accordance with various aspects of the present disclosure. The radio protocol architecture for the UE and the eNB is shown with three layers: Layer 1, Layer 2, and Layer 3. Layer 1 (L1 layer) is the lowest layer and implements various physical layer signal processing functions. The L1 layer will be referred to herein as the physical layer 510. Layer 2 (L2 layer) 520 is above the physical layer 510 and is responsible for the link between the UE and eNB over the physical layer 510.
In the user plane, the L2 layer 520 includes, for example, a media access control (MAC) sublayer 530, a radio link control (RLC) sublayer 540, and a packet data convergence protocol (PDCP) sublayer 550, which are terminated at the eNB on the network side. Although not shown, the UE may have several upper layers above the L2 layer 520 including a network layer (e.g., IP layer) that is terminated at a packet data network (PDN) gateway on the network side, and an application layer that is terminated at the other end of the connection (e.g., a far end UE, a server, and/or the like) .
The PDCP sublayer 550 provides retransmission of lost data in handover. The PDCP sublayer 550 also provides header compression for upper layer data packets to reduce radio transmission overhead, security by ciphering the data packets, and handover support for UEs between eNBs. The RLC sublayer 540 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to  hybrid automatic repeat request (HARQ) . The MAC sublayer 530 provides multiplexing between logical and transport channels. The MAC sublayer 530 is also responsible for allocating the various radio resources (e.g., resource blocks) in one cell among the UEs. The MAC sublayer 530 is also responsible for HARQ operations.
In the control plane, the radio protocol architecture for the UE and eNB is substantially the same for the physical layer 510 and the L2 layer 520 with the exception that there is no header compression function for the control plane. The control plane also includes a radio resource control (RRC) sublayer 560 in Layer 3 (L3 layer) . The RRC sublayer 560 is responsible for obtaining radio resources (i.e., radio bearers) and for configuring the lower layers using RRC signaling between the eNB and the UE.
As indicated above, Fig. 5 is provided as an example. Other examples are possible and may differ from what was described above in connection with Fig. 5.
Fig. 6 is a diagram illustrating example components 600 of  eNB  110, 210, 230 and  UE  145, 250 in an access network, in accordance with various aspects of the present disclosure. As shown in Fig. 6,  eNB  110, 210, 230 may include a controller/processor 605, a TX processor 610, a channel estimator 615, an antenna 620, a transmitter 625TX, a receiver 625RX, an RX processor 630, and a memory 635. As further shown in Fig. 6,  UE  145, 250 may include a receiver RX, for example, of a transceiver TX/RX 640, a transmitter TX, for example, of a transceiver TX/RX 640, an antenna 645, an RX processor 650, a channel estimator 655, a controller/processor 660, a memory 665, a data sink 670, a data source 675, and a TX processor 680.
In the DL, upper layer packets from the core network are provided to controller/processor 605. The controller/processor 605 implements the functionality of the L2 layer. In the DL, the controller/processor 605 provides header compression,  ciphering, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocations to the  UE  145, 250 based, at least in part, on various priority metrics. The controller/processor 605 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the  UE  145, 250.
The TX processor 610 implements various signal processing functions for the L1 layer (e.g., physical layer) . The signal processing functions includes coding and interleaving to facilitate forward error correction (FEC) at the  UE  145, 250 and mapping to signal constellations based, at least in part, on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols are then split into parallel streams. Each stream is then mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 615 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the  UE  145, 250. Each spatial stream is then provided to a different antenna 620 via a separate transmitter TX, for example, of transceiver TX/RX 625. Each such transmitter TX modulates an RF carrier with a respective spatial stream for transmission.
At the  UE  145, 250, each receiver RX, for example, of a transceiver TX/RX 640 receives a signal through its respective antenna 645. Each such receiver RX recovers information modulated onto an RF carrier and provides the information to the receiver (RX) processor 650. The RX processor 650 implements various signal  processing functions of the L1 layer. The RX processor 650 performs spatial processing on the information to recover any spatial streams destined for the  UE  145, 250. If multiple spatial streams are destined for the  UE  145, 250, the spatial streams may be combined by the RX processor 650 into a single OFDM symbol stream. The RX processor 650 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the  eNB  110, 210, 230. These soft decisions may be based, at least in part, on channel estimates computed by the channel estimator 655. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the  eNB  110, 210, 230 on the physical channel. The data and control signals are then provided to the controller/processor 660.
The controller/processor 660 implements the L2 layer. The controller/processor 660 can be associated with a memory 665 that stores program codes and data. The memory 665 may include a non-transitory computer-readable medium. In the UL, the controller/processor 660 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to a data sink 670, which represents all the protocol layers above the L2 layer. Various control signals may also be provided to the data sink 670 for L3 processing. The controller/processor 660 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
In the UL, a data source 675 is used to provide upper layer packets to the controller/processor 660. The data source 675 represents all protocol layers above the L2 layer. Similar to the functionality described in connection with the DL transmission by the  eNB  110, 210, 230, the controller/processor 660 implements the L2 layer for the user plane and the control plane by providing header compression, ciphering, packet segmentation and reordering, and multiplexing between logical and transport channels based, at least in part, on radio resource allocations by the  eNB  110, 210, 230. The controller/processor 660 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the  eNB  110, 210, 230.
Channel estimates derived by a channel estimator 655 from a reference signal or feedback transmitted by the  eNB  110, 210, 230 may be used by the TX processor 680 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 680 are provided to different antenna 645 via separate transmitters TX, for example, of transceivers TX/RX 640. Each transmitter TX, for example, of transceiver TX/RX 640 modulates an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the  eNB  110, 210, 230 in a manner similar to that described in connection with the receiver function at the  UE  145, 250. Each receiver RX, for example, of transceiver TX/RX 625 receives a signal through its respective antenna 620. Each receiver RX, for example, of transceiver TX/RX 625 recovers information modulated onto an RF carrier and provides the information to a RX processor 630. The RX processor 630 may implement the L1 layer.
The controller/processor 605 implements the L2 layer. The controller/processor 605 can be associated with a memory 635 that stores program code and data. The memory 635 may be referred to as a computer-readable medium. In the  UL, the control/processor 605 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the  UE  145, 250. Upper layer packets from the controller/processor 605 may be provided to the core network. The controller/processor 605 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
In some aspects, one or more components of  UE  145, 250 may be included in a housing 145’, as shown in Fig 1. One or more components of  UE  145, 250 or  eNB  110, 210, 230 may be configured to perform scheduling request suppression during multimedia communication, as described in more detail elsewhere herein. For example, the controller/processor 660 and/or other processors and modules of  UE  145, 250 may perform or direct operations of, for example, process 800 of Fig. 8 and/or other processes as described herein. Additionally, or alternatively, the controller/processor 605 and/or other processors and modules of  eNB  110, 210, 230 may perform or direct operations of, for example, process 900 of Fig. 9 and/or other processes as described herein. In some aspects, one or more of the components shown in Fig. 6 may be employed to perform process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes for the techniques described herein.
The number and arrangement of components shown in Fig. 6 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 6. Furthermore, two or more components shown in Fig. 6 may be implemented within a single component, or a single component shown in Fig. 6 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of components  (e.g., one or more components) shown in Fig. 6 may perform one or more functions described as being performed by another set of components shown in Fig. 6.
Figs. 7A and 7B are diagrams illustrating an example 700 of scheduling request suppression during multimedia communication, in accordance with various aspects of the present disclosure.
An  eNB  110, 210, 230 may allocate network resources (e.g., uplink network resources) to facilitate communication by a  UE  145, 250. For example, the  eNB  110, 210, 230 may transmit information identifying an uplink grant to the  UE  145, 250, and the  UE  145, 250 may communicate with the  eNB  110, 210, 230 using network resources (e.g., particular subframes and/or resource blocks) corresponding to the uplink grant. The  eNB  110, 210, 230 may transmit the uplink grant as a response to receiving a scheduling request. For example, the  UE  145, 250 may transmit a scheduling request to the  eNB  110, 210, 230 to request network resources, and the  eNB  110, 210, 230 may determine network resources for the  UE  145, 250 and provide an uplink grant identifying the network resources based at least in part on receiving the scheduling request. However, a control channel that is to be used to provide the uplink grant, such as a PUSCH, may be associated with a limited network resource allocation. Thus, the  eNB  110, 210, 230 may be capacity limited to providing uplink grants to a particular quantity of UEs 145, 250 (e.g., fewer than all UEs 145, 250) .
Accordingly, the  eNB  110, 210, 230 may enable a semi-persistent scheduling (SPS) mode. In the SPS mode,  UEs  145, 250 may be configured by the  eNB  110, 210, 230 with an SPS-radio network temporary identifier (SPS-RNTI) , rather than a cell-RNTI (C-RNTI) . In this way, the  eNB  110, 210, 230 may facilitate repeated utilization of an uplink grant by the  UEs  145, 250, such as for voice over LTE (VoLTE) communication. For example,  UE  145, 250 may receive a static assignment, such as a  resource block assignment, a modulation and coding scheme assignment, and/or the like, and may utilize the static assignment for a plurality of time intervals without requiring a new uplink grant for each time interval. However, some deployments of semi-persistent scheduling may result in semi-persistent scheduling deactivation, which may result in a relatively large delay for voice traffic, when the voice traffic is transmitted with another bearer. Moreover, other deployments of semi-persistent scheduling may be inflexible in adapting to changes to voice traffic patterns and may result in an inefficient utilization of PUSCH resources. Thus, it is advantageous to deploy another type of technique that enables interaction between the  eNB  110, 210, 230 and the  UE  145, 250.
LTE PUSCH pre-scheduling (referred to as “pre-scheduling” ) may be enabled for the  eNB  110, 210, 230 to permit the  eNB  110, 210, 230 to provide uplink grants for multiple time periods. The  eNB  110, 210, 230 may provide uplink grants to a  UE  145, 250 without receiving scheduling requests to perform pre-scheduling. The  eNB  110, 210, 230 may utilize a best effort traffic algorithm to assign uplink grants to a group of  UEs  145, 250. However, during pre-scheduling, the  UEs  145, 250 may continue to provide scheduling requests when the  eNB  110, 210, 230 is providing uplink grants that are not a response to receiving scheduling requests.
Techniques and apparatuses, described herein, permit a  UE  145, 250 to suppress scheduling requests during multimedia communications. For example, based at least in part on determining that a set of criteria are satisfied, such as performing a multimedia communication, an SPS mode not being activated, a VoLTE silent mode not being activated, an uplink grant having been received without transmitting a scheduling request, and/or the like, the  UE  145, 250 may forego transmission of at least one scheduling request. In this way, a power gain may be achieved for a VoLTE talk mode and a VoLTE silent mode. Moreover, a wakeup time (e.g., associated with transmission  of a scheduling request) can be reduced and/or eliminated by suppressing transmission of the scheduling request. Additionally or alternatively, aspects, described herein, may enable the  eNB  110, 210, 230 to trigger pre-scheduling, and/or configure semi-persistent scheduling and scheduling request masking for a logical channel based at least in part on the  UE  145, 250 providing information identifying a type of network traffic that the  UE  145, 250 is to communicate.
Fig. 7A is an example of suppressing transmission of a scheduling request. As shown in Fig. 7A, an  eNB  110, 210, 230 may communicate with a  UE  145, 250. For example,  UE  145, 250 may be transmitting a multimedia communication to the  eNB  110, 210, 230, such as a streaming audio communication, a streaming video communication, and/or the like. In some aspects, the  UE  145, 250 may be engaging in a voice over Internet protocol (VoIP) or a VoLTE call. For example, the  UE  145, 250 may provide audio data via a VoIP/VoLTE call to the  eNB  110, 210, 230. In some aspects, a semi-persistent scheduling mode may not be activated during the multimedia communication. For example, the  eNB  110, 210, 230 may not be configured to use the semi-persistent scheduling mode. Alternatively, the  eNB  110, 210 may be configured to use the semi-persistent scheduling mode but may have the semi-persistent scheduling mode deactivated.
As shown by reference number 710, the  eNB  110, 210, 230 may determine to provide uplink grants based at least in part on pre-scheduling. For example, the  eNB  110, 210, 230 may determine to transmit the uplink grants without receiving a scheduling request from a  UE  145, 250. In some aspects, the  eNB  110, 210, 230 may trigger transmission of an uplink grant without receiving a scheduling request from, for example, the  UE  145, 250. For example, the  eNB  110, 210, 230 may determine that a set of criteria associated with pre-scheduling is satisfied, and may determine to utilize  pre-scheduling to transmit uplink grants based at least in part on determining that the set of criteria is satisfied.
In some aspects, the set of criteria may include a traffic pattern criterion. For example, based at least in part on the  eNB  110, 210, 230 receiving an indication or determining that VoLTE traffic is occurring, that best effort traffic assignment is occurring, and/or the like, the  eNB  110, 210, 230 may determine to perform pre-scheduling. In some aspects, the set of criteria may include a network signaling criterion. For example, based at least in part on the  eNB  110, 210, 230 determining that LTE signaling associated with an on-duration timer, an inactivity timer, a retransmission timer, and/or the like, is occurring, the  eNB  110, 210, 230 may determine to perform pre-scheduling. In some aspects, the set of criteria may include a PUSCH criterion. For example, based at least in part on the  eNB  110, 210, 230 determining that uplink PUSCH pre-scheduling is configured to be enabled for the  eNB  110, 210, 230, the  eNB  110, 210, 230 may determine to perform pre-scheduling.
In some aspects, the set of criteria may include a connected mode discontinuous reception (CDRX) mode criterion. For example, based at least in part on the  eNB  110, 210, 230 determining that the  UE  145, 250 is operating in a CDRX mode, that a CDRX mode cycle satisfies a threshold period of time, and/or the like, the  eNB  110, 210, 230 may determine to perform pre-scheduling. In some aspects, the set of criteria may include a VoLTE mode criterion or another media communication mode criterion. For example, based at least in part on the  eNB  110, 210, 230 determining that the  UE  145, 250 is providing VoLTE traffic rather than other types of traffic, the  eNB  110, 210, 230 may determine to perform pre-scheduling. In some aspects, the set of criteria may include a VoIP mode criterion. For example, based at least in part on the  eNB  110, 210, 230 determining that the  UE  145, 250 is providing VoIP traffic rather  than other types of traffic, the  eNB  110, 210, 230 may determine to perform pre-scheduling. In some aspects, another type of multimedia communication mode criterion may be utilized. In some aspects, the set of criteria may include a scheduling request period criterion. For example, based at least in part on determining that a scheduling request period is less than a CDRX cycle period, the  eNB  110, 210, 230 may determine to perform pre-scheduling. In some aspects, the  eNB  110, 210, 230 may perform the determining based at least in part on receiving information from the  UE  145, 250, such as information identifying a mode of the  UE  145, 250, a traffic indication identifying a type of traffic that the  UE  145, 250 is to provide, and/or the like.
In some aspects, the  eNB  110, 210, 230 may determine to provide the uplink grants based at least in part on a type of traffic being transmitted by  UE  145, 250. For example, based at least in part on determining that  UE  145, 250 is to transmit streaming voice traffic, streaming video traffic, VoIP traffic, and/or the like, the  eNB  110, 210, 230 may determine to perform pre-scheduling. In some aspects, the  eNB  110, 210, 230 may determine to provide the uplink grants when the  UE  145, 250 is operating in a particular VoIP mode. For example, the  eNB  110, 210, 230 may determine to provide the uplink grants when the  UE  145, 250 is operating in a silent mode of a VoIP communication, a talk mode of a VoIP communication, and/or the like. During the silent mode, silence indication (SID) frames may be generated every 160ms. In contrast, during the talk mode, SID frames may be generated every 20ms or 40ms.
In some aspects, the  eNB  110, 210, 230 may determine to transmit uplink grants based at least in part on determining to perform pre-scheduling. For example, the  eNB  110, 210, 230 may determine to perform pre-scheduling based at least in part on information received from the  UE  145, 250, such as information from the  UE  145, 250 indicating that the  UE  145, 250 is transmitting or is to transmit VoLTE traffic.  Additionally, or alternatively, the  UE  145, 250 may transmit a traffic indication identifying another voice packet pattern, a packet size, and/or the like to the  eNB  110, 210, 230 to trigger pre-scheduling by the  eNB  110, 210 230. In this case, the  UE  145, 250 may receive, based at least in part on transmitting the traffic indication, a response message that causes the  UE  145, 250 to forgo transmission of a scheduling request. Alternatively, if the  UE  145, 250 fails to receive the response message, the  UE  145, 250 may transmit a scheduling request to obtain an uplink grant.
In some aspects, the  eNB  110, 210, 230 may determine to perform pre-scheduling based at least in part on information identifying a capability. For example, the  eNB  110, 210, 230 may determine to configure a capability relating to scheduling request masking, and the  eNB  110, 210, 230 may configure the  UE  145, 250 to perform scheduling request masking based at least in part on the indication that the  UE  145, 250 is capable of scheduling request masking. In some aspects, the  eNB  110, 210, 230 may determine to perform pre-scheduling based at least in part on determining that semi-persistent scheduling is active and that scheduling request masking is configured for a logical channel (e.g., a logical channel identifier (LCID) ) . In this case, the  eNB  110, 210, 230 may override the semi-persistent scheduling grants based at least in part on performing dynamic grants and may configure scheduling request masking to perform pre-scheduling.
As shown by reference number 720, the  eNB  110, 210, 230 may transmit a set of uplink grants to the  UE  145, 250 and the  UE  145, 250 may receive the set of uplink grants. For example, based at least in part on determining to perform pre-scheduling, the  eNB  110, 210, 230 may provide a set of uplink grants that is not a response to a set of scheduling requests by the  UE  145, 250. In some aspects, the  eNB  110, 210, 230 may employ a cell radio network temporary identifier (C-RNTI) to  provide a dynamic uplink grant to the  UE  145, 250. For example, the  eNB  110, 210, 230 may transmit the grant to the C-RNTI to identify a set of resources allocated for the UE 145, 250 (e.g., the uplink grant) . In some aspects, the  eNB  110, 210, 230 may provide the grant to the C-RNTI to override a semi-persistent grant provided to the SPS-RNTI (e.g., to override an SPS-RNTI, which may override semi-persistent scheduling) and scheduling request masking (e.g., to cause the  UE  145, 250 to suppress transmission of scheduling requests) .
In some aspects, the  eNB  110, 210, 230 may transmit an indication that the  UE  145, 250 is to forgo transmission of the scheduling request. For example, the  eNB  110, 210, 230 may transmit an uplink grant that is not a response to a scheduling request from the  UE  145, 250 to cause the  UE  145, 250 to forgo transmission of a scheduling request. In some aspects, an indication to forgo transmission may be associated with a set of logical channels, such that scheduling requests are masked for some logical channels and not for other logical channels of the set of logical channels. In this case, the  UE  145, 250 may determine to forgo transmission of the scheduling request based at least in part on receiving the uplink grant. In some aspects, the forgoing may occur with or without semi-persistent scheduling being activated.
As shown by reference number 730, the  UE  145, 250 may forgo transmission of scheduling requests. For example, based at least in part on receiving the uplink grants during multimedia communication and when semi-persistent scheduling is not activated, the  UE  145, 250 may forgo transmission of a scheduling request to the  eNB  110, 210, 230. In some aspects, the  UE  145, 250 may later transmit a scheduling request when forgoing transmission of a first scheduling request. For example, the  UE  145, 250 may forgo transmission of a scheduling request to obtain an uplink grant for a VoIP call associated with a first logical channel, and may transmit a scheduling request  to obtain another uplink grant for non-multimedia traffic associated with a second logical channel. In some aspects, the  UE  145, 250 may forgo the transmission of a scheduling request during a talk mode or a silent mode of a VoIP communication. In some aspects, the  UE  145, 250 may utilize a scheduling request mask to suppress transmission of a scheduling request. For example, based at least in part on the  eNB  110, 210, 230 transmitting a C-RNTI to convey the uplink grants, the  eNB  110, 210, 230 may configure semi-persistent scheduling (e.g., override semi-persistent scheduling) and scheduling request masking to suppress transmission of scheduling requests for a logical channel (e.g., an LCID) associated with the  UE  145, 250.
In some aspects, the  UE  145, 250 may forgo transmitting a scheduling request based at least in part on signaling from the  eNB  110, 210, 230. For example, the  eNB  110, 210, 230 may transmit signaling (e.g., via a signaling protocol) indicating that the  eNB  110, 210, 230 is to periodically schedule uplink grants based at least in part on a talk state of the  UE  145, 250 and without a scheduling request being transmitted. In this case, if the  UE  145, 250 fails to receive an uplink grant during a threshold period of time after uplink data becomes available for transmission, the  UE  145, 250 may override scheduling request masking to transmit a scheduling request.
As shown by reference number 740, the  UE  145, 250 may transmit the multimedia communication. For example, the  UE  145, 250 may transmit the multimedia communication using the uplink grants. In some aspects, the  UE  145, 250 may transmit a streaming video communication, a streaming audio communication, a VoIP communication, a VoLTE communication, and/or the like.
As shown in Fig. 7B, and by reference number 750, the  UE  145, 250 may determine to transmit a scheduling request. For example, the  UE  145, 250 may determine to transmit a scheduling request to obtain an uplink grant for non-multimedia  traffic concurrent with forgoing transmission of a scheduling request to obtain an uplink grant for multimedia traffic. Additionally, or alternatively, the  UE  145, 250 may determine to transmit a scheduling request subsequent to forgoing transmission of a scheduling request and based at least in part on transferring from a first mode that is associated with forgoing transmission of scheduling requests to a second mode that is not associated with forgoing transmission of scheduling requests. For example, based at least in part on the  UE  145, 250 transferring from a suppression mode to a non-suppression mode, a talk mode to a silent mode, and/or the like, the  UE  145, 250 may determine to transmit a scheduling request.
Additionally, or alternatively, after transmitting a traffic pattern indicator to the  eNB  110, 210, 230 to indicate that the  UE  145, 250 is to perform a VoIP call and may utilize pre-scheduling by the  eNB  110, 210, 230 and based at least in part on failing to receive a response message to the traffic pattern indicator, the  UE  145, 250 may determine to transmit a scheduling request. Additionally, or alternatively, the  UE  145, 250 may determine to transmit a scheduling request based at least in part on an expiration of a timer and a configuration of a scheduling request mask. For example, after reconfiguring the scheduling request mask to permit transmission of scheduling requests based at least in part on expiration of the timer associated with pre-scheduling of uplink grants, the  UE  145, 250 may transmit a scheduling request. Additionally, or alternatively, the  UE  145, 250 may determine to transmit the scheduling request based at least in part on failing to receiving an uplink grant. For example, after failing to receiving an uplink grant for a threshold period of time, the  UE  145, 250 may transmit a scheduling request to obtain an uplink grant.
In some aspects, the  UE  145, 250 may transmit a scheduling request based at least in part on a parameter relating to a network. For example, based at least in part on  the  UE  145, 250 determining that a voice frame delay, such as an uplink one-way delay between the  UE  145, 250 and another entity, satisfies a threshold, the  UE  145, 250 may transmit a scheduling request to the  eNB  110, 210, 230 to obtain an uplink grant. In some aspects, the  UE  145, 250 may transmit the scheduling request based at least in part on transferring from a silent mode to an active mode. For example, based at least in part on the  UE  145, 250 transferring to the active mode, the  UE  145, 250 may overwrite a scheduling request mask configuration for active voice burst transmission to transmit a scheduling request. In this case, the  UE  145, 250 may transmit an uplink grant for burst transmission, and may provide a talk state packet pattern indication, which the  eNB  110, 210, 230 may utilize to configure pre-scheduling for subsequent uplink grants.
As shown by  reference numbers  770 and 780, the  eNB  110, 210, 230 may determine to transmit uplink grants to the  UE  145, 250 as a response to the scheduling request, and may transmit the uplink grants. For example, after transmitting an uplink grant during pre-scheduling and receiving a scheduling request, the  eNB  110, 210, 230 may deactivate pre-scheduling and may transmit an uplink grant as a response to the scheduling request. Additionally, or alternatively, concurrent with transmission of first uplink grants based at least in part on pre-scheduling for a multimedia communication and based at least in part on receiving a scheduling request to obtain second uplink grants for, for example, a non-multimedia communication, the  eNB  110, 210, 230 may provide the second uplink grants to the  UE  145, 250.
As indicated above, Figs. 7A and 7B are provided as an example. Other examples are possible and may differ from what was described with respect to Fig. 7A and 7B.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a user equipment, in accordance with various aspects of the present  disclosure. Example process 800 is an example where a user equipment (e.g., UE 145, 250) performs suppression of scheduling requests during multimedia communication.
As shown in Fig. 8, in some aspects, process 800 may include determining, by a user equipment when engaged in a multimedia communication, that the user equipment is receiving an uplink grant without sending a scheduling request (block 810) . For example, the  UE  145, 250 may determine, when engaged in a multimedia communication, that the  UE  145, 250 is receiving an uplink grant without sending a scheduling request. A semi-persistent scheduling mode may not be activated when the user equipment is receiving the uplink grant. In some aspects, the  UE  145, 250 may receive an uplink grant sized to accommodate a voice frame while the UE is in the silence portion. In some aspects, the  UE  145, 250 may transmit padding. In some aspects, after a few occurrences of uplink grants during a call, the  UE  145, 250 may determine that pre-scheduling is used.
As shown in Fig. 8, in some aspects, process 800 may include forgoing, by the user equipment, transmission of at least one scheduling request based at least in part on determining that the user equipment is receiving the uplink grant (block 820) . For example, the  UE  145, 250 may forgo transmission of at least one scheduling request based at least in part on determining that the  UE  145, 250 is receiving the uplink grant.
In some aspects, the user equipment may determine that a set of criteria relating to the user equipment is satisfied and forgo the transmission of the at least one scheduling request based at least in part on determining that the set of criteria relating to the user equipment is satisfied.
In some aspects, the set of criteria may include at least one of a traffic pattern criterion, a network signaling criterion, a physical uplink shared channel (PUSCH) criterion, a connected mode discontinuous reception (CDRX) mode criterion,  a voice over long term evolution (VoLTE) mode criterion, or a scheduling request period criterion.
In some aspects, transmission of the uplink grant without the user equipment transmitting the scheduling request may be triggered by an access point associated with the multimedia communication.
In some aspects, the user equipment may be operating in a silent mode of the user equipment.
In some aspects, the transmission of the at least one scheduling request may be suppressed using a scheduling request mask.
In some aspects, the user equipment may determine that a set of criteria relating to the user equipment is not satisfied after forgoing the transmission of the at least one scheduling request and the user equipment may transmit a scheduling request to obtain another uplink grant based at least in part on determining that the set of criteria relating to the user equipment is not satisfied.
In some aspects, the multimedia communication may include at least one of a streaming audio call, a streaming video call, or a VoIP call.
In some aspects, the user equipment may receive the uplink grant based at least in part on a pre-scheduling of uplink grants.
In some aspects, the user equipment may transmit the multimedia communication using the uplink grant.
In some aspects, the user equipment may transmit a scheduling request to obtain another uplink grant for non-multimedia traffic.
In some aspects, the user equipment may transmit a scheduling request to obtain another uplink grant based at least in part on a transfer from a first mode  associated with forgoing the transmission of the at least one scheduling request to a second mode.
In some aspects, the user equipment may transmit a scheduling request to obtain another uplink grant based at least in part on determining that a response message relating to a traffic pattern indicator is not received.
In some aspects, the user equipment may transmit a scheduling request to obtain another uplink grant based at least in part on a timer indication and a configuration of a scheduling request mask.
In some aspects, the user equipment may perform the determining during at least one of a talk mode or a silent mode of a VoIP communication.
In some aspects, the user equipment may perform the forgoing of the transmission during at least one of a talk mode or a silent mode of a VoIP communication.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 8 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 800. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
Fig. 9 is a diagram illustrating an example process 900 performed, for example, by an access point, in accordance with various aspects of the present disclosure. Example process 900 is an example where an access point (e.g.,  eNB  110, 210, 230) performs pre-scheduling of uplink grants for a UE that is forgoing transmission of scheduling requests during multimedia communication.
As shown in Fig. 9, in some aspects, process 900 may include determining, by an access point, to perform scheduling to provide an uplink grant to a user equipment engaging in a multimedia communication (block 910) . For example, the  eNB  110, 210,  230 may determine to perform pre-scheduling to provide an uplink grant to a  UE  145, 250 engaging in a multimedia communication. In some aspects, the scheduling may be pre-scheduling or semi-persistent scheduling with a configured uplink grant cycle. For example, the scheduling may be semi-persistent scheduling using a different uplink grant cycle from a stored uplink grant cycle.
As shown in Fig. 9, in some aspects, process 900 may include configuring, by the access point, semi-persistent scheduling and scheduling request masking for a logical channel to cause the user equipment to forgo transmission of a scheduling request (block 920) . For example, the  eNB  110, 210, 230 may configure semi-persistent scheduling and scheduling request masking for a logical channel to cause the  UE  145, 250 to forgo transmission of the scheduling request. In aspects, the process 900 further comprises performing pre-scheduling to provide an uplink grant to the user equipment engaging in a multimedia communication.
In some aspects, the access point may employ a grant to C-RNTI to override a semi-persistent RNTI (SPS-RNTI) uplink grant.
In some aspects, the access point may determine to perform the scheduling (e.g., pre-scheduling) based at least in part on determining that the traffic is VoLTE traffic or based at least in part on a received indication of VoLTE traffic from the user equipment.
In some aspects, the access point may transmit, to the user equipment, an indication that the user equipment is to forgo transmission of the scheduling request.
In some aspects, the access point may receive the scheduling request from the user equipment and may provide another uplink grant as a response to the scheduling request. In some aspects, the scheduling request may be provided based at least in part on the uplink grant not being received by the user equipment. In some  aspects, the scheduling request may be provided based at least in part on the semi-persistent scheduling and scheduling request masking being overridden by the user equipment. In some aspects, the scheduling request may be provided based at least in part on a transfer of the user equipment from a first mode to a second mode.
In some aspects, the access point may receive, from the user equipment, an indication that the user equipment is to communicate voice traffic and may disable the scheduling based at least in part on the indication that the user equipment is to communicate voice traffic.
In some aspects, the access point may receive, from the user equipment, an indication that the user equipment is capable of scheduling request masking, and may determining to perform the scheduling based at least in part on the indication. In some aspects, the access point may perform pre-scheduling to provide the uplink grant to the user equipment engaging in the multimedia communication.
Although Fig. 9 shows example blocks of process 900, in some aspects, process 9 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 900. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
In this way, based at least in part on the  UE  145, 250 forgoing transmission of a scheduling request, a utilization of power resources and network resources may be reduced. Moreover, a delay in processing of other information by the  UE  145, 250 may be reduced relative to the  UE  145, 250 performing processing to transmit the scheduling request. In this way, based at least in part on the  eNB  110, 210, 230 communicating with the  UE  145, 250 to configure pre-scheduling, the  eNB  110, 210, 230 reduces a likelihood of excessive utilization of PUSCH resources relative to performing semi-persistent scheduling. Moreover, a voice traffic delay associated with deactivation of  semi-persistent scheduling may be reduced by performing pre-scheduling based at least in part on communication between the  UE  145, 250 and the  eNB  110, 210, 230 (e.g., the  UE  145, 250 providing a traffic pattern indication to the  eNB  110, 210, 230, the  eNB  110, 210, 230 configuring scheduling request masking and overriding semi-persistent scheduling for the  UE  145, 250, and/or the like) .
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations are possible in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term component is intended to be broadly construed as hardware, firmware, or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, or a combination of hardware and software.
Some aspects are described herein in connection with thresholds. As used herein, satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods, described herein, may be implemented in different forms of hardware, firmware, or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code—it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of possible aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of possible aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the term “one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean, “based at least in part on” unless explicitly stated otherwise.

Claims (28)

  1. A method of wireless communications, comprising:
    determining, by a user equipment when engaged in a multimedia communication, that the user equipment is receiving an uplink grant without sending a scheduling request,
    wherein a semi-persistent scheduling mode is not activated when the user equipment is receiving the uplink grant; and
    forgoing, by the user equipment, transmission of at least one scheduling request based at least in part on determining that the user equipment is receiving the uplink grant.
  2. The method of claim 1, further comprising:
    determining that a set of criteria relating to the user equipment is satisfied; and
    wherein forgoing the transmission of the at least one scheduling request includes:
    forgoing the transmission of the at least one scheduling request based at least in part on determining that the set of criteria relating to the user equipment is satisfied.
  3. The method of claim 2, wherein the set of criteria includes at least one of:
    a traffic pattern criterion,
    a network signaling criterion,
    a physical uplink shared channel (PUSCH) criterion,
    a connected mode discontinuous reception (CDRX) mode criterion,
    a voice over long term evolution (VoLTE) mode criterion, or
    a scheduling request period criterion.
  4. The method of claim 1, wherein transmission of the uplink grant without the user equipment transmitting the scheduling request is triggered by an access point associated with the multimedia communication.
  5. The method of claim 1, wherein the user equipment is operating in a silent mode of the user equipment when forgoing the transmission of a scheduling request.
  6. The method of claim 1, wherein the transmission of the at least one scheduling request is suppressed using a scheduling request mask.
  7. The method of claim 1, further comprising:
    determining that a set of criteria relating to the user equipment is not satisfied after forgoing the transmission of the at least one scheduling request; and
    transmitting a scheduling request to obtain another uplink grant based at least in part on determining that the set of criteria relating to the user equipment is not satisfied.
  8. The method of claim 1, wherein the multimedia communication includes at least one of:
    a streaming audio call,
    a streaming video call, or
    a voice over Internet Protocol (VoIP) call.
  9. The method of claim 1, wherein the uplink grant is received based at least in part on a pre-scheduling of uplink grants.
  10. The method of claim 1, wherein the multimedia communication is transmitted using the uplink grant.
  11. The method of claim 1, further comprising:
    transmitting a scheduling request to obtain another uplink grant for non-multimedia traffic.
  12. The method of claim 1, further comprising:
    transmitting a scheduling request to obtain another uplink grant based at least in part on a transfer from a first mode associated with forgoing the transmission of the at least one scheduling request to a second mode.
  13. The method of claim 1, further comprising:
    transmitting a scheduling request to obtain another uplink grant based at least in part on determining that a response message relating to a traffic pattern indicator is not received.
  14. The method of claim 1, further comprising:
    transmitting a scheduling request to obtain another uplink grant based at least in part on a timer indication and a configuration of a scheduling request mask.
  15. The method of claim 1, wherein the determining includes determining during at least one of a talk mode or a silent mode of a voice over Internet protocol communication.
  16. The method of claim 1, wherein the forgoing the transmission includes forgoing the transmission during at least one of a talk mode or a silent mode of a voice over Internet protocol communication.
  17. A method of wireless communication, comprising:
    determining, by an access point, to perform scheduling to provide an uplink grant to a user equipment engaging in a multimedia communication,
    the scheduling being pre-scheduling or semi-persistent scheduling with a configured uplink grant cycle; and
    configuring, by the access point, semi-persistent scheduling and scheduling request masking for a logical channel to cause the user equipment to forgo transmission of a scheduling request.
  18. The method of claim 17, further comprising:
    employing a cell radio network temporary identifier (C-RNTI) to provide the uplink grant.
  19. The method of claim 17, wherein the determining to perform the scheduling is based at least in part on a received indication of voice over long term evolution (VoLTE) traffic from the user equipment.
  20. The method of claim 17, further comprising:
    transmitting, to the user equipment, an indication that the user equipment is to forgo transmission of the scheduling request.
  21. The method of claim 17, further comprising:
    receiving the scheduling request from the user equipment; and
    providing another uplink grant as a response to the scheduling request.
  22. The method of claim 21, wherein the scheduling request is received based at least in part on the uplink grant not being received by the user equipment.
  23. The method of claim 21, wherein the scheduling request is received based at least in part on the semi-persistent scheduling and scheduling request masking being overridden by the user equipment.
  24. The method of claim 21, wherein the scheduling request is received based at least in part on a transfer of the user equipment from a first mode to a second mode.
  25. The method of claim 17, further comprising:
    receiving, from the user equipment, an indication that the user equipment is to communicate voice traffic; and
    disabling the scheduling based at least in part on the indication that the user equipment is to communicate voice traffic.
  26. The method of claim 17, further comprising:
    receiving, from the user equipment, an indication that the user equipment is capable of scheduling request masking; and
    where determining to perform the scheduling comprises:
    determining to perform the scheduling based at least in part on the indication.
  27. The method of claim 17, further comprising:
    performing pre-scheduling to provide the uplink grant to the user equipment engaging in the multimedia communication.
  28. A method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, access point, and processing system as substantially described herein with reference to and as illustrated by the accompanying drawings.
PCT/CN2017/076244 2017-03-10 2017-03-10 Techniques and apparatuses for scheduling request (sr) suppression during multimedia communication WO2018161337A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/076244 WO2018161337A1 (en) 2017-03-10 2017-03-10 Techniques and apparatuses for scheduling request (sr) suppression during multimedia communication
PCT/CN2018/077881 WO2018161856A1 (en) 2017-03-10 2018-03-02 Techniques and apparatuses for scheduling request (sr) suppression during multimedia communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/076244 WO2018161337A1 (en) 2017-03-10 2017-03-10 Techniques and apparatuses for scheduling request (sr) suppression during multimedia communication

Publications (1)

Publication Number Publication Date
WO2018161337A1 true WO2018161337A1 (en) 2018-09-13

Family

ID=63448077

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/076244 WO2018161337A1 (en) 2017-03-10 2017-03-10 Techniques and apparatuses for scheduling request (sr) suppression during multimedia communication
PCT/CN2018/077881 WO2018161856A1 (en) 2017-03-10 2018-03-02 Techniques and apparatuses for scheduling request (sr) suppression during multimedia communication

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077881 WO2018161856A1 (en) 2017-03-10 2018-03-02 Techniques and apparatuses for scheduling request (sr) suppression during multimedia communication

Country Status (1)

Country Link
WO (2) WO2018161337A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113892298A (en) * 2019-06-03 2022-01-04 高通股份有限公司 Synchronization of traffic with discontinuous reception and/or semi-persistent scheduling

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111866794B (en) * 2019-04-30 2022-04-22 华为技术有限公司 Resource scheduling method and device
WO2021091729A1 (en) * 2019-11-04 2021-05-14 Qualcomm Incorporated Semi-persistent scheduling deactivation for interlace resource allocation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547135A (en) * 2008-03-25 2009-09-30 中兴通讯股份有限公司 Uplink dispatching method for wireless communication system
CN101572652A (en) * 2008-04-28 2009-11-04 中兴通讯股份有限公司 Triggering method for semipersistent resource release
CN102088775A (en) * 2009-12-08 2011-06-08 大唐移动通信设备有限公司 Method, system and device for distributing contention resources
WO2012155589A1 (en) * 2011-08-01 2012-11-22 中兴通讯股份有限公司 Method and apparatus for allocating uplink semi-persistent scheduling resource
WO2014027763A1 (en) * 2012-08-15 2014-02-20 Lg Electronics Inc. Method monitoring pdcch based on drx and communication device thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6546607B2 (en) * 2014-02-16 2019-07-17 エルジー エレクトロニクス インコーポレイティド Method and apparatus for transmitting scheduling request using contention based resource in wireless communication system
US9769699B2 (en) * 2014-09-17 2017-09-19 Innovative Sonic Corporation Method and apparatus for performing device to device (D2D) content estimation and triggering of buffer status reporting (BSR) in a wireless communication system
WO2017034505A1 (en) * 2015-08-21 2017-03-02 Intel IP Corporation Methods and apparatus for fast uplink access

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547135A (en) * 2008-03-25 2009-09-30 中兴通讯股份有限公司 Uplink dispatching method for wireless communication system
CN101572652A (en) * 2008-04-28 2009-11-04 中兴通讯股份有限公司 Triggering method for semipersistent resource release
CN102088775A (en) * 2009-12-08 2011-06-08 大唐移动通信设备有限公司 Method, system and device for distributing contention resources
WO2012155589A1 (en) * 2011-08-01 2012-11-22 中兴通讯股份有限公司 Method and apparatus for allocating uplink semi-persistent scheduling resource
WO2014027763A1 (en) * 2012-08-15 2014-02-20 Lg Electronics Inc. Method monitoring pdcch based on drx and communication device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113892298A (en) * 2019-06-03 2022-01-04 高通股份有限公司 Synchronization of traffic with discontinuous reception and/or semi-persistent scheduling

Also Published As

Publication number Publication date
WO2018161856A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
US11229075B2 (en) Techniques and apparatuses for opportunistically operating a dual receive, dual SIM dual standby (DR-DSDS) device as a dual SIM, dual active (DSDA) device
US10123278B2 (en) Techniques and apparatuses for adjusting transmission power for power-limited uplink carrier aggregation scenarios
US10136446B2 (en) Techniques and apparatuses for voice over long term evolution (VoLTE) call prioritization for multiple carriers
US10142943B2 (en) Techniques and apparatuses for peak to average ratio (PAR) based power management
US20180359789A1 (en) Techniques and apparatuses for determining a modification of a discontinuous reception cycle length
US10200828B2 (en) Techniques and apparatuses for utilizing measurement gaps to perform signal decoding for a multimedia broadcast or multicast service
US20180279357A1 (en) Techniques and apparatuses for temporary modification of periodic grants
US20180026903A1 (en) Techniques and apparatuses for connection termination in a multi-subscriber identity module (multi-sim) device
WO2018032469A1 (en) Techniques and apparatuses for sc-ptm configuration in handover signaling for service continuity
US10098127B2 (en) Techniques and apparatuses for differential back-off for long term evolution advanced (LTE-A) uplink carrier aggregation (ULCA)
WO2018161856A1 (en) Techniques and apparatuses for scheduling request (sr) suppression during multimedia communication
US10194306B2 (en) Techniques and apparatuses for suppressing network status information notifications
US10194348B2 (en) Techniques and apparatuses for improved robust header compression (ROHC) decompression
US20180084469A1 (en) Techniques and apparatuses for reducing delay when obtaining service
US20200322904A1 (en) Techniques and apparatuses for tracking area synchronization
US10616875B2 (en) Techniques and apparatuses for downlink channel monitoring
US10231282B1 (en) Techniques and apparatuses for tune-away management
US10484836B2 (en) Techniques and apparatuses for long term evolution idle-mode and enhanced multimedia broadcast and multicast service concurrency operation
US10420107B2 (en) Techniques and apparatuses for device-to-device communication using an active secondary component carrier communication chain
WO2019033327A1 (en) Techniques and apparatuses for identifying a candidate cell for radio connection reestablishment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899840

Country of ref document: EP

Kind code of ref document: A1