WO2018159689A1 - Method for observing inner structure of ceramic, method for producing ceramic, analysis system, and system for producing ceramic - Google Patents

Method for observing inner structure of ceramic, method for producing ceramic, analysis system, and system for producing ceramic Download PDF

Info

Publication number
WO2018159689A1
WO2018159689A1 PCT/JP2018/007541 JP2018007541W WO2018159689A1 WO 2018159689 A1 WO2018159689 A1 WO 2018159689A1 JP 2018007541 W JP2018007541 W JP 2018007541W WO 2018159689 A1 WO2018159689 A1 WO 2018159689A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
state
slurry
ceramics
light
Prior art date
Application number
PCT/JP2018/007541
Other languages
French (fr)
Japanese (ja)
Inventor
拓実 ▲高▼橋
多々見 純一
Original Assignee
地方独立行政法人神奈川県立産業技術総合研究所
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 地方独立行政法人神奈川県立産業技術総合研究所, 国立大学法人横浜国立大学 filed Critical 地方独立行政法人神奈川県立産業技術総合研究所
Priority to JP2019503067A priority Critical patent/JP7153275B2/en
Publication of WO2018159689A1 publication Critical patent/WO2018159689A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated

Definitions

  • the present invention relates to a ceramic internal structure observation method, a ceramic manufacturing method, an analysis system, and a ceramic manufacturing system.
  • Non-Patent Document 1 a method using an optical microscope (for example, see Non-Patent Document 1), a method using an X-ray CT (for example, see Non-Patent Document 2), and the like have been used for observing the internal structure of ceramics.
  • each unit operation in the ceramic manufacturing process has many control factors.
  • the type and amount of the dispersing agent correspond to the control factor.
  • Dispersion of ceramic fine particles in a dispersion medium is a complicated phenomenon involving adsorption of the dispersant to the ceramic fine particles, wettability of the dispersion medium with respect to the ceramic fine particles, and the like. Therefore, apparent optimization based on intuition and experience has been performed on the control factors for preparing the slurry.
  • the structure should be changed dynamically from a structure in which ceramic fine particles are dispersed in a liquid to a structure in which solids are in contact with each other. This change is similar to aggregation. If the molded body is dried and the changes in the internal structure of the molded body are accurately grasped and the control factors for the formation of the structure are scientifically elucidated, the drying temperature for obtaining a homogeneous molded body free of cracks and deformation, It is believed that time and atmosphere can be determined more analytically. Further, even in the sintering process of the compact that consumes a lot of energy, the temperature rise profile is largely due to craftsmanship settings. If the control factors in the sintering process can be scientifically elucidated and optimized appropriately, energy consumption can be reduced, and thus cost can be reduced.
  • the present invention provides a ceramic internal structure observation method, a ceramic production method, an analysis system, and a ceramic production system, which can observe a structure formation process in a ceramic production process three-dimensionally in real time.
  • the method for observing the internal structure of the ceramic reflects the step of dividing the light in the infrared region into reference light and irradiation light, the step of irradiating the ceramic with the irradiation light, and the reflection. Observing the internal structure of the ceramic using optical coherence tomography by observing interference between the reference light and return light obtained by irradiating the ceramic with the irradiation light.
  • the light in the infrared region may be light having a center wavelength in a range from 700 nanometers to 2000 nanometers and reflected by the ceramics.
  • the method for observing the internal structure of the ceramic includes a step of generating a tomographic image of each physical property state in the ceramic manufacturing process by the optical coherence tomography, and a tomographic image in each physical property state, and optical in any physical property state And a step of performing an analysis process for determining whether or not the state is uneven.
  • the physical properties include a slurry state containing the ceramic raw material in the manufacturing process, a dry state in which the material in the slurry state is dried, a molded state in which the material in the slurry state is molded after drying, and a material in the molded state At least any two of the sintered states obtained by sintering may be used.
  • the analysis processing includes a step of removing speckle noise caused by fine particles constituting the physical property state in the tomographic image, and a shape of an area having a luminance different from that in the tomographic image after the speckle noise removal processing. And a step of determining in which physical property state the optical non-uniform state is generated based on the size.
  • the ceramic internal structure observation method may further include a step of determining a processing method in the speckle noise removal processing based on machine learning for each physical property state.
  • the method for observing the internal structure of the ceramic may further include a step of determining a processing method in the processing for removing the speckle noise based on machine learning for each type of the optical non-uniform state.
  • a method for producing a ceramic is a method for producing a ceramic using optical coherence tomography, wherein the slurry contains an inorganic compound that is a raw material of the ceramic, or a granule of the inorganic compound.
  • a preparation step for preparing the slurry a molding step for molding the slurry containing the inorganic compound or the granule to form a compact, a sintering step for sintering the compact, and light in the infrared region for reference light and irradiation light
  • the reference light that is irradiated with and reflected by any one of the slurry or the granules in the preparation step, the molded body in the molding step, or the sintered body in the sintering step.
  • the granule By observing interference with the return light obtained by irradiating the irradiation light to the slurry, the granule, the molded body or the sintered body, the slurry, the granule Including, an observation step of observing the internal structure of the molded body or the sintered body.
  • the observation step may include controlling the molding conditions in the molding step or the sintering conditions in the sintering step according to the observation result of the slurry or the granule or the internal structure of the molded body.
  • the analysis system uses a tomographic image generation unit that generates a tomographic image of each physical property state in the ceramic manufacturing process by optical coherence tomography, and a tomographic image in each of the physical property states. And an analysis processing unit that performs an analysis process to determine in which physical property state an optical non-uniform state has occurred.
  • a ceramic manufacturing system includes the above-described analysis system and at least one of a preparation device, a molding device, and a sintering device, and the preparation device, the molding device, and the sintering device. At least one of the apparatuses changes at least one of the conditions of ceramic preparation, molding, and sintering based on the analysis result of the analysis system.
  • the structure formation process in the ceramic manufacturing process can be observed in three dimensions in real time.
  • 6 is an optical coherence tomography image in Experimental Example 1.
  • 6 is an optical coherence tomography image in Experimental Example 1. It is an optical coherence tomography image in Experimental example 2. It is an optical coherence tomography image in Experimental example 2. It is an optical coherence tomography image in Experimental example 2.
  • 10 is an optical coherence tomographic image of a molded body in Experimental Example 3. It is an optical coherence tomography image in Experimental example 4.
  • 10 is an optical coherence tomography image of a thin film in Experimental Example 5.
  • 10 is an optical coherence tomography image of a sintered body in Experimental Example 5.
  • 10 is an optical coherence tomography image of a sintered body in Experimental Example 5.
  • 10 is an optical coherence tomography image of a sintered body in Experimental Example 5.
  • 10 is an optical coherence tomography image of a sintered body in Experimental Example 5.
  • 10 is an optical coherence tomography image of a sintered body in Experimental Example 5.
  • 10 is an optical coherence tomography image of a sintered body in Experimental Example 5.
  • 10 is an optical coherence tomography image of a sintered body in Experimental Example 5.
  • 10 is an optical coherence tomography image of a sintered body in Experimental Example 5.
  • 10 is an optical coherence tomography image of a sintered body in Experimental Example 5.
  • 10 is an optical coherence tomography image of a sintered body in Experimental Example 5.
  • 10 is an optical coherence tomography image of a sintered body in Experimental Example 5.
  • 10 is an optical coherence tomography image of a sintered body in Experimental Example 5.
  • 10 is an optical coherence tomography image of a sintered body in Experimental Example 5.
  • 10 is an optical coherence tomography image of a sintered body in Experimental Example 5.
  • It is a schematic block diagram which shows the example of a function structure of the analysis system which concerns on embodiment. It is a figure which shows the example of classification
  • 5 is a flowchart illustrating an example of a procedure of processing performed by the analysis apparatus when analyzing a sample in the embodiment.
  • 6 is a flowchart illustrating an example of a procedure of processing performed by the analysis processing unit in the analysis processing in the embodiment.
  • 5 is a flowchart illustrating an example of a procedure of processing performed by a machine learning unit of a learning device when machine learning a speckle noise removal method in the embodiment.
  • FIG. 1 it is a figure showing the 1st example of the procedure of the processing in which a speckle noise removal processing part performs a speckle noise removal processing. It is a figure which shows the 2nd example of the procedure of the process which a speckle noise removal process part performs a speckle noise removal process in embodiment. It is a figure which shows the 3rd example of the procedure of the process which the speckle noise removal process part 293 performs a speckle noise removal process. It is a schematic block diagram which shows the example of a function structure of the manufacturing system of the ceramics which concern on embodiment. It is a schematic block diagram which shows the structure of the computer which concerns on embodiment.
  • the ceramic internal structure observation method is a ceramic internal structure observation method using optical coherence tomography, in which light in the infrared region is divided into reference light and irradiation light, and the ceramic is irradiated with irradiation light.
  • the internal structure of the ceramic is observed by observing the interference between the reflected reference light and the return light obtained by irradiating the ceramic with the irradiation light.
  • the ceramics to be observed by the method for observing the internal structure of the ceramic of this embodiment are: an inorganic compound slurry, an inorganic compound granule, an inorganic compound dried body, an inorganic compound molded body, an inorganic compound sintered body, and an inorganic compound sintered body. Any one or more types of ligations.
  • the inorganic compound slurry corresponds to an example of a ceramic slurry.
  • the inorganic compound granules correspond to examples of ceramic raw materials.
  • An inorganic compound dry body corresponds to an example of a ceramic dry body
  • an inorganic compound formed body corresponds to an example of a ceramic formed body.
  • the sintered body of an inorganic compound corresponds to an example of a sintered body of ceramic.
  • the inorganic compound which is a raw material material for ceramics is not limited to a specific material as long as it is a material that transmits light in the infrared region.
  • examples of such inorganic compounds include silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), hydroxide apatite (Ca 10 (PO 4 ) 6 (OH) 2 ), and aluminum oxide (Al 2 O 3 ).
  • the slurry containing an inorganic compound contains the above inorganic compound and a solvent (dispersion medium).
  • the solvent is not particularly limited as long as it can disperse the above-described inorganic compound and transmits at least part of the light in the infrared region used in the present embodiment.
  • the solvent include water, xylene, toluene, and ethanol.
  • the slurry may contain a dispersing agent, a plasticizer, etc. in the range which does not inhibit the characteristic of an inorganic compound.
  • the dispersant include polycarboxylic acid, polyacrylic acid, polyethyleneimine, and higher fatty acid ester.
  • the granules of the inorganic compound for example, those produced by a spray drying method using the above-described inorganic compound can be used.
  • the molded body of the inorganic compound include those in which the above slurry is put into a molding die and molded into a predetermined shape, and those in which inorganic compound granules are filled in a mold and compression molded.
  • the molded body may contain a solvent.
  • the sintered body of the inorganic compound include a completely sintered body and a partially sintered body.
  • Optical coherence tomography is a technique for imaging the internal structure of a sample at high resolution and high speed using the coherence of light.
  • OCT optical coherence tomography
  • An optical coherence tomography apparatus 10 shown in FIG. 1 includes a light source 11, a half mirror 12, a reference mirror 13, and a detector 14.
  • the light source 11 is for irradiating the sample 100 with light in the infrared region.
  • the sample 100 is ceramic.
  • the light source 11 emits light having a center wavelength of 700 nm (nanometers) to 2000 nm and reflected by the ceramic in the present embodiment.
  • the light reflected by the ceramic is, for example, light that is not absorbed by the ceramic.
  • the half mirror 12 is provided on the optical path of light emitted from the light source 11.
  • the half mirror 12 is arranged such that the surface 12a on the light source 11 side is inclined at an angle of 45 ° toward the light source 11 with respect to the optical path.
  • the half mirror 12 divides the light emitted from the light source 11 into irradiation light that irradiates the sample 100 and reference light that enters the reference mirror 13. Then, the half mirror 12 reflects the divided irradiation light and makes it enter the sample 100. Further, the half mirror 12 transmits the divided reference light and makes it incident on the reference mirror 13.
  • the reference mirror 13 is provided on the optical path of the light emitted from the light source 11.
  • the reference mirror 13 reflects the reference light transmitted through the half mirror 12 and returns the reflected light to the half mirror 12. Therefore, the reference mirror 13 is provided so as to face the half mirror 12. Further, the reference mirror 13 is movable along the optical path direction of the light emitted from the light source 11. That is, the reference mirror 13 can adjust the distance from the half mirror 12.
  • a wavelength variable light source may be used to perform the same function.
  • the detector 14 is provided on the optical path of the return light obtained by irradiating the sample 100 with the irradiation light and on the optical path of the reference light.
  • the reference light is reflected by the reference mirror 13, returns to the half mirror 12, and further reflected by the half mirror 12.
  • the detector 14 is for observing the return light and the reference light.
  • the light source 11 emits light in the infrared region.
  • the light in the infrared region is light having a central wavelength from 700 nm to 2000 nm and reflected by ceramics.
  • the half mirror 12 divides the light emitted from the light source 11 into irradiation light that irradiates the sample 100 and reference light that enters the reference mirror 13.
  • the half mirror 12 reflects the divided irradiation light and makes it incident on the sample 100. Further, the half mirror 12 transmits the divided reference light and makes it incident on the reference mirror 13.
  • Irradiation light incident on the sample 100 is reflected at an interface having a difference in refractive index, such as the surface or internal structure of the sample 100, and is emitted from the surface of the sample 100 as return light.
  • the return light obtained by irradiating the sample 100 with the irradiation light and the reference light reflected and returned by the reference mirror 13 are superimposed again on the half mirror 12. At this time, if the distance traveled by the return light from the sample 100 and the reference light from the reference mirror 13 is equal, the two lights strengthen each other. On the other hand, when the return light from the sample 100 and the reference light from the reference mirror 13 are shifted in distance and the phases of the light are reversed, the two lights cancel each other.
  • the reference mirror 13 is moved to adjust the distance between the reference mirror 13 and the half mirror 12, and the position where the two lights interfere and strengthen on the detector 14 is observed.
  • the internal structure of the sample 100 can be observed.
  • the internal structure of the sample 100 can be photographed by imaging the inspection result.
  • the optical coherence tomography apparatus 10 the internal structure of the sample 100 can be observed or photographed in real time. Furthermore, according to the optical coherence tomography apparatus 10, observation of the internal structure of the sample 100 can be recorded as a moving image.
  • the light source 11 irradiates the sample 100 with light having a central wavelength of 700 nm to 2000 nm and reflected by the sample 100 as light in the infrared region.
  • the sample 100 made of ceramics is observed.
  • the internal structure of the ceramics which could not be observed conventionally can be observed three-dimensionally.
  • a wavelength tunable light source is used instead of making the reference mirror 13 movable, the sample 100 may be observed by adjusting the wavelength and intensity of light emitted from the wavelength tunable light source.
  • the use of composite particles composed of a plurality of types of particles is one of the methods for controlling the microstructure of ceramics and making ceramics highly functional and multifunctional.
  • Examples of using composite particles composed of a plurality of types of particles include adjustment of nanocomposite particles by mechanical treatment and control of the microstructure of ceramics using this.
  • a post reaction sintering method which is a manufacturing process capable of manufacturing silicon nitride (Si 3 N 4 ) ceramics at low cost.
  • the structure of the molded body is controlled using nanocomposite particles composed of silicon (Si) and sintering aids yttrium oxide (Y 2 O 3 ) and aluminum oxide (Al 2 O 3 ). .
  • Y 2 O 3 yttrium oxide
  • Al 2 O 3 aluminum oxide
  • sintering aid suppresses the contact between the silicon particles, and the silicon particles can be uniformly nitrided without melting.
  • silicon nitride (Si 3 N 4 ) ceramics that are dense and have no coarse pores can be produced by using nanocomposite particles and densifying them at high temperatures.
  • nanocomposite particles is effective for controlling the microstructure of ceramics and improving the manufacturing process of ceramics.
  • the structure of a molded body formed using nanocomposite particles should be different from that formed by a mixing process using general uncomposited fine particles. Nevertheless, the correlation between the structure of a molded body formed using nanocomposite particles and the sintering behavior of the molded body has not been clarified.
  • the structure and forming process of a compact formed using nanocomposite particles, the drying process of slurry, and the sintering behavior of the compact are observed in three dimensions in real time. can do. Therefore, according to the ceramic internal structure observation method of the present embodiment, it is possible to clarify the correlation between the structure of a molded body formed using nanocomposite particles and the sintering behavior of the molded body.
  • the wettability between the fine particles, the aggregates and the solvent, and the interface structure in the presence of other organic substances such as a binder and a lubricant are not understood and optimized.
  • the above-described technology is currently specialized in fine particle dispersion, and the particle interface is not designed in consideration of the fine particle drying process and the fine particle forming process in the production of ceramics.
  • the drying process of fine particles and the forming process of fine particles can be observed in three dimensions in real time. Therefore, according to the ceramic internal structure observation method of the present embodiment, the particle interface can be designed in consideration of the drying process of the fine particles and the forming process of the fine particles.
  • the structure formation process in the manufacturing process of the molded body and the sintered body can be observed three-dimensionally in real time. Therefore, according to the ceramic internal structure observation method of the present embodiment, the structure formation process in the manufacturing process of the molded body and the sintered body can be clarified, and the manufacturing process can be designed based on the result.
  • silicon nitride (Si 3 N 4 ) ceramics when fine particles are used as a raw material, the bending strength of the obtained silicon nitride (Si 3 N 4 ) ceramics is much higher than when coarse particles are used. This bending strength was almost the same as the bending strength of silicon nitride (Si 3 N 4 ) ceramics synthesized by the imide decomposition method. Silicon nitride (Si 3 N 4 ) ceramics using fine particles as a raw material was an unsintered region having a fracture source of 20 ⁇ m (micrometers) or less. When this silicon nitride (Si 3 N 4 ) ceramics is observed with an infrared microscope, defects of about 10 ⁇ m to 20 ⁇ m are observed in its internal structure. However, this silicon nitride (Si 3 N 4 ) ceramics has been found to be more homogeneous than silicon nitride (Si 3 N 4 ) ceramics produced by conventional methods.
