WO2018159964A1 - Organic electroluminescent compound and organic electroluminescent device comprising the same - Google Patents

Organic electroluminescent compound and organic electroluminescent device comprising the same Download PDF

Info

Publication number
WO2018159964A1
WO2018159964A1 PCT/KR2018/002303 KR2018002303W WO2018159964A1 WO 2018159964 A1 WO2018159964 A1 WO 2018159964A1 KR 2018002303 W KR2018002303 W KR 2018002303W WO 2018159964 A1 WO2018159964 A1 WO 2018159964A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
compound
organic electroluminescent
mmol
Prior art date
Application number
PCT/KR2018/002303
Other languages
French (fr)
Inventor
Jeong-Eun YANG
Hong-Se OH
Hee-Ryong Kang
Young-Gil Kim
Sang-Hee Cho
Original Assignee
Rohm And Haas Electronic Materials Korea Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180021961A external-priority patent/KR102129236B1/en
Application filed by Rohm And Haas Electronic Materials Korea Ltd. filed Critical Rohm And Haas Electronic Materials Korea Ltd.
Priority to US16/483,065 priority Critical patent/US11302874B2/en
Priority to EP18761926.7A priority patent/EP3589614B1/en
Priority to JP2019544046A priority patent/JP7184785B2/en
Priority to CN201880011724.2A priority patent/CN110337432B/en
Publication of WO2018159964A1 publication Critical patent/WO2018159964A1/en
Priority to JP2022115131A priority patent/JP7314364B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/94[b, c]- or [b, d]-condensed containing carbocyclic rings other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present disclosure relates to an organic electroluminescent compound and an organic electroluminescent device comprising the same.
  • An electroluminescent device is a self-light-emitting display device which has advantages in that it provides a wider viewing angle, a greater contrast ratio, and a faster response time.
  • the first organic EL device was developed by Eastman Kodak in 1987, by using small aromatic diamine molecules and aluminum complexes as materials for forming a light-emitting layer [Appl. Phys. Lett. 51, 913, 1987].
  • An organic EL device changes electric energy into light by applying electricity to an organic light-emitting material, and commonly comprises an anode, a cathode, and an organic layer formed between the two electrodes.
  • the organic layer of the OLED may comprise a hole injection layer, a hole transport layer, a hole auxiliary layer, a light-emitting auxiliary layer, an electron blocking layer, a light-emitting layer (containing host and dopant materials), an electron buffer layer, a hole blocking layer, an electron transport layer, an electron injection layer, etc., if necessary.
  • the materials used in the organic layer can be classified into a hole injection material, a hole transport material, a hole auxiliary material, a light-emitting auxiliary material, an electron blocking material, a light-emitting material, an electron buffer material, a hole blocking material, an electron transport material, an electron injection material, etc., depending on functions.
  • a hole injection material a hole transport material, a hole auxiliary material, a light-emitting auxiliary material, an electron blocking material, a light-emitting material, an electron buffer material, a hole blocking material, an electron transport material, an electron injection material, etc.
  • holes from an anode and electrons from a cathode are injected into a light-emitting layer by the application of electric voltage, and an exciton having high energy is produced by the recombination of the holes and electrons.
  • the organic light-emitting compound moves into an excited state by the energy and emits light from energy when the organic light-emitting compound returns to the ground state from the excited state
  • the most important factor determining luminous efficiency in an organic EL device is light-emitting materials.
  • the light-emitting materials are required to have the following features: high quantum efficiency, high movement degree of an electron and a hole, and uniformality and stability of the formed light-emitting material layer.
  • the light-emitting material is classified into blue, green, and red light-emitting materials according to the light-emitting color, and further includes yellow or orange light-emitting materials. Furthermore, the light-emitting material is classified into a host material and a dopant material in a functional aspect. Recently, an urgent task is the development of an organic EL device having high efficiency and long lifespan.
  • a host material should have high purity and a suitable molecular weight in order to be deposited under vacuum. Furthermore, a host material is required to have high glass transition temperature and pyrolysis temperature to achieve thermal stability, high electrochemical stability to achieve a long lifespan, easy formability of an amorphous thin film, good adhesion with adjacent layers, and no movement between layers.
  • a material having an excellent thermal stability and capable of improving the performance of an organic electroluminescent device, such as driving voltage, luminescent efficiency, and lifespan properties, in a hole transport layer, a buffer layer, an electron transport layer, and the like, is required to be developed.
  • the objective of the present disclosure is to provide an organic electroluminescent compound effective for producing an organic electroluminescent device having excellent thermal stability, low driving voltage, high luminous efficiency, and/or improved lifespan properties.
  • a compound having a low Tg may reduce the charge mobility in a thin film and degrade the performance of the OLED device.
  • the present inventors have developed a novel organic electroluminescent compound having a planar main core, which can assist pi-pi stacking in a vacuum deposition layer to lead to rapid charge mobility, and having a high glass transition temperature (Tg) in spite of its relatively low molecular weight, which can provide excellent morphological stability.
  • Tg glass transition temperature
  • M represents O or S
  • X 1 to X 12 each independently, represent N or CR 1 ;
  • La represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene;
  • Ar and R 1 each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-
  • the heteroaryl(ene) contains at least one heteroatom selected from B, N, O, S, Si, and P;
  • a represents an integer of 1 or 2, where if a is 2, each of Ar may be the same or different.
  • the organic electroluminescent compound according to the present disclosure can provide an organic electroluminescent device having, low driving voltage, high luminous efficiency, and/or improved lifespan properties.
  • the organic electroluminescent compound according to the present disclosure has excellent thermal stability compared to other organic electroluminescent compounds having similar molecular weights.
  • Figure 1 is a representative formula of the organic electroluminescent compound according to the present disclosure.
  • organic electroluminescent compound in the present disclosure means a compound that may be used in an organic electroluminescent device, and may be comprised in any layer constituting an organic electroluminescent device, as necessary.
  • organic electroluminescent material in the present disclosure means a material that may be used in an organic electroluminescent device, and may comprise at least one compound.
  • the organic electroluminescent material may be comprised in any layer constituting an organic electroluminescent device, as necessary.
  • the organic electroluminescent material may be a hole injection material, a hole transport material, a hole auxiliary material, a light-emitting auxiliary material, an electron blocking material, a light-emitting material, an electron buffer material, a hole blocking material, an electron transport material, or an electron injection material.
  • the organic electroluminescent material of the present disclosure may comprise at least one compound represented by formula 1.
  • the compound of formula 1 may be included in the light-emitting layer.
  • the compound of formula 1 may be included as a host.
  • the compound of formula 1 may be included in the electron transport zone, and not limited thereto, the compound of formula 1 may be included in the electron buffer layer.
  • composite material for an organic electroluminescent device in the present disclosure means that two or more materials usable in the organic electroluminescent device are present together or are prepared to be present together, wherein “present together” means not only a state in which two or more materials are mixed, but also a state in which they are separated from each other.
  • composite material for an organic electroluminescent device is a concept encompassing not only a material before being included in an organic electroluminescent device (e.g., before deposition), but also a material included in an organic electroluminescent device (e.g., after deposition).
  • the composite material for an organic electroluminescent device may comprise at least two of a hole injection material, a hole transport material, a hole auxiliary material, a light-emitting auxiliary material, an electron blocking material, a light-emitting material (a host material and a dopant material), an electron buffer material, a hole blocking material, an electron transport material and an electron injection material, or may comprise at least two hole injection materials, at least two hole transport materials, at least two hole auxiliary materials, at least two light-emitting auxiliary materials, at least two electron blocking materials, at least two light-emitting materials (host materials and dopant materials), at least two electron buffer materials, at least two hole blocking materials, at least two electron transport materials, or at least two electron injection materials.
  • the composite material for an organic electroluminescent device of the present disclosure may be comprised in any layer constituting an organic electroluminescent device.
  • the two or more materials included in the composite material may be comprised together in one layer, or may be comprised in different layers, respectively. In case that two or more materials are comprised in one layer, they may be mixed-deposited to form a layer, or they may be co-deposited separately to form a layer.
  • M represents O or S.
  • X 1 to X 12 each independently, represent N or CR 1 . According to one embodiment of the present disclosure, all of X 1 to X 12 may represent CR 1 . According to another embodiment of the present disclosure, any one of X 1 to X 12 may represent N. According to further embodiment of the present disclosure, two of X 1 to X 12 may represent N.
  • La represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene; preferably, a single bond, a substituted or unsubstituted (C6-C25)arylene, or a substituted or unsubstituted (5- to 25-membered)heteroarylene; more preferably, a single bond, an unsubstituted (C6-C18)arylene, or an unsubstituted (5- to 18-membered)heteroarylene.
  • the heteroarylene may comprise at least one of N, O, and S, and preferably at least one of N and S.
  • La may represent a single bond, phenylene, naphthylene, biphenylene, pyridylene, pyrimidinylene, triazinylene, isoquinolinylene, quinazolinylene, naphthyridinylene, quinoxalinylene, benzoquinoxalinylene, indoloquinoxalinylene, benzothienopyrimidinylene, or benzoquinazolinylene.
  • Ar and R 1 each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(
  • the above Ar may represent, preferably, a substituted or unsubstituted (C6-C25)aryl, a substituted or unsubstituted (5- to 25-membered)heteroaryl, or a substituted or unsubstituted di(C6-C25)arylamino, and more preferably, an unsubstituted (C6-C18)aryl, a (5- to 25-membered)heteroaryl unsubstituted or substituted with (C1-C10)alkyl and/or (C6-C12)aryl, or a di(C6-C25)arylamino unsubstituted or substituted with (C1-C6)alkyl.
  • Ar may represent a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted fluorenyl, a substituted or unsubstituted fluoranthenyl, a substituted or unsubstituted triazinyl, a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted benzothienopyrimidinyl, a substituted or unsubstituted acenaphthopyrimidinyl, a substituted or unsubstituted quinazolinyl, a substituted or unsubstituted benzoquinazolinyl, a
  • Ar may represent a phenyl unsubstituted or substituted with at least one of deuterium and naphthyl, an unsubstituted naphthyl, an unsubstituted biphenyl, a fluorenyl unsubstituted or substituted with at least one methyl, an unsubstituted fluoranthenyl, a triazinyl unsubstituted or substituted with at least one of phenyl and naphthyl, a pyridyl unsubstituted or substituted with at least one phenyl, a pyrimidinyl unsubstituted or substituted with at least one phenyl, a quinazolinyl unsubstituted or substituted with at least one phenyl, a isoquinolyl unsubstituted or substituted with at least one phenyl, a carbazolyl unsubstituted or substituted or substituted
  • R 1 may represent, preferably, a substituted or unsubstituted (C6-C25)aryl, or a substituted or unsubstituted (3- to 25-membered)heteroaryl; or may be linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C3-C25) alicyclic or aromatic ring, or the combination thereof, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur; more preferably, a substituted or unsubstituted (C6-C18)aryl, or a substituted or unsubstituted (5- to 18-membered)heteroaryl; or may be linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C3-C18) alicyclic or aromatic ring, or the combination thereof, whose carbon atom(s) may be replaced with at least one heteroatom
  • R 1 may represent a phenyl unsubstituted or substituted with diphenyltriazinyl, a diphenyltriazinyl, a quinazolinyl substituted with a phenyl(s), or an unsubstituted pyridyl; or may be linked to an adjacent substituent to form an unsubstituted benzene ring, an indene ring substituted with at least one of methyl and phenyl, an unsubstituted pyridine ring, an unsubstituted benzothiophene ring, an unsubstituted benzofuran ring, or an indole ring substituted with a phenyl(s) or a phenylquinoxalinyl(s).
  • two adjacent X 1 to X 12 in formula 1 are CR 1
  • two adjacent R 1 may be fused to any one of the following formulas 2 to 6 to form a ring
  • one or more of the rings may be formed in one compound represented by formula 1.
  • the ring may be a dibenzothiophene ring, a dibenzofuran ring, a naphthalene ring, a phenanthrene ring, or a substituted or unsubstituted carbazole ring.
  • X represents N or CH. According to one embodiment of the present disclosure, all of X may represent CH. According to another embodiment of the present disclosure, any one of X may represent N.
  • R 2 represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)ary
  • R 11 and R 12 each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted (C3-C30)cycloalkyl; or may be linked to each other to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, or the combination thereof, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur; preferably, hydrogen, a substituted or unsubstituted (C1-C6)alkyl, or a substituted or unsubstituted (C6-C12)aryl; or may be linked to each other
  • a represents an integer of 1 or 2, where if a is 2, each of Ar may be the same or different.
  • the heteroaryl(ene) contains at least one heteroatom selected from B, N, O, S, Si, and P, and preferably, at least one N.
  • the compound represented by formula 1 may be represented by any one of the following formulas 7 to 10:
  • X 1 to X 12 , and M are as defined in formula 1.
  • (C1-C30)alkyl(ene) is meant to be a linear or branched alkyl(ene) having 1 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 1 to 20, and more preferably 1 to 10.
  • the above alkyl may include methyl, ethyl, n -propyl, iso -propyl, n -butyl, iso -butyl, tert -butyl, etc.
  • (C2-C30)alkenyl is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 2 to 20, and more preferably 2 to 10.
  • the above alkenyl may include vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc.
  • (C2-C30)alkynyl is meant to be a linear or branched alkynyl having 2 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 2 to 20, and more preferably 2 to 10.
  • the above alkynyl may include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methylpent-2-ynyl, etc.
  • the term "(C3-C30)cycloalkyl(ene)" is meant to be a mono- or polycyclic hydrocarbon having 3 to 30 ring backbone carbon atoms, in which the number of carbon atoms is preferably 3 to 20, and more preferably 3 to 7.
  • the above cycloalkyl may include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.
  • (3- to 7-membered)heterocycloalkyl is meant to be a cycloalkyl having 3 to 7, preferably 5 to 7, ring backbone atoms, and including at least one heteroatom selected from the group consisting of B, N, O, S, Si, and P, and preferably the group consisting of O, S, and N.
  • the above heterocycloalkyl may include tetrahydrofuran, pyrrolidine, thiolan, tetrahydropyran, etc.
  • (C6-C30)aryl(ene) is meant to be a monocyclic or fused ring radical derived from an aromatic hydrocarbon having 6 to 30 ring backbone carbon atoms, in which the number of the ring backbone carbon atoms is preferably 6 to 25, more preferably 6 to 18.
  • the above aryl(ene) may be partially saturated, and may comprise a spiro structure.
  • the above aryl may include phenyl, biphenyl, terphenyl, naphthyl, binaphthyl, phenylnaphthyl, naphthylphenyl, phenylterphenyl, fluorenyl, phenylfluorenyl, benzofluorenyl, dibenzofluorenyl, phenanthrenyl, phenylphenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, spirobifluorenyl, etc.
  • (3- to 30-membered)heteroaryl(ene) is an aryl having 3 to 30 ring backbone atoms, and including at least one, preferably 1 to 4 heteroatoms selected from the group consisting of B, N, O, S, Si, and P.
  • the above heteroaryl(ene) may be a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond(s); and may comprise a spiro structure.
  • the above heteroaryl may include a monocyclic ring-type heteroaryl such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, and pyridazinyl, and a fused ring-type heteroaryl such as benzofuranyl, benzothiophenyl, isobenzofuranyl, dibenzofuranyl, dibenzothiophenyl, benzimidazolyl, benzothiazolyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, isoindolyl
  • substituted in the expression “substituted or unsubstituted” means that a hydrogen atom in a certain functional group is replaced with another atom or another functional group, i.e. a substituent.
  • the compound represented by formula 1 includes the following compounds, but is not limited thereto.
  • the compound of formula 1 according to the present disclosure may be produced by a synthetic method known to one skilled in the art, and for example, as shown in the following reaction schemes 1 to 7, but is not limited thereto.
  • X 1 to X 12 , R 1 , La, Ar, and a are as defined in formula 1; R 2 , R 11 , and R 12 are as defined in formulas 5 and 6; Z is the same as defined for R 1 ; and OTf represents a trifluoromethanesulfonate.
  • the present disclosure may provide a composite material for an organic electroluminescent device, comprising the organic electroluminescent compound represented by formula 1, and further comprising at least one other organic electroluminescent compound.
  • the composite material for an organic electroluminescent device of the present disclosure may comprise at least one compound represented by formula 1, and at least one compound represented by the following formula 11:
  • a 1 and A 2 each independently, represent a substituted or unsubstituted (C6-C30)aryl
  • L 1 represents a single bond, or a substituted or unsubstituted (C6-C30)arylene
  • X 11 to X 26 each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a
  • the compound represented by formula 11 may be represented by any one of the following formulas 12 to 15:
  • a 1 , A 2 , L 1 , and X 11 to X 26 are as defined in formula 11.
  • a 1 and A 2 each independently, represent, preferably, a substituted or unsubstituted (C6-C18)aryl; more preferably, a (C6-C18)aryl unsubstituted or substituted with a (C1-C6)alkyl, a (C6-C18)aryl, a (5- to 20-membered)heteroaryl, or tri(C6-C12)arylsilyl.
  • a 1 and A 2 may be selected from the group consisting of a substituted or unsubstituted phenyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted fluorenyl, a substituted or unsubstituted benzofluorenyl, a substituted or unsubstituted phenanthrenyl, a substituted or unsubstituted anthracenyl, a substituted or unsubstituted indenyl, a substituted or unsubstituted triphenylenyl, a substituted or unsubstituted pyrenyl, a substituted or unsubstituted tetracenyl, a substituted or unsubstituted perylenyl, a substituted or unsubstituted, a
  • L 1 represents, preferably, a single bond, or a substituted or unsubstituted (C6-C18)arylene; more preferably, a single bond, or an unsubstituted (C6-C18)arylene.
  • L 1 may represent a single bond, a substituted or unsubstituted phenylene, a substituted or unsubstituted naphthylene, or a substituted or unsubstituted biphenylene.
  • X 11 to X 26 each independently, represent, preferably, hydrogen, or a substituted or unsubstituted (5- to 20-membered)heteroaryl; or are linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C6-C12) alicyclic or aromatic ring; more preferably, hydrogen, or an unsubstituted (5- to 20-membered)heteroaryl; or are linked to an adjacent substituent to form an unsubstituted mono- or polycyclic (C6-C12) aromatic ring.
  • the compound represented by formula 11 includes the following compounds, but is not limited thereto.
  • the compound represented by formula 1 in the materials included in the composite material for an organic electroluminescent device, the compound represented by formula 1 may be a first host material, and the compound represented by formula 11 may be a second host material.
  • the first and second host materials may be comprised in one light-emitting layer, or may be comprised in different ones of the plurality of light-emitting layers, separately.
  • the composite material for an organic electroluminescent device of the present disclosure may comprise the compound represented by formula 1 to the compound represented by formula 11 in a ratio of 1:99 to 99: 1, preferably 10:90 to 90:10, more preferably 30:70 to 70:30.
  • the compound represented by the formula 1 and the compound represented by formula 11 may be mixed in an amount of a desired ratio by mixing them in a shaker, by placing them in a glass tube and dissolving them with heat and thereafter collecting them, or by dissolving them in a solvent.
  • the present disclosure may provide an organic electroluminescent device comprising the compound represented by formula 1, or the composite material for an organic electroluminescent device according to one embodiment of the present disclosure.
  • the organic electroluminescent device may comprise a compound represented by formula 1, and may further comprise at least one other organic electroluminescent compound.
  • the organic electroluminescent device may comprise at least one compound represented by formula 1, and at least one compound represented by formula 11.
  • the present disclosure may provide an organic electroluminescent material comprising the organic electroluminescent compound of formula 1, and an organic electroluminescent device comprising the material.
  • the organic electroluminescent material may consist of the organic electroluminescent compound of the present disclosure as a sole compound, or may further comprise conventional materials generally used in organic electroluminescent materials.
  • the organic electroluminescent device of the present disclosure may comprise a first electrode, a second electrode, and at least one organic layer between the first and second electrodes.
  • the organic layer may comprise at least one organic electroluminescent compound of formula 1.
  • the organic layer may further comprise at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds.
  • the organic layer may further comprise at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4 th period, transition metals of the 5 th period, lanthanides, and organic metals of the d-transition elements of the Periodic Table, or at least one complex compound comprising the metal.
  • the organic layer may comprise a light-emitting layer, and may further comprise at least one layer selected from a hole injection layer, a hole transport layer, a hole auxiliary layer, a light-emitting auxiliary layer, an electron transport layer, an electron injection layer, an interlayer, a hole blocking layer, an electron blocking layer, and an electron buffer layer.
  • the present disclosure may comprise a hole transport zone between an anode and a light-emitting layer, and the hole transport zone may comprise at least one of a hole injection layer, a hole transport layer, a hole auxiliary layer, a light-emitting auxiliary layer and an electron blocking layer.
  • the hole injection layer, the hole transport layer, the hole auxiliary layer, the light-emitting auxiliary layer and the electron blocking layer, respectively may be a single layer or a plurality of layers in which two or more layers are stacked.
  • the hole injection layer may be multi-layers in order to lower the hole injection barrier (or hole injection voltage) from the anode to the hole transport layer or the electron blocking layer, wherein each of the multi-layers may use two compounds simultaneously.
  • the electron blocking layer may be placed between the hole transport layer (or the hole injection layer) and the light-emitting layer, and can confine the excitons within the light-emitting layer by blocking the overflow of electrons from the light-emitting layer to prevent a light-emitting leakage.
  • the hole transport zone may comprise a p-doped hole injection layer, a hole transporting layer, and a light-emitting auxiliary layer.
  • the p-doped hole injection layer means a hole injection layer doped with a p-dopant.
  • the p-dopant is a material capable of imparting p-type semiconductor properties.
  • the p-type semiconductor properties mean the properties of injecting or transporting holes at the HOMO energy level, i.e., the properties of a material having a high hole conductivity.
  • the present disclosure may comprise an electron transport zone between the light-emitting layer and the cathode.
  • the electron transport zone may comprise at least one of a hole blocking layer, an electron transport layer, an electron buffer layer and an electron injection layer.
  • the hole blocking layer, the electron transport layer, the electron buffer layer, and the electron injection layer, respectively, may be a single layer or a plurality of layers in which two or more layers are stacked.
  • the electron buffer layer may be multi-layers in order to control the injection of the electron and improve the interfacial properties between the light-emitting layer and the electron injection layer, wherein each of the multi-layers may use two compounds simultaneously.
  • the hole blocking layer or the electron transport layer may also be multi-layers, wherein each layer may use a plurality of compounds.
  • the light-emitting auxiliary layer may be placed between the anode and the light-emitting layer, or between the cathode and the light-emitting layer.
  • the light-emitting auxiliary layer When the light-emitting auxiliary layer is placed between the anode and the light-emitting layer, it can be used for promoting the hole injection and/or the hole transport, or for preventing the overflow of electrons.
  • the light-emitting auxiliary layer is placed between the cathode and the light-emitting layer, it can be used for promoting the electron injection and/or the electron transport, or for preventing the overflow of holes.
  • the hole auxiliary layer may be placed between the hole transport layer (or hole injection layer) and the light-emitting layer, and may be effective to promote or block the hole transport rate (or the hole injection rate), thereby enabling the charge balance to be controlled.
  • the hole transport layer which is further included, may be used as a hole auxiliary layer or an electron blocking layer.
  • the light-emitting auxiliary layer, the hole auxiliary layer or the electron blocking layer may have an effect of improving the efficiency and/or the lifespan of the organic electroluminescent device.
  • a layer selected from a chalcogenide layer, a metal halide layer, and a metal oxide layer may be placed on an inner surface(s) of one or both electrode(s).
  • a chalcogenide (including oxides) layer of silicon or aluminum is preferably placed on an anode surface of an electroluminescent medium layer
  • a metal halide layer or a metal oxide layer is preferably placed on a cathode surface of an electroluminescent medium layer.
  • the operation stability for the organic electroluminescent device may be obtained by the surface layer.
  • the chalcogenide includes SiO X (1 ⁇ X ⁇ 2), AlO X (1 ⁇ X ⁇ 1.5), SiON, SiAlON, etc.;
  • the metal halide includes LiF, MgF 2 , CaF 2 , a rare earth metal fluoride, etc.; and the metal oxide includes Cs 2 O, Li 2 O, MgO, SrO, BaO, CaO, etc.
  • a mixed region of an electron transport compound and a reductive dopant, or a mixed region of a hole transport compound and an oxidative dopant may be placed on at least one surface of a pair of electrodes.
  • the electron transport compound is reduced to an anion, and thus it becomes easier to inject and transport electrons from the mixed region to an electroluminescent medium.
  • the hole transport compound is oxidized to a cation, and thus it becomes easier to inject and transport holes from the mixed region to the electroluminescent medium.
  • the oxidative dopant includes various Lewis acids and acceptor compounds
  • the reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof.
  • a reductive dopant layer may be employed as a charge generating layer to prepare an organic electroluminescent device having two or more light-emitting layers and emitting white light.
  • the organic electroluminescent compound represented by formula 1 may be comprised in the light-emitting layer.
  • the organic electroluminescent compound of formula 1 may be comprised as a host material.
  • the light-emitting layer may further comprise at least one dopant.
  • another compound besides the organic electroluminescent compound of formula 1 may be further comprised as a second host material.
  • the weight ratio of the first host material to the second host material is in the range of 1:99 to 99:1.
  • the second host material can use any of the known phosphorescent hosts.
  • the second host material may use preferably the compound represented by the formula 11, but is not limited thereto.
  • the dopant comprised in the organic electroluminescent device of the present disclosure may be at least one phosphorescent or fluorescent dopont, and is preferably at least one phosphorescent dopant.
  • the phosphorescent dopant material applied to the organic electroluminescent device of the present disclosure is not particulary limited, but may be preferably selected from the metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), more preferably selected from ortho-metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), and even more preferably ortho-metallated iridium complex compounds.
  • the dopant comprised in the organic electroluminescent device of the present disclosure may comprise the compound represented by the following formula 101, but is not limited thereto.
  • L is selected from the following structures 1 and 2:
  • R 100 to R 103 , and R 104 to R 107 each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a cyano, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted (C1-C30)alkoxy; or R 100 to R 103 may be linked to adjacent R 100 to R 103 , to form a substituted or unsubstituted fused ring, e.g., to form a substituted or unsubstituted, quinoline, benzofuropyridine, benzothienopyridine, indenopyridine, benzofuroquinoline,
  • R 201 to R 211 each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen, a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (C6-C30)aryl; or may be linked to adjacent R 201 to R 211 to form a substituted or unsubstituted fused ring; and
  • n an integer of 1 to 3.
  • dopant compound is as follows, but are not limited thereto.
  • each layer of the organic electroluminescent device of the present disclosure dry film-forming methods such as vacuum evaporation, sputtering, plasma, ion plating methods, etc., or wet film-forming methods such as ink jet printing, nozzle printing, slot coating, spin coating, dip coating, flow coating methods, etc., can be used.
  • the first and the second host compounds of the present disclosure may be film-formed by a co-evaporation process or a mixture-evaporation process.
  • a thin film can be formed by dissolving or diffusing materials forming each layer into any suitable solvent such as ethanol, chloroform, tetrahydrofuran, dioxane, etc.
  • the solvent can be any solvent where the materials forming each layer can be dissolved or diffused, and where there are no problems in film-formation capability.
  • the organic electroluminescent device of the present disclosure can be used for the manufacture of a display device or a lighting device.
  • a display system for example smart phones, tablets, notebooks, PCs, TVs, or display system for car; or a lighting system, for example an outdoor or indoor lighting system, can be produced.
  • OLED organic light-emitting diode
  • OLED devices were produced by using the organic electroluminescent compound according to the present disclosure.
  • a transparent electrode indium tin oxide (ITO) thin film (10 ⁇ /sq) on a glass substrate for an OLED device (GEOMATEC CO., LTD., Japan) was subjected to an ultrasonic washing with acetone, ethanol, and distilled water, sequentially, and then was stored in isopropanol.
  • the ITO substrate was then mounted on a substrate holder of a vacuum vapor deposition apparatus.
  • Compound HI-1 was introduced into a cell of the vacuum vapor deposition apparatus, and then the pressure in the chamber of the apparatus was controlled to 10 -6 torr.
  • compound HI-2 was introduced into another cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a second hole injection layer having a thickness of 5 nm on the first hole injection layer.
  • Compound HT-1 was then introduced into a cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a first hole transport layer having a thickness of 10 nm on the second hole injection layer.
  • Compound HT-2 was then introduced into another cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a second hole transport layer having a thickness of 60 nm on the first hole transport layer.
  • a light-emitting layer was formed thereon as follows: The host material shown in Table 1 was introduced into one cell of the vacuum vapor depositing apparatus as a host, and compound D-39 was introduced into another cell as a dopant.
  • the two materials were evaporated at a different rate and the dopant was deposited in a doping amount of 3 wt% based on the amount of the host to form a light-emitting layer having a thickness of 40 nm on the second hole transport layer.
  • Compound ET-1 and compound EI-1 were then introduced into the other two cells and evaporated simultaneously to form an electron transport layer having a thickness of 35 nm on the light-emitting layer.
  • an Al cathode having a thickness of 80 nm was deposited on the electron injection layer by another vacuum vapor deposition apparatus.
  • an OLED device was produced.
  • Comparative Example 1 Producing an OLED device comprising a
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A as a host.
  • the driving voltage and luminous efficiency based on a luminance of 1,000 nits of the produced red OLED device, and the time taken to be reduced from 100% to 99% of the luminance (lifespan; T99) based on a luminance of 5,000 nits are provided in Table 1 below.
  • the OLED devices comprising the organic electroluminescent compound of the present disclosure have low driving voltage, high luminous efficiency, and/or improved lifespan properties compared to the OLED devices comprising a conventional organic electroluminescent compound.
  • the organic electroluminescent compound of the present disclosure has a highly fused structure, and thus has a relatively high glass transition temperature (Tg) as compared with other organic electroluminescent compounds having similar molecular weights, thereby showing excellent thermal stability.
  • An OLED device not comprising an electron buffer layer was produced by using the organic electroluminescent compound according to the present disclosure.
  • a transparent electrode indium tin oxide (ITO) thin film (10 ⁇ /sq) on a glass substrate for an OLED device (GEOMATEC CO., LTD., Japan) was subjected to an ultrasonic washing with acetone and isopropyl alcohol, sequentially, and then was stored in isopropanol.
  • the ITO substrate was then mounted on a substrate holder of a vacuum vapor deposition apparatus.
  • Compound HI-1 was introduced into a cell of the vacuum vapor deposition apparatus, and then the pressure in the chamber of the apparatus was controlled to 10 -7 torr.
  • compound HI-2 was introduced into another cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a second hole injection layer having a thickness of 5 nm on the first hole injection layer.
  • Compound HT-1 was then introduced into a cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a first hole transport layer having a thickness of 20 nm on the second hole injection layer.
  • Compound HT-3 was then introduced into another cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a second hole transport layer having a thickness of 5 nm on the first hole transport layer.
  • a light-emitting layer was formed thereon as follows: Compound FH-1 was introduced into one cell of the vacuum vapor depositing apparatus as a host, and compound FD-1 was introduced into another cell as a dopant.
  • the two materials were evaporated at a different rate and the dopant was deposited in a doping amount of 2 wt% based on the total amount of the host and the dopant to form a light-emitting layer having a thickness of 20 nm on the second hole transport layer.
  • Compound ET-1 and compound EI-1 were then introduced into the other two cells and evaporated simultaneously to form an electron transport layer having a thickness of 35 nm on the light-emitting layer.
  • an Al cathode having a thickness of 80 nm was deposited on the electron injection layer by another vacuum vapor deposition apparatus.
  • All the materials used for producing the OLED device were purified by vacuum sublimation at 10 -6 torr.
  • An OLED device was produced in the same manner as in Comparative Example 2, except that the thickness of the electron transport layer was reduced to 30 nm, and the electron buffer layer comprising compound C-8 was inserted between the light-emitting layer and the electron transport layer.
  • the driving voltage and color coordinate based on a luminance of 1 mA/cm 2 of the OLED device produced by Comparative Example 2 and Device Example 17, and the time taken to reduce the luminance from 100% to 90% (lifespan; T90) based on a luminance of 2,000 nits are provided in Table 2 below.
  • the OLED device of Device Example 17 in which the compound of the present disclosure is comprised in an electron buffer layer, has low driving voltage and improved lifespan properties compared to the OLED device of Comparative Example 2.
  • An OLED device was produced in the same manner as in Device Example 1, except that the light-emitting layer was formed as follows: Compound C-8 was introduced into one cell of the vacuum vapor depositing apparatus as a first host, and compound H2-6 was introduced into another cell as a second host. The two materials were evaporated at the same rate, and compound D-39 was introduced into another cell as a dopant. The three materials were evaporated and the dopant was deposited in a doping amount of 3 wt% based on the total amount of the host and the dopant to form a light-emitting layer having a thickness of 40 nm on the second hole transport layer.
  • the efficiency was 20.8cd/A at a voltage of 4.3 V, red luminescence of 5000 cd/m 2 was confirmed, and a minimum time taken to reduce the luminance from 100% to 97% based on a luminance of 5,000 nits was 137 hours.

Abstract

The present disclosure relates to an organic electroluminescent compound and an organic electroluminescent device comprising the same. By comprising the organic electroluminescent compound of the present disclosure, it is possible to provide an organic electroluminescent device having excellent thermal stability, low driving voltage, high luminous efficiency, and/or improved lifespan properties.

Description

ORGANIC ELECTROLUMINESCENT COMPOUND AND ORGANIC ELECTROLUMINESCENT DEVICE COMPRISING THE SAME
The present disclosure relates to an organic electroluminescent compound and an organic electroluminescent device comprising the same.
An electroluminescent device (EL device) is a self-light-emitting display device which has advantages in that it provides a wider viewing angle, a greater contrast ratio, and a faster response time. The first organic EL device was developed by Eastman Kodak in 1987, by using small aromatic diamine molecules and aluminum complexes as materials for forming a light-emitting layer [Appl. Phys. Lett. 51, 913, 1987].
An organic EL device (OLED) changes electric energy into light by applying electricity to an organic light-emitting material, and commonly comprises an anode, a cathode, and an organic layer formed between the two electrodes. The organic layer of the OLED may comprise a hole injection layer, a hole transport layer, a hole auxiliary layer, a light-emitting auxiliary layer, an electron blocking layer, a light-emitting layer (containing host and dopant materials), an electron buffer layer, a hole blocking layer, an electron transport layer, an electron injection layer, etc., if necessary. The materials used in the organic layer can be classified into a hole injection material, a hole transport material, a hole auxiliary material, a light-emitting auxiliary material, an electron blocking material, a light-emitting material, an electron buffer material, a hole blocking material, an electron transport material, an electron injection material, etc., depending on functions. In the OLED, holes from an anode and electrons from a cathode are injected into a light-emitting layer by the application of electric voltage, and an exciton having high energy is produced by the recombination of the holes and electrons. The organic light-emitting compound moves into an excited state by the energy and emits light from energy when the organic light-emitting compound returns to the ground state from the excited state.
The most important factor determining luminous efficiency in an organic EL device is light-emitting materials. The light-emitting materials are required to have the following features: high quantum efficiency, high movement degree of an electron and a hole, and uniformality and stability of the formed light-emitting material layer. The light-emitting material is classified into blue, green, and red light-emitting materials according to the light-emitting color, and further includes yellow or orange light-emitting materials. Furthermore, the light-emitting material is classified into a host material and a dopant material in a functional aspect. Recently, an urgent task is the development of an organic EL device having high efficiency and long lifespan. In particular, the development of highly excellent light-emitting material over conventional materials is urgently required, considering the EL properties necessary for medium- and large-sized OLED panels. For this, preferably, as a solvent in a solid state and an energy transmitter, a host material should have high purity and a suitable molecular weight in order to be deposited under vacuum. Furthermore, a host material is required to have high glass transition temperature and pyrolysis temperature to achieve thermal stability, high electrochemical stability to achieve a long lifespan, easy formability of an amorphous thin film, good adhesion with adjacent layers, and no movement between layers.
In addition, a material having an excellent thermal stability and capable of improving the performance of an organic electroluminescent device, such as driving voltage, luminescent efficiency, and lifespan properties, in a hole transport layer, a buffer layer, an electron transport layer, and the like, is required to be developed.
The objective of the present disclosure is to provide an organic electroluminescent compound effective for producing an organic electroluminescent device having excellent thermal stability, low driving voltage, high luminous efficiency, and/or improved lifespan properties.
A compound having a low Tg may reduce the charge mobility in a thin film and degrade the performance of the OLED device. As a result of intensive studies, the present inventors have developed a novel organic electroluminescent compound having a planar main core, which can assist pi-pi stacking in a vacuum deposition layer to lead to rapid charge mobility, and having a high glass transition temperature (Tg) in spite of its relatively low molecular weight, which can provide excellent morphological stability. Specifically, the present inventors found that the above objective can be achieved by an organic electroluminescent compound represented by the following formula 1:
Figure PCTKR2018002303-appb-I000001
wherein
M represents
Figure PCTKR2018002303-appb-I000002
O or S;
X1 to X12, each independently, represent N or CR1;
La represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene;
Ar and R1, each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; or may be linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, or the combination thereof, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur;
the heteroaryl(ene) contains at least one heteroatom selected from B, N, O, S, Si, and P; and
a represents an integer of 1 or 2, where if a is 2, each of Ar may be the same or different.
The organic electroluminescent compound according to the present disclosure can provide an organic electroluminescent device having, low driving voltage, high luminous efficiency, and/or improved lifespan properties. In addition or alternatively, the organic electroluminescent compound according to the present disclosure has excellent thermal stability compared to other organic electroluminescent compounds having similar molecular weights.
Figure 1 is a representative formula of the organic electroluminescent compound according to the present disclosure.
Hereinafter, the present disclosure will be described in detail. However, the following description is intended to explain the invention, and is not meant in any way to restrict the scope of the invention.
The term "organic electroluminescent compound" in the present disclosure means a compound that may be used in an organic electroluminescent device, and may be comprised in any layer constituting an organic electroluminescent device, as necessary.
The term "organic electroluminescent material" in the present disclosure means a material that may be used in an organic electroluminescent device, and may comprise at least one compound. The organic electroluminescent material may be comprised in any layer constituting an organic electroluminescent device, as necessary. For example, the organic electroluminescent material may be a hole injection material, a hole transport material, a hole auxiliary material, a light-emitting auxiliary material, an electron blocking material, a light-emitting material, an electron buffer material, a hole blocking material, an electron transport material, or an electron injection material.
The organic electroluminescent material of the present disclosure may comprise at least one compound represented by formula 1. Although not limited thereto, the compound of formula 1 may be included in the light-emitting layer. In this case, the compound of formula 1 may be included as a host. Also, the compound of formula 1 may be included in the electron transport zone, and not limited thereto, the compound of formula 1 may be included in the electron buffer layer.
The term "composite material for an organic electroluminescent device" in the present disclosure means that two or more materials usable in the organic electroluminescent device are present together or are prepared to be present together, wherein "present together" means not only a state in which two or more materials are mixed, but also a state in which they are separated from each other. In addition, the composite material for an organic electroluminescent device is a concept encompassing not only a material before being included in an organic electroluminescent device (e.g., before deposition), but also a material included in an organic electroluminescent device (e.g., after deposition). For example, the composite material for an organic electroluminescent device may comprise at least two of a hole injection material, a hole transport material, a hole auxiliary material, a light-emitting auxiliary material, an electron blocking material, a light-emitting material (a host material and a dopant material), an electron buffer material, a hole blocking material, an electron transport material and an electron injection material, or may comprise at least two hole injection materials, at least two hole transport materials, at least two hole auxiliary materials, at least two light-emitting auxiliary materials, at least two electron blocking materials, at least two light-emitting materials (host materials and dopant materials), at least two electron buffer materials, at least two hole blocking materials, at least two electron transport materials, or at least two electron injection materials. The composite material for an organic electroluminescent device of the present disclosure may be comprised in any layer constituting an organic electroluminescent device. The two or more materials included in the composite material may be comprised together in one layer, or may be comprised in different layers, respectively. In case that two or more materials are comprised in one layer, they may be mixed-deposited to form a layer, or they may be co-deposited separately to form a layer.
Hereinafter, the organic electroluminescent compound represented by formula 1 will be described in more detail.
In formula 1, M represents
Figure PCTKR2018002303-appb-I000003
O or S.
In formula 1, X1 to X12, each independently, represent N or CR1. According to one embodiment of the present disclosure, all of X1 to X12 may represent CR1. According to another embodiment of the present disclosure, any one of X1 to X12 may represent N. According to further embodiment of the present disclosure, two of X1 to X12 may represent N.
In formula 1, La represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene; preferably, a single bond, a substituted or unsubstituted (C6-C25)arylene, or a substituted or unsubstituted (5- to 25-membered)heteroarylene; more preferably, a single bond, an unsubstituted (C6-C18)arylene, or an unsubstituted (5- to 18-membered)heteroarylene. The heteroarylene may comprise at least one of N, O, and S, and preferably at least one of N and S. According to one embodiment of the present disclosure, La may represent a single bond, phenylene, naphthylene, biphenylene, pyridylene, pyrimidinylene, triazinylene, isoquinolinylene, quinazolinylene, naphthyridinylene, quinoxalinylene, benzoquinoxalinylene, indoloquinoxalinylene, benzothienopyrimidinylene, or benzoquinazolinylene.
In formula 1, Ar and R1, each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; or may be linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, or the combination thereof, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur.
The above Ar may represent, preferably, a substituted or unsubstituted (C6-C25)aryl, a substituted or unsubstituted (5- to 25-membered)heteroaryl, or a substituted or unsubstituted di(C6-C25)arylamino, and more preferably, an unsubstituted (C6-C18)aryl, a (5- to 25-membered)heteroaryl unsubstituted or substituted with (C1-C10)alkyl and/or (C6-C12)aryl, or a di(C6-C25)arylamino unsubstituted or substituted with (C1-C6)alkyl. According to one embodiment of the present disclosure, Ar may represent a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted fluorenyl, a substituted or unsubstituted fluoranthenyl, a substituted or unsubstituted triazinyl, a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted benzothienopyrimidinyl, a substituted or unsubstituted acenaphthopyrimidinyl, a substituted or unsubstituted quinazolinyl, a substituted or unsubstituted benzoquinazolinyl, a substituted or unsubstituted quinoxalinyl, a substituted or unsubstituted benzoquinoxalinyl, a substituted or unsubstituted dibenzoquinoxalinyl, a substituted or unsubstituted quinolyl, a substituted or unsubstituted benzoquinolyl, a substituted or unsubstituted isoquinolyl, a substituted or unsubstituted benzoisoquinolyl, a substituted or unsubstituted benzothienoquinolyl, a substituted or unsubstituted benzofuroquinolyl, a substituted or unsubstituted triazolyl, a substituted or unsubstituted pyrazolyl, a substituted or unsubstituted carbazolyl, a substituted or unsubstituted dibenzothiophenyl, a substituted or unsubstituted benzothiophenyl, a substituted or unsubstituted dibenzofuranyl, a substituted or unsubstituted benzofuranyl, a substituted or unsubstituted naphthyridinyl, a substituted or unsubstituted benzothiazolinyl, a substituted or unsubstituted phenanthroimidazolyl, a substituted or unsubstituted diphenylamino, a substituted or unsubstituted phenylbiphenylamino, a substituted or unsubstituted fluorenylphenylamino, a substituted or unsubstituted dibenzothiophenylphenylamino, or a substituted or unsubstituted dibenzofuranylphenylamino. According to another embodiment of the present disclosure, Ar may represent a phenyl unsubstituted or substituted with at least one of deuterium and naphthyl, an unsubstituted naphthyl, an unsubstituted biphenyl, a fluorenyl unsubstituted or substituted with at least one methyl, an unsubstituted fluoranthenyl, a triazinyl unsubstituted or substituted with at least one of phenyl and naphthyl, a pyridyl unsubstituted or substituted with at least one phenyl, a pyrimidinyl unsubstituted or substituted with at least one phenyl, a quinazolinyl unsubstituted or substituted with at least one phenyl, a isoquinolyl unsubstituted or substituted with at least one phenyl, a carbazolyl unsubstituted or substituted with at least one phenyl, an unsubstituted dibenzothiophenyl, an unsubstituted dibenzofuranyl, a naphthyridinyl unsubstituted or substituted with at least one phenyl, an unsubstituted diphenylamino, an unsubstituted phenylbiphenylamino, a dimethylfluorenylphenylamino, a benzothienopyrimidinyl substituted with at least one phenyl, an unsubstituted benzothienoquinolyl, an unsubstituted benzofuroquinolyl, a benzoquinazolinyl substituted with at least one phenyl, a benzothiazolinyl substituted with at least one phenyl, a benzoquinoxalinyl substituted with at least one phenyl, an unsubstituted dibenzoquinoxalinyl, a phenanthroimidazolyl substituted with at least one phenyl, an unsubstituted dibenzothiophenylphenylamino, an unsubstituted dibenzofuranylphenylamino, a nitrogen-containing 17-membered heteroaryl substituted with at least one methyl, a 25-membered heteroaryl containing nitrogen and oxygen, or an acenaphthopyrimidinyl substituted with at least one phenyl.
The above R1 may represent, preferably, a substituted or unsubstituted (C6-C25)aryl, or a substituted or unsubstituted (3- to 25-membered)heteroaryl; or may be linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C3-C25) alicyclic or aromatic ring, or the combination thereof, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur; more preferably, a substituted or unsubstituted (C6-C18)aryl, or a substituted or unsubstituted (5- to 18-membered)heteroaryl; or may be linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C3-C18) alicyclic or aromatic ring, or the combination thereof, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur; and most preferably, a (C6-C12)aryl unsubstituted or substituted with a (5- to 18-membered)heteroaryl, or a (5- to 13-membered)heteroaryl unsubstituted or substituted with a (C6-C18)aryl; or may be linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C3-C10) aromatic ring, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur. According to one embodiment of the present disclosure, R1 may represent a phenyl unsubstituted or substituted with diphenyltriazinyl, a diphenyltriazinyl, a quinazolinyl substituted with a phenyl(s), or an unsubstituted pyridyl; or may be linked to an adjacent substituent to form an unsubstituted benzene ring, an indene ring substituted with at least one of methyl and phenyl, an unsubstituted pyridine ring, an unsubstituted benzothiophene ring, an unsubstituted benzofuran ring, or an indole ring substituted with a phenyl(s) or a phenylquinoxalinyl(s).
According to one embodiment of the present disclosure, two adjacent X1 to X12 in formula 1 are CR1, two adjacent R1 may be fused to any one of the following formulas 2 to 6 to form a ring, and one or more of the rings may be formed in one compound represented by formula 1. For example, the ring may be a dibenzothiophene ring, a dibenzofuran ring, a naphthalene ring, a phenanthrene ring, or a substituted or unsubstituted carbazole ring.
Figure PCTKR2018002303-appb-I000004
Figure PCTKR2018002303-appb-I000005
In formulas 2 to 6,
Figure PCTKR2018002303-appb-I000006
represents a connecting site between C and R1 in CR1.
In formula 4, X represents N or CH. According to one embodiment of the present disclosure, all of X may represent CH. According to another embodiment of the present disclosure, any one of X may represent N.
In formula 5, R2 represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; preferably, a substituted or unsubstituted (C6-C25)aryl, or a substituted or unsubstituted (5- to 25-membered)heteroaryl; more preferably, an unsubstituted (C6-C18)aryl, or a (5- to 18-membered)heteroaryl unsubstituted or substituted with (C6-C18)aryl. According to one embodiment of the present disclosure, R2 may represent an unsubstituted phenyl, or a quinoxalinyl substituted with a phenyl(s).
In formula 6, R11 and R12, each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted (C3-C30)cycloalkyl; or may be linked to each other to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, or the combination thereof, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur; preferably, hydrogen, a substituted or unsubstituted (C1-C6)alkyl, or a substituted or unsubstituted (C6-C12)aryl; or may be linked to each other to form a substituted or unsubstituted, mono- or polycyclic, (C5-C10) alicyclic or aromatic ring, or the combination thereof; and more preferably, hydrogen, an unsubstituted (C1-C6)alkyl, or an unsubstituted (C6-C12)aryl; or may be linked to each other to form a spiro ring.
In formula 1, a represents an integer of 1 or 2, where if a is 2, each of Ar may be the same or different.
The heteroaryl(ene) contains at least one heteroatom selected from B, N, O, S, Si, and P, and preferably, at least one N.
The compound represented by formula 1 may be represented by any one of the following formulas 7 to 10:
Figure PCTKR2018002303-appb-I000007
Figure PCTKR2018002303-appb-I000008
wherein, X1 to X12, and M are as defined in formula 1.
Herein, the term "(C1-C30)alkyl(ene)" is meant to be a linear or branched alkyl(ene) having 1 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 1 to 20, and more preferably 1 to 10. The above alkyl may include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, etc. The term "(C2-C30)alkenyl" is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 2 to 20, and more preferably 2 to 10. The above alkenyl may include vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc. The term "(C2-C30)alkynyl" is meant to be a linear or branched alkynyl having 2 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 2 to 20, and more preferably 2 to 10. The above alkynyl may include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methylpent-2-ynyl, etc. The term "(C3-C30)cycloalkyl(ene)" is meant to be a mono- or polycyclic hydrocarbon having 3 to 30 ring backbone carbon atoms, in which the number of carbon atoms is preferably 3 to 20, and more preferably 3 to 7. The above cycloalkyl may include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc. The term "(3- to 7-membered)heterocycloalkyl" is meant to be a cycloalkyl having 3 to 7, preferably 5 to 7, ring backbone atoms, and including at least one heteroatom selected from the group consisting of B, N, O, S, Si, and P, and preferably the group consisting of O, S, and N. The above heterocycloalkyl may include tetrahydrofuran, pyrrolidine, thiolan, tetrahydropyran, etc. The term "(C6-C30)aryl(ene)" is meant to be a monocyclic or fused ring radical derived from an aromatic hydrocarbon having 6 to 30 ring backbone carbon atoms, in which the number of the ring backbone carbon atoms is preferably 6 to 25, more preferably 6 to 18. The above aryl(ene) may be partially saturated, and may comprise a spiro structure. The above aryl may include phenyl, biphenyl, terphenyl, naphthyl, binaphthyl, phenylnaphthyl, naphthylphenyl, phenylterphenyl, fluorenyl, phenylfluorenyl, benzofluorenyl, dibenzofluorenyl, phenanthrenyl, phenylphenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, spirobifluorenyl, etc. The term "(3- to 30-membered)heteroaryl(ene)" is an aryl having 3 to 30 ring backbone atoms, and including at least one, preferably 1 to 4 heteroatoms selected from the group consisting of B, N, O, S, Si, and P. The above heteroaryl(ene) may be a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond(s); and may comprise a spiro structure. The above heteroaryl may include a monocyclic ring-type heteroaryl such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, and pyridazinyl, and a fused ring-type heteroaryl such as benzofuranyl, benzothiophenyl, isobenzofuranyl, dibenzofuranyl, dibenzothiophenyl, benzimidazolyl, benzothiazolyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, isoindolyl, indolyl, benzoindolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, benzoquinazolinyl, quinoxalinyl, benzoquinoxalinyl, naphthyridinyl, carbazolyl, benzocarbazolyl, dibenzocarbazolyl, phenoxazinyl, phenothiazinyl, phenanthridinyl, benzodioxolyl, and dihydroacridinyl. Furthermore, "halogen" includes F, Cl, Br, and I.
Herein, "substituted" in the expression "substituted or unsubstituted" means that a hydrogen atom in a certain functional group is replaced with another atom or another functional group, i.e. a substituent. The substituents of the substituted (C1-C30)alkyl(ene), the substituted (C6-C30)aryl(ene), the substituted (3- to 30-membered)heteroaryl(ene), the substituted (C3-C30)cycloalkyl(ene), the substituted (C1-C30)alkoxy, the substituted tri(C1-C30)alkylsilyl, the substituted di(C1-C30)alkyl(C6-C30)arylsilyl, the substituted (C1-C30)alkyldi(C6-C30)arylsilyl, the substituted tri(C6-C30)arylsilyl, the substituted mono- or di- (C1-C30)alkylamino, the substituted mono- or di- (C6-C30)arylamino, the substituted (C1-C30)alkyl(C6-C30)arylamino, and the substituted mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, or the combination thereof in La, Ar, and R1 of formulas 1 to 7, each independently, are at least one selected from the group consisting of deuterium, a halogen, a cyano, a carboxyl, a nitro, a hydroxyl, a (C1-C30)alkyl, a halo(C1-C30)alkyl, a (C2-C30)alkenyl, a (C2-C30)alkynyl, a (C1-C30)alkoxy, a (C1-C30)alkylthio, a (C3-C30)cycloalkyl, a (C3-C30)cycloalkenyl, a (3- to 7-membered)heterocycloalkyl, a (C6-C30)aryloxy, a (C6-C30)arylthiol, a (5- to 30-membered)heteroaryl unsubstituted or substituted with a (C6-C30)aryl, a (C6-C30)aryl unsubstituted or substituted with a (5- to 30-membered)heteroaryl, a tri(C1-C30)alkylsilyl, a tri(C6-C30)arylsilyl, a di(C1-C30)alkyl(C6-C30)arylsilyl, a (C1-C30)alkyldi(C6-C30)arylsilyl, an amino, a mono- or di- (C1-C30)alkylamino, a mono- or di- (C6-C30)arylamino unsubstituted or substituted with a (C1-C30)alkyl, a (C1-C30)alkyl(C6-C30)arylamino, a (C1-C30)alkylcarbonyl, a (C1-C30)alkoxycarbonyl, a (C6-C30)arylcarbonyl, a di(C6-C30)arylboronyl, a di(C1-C30)alkylboronyl, a (C1-C30)alkyl(C6-C30)arylboronyl, a (C6-C30)aryl(C1-C30)alkyl, and a (C1-C30)alkyl(C6-C30)aryl; preferably, at least one selected from the group consisting of a (C1-C20)alkyl, an unsubstituted (C6-C25)aryl, and a (5- to 25-membered)heteroaryl unsubstituted or substituted with a (C6-C25)aryl; more preferably, at least one selected from the group consisting of a (C1-C10)alkyl, an unsubstituted (C6-C18)aryl, and a (5- to 18-membered)heteroaryl substituted with a (C6-C18)aryl; and for example, at least one selected from the group consisting of a methyl, a phenyl, a diphenyltriazinyl, and a phenylquinoxalinyl.
The compound represented by formula 1 includes the following compounds, but is not limited thereto.
Figure PCTKR2018002303-appb-I000009
Figure PCTKR2018002303-appb-I000010
Figure PCTKR2018002303-appb-I000011
Figure PCTKR2018002303-appb-I000012
Figure PCTKR2018002303-appb-I000013
Figure PCTKR2018002303-appb-I000014
Figure PCTKR2018002303-appb-I000015
Figure PCTKR2018002303-appb-I000016
Figure PCTKR2018002303-appb-I000017
Figure PCTKR2018002303-appb-I000018
Figure PCTKR2018002303-appb-I000019
Figure PCTKR2018002303-appb-I000020
Figure PCTKR2018002303-appb-I000021
Figure PCTKR2018002303-appb-I000022
Figure PCTKR2018002303-appb-I000023
Figure PCTKR2018002303-appb-I000024
Figure PCTKR2018002303-appb-I000025
Figure PCTKR2018002303-appb-I000026
Figure PCTKR2018002303-appb-I000027
Figure PCTKR2018002303-appb-I000028
Figure PCTKR2018002303-appb-I000029
Figure PCTKR2018002303-appb-I000030
Figure PCTKR2018002303-appb-I000031
Figure PCTKR2018002303-appb-I000032
Figure PCTKR2018002303-appb-I000033
Figure PCTKR2018002303-appb-I000034
Figure PCTKR2018002303-appb-I000035
Figure PCTKR2018002303-appb-I000036
Figure PCTKR2018002303-appb-I000037
Figure PCTKR2018002303-appb-I000038
Figure PCTKR2018002303-appb-I000039
Figure PCTKR2018002303-appb-I000040
Figure PCTKR2018002303-appb-I000041
Figure PCTKR2018002303-appb-I000042
Figure PCTKR2018002303-appb-I000043
Figure PCTKR2018002303-appb-I000044
Figure PCTKR2018002303-appb-I000045
Figure PCTKR2018002303-appb-I000046
Figure PCTKR2018002303-appb-I000047
Figure PCTKR2018002303-appb-I000048
Figure PCTKR2018002303-appb-I000049
Figure PCTKR2018002303-appb-I000050
Figure PCTKR2018002303-appb-I000051
Figure PCTKR2018002303-appb-I000052
Figure PCTKR2018002303-appb-I000053
Figure PCTKR2018002303-appb-I000054
Figure PCTKR2018002303-appb-I000055
Figure PCTKR2018002303-appb-I000056
Figure PCTKR2018002303-appb-I000057
Figure PCTKR2018002303-appb-I000058
Figure PCTKR2018002303-appb-I000059
Figure PCTKR2018002303-appb-I000060
Figure PCTKR2018002303-appb-I000061
Figure PCTKR2018002303-appb-I000062
Figure PCTKR2018002303-appb-I000063
Figure PCTKR2018002303-appb-I000064
Figure PCTKR2018002303-appb-I000065
Figure PCTKR2018002303-appb-I000066
Figure PCTKR2018002303-appb-I000067
The compound of formula 1 according to the present disclosure may be produced by a synthetic method known to one skilled in the art, and for example, as shown in the following reaction schemes 1 to 7, but is not limited thereto.
[Reaction Scheme 1]
Figure PCTKR2018002303-appb-I000068
Figure PCTKR2018002303-appb-I000069
[Reaction Scheme 2]
Figure PCTKR2018002303-appb-I000070
Figure PCTKR2018002303-appb-I000071
[Reaction Scheme 3]
Figure PCTKR2018002303-appb-I000072
Figure PCTKR2018002303-appb-I000073
[Reaction Scheme 4]
Figure PCTKR2018002303-appb-I000074
Figure PCTKR2018002303-appb-I000075
[Reaction Scheme 5]
Figure PCTKR2018002303-appb-I000076
Figure PCTKR2018002303-appb-I000077
Figure PCTKR2018002303-appb-I000078
[Reaction Scheme 6]
Figure PCTKR2018002303-appb-I000079
Figure PCTKR2018002303-appb-I000080
Figure PCTKR2018002303-appb-I000081
[Reaction Scheme 7]
Figure PCTKR2018002303-appb-I000082
Figure PCTKR2018002303-appb-I000083
Figure PCTKR2018002303-appb-I000084
Figure PCTKR2018002303-appb-I000085
In reaction schemes 1 to 7, X1 to X12, R1, La, Ar, and a are as defined in formula 1; R2, R11, and R12 are as defined in formulas 5 and 6; Z is the same as defined for R1; and OTf represents a trifluoromethanesulfonate.
The present disclosure may provide a composite material for an organic electroluminescent device, comprising the organic electroluminescent compound represented by formula 1, and further comprising at least one other organic electroluminescent compound. For example, the composite material for an organic electroluminescent device of the present disclosure may comprise at least one compound represented by formula 1, and at least one compound represented by the following formula 11:
Figure PCTKR2018002303-appb-I000086
wherein
A1 and A2, each independently, represent a substituted or unsubstituted (C6-C30)aryl;
L1 represents a single bond, or a substituted or unsubstituted (C6-C30)arylene;
X11 to X26, each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, or a substituted or unsubstituted mono- or di- (C6-C30)arylamino; or are linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, or the combination thereof, wherein the carbon atom(s) of the alicyclic or aromatic ring, or the combination thereof may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur.
The compound represented by formula 11 may be represented by any one of the following formulas 12 to 15:
Figure PCTKR2018002303-appb-I000087
Figure PCTKR2018002303-appb-I000088
Figure PCTKR2018002303-appb-I000089
Figure PCTKR2018002303-appb-I000090
wherein, A1, A2, L1, and X11 to X26 are as defined in formula 11.
In formulas 11 to 15, A1 and A2, each independently, represent, preferably, a substituted or unsubstituted (C6-C18)aryl; more preferably, a (C6-C18)aryl unsubstituted or substituted with a (C1-C6)alkyl, a (C6-C18)aryl, a (5- to 20-membered)heteroaryl, or tri(C6-C12)arylsilyl. Specifically, A1 and A2, each independently, may be selected from the group consisting of a substituted or unsubstituted phenyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted fluorenyl, a substituted or unsubstituted benzofluorenyl, a substituted or unsubstituted phenanthrenyl, a substituted or unsubstituted anthracenyl, a substituted or unsubstituted indenyl, a substituted or unsubstituted triphenylenyl, a substituted or unsubstituted pyrenyl, a substituted or unsubstituted tetracenyl, a substituted or unsubstituted perylenyl, a substituted or unsubstituted chrysenyl, a substituted or unsubstituted phenylnaphthyl, a substituted or unsubstituted naphthylphenyl, and a substituted or unsubstituted fluoranthenyl.
In formulas 11 to 15, L1 represents, preferably, a single bond, or a substituted or unsubstituted (C6-C18)arylene; more preferably, a single bond, or an unsubstituted (C6-C18)arylene. Specifically, L1 may represent a single bond, a substituted or unsubstituted phenylene, a substituted or unsubstituted naphthylene, or a substituted or unsubstituted biphenylene.
In formulas 11 to 15, X11 to X26, each independently, represent, preferably, hydrogen, or a substituted or unsubstituted (5- to 20-membered)heteroaryl; or are linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C6-C12) alicyclic or aromatic ring; more preferably, hydrogen, or an unsubstituted (5- to 20-membered)heteroaryl; or are linked to an adjacent substituent to form an unsubstituted mono- or polycyclic (C6-C12) aromatic ring.
The compound represented by formula 11 includes the following compounds, but is not limited thereto.
Figure PCTKR2018002303-appb-I000091
Figure PCTKR2018002303-appb-I000092
Figure PCTKR2018002303-appb-I000093
Figure PCTKR2018002303-appb-I000094
Figure PCTKR2018002303-appb-I000095
Figure PCTKR2018002303-appb-I000096
According to one embodiment of the present disclosure, in the materials included in the composite material for an organic electroluminescent device, the compound represented by formula 1 may be a first host material, and the compound represented by formula 11 may be a second host material. Herein, the first and second host materials may be comprised in one light-emitting layer, or may be comprised in different ones of the plurality of light-emitting layers, separately. The composite material for an organic electroluminescent device of the present disclosure may comprise the compound represented by formula 1 to the compound represented by formula 11 in a ratio of 1:99 to 99: 1, preferably 10:90 to 90:10, more preferably 30:70 to 70:30. Also, the compound represented by the formula 1 and the compound represented by formula 11 may be mixed in an amount of a desired ratio by mixing them in a shaker, by placing them in a glass tube and dissolving them with heat and thereafter collecting them, or by dissolving them in a solvent.
The present disclosure may provide an organic electroluminescent device comprising the compound represented by formula 1, or the composite material for an organic electroluminescent device according to one embodiment of the present disclosure. Specifically, the organic electroluminescent device may comprise a compound represented by formula 1, and may further comprise at least one other organic electroluminescent compound. For example, the organic electroluminescent device may comprise at least one compound represented by formula 1, and at least one compound represented by formula 11.
In addition, the present disclosure may provide an organic electroluminescent material comprising the organic electroluminescent compound of formula 1, and an organic electroluminescent device comprising the material. The organic electroluminescent material may consist of the organic electroluminescent compound of the present disclosure as a sole compound, or may further comprise conventional materials generally used in organic electroluminescent materials.
Meanwhile, the organic electroluminescent device of the present disclosure may comprise a first electrode, a second electrode, and at least one organic layer between the first and second electrodes. The organic layer may comprise at least one organic electroluminescent compound of formula 1. The organic layer may further comprise at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds. Also, the organic layer may further comprise at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4th period, transition metals of the 5th period, lanthanides, and organic metals of the d-transition elements of the Periodic Table, or at least one complex compound comprising the metal.
One of the first and second electrodes may be an anode, and the other may be a cathode. The organic layer may comprise a light-emitting layer, and may further comprise at least one layer selected from a hole injection layer, a hole transport layer, a hole auxiliary layer, a light-emitting auxiliary layer, an electron transport layer, an electron injection layer, an interlayer, a hole blocking layer, an electron blocking layer, and an electron buffer layer.
The present disclosure may comprise a hole transport zone between an anode and a light-emitting layer, and the hole transport zone may comprise at least one of a hole injection layer, a hole transport layer, a hole auxiliary layer, a light-emitting auxiliary layer and an electron blocking layer. The hole injection layer, the hole transport layer, the hole auxiliary layer, the light-emitting auxiliary layer and the electron blocking layer, respectively, may be a single layer or a plurality of layers in which two or more layers are stacked. The hole injection layer may be multi-layers in order to lower the hole injection barrier (or hole injection voltage) from the anode to the hole transport layer or the electron blocking layer, wherein each of the multi-layers may use two compounds simultaneously. The electron blocking layer may be placed between the hole transport layer (or the hole injection layer) and the light-emitting layer, and can confine the excitons within the light-emitting layer by blocking the overflow of electrons from the light-emitting layer to prevent a light-emitting leakage.
In addition, the hole transport zone may comprise a p-doped hole injection layer, a hole transporting layer, and a light-emitting auxiliary layer. Herein, the p-doped hole injection layer means a hole injection layer doped with a p-dopant. The p-dopant is a material capable of imparting p-type semiconductor properties. The p-type semiconductor properties mean the properties of injecting or transporting holes at the HOMO energy level, i.e., the properties of a material having a high hole conductivity.
The present disclosure may comprise an electron transport zone between the light-emitting layer and the cathode. The electron transport zone may comprise at least one of a hole blocking layer, an electron transport layer, an electron buffer layer and an electron injection layer. The hole blocking layer, the electron transport layer, the electron buffer layer, and the electron injection layer, respectively, may be a single layer or a plurality of layers in which two or more layers are stacked. The electron buffer layer may be multi-layers in order to control the injection of the electron and improve the interfacial properties between the light-emitting layer and the electron injection layer, wherein each of the multi-layers may use two compounds simultaneously. The hole blocking layer or the electron transport layer may also be multi-layers, wherein each layer may use a plurality of compounds.
The light-emitting auxiliary layer may be placed between the anode and the light-emitting layer, or between the cathode and the light-emitting layer. When the light-emitting auxiliary layer is placed between the anode and the light-emitting layer, it can be used for promoting the hole injection and/or the hole transport, or for preventing the overflow of electrons. When the light-emitting auxiliary layer is placed between the cathode and the light-emitting layer, it can be used for promoting the electron injection and/or the electron transport, or for preventing the overflow of holes. Also, the hole auxiliary layer may be placed between the hole transport layer (or hole injection layer) and the light-emitting layer, and may be effective to promote or block the hole transport rate (or the hole injection rate), thereby enabling the charge balance to be controlled. When an organic electroluminescent device includes two or more hole transport layers, the hole transport layer, which is further included, may be used as a hole auxiliary layer or an electron blocking layer. The light-emitting auxiliary layer, the hole auxiliary layer or the electron blocking layer may have an effect of improving the efficiency and/or the lifespan of the organic electroluminescent device.
In the organic electroluminescent device of the present disclosure, preferably, at least one layer selected from a chalcogenide layer, a metal halide layer, and a metal oxide layer (hereinafter, "a surface layer") may be placed on an inner surface(s) of one or both electrode(s). Specifically, a chalcogenide (including oxides) layer of silicon or aluminum is preferably placed on an anode surface of an electroluminescent medium layer, and a metal halide layer or a metal oxide layer is preferably placed on a cathode surface of an electroluminescent medium layer. The operation stability for the organic electroluminescent device may be obtained by the surface layer. Preferably, the chalcogenide includes SiOX(1≤X≤2), AlOX(1≤X≤1.5), SiON, SiAlON, etc.; the metal halide includes LiF, MgF2, CaF2, a rare earth metal fluoride, etc.; and the metal oxide includes Cs2O, Li2O, MgO, SrO, BaO, CaO, etc.
In the organic electroluminescent device of the present disclosure, a mixed region of an electron transport compound and a reductive dopant, or a mixed region of a hole transport compound and an oxidative dopant may be placed on at least one surface of a pair of electrodes. In this case, the electron transport compound is reduced to an anion, and thus it becomes easier to inject and transport electrons from the mixed region to an electroluminescent medium. Furthermore, the hole transport compound is oxidized to a cation, and thus it becomes easier to inject and transport holes from the mixed region to the electroluminescent medium. Preferably, the oxidative dopant includes various Lewis acids and acceptor compounds, and the reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof. A reductive dopant layer may be employed as a charge generating layer to prepare an organic electroluminescent device having two or more light-emitting layers and emitting white light.
The organic electroluminescent compound represented by formula 1 may be comprised in the light-emitting layer. When used in the light-emitting layer, the organic electroluminescent compound of formula 1 may be comprised as a host material. Preferably, the light-emitting layer may further comprise at least one dopant. If necessary, another compound besides the organic electroluminescent compound of formula 1 may be further comprised as a second host material. Herein, the weight ratio of the first host material to the second host material is in the range of 1:99 to 99:1.
The second host material can use any of the known phosphorescent hosts. In terms of luminous efficiency, the second host material may use preferably the compound represented by the formula 11, but is not limited thereto.
The dopant comprised in the organic electroluminescent device of the present disclosure may be at least one phosphorescent or fluorescent dopont, and is preferably at least one phosphorescent dopant. The phosphorescent dopant material applied to the organic electroluminescent device of the present disclosure is not particulary limited, but may be preferably selected from the metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), more preferably selected from ortho-metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), and even more preferably ortho-metallated iridium complex compounds.
The dopant comprised in the organic electroluminescent device of the present disclosure may comprise the compound represented by the following formula 101, but is not limited thereto.
Figure PCTKR2018002303-appb-I000097
In formula 101, L is selected from the following structures 1 and 2:
Figure PCTKR2018002303-appb-I000098
R100 to R103, and R104 to R107, each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a cyano, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted (C1-C30)alkoxy; or R100 to R103 may be linked to adjacent R100 to R103, to form a substituted or unsubstituted fused ring, e.g., to form a substituted or unsubstituted, quinoline, benzofuropyridine, benzothienopyridine, indenopyridine, benzofuroquinoline, benzothienoquinoline or indenoquinoline ring; and R104 to R107 may be linked to adjacent R104 to R107 to form a substituted or unsubstituted fused ring, e.g., a substituted or unsubstituted, naphthyl, fluorene, dibenzothiophene, dibenzofuran, indenopyridine, benzofuropyridine or benzothienopyridine ring;
R201 to R211, each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen, a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (C6-C30)aryl; or may be linked to adjacent R201 to R211 to form a substituted or unsubstituted fused ring; and
n represents an integer of 1 to 3.
The specific examples of the dopant compound are as follows, but are not limited thereto.
Figure PCTKR2018002303-appb-I000099
Figure PCTKR2018002303-appb-I000100
Figure PCTKR2018002303-appb-I000101
Figure PCTKR2018002303-appb-I000102
Figure PCTKR2018002303-appb-I000103
Figure PCTKR2018002303-appb-I000104
Figure PCTKR2018002303-appb-I000105
Figure PCTKR2018002303-appb-I000106
Figure PCTKR2018002303-appb-I000107
Figure PCTKR2018002303-appb-I000108
Figure PCTKR2018002303-appb-I000109
Figure PCTKR2018002303-appb-I000110
Figure PCTKR2018002303-appb-I000111
Figure PCTKR2018002303-appb-I000112
Figure PCTKR2018002303-appb-I000113
Figure PCTKR2018002303-appb-I000114
Figure PCTKR2018002303-appb-I000115
Figure PCTKR2018002303-appb-I000116
Figure PCTKR2018002303-appb-I000117
Figure PCTKR2018002303-appb-I000118
Figure PCTKR2018002303-appb-I000119
Figure PCTKR2018002303-appb-I000120
In order to form each layer of the organic electroluminescent device of the present disclosure, dry film-forming methods such as vacuum evaporation, sputtering, plasma, ion plating methods, etc., or wet film-forming methods such as ink jet printing, nozzle printing, slot coating, spin coating, dip coating, flow coating methods, etc., can be used. The first and the second host compounds of the present disclosure may be film-formed by a co-evaporation process or a mixture-evaporation process.
When using a wet film-forming method, a thin film can be formed by dissolving or diffusing materials forming each layer into any suitable solvent such as ethanol, chloroform, tetrahydrofuran, dioxane, etc. The solvent can be any solvent where the materials forming each layer can be dissolved or diffused, and where there are no problems in film-formation capability.
Also, the organic electroluminescent device of the present disclosure can be used for the manufacture of a display device or a lighting device.
Also, by using the organic electroluminescent device of the present disclosure, a display system, for example smart phones, tablets, notebooks, PCs, TVs, or display system for car; or a lighting system, for example an outdoor or indoor lighting system, can be produced.
Hereinafter, the preparation method of the compound of the present disclosure, and the properties thereof will be explained in detail with reference to the representative compounds of the present disclosure. However, the present disclosure is not limited by the following examples.
Example 1: Preparation of compound C-8
Figure PCTKR2018002303-appb-I000121
Figure PCTKR2018002303-appb-I000122
Synthesis of compound 1
70 g of 2-nitro-1-naphthol (370 mmol) and 4.5 g of 4-(dimethylamino)pyridine (DMAP) (37 mmol) were dissolved in 1800 mL of methylene chloride (MC) in a flask. 62 mL of triethylamine (TEA) (444 mmol) were added dropwise at 0℃ and stirred for 20 minutes. 125.3 g of trifluoromethane sulfonic anhydride (444 mmol) was slowly added dropwise to the reactant at the same temperature and stirred for 1 hour. After the reaction was completed, the organic layer was extracted with MC, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 96.2 g of compound 1 (yield: 81%).
Synthesis of compound 2
96.2 g of compound 1 (299 mmol), 72.1 g of 2-bromophenylboronic acid (359 mmol), 17.3 g of tetrakis(triphenylphosphine)palladium (0) (15 mmol), and 79.3 g of sodium carbonate (749 mmol) were dissolved in 1400 mL toluene, 350 mL of ethanol, and 350 mL of water in a flask and refluxed for 1 hour. After the reaction was completed, the organic layer was extracted with ethyl acetate, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 98 g of compound 2 (yield: 99%).
Synthesis of compound 3
98 g of compound 2 (299 mmol), 78.5 g of 2-aminophenylboronic acid pinacol ester (358 mmol), 17.2 g of tetrakis(triphenylphosphine)palladium (0) (15 mmol), and 103g of potassium carbonate (747mmol) were dissolved in 1300 mL of toluene, 350 mL of ethanol and 350 mL of water in a flask and refluxed for 20 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 54 g of compound 3 (yield: 53%).
Synthesis of compound 4
25 g of compound 3 (73 mmol) was dissolved in 250 mL of acetic acid and 25 mL of sulfuric acid in a flask, 6.5 g of sodium nitrite (95 mmol) was slowly added dropwise at 0℃ and stirred for 40 minutes. After the reaction was completed, the reaction product was added dropwise to water and filtered to remove water. The residue was dried and purified by column chromatography to obtain 2 g of compound 4 (yield: 8.4%).
Synthesis of compound 5
4.7g of compound 4 (15mmol) was dissolved in 48 mL of triethylphosphite and 48 mL of 1,2-dichlorobenzene in a flask and refluxed for 3 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate after distillation under reduced pressure, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 2.7 g of compound 5 (yield: 63%).
Synthesis of compound C-8
2.1 g of compound 5 (7 mmol), 3.1 g of 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine (8 mmol), 0.81 g of palladium (II) acetate (0.36 mmol), 0.3g of 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (S-Phos) (0.7mmol), and 1.7 g of sodium tert-butoxide (18 mmol) were dissolved in 72 mL of 1,2-xylene in a flask and refluxed for 4 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate after distillation under reduced pressure, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 2.5 g of compound C-8 (yield: 58%).
Figure PCTKR2018002303-appb-I000123
Example 2: Preparation of compound C-301
Figure PCTKR2018002303-appb-I000124
5.0 g of compound 5 (17 mmol), 7.08 g of 2-([1,1'-biphenyl]-4-yl)-4-chloro-6-phenyl-1,3,5-triazine (21 mmol), 105 mg of DMAP (0.858 mmol), and 7.1 g of potassium carbonate (51 mmol) were dissolved in 85 mL of dimethylformamide (DMF) in a flask and refluxed for 3 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate after distillation under reduced pressure, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 4.8 g of compound C-301 (yield: 47%).
Figure PCTKR2018002303-appb-I000125
Figure PCTKR2018002303-appb-I000126
Example 3: Preparation of compound C-10
Figure PCTKR2018002303-appb-I000127
5.0 g of compound 5 (17 mmol), 11.28 g of 2-(4-bromonaphthalene-1-yl)-4,6-diphenyl-1,3,5-triazine) (21 mmol), 625 mg of tris(dibenzylideneacetone)dipalladium (0) (0.686 mmol), 565 mg of S-Phos (1 mmol), and 4.9 g of sodium tert-butoxide (51 mmol) were dissolved in 100 mL of o-xylene in a flask and refluxed for 3 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate after distillation under reduced pressure, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 3.6 g of compound C-10 (yield: 32%).
Figure PCTKR2018002303-appb-I000128
Figure PCTKR2018002303-appb-I000129
Example 4: Preparation of compound C-7
Figure PCTKR2018002303-appb-I000130
5 g of compound 5 (17.1 mmol), 5.5 g of 2-chloro-4,6-diphenyl-1,3,5-triazine (20.5 mmol), 0.1 g of DMAP (0.85mmol), and 7.1 g of potassium carbonate (51.4 mmol) were dissolved in 85 mL of DMF in a flask and refluxed for 3 hours. After the reaction was completed, the reaction product was cooled, methanol and water were added thereto and the mixture was filtered. The residue was dried and purified by column chromatography to obtain 4.4 g of compound C-7 (yield: 49%).
Figure PCTKR2018002303-appb-I000131
Figure PCTKR2018002303-appb-I000132
Example 5: Preparation of compound C-302
Figure PCTKR2018002303-appb-I000133
4.5 g of compound 5 (15.4 mmol), 5.4 g of 2-chloro-4-(naphthalene-2-yl)quinazoline (18.5 mmol), 0.09 g of DMAP (0.7 mmol), and 6.4 g of potassium carbonate (46.3 mmol) were dissolved in 77 mL of DMF in a flask and refluxed for 1.5 hours. After the reaction was completed, the reaction product was filtered, dried and purified by column chromatography to obtain 7.5 g of compound C-302 (yield: 80%).
Figure PCTKR2018002303-appb-I000134
Figure PCTKR2018002303-appb-I000135
Example 6: Preparation of compound C-9
Figure PCTKR2018002303-appb-I000136
5.0 g of compound 5 (17.16 mmol), 6.6 g of 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (17.16 mmol), 0.6 g of tris(dibenzylideneacetone)dipalladium (0) (0.686 mmol), 0.7 g of S-Phos (1.176 mmol), and 4.0 g sodium tert-butoxide (42.9 mmol) were dissolved in 90 mL of o-xylene in a flask and refluxed for 4 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate after distillation under reduced pressure, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 6.2 g of compound C-9 (yield: 62%).
Figure PCTKR2018002303-appb-I000137
Figure PCTKR2018002303-appb-I000138
Example 7: Preparation of compound C-303
Figure PCTKR2018002303-appb-I000139
4.3 g of compound 5 (14.83 mmol), 4.7 g of 6-chloro-2,4-diphenylquinazoline (14.83 mmol), 0.5 g of Pd2(dba)3 (0.593 mmol), 0.6 g of S-Phos (1.483 mmol), and 3.6 g of sodium tert-butoxide (37.07mmol) were dissolved in 80 mL of o-xylene in a flask and refluxed for 4 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate after distillation under reduced pressure, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 1.8 g of compound C-303 (yield: 21%).
Figure PCTKR2018002303-appb-I000140
Figure PCTKR2018002303-appb-I000141
Example 8: Preparation of compound C-307
Figure PCTKR2018002303-appb-I000142
5.4 g of compound 5 (18.53 mmol), 4.5 g of 2-chloro-3-naphthylquinoxaline (15.44 mmol), 2.1 g of potassium carbonate (15.44 mmol), and 0.9 g of DMAP (7.72 mmol) were dissolved in 80 mL of DMF in a flask and refluxed for 4 hours. After the reaction was completed, the reaction product was cooled to room temperature, and distilled water was added thereto. The organic layer was extracted with MC, and residual water was removed by using magnesium sulfate. The residue was distilled under reduced pressure and purified by column chromatography to obtain 2.3 g of compound C-307 (yield: 47%).
Figure PCTKR2018002303-appb-I000143
Figure PCTKR2018002303-appb-I000144
Example 9: Preparation of compound C-13
Figure PCTKR2018002303-appb-I000145
4.0 g of compound 5 (13.73 mmol), 4.0 g of 2-chloro-3-phenylquinoxaline (16.47 mmol), 3.8 g of potassium carbonate (27.46 mmol), and 0.84 g of DMAP (6.87 mmol) were dissolved in 68 mL of DMF in a flask and refluxed for 18 hours. After the reaction was completed, the reaction product was cooled to room temperature, and distilled water was added thereto. The organic layer was extracted with MC, and residual water was removed by using magnesium sulfate. The residue was distilled under reduced pressure and purified by column chromatography to obtain 2.3 g of compound C-13 (yield: 33.8%).
Figure PCTKR2018002303-appb-I000146
Figure PCTKR2018002303-appb-I000147
Example 10: Preparation of compound C-304
Figure PCTKR2018002303-appb-I000148
Synthesis of compound 10-1
9 g of compound 5 (30.89 mmol), 10.6 g of 1-bromo-3-iodobenzene (61.78 mmol), 3 g of CuI (15.44 mmol), 1.8 g of EDA (30.89 mmol), and 16.4 g of K3PO4 (77.22 mmol) were added in 155 mL of toluene and stirred under reflux for one day. After the reaction was completed, the reaction product was cooled to room temperature, and the resulting solid was filtered under reduced pressure. The solid was dissolved in CHCl3 and purified by column chromatography using MC/Hex to obtain 10 g of compound 10-1 (yield: 75%).
Synthesis of compound C-304
5.7 g of compound 10-1 (12.77 mmol), 0.73 g of Pd(PPh3)4 (0.638 mmol), and 3.5 g of K2CO3 (25.54 mmol) were added in 50 mL of toluene, 13 mL of EtOH, and 13 mL of purified water and stirred under reflux for 2 hours. After the reaction was completed, the reaction product was cooled to room temperature, and the resulting solid was filtered under reduced pressure. The solid was dissolved in CHCl3 and purified by column chromatography using MC/Hex to obtain 2.9 g of compound C-304 (yield: 43%).
Figure PCTKR2018002303-appb-I000149
Figure PCTKR2018002303-appb-I000150
Example 11: Preparation of compound C-306
Figure PCTKR2018002303-appb-I000151
5.0 g of compound 10-1 (11.2 mmol), 3.0 g of N-phenyl-[1,1'-biphenyl]-4-amine (12.3 mmol), 0.51 g of Pd2(dba)3 (0.56 mmol), 0.46 g of S-Phos (1.12 mmol), and 2.7 g of sodium tert-butoxide (28 mmol) were added to 60 mL of toluene in a flask and refluxed for 4 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate after distillation under reduced pressure, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 2.3 g of compound C-306 (yield: 34%).
Figure PCTKR2018002303-appb-I000152
Figure PCTKR2018002303-appb-I000153
Example 12: Preparation of compound C-333
Figure PCTKR2018002303-appb-I000154
2.6 g of compound 12 (7.6 mmol), 2.95 g of 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine (7.6 mmol), 0.27 g of tris(dibenzylideneacetone)dipalladium (0) (0.3 mmol), 0.3 g of 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (0.7 mmol), and 1.8 g of sodium tert-butoxide (19 mmol) were dissolved in 50 mL of 1,2-dimethyl benzene in a flask and refluxed for 12 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate after distillation under reduced pressure, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 1.9 g of compound C-333 (yield: 38%).
Figure PCTKR2018002303-appb-I000155
Figure PCTKR2018002303-appb-I000156
Example 13: Preparation of compound C-372
Figure PCTKR2018002303-appb-I000157
Figure PCTKR2018002303-appb-I000158
Synthesis of compound 13-1
70 g of compound 5 (240 mol), and 40.6 g of N-bromosuccinimide (255 mmol) were dissolved in 1200 mL of dimethylformamide in a flask, and stirred at 0℃ for 3 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 68 g of compound 13-1 (yield: 76%).
Synthesis of compound 13-2
47.3 g of compound 13-1 (127 mmol), 42 g of bis(pinacolato)diboron (166 mmol), 4.5 g of bis (triphenylphosphine)palladium(II) dichloride (6.4 mmol), and 25 g of potassium acetate (255 mmol) were dissolved in 635 mL of 1,4-dioxane in a flask and refluxed for 4 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate after distillation under reduced pressure, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 31.5 g of compound 13-2 (yield: 59%).
Synthesis of compound 13-3
4.5 g of compound 13-2 (10.7 mmol), 1.9 g of 1-bromobenzene (11.85 mmol), 0.63 g of tetrakis(triphenylphosphine)palladium (0) (0.54 mmol), and 3.7 g of potassium carbonate (26.95 mmol) were dissolved in 54 mL of toluene, 13 mL of ethanol, and 13 mL of water in a flask and refluxed for 12 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 2.2 g of compound 13-3 (yield: 56%).
Synthesis of compound C-372
2.2 g of compound 13-3 (5.9 mmol), 1.58 g of 2-chloro-3-phenylquinoxaline (6.57 mmol), 3.89 g of cesium carbonate (11.96 mmol), and 0.36 g of 4-dimethylaminopyridine (2.99 mmol) were dissolved in 30 mL of dimethyl sulfur monoxide in a flask and stirred at 100℃ for 4 hours. After the reaction was completed, the reaction product was cooled to room temperature, and distilled water was added thereto. The organic layer was extracted with ethyl acetate, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 2.9 g of compound C-372 (yield: 85%).
Figure PCTKR2018002303-appb-I000159
Example 14: Preparation of compound C-334
Figure PCTKR2018002303-appb-I000160
Figure PCTKR2018002303-appb-I000161
Synthesis of compound 14-1
27 g of compound 13-2 (64.7 mmol), 14.4 g of 1-bromo-2-nitrobenzene (71.2 mmol), 3.7 g of tetrakis(triphenylphosphine)palladium (0) (3.2 mmol), and 22.4 g of potassium carbonate (162 mmol) were dissolved in 320 mL of toluene, 80 mL of ethanol, and 80 mL of water in a flask and refluxed for 12 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 26.7 g of compound 14-1 (yield: 100%).
Synthesis of compound 14-2
26.7 g of compound 14-1 (64.7 mmol), 18 mL of 1-idobenzene (162 mmol), 18.5 g of copper iodide (CuI) (97 mmol), 13 mL of ethylenediamine (194 mmol), and 27.4 g of potassium phosphate (129 mmol) were dissolved in 325 mL of toluene in a flask and refluxed for 2 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 15.7 g of compound 14-2 (yield: 49%).
Synthesis of compound 14-3
13.1 g of compound 14-2 (26.8 mmol) was added to 180 mL of triethylphosphite and 180 mL of 1,2-dichlorobenzene in a flask and stirred at 200℃ for 2 hours. After the reaction was completed, the solvent was distilled off under reduced pressure, the reaction product was cooled to room temperature, and hexane was added thereto to obtain a solid. The resulting solid was filtered through a filter to remove the solvent and purified by column chromatography to obtain 0.71 g of compound 14-3 (yield: 5.8%).
Synthesis of compound C-334
0.71 g of compound 14-3 (1.56 mmol), 0.45 g of 2-chloro-3-phenylquinoxaline (1.87 mmol), 1.01 g of cesium carbonate (3.12 mmol), and 0.095 g of 4-dimethylaminopyridine (0.78 mmol) were dissolved in 30 mL of dimethyl sulfur monoxide in a flask and stirred at 100℃ for 4 hours. After the reaction was completed, the reaction product was cooled to room temperature, and distilled water and methanol were added thereto. The resulting solid was filtered through a filter to remove the solvent and purified by column chromatography to obtain 0.50 g of compound C-334 (yield: 49%).
Figure PCTKR2018002303-appb-I000162
Figure PCTKR2018002303-appb-I000163
Example 15: Preparation of compound C-197
Figure PCTKR2018002303-appb-I000164
Figure PCTKR2018002303-appb-I000165
Synthesis of compound 15-1
40 g of compound 13-1 (108 mmol), 25.4 g of (2-methylthiophenyl)boronic acid (153.5 mmol), 6.26 g of tetrakis(triphenylphosphine)palladium (0) (5.40 mmol), and 26.3 g of potassium carbonate (272.0 mmol) were dissolved in 536 mL of tetrahydrofuran and 134 mL of distilled water in a flask and refluxed at 100℃ for 18 hours. After the reaction was completed, an organic layer was extracted with ethyl acetate, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 40 g of compound 15-1 (yield: 89%).
Synthesis of compound 15-2
40 g of compound 15-1 (96.8 mmol) was dissolved in 400 mL of tetrahydrofuran, 200 mL of acetic acid and 12.6 mL of 34.5% hydrogen peroxide (145.2 mmol) in a flask and stirred at room temperature for 20 hours. After the reaction was completed, the mixture was concentrated, and an organic layer was extracted with methylene chloride and an aqueous solution of sodium hydrogencarbonate, and then residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 42 g of compound 15-2 (yield: 100%).
Synthesis of compound 15-3
42 g of compound 15-2 (96.4 mmol) was dissolved in 190 mL of trifluoromethanesulfonic acid and stirred at room temperature for 3 days. After the reaction was completed, 50 mL of pyridine and 1M aqueous NaOH solution were added to the mixture at 0℃ to adjust the pH to 7 to 8, and the mixture was refluxed at 100℃ for 1 hour. The resulting solid was filtered through a filter to remove the solvent and purified by column chromatography to obtain 9.1 g of compound 15-3 (yield: 24%).
Synthesis of compound C-197
4 g of compound 15-3 (10.1 mmol), 3 g of 2-chloro-3-phenylquinoxaline (12.1 mmol), 6.6 g of cesium carbnoate (20.2 mmol), and 0.62 g of 4-dimethylaminopyridine (5.1 mmol) were dissolved in 50 mL of dimethyl sulfur monoxide in a flask and stirred at 100℃ for 4 hours. After the reaction was completed, the reaction product was cooled to room temperature, and distilled water and methanol were added thereto. The resulting solid was filtered through a filter to remove the solvent and purified by column chromatography to obtain 4.8 g of compound C-197 (yield: 79%).
Figure PCTKR2018002303-appb-I000166
Figure PCTKR2018002303-appb-I000167
Example 16: Preparation of compound C-339
Figure PCTKR2018002303-appb-I000168
Synthesis of compound 16-1
15.6 g of compound 5 (53.5 mmol), 20 g of 2,3-dichlorobenzo[f]quinoxaline (80.3 mmol), 15 g of potassium carbonate (107.0 mmol), and 3.3 g of N,N-dimethyl-4-pyridineamine (26.7 mmol) were added to 270 mL of N,N-dimethylformamide and stirred at 150℃ for 4 hours. After the reaction was completed, the reaction product was cooled to room temperature and the solvent was removed by a rotary evaporator. The residue was purified by column chromatography to obtain 2.2 g of compound 16-1 (yield: 8%).
Synthesis of compound C-339
2.2 g of compound 16-1 (4.4 mmol), 800 mg of phenylboronic acid (6.6 mmol), 250 mg of tetrakis(triphenylphosphine)palladium (0.2 mmol), and 1.2 g of sodium carbonate (10.9 mmol), 20 mL of toluene, and 5 mL of ethanol were added to a reaction vessel, and the mixture was stirred at 130℃ for 3 hours. After the reaction was completed, and the reaction product was cooled to room temperature and the solvent was removed by a rotary evaporator. The residue was purified by column chromatography to obtain 1.8 g of compound C-339 (yield: 76%).
Figure PCTKR2018002303-appb-I000169
Figure PCTKR2018002303-appb-I000170
Example 17: Preparation of compound C-338
Figure PCTKR2018002303-appb-I000171
Synthesis of compound 17-1
15.6 g of compound 5 (53.5 mmol), 20 g of 2,3-dichlorobenzo[f]quinoxaline (80.3 mmol), 15 g of potassium carbonate (107.0 mmol), and 3.3 g of N,N-dimethyl-4-pyridineamine (26.7 mmol) were added to 270 mL of N,N-dimethylformamide and stirred at 150℃ for 4 hours. After the reaction was completed, the reaction product was cooled to room temperature and the solvent was removed by a rotary evaporator. The residue was purified by column chromatography to obtain 2.8 g of compound 17-1 (yield: 10%).
Synthesis of compound C-338
2.7 g of compound 17-1 (5.4 mmol), 1 g of phenylboronic acid (8.0 mmol), 310 mg of tetrakis(triphenylphosphine)palladium (0.3 mmol), 1.4 g of sodium carbonate (13.4 mmol), 28 mL of toluene, and 7 mL of ethanol were added to a reaction vessel, and the mixture was stirred at 130℃ for 3 hours. After the reaction was completed, the reaction product was cooled to room temperature and the solvent was removed by a rotary evaporator. The residue was purified by column chromatography to obtain 2.5 g of compound C-338 (yield: 86%).
Figure PCTKR2018002303-appb-I000172
Figure PCTKR2018002303-appb-I000173
Example 18: Preparation of compound C-379
Figure PCTKR2018002303-appb-I000174
4.0 g of compound 5 (13.73 mmol), 5.2 g of 5-chloro-2,3-diphenylquinoxaline (16.47 mmol), 0.629 g of tris(dibenzylideneacetone)dipalladium (0) (0.686 mmol), 0.564 mg of S-Phos (1.0 mmol), and 3.9 g of sodium tert-butoxide (41 mmol) were dissolved in 80 mL of 1,2-dimethylbenzene in a flask and refluxed for 4 hours. After the reaction was completed, the reaction product was cooled to room temperature, and distilled water was added thereto. The organic layer was extracted with MC and dried over magnesium sulfate. The residue was distilled under reduced pressure and purified by column chromatography to obtain 2.8 g of compound C-379 (yield: 35.67%).
Figure PCTKR2018002303-appb-I000175
Figure PCTKR2018002303-appb-I000176
Example 19: Preparation of compound C-389
Figure PCTKR2018002303-appb-I000177
6.0 g of compound 5 (21 mmol), 7.8 g of 2-([1,1'-biphenyl]-3-yl)-3-chloroquinoxaline (25 mmol), 8.5 g of potassium carbonate (62 mmol), and 0.126 g of 4-dimethylaminopyridine (1 mmol) were dissolved in 100 mL of dimethyl formamide in a flask and refluxed for 4 hours. After the reaction was completed, the reaction product was cooled to room temperature, and distilled water was added thereto. The organic layer was extracted with MC and dried over magnesium sulfate. The residue was distilled under reduced pressure and purified by column chromatography to obtain 8.8 g of compound C-389 (yield: 74%).
Figure PCTKR2018002303-appb-I000178
Figure PCTKR2018002303-appb-I000179
Example 20: Preparation of compound C-395
Figure PCTKR2018002303-appb-I000180
7.9 g of compound 5 (27 mmol), 7.9 g of 2-chloro-3-(phenyl-D5)quinoxaline (33 mmol), 11.24 g of potassium carbonate (81 mmol), and 0.166 g of 4-dimethylaminopyridine (1 mmol) were dissolved in 135 mL of dimethyl formamide in a flask and refluxed for 4 hours. After the reaction was completed, the reaction product was cooled to room temperature and distilled water was added thereto. The organic layer was extracted with MC and dried over magnesium sulfate. The residue was distilled under reduced pressure and purified by column chromatography to obtain 3.2 g of compound C-395 (yield: 23.7%).
Figure PCTKR2018002303-appb-I000181
Figure PCTKR2018002303-appb-I000182
Example 21: Preparation of compound C-380
Figure PCTKR2018002303-appb-I000183
10 g of compound 5 (28.82 mmol), 7.0 g of 2-chloro-3-(4-(naphthalene-2-yl)phenyl)quinoxaline (24.02 mmol), 1.5 g of 4-(dimethylamino)pyridine (12.01 mmol), and 3.3 g of potassium carbonate (24.02 mmol) were dissolved in 130 mL of dimethyl formamide in a flask and refluxed for 3 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate after distillation under reduced pressure, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 8.8 g of compound C-380 (yield: 59%).
Figure PCTKR2018002303-appb-I000184
Figure PCTKR2018002303-appb-I000185
Example 22: Preparation of compound C-394
Figure PCTKR2018002303-appb-I000186
6 g of compound 5 (20.59 mmol), 9.1 g of 2-(3-chloroquinoxaline-2-yl)-9-phenyl-9H-carbazole (22.65 mmol), 1.2 g of 4-(dimethylamino)pyridine (10.29 mmol), and 2.8 g of potassium carbonate (20.59 mmol) were dissolved in 100 mL of dimethyl formamide in a flask and refluxed for 3 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate after distillation under reduced pressure, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 9.6 g of compound C-394 (yield: 70%).
Figure PCTKR2018002303-appb-I000187
Figure PCTKR2018002303-appb-I000188
Example 23: Preparation of compound C-346
Figure PCTKR2018002303-appb-I000189
6.0 g of compound 5 (20.59 mmol), 9.1 g of 2-(2-chloroquinazoline-4-yl)-9-phenyl-9H-carbazole (22.65 mmol), 1.2 g of 4-(dimethylamino)pyridine (10.29 mmol), and 2.8 g of potassium carbonate (20.59 mmol) were dissolved in 100 mL of dimethyl formamide in a flask and refluxed for 3 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate after distillation under reduced pressure, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 10 g of compound C-346 (yield: 77%).
Figure PCTKR2018002303-appb-I000190
Figure PCTKR2018002303-appb-I000191
Example 24: Preparation of compound C-388
Figure PCTKR2018002303-appb-I000192
12 g of compound 5 (41.1 mmol), 14.8 g of 2-(4-bromophenyl)-4-phenylquinazoline (41.1 mmol), 1.5 g of tris(dibenzylideneacetone)dipalladium (0) (1.6 mmol), 1.7 g of S-Phos (4.1 mmol), and 9.8 g of sodium tert-butoxide (102.9 mmol) were dissolved in 274 mL of o-xylene in a flask and refluxed for 4 hours. After the reaction was completed, the reaction product was cooled and purified by column chromatography to obtain 1.1 g of compound C-388 (yield: 4.7%).
Figure PCTKR2018002303-appb-I000193
Figure PCTKR2018002303-appb-I000194
Example 25: Preparation of compound C-381
Figure PCTKR2018002303-appb-I000195
5.7 g of compound 5 (19.5 mmol), 7.7 g of 2-chloro-3-(dibenzo[b,d]furan-1-yl)quinoxaline (23.2 mmol), 0.1 g of 4-(dimethylamino)pyridine (0.9 mmol), and 8.1 g of potassium carbonate (58.5 mmol) were dissolved in 99 mL of dimethyl formamide in a flask and refluxed for 3 hours and 30 minutes. After the reaction was completed, the reaction product was cooled, and methanol and water were added and filtered. The residue was dried and purified by column chromatography to obtain 6 g of compound C-381 (yield: 52%).
Figure PCTKR2018002303-appb-I000196
Figure PCTKR2018002303-appb-I000197
Example 26: Preparation of compound C-378
Figure PCTKR2018002303-appb-I000198
3.8 g of compound 5 (13 mmol), 5.0 g of 2-([1,1'-biphenyl]-4-yl)-3-chloroquinoxaline (16 mmol), 800 mg of DMAP (7 mmol), and 3.6 g of potassium carbonate (26 mmol) were dissolved in 55 mL of dimethyl formamide in a flask and refluxed for 18 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate after distillation under reduced pressure, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 1.4 g of compound C-378 (yield: 19%).
Figure PCTKR2018002303-appb-I000199
Figure PCTKR2018002303-appb-I000200
Example 27: Preparation of compound C-386
Figure PCTKR2018002303-appb-I000201
5.1 g of compound 5 (17 mmol), 5.0 g of 6-chloro-2,3-diphenylquinoxaline (16 mmol), 578 mg of tris(dibenzylideneacetone)dipalladium (0) (0.631 mmol), 648 mg of S-Phos (2 mmol), and 3.8 g of sodium tert-butoxide (39 mmol) were dissolved in 100 mL of toluene in a flask and refluxed for 16 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate after distillation under reduced pressure, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 7.6 g of compound C-386 (yield: 84%).
Figure PCTKR2018002303-appb-I000202
Figure PCTKR2018002303-appb-I000203
Example 28: Preparation of compound C-387
Figure PCTKR2018002303-appb-I000204
6.6 g of compound 10-1 (14.78 mmol), 3.4 g of dibenzo[b,d]furan-1-yl-boronic acid (16.24 mmol), 0.85 g of tetrakis(triphenylphosphine)palladium(0) (0.739 mmol), and 4 g of potassium carbonate (29.57 mmol) were added to 60 mL of toluene, 15 mL of ethanol, and 15 mL of purified water and stirred under reflux for one day. After the reaction was completed, the reaction product was cooled to room temperature, and the resulting solid was filtered under reduced pressure. The solid was dissolved in CHCl3 and purified by column chromatography using MC/Hex to obtain 3.5 g of compound C-387 (yield: 45%).
Figure PCTKR2018002303-appb-I000205
Figure PCTKR2018002303-appb-I000206
Example 29: Preparation of compound C-393
Figure PCTKR2018002303-appb-I000207
4.4 g of compound 5 (15.16 mmol), 5.0 g of 9-chloro-6-phenyl-6H-indolo[2,3,b]quinoxaline (15.16 mmol), 0.5 g of tris(dibenzylideneacetone)dipalladium (0) (0.606 mmol), 0.6 g of S-Phos (1.516 mmol), and 12 g of sodium tert-butoxide (37.90 mmol) were dissolved in 100 mL of 1,2-dimethylbenzene in a flask and refluxed for 4 hours. After the reaction was completed, the organic layer was extracted with ethyl acetate after distillation under reduced pressure, and residual water was removed by using magnesium sulfate. The residue was dried and purified by column chromatography to obtain 1.9 g of compound C-393 (yield: 21%).
Figure PCTKR2018002303-appb-I000208
Figure PCTKR2018002303-appb-I000209
Example 30: Preparation of compound C-447
Figure PCTKR2018002303-appb-I000210
Figure PCTKR2018002303-appb-I000211
Synthesis of compound 30-1
8.0 g of compound 13-1 (21.6 mmol), 12.1 g of 4-iodobiphenyl (43.2 mmol), 1.0 g of tris(dibenzylideneacetone)dipalladium (0) (1.08 mmol), 0.87 mL of tri-tert-butylphsophine (2.16 mmol, 50% toluene solution), and 5.2 g of sodium tert-butoxide (54.0 mmol) were dissolved in 216 mL of toluene in a flask and refluxed for 18 hours. After the reaction was completed, the reaction product was cooled to room temperature, and the solvent was removed by a rotary evaporator. The residue was purified by column chromatography to obtain 7.5 g of compound 30-1 (yield: 66%).
Synthesis of compound 30-2
7.5 g of compound 30-1 (14.4 mmol), 4.5 g of methyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxylboren-2-yl)benzoate (17.3 mmol), 323 mg of palladium acetate (Pd(OAc)2) (1.44 mmol), 1.2 g of ligand (2-dicyclohexylphosphonium-2',6'-dimethoxybiphenyl) (2.88 mmol), 14 g of cesium carbonate (43.2 mmol), 80 mL of xylene, 40 mL of ethanol, and 40 mL of distilled water were added to a flask, and stirred under reflux for 18 hours. The mixture was cooled to room temperature and distilled water was added thereto. The organic layer was extracted with MC, and dried over magnesium sulfate. The residue was distilled under reduced pressure and purified by column chromatography to obtain 2.2 g of compound 30-2 (yield: 27%).
Synthesis of compound 30-3
2.2 g of compound 30-2 (3.8 mmol), 2 mL of Eaton's reagent, and 13 mL of benzene chloride were added to a flask and stirred under reflux for 18 hours. The mixture was cooled to room temperature and an aqueous solution of sodium hydrogencarbonate was added thereto. The organic layer was extracted with ethyl acetate (EA) and dried over magnesium sulfate. The residue was distilled under reduced pressure and purified by column chromatography to obtain 1.5 g of compound 30-3 (yield: 71%).
Synthesis of compound C-447
244 mg of iodine (0.96 mmol), 0.48 mL of hypophosphorous acid (4.4 mmol, 50% aqueous solution), and 14 mL of acetic acid were added to a flask and stirred at 80℃ for 30 minutes. 1.5 g of compound 30-3 (2.75 mmol) was slowly added dropwise thereto and stirred under reflux for 4 hours. The reaction solution was cooled to room temperature, and the precipitated solid was filtered and washed with a large amount of water and ethanol. The resulting solid was filtered through a filter to remove the solvent. The residue was purified by column chromatography to obtain 270 mg of compound C-447 (yield: 18%).
Figure PCTKR2018002303-appb-I000212
Hereinafter, the properties of the organic light-emitting diode (OLED) device comprising the compound of the present disclosure will be explained in detail, but is not limited by the following examples.
Device Examples 1 to 16: Producing an OLED device comprising a compound
according to the present disclosure as a host
OLED devices were produced by using the organic electroluminescent compound according to the present disclosure. A transparent electrode indium tin oxide (ITO) thin film (10 Ω/sq) on a glass substrate for an OLED device (GEOMATEC CO., LTD., Japan) was subjected to an ultrasonic washing with acetone, ethanol, and distilled water, sequentially, and then was stored in isopropanol. The ITO substrate was then mounted on a substrate holder of a vacuum vapor deposition apparatus. Compound HI-1 was introduced into a cell of the vacuum vapor deposition apparatus, and then the pressure in the chamber of the apparatus was controlled to 10-6 torr. Thereafter, an electric current was applied to the cell to evaporate the above-introduced material, thereby forming a first hole injection layer having a thickness of 80 nm on the ITO substrate. Next, compound HI-2 was introduced into another cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a second hole injection layer having a thickness of 5 nm on the first hole injection layer. Compound HT-1 was then introduced into a cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a first hole transport layer having a thickness of 10 nm on the second hole injection layer. Compound HT-2 was then introduced into another cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a second hole transport layer having a thickness of 60 nm on the first hole transport layer. After forming the hole injection layer and the hole transport layer, a light-emitting layer was formed thereon as follows: The host material shown in Table 1 was introduced into one cell of the vacuum vapor depositing apparatus as a host, and compound D-39 was introduced into another cell as a dopant. The two materials were evaporated at a different rate and the dopant was deposited in a doping amount of 3 wt% based on the amount of the host to form a light-emitting layer having a thickness of 40 nm on the second hole transport layer. Compound ET-1 and compound EI-1 were then introduced into the other two cells and evaporated simultaneously to form an electron transport layer having a thickness of 35 nm on the light-emitting layer. After depositing compound EI-1 as an electron injection layer having a thickness of 2 nm on the electron transport layer, an Al cathode having a thickness of 80 nm was deposited on the electron injection layer by another vacuum vapor deposition apparatus. Thus, an OLED device was produced.
Comparative Example 1: Producing an OLED device comprising a
conventional compound as a host
An OLED device was produced in the same manner as in Device Example 1, except for using compound A as a host.
The driving voltage and luminous efficiency based on a luminance of 1,000 nits of the produced red OLED device, and the time taken to be reduced from 100% to 99% of the luminance (lifespan; T99) based on a luminance of 5,000 nits are provided in Table 1 below.
Figure PCTKR2018002303-appb-I000213
Figure PCTKR2018002303-appb-I000214
Figure PCTKR2018002303-appb-I000215
From Table 1 above, it can be seen that the OLED devices comprising the organic electroluminescent compound of the present disclosure have low driving voltage, high luminous efficiency, and/or improved lifespan properties compared to the OLED devices comprising a conventional organic electroluminescent compound. In addition, the organic electroluminescent compound of the present disclosure has a highly fused structure, and thus has a relatively high glass transition temperature (Tg) as compared with other organic electroluminescent compounds having similar molecular weights, thereby showing excellent thermal stability.
Comparative Example 2: Producing an OLED device not comprising an
electron buffer layer
An OLED device not comprising an electron buffer layer was produced by using the organic electroluminescent compound according to the present disclosure. A transparent electrode indium tin oxide (ITO) thin film (10 Ω/sq) on a glass substrate for an OLED device (GEOMATEC CO., LTD., Japan) was subjected to an ultrasonic washing with acetone and isopropyl alcohol, sequentially, and then was stored in isopropanol. The ITO substrate was then mounted on a substrate holder of a vacuum vapor deposition apparatus. Compound HI-1 was introduced into a cell of the vacuum vapor deposition apparatus, and then the pressure in the chamber of the apparatus was controlled to 10-7 torr. Thereafter, an electric current was applied to the cell to evaporate the above-introduced material, thereby forming a first hole injection layer having a thickness of 60 nm on the ITO substrate. Next, compound HI-2 was introduced into another cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a second hole injection layer having a thickness of 5 nm on the first hole injection layer. Compound HT-1 was then introduced into a cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a first hole transport layer having a thickness of 20 nm on the second hole injection layer. Compound HT-3 was then introduced into another cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a second hole transport layer having a thickness of 5 nm on the first hole transport layer. After forming the hole injection layer and the hole transport layer, a light-emitting layer was formed thereon as follows: Compound FH-1 was introduced into one cell of the vacuum vapor depositing apparatus as a host, and compound FD-1 was introduced into another cell as a dopant. The two materials were evaporated at a different rate and the dopant was deposited in a doping amount of 2 wt% based on the total amount of the host and the dopant to form a light-emitting layer having a thickness of 20 nm on the second hole transport layer. Compound ET-1 and compound EI-1 were then introduced into the other two cells and evaporated simultaneously to form an electron transport layer having a thickness of 35 nm on the light-emitting layer. After depositing compound EI-1 as an electron injection layer having a thickness of 2 nm on the electron transport layer, an Al cathode having a thickness of 80 nm was deposited on the electron injection layer by another vacuum vapor deposition apparatus. Thus, an OLED device was produced. All the materials used for producing the OLED device were purified by vacuum sublimation at 10-6 torr.
Device Example 17: Producing an OLED device comprising a compound
according to the present disclosure as an electron buffer layer
An OLED device was produced in the same manner as in Comparative Example 2, except that the thickness of the electron transport layer was reduced to 30 nm, and the electron buffer layer comprising compound C-8 was inserted between the light-emitting layer and the electron transport layer.
The driving voltage and color coordinate based on a luminance of 1 mA/cm2 of the OLED device produced by Comparative Example 2 and Device Example 17, and the time taken to reduce the luminance from 100% to 90% (lifespan; T90) based on a luminance of 2,000 nits are provided in Table 2 below.
Figure PCTKR2018002303-appb-I000216
From Table 2 above, it can be seen that the OLED device of Device Example 17, in which the compound of the present disclosure is comprised in an electron buffer layer, has low driving voltage and improved lifespan properties compared to the OLED device of Comparative Example 2.
Device Example 18: Producing an OLED device comprising a compound
according to the present disclosure
An OLED device was produced in the same manner as in Device Example 1, except that the light-emitting layer was formed as follows: Compound C-8 was introduced into one cell of the vacuum vapor depositing apparatus as a first host, and compound H2-6 was introduced into another cell as a second host. The two materials were evaporated at the same rate, and compound D-39 was introduced into another cell as a dopant. The three materials were evaporated and the dopant was deposited in a doping amount of 3 wt% based on the total amount of the host and the dopant to form a light-emitting layer having a thickness of 40 nm on the second hole transport layer.
As a result, the efficiency was 20.8cd/A at a voltage of 4.3 V, red luminescence of 5000 cd/m2 was confirmed, and a minimum time taken to reduce the luminance from 100% to 97% based on a luminance of 5,000 nits was 137 hours.
The compounds used in the Comparative Examples and Device Examples are shown in Table 3 below.
Figure PCTKR2018002303-appb-I000217
Figure PCTKR2018002303-appb-I000218
Figure PCTKR2018002303-appb-I000219

Claims (10)

  1. An organic electroluminescent compound represented by the following formula 1:
    Figure PCTKR2018002303-appb-I000220
    wherein
    M represents
    Figure PCTKR2018002303-appb-I000221
    O or S;
    X1 to X12, each independently, represent N or CR1;
    La represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene;
    Ar and R1, each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; or may be linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, or the combination thereof, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur;
    the heteroaryl(ene) contains at least one heteroatom selected from B, N, O, S, Si, and P; and
    a represents an integer of 1 or 2, where if a is 2, each of Ar may be the same or different.
  2. The organic electroluminescent compound according to claim 1, wherein the substituents of the substituted (C1-C30)alkyl(ene), the substituted (C6-C30)aryl(ene), the substituted (3- to 30-membered)heteroaryl(ene), the substituted (C3-C30)cycloalkyl(ene), the substituted (C1-C30)alkoxy, the substituted tri(C1-C30)alkylsilyl, the substituted di(C1-C30)alkyl(C6-C30)arylsilyl, the substituted (C1-C30)alkyldi(C6-C30)arylsilyl, the substituted tri(C6-C30)arylsilyl, the substituted mono- or di- (C1-C30)alkylamino, the substituted mono- or di- (C6-C30)arylamino, the substituted (C1-C30)alkyl(C6-C30)arylamino, and the substituted mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, or the combination thereof in La, Ar, and R1, each independently, are at least one selected from the group consisting of deuterium; a halogen; a cyano; a carboxyl; a nitro; a hydroxyl; a (C1-C30)alkyl; a halo(C1-C30)alkyl; a (C2-C30)alkenyl; a (C2-C30)alkynyl; a (C1-C30)alkoxy; a (C1-C30)alkylthio; a (C3-C30)cycloalkyl; a (C3-C30)cycloalkenyl; a (3- to 7-membered)heterocycloalkyl; a (C6-C30)aryloxy; a (C6-C30)arylthio; a (5- to 30-membered)heteroaryl unsubstituted or substituted with a (C6-C30)aryl; a (C6-C30)aryl unsubstituted or substituted with a (5- to 30-membered)heteroaryl; a tri(C1-C30)alkylsilyl; a tri(C6-C30)arylsilyl; a di(C1-C30)alkyl(C6-C30)arylsilyl; a (C1-C30)alkyldi(C6-C30)arylsilyl; an amino; a mono- or di- (C1-C30)alkylamino; a mono- or di- (C6-C30)arylamino unsubstituted or substituted with a (C1-C30)alkyl; a (C1-C30)alkyl(C6-C30)arylamino; a (C1-C30)alkylcarbonyl; a (C1-C30)alkoxycarbonyl; a (C6-C30)arylcarbonyl; a di(C6-C30)arylboronyl; a di(C1-C30)alkylboronyl; a (C1-C30)alkyl(C6-C30)arylboronyl; a (C6-C30)aryl(C1-C30)alkyl; and a (C1-C30)alkyl(C6-C30)aryl.
  3. The organic electroluminescent compound according to claim 1, wherein Ar represents a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted fluorenyl, a substituted or unsubstituted fluoranthenyl, a substituted or unsubstituted triazinyl, a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted benzothienopyrimidinyl, a substituted or unsubstituted acenaphthopyrimidinyl, a substituted or unsubstituted quinazolinyl, a substituted or unsubstituted benzoquinazolinyl, a substituted or unsubstituted quinoxalinyl, a substituted or unsubstituted benzoquinoxalinyl, a substituted or unsubstituted dibenzoquinoxalinyl, a substituted or unsubstituted quinolyl, a substituted or unsubstituted benzoquinolyl, a substituted or unsubstituted isoquinolyl, a substituted or unsubstituted benzoisoquinolyl, a substituted or unsubstituted benzothienoquinolyl, a substituted or unsubstituted benzofuroquinolyl, a substituted or unsubstituted triazolyl, a substituted or unsubstituted pyrazolyl, a substituted or unsubstituted carbazolyl, a substituted or unsubstituted dibenzothiophenyl, a substituted or unsubstituted benzothiophenyl, a substituted or unsubstituted dibenzofuranyl, a substituted or unsubstituted benzofuranyl, a substituted or unsubstituted naphthyridinyl, a substituted or unsubstituted benzothiazolinyl, a substituted or unsubstituted phenanthroimidazolyl, a substituted or unsubstituted diphenylamino, a substituted or unsubstituted phenylbiphenylamino, a substituted or unsubstituted fluorenylphenylamino, a substituted or unsubstituted dibenzothiophenylphenylamino, or a substituted or unsubstituted dibenzofuranylphenylamino.
  4. The organic electroluminescent compound according to claim 1, wherein two adjacent X1 to X12 in formula 1 are CR1, two adjacent R1 are fused to any one of the following formulas 2 to 6 to form a ring, and one or more of the rings are formed in one compound represented by formula 1:
    Figure PCTKR2018002303-appb-I000222
    Figure PCTKR2018002303-appb-I000223
    wherein
    R2 represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino,
    X represents N or CH,
    R11 and R12, each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted (C3-C30)cycloalkyl; or may be linked to each other to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, or the combination thereof, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur, and
    Figure PCTKR2018002303-appb-I000224
    represents a connecting site between C and R1 in CR1.
  5. The organic electroluminescent compound according to claim 1, wherein formula 1 is represented by any one of the following formulas 7 to 10:
    Figure PCTKR2018002303-appb-I000225
    Figure PCTKR2018002303-appb-I000226
    wherein
    X1 to X12, and M are as defined in claim 1.
  6. The organic electroluminescent compound according to claim 1, wherein the compound represented by formula 1 is selected from the following compounds:
    Figure PCTKR2018002303-appb-I000227
    Figure PCTKR2018002303-appb-I000228
    Figure PCTKR2018002303-appb-I000229
    Figure PCTKR2018002303-appb-I000230
    Figure PCTKR2018002303-appb-I000231
    Figure PCTKR2018002303-appb-I000232
    Figure PCTKR2018002303-appb-I000233
    Figure PCTKR2018002303-appb-I000234
    Figure PCTKR2018002303-appb-I000235
    Figure PCTKR2018002303-appb-I000236
    Figure PCTKR2018002303-appb-I000237
    Figure PCTKR2018002303-appb-I000238
    Figure PCTKR2018002303-appb-I000239
    Figure PCTKR2018002303-appb-I000240
    Figure PCTKR2018002303-appb-I000241
    Figure PCTKR2018002303-appb-I000242
    Figure PCTKR2018002303-appb-I000243
    Figure PCTKR2018002303-appb-I000244
    Figure PCTKR2018002303-appb-I000245
    Figure PCTKR2018002303-appb-I000246
    Figure PCTKR2018002303-appb-I000247
    Figure PCTKR2018002303-appb-I000248
    Figure PCTKR2018002303-appb-I000249
    Figure PCTKR2018002303-appb-I000250
    Figure PCTKR2018002303-appb-I000251
    Figure PCTKR2018002303-appb-I000252
    Figure PCTKR2018002303-appb-I000253
    Figure PCTKR2018002303-appb-I000254
    Figure PCTKR2018002303-appb-I000255
    Figure PCTKR2018002303-appb-I000256
    Figure PCTKR2018002303-appb-I000257
    Figure PCTKR2018002303-appb-I000258
    Figure PCTKR2018002303-appb-I000259
    Figure PCTKR2018002303-appb-I000260
    Figure PCTKR2018002303-appb-I000261
    Figure PCTKR2018002303-appb-I000262
    Figure PCTKR2018002303-appb-I000263
    Figure PCTKR2018002303-appb-I000264
    Figure PCTKR2018002303-appb-I000265
    Figure PCTKR2018002303-appb-I000266
    Figure PCTKR2018002303-appb-I000267
    Figure PCTKR2018002303-appb-I000268
    Figure PCTKR2018002303-appb-I000269
    Figure PCTKR2018002303-appb-I000270
    Figure PCTKR2018002303-appb-I000271
    Figure PCTKR2018002303-appb-I000272
    Figure PCTKR2018002303-appb-I000273
    Figure PCTKR2018002303-appb-I000274
    Figure PCTKR2018002303-appb-I000275
    Figure PCTKR2018002303-appb-I000276
    Figure PCTKR2018002303-appb-I000277
    Figure PCTKR2018002303-appb-I000278
    Figure PCTKR2018002303-appb-I000279
    Figure PCTKR2018002303-appb-I000280
    Figure PCTKR2018002303-appb-I000281
    Figure PCTKR2018002303-appb-I000282
    Figure PCTKR2018002303-appb-I000283
    Figure PCTKR2018002303-appb-I000284
    Figure PCTKR2018002303-appb-I000285
  7. A composite material for an organic electroluminescent device, comprising the compound represented by formula 1 according to claim 1, and at least one organic electroluminescent compound.
  8. The composite material for an organic electroluminescent device, wherein the at least one organic electroluminescent compound is at least one of the compound represented by the following formula 11:
    Figure PCTKR2018002303-appb-I000286
    wherein
    A1 and A2, each independently, represent a substituted or unsubstituted (C6-C30)aryl;
    L1 represents a single bond, or a substituted or unsubstituted (C6-C30)arylene;
    X11 to X26, each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, or a substituted or unsubstituted mono- or di- (C6-C30)arylamino; or are linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, or the combination thereof, wherein the carbon atom(s) of the alicyclic or aromatic ring, or the combination thereof may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur.
  9. An organic electroluminescent device comprising the organic electroluminescent compound according to claim 1.
  10. The organic electroluminescent device according to claim 9, wherein the organic electroluminescent compound is comprised in at least one of a light-emitting layer and an electron transport zone.
PCT/KR2018/002303 2017-02-28 2018-02-26 Organic electroluminescent compound and organic electroluminescent device comprising the same WO2018159964A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/483,065 US11302874B2 (en) 2017-02-28 2018-02-26 Organic electroluminescent compound and organic electroluminescent device comprising the same
EP18761926.7A EP3589614B1 (en) 2017-02-28 2018-02-26 Organic electroluminescent compound and organic electroluminescent device comprising the same
JP2019544046A JP7184785B2 (en) 2017-02-28 2018-02-26 Organic electroluminescent compound and organic electroluminescent device containing the same
CN201880011724.2A CN110337432B (en) 2017-02-28 2018-02-26 Organic electroluminescent compounds and organic electroluminescent device comprising the same
JP2022115131A JP7314364B2 (en) 2017-02-28 2022-07-19 Organic electroluminescent compound and organic electroluminescent device containing the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2017-0026014 2017-02-28
KR20170026014 2017-02-28
KR20170124285 2017-09-26
KR10-2017-0124285 2017-09-26
KR10-2017-0180988 2017-12-27
KR20170180988 2017-12-27
KR10-2018-0021961 2018-02-23
KR1020180021961A KR102129236B1 (en) 2017-02-28 2018-02-23 Organic electroluminescent compound and organic electroluminescent device comprising the same

Publications (1)

Publication Number Publication Date
WO2018159964A1 true WO2018159964A1 (en) 2018-09-07

Family

ID=63371297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002303 WO2018159964A1 (en) 2017-02-28 2018-02-26 Organic electroluminescent compound and organic electroluminescent device comprising the same

Country Status (1)

Country Link
WO (1) WO2018159964A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110437241A (en) * 2019-07-03 2019-11-12 浙江华显光电科技有限公司 A kind of red phosphorescent host compound and the organic luminescent device using the compound
CN110437242A (en) * 2019-07-03 2019-11-12 浙江华显光电科技有限公司 A kind of red phosphorescent compound and the organic electroluminescence device using the compound
CN110467630A (en) * 2019-07-26 2019-11-19 浙江华显光电科技有限公司 A kind of phosphorescent compound and the organic light emitting diode device using the compound
CN110669048A (en) * 2018-12-06 2020-01-10 广州华睿光电材料有限公司 Organic compound based on nitrogen-containing fused ring and application thereof
CN110872301A (en) * 2019-10-15 2020-03-10 浙江华显光电科技有限公司 Phosphorescent compound and organic light emitting diode device using the same
CN110903305A (en) * 2019-08-29 2020-03-24 浙江华显光电科技有限公司 Phosphorescent compound and organic light emitting diode device using the same
CN110903301A (en) * 2019-09-03 2020-03-24 浙江华显光电科技有限公司 Phosphorescent compound and organic light emitting diode device using the same
CN110903300A (en) * 2019-08-29 2020-03-24 浙江华显光电科技有限公司 Phosphorescent compound and organic light emitting diode device using the same
CN111039850A (en) * 2019-09-04 2020-04-21 宁波卢米蓝新材料有限公司 Fused ring compound and preparation method and application thereof
WO2020091446A1 (en) * 2018-10-31 2020-05-07 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
CN111574535A (en) * 2020-05-27 2020-08-25 宁波卢米蓝新材料有限公司 Organic electroluminescent compound and preparation method and application thereof
CN111909158A (en) * 2020-08-28 2020-11-10 北京八亿时空液晶科技股份有限公司 Carbazole derivative and application thereof
WO2020256376A1 (en) * 2019-06-18 2020-12-24 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
CN112201758A (en) * 2019-07-08 2021-01-08 罗门哈斯电子材料韩国有限公司 Multiple host materials and organic electroluminescent device comprising the same
US20210043848A1 (en) * 2018-03-16 2021-02-11 Rohm And Haas Electronic Materials Korea Ltd. Composition material for organic electroluminescent device, plurality of host materials, and organic electroluminescent device comprising the same
WO2021029757A1 (en) * 2019-08-13 2021-02-18 주식회사 엘지화학 Novel compound and organic light emitting device using same
KR20210019968A (en) * 2019-08-13 2021-02-23 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same
CN112661752A (en) * 2020-12-23 2021-04-16 吉林奥来德光电材料股份有限公司 Phenanthroimidazole condensed ring compound, preparation method thereof and organic electroluminescent device
US20210151693A1 (en) * 2018-07-25 2021-05-20 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent device comprising the same
US20220102645A1 (en) * 2018-07-31 2022-03-31 Rohm And Haas Electronic Materials Korea Ltd. Plurality of host materials and organic electroluminescent device comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150121337A (en) 2014-04-18 2015-10-29 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150121337A (en) 2014-04-18 2015-10-29 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
APPL. PHYS. LETT., vol. 51, 1987, pages 913
CAS, no. 56667-27-7
DATABASE CAS 16 November 1984 (1984-11-16), retrieved from STN Database accession no. 56667-27-7 *
DOPPER JH ET AL.: "Synthesis and Properties of Some Heterocirculenes", JOURNAL OF ORGANIC CHEMISTRY, vol. 40, no. 13, 1975, pages 1957 - 1966, XP055549665, DOI: 10.1021/jo00901a019
DOPPER, J. H. ET AL.: "Synthesis and Properties of Some Heterocirculenes", JOURNAL OF ORGANIC CHEMISTRY, vol. 40, no. 13, 1975, pages 1957 - 1966, XP055549665 *
UPADHYAY GM ET AL.: "Synthesis and Photophysical Properties of Aza[n]helicenes", JOURNAL OF ORGANIC CHEMISTRY, vol. 1.81, no. 17, 2016, pages 7751 - 7759, XP055549657, DOI: 10.1021/acs.joc.6b01395
UPADHYAY, G. M. ET AL.: "Synthesis and Photophysical Properties of Aza[n]helicenes", JOURNAL OF ORGANIC CHEMISTRY, vol. 81, no. 17, 2016, pages 7751 - 7759, XP055549657 *
ZANDER M ET AL., CHEMISCHE BERICHTE, vol. 1 02, no. 8, 1969, pages 2728 - 2738
ZANDER, M. ET AL.: "Uber Carbazolo-carbazole", CHEMISCHE BERICHTE, vol. 102, no. 8, 1969, pages 2728 - 2738, XP055549656 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210043848A1 (en) * 2018-03-16 2021-02-11 Rohm And Haas Electronic Materials Korea Ltd. Composition material for organic electroluminescent device, plurality of host materials, and organic electroluminescent device comprising the same
US20210151693A1 (en) * 2018-07-25 2021-05-20 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent device comprising the same
US20220102645A1 (en) * 2018-07-31 2022-03-31 Rohm And Haas Electronic Materials Korea Ltd. Plurality of host materials and organic electroluminescent device comprising the same
WO2020091446A1 (en) * 2018-10-31 2020-05-07 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
CN110669048A (en) * 2018-12-06 2020-01-10 广州华睿光电材料有限公司 Organic compound based on nitrogen-containing fused ring and application thereof
WO2020256376A1 (en) * 2019-06-18 2020-12-24 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
CN110437241A (en) * 2019-07-03 2019-11-12 浙江华显光电科技有限公司 A kind of red phosphorescent host compound and the organic luminescent device using the compound
CN110437242A (en) * 2019-07-03 2019-11-12 浙江华显光电科技有限公司 A kind of red phosphorescent compound and the organic electroluminescence device using the compound
CN112201758A (en) * 2019-07-08 2021-01-08 罗门哈斯电子材料韩国有限公司 Multiple host materials and organic electroluminescent device comprising the same
CN110467630A (en) * 2019-07-26 2019-11-19 浙江华显光电科技有限公司 A kind of phosphorescent compound and the organic light emitting diode device using the compound
WO2021029757A1 (en) * 2019-08-13 2021-02-18 주식회사 엘지화학 Novel compound and organic light emitting device using same
KR102456678B1 (en) 2019-08-13 2022-10-19 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same
KR20210019968A (en) * 2019-08-13 2021-02-23 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same
CN113454089B (en) * 2019-08-13 2024-02-27 株式会社Lg化学 Novel compound and organic light emitting device using the same
CN113454089A (en) * 2019-08-13 2021-09-28 株式会社Lg化学 Novel compound and organic light emitting device using the same
CN110903300A (en) * 2019-08-29 2020-03-24 浙江华显光电科技有限公司 Phosphorescent compound and organic light emitting diode device using the same
CN110903305A (en) * 2019-08-29 2020-03-24 浙江华显光电科技有限公司 Phosphorescent compound and organic light emitting diode device using the same
CN110903301A (en) * 2019-09-03 2020-03-24 浙江华显光电科技有限公司 Phosphorescent compound and organic light emitting diode device using the same
CN111056988A (en) * 2019-09-04 2020-04-24 宁波卢米蓝新材料有限公司 Fused ring compound and preparation method and application thereof
CN111039850A (en) * 2019-09-04 2020-04-21 宁波卢米蓝新材料有限公司 Fused ring compound and preparation method and application thereof
CN111056988B (en) * 2019-09-04 2021-10-15 宁波卢米蓝新材料有限公司 Fused ring compound and preparation method and application thereof
CN110872301A (en) * 2019-10-15 2020-03-10 浙江华显光电科技有限公司 Phosphorescent compound and organic light emitting diode device using the same
CN111574535A (en) * 2020-05-27 2020-08-25 宁波卢米蓝新材料有限公司 Organic electroluminescent compound and preparation method and application thereof
CN111909158A (en) * 2020-08-28 2020-11-10 北京八亿时空液晶科技股份有限公司 Carbazole derivative and application thereof
CN111909158B (en) * 2020-08-28 2023-04-18 北京八亿时空液晶科技股份有限公司 Carbazole derivative and application thereof
CN112661752A (en) * 2020-12-23 2021-04-16 吉林奥来德光电材料股份有限公司 Phenanthroimidazole condensed ring compound, preparation method thereof and organic electroluminescent device

Similar Documents

Publication Publication Date Title
WO2018159964A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
EP3589614A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
EP3371182A1 (en) Electron buffering materials, electron transport materials and organic electroluminescent device comprising the same
EP3145924A1 (en) An organic electroluminescent compound and an organic electroluminescent device comprising the same
WO2014054912A1 (en) Organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2015099507A1 (en) Novel organic electroluminescent compound, and multi-component host material and organic electroluminescent device comprising the same
EP3685453A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
WO2022015084A1 (en) Organic light-emitting element
WO2012039534A1 (en) Compound for an organic photoelectric device, and organic photoelectric device including same
EP3137467A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2018052244A1 (en) Organic electroluminescent device comprising an electron buffer layer and an electron transport layer
WO2015093878A1 (en) Organic electroluminescent compound, and multi-component host material and organic electroluminescent device comprising the same
WO2015050391A1 (en) An organic electroluminescent compound and an organic electroluminescent device comprising the same
WO2014129846A1 (en) Organic electroluminescent compounds and an organic electroluminescent device comprising the same
WO2021215669A1 (en) Organic optoelectronic element compound, organic optoelectronic element composition, organic optoelectronic element, and display device
WO2015178731A1 (en) An organic electroluminescent compound and an organic electroluminescent device comprising the same
EP3298016A1 (en) Phosphorous host material and organic electroluminescent device comprising the same
WO2017200210A1 (en) Organic electroluminescent compound, organic electroluminescent material and organic electroluminescent device comprising the same
WO2014025209A1 (en) Novel compound and organic electroluminescence device comprising same
EP3458457A1 (en) Organic electroluminescent compound, organic electroluminescent material and organic electroluminescent device comprising the same
EP3197869A1 (en) Organic electroluminescent compound, and organic electroluminescent material and organic electroluminescent device comprising the same
WO2017073942A1 (en) Electron buffering materials, electron transport materials and organic electroluminescent device comprising the same
WO2018066812A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2020045981A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
WO2016186321A1 (en) Phosphorous host material and organic electroluminescent device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761926

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544046

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018761926

Country of ref document: EP

Effective date: 20190930