  • the density of the molded body that has been subjected to cold isostatic pressing (CIP) molding 10 times using a fine particle is higher than the density of the molded body that has been subjected to CIP molding 1 time. It turns out that it improves.
  • the sintered body of the molded body subjected to the CIP molding 10 times repeatedly showed a higher bending strength than the bending strength of silicon nitride (Si 3 N 4 ) ceramics synthesized by the imide decomposition method. That is, the observation of the molded body and the sintered body using light in the near-infrared region has proved effective for elucidating these internal structures.
  • the structure formation process from the fine particles to the molded body and the structure formation process from the molded body to the sintered body can be observed three-dimensionally in real time. Therefore, according to the method for observing the internal structure of the ceramic according to the present embodiment, it is possible to elucidate the structure forming process from the fine particles to the molded body and the structure forming process from the molded body to the sintered body.
  • the structure formation process from the raw material powder to the slurry, the structure formation process from the raw material powder to the compact, and the structure formation process from the compact to the sintered body Can be observed in three dimensions in real time. Therefore, according to the method for observing the internal structure of the ceramic of the present embodiment, it is possible to sufficiently examine the relation of each operation, and the entire ceramic process chain can be optimized.
  • Crystal 6 One technique for improving the characteristics of crystalline ceramics and developing new functions is to use anisotropy by orienting crystals.
  • Reported methods for generating crystallographic orientation materials include mechanical methods such as sheet molding that uses particle geometry, and methods for magnetically orienting particles with a superconducting magnet using the magnetic anisotropy of particles.
  • the mechanical method has a problem in that the direction in which orientation can be performed with respect to the outer shape of the ceramic is limited.
  • the method of orienting particles in a magnetic field can control the direction in which the particles are orientated by a magnetic field.
  • this method requires a superconducting magnet in order to orient a ceramic powder having a small absolute value of a general diamagnetic susceptibility.
  • this method has a problem that it may be necessary to apply the magnetic field to the fine particles while rotating the magnetic field.
  • graphene having anisotropic giant diamagnetism as particles bearing magnetic torque is combined with host fine particles to impart magnetic anisotropy to the powder.
  • oriented ceramics are produced by effectively applying magnetic torque to fine particles in a low magnetic field and a static magnetic field.
  • Graphene-coated silicon nitride (Si 3 N 4 ) particles prepared by a mechanical method can be oriented in a low magnetic field as high as a neodymium magnet and in a static magnetic field.
  • the silicon nitride (Si 3 N 4 ) particles coated with graphene are also referred to as graphene-coated particles.
  • C-axis-oriented silicon nitride (Si 3 N 4 ) ceramics can be generated without using a superconducting magnet that has been essential in the past.
  • a method for producing silicon nitride (Si 3 N 4 ) ceramics without using a superconducting magnet will be described.
  • a graphene-coated particle is oriented in a magnetic field to form a compact.
  • the graphene is oxidized to remove the graphene from the molded body.
  • the compact from which graphene has been removed is fired at a high temperature to obtain C-axis oriented silicon nitride (Si 3 N 4 ) ceramics.
  • This manufacturing process is applicable not only to silicon nitride (Si 3 N 4 ) ceramics but also to many ceramics, and can be applied to mass production.
  • a ceramic manufacturing technique is an important microstructure control method that enables the essential characteristics of ceramics to be exhibited.
  • the entire ceramic process chain needs to be optimized. However, at present, it is difficult to say that these findings are sufficiently obtained, and further study is necessary.
  • the dispersion state of the graphene-coated particles in the slurry and the shrinkage anisotropy when the molded body is sintered can be observed in three dimensions in real time. . Therefore, according to the method for observing the internal structure of the ceramic according to the present embodiment, it is possible to appropriately disperse the graphene-coated particles, lower the viscosity of the slurry, and elucidate and control the anisotropy of the sintering shrinkage. The operation can be advanced and the entire ceramic process chain can be optimized.
  • the structural change of the formed body during sintering can be observed in three dimensions in real time. Therefore, according to the method for observing the internal structure of the ceramic of this embodiment, the relationship between the MSC and the structural change of the compact during sintering is clarified, and the control of the sintering shrinkage behavior of the ceramic is fed back to the structure formation of the compact. can do.
  • the ceramic manufacturing method of this embodiment is a ceramic manufacturing method using optical coherence tomography, and includes a preparation step of preparing a slurry containing an inorganic compound that is a ceramic raw material, or a granule of an inorganic compound, and an inorganic compound.
  • a slurry containing the inorganic compound is prepared by dispersing the inorganic compound in the solvent.
  • granules of the inorganic compound are prepared by spray drying or the like using the inorganic compound.
  • a dispersant, a plasticizer, or the like may be used as necessary.
  • the slurry prepared in the preparation step is put into a molding die having a predetermined shape and molded into a predetermined shape.
  • the granules prepared in the preparation step are filled into a mold, compression-molded, and molded into a predetermined shape.
  • the molded body molded in the molding process is sintered at a predetermined temperature to obtain a sintered body of an inorganic compound.
  • the light in the infrared region is divided into reference light and irradiation light, and either the slurry or granule in the preparation process, the molded body in the molding process or the sintered body in the sintering process is irradiated with the irradiation light and reflected.
  • the interference between the reflected reference light and the return light obtained by irradiating the slurry, granules, molded body or sintered body with irradiation light is observed.
  • the internal structure of a slurry, a granule, a molded object, or a sintered compact is observed. Observation of the internal structure in the observation step is performed in the same manner as the above-described ceramic internal structure observation method.
  • the ceramic manufacturing method of the present embodiment by having an observation step, the observation result can be fed back to the molding conditions in the molding step and the sintering conditions in the sintering step.
  • dense and homogeneous ceramics can be produced efficiently.
  • the molding conditions in the molding process or the sintering conditions in the sintering process may be controlled according to the observation result of the slurry or granules in the observation process or the internal structure of the molded body.
  • the molding conditions in the molding process are controlled according to the observation results of the slurry or granules in the observation process
  • the sintering conditions in the sintering process are controlled according to the observation results of the internal structure of the molded body in the observation process. You may make it do.
  • the molding conditions in the molding process and the sintering conditions in the sintering process can be optimized.
  • the ceramic manufacturing system of this embodiment includes at least one selected from the group consisting of a preparation device, a molding device, and a sintering device, and an optical coherence tomography apparatus.
  • the optical coherence tomography apparatus applies light in the infrared region to either a slurry containing an inorganic compound that is a ceramic raw material or a granule of an inorganic compound, a molded body of a slurry or a granule, or a sintered body obtained by sintering a molded body.
  • the molding apparatus has a control unit that controls the molding conditions of the slurry or granules according to the result observed by the detector.
  • the sintering apparatus has a control unit that controls the sintering conditions of the compact according to the result observed by the detector.
  • the preparation device prepares a slurry containing the inorganic compound by dispersing the inorganic compound in the solvent.
  • the preparation apparatus for example, an apparatus generally used for preparing a slurry can be used.
  • the preparation device makes the inorganic compound into granules.
  • a device capable of granulating the inorganic compound by a spray drying method is used.
  • the molding apparatus is not limited to a specific one as long as it has a molding die capable of charging slurry or granules into the mold and molding the slurry into a predetermined shape.
  • a molding die capable of charging slurry or granules into the mold and molding the slurry into a predetermined shape.
  • an apparatus generally used for wet molding using a slurry or dry molding using granules can be used.
  • the sintering apparatus is not limited to a specific one as long as it includes a sintering furnace for sintering the molded body.
  • a sintering apparatus an apparatus generally used for sintering a molded body made of slurry or granules can be used.
  • the molding apparatus has a control unit that controls the molding conditions of the slurry or granule according to the result observed by the detector of the optical coherence tomography apparatus, so that it is more precise. A homogeneous molded body can be molded.
  • the sintering apparatus has a control unit that controls the sintering conditions of the compact according to the result observed by the detector of the optical coherence tomography apparatus.
  • FIG. 2 is an optical coherence tomography image of an alumina slurry with no dispersant added.
  • FIG. 3 is an optical coherence tomography image of an alumina slurry to which a dispersant is added.
  • the contrast increases in a region where light is more strongly scattered. From the result of FIG. 2, it was confirmed that a structure of about several tens of ⁇ m appeared in the alumina slurry without addition of a dispersant. On the other hand, from the results of FIG. 3, it was confirmed that the alumina slurry to which the dispersant was added did not show a structure like the alumina slurry without the dispersant.
  • Example 2 A silicon nitride slurry in which silicon nitride (Si 3 N 4 ) was dispersed in toluene was prepared.
  • the silicon nitride slurry was added with an aggregate of polyethyleneimine and oleic acid as a dispersant.
  • the silicon nitride slurry was irradiated with light having a center wavelength of 1310 nm using an optical coherence tomography (OCT) apparatus similar to that shown in FIG. 1, and the internal structure of the silicon nitride slurry was observed.
  • OCT optical coherence tomography
  • trade name: IVS-2000, manufactured by santec was used as an optical coherence tomography apparatus.
  • FIG. 4 is an optical coherence tomography image of a silicon nitride slurry, showing a silicon nitride slurry (fluidized bed).
  • FIG. 5 is an optical coherence tomography image of a silicon nitride slurry, showing a slide glass onto which silicon nitride slurry has been dropped, and a silicon nitride slurry (fluidized bed), and showing the silicon nitride slurry being dried.
  • FIG. 4 is an optical coherence tomography image of a silicon nitride slurry, showing a silicon nitride slurry (fluidized bed).
  • FIG. 6 is an optical coherence tomographic image of a silicon nitride slurry, showing a slide glass onto which silicon nitride slurry has been dropped and a silicon nitride slurry (fluidized bed), and showing the silicon nitride slurry after drying.
  • a molded product was obtained by dry molding using commercially available aluminum oxide granules (trade name: AKS-20, manufactured by Sumitomo Chemical Co., Ltd.).
  • the obtained molded body was irradiated with light having a central wavelength of 1310 nm using an optical coherence tomography (OCT) apparatus (trade name: IVS-2000, manufactured by Santec) similar to that shown in FIG.
  • OCT optical coherence tomography
  • IVS-2000 manufactured by Santec
  • Example 4 The granules in Experimental Example 3 were put into a transparent mold and the internal structure was observed while applying pressure. Using an optical coherence tomography (OCT) apparatus similar to that shown in FIG. 1, light having a wavelength of 1310 nm was irradiated to observe the internal structure. As an optical coherence tomography apparatus, trade name: IVS-2000, manufactured by santec was used. The results are shown in FIG. FIG. 8 is an optical coherence tomography image of aluminum oxide granules. In Experimental Example 4, it was observed in real time that the granule was deformed and the gap between the granules decreased and was formed.
  • OCT optical coherence tomography
  • Example 5 The aluminum oxide molded body produced in Experimental Example 3 was fired at 1400 ° C. for 2 hours to produce a sintered body.
  • the obtained sintered body was irradiated with light having a central wavelength of 1310 nm using an optical coherence tomography (OCT) apparatus similar to that shown in FIG. 1, and the internal structure of the sintered body was observed.
  • OCT optical coherence tomography
  • trade name: IVS-2000, manufactured by santec was used as an optical coherence tomography apparatus.
  • the internal structure of the sintered body was observed in order along the thickness direction using a wavelength variable light source.
  • FIGS. 9 to 23 are optical coherence tomography images of the sintered bodies, respectively.
  • 9 to 23 show results of observing the internal structure of the sintered body along the thickness direction in order from the side closer to the light source. From the results of FIGS. 9 to 23, the sintered body was almost homogeneous. Further, in FIGS. 9 to 23, several regions having a large contrast were observed. This region seems to correspond to a region that is not sufficiently densified in view of the properties of the image obtained by optical coherence tomography.
  • FIG. 24 is a schematic block diagram illustrating an example of a functional configuration of the analysis system according to the present embodiment.
  • the analysis system 1 includes an optical coherence tomography apparatus 10, an analysis apparatus 20, and a learning apparatus 30.
  • the analysis device 20 includes a first communication unit 210, a first storage unit 280, and a first control unit 290.
  • the first control unit 290 includes a tomographic image generation unit 291, an analysis processing unit 292, a speckle noise removal processing unit 293, and a non-uniform state detection unit 294.
  • the learning device 30 includes a second communication unit 310, a second storage unit 380, and a second control unit 390.
  • the second storage unit 380 includes a learning data storage unit 381.
  • the second control unit 390 includes a learning data acquisition unit 391 and a machine learning unit 392.
  • the optical coherence tomography apparatus 10 in FIG. 24 is the same as the optical coherence tomography apparatus 10 in FIG. 1, and is denoted by the same reference numeral (10) and description thereof is omitted.
  • the analysis system 1 analyzes a sample 100 that is ceramic.
  • the analysis system 1 acquires a tomographic image of the sample 100 and analyzes the state of the sample 100 based on the luminance in the tomographic image.
  • the analysis device 20 generates a tomographic image of the sample 100 based on the measurement result of the sample 100 by the optical coherence tomography apparatus 10, and analyzes the state of the sample 100 using the obtained tomographic image.
  • the analysis device 20 is configured using a computer such as a personal computer (PC) or a workstation.
  • the first communication unit 210 communicates with other devices.
  • the first communication unit 210 communicates with the optical coherence tomography apparatus 10 and receives the measurement result of the sample 100 by the optical coherence tomography apparatus 10.
  • the first communication unit 210 communicates with the second communication unit 310 of the learning device 30 and receives a learning result of speckle noise (Speckle Noise) removal processing by the learning device 30 from the learning device 30.
  • the first communication unit 210 communicates with the second communication unit 310 of the learning device 30 to transmit a tomographic image of the sample 100 to the learning device 30.
  • the first storage unit 280 stores various data.
  • the first storage unit 280 is configured using a storage device provided in the analysis apparatus 20.
  • the first control unit 290 controls each unit of the analysis device 20 and performs various processes.
  • the first control unit 290 is configured by a CPU (Central Processing Unit) included in the analysis apparatus 20 reading out and executing a program from the first storage unit 280.
  • CPU Central Processing Unit
  • the tomographic image generation unit 291 generates a tomographic image of each physical property state in the ceramic manufacturing process by optical coherence tomography by the optical coherence tomography apparatus 10. Specifically, the tomographic image generation unit 291 generates a tomographic image of the sample 100 based on the measurement result of the sample 100 by the optical coherence tomography apparatus 10.
  • a method for generating a tomographic image by the tomographic image generating unit 291 a known tomographic image generating method in optical coherence tomography can be used.
  • the direction of the tomographic image generated by the tomographic image generation unit 291 is not limited to a specific direction.
  • the optical coherence tomography apparatus 10 may scan the sample 100 three-dimensionally, and the tomographic image generation unit 291 may generate a three-dimensional image of the sample 100.
  • the tomographic image generation unit 291 can generate a tomographic image at an arbitrary position and an arbitrary direction within the scan range of the sample 100.
  • FIG. 25 is a diagram illustrating a classification example of the physical property state of the sample 100 which is ceramic.
  • the physical properties of ceramics are classified into a raw material state, a slurry state, a dry state, a molded state, and a sintered state.
  • the raw material state is a state before the ceramic raw material powder and the solvent are mixed.
  • a slurry can be obtained by mixing a ceramic raw material powder and a solvent.
  • the slurry state is a state in which ceramics are in a slurry state.
  • a dried product can be obtained by drying the slurry.
  • the dry state is a state in which the ceramic is a dry body.
  • a molded body can be obtained by molding the dried body.
  • the molded state is a state in which the ceramic is a molded body.
  • a sintered body can be obtained by sintering the molded body.
  • the sintered state is a state in which the ceramic is a sintered body.
  • the tomographic image generation unit 291 generates a tomographic image of the sample 100 for any one or more of the physical properties of the sample 100 that are ceramics.
  • the tomographic image generation unit 291 may generate a tomographic image of the sample 100 for each of a plurality of physical properties of the sample 100, such as generating a tomographic image of the sample 100 for all of the above physical properties. Good.
  • the analysis apparatus 20 can not only determine the presence or absence of an optical non-uniform state in the sample 100, but also in which physical property state the optical non-uniform state You can get information about what happened.
  • the analysis processing unit 292 detects an optical non-uniform state in the sample 100 using the tomographic image of the sample 100 generated by the tomographic image generation unit 291.
  • the optical non-uniform state in the sample 100 here is a state in which the state of light reflection is different from the tendency in the entire sample 100.
  • the optical non-uniform state is shown as a difference in luminance.
  • a portion of the tomographic image whose luminance is different from the tendency in the entire tomographic image is referred to as an optically non-uniform portion in the tomographic image.
  • the tomographic image generation unit 291 generates a tomographic image of the sample 100 in each of the plurality of physical property states of the sample 100, and the analysis processing unit 292 uses these tomographic images to perform optical in any physical property state. You may make it perform the analysis process about whether the target nonuniform state has arisen.
  • the speckle noise removal processing unit 293 removes noise in the tomographic image of the sample 100.
  • the speckle noise removal processing unit 293 removes speckle noise in the tomographic image of the sample 100.
  • speckle noise is caused by fine particles constituting the physical state of ceramics.
  • the speckle noise removal processing unit 293 determines a speckle noise removal method to be applied to the tomographic image according to the speckle noise removal method acquired by the learning device 30 through machine learning, and executes the determined method.
  • the non-uniform state detection unit 294 detects an optical non-uniform state in the sample 100 using the tomographic image of the sample 100 after the speckle noise removal process.
  • the non-uniform state detection unit 294 determines the type of the optical non-uniform state in addition to detecting the area where the optical non-uniform state occurs in the tomographic image. Specifically, it is determined whether the optical nonuniformity is a pore or a crack based on the shape and size of an area having a luminance different from that in the tomographic image.
  • the optical non-uniform state detected by the non-uniform state detection unit 294 is not limited to pores or cracks.
  • the non-uniform state detection unit 294 uses the tomographic image of the sample 100 after the speckle noise removal processing in each of the plurality of physical state of the sample 100 to determine in which physical state the optical non-uniform state has occurred. Analysis processing may be performed.
  • the learning device 30 performs machine learning on a method for removing speckle noise from a tomographic image.
  • the learning device 30 performs machine learning on a method of removing speckle noise from a tomographic image for each physical property state of ceramics and for each type of optical non-uniform state.
  • the learning device 30 is a machine that removes speckle noise from a tomographic image for each physical property state of ceramics, for each type of optical non-uniform state, and for each type of substance constituting the ceramic. You may make it learn.
  • the learning device 30 is configured using a computer such as a personal computer (PC) or a workstation.
  • the second communication unit 310 communicates with other devices.
  • the second communication unit 310 communicates with the first communication unit 210 of the analysis device 20 and transmits the learning result of the speckle noise removal processing by the learning device 30 to the analysis device 20.
  • the second communication unit 310 communicates with the first communication unit 210 of the analysis apparatus 20 and receives a tomographic image of the sample 100 from the analysis apparatus 20.
  • the second storage unit 380 stores various data.
  • the second storage unit 380 is configured using a storage device provided in the learning device 30.
  • the learning data storage unit 381 stores learning data.
  • the learning data here is data for the learning device 30 to machine-learn the speckle noise removal method.
  • the learning data storage unit 381 stores learning data for each physical property state of ceramics and for each type of optical non-uniform state.
  • the learning data storage unit 381 may store learning data for each physical property state of ceramics, for each type of optical non-uniform state, and for each type of substance constituting the ceramic.
  • FIG. 26 is a diagram showing a first example of learning data.
  • FIG. 26 shows an example of learning data for learning a speckle noise removal method applied to a tomographic image when pores in a ceramic sintered body are detected.
  • the learning data is shown in a table format, and one row corresponds to one learning data.
  • Each of the learning data is configured by combining an identification number, an original image, and a target image.
  • the identification number is a number for identifying learning data.
  • As the original image a tomographic image before the removal of speckle noise in which the user knows the physical property state and the optical non-uniform state type of the ceramic is used.
  • FIG. 26 shows an example of data for performing machine learning in the case of detecting pores in a ceramic sintered body, and thus a tomographic image showing pores is used as an original image.
  • the background portion of the original image includes speckle noise.
  • the region A111 corresponds to the background portion
  • the region A112 corresponds to the region of the pore portion image
  • the region A113 is the image region of the boundary portion between the pore and the portion other than the pores. It corresponds to.
  • a region A112 that is an image region of the pore portion is a relatively dark region.
  • a region A113, which is an image region at the boundary portion of the pores, is a relatively bright region.
  • the background image area A111 is a relatively dark area, but is brighter than the area A112 because it includes speckle noise. Since the area A111 is slightly bright, the area A111 and the area A112 are relatively difficult to distinguish. In this regard, it is difficult to detect the pore region in the image before speckle noise removal.
  • the region A121 corresponds to the background portion
  • the region A122 corresponds to the image region of the pore portion
  • the region A123 is the image region of the boundary portion between the pore and the portion other than the pore. It corresponds to.
  • the region A131 corresponds to the background portion
  • the region A132 corresponds to the image region of the pore portion
  • the region A133 is the image region of the boundary portion between the pore and the portion other than the pore. It corresponds to.
  • an image obtained by removing speckle noise from the original image is used.
  • An image obtained by actually performing speckle noise removal processing on the original image may be used as the target image.
  • an image generated by the user based on the original image may be used as the target image.
  • the user may process the original image to generate the target image.
  • the user may draw the target image with reference to the original image.
  • a tomographic image captured by a method other than optical coherence tomography such as an image captured by an infrared camera installed so as to have the same angle of view as the original image, may be used as the target image.
  • the area A211 corresponds to the areas A111 and A112 of the original image.
  • the background image area and the functional image area have the same brightness.
  • a region A212 corresponds to the region A113 of the original image.
  • the area A212 is a relatively bright area like the area A113. Since the speckle noise is removed from the background image area to make it darker, it is easier to detect the relatively bright area A212. In this regard, it is easy to detect the pore region in the image after speckle noise removal.
  • the area A221 corresponds to the areas A121 and A122 of the original image.
  • An area A222 corresponds to the area A123 of the original image.
  • the area A231 corresponds to the areas A131 and A132 of the original image.
  • a region A232 corresponds to the region A133 of the original image.
  • FIG. 27 is a diagram showing a second example of learning data.
  • FIG. 27 shows an example of learning data for learning a speckle noise removal method applied to a tomographic image when a crack in a ceramic sintered body is detected.
  • the learning data is shown in a table format, and one row corresponds to one learning data.
  • each of the learning data is configured by combining an identification number, an original image, and a target image.
  • the identification number is a number for identifying learning data.
  • a tomographic image before removal of speckle noise in which the types of physical properties and optical nonuniformity of ceramics are known to the user, is used.
  • FIG. 27 shows an example of data for performing machine learning in the case of detecting a crack in a ceramic sintered body, and thus a tomographic image showing a crack is used as an original image.
  • the background portion of the original image includes speckle noise.
  • the region A311 corresponds to the background portion
  • the region A312 corresponds to the image region of the crack portion.
  • a region A312 which is an image region of the crack portion is a relatively bright region.
  • the background image area A311 is a relatively dark area, but is slightly brighter because it includes speckle noise. Since the area A311 is slightly bright, the area A311 and the area A312 are relatively difficult to distinguish. In this respect, it is difficult to detect a crack region in the image before speckle noise removal.
  • the region A321 corresponds to the background portion
  • the region A322 corresponds to the image region of the crack portion
  • the region A331 corresponds to the background portion
  • the region A332 corresponds to the image region of the crack portion.
  • an image obtained by removing speckle noise from the original image is used as the target image.
  • the area A411 corresponds to the area A311 of the original image. Since the speckle noise is removed from the background image area, the background image area is darker than before the speckle noise removal.
  • Area A412 corresponds to area A312 of the original image.
  • the area A412 is a relatively bright area like the area A312. Since the speckle noise is removed from the background image area and it becomes dark, it is easy to detect the relatively bright area A412. In this regard, it is easy to detect a crack region in the image after speckle noise removal.
  • the area A421 corresponds to the area A321 of the original image.
  • a region A422 corresponds to the region A322 of the original image.
  • the area A431 corresponds to the area A331 of the original image.
  • a region A432 corresponds to the region A332 of the original image.
  • the second control unit 390 performs various processes by controlling each unit of the learning device 30.
  • the second control unit 390 is configured by a CPU (Central Processing Unit) provided in the learning device 30 reads out and executes a program from the second storage unit 380.
  • the learning data acquisition unit 391 acquires learning data.
  • the learning data may be received by communicating with another device storing learning data such as a user's personal computer via the second communication unit 310.
  • the learning data acquisition unit 391 displays the original image on the drawing tool, and the user processes the original image into the target image so that the learning data acquisition unit 391 acquires a set of the original image and the target image. It may be. Then, the learning data acquisition unit 391 may acquire the learning data by attaching an identification number to each obtained group.
  • the learning data acquisition unit 391 stores the learning data in the learning data storage unit 381 for each physical property state of the ceramics and for each type of optical non-uniform state. Therefore, the learning data acquisition unit 391 may acquire the learning data classified for each physical property state of ceramics and for each type of optical non-uniform state.
  • the user may specify the physical property state and the optical non-uniform state type of the ceramic for each learning data, and the learning data acquisition unit 391 may classify the learning data according to the user specification.
  • the learning data acquisition unit 391 may acquire the learning data classified for each physical property state of the ceramic, for each type of optical non-uniformity, and for each type of substance constituting the ceramic. .
  • the learning data acquisition unit 391 may classify the learning data for each physical property state of the ceramic, for each type of optically non-uniform state, and for each type of substance constituting the ceramic.
  • the learning data acquisition unit 391 may acquire learning data obtained by specifying the type of optical nonuniformity by a method other than the method based on optical coherence tomography.
  • the user may specify the optical non-uniformity state by referring to an image photographed by a method other than a method based on optical coherence tomography, such as photographing the sample 100 using an infrared camera.
  • the optical non-uniform state may be specified by the user cutting the sample 100 and visually confirming the cross section.
  • the machine learning unit 392 performs machine learning on the processing method in the speckle noise removal processing for each physical property state of ceramics and for each type of optical non-uniform state.
  • the machine learning unit 392 acquires learning data from the learning data storage unit 381 for each physical property state of ceramics and for each type of optical non-uniform state, so that each physical property state and optical non-uniform state Machine learning is performed for each type.
  • the machine learning unit 392 may acquire learning data for each physical property state of the ceramic, for each type of the optical non-uniform state, and for each type of substance constituting the ceramic.
  • the machine learning unit 392 may use this learning data to perform machine learning for each physical property state, for each type of optical non-uniform state, and for each type of substance constituting the ceramic.
  • the machine learning algorithm used by the machine learning unit 392 is not limited to a specific one.
  • As the machine learning algorithm used by the machine learning unit 392 various known algorithms to which learning data including an original image and a target image can be applied can be used.
  • FIG. 28 is a diagram illustrating an example of inconvenience of applying the same speckle noise removal processing method to all physical properties of ceramics and all optical non-uniformity.
  • FIG. 28 shows images of “before processing”, “after processing (preferred)”, and “after processing (unsuitable)” for each combination of the physical property state and the optical non-uniform state.
  • the combination of the physical property state and the optical non-uniform state shown in FIG. 28 is as follows: (1) when detecting an agglomerated structure in the slurry, (2) when detecting granule traces in the molded body, (3) in the sintered body When detecting spherical defects (pores), (4) when detecting planar defects (cracks) in the sintered body.
  • the “before processing” image is an image before the speckle noise removal processing.
  • the “post-processing (preferred)” image is an image obtained by performing processing by selecting a suitable speckle noise removal processing algorithm for each physical property state and each type of optical non-uniform state.
  • processing after “processing (preferred)” When detecting a spherical defect in the sintered body, as processing after “processing (preferred)”, pixel values are converted to 8 bits, background luminance is averaged by background processing, and brightness and contrast are adjusted. Processing is performed in order. The processing procedure itself is the same as (1) the case where the aggregated structure in the slurry is detected, but the setting values for adjusting the brightness and contrast are different. (3) In the image after “processing (preferred)” when detecting spherical defects in the sintered body, an image of spherical defects can be extracted in a portion surrounded by a broken line.
  • processing after “processing (preferred)” When detecting a planar defect in a sintered body, as processing after “processing (preferred)”, pixel values are converted to 8 bits, background luminance is averaged by background processing, and brightness and contrast are adjusted. Processing is performed in the order of.
  • the processing procedure itself is the same as (1) the case where the aggregated structure in the slurry is detected, but the setting values for averaging the background luminance by the background processing and the setting values for adjusting the brightness and contrast are different.
  • the “after-processing (unsuitable)” image shows an image when processing is performed using a speckle noise removal processing algorithm different from the “after-processing (preferred)” case.
  • (4) it applies to each of the cases where the planar defect in a sintered compact is detected. Since this process is suitable for (3) detecting spherical defects in the sintered body, the image of “after processing (unsuitable)” when detecting (3) spherical defects in the sintered body is Not shown.
  • the machine learning unit 392 performs machine learning for each physical property state of the ceramic and for each type of optical non-uniform state, and a processing method for each physical property state of the ceramic and for each type of optical non-uniform state. To decide.
  • the machine learning unit 392 performs a machine operation for each physical property state of the ceramic, for each type of optical non-uniformity, and for each type of substance constituting the ceramic (particularly, for each type in which the substance is classified by optical characteristics). Learning may be performed to determine the processing method for each physical property state of the ceramic, for each type of optically inhomogeneous state, and for each type of substance constituting the ceramic.
  • the optical coherence tomography apparatus 10 may include a tomographic image generation unit 291 instead of the analysis apparatus 20.
  • the tomographic image generation unit 291 may be configured as a separate device from either the optical coherence tomography apparatus 10 or the analysis apparatus 20.
  • the analysis device 20 and the learning device 30 may be configured as one device, such as configured using the same computer.
  • FIG. 29 is a flowchart illustrating an example of a procedure of processing performed by the analysis apparatus 20 when the sample 100 is analyzed.
  • the tomographic image generation unit 291 acquires the measurement result of the sample 100 received by the first communication unit 210 from the optical coherence tomography apparatus 10, and the tomographic image of the sample 100 based on the obtained measurement result. Is generated (step S11).
  • the analysis processing unit 292 analyzes the tomographic image obtained in step S11 (step S12). After step S12, the analysis apparatus 20 ends the process of FIG.
  • FIG. 30 is a flowchart illustrating an example of a procedure of processing performed by the analysis processing unit 292 in step S12 (analysis processing) in FIG.
  • the analysis processing unit 292 starts a loop L1 that performs processing for each type of optical nonuniformity (step S21).
  • types of optical non-uniformity include, but are not limited to, pores and cracks.
  • the speckle noise removal processing unit 293 of the analysis processing unit 292 performs speckle noise removal processing on the tomographic image generated by the tomographic image generation unit 291 in step S11 of FIG. 29 (step S22).
  • the learning device 30 determines the speckle noise removal method by performing machine learning for each physical property state of the ceramic and for each type of the optically non-uniform state.
  • the speckle noise removal processing unit 293 includes, in the speckle noise removal method determined by the learning device 30, a physical property state of ceramics in the tomographic image to be analyzed, and an optical non-uniform state that is a treatment target in the loop L1.
  • the speckle noise removal method corresponding to the type of the is used.
  • the learning apparatus 30 select the speckle noise removal method according to the kind of substance which comprises ceramics for every physical property state, every kind of optical nonuniform state, and ceramics.
  • the user may input the type of material constituting the ceramics to the learning device 30 and the learning device 30 may select a speckle noise removal method according to the user input.
  • the non-uniform state detection unit 294 of the analysis processing unit 292 detects the optical non-uniform state in the sample 100 using the tomographic image after noise removal obtained in step S22 (step S23). Specifically, the non-uniform state detection unit 294 detects an optical non-uniform portion in the tomographic image after noise removal. When the optical non-uniform portion is detected, the non-uniform state detecting unit 294 determines the type of the optical non-uniform state based on the size and shape of the optical non-uniform portion.
  • the analysis process part 292 performs the termination process of the loop L1 (step S24). Specifically, the analysis processing unit 292 determines whether or not the processing of the loop L1 has been performed for all types of optical nonuniformity. If it is determined that there is a type of unprocessed optical non-uniform state, the process returns to step S21, and the process of loop L1 is continued for the type of unprocessed optical non-uniform state. On the other hand, when it is determined that the process of the loop L1 has been performed for all types of optical nonuniformity, the analysis processing unit 292 ends the loop L1. When the loop L1 is ended in step S24, the analysis processing unit 292 ends the process of FIG.
  • FIG. 31 is a flowchart illustrating an example of a processing procedure performed by the machine learning unit 392 of the learning device 30 when machine learning is performed on the speckle noise removal method.
  • the learning data storage unit 381 stores learning data for each physical property state of ceramics and for each type of optical non-uniform state.
  • the machine learning unit 392 performs the processing of FIG. 31 for each physical property state of the ceramic and for each type of optical non-uniform state, and speckles for each physical property state of the ceramic and for each type of optical non-uniform state. Determine the noise removal method.
  • the machine learning unit 392 starts a loop L2 that performs the process for each physical property state of the ceramic (step S31). Further, the machine learning unit 392 starts a loop L3 that performs processing for each type of optical nonuniformity (step S32). Next, the machine learning unit 392 acquires learning data (step S33). Specifically, the machine learning unit 392 uses the learning data of the types of the physical property state of the ceramics to be processed in the loop L2 and the optical non-uniform state types to be processed in the loop L3 for learning. Read from the data storage unit 381.
  • the machine learning unit 392 performs machine learning on the speckle noise removal method using the learning data obtained in step S33 (step S34). By this machine learning, the machine learning unit 392 removes the peckle noise in the case of the physical property state of the ceramics to be processed in the loop L2 and the optical non-uniform state type to be processed in the loop L3. To decide.
  • the machine learning unit 392 performs a termination process of the loop L3 (step S35). Specifically, the machine learning unit 392 determines whether or not the process of the loop L3 has been performed for all types of optical nonuniformity states. If it is determined that there is a type of unprocessed optical non-uniform state, the process returns to step S32, and the processing of loop L3 is continued for the type of unprocessed optical non-uniform state. On the other hand, when it is determined that the process of the loop L3 has been performed for all types of optical nonuniformity, the machine learning unit 392 ends the loop L3.
  • step S36 the machine learning unit 392 performs a termination process for the loop L2 (step S36).
  • the machine learning unit 392 determines whether or not the process of the loop L2 has been performed for all the physical properties of the ceramic. If it is determined that there is an unprocessed physical property state, the process returns to step S31, and the processing of the loop L2 is continued for the unprocessed physical property state. On the other hand, when it is determined that the process of the loop L2 has been performed for all the physical property states of the ceramics, the machine learning unit 392 ends the loop L2. When the loop L2 is ended in step S36, the machine learning unit 392 ends the process of FIG.
  • the machine learning unit 392 may perform machine learning for each physical property state of ceramics, for each type of optical non-uniform state, and for each type of substance constituting the ceramic. Therefore, in the process of FIG. 31, the hazard learning unit 392 performs a loop for each type of substance constituting the ceramic in addition to a loop for each physical property state of the ceramic and a loop for each type of optical non-uniform state. A triple loop process may be performed.
  • FIG. 32 is a diagram illustrating a first example of a processing procedure in which the speckle noise removal processing unit 293 performs the speckle noise removal processing.
  • FIG. 32 shows an example of a procedure of processing performed by the speckle noise removal processing unit 293 when detecting pores in the sintered body, for example.
  • the speckle noise removal processing unit 293 performs the process of FIG. 32 as one of the speckle noise removal processes performed for each physical property state of the ceramic and for each type of optical non-uniform state in step S22 of FIG. .
  • the original image is an image before speckle noise removal.
  • the target image is an image after speckle noise is removed.
  • the speckle noise removal processing unit 293 performs the process A using the original image (step S41).
  • the speckle noise removal processing unit 293 performs process B using the image obtained in process A and the original image (step S42).
  • the speckle noise removal processing unit 293 performs the process C using the image obtained in the process B (step S43).
  • the speckle noise removal processing unit 293 performs the process D using the original image (step S44).
  • the speckle noise removal process part 293 performs the process E using the image obtained by the process C, and the image obtained by the process D (step S45).
  • a target image is obtained by processing E.
  • the machine learning unit 392 determines the processing procedure of FIG. 32 by machine learning.
  • the speckle noise removal processing unit 293 performs the processing of FIG. 32 according to the processing procedure determined by the machine learning unit 392.
  • FIG. 33 is a diagram illustrating a second example of a processing procedure in which the speckle noise removal processing unit 293 performs the speckle noise removal processing.
  • FIG. 33 shows an example of a processing procedure in the case of a physical property state and an optical non-uniform state different from the case of FIG. 32, for example, when detecting a crack in a sintered body.
  • the speckle noise removal processing unit 293 performs the process of FIG. 33 as one of the speckle noise removal processes performed for each physical property state of the ceramic and for each type of optical non-uniform state in step S22 of FIG. .
  • the original image is an image before speckle noise removal.
  • the target image is an image after speckle noise is removed.
  • the speckle noise removal processing unit 293 performs the process B using the original image (step S51), and performs the process F using the image obtained in the process B (step S52). Further, the speckle noise removal processing unit 293 performs the process C using the image obtained in the process F (step S53), and performs the process B using the image obtained in the process C (step S54). Further, the speckle noise removal processing unit 293 performs a process G using the image obtained in the process B of step S54 to obtain a target image.
  • FIG. 32 shows an example in which the original image is used a plurality of times
  • FIG. 33 shows an example in which the original image is used once.
  • FIG. 34 is a diagram illustrating a third example of a processing procedure in which the speckle noise removal processing unit 293 performs the speckle noise removal processing.
  • FIG. 34 shows an example of a processing procedure in the case of detecting spherical defects (pores) in the sintered body, for example, in more detail than in the case of FIG. 32 and 33 show examples of patterns assumed as processing performed by the speckle noise removal processing unit 293, whereas FIG. 34 shows more specific processing examples.
  • the speckle noise removal processing unit 293 performs the process of FIG. 34 as one of the speckle noise removal processes performed for each physical property state of the ceramic and for each type of optical non-uniform state in step S22 of FIG. .
  • the original image is an image before speckle noise removal.
  • the target image is an image after speckle noise is removed.
  • Each square represents processing for an image.
  • Green, Blue, and Red indicate processes for reading a green pixel value, a blue pixel value, and a red pixel value of an image, respectively.
  • Clo indicates a process of performing expansion by the maximum value filter and performing contraction by the minimum value filter as many times as expansion.
  • BDA indicates binarization by a threshold value calculated by a discriminant analysis method.
  • Ran (Range) indicates a process of outputting the maximum value-minimum value of the pixels in the 3 ⁇ 3 window centered on the target pixel for each pixel.
  • LBW indicates processing for leaving a low filling rate (for example, less than 0.9) for the circumscribed rectangle.
  • Ave (Average) indicates an averaging process ((f1 + f2) / 2).
  • the machine learning unit 392 uses a genetic algorithm (GA) and genetic programming (GP) in combination using learning data including a weight image in addition to an original image and a target image, for example.
  • GA genetic algorithm
  • GP genetic programming
  • Machine learning based on the evolutionary calculation is performed, and the processing procedure of FIG.
  • Genetic programming the same processing as in the case of a genetic algorithm is performed on a tree in which operations are expressed in a tree structure.
  • the speckle noise removal processing unit 293 performs the process of FIG. 34 according to the processing procedure determined by the machine learning unit 392.
  • the machine learning algorithm used by the machine learning unit 392 is not limited to a specific one.
  • FIG. 35 is a schematic block diagram illustrating an example of a functional configuration of the ceramic manufacturing system according to the present embodiment.
  • the ceramic manufacturing system 2 includes an analysis system 1, a preparation device 40, a molding device 50, and a sintering device 60.
  • the preparation device 40 includes a preparation control unit 41.
  • the molding apparatus 50 includes a molding control unit 51.
  • the sintering apparatus 60 includes a sintering control unit 61.
  • the analysis system 1 shown in FIG. 35 is the same as the analysis system 1 shown in FIG.
  • the ceramic manufacturing system 2 manufactures ceramics.
  • the preparation device 40 prepares a ceramic raw material and a solvent.
  • the preparation here is to mix the ceramic raw material and the solvent in a predetermined amount.
  • a slurry is obtained by preparation.
  • the preparation control unit 41 controls the preparation by the preparation device 40.
  • the preparation control unit 41 controls the amount of raw material and solvent, the strength of mixing, and the mixing time.
  • the preparation control unit 41 controls the preparation according to the analysis result.
  • the molding apparatus 50 performs ceramic molding. Specifically, the molding device 50 performs molding on a dried body obtained by drying the slurry generated by the preparation device 40.
  • the molding control unit 51 controls molding by the molding apparatus 50. For example, when the molding apparatus 50 performs pressing on the dry body, the molding control unit 51 controls the strength and time of the press.
  • the preparation control unit 41 controls molding according to the analysis result.
  • the sintering device 60 sinters ceramics. Specifically, the sintering device 60 performs sintering on the molded body generated by the molding device 50.
  • the sintering control unit 61 controls sintering by the sintering apparatus 60. For example, the sintering control unit 61 controls the sintering temperature and time.
  • the preparation control unit 41 controls the sintering according to the analysis result.
  • the ceramic production system 2 controls the production of ceramics based on the analysis result of the analysis system 1, so that it is expected that the ceramic production accuracy is improved, for example, the frequency of occurrence of pores and cracks is reduced.
  • Any one or more of the preparation control unit 41, the molding control unit 51, and the sintering control unit 61 may be configured as a part of the analysis system 1.
  • any one or more of the preparation control unit 41, the molding control unit 51, and the sintering control unit 61 is configured as a separate device from any of the analysis system 1, the preparation device 40, the molding device 50, and the sintering device 60. May be.
  • the half mirror 12 divides the light in the infrared region into the reference light and the irradiation light, and irradiates the sample 100 made of ceramics with the irradiation light.
  • the reference mirror 13 reflects the reference light.
  • the detector 14 detects the internal structure of the sample 100 using optical coherence tomography by detecting interference between the reference light reflected by the reference mirror 13 and the return light obtained by irradiating the ceramic with the irradiation light. To detect.
  • the structure formation process in the ceramic manufacturing process can be observed three-dimensionally in real time. Specifically, according to the optical coherence tomography apparatus 10, tomographic images of ceramics can be obtained at various depths at various steps in the ceramic manufacturing process.
  • the light in the infrared region may be light having a center wavelength in a range from 700 nanometers to 2000 nanometers and reflected by ceramics. As a result, it is expected that the ceramics can be measured with high accuracy by optical coherence tomography without the light being absorbed by the ceramics.
  • the tomographic image generation unit 291 generates a tomographic image of each physical property state in the ceramic manufacturing process by optical coherence tomography.
  • the analysis processing unit 292 uses the tomographic image in each physical property state to perform analysis processing to determine in which physical property state the optical non-uniform state has occurred. According to the analysis system 1, it is possible to grasp the state of occurrence of optical nonuniformity such as pores or cracks in the ceramic manufacturing process, which can be reflected in the review of conditions in the ceramic manufacturing process.
  • the physical property state includes a slurry state containing the ceramic raw material in the manufacturing process, a dried state in which the material in the slurry state is dried, a molded state in which the material in the slurry state is molded after drying, and the molded state Any of the sintered states obtained by sintering the material may be used.
  • the analysis system 1 can not only detect the presence / absence of an optical non-uniform state in the ceramics but also obtain information on which physical property state caused the optical non-uniform state.
  • the speckle noise removal processing unit 293 performs a process for removing speckle noise caused by the fine particles constituting the physical property state in the tomographic image.
  • the non-uniform state detection unit 294 determines in which physical property state an optical non-uniform state has occurred based on the shape and size of an area where the brightness is different from the other in the tomographic image after the speckle noise removal processing. To do.
  • the non-uniform state detection unit 294 can detect the optical non-uniform state with high accuracy in that the optical non-uniform state is detected using the tomographic image after the speckle noise removal processing.
  • the machine learning unit 392 determines a processing method in the speckle noise removal processing based on machine learning for each physical property state.
  • the machine learning unit 392 determines the processing method in the speckle noise removal processing for each physical property state, so that the speckle noise removal processing unit 293 selects the speckle noise removal processing method according to the physical property state. be able to.
  • the speckle noise removal processing unit 293 can perform the speckle noise removal processing with high accuracy.
  • the machine learning unit 392 determines a processing method in the speckle noise removal processing based on machine learning for each type of optical non-uniform state.
  • the machine learning unit 392 determines the processing method in the speckle noise removal processing for each type of optical non-uniform state, so that the speckle noise removal processing unit 293 performs speckle for each type of optical non-uniform state. Noise removal processing can be performed. Thereby, improvement of the detection accuracy of the non-uniform state by the non-uniform state detection unit 294 is expected.
  • the machine learning unit 392 performs machine learning based on learning data obtained by specifying the type of optical nonuniformity by a method other than the method based on optical coherence tomography. Thereby, it is expected that the learning data can be classified with high accuracy for each type of optical non-uniformity. Since the learning data can be classified with high accuracy for each type of optical non-uniform state, it is expected that the learning accuracy of the method of removing speckle noise by the machine learning unit 392 is improved.
  • At least one of the preparation device 40, the molding device 50, and the sintering device 60 satisfies at least one of the conditions of ceramic preparation, molding, and sintering based on the analysis result by the analysis system 1. Change. This is expected to improve the accuracy of ceramic production, for example, by reducing the frequency of occurrence of pores and cracks.
  • FIG. 36 is a schematic block diagram illustrating a configuration of a computer according to the embodiment.
  • a computer 70 shown in FIG. 36 includes a CPU 71, a main storage device 72, an auxiliary storage device 73, and an interface 74.
  • the operation of each unit of the first control unit 290 is stored in the auxiliary storage device 73 in the form of a program.
  • the CPU 71 reads out the program from the auxiliary storage device 73, expands it in the main storage device 72, and executes the above processing according to the program. Further, the CPU 71 secures a storage area corresponding to the first storage unit 280 in the main storage device 72 according to the program.
  • the operation of each unit of the second control unit 390 is stored in the auxiliary storage device 73 in the form of a program.
  • the CPU 71 reads out the program from the auxiliary storage device 73, expands it in the main storage device 72, and executes the above processing according to the program. Further, the CPU 71 secures a storage area corresponding to the second storage unit 380 in the main storage device 72 according to the program.
  • An embodiment of the present invention is a method for observing an internal structure of a ceramic using optical coherence tomography, a step of dividing light in an infrared region into reference light and irradiation light, and a step of irradiating the ceramic with the irradiation light And observing the internal structure of the ceramic by observing interference between the reflected reference light and the return light obtained by irradiating the ceramic with the irradiation light.
  • the present invention relates to a structure observation method. According to this embodiment, the structure formation process in the ceramic manufacturing process can be observed three-dimensionally in real time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

This method for observing the inner structure of ceramic using optical coherence tomography includes: a step for dividing light in the infrared region into a reference light and an irradiation light; a step for irradiating the ceramic with the irradiation light; and a step for observing the inner structure of the ceramic by observing the coherency between the reflected reference light and returning light obtained by irradiating the ceramic with the irradiation light.

Description

セラミックスの内部構造観察方法、セラミックスの製造方法、解析システムおよびセラミックスの製造システムCeramic internal structure observation method, ceramic manufacturing method, analysis system, and ceramic manufacturing system
 本発明は、セラミックスの内部構造観察方法、セラミックスの製造方法、解析システムおよびセラミックスの製造システムに関する。
 本願は、2017年2月28日に、日本に出願された特願2017-037446号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a ceramic internal structure observation method, a ceramic manufacturing method, an analysis system, and a ceramic manufacturing system.
This application claims priority based on Japanese Patent Application No. 2017-037446 filed in Japan on February 28, 2017, the contents of which are incorporated herein by reference.
 セラミックスの内部構造は、原料粉体からスラリー、成形体、焼結体に至るプロセス中に大きく変化することが知られている。従来、セラミックスの内部構造の観察には、光学顕微鏡を用いる方法(例えば、非特許文献1参照)、X線CTを用いる方法(例えば、非特許文献2参照)等が用いられてきた。 It is known that the internal structure of ceramics changes greatly during the process from raw material powder to slurry, compact, and sintered body. Conventionally, a method using an optical microscope (for example, see Non-Patent Document 1), a method using an X-ray CT (for example, see Non-Patent Document 2), and the like have been used for observing the internal structure of ceramics.
 セラミックスの特性は、セラミックス構造に支配されることが知られている。したがって、原料から最終製品であるセラミックスまでのセラミックスプロセスチェーンにおける構造の形成過程を的確に把握し、その構造を制御することができれば、優れた機能と高い信頼性を有するセラミックスを製造することができる。また、このような構造形成過程の観察方法を活かして、製造プロセス中に刻々と変化するスラリー、成形体、焼結体等の構造をリアルタイムに評価することができれば、目視または職人芸に頼ることなく、比較的前段の工程にて不均一な構造が形成される要因を検知して、それを取り除くことが可能となる。 It is known that the characteristics of ceramics are governed by the ceramic structure. Therefore, if the formation process of the structure in the ceramics process chain from the raw material to the final product ceramics can be accurately grasped and the structure can be controlled, ceramics with excellent functions and high reliability can be manufactured. . In addition, relying on visual observation or craftsmanship if the structure of slurry, molded body, sintered body, etc. that change every moment during the manufacturing process can be evaluated in real time by utilizing such observation method of structure formation process. However, it is possible to detect a factor that forms a non-uniform structure in a relatively preceding process and remove it.
 さらに、最終製品の内部構造の全数検査を、高速、高分解能かつ広範囲で安価に行うことができれば、製品の信頼性の向上と検査に要するコストの低減を図ることができる。
 このように、セラミックスの製造プロセスにおける構造形成過程を動的かつ三次元的に観察して、科学的に理解することは、セラミックスの歩留りの向上や信頼性の向上のために極めて重要である。
Furthermore, if 100% inspection of the internal structure of the final product can be performed at high speed, high resolution, and a wide range at a low cost, the reliability of the product can be improved and the cost required for the inspection can be reduced.
As described above, it is extremely important to dynamically and three-dimensionally observe and scientifically understand the structure formation process in the ceramic manufacturing process in order to improve the yield and reliability of ceramics.
 一方、セラミックスの製造プロセスにおける各単位操作には、数多くの制御因子が存在する。例えば、セラミックス微粒子の分散では、分散剤の種類や添加量が制御因子に相当する。セラミックス微粒子の分散媒への分散は、分散剤のセラミックス微粒子への吸着、分散媒のセラミックス微粒子に対する濡れ性等が関与した複雑な現象である。そのため、スラリーを調製するための制御因子について、勘と経験による見かけの最適化が行われていた。 On the other hand, each unit operation in the ceramic manufacturing process has many control factors. For example, in the dispersion of ceramic fine particles, the type and amount of the dispersing agent correspond to the control factor. Dispersion of ceramic fine particles in a dispersion medium is a complicated phenomenon involving adsorption of the dispersant to the ceramic fine particles, wettability of the dispersion medium with respect to the ceramic fine particles, and the like. Therefore, apparent optimization based on intuition and experience has been performed on the control factors for preparing the slurry.
 また、セラミックス微粒子毎に、溶媒との親和性や分散剤の吸着挙動といった、粒子と液相の界面に関する現象が異なるはずである。したがって、後段の成形プロセスを勘案すると、スラリーの粘度、スラリーにおける固体含有量、スラリーに含まれる有機物(バインダー、可塑剤、滑剤等)等を考慮して、制御因子の最適化を図る必要がある。 In addition, phenomena related to the interface between the particles and the liquid phase, such as the affinity with the solvent and the adsorption behavior of the dispersant, should be different for each ceramic fine particle. Therefore, in consideration of the subsequent molding process, it is necessary to optimize the control factors in consideration of the viscosity of the slurry, the solid content in the slurry, and the organic substances (binder, plasticizer, lubricant, etc.) contained in the slurry. .
 また、シート状の成形体を乾燥させる際には、セラミックス微粒子が液中に分散していた構造から、固体同士が接触する構造に動的に変化するはずである。この変化は凝集に類似している。もし、成形体の乾燥と同時に、成形体の内部構造の変化を的確に把握し、構造形成の制御因子を科学的に解明できれば、割れや変形のない均質な成形体を得るための乾燥温度、時間および雰囲気を、より解析的に決定することができると考えられる。
 さらに、エネルギーを多く消費する、成形体の焼結プロセスにおいても、昇温プロファイルは職人芸的な設定によるところが大きい。もし、焼結プロセスにおける制御因子を科学的に解明して的確に最適化できれば、エネルギー消費量を削減することができ、ひいては、コストの低減を図ることができる。
Further, when the sheet-like molded body is dried, the structure should be changed dynamically from a structure in which ceramic fine particles are dispersed in a liquid to a structure in which solids are in contact with each other. This change is similar to aggregation. If the molded body is dried and the changes in the internal structure of the molded body are accurately grasped and the control factors for the formation of the structure are scientifically elucidated, the drying temperature for obtaining a homogeneous molded body free of cracks and deformation, It is believed that time and atmosphere can be determined more analytically.
Further, even in the sintering process of the compact that consumes a lot of energy, the temperature rise profile is largely due to craftsmanship settings. If the control factors in the sintering process can be scientifically elucidated and optimized appropriately, energy consumption can be reduced, and thus cost can be reduced.
 このように、セラミックスの製造プロセスにおける構造形成過程の理解と、その制御因子の化学的解明とを実現できれば、セラミックスの製造プロセス技術の体系化を図ることが可能となる。そして、セラミックスプロセスチェーン全体の最適化を通じて、セラミックスの普及に対する障害となっている多様な技術課題を解決することができる。その結果、セラミックスの製造において歩留りの向上、低コスト化、および、高信頼性化等を実現することができる。 Thus, if the understanding of the structure formation process in the ceramic manufacturing process and the chemical elucidation of its control factors can be realized, it will be possible to systematize the ceramic manufacturing process technology. Through the optimization of the entire ceramic process chain, it is possible to solve various technical problems that are an obstacle to the spread of ceramics. As a result, it is possible to improve yield, reduce costs, increase reliability, and the like in the production of ceramics.
 本発明は、セラミックスの製造プロセスにおける構造形成過程をリアルタイムに三次元的に観察することができるセラミックスの内部構造観察方法、セラミックスの製造方法、解析システムおよびセラミックスの製造システムを提供する。 The present invention provides a ceramic internal structure observation method, a ceramic production method, an analysis system, and a ceramic production system, which can observe a structure formation process in a ceramic production process three-dimensionally in real time.
 本発明の第1の態様によれば、セラミックスの内部構造観察方法は、赤外線領域の光を参照光と照射光に分割する工程と、前記セラミックスに前記照射光を照射する工程と、反射させた前記参照光と、前記セラミックスに前記照射光を照射して得られた戻り光との干渉を観察することにより、光干渉断層撮影を用いて前記セラミックスの内部構造を観察する工程とを含む。 According to the first aspect of the present invention, the method for observing the internal structure of the ceramic reflects the step of dividing the light in the infrared region into reference light and irradiation light, the step of irradiating the ceramic with the irradiation light, and the reflection. Observing the internal structure of the ceramic using optical coherence tomography by observing interference between the reference light and return light obtained by irradiating the ceramic with the irradiation light.
 前記赤外線領域の光は、中心波長が700ナノメートルから2000ナノメートルまで範囲内の光であって、かつ前記セラミックスにて反射する光であってもよい。 The light in the infrared region may be light having a center wavelength in a range from 700 nanometers to 2000 nanometers and reflected by the ceramics.
 前記セラミックスの内部構造観察方法が、前記光干渉断層撮影にてセラミックスの製造過程における物性状態それぞれの断層画像を生成する工程と、前記物性状態それぞれにおける断層画像を用いて、いずれの物性状態において光学的不均一状態が生じているかの解析処理を行う工程とをさらに含むようにしてもよい。 The method for observing the internal structure of the ceramic includes a step of generating a tomographic image of each physical property state in the ceramic manufacturing process by the optical coherence tomography, and a tomographic image in each physical property state, and optical in any physical property state And a step of performing an analysis process for determining whether or not the state is uneven.
 前記物性状態は、前記製造過程おける前記セラミックスの原料を含むスラリー状態、前記スラリー状態の材料を乾燥させた乾燥状態、前記スラリー状態の材料を乾燥後に成形した成形状態、および、前記成形状態の材料を焼結させた焼結状態のうち、少なくとも何れか2つ以上であってもよい。 The physical properties include a slurry state containing the ceramic raw material in the manufacturing process, a dry state in which the material in the slurry state is dried, a molded state in which the material in the slurry state is molded after drying, and a material in the molded state At least any two of the sintered states obtained by sintering may be used.
 前記解析処理は、前記断層画像において前記物性状態を構成する微粒子に起因したスペックルノイズの除去処理を行う工程と、前記スペックルノイズの除去処理後の断層画像で輝度が他と異なるエリアの形状および大きさに基づいて、いずれの前記物性状態において前記光学的不均一状態が生じているかを判定する工程とをさらに含むようにしてもよい。 The analysis processing includes a step of removing speckle noise caused by fine particles constituting the physical property state in the tomographic image, and a shape of an area having a luminance different from that in the tomographic image after the speckle noise removal processing. And a step of determining in which physical property state the optical non-uniform state is generated based on the size.
 前記セラミックスの内部構造観察方法が、前記スペックルノイズの除去処理における処理方法を前記物性状態毎の機械学習に基づいて決定する工程をさらに含むようにしてもよい。 The ceramic internal structure observation method may further include a step of determining a processing method in the speckle noise removal processing based on machine learning for each physical property state.
 前記セラミックスの内部構造観察方法が、前記スペックルノイズの除去処理における処理方法を前記光学的不均一状態の種類毎の機械学習に基づいて決定する工程をさらに含むようにしてもよい。 The method for observing the internal structure of the ceramic may further include a step of determining a processing method in the processing for removing the speckle noise based on machine learning for each type of the optical non-uniform state.
 前記セラミックスの内部構造観察方法が、前記光干渉断層撮影に基づく方法以外の方法で前記光学的不均一状態の種類を特定して得られた学習用データに基づいて前記機械学習を行う工程をさらに含むようにしてもよい。 The method of observing the internal structure of the ceramic based on learning data obtained by specifying the type of the optical non-uniform state by a method other than the method based on the optical coherence tomography. It may be included.
本発明の第2の態様によれば、セラミックスの製造方法は、光干渉断層撮影を用いたセラミックスの製造方法であって、セラミックスの原料物質である無機化合物を含むスラリー、または前記無機化合物の顆粒を調製する調製工程と、前記無機化合物を含むスラリーまたは前記顆粒を成形して成形体とする成形工程と、前記成形体を焼結する焼結工程と、赤外線領域の光を参照光と照射光に分割し、前記調製工程における前記スラリーもしくは前記顆粒、前記成形工程における前記成形体または前記焼結工程における焼結体のいずれかに、前記照射光を照射し、反射させた前記参照光と、前記スラリー、前記顆粒、前記成形体または前記焼結体に前記照射光を照射して得られた戻り光との干渉を観察することにより、前記スラリー、前記顆粒、前記成形体または前記焼結体の内部構造を観察する観察工程と、を含む。 According to a second aspect of the present invention, a method for producing a ceramic is a method for producing a ceramic using optical coherence tomography, wherein the slurry contains an inorganic compound that is a raw material of the ceramic, or a granule of the inorganic compound. A preparation step for preparing the slurry, a molding step for molding the slurry containing the inorganic compound or the granule to form a compact, a sintering step for sintering the compact, and light in the infrared region for reference light and irradiation light The reference light that is irradiated with and reflected by any one of the slurry or the granules in the preparation step, the molded body in the molding step, or the sintered body in the sintering step. By observing interference with the return light obtained by irradiating the irradiation light to the slurry, the granule, the molded body or the sintered body, the slurry, the granule Including, an observation step of observing the internal structure of the molded body or the sintered body.
 前記観察工程は、前記スラリーもしくは前記顆粒、または前記成形体の内部構造の観察結果に応じて、前記成形工程における成形条件または前記焼結工程における焼結条件を制御することを含むようにしてもよい。 The observation step may include controlling the molding conditions in the molding step or the sintering conditions in the sintering step according to the observation result of the slurry or the granule or the internal structure of the molded body.
 本発明の第3の態様によれば、解析システムは、光干渉断層撮影にてセラミックスの製造過程における物性状態それぞれの断層画像を生成する断層画像生成部と、前記物性状態それぞれにおける断層画像を用いて、いずれの物性状態において光学的不均一状態が生じているかの解析処理を行う解析処理部と、を備える。 According to the third aspect of the present invention, the analysis system uses a tomographic image generation unit that generates a tomographic image of each physical property state in the ceramic manufacturing process by optical coherence tomography, and a tomographic image in each of the physical property states. And an analysis processing unit that performs an analysis process to determine in which physical property state an optical non-uniform state has occurred.
 本発明の第4の態様によれば、セラミックスの製造システムは、上記した解析システムと、調製装置、成形装置および焼結装置のうち少なくとも何れか1つとを備え、調製装置、成形装置および焼結装置のうち少なくとも何れか1つは、前記解析システムによる解析結果に基づいて、セラミックスの調製、成形、焼結のうち少なくとも何れか1つの条件を変化させる。 According to a fourth aspect of the present invention, a ceramic manufacturing system includes the above-described analysis system and at least one of a preparation device, a molding device, and a sintering device, and the preparation device, the molding device, and the sintering device. At least one of the apparatuses changes at least one of the conditions of ceramic preparation, molding, and sintering based on the analysis result of the analysis system.
 上記したセラミックスの内部構造観察方法、セラミックスの製造方法、解析システムおよびセラミックスの製造システムによれば、セラミックスの製造プロセスにおける構造形成過程をリアルタイムに三次元的に観察することができる。 According to the ceramic internal structure observation method, ceramic manufacturing method, analysis system, and ceramic manufacturing system described above, the structure formation process in the ceramic manufacturing process can be observed in three dimensions in real time.
光干渉断層撮影装置を示す模式図である。It is a schematic diagram which shows an optical coherence tomography apparatus. 実験例1における光干渉断層撮影像である。6 is an optical coherence tomography image in Experimental Example 1. 実験例1における光干渉断層撮影像である。6 is an optical coherence tomography image in Experimental Example 1. 実験例2における光干渉断層撮影像である。It is an optical coherence tomography image in Experimental example 2. 実験例2における光干渉断層撮影像である。It is an optical coherence tomography image in Experimental example 2. 実験例2における光干渉断層撮影像である。It is an optical coherence tomography image in Experimental example 2. 実験例3における成形体の光干渉断層撮影像である。10 is an optical coherence tomographic image of a molded body in Experimental Example 3. 実験例4における光干渉断層撮影像である。It is an optical coherence tomography image in Experimental example 4. 実験例5における薄膜の光干渉断層撮影像である。10 is an optical coherence tomography image of a thin film in Experimental Example 5. 実験例5における焼結体の光干渉断層撮影像である。10 is an optical coherence tomography image of a sintered body in Experimental Example 5. 実験例5における焼結体の光干渉断層撮影像である。10 is an optical coherence tomography image of a sintered body in Experimental Example 5. 実験例5における焼結体の光干渉断層撮影像である。10 is an optical coherence tomography image of a sintered body in Experimental Example 5. 実験例5における焼結体の光干渉断層撮影像である。10 is an optical coherence tomography image of a sintered body in Experimental Example 5. 実験例5における焼結体の光干渉断層撮影像である。10 is an optical coherence tomography image of a sintered body in Experimental Example 5. 実験例5における焼結体の光干渉断層撮影像である。10 is an optical coherence tomography image of a sintered body in Experimental Example 5. 実験例5における焼結体の光干渉断層撮影像である。10 is an optical coherence tomography image of a sintered body in Experimental Example 5. 実験例5における焼結体の光干渉断層撮影像である。10 is an optical coherence tomography image of a sintered body in Experimental Example 5. 実験例5における焼結体の光干渉断層撮影像である。10 is an optical coherence tomography image of a sintered body in Experimental Example 5. 実験例5における焼結体の光干渉断層撮影像である。10 is an optical coherence tomography image of a sintered body in Experimental Example 5. 実験例5における焼結体の光干渉断層撮影像である。10 is an optical coherence tomography image of a sintered body in Experimental Example 5. 実験例5における焼結体の光干渉断層撮影像である。10 is an optical coherence tomography image of a sintered body in Experimental Example 5. 実験例5における焼結体の光干渉断層撮影像である。10 is an optical coherence tomography image of a sintered body in Experimental Example 5. 実験例5における焼結体の光干渉断層撮影像である。10 is an optical coherence tomography image of a sintered body in Experimental Example 5. 実施形態に係る解析システムの機能構成の例を示す概略ブロック図である。It is a schematic block diagram which shows the example of a function structure of the analysis system which concerns on embodiment. 実施形態に係るセラミックスである試料の物性状態の分類例を示す図である。It is a figure which shows the example of classification | category of the physical-property state of the sample which is the ceramics which concern on embodiment. 実施形態に係る学習用データの第1例を示す図である。It is a figure which shows the 1st example of the data for learning which concerns on embodiment. 実施形態に係る学習用データの第2例を示す図である。It is a figure which shows the 2nd example of the data for learning which concerns on embodiment. セラミックスの全ての物性状態、および、全ての光学的不均一状態に対して同一のスペックルノイズの除去処理方法を適用する不都合性の例を示す図である。It is a figure which shows the example of the inconvenience which applies the removal processing method of the same speckle noise with respect to all the physical-property states of ceramics, and all the optical nonuniformity states. 実施形態で、試料の解析を行う際に解析装置が行う処理の手順の例を示すフローチャートである。5 is a flowchart illustrating an example of a procedure of processing performed by the analysis apparatus when analyzing a sample in the embodiment. 実施形態で、解析処理部が解析処理で行う処理の手順の例を示すフローチャートである。6 is a flowchart illustrating an example of a procedure of processing performed by the analysis processing unit in the analysis processing in the embodiment. 実施形態で、スペックルノイズ除去方法を機械学習する際に学習装置の機械学習部が行う処理の手順の例を示すフローチャートである。5 is a flowchart illustrating an example of a procedure of processing performed by a machine learning unit of a learning device when machine learning a speckle noise removal method in the embodiment. 実施形態で、スペックルノイズ除去処理部がスペックルノイズ除去処理を行う処理の手順の第1例を示す図である。In an embodiment, it is a figure showing the 1st example of the procedure of the processing in which a speckle noise removal processing part performs a speckle noise removal processing. 実施形態で、スペックルノイズ除去処理部がスペックルノイズ除去処理を行う処理の手順の第2例を示す図である。It is a figure which shows the 2nd example of the procedure of the process which a speckle noise removal process part performs a speckle noise removal process in embodiment. スペックルノイズ除去処理部293がスペックルノイズ除去処理を行う処理の手順の第3例を示す図である。It is a figure which shows the 3rd example of the procedure of the process which the speckle noise removal process part 293 performs a speckle noise removal process. 実施形態に係るセラミックスの製造システムの機能構成の例を示す概略ブロック図である。It is a schematic block diagram which shows the example of a function structure of the manufacturing system of the ceramics which concern on embodiment. 実施形態に係るコンピュータの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the computer which concerns on embodiment.
 以下、本発明の実施形態を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Embodiments of the present invention will be described below, but the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
[セラミックスの内部構造観察方法]
 本実施形態のセラミックスの内部構造観察方法は、光干渉断層撮影を用いたセラミックスの内部構造観察方法であって、赤外線領域の光を参照光と照射光に分割し、セラミックスに照射光を照射し、反射させた参照光と、セラミックスに照射光を照射して得られた戻り光との干渉を観察することにより、セラミックスの内部構造を観察する。
[Method for observing the internal structure of ceramics]
The ceramic internal structure observation method according to the present embodiment is a ceramic internal structure observation method using optical coherence tomography, in which light in the infrared region is divided into reference light and irradiation light, and the ceramic is irradiated with irradiation light. The internal structure of the ceramic is observed by observing the interference between the reflected reference light and the return light obtained by irradiating the ceramic with the irradiation light.
 本実施形態のセラミックスの内部構造観察方法で観察対象となるセラミックスは、セラミックスの原料物質である無機化合物のスラリー、無機化合物の顆粒、無機化合物の乾燥体、無機化合物の成形体、無機化合物の焼結体のいずれか1種類以上である。
 無機化合物のスラリーは、セラミックスのスラリーの例に該当する。無機化合物の顆粒は、セラミックスの原料の例に該当する。無機化合物の乾燥体は、セラミックスの乾燥体の例に該当する、無機化合物の形成体は、セラミックスの形成体の例に該当する。無機化合物の焼結体は、セラミックスの焼結体の例に該当する。
The ceramics to be observed by the method for observing the internal structure of the ceramic of this embodiment are: an inorganic compound slurry, an inorganic compound granule, an inorganic compound dried body, an inorganic compound molded body, an inorganic compound sintered body, and an inorganic compound sintered body. Any one or more types of ligations.
The inorganic compound slurry corresponds to an example of a ceramic slurry. The inorganic compound granules correspond to examples of ceramic raw materials. An inorganic compound dry body corresponds to an example of a ceramic dry body, and an inorganic compound formed body corresponds to an example of a ceramic formed body. The sintered body of an inorganic compound corresponds to an example of a sintered body of ceramic.
 セラミックスの原料物質である無機化合物は、赤外線領域の光を透過する物質であればよく、特定のものに限定されない。このような無機化合物の例として、酸化ケイ素(SiO)、窒化ケイ素(Si)、水酸化アパタイト(Ca10(PO(OH))、酸化アルミニウム(Al)、窒化ホウ素(BN)、酸化イットリウム(Y)、酸化亜鉛(ZnO)、酸化チタン(TiO)、炭酸カルシウム(CaCO)、および、チタン酸バリウム(BaTiO)が挙げられる。 The inorganic compound which is a raw material material for ceramics is not limited to a specific material as long as it is a material that transmits light in the infrared region. Examples of such inorganic compounds include silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), hydroxide apatite (Ca 10 (PO 4 ) 6 (OH) 2 ), and aluminum oxide (Al 2 O 3 ). Boron nitride (BN), yttrium oxide (Y 2 O 3 ), zinc oxide (ZnO), titanium oxide (TiO 2 ), calcium carbonate (CaCO 3 ), and barium titanate (BaTiO 3 ).
 無機化合物を含むスラリーは、上記の無機化合物と、溶媒(分散媒)とを含む。
 溶媒としては、上記の無機化合物を分散することができるとともに、本実施形態で使用する赤外線領域の光の少なくとも一部を透過するものであればよく、特定のもの限定されない。溶媒の例として、水、キシレン、トルエン、および、エタノールが挙げられる。
 また、スラリーは、無機化合物の特性を阻害しない範囲で分散剤や可塑剤等を含んでいてもよい。分散剤の例として、ポリカルボン酸、ポリアクリル酸、ポリエチレンイミン、および、高級脂肪酸エステルが挙げられる。
The slurry containing an inorganic compound contains the above inorganic compound and a solvent (dispersion medium).
The solvent is not particularly limited as long as it can disperse the above-described inorganic compound and transmits at least part of the light in the infrared region used in the present embodiment. Examples of the solvent include water, xylene, toluene, and ethanol.
Moreover, the slurry may contain a dispersing agent, a plasticizer, etc. in the range which does not inhibit the characteristic of an inorganic compound. Examples of the dispersant include polycarboxylic acid, polyacrylic acid, polyethyleneimine, and higher fatty acid ester.
 無機化合物の顆粒として、例えば、上記の無機化合物を用いて、噴霧乾燥法等で生成したものを用いることができる。
 無機化合物の成形体の例として、上記のスラリーを成形用の型に投入し所定の形状に成形したもの、および、無機化合物の顆粒を金型に充填して圧縮成形したものが挙げられる。成形体は溶媒を含んでいてもよい。
 無機化合物の焼結体の例として、上記の成形体を完全に焼結したもの、および、部分的に焼結したものが挙げられる。
As the granules of the inorganic compound, for example, those produced by a spray drying method using the above-described inorganic compound can be used.
Examples of the molded body of the inorganic compound include those in which the above slurry is put into a molding die and molded into a predetermined shape, and those in which inorganic compound granules are filled in a mold and compression molded. The molded body may contain a solvent.
Examples of the sintered body of the inorganic compound include a completely sintered body and a partially sintered body.
 ここで、光干渉断層撮影について説明する。光干渉断層撮影(Optical Coherence Tomography、OCT)は、光の干渉性を利用して、試料の内部構造を高分解能・高速で撮影する技術である。
 本実施形態では、例えば、図1に示すような光干渉断層撮影(OCT)装置が用いられる。
 図1に示す光干渉断層撮影装置10は、光源11と、ハーフミラー12と、参照ミラー13と、検出器14とを備える。
Here, optical coherence tomography will be described. Optical coherence tomography (OCT) is a technique for imaging the internal structure of a sample at high resolution and high speed using the coherence of light.
In the present embodiment, for example, an optical coherence tomography (OCT) apparatus as shown in FIG. 1 is used.
An optical coherence tomography apparatus 10 shown in FIG. 1 includes a light source 11, a half mirror 12, a reference mirror 13, and a detector 14.
 光源11は、試料100に赤外線領域の光を照射するためのものである。本実施形態では、試料100はセラミックスである。
 また、光源11は、中心波長が700nm(ナノメートル)から2000nmまでの光であって、かつ上記の本実施形態におけるセラミックスにて反射する光を発する。セラミックスにて反射する光は、例えばセラミックスに吸収されない光である。
The light source 11 is for irradiating the sample 100 with light in the infrared region. In the present embodiment, the sample 100 is ceramic.
The light source 11 emits light having a center wavelength of 700 nm (nanometers) to 2000 nm and reflected by the ceramic in the present embodiment. The light reflected by the ceramic is, for example, light that is not absorbed by the ceramic.
 ハーフミラー12は、光源11から発せられた光の光路上に設けられている。また、ハーフミラー12は、その光源11側の面12aが、前記の光路に対して光源11側に45°の角度で傾斜するように配置されている。
 ハーフミラー12は、光源11から発せられた光を、試料100に照射する照射光と、参照ミラー13に入射する参照光に分割する。そして、ハーフミラー12は、分割した照射光を反射させて試料100に入射させる。また、ハーフミラー12は、分割した参照光を透過させて参照ミラー13に入射させる。
The half mirror 12 is provided on the optical path of light emitted from the light source 11. The half mirror 12 is arranged such that the surface 12a on the light source 11 side is inclined at an angle of 45 ° toward the light source 11 with respect to the optical path.
The half mirror 12 divides the light emitted from the light source 11 into irradiation light that irradiates the sample 100 and reference light that enters the reference mirror 13. Then, the half mirror 12 reflects the divided irradiation light and makes it enter the sample 100. Further, the half mirror 12 transmits the divided reference light and makes it incident on the reference mirror 13.
 参照ミラー13は、光源11から発せられた光の光路上に設けられている。
 参照ミラー13は、ハーフミラー12を透過した参照光を反射して、その反射光をハーフミラー12へ戻す。そのために、参照ミラー13は、ハーフミラー12と対向するように設けられている。
 また、参照ミラー13は、光源11から発せられた光の光路方向に沿って移動可能となっている。すなわち、参照ミラー13は、ハーフミラー12との距離を調節できるようになっている。参照ミラー13を移動可能とする代わりに、波長可変光源を用いて同様の機能を果たすようにしてもよい。
The reference mirror 13 is provided on the optical path of the light emitted from the light source 11.
The reference mirror 13 reflects the reference light transmitted through the half mirror 12 and returns the reflected light to the half mirror 12. Therefore, the reference mirror 13 is provided so as to face the half mirror 12.
Further, the reference mirror 13 is movable along the optical path direction of the light emitted from the light source 11. That is, the reference mirror 13 can adjust the distance from the half mirror 12. Instead of making the reference mirror 13 movable, a wavelength variable light source may be used to perform the same function.
 検出器14は、試料100に照射光を照射して得られた戻り光の光路上と、参照光の光路上とに設けられている。参照光は、参照ミラー13で反射されてハーフミラー12に戻り、さらに、ハーフミラー12で反射される。
 検出器14は、上記の戻り光と参照光とを観測するためのものである。
The detector 14 is provided on the optical path of the return light obtained by irradiating the sample 100 with the irradiation light and on the optical path of the reference light. The reference light is reflected by the reference mirror 13, returns to the half mirror 12, and further reflected by the half mirror 12.
The detector 14 is for observing the return light and the reference light.
 光干渉断層撮影装置10を用いた試料100の内部構造の観察または撮影は、以下のようにして行われる。
 光源11が、赤外線領域の光を発する。ここで、赤外線領域の光は、中心波長が700nmから2000nmまでの光であって、かつセラミックスにて反射する光である。
 光源11から発せられた光をハーフミラー12が、試料100に照射する照射光と、参照ミラー13に入射する参照光に分割する。ハーフミラー12は、分割した照射光を反射させて試料100に入射させる。また、ハーフミラー12は、分割した参照光を透過させて参照ミラー13に入射させる。
Observation or imaging of the internal structure of the sample 100 using the optical coherence tomography apparatus 10 is performed as follows.
The light source 11 emits light in the infrared region. Here, the light in the infrared region is light having a central wavelength from 700 nm to 2000 nm and reflected by ceramics.
The half mirror 12 divides the light emitted from the light source 11 into irradiation light that irradiates the sample 100 and reference light that enters the reference mirror 13. The half mirror 12 reflects the divided irradiation light and makes it incident on the sample 100. Further, the half mirror 12 transmits the divided reference light and makes it incident on the reference mirror 13.
 試料100に入射した照射光は、試料100の表面や内部構造等、屈折率に差がある界面で反射されて、戻り光として試料100の表面から出射される。
 試料100に照射光を照射して得られた戻り光と、参照ミラー13で反射されて戻ってきた参照光とは、ハーフミラー12上で再び重ね合わされる。このとき、試料100からの戻り光と、参照ミラー13からの参照光とが通ってきた距離が等しければ、2つの光は強め合う。一方、試料100からの戻り光と、参照ミラー13からの参照光とが通ってきた距離にずれがあり光の位相が逆になると、2つの光は打ち消し合う。
Irradiation light incident on the sample 100 is reflected at an interface having a difference in refractive index, such as the surface or internal structure of the sample 100, and is emitted from the surface of the sample 100 as return light.
The return light obtained by irradiating the sample 100 with the irradiation light and the reference light reflected and returned by the reference mirror 13 are superimposed again on the half mirror 12. At this time, if the distance traveled by the return light from the sample 100 and the reference light from the reference mirror 13 is equal, the two lights strengthen each other. On the other hand, when the return light from the sample 100 and the reference light from the reference mirror 13 are shifted in distance and the phases of the light are reversed, the two lights cancel each other.
 ここで、参照ミラー13を動かして参照ミラー13とハーフミラー12の距離を調節し、検出器14上で2つの光が干渉し強め合う位置を観測する。この観測により、試料100内のどの深さに反射面があるかを知ることができる。これにより、試料100の内部構造を観察することができる。また、監察結果を画像化することで、試料100の内部構造を撮影することができる。
 光干渉断層撮影装置10によれば、このような試料100の内部構造の観察または撮影をリアルタイムで行うことができる。さらには、光干渉断層撮影装置10によれば、試料100の内部構造の観察を動画で記録することができる。
Here, the reference mirror 13 is moved to adjust the distance between the reference mirror 13 and the half mirror 12, and the position where the two lights interfere and strengthen on the detector 14 is observed. By this observation, it is possible to know at which depth in the sample 100 the reflecting surface is present. Thereby, the internal structure of the sample 100 can be observed. Moreover, the internal structure of the sample 100 can be photographed by imaging the inspection result.
According to the optical coherence tomography apparatus 10, the internal structure of the sample 100 can be observed or photographed in real time. Furthermore, according to the optical coherence tomography apparatus 10, observation of the internal structure of the sample 100 can be recorded as a moving image.
 本実施形態のセラミックスの内部構造観察方法では、光源11から、赤外線領域の光として、中心波長が700nmから2000nmまでの光であって、かつ試料100にて反射する光を試料100に照射するとともに、参照ミラー13を動かすことにより、セラミックスである試料100を観察する。これにより、従来は観察できなかったセラミックスの内部構造を三次元的に観察することができる。なお、参照ミラー13を移動可能とする代わりに波長可変光源を用いた場合には、波長可変光源から発する光の波長や強度を調整することにより、試料100を観察するようにしてもよい。 In the ceramic internal structure observation method of the present embodiment, the light source 11 irradiates the sample 100 with light having a central wavelength of 700 nm to 2000 nm and reflected by the sample 100 as light in the infrared region. By moving the reference mirror 13, the sample 100 made of ceramics is observed. Thereby, the internal structure of the ceramics which could not be observed conventionally can be observed three-dimensionally. If a wavelength tunable light source is used instead of making the reference mirror 13 movable, the sample 100 may be observed by adjusting the wavelength and intensity of light emitted from the wavelength tunable light source.
 ここで、本実施形態のセラミックスの内部構造観察方法を適用可能な事例を示す。
[事例1]
 複数種類の粒子からなる複合粒子を利用することは、セラミックスの微構造を制御したり、セラミックスを高機能化・多機能化したりするための手法の1つである。複数種類の粒子からなる複合粒子を利用する例として、機械的処理によるナノ複合粒子の調整と、これを利用したセラミックスの微構造の制御とが挙げられる。
Here, the example which can apply the internal structure observation method of the ceramics of this embodiment is shown.
[Case 1]
The use of composite particles composed of a plurality of types of particles is one of the methods for controlling the microstructure of ceramics and making ceramics highly functional and multifunctional. Examples of using composite particles composed of a plurality of types of particles include adjustment of nanocomposite particles by mechanical treatment and control of the microstructure of ceramics using this.
 例えば、窒化ケイ素(Si)セラミックスを低コストで製造できる製造プロセスであるポスト反応焼結法に着目する。そして、ケイ素(Si)と焼結助剤である酸化イットリウム(Y)および酸化アルミニウム(Al)とからなるナノ複合粒子を用いて成形体の構造の制御を行うことを考える。この制御により、均質な窒化体および綴密な焼結体を生成する。
 ナノ複合粒子を用いることにより、焼結助剤がケイ素粒子同士の接触を抑制し、ケイ素粒子が溶融することなく均質に窒化できることが明らかとなった。また、ナノ複合粒子を用い、高温で緻密化することにより、緻密であり、かつ粗大な気孔がない窒化ケイ素(Si)セラミックスを生成できることが明らかとなった。
For example, attention is paid to a post reaction sintering method which is a manufacturing process capable of manufacturing silicon nitride (Si 3 N 4 ) ceramics at low cost. Then, it is considered that the structure of the molded body is controlled using nanocomposite particles composed of silicon (Si) and sintering aids yttrium oxide (Y 2 O 3 ) and aluminum oxide (Al 2 O 3 ). . By this control, a homogeneous nitride and a dense sintered body are generated.
By using nanocomposite particles, it became clear that the sintering aid suppresses the contact between the silicon particles, and the silicon particles can be uniformly nitrided without melting. In addition, it was revealed that silicon nitride (Si 3 N 4 ) ceramics that are dense and have no coarse pores can be produced by using nanocomposite particles and densifying them at high temperatures.
 このようにナノ複合粒子の利用は、セラミックスの微構造の制御とセラミックスの製造プロセスの改善に有効である。しかしながら、例えば、ナノ複合粒子を用いて成形された成形体の構造は、一般的な複合化されていない微粒子を用いた混合プロセスで生成した成形体と異なるはずである。それにもかかわらず、ナノ複合粒子を用いて成形された成形体の構造と、成形体の焼結挙動との相関については明らかとなっていない。 Thus, the use of nanocomposite particles is effective for controlling the microstructure of ceramics and improving the manufacturing process of ceramics. However, for example, the structure of a molded body formed using nanocomposite particles should be different from that formed by a mixing process using general uncomposited fine particles. Nevertheless, the correlation between the structure of a molded body formed using nanocomposite particles and the sintering behavior of the molded body has not been clarified.
 本実施形態のセラミックスの内部構造観察方法によれば、ナノ複合粒子を用いて成形された成形体の構造や成形過程、スラリーの乾燥過程、成形体の焼結挙動をリアルタイムに三次元的に観察することができる。ゆえに、本実施形態のセラミックスの内部構造観察方法によれば、ナノ複合粒子を用いて成形された成形体の構造と、成形体の焼結挙動との相関について明らかにすることが可能である。 According to the method for observing the internal structure of a ceramic according to the present embodiment, the structure and forming process of a compact formed using nanocomposite particles, the drying process of slurry, and the sintering behavior of the compact are observed in three dimensions in real time. can do. Therefore, according to the ceramic internal structure observation method of the present embodiment, it is possible to clarify the correlation between the structure of a molded body formed using nanocomposite particles and the sintering behavior of the molded body.
[事例2]
 これまで勘と経験に頼られてきた微粒子の表面設計と分散プロセスを、スラリーの流動特性や粒子間の相互作用の評価に基づく科学的観点から解明した方法が提案されている。
 その方法によれば、粒子の材質と分散媒の種類に応じた個別の表面設計により、微粒子を分散媒に分散させることができる。例えば、多段階化学反応による微粒子の表面修飾、および、新規表面修飾剤の設計と適切な表面修飾操作法の開発により、各種材質の微粒子の溶剤・樹指への高度な分散を達成している。また、カチオン性高分子と脂肪酸の会合体形成により、簡便で設計的な高分子分散剤の改質プロセスを開発し、様々な粒子材質に使用できる分散剤の設計や高濃度多成分系スラリーの分散化に成功している。
[Case 2]
A method has been proposed in which the surface design and dispersion process of fine particles, which have been relied on intuition and experience, have been elucidated from a scientific viewpoint based on the evaluation of the flow characteristics of the slurry and the interaction between the particles.
According to this method, the fine particles can be dispersed in the dispersion medium by individual surface design according to the material of the particles and the type of the dispersion medium. For example, the fine particle surface modification by multi-step chemical reaction, the development of new surface modifiers and the development of appropriate surface modification operation methods have achieved a high degree of dispersion of fine particles of various materials in solvents and fingers. . In addition, by developing aggregates of cationic polymers and fatty acids, we have developed a simple and designed modification process for polymer dispersants. Design of dispersants that can be used for various particle materials and high-concentration multi-component slurry Successful decentralization.
 しかしながら、上述の技術においては、微粒子と会合体および溶媒との濡れ性、並びに、バインダーや滑剤等の他の有機物が共存する下における界面構造の理解と最適化がなされていない。また、上述の技術は、現時点で微粒子の分散に特化したものであり、セラミックスの製造における、微粒子の乾燥プロセスや、微粒子の成形プロセスも考慮した粒子界面の設計はなされていない。 However, in the above-described technology, the wettability between the fine particles, the aggregates and the solvent, and the interface structure in the presence of other organic substances such as a binder and a lubricant are not understood and optimized. In addition, the above-described technology is currently specialized in fine particle dispersion, and the particle interface is not designed in consideration of the fine particle drying process and the fine particle forming process in the production of ceramics.
 本実施形態のセラミックスの内部構造観察方法によれば、微粒子の乾燥プロセス、および、微粒子の成形プロセスをリアルタイムに三次元的に観察することができる。ゆえに、本実施形態のセラミックスの内部構造観察方法によれば、微粒子の乾燥プロセス、および、微粒子の成形プロセスを考慮した粒子界面の設計が可能となる。 According to the ceramic internal structure observation method of the present embodiment, the drying process of fine particles and the forming process of fine particles can be observed in three dimensions in real time. Therefore, according to the ceramic internal structure observation method of the present embodiment, the particle interface can be designed in consideration of the drying process of the fine particles and the forming process of the fine particles.
[事例3]
 セラミックス粉体に適量の分散剤を添加することにより、高濃度かつ高分散性のスラリーを調製することができる。また、このスラリーは温度上昇とともにその粘度が大きく変化する。このような現象を利用することにより、高密度かつ均質な成形体を生成することができる。
 この現象を利用し、酸化ケイ素(SiO)ガラス成形体を生成し、そのガラス成形体を空気中にて1400℃で焼成する。これにより、高温で溶融することなく、複雑形状の透明酸化ケイ素(SiO)焼結体を生成することができる。さらに、三次元プリンタを用いて、樹脂で構造体を生成し、この構造体を鋳型として、高濃度かつ高分散性のスラリーを鋳込んで成形体を形成し、その成形体を焼成することにより、透明微小構造体を生成することができる。
[Case 3]
By adding an appropriate amount of a dispersant to the ceramic powder, a highly concentrated and highly dispersible slurry can be prepared. In addition, the viscosity of the slurry changes greatly with increasing temperature. By utilizing such a phenomenon, a high-density and homogeneous molded body can be generated.
Utilizing this phenomenon, a silicon oxide (SiO 2 ) glass molded body is produced, and the glass molded body is fired at 1400 ° C. in the air. Thereby, a transparent silicon oxide (SiO 2 ) sintered body having a complicated shape can be generated without melting at a high temperature. Furthermore, by using a three-dimensional printer to produce a structure with resin, using this structure as a mold, casting a highly concentrated and highly dispersible slurry to form a molded body, and firing the molded body A transparent microstructure can be generated.
 このような樹脂鋳型を用いたセラミックス微小構造体の製造方法をさらに発展させるためには、材料の性状によらず、高濃度かつ高分散性のスラリーの調製を可能にする必要がある。また、均質な成形体や焼結体の製造プロセスにおける構造形成過程を解明し、その結果に基づいて製造プロセスを設計する必要がある。
 本実施形態のセラミックスの内部構造観察方法によれば、成形体や焼結体の製造プロセスにおける構造形成過程をリアルタイムに三次元的に観察することができる。ゆえに、本実施形態のセラミックスの内部構造観察方法によれば、成形体や焼結体の製造プロセスにおける構造形成過程を解明し、その結果に基づいて製造プロセスを設計することができる。
In order to further develop a method for manufacturing a ceramic microstructure using such a resin mold, it is necessary to make it possible to prepare a slurry having a high concentration and high dispersibility regardless of the properties of the material. In addition, it is necessary to elucidate the structure formation process in the manufacturing process of homogeneous molded bodies and sintered bodies, and to design the manufacturing process based on the results.
According to the ceramic internal structure observation method of the present embodiment, the structure formation process in the manufacturing process of the molded body and the sintered body can be observed three-dimensionally in real time. Therefore, according to the ceramic internal structure observation method of the present embodiment, the structure formation process in the manufacturing process of the molded body and the sintered body can be clarified, and the manufacturing process can be designed based on the result.
[事例4]
 セラミックスの製造コストを低減することを目的として、直接窒化法で合成された低コスト粉体を原料とした高強度な窒化ケイ素(Si)セラミックスを生成することが考えられる。
 しかし、従来の方法で生成した窒化ケイ素(Si)セラミックスの強度は低い。
[Case 4]
For the purpose of reducing the manufacturing cost of ceramics, it is conceivable to produce high-strength silicon nitride (Si 3 N 4 ) ceramics using low-cost powder synthesized by direct nitriding as a raw material.
However, the strength of silicon nitride (Si 3 N 4 ) ceramics produced by conventional methods is low.
 これは、粗大な亀裂状の空隙が破壊源となっていることに起因していることが明らかとなった。赤外線顕微鏡により、低コスト粉体の成形体の内部構造を観察した結果、粗大な粒子を用いた場合には、粒子界面に大きな欠陥が存在している様子が確認された。これらの欠陥は、前記の成形体を焼結して得られた焼結体にも粗大欠陥として残存するため、窒化ケイ素(Si)セラミックスの強度の低下を引き起こしたと推測される。 It has been clarified that this is caused by the fact that coarse crack-like voids are the source of destruction. As a result of observing the internal structure of the low-cost powder compact with an infrared microscope, it was confirmed that a large defect was present at the particle interface when coarse particles were used. Since these defects remain as coarse defects in the sintered body obtained by sintering the molded body, it is estimated that the strength of the silicon nitride (Si 3 N 4 ) ceramics was reduced.
 これに対して、微粒子を原料として用いた場合には、粗大な粒子を用いた場合よりも、得られた窒化ケイ素(Si)セラミックスの曲げ強度がはるかに高くなる。この曲げ強度は、イミド分解法により合成された窒化ケイ素(Si)セラミックスの曲げ強度とほぼ同程度であった。微粒子を原料とする窒化ケイ素(Si)セラミックスは、破壊源が20μm(マイクロメートル)以下の未焼結領域であった。この窒化ケイ素(Si)セラミックスを赤外線顕微鏡で観察した場合、その内部構造には10μmから20μm程度の欠陥が観察される。しかし、この窒化ケイ素(Si)セラミックスは、従来の方法で生成した窒化ケイ素(Si)セラミックスよりも均質であることが分かった。 On the other hand, when fine particles are used as a raw material, the bending strength of the obtained silicon nitride (Si 3 N 4 ) ceramics is much higher than when coarse particles are used. This bending strength was almost the same as the bending strength of silicon nitride (Si 3 N 4 ) ceramics synthesized by the imide decomposition method. Silicon nitride (Si 3 N 4 ) ceramics using fine particles as a raw material was an unsintered region having a fracture source of 20 μm (micrometers) or less. When this silicon nitride (Si 3 N 4 ) ceramics is observed with an infrared microscope, defects of about 10 μm to 20 μm are observed in its internal structure. However, this silicon nitride (Si 3 N 4 ) ceramics has been found to be more homogeneous than silicon nitride (Si 3 N 4 ) ceramics produced by conventional methods.
 さらに、微粒子を用い、繰り返し数10回の冷間静水圧加圧(Cold Isostatic Pressing、CIP)成形を施した成形体の密度は、繰り返し数1回のCIP成形を施した成形体の密度よりも向上することが分かった。この繰り返し数10回のCIP成形を施した成形体の焼結体は、曲げ強度は、イミド分解法により合成された窒化ケイ素(Si)セラミックスの曲げ強度よりも高い値を示した。
 すなわち、近赤外線領域の光を用いた成形体および焼結体の観察により、これらの内部構造の解明に有効であることが明らかとなった。また、近赤外線領域の光を用いた成形体および焼結体の観察により、微粒子の利用、および、繰り返しCIP成形の利用が、窒化ケイ素(Si)セラミックスの高強度化に効果的であることが明らかとなった。
Furthermore, the density of the molded body that has been subjected to cold isostatic pressing (CIP) molding 10 times using a fine particle is higher than the density of the molded body that has been subjected to CIP molding 1 time. It turns out that it improves. The sintered body of the molded body subjected to the CIP molding 10 times repeatedly showed a higher bending strength than the bending strength of silicon nitride (Si 3 N 4 ) ceramics synthesized by the imide decomposition method.
That is, the observation of the molded body and the sintered body using light in the near-infrared region has proved effective for elucidating these internal structures. Also, observation of compacts and sintered compacts using light in the near infrared region shows that the use of fine particles and repeated CIP molding are effective in increasing the strength of silicon nitride (Si 3 N 4 ) ceramics. It became clear that there was.
 この考え方を他の材料にも拡張して、セラミックスの信頼性を向上させるためには、微粒子から成形体への構造形成過程の解明、成形体から焼結体への構造形成過程の解明、および、添加物等の制御因子の解明が必要である。
 本実施形態のセラミックスの内部構造観察方法によれば、微粒子から成形体への構造形成過程や、成形体から焼結体への構造形成過程をリアルタイムに三次元的に観察することができる。ゆえに、本実施形態のセラミックスの内部構造観察方法によれば、微粒子から成形体への構造形成過程や、成形体から焼結体への構造形成過程を解明することができる。
In order to extend this concept to other materials and improve the reliability of ceramics, elucidate the structure formation process from fine particles to compacts, elucidate the structure formation process from compacts to sintered bodies, and It is necessary to elucidate regulatory factors such as additives.
According to the ceramic internal structure observation method of the present embodiment, the structure formation process from the fine particles to the molded body and the structure formation process from the molded body to the sintered body can be observed three-dimensionally in real time. Therefore, according to the method for observing the internal structure of the ceramic according to the present embodiment, it is possible to elucidate the structure forming process from the fine particles to the molded body and the structure forming process from the molded body to the sintered body.
[事例5]
 成形体を均質化するとともに、成形体を焼結する際の微粒子の挙動を制御することにより、光の散乱源となる気孔を成形体内から完全に除去することができれば、セラミックスを透明化することが可能である。上述の繰り返しCIP成形法と、焼結時の微粒子の挙動の解明とに基づいて、サイアロンセラミックスを低温で緻密化することにより、透明蛍光サイアロンセラミックスを開発することができた。すなわち、成形体の内部構造を制御することにより、成形体中の気孔を効率的に除去することで、透明化という新たな機能をセラミックスに付与できることが分かった。
[Case 5]
If the pores, which are light scattering sources, can be completely removed from the molded body by homogenizing the molded body and controlling the behavior of fine particles when sintering the molded body, make the ceramic transparent. Is possible. Transparent fluorescent sialon ceramics could be developed by densifying sialon ceramics at low temperature based on the above-mentioned repeated CIP molding method and elucidation of the behavior of fine particles during sintering. That is, it was found that a new function of transparency can be imparted to ceramics by efficiently removing pores in the molded body by controlling the internal structure of the molded body.
 このような透明セラミックスを実現するには、原料粉体からスラリーの調製、成形体の成形、成形体の焼結まで一貫した製造プロセスを設計する必要がある。
 しかしながら、これまでの研究開発では、それぞれの操作の関連については十分に検討されておらず、セラミックスプロセスチェーン全体を最適化することができていなかった。
In order to realize such transparent ceramics, it is necessary to design an integrated manufacturing process from raw material powder to slurry preparation, molding of a molded body, and sintering of the molded body.
However, in the past research and development, the relationship between each operation has not been sufficiently studied, and the entire ceramics process chain has not been optimized.
 本実施形態のセラミックスの内部構造観察方法によれば、原料粉体からスラリーへの構造形成過程、原料粉体から成形体への構造形成過程、および、成形体から焼結体への構造形成過程をリアルタイムに三次元的に観察することができる。ゆえに、本実施形態のセラミックスの内部構造観察方法によれば、それぞれの操作の関連について十分に検討することが可能となり、セラミックスプロセスチェーン全体を最適化することができる。 According to the ceramic internal structure observation method of the present embodiment, the structure formation process from the raw material powder to the slurry, the structure formation process from the raw material powder to the compact, and the structure formation process from the compact to the sintered body Can be observed in three dimensions in real time. Therefore, according to the method for observing the internal structure of the ceramic of the present embodiment, it is possible to sufficiently examine the relation of each operation, and the entire ceramic process chain can be optimized.
[事例6]
 結晶質セラミックスの特性向上と新機能発現のための1つの手法としては、結晶を配向させることによる異方性の利用が挙げられる。結晶配向材料の生成方法としては、粒子の幾何学形状を利用したシート成形等による力学的手法、および、粒子の磁気異方性を利用して超伝導磁石により粒子を磁場配向させる方法等が報告されている。力学的手法は、セラミックスの外形に対して配向できる方向が限定されるという課題があった。粒子を磁場配向させる方法は、磁場により粒子を配向させる方向を制御できる。しかし、この方法は、一般的な反磁性磁化率の絶対値が小さいセラミックス粉体を配向させるためには、超伝導磁石が必須である。また、この方法は、場合によっては、微粒子に対して、磁場を回転させながら印加する必要があるという課題があった。これに対し、磁気トルクを担う粒子として異方的巨大反磁性を有するグラフェンを母体微粒子に複合化して、粉体に磁化率異方性を付与することが考えられる。これにより、低磁場かつ静磁場にて微粒子に効果的に磁気トルクを与えて配向セラミックスを生成する。
[Case 6]
One technique for improving the characteristics of crystalline ceramics and developing new functions is to use anisotropy by orienting crystals. Reported methods for generating crystallographic orientation materials include mechanical methods such as sheet molding that uses particle geometry, and methods for magnetically orienting particles with a superconducting magnet using the magnetic anisotropy of particles. Has been. The mechanical method has a problem in that the direction in which orientation can be performed with respect to the outer shape of the ceramic is limited. The method of orienting particles in a magnetic field can control the direction in which the particles are orientated by a magnetic field. However, this method requires a superconducting magnet in order to orient a ceramic powder having a small absolute value of a general diamagnetic susceptibility. In addition, this method has a problem that it may be necessary to apply the magnetic field to the fine particles while rotating the magnetic field. On the other hand, it is conceivable that graphene having anisotropic giant diamagnetism as particles bearing magnetic torque is combined with host fine particles to impart magnetic anisotropy to the powder. Thus, oriented ceramics are produced by effectively applying magnetic torque to fine particles in a low magnetic field and a static magnetic field.
 機械的手法で調製した、グラフェンで被覆された窒化ケイ素(Si)粒子は、ネオジム磁石程度の低磁場かつ静磁場で配向させることが可能である。以下、グラフェンで被覆された窒化ケイ素(Si)粒子を、グラフェン被覆粒子とも称する。グラフェン被覆粒子を用いることにより、従来必須であった超伝導磁石を用いることなくC軸配向した窒化ケイ素(Si)セラミックスを生成することができる。
 超伝導磁石を用いない、窒化ケイ素(Si)セラミックスの製造方法を示す。まず、磁場中にて、グラフェン被覆粒子を配向させて成形体を形成する。次いで、グラフェンを酸化して、成形体からグラフェンを除去する。次いで、グラフェンを除去した成形体を高温で焼成し、C軸配向した窒化ケイ素(Si)セラミックスを得る。
Graphene-coated silicon nitride (Si 3 N 4 ) particles prepared by a mechanical method can be oriented in a low magnetic field as high as a neodymium magnet and in a static magnetic field. Hereinafter, the silicon nitride (Si 3 N 4 ) particles coated with graphene are also referred to as graphene-coated particles. By using the graphene-coated particles, C-axis-oriented silicon nitride (Si 3 N 4 ) ceramics can be generated without using a superconducting magnet that has been essential in the past.
A method for producing silicon nitride (Si 3 N 4 ) ceramics without using a superconducting magnet will be described. First, a graphene-coated particle is oriented in a magnetic field to form a compact. Next, the graphene is oxidized to remove the graphene from the molded body. Next, the compact from which graphene has been removed is fired at a high temperature to obtain C-axis oriented silicon nitride (Si 3 N 4 ) ceramics.
 この製造プロセスは、窒化ケイ素(Si)セラミックスに限らず多くのセラミックスに適用可能であり、大量生産にも展開できる。また、このようなセラミックスの製造技術は、セラミックスの本質的な特性を発揮することを可能とする重要な微構造の制御法である。このセラミックスの製造技術を他の材料系に展開していくためには、グラフェン被覆粒子の適切な分散やスラリーの低粘度化、および、焼結収縮の異方性の解明と制御等、それぞれの操作を高度化する必要がある。加えて、セラミックスプロセスチェーン全体を最適化する必要がある。しかしながら、現在、これらの知見が十分に得られているとは言い難く、さらなる検討が必要である。 This manufacturing process is applicable not only to silicon nitride (Si 3 N 4 ) ceramics but also to many ceramics, and can be applied to mass production. In addition, such a ceramic manufacturing technique is an important microstructure control method that enables the essential characteristics of ceramics to be exhibited. In order to expand this ceramic manufacturing technology to other material systems, appropriate dispersion of graphene coated particles, low viscosity of slurry, and elucidation and control of anisotropy of sintering shrinkage, etc. It is necessary to improve the operation. In addition, the entire ceramic process chain needs to be optimized. However, at present, it is difficult to say that these findings are sufficiently obtained, and further study is necessary.
 本実施形態のセラミックスの内部構造観察方法によれば、スラリー中におけるグラフェン被覆粒子の分散状態や、成形体を焼結する際の収縮の異方性をリアルタイムに三次元的に観察することができる。ゆえに、本実施形態のセラミックスの内部構造観察方法によれば、グラフェン被覆粒子の適切な分散やスラリーの低粘度化、焼結収縮の異方性の解明と制御等を可能とするとともに、それぞれの操作を高度化し、セラミックスプロセスチェーン全体を最適化することができる。 According to the ceramic internal structure observation method of the present embodiment, the dispersion state of the graphene-coated particles in the slurry and the shrinkage anisotropy when the molded body is sintered can be observed in three dimensions in real time. . Therefore, according to the method for observing the internal structure of the ceramic according to the present embodiment, it is possible to appropriately disperse the graphene-coated particles, lower the viscosity of the slurry, and elucidate and control the anisotropy of the sintering shrinkage. The operation can be advanced and the entire ceramic process chain can be optimized.
[事例7]
 セラミックスの焼結に伴う収縮は、場合によっては、セラミックスの割れや変形を引き起こす。そのため、均質なセラミックスを生成するためには、セラミックスの焼結に伴う収縮挙動を評価すること、および、その収縮挙動を制御することが必要である。これまでに、古典的な焼結理論を拡張させたマスターシンタリングカーブ(MSC)理論が提案されている。ここで、各種セラミックスの焼結収縮曲線のその場測定を行ない、これにMSC理論を適用して解析するとともに、得られたMSCを用いて、セラミックスの焼結収縮を制御することが考えられる。さらに、本発明者等は、新規に液相焼結に関するマスターシンタリングカーブ理論を提案し、窒化ケイ素(Si)セラミックスの焼結収縮挙動の解析に適用することが考えられる。
[Case 7]
The shrinkage accompanying the sintering of ceramics may cause cracking or deformation of the ceramics in some cases. Therefore, in order to produce a homogeneous ceramic, it is necessary to evaluate the shrinkage behavior associated with the sintering of the ceramic and to control the shrinkage behavior. So far, master sintering curve (MSC) theory, which is an extension of classical sintering theory, has been proposed. Here, it is conceivable to perform in-situ measurement of the sintering shrinkage curves of various ceramics, apply the MSC theory to the analysis, and control the sintering shrinkage of the ceramics using the obtained MSC. Furthermore, the present inventors can newly propose a master sintering curve theory relating to liquid phase sintering and apply it to the analysis of the sintering shrinkage behavior of silicon nitride (Si 3 N 4 ) ceramics.
 しかしながら、MSCと成形体の構造との関係は明らかとなっておらず、焼結収縮挙動の制御を成形体の構造形成にフィードバックできていない。また、従来のMSC理論は、外部応力印加時には原理的に適用不可能であるため、有限要素解析に導入して複雑形状の焼結収縮挙動をシミュレーションすることができず、さらなる展開が必要であった。 However, the relationship between the MSC and the structure of the molded body is not clear, and the control of the sintering shrinkage behavior cannot be fed back to the formation of the structure of the molded body. In addition, since the conventional MSC theory cannot be applied in principle when external stress is applied, it cannot be introduced into finite element analysis to simulate the sintering shrinkage behavior of complex shapes, and further development is necessary. It was.
 本実施形態のセラミックスの内部構造観察方法によれば、焼結中の成形体の構造変化をリアルタイムに三次元的に観察することができる。ゆえに、本実施形態のセラミックスの内部構造観察方法によれば、MSCと焼結中の成形体の構造変化との関係を明らかにし、セラミックスの焼結収縮挙動の制御を成形体の構造形成にフィードバックすることができる。 According to the method for observing the internal structure of the ceramic according to the present embodiment, the structural change of the formed body during sintering can be observed in three dimensions in real time. Therefore, according to the method for observing the internal structure of the ceramic of this embodiment, the relationship between the MSC and the structural change of the compact during sintering is clarified, and the control of the sintering shrinkage behavior of the ceramic is fed back to the structure formation of the compact. can do.
[セラミックスの製造方法]
 本実施形態のセラミックスの製造方法は、光干渉断層撮影を用いたセラミックスの製造方法であって、セラミックスの原料物質である無機化合物を含むスラリー、または無機化合物の顆粒を調製する調製工程と、無機化合物を含むスラリーまたは顆粒を成形して成形体とする成形工程と、成形体を焼結する焼結工程と、赤外線領域の光を参照光と照射光に分割し、調製工程におけるスラリーもしくは顆粒、成形工程における成形体または焼結工程における焼結体のいずれかに、照射光を照射し、反射させた参照光と、スラリー、顆粒、成形体または焼結体に照射光を照射して得られた戻り光との干渉を観察することにより、スラリー、顆粒、成形体または焼結体の内部構造を観察する観察工程とを有する。
[Ceramics manufacturing method]
The ceramic manufacturing method of this embodiment is a ceramic manufacturing method using optical coherence tomography, and includes a preparation step of preparing a slurry containing an inorganic compound that is a ceramic raw material, or a granule of an inorganic compound, and an inorganic compound. A molding step that forms a slurry or granule containing a compound into a molded body, a sintering step that sinters the molded body, and the light in the infrared region is divided into reference light and irradiation light, and the slurry or granule in the preparation step, It is obtained by irradiating irradiated light to either the molded body in the molding process or the sintered body in the sintering process, and reflecting the reflected reference light and the slurry, granules, molded body or sintered body. An observation step of observing the internal structure of the slurry, granule, molded body or sintered body by observing the interference with the return light.
 調製工程では、上記の溶媒に、上記の無機化合物を分散させて無機化合物を含むスラリーを調製する。また、調製工程では、上記の無機化合物を用いて、噴霧乾燥法等により、無機化合物の顆粒を調製する。
 調製工程では、必要に応じて、分散剤や可塑剤等を用いるようにしてもよい。
In the preparation step, a slurry containing the inorganic compound is prepared by dispersing the inorganic compound in the solvent. In the preparation step, granules of the inorganic compound are prepared by spray drying or the like using the inorganic compound.
In the preparation step, a dispersant, a plasticizer, or the like may be used as necessary.
 成形工程では、調製工程で調製したスラリーを、所定の形状の成形用の型に投入して、所定の形状に成形する。また、成形工程では、調製工程で調製した顆粒を金型に充填して圧縮成形して、所定の形状に成形する。
 焼結工程では、成形工程で成形した成形体を所定の温度で焼結して、無機化合物の焼結体を得る。
In the molding step, the slurry prepared in the preparation step is put into a molding die having a predetermined shape and molded into a predetermined shape. In the molding step, the granules prepared in the preparation step are filled into a mold, compression-molded, and molded into a predetermined shape.
In the sintering process, the molded body molded in the molding process is sintered at a predetermined temperature to obtain a sintered body of an inorganic compound.
 観察工程では、赤外線領域の光を参照光と照射光に分割し、調製工程におけるスラリーもしくは顆粒、成形工程における成形体または焼結工程における焼結体のいずれかに、照射光を照射し、反射させた参照光と、スラリー、顆粒、成形体または焼結体に照射光を照射して得られた戻り光との干渉を観察する。これにより、スラリー、顆粒、成形体または焼結体の内部構造を観察する。
 観察工程における内部構造の観察は、上述のセラミックスの内部構造観察方法と同様に行われる。
In the observation process, the light in the infrared region is divided into reference light and irradiation light, and either the slurry or granule in the preparation process, the molded body in the molding process or the sintered body in the sintering process is irradiated with the irradiation light and reflected. The interference between the reflected reference light and the return light obtained by irradiating the slurry, granules, molded body or sintered body with irradiation light is observed. Thereby, the internal structure of a slurry, a granule, a molded object, or a sintered compact is observed.
Observation of the internal structure in the observation step is performed in the same manner as the above-described ceramic internal structure observation method.
 本実施形態のセラミックスの製造方法によれば、観察工程を有することにより、その観察結果を成形工程における成形条件や、焼結工程における焼結条件にフィードバックすることができる。これにより、緻密かつ均質なセラミックスを効率的に製造することができる。その結果、セラミックスの製造において、歩留りの向上、低コスト化、高信頼性化等を実現することができる。 According to the ceramic manufacturing method of the present embodiment, by having an observation step, the observation result can be fed back to the molding conditions in the molding step and the sintering conditions in the sintering step. Thereby, dense and homogeneous ceramics can be produced efficiently. As a result, in the production of ceramics, it is possible to realize improvement in yield, cost reduction, high reliability, and the like.
 本実施形態のセラミックスの製造方法では、観察工程におけるスラリーもしくは顆粒、または成形体の内部構造の観察結果に応じて、成形工程における成形条件または焼結工程における焼結条件を制御するようにしてもよい。すなわち、観察工程におけるスラリーまたは顆粒の観察結果に応じて、成形工程における成形条件を制御することや、観察工程における成形体の内部構造の観察結果に応じて、焼結工程における焼結条件を制御するようにしてもよい。
 これにより、本実施形態のセラミックスの製造方法において、成形工程における成形条件や、焼結工程における焼結条件を最適化することができる。
In the ceramic manufacturing method of the present embodiment, the molding conditions in the molding process or the sintering conditions in the sintering process may be controlled according to the observation result of the slurry or granules in the observation process or the internal structure of the molded body. Good. That is, the molding conditions in the molding process are controlled according to the observation results of the slurry or granules in the observation process, and the sintering conditions in the sintering process are controlled according to the observation results of the internal structure of the molded body in the observation process. You may make it do.
Thereby, in the manufacturing method of the ceramics of this embodiment, the molding conditions in the molding process and the sintering conditions in the sintering process can be optimized.
[セラミックスの製造システム]
 本実施形態のセラミックスの製造システムは、調製装置、成形装置および焼結装置からなる群から選択される少なくとも1種と、光干渉断層撮影装置と、を備える。光干渉断層撮影装置は、セラミックスの原料物質である無機化合物を含むスラリーもしくは無機化合物の顆粒、スラリーもしくは顆粒の成形体または成形体を焼結した焼結体のいずれかに、赤外線領域の光を照射する光源と、スラリー、顆粒、成形体または焼結体に照射した光の戻り光と、参照光との干渉を観測する検出器とを有する。成形装置は、検出器で観測された結果に応じて、スラリーまたは顆粒の成形条件を制御する制御部を有する。焼結装置は、検出器で観測された結果に応じて、成形体の焼結条件を制御する制御部を有する。
[Ceramics manufacturing system]
The ceramic manufacturing system of this embodiment includes at least one selected from the group consisting of a preparation device, a molding device, and a sintering device, and an optical coherence tomography apparatus. The optical coherence tomography apparatus applies light in the infrared region to either a slurry containing an inorganic compound that is a ceramic raw material or a granule of an inorganic compound, a molded body of a slurry or a granule, or a sintered body obtained by sintering a molded body. A light source for irradiation, and a detector for observing interference between the return light of the light irradiated on the slurry, granule, molded body or sintered body and the reference light. The molding apparatus has a control unit that controls the molding conditions of the slurry or granules according to the result observed by the detector. The sintering apparatus has a control unit that controls the sintering conditions of the compact according to the result observed by the detector.
 光干渉断層撮影装置としては、上述のセラミックスの内部構造観察方法で用いられるものと同様のものが挙げられる。
 調製装置は、上記の溶媒に、上記の無機化合物を分散させて無機化合物を含むスラリーを調製する。調製装置として、例えば一般的にスラリーの調製に用いられる装置を用いることができる。また、調製装置は、上記の無機化合物を顆粒にする。調製装置として、例えば、上記の無機化合物を噴霧乾燥法により顆粒にすることができる装置が用いられる。
Examples of the optical coherence tomography apparatus include those similar to those used in the above-described ceramic internal structure observation method.
The preparation device prepares a slurry containing the inorganic compound by dispersing the inorganic compound in the solvent. As the preparation apparatus, for example, an apparatus generally used for preparing a slurry can be used. Moreover, the preparation device makes the inorganic compound into granules. As the preparation device, for example, a device capable of granulating the inorganic compound by a spray drying method is used.
 成形装置としては、スラリーまたは顆粒を型に投入して所定の形状の成形体に成形することができる成形型を備えたものであればよく、特定のもの限定されない。成形装置として、例えば、一般的にスラリーを用いた湿式成形、または、顆粒を用いた乾式成形に用いられる装置を用いることができる。
 焼結装置は、上記の成形体を焼結する焼結炉を備えたものであればよく、特定のものに限定されない。焼結装置として、一般的にスラリーまたは顆粒からなる成形体の焼結に用いられる装置を用いることができる。
The molding apparatus is not limited to a specific one as long as it has a molding die capable of charging slurry or granules into the mold and molding the slurry into a predetermined shape. As the molding apparatus, for example, an apparatus generally used for wet molding using a slurry or dry molding using granules can be used.
The sintering apparatus is not limited to a specific one as long as it includes a sintering furnace for sintering the molded body. As a sintering apparatus, an apparatus generally used for sintering a molded body made of slurry or granules can be used.
 本実施形態のセラミックスの製造システムによれば、成形装置が、光干渉断層撮影装置の検出器で観測された結果に応じて、スラリーまたは顆粒の成形条件を制御する制御部を有するため、より緻密かつ均質な成形体を成形することができる。また、本実施形態のセラミックスの製造システムによれば、焼結装置が、光干渉断層撮影装置の検出器で観測された結果に応じて、成形体の焼結条件を制御する制御部を有するため、より反りや割れが低減された焼結体を得ることができる。すなわち、本実施形態のセラミックスの製造システムによれば、セラミックスの製造において、歩留りの向上、低コスト化、高信頼性化等を実現することができる。 According to the ceramic manufacturing system of the present embodiment, the molding apparatus has a control unit that controls the molding conditions of the slurry or granule according to the result observed by the detector of the optical coherence tomography apparatus, so that it is more precise. A homogeneous molded body can be molded. In addition, according to the ceramic manufacturing system of the present embodiment, the sintering apparatus has a control unit that controls the sintering conditions of the compact according to the result observed by the detector of the optical coherence tomography apparatus. Thus, it is possible to obtain a sintered body in which warpage and cracking are further reduced. That is, according to the ceramic manufacturing system of the present embodiment, it is possible to achieve an improvement in yield, cost reduction, high reliability, and the like in ceramic manufacturing.
 以下、実験例により本発明をさらに具体的に説明するが、本発明は以下の実験例に限定されるものではない。
[実験例1]
 水に、酸化アルミニウム(Al)を分散したアルミナスラリーを調製した。なお、アルミナスラリーとしては、分散剤のポリカルボン酸アンモニウムを添加したものと、分散剤を添加していないものとを調製した。
 このアルミナスラリーに、図1に示したものと同様の光干渉断層撮影(OCT)装置を用いて、中心波長930nmの光を照射し、アルミナスラリーの内部構造を観察した。光干渉断層装置として、商品名:GAN930V2-BU、ソーラボジャパン社製を用いた。
Hereinafter, the present invention will be described more specifically with experimental examples, but the present invention is not limited to the following experimental examples.
[Experimental Example 1]
An alumina slurry in which aluminum oxide (Al 2 O 3 ) was dispersed in water was prepared. In addition, as an alumina slurry, what added the ammonium polycarboxylate of a dispersing agent, and the thing which did not add a dispersing agent were prepared.
The alumina slurry was irradiated with light having a central wavelength of 930 nm using an optical coherence tomography (OCT) apparatus similar to that shown in FIG. 1, and the internal structure of the alumina slurry was observed. A product name: GAN930V2-BU, manufactured by Sorabo Japan Co., Ltd. was used as the optical coherence tomography apparatus.
 結果を図2および図3に示す。図2は、分散剤無添加のアルミナスラリーの光干渉断層撮影像である。図3は、分散剤を添加したアルミナスラリーの光干渉断層撮影像である。
 光干渉断層撮影装置では、光の干渉を利用して像を得ているため、より強く光が散乱した領域でコントラストが大きくなる。
 図2の結果から、分散剤無添加のアルミナスラリーでは、数十μm程度の構造が現れていることが確認された。一方、図3の結果から、分散剤を添加したアルミナスラリーでは、分散剤無添加のアルミナスラリーのような構造が現われていないことが確認された。
The results are shown in FIG. 2 and FIG. FIG. 2 is an optical coherence tomography image of an alumina slurry with no dispersant added. FIG. 3 is an optical coherence tomography image of an alumina slurry to which a dispersant is added.
In the optical coherence tomography apparatus, since an image is obtained by utilizing light interference, the contrast increases in a region where light is more strongly scattered.
From the result of FIG. 2, it was confirmed that a structure of about several tens of μm appeared in the alumina slurry without addition of a dispersant. On the other hand, from the results of FIG. 3, it was confirmed that the alumina slurry to which the dispersant was added did not show a structure like the alumina slurry without the dispersant.
 また、従来の静的な構造観察では分からないが、光干渉断層撮影装置による動的な構造観察によって、以下のようなことが明らかとなった。
 分散剤無添加のアルミナスラリーの内部構造は、時間の経過に伴って、比較的ゆっくりと数百μm程度のスケールで変化していた。
一方、分散剤を添加したアルミナスラリーの内部構造は、酸化アルミニウム微粒子のブラウン運動に起因すると思われる速い構造の揺らぎが観察された。また、分散剤を添加したアルミナスラリーは、その表面から乾燥に伴うと思われる構造の変化も確認された。
Moreover, although it is not known by conventional static structure observation, the following has been clarified by dynamic structure observation by an optical coherence tomography apparatus.
The internal structure of the alumina slurry to which no dispersant was added changed relatively slowly on a scale of about several hundred μm over time.
On the other hand, as for the internal structure of the alumina slurry to which the dispersant was added, fast structure fluctuations that were attributed to the Brownian motion of the aluminum oxide fine particles were observed. In addition, the alumina slurry to which the dispersant was added was also confirmed to have a structural change that seems to accompany drying from the surface.
[実験例2]
 トルエンに、窒化ケイ素(Si)を分散した窒化ケイ素スラリーを調製した。なお、窒化ケイ素スラリーには、分散剤としてポリエレンイミンとオレイン酸の会合体を添加した。
 この窒化ケイ素スラリーに、図1に示したものと同様の光干渉断層撮影(OCT)装置を用いて、中心波長1310nmの光を照射し、窒化ケイ素スラリーの内部構造を観察した。光干渉断層撮影装置として、商品名:IVS-2000、santec社製を用いた。
[Experiment 2]
A silicon nitride slurry in which silicon nitride (Si 3 N 4 ) was dispersed in toluene was prepared. The silicon nitride slurry was added with an aggregate of polyethyleneimine and oleic acid as a dispersant.
The silicon nitride slurry was irradiated with light having a center wavelength of 1310 nm using an optical coherence tomography (OCT) apparatus similar to that shown in FIG. 1, and the internal structure of the silicon nitride slurry was observed. As an optical coherence tomography apparatus, trade name: IVS-2000, manufactured by santec was used.
 結果を図4から図6に示す。図4は、窒化ケイ素スラリーの光干渉断層撮影像であり、窒化ケイ素スラリー(流動層)を示す図である。図5は、窒化ケイ素スラリーの光干渉断層撮影像であり、窒化ケイ素スラリーを滴下したスライドガラスと、窒化ケイ素スラリー(流動層)とを示し、乾燥途中の窒化ケイ素スラリーを示す図である。図6は、窒化ケイ素スラリーの光干渉断層撮影像であり、窒化ケイ素スラリーを滴下したスライドガラスと、窒化ケイ素スラリー(流動層)とを示し、乾燥後の窒化ケイ素スラリーを示す図である。 The results are shown in FIGS. FIG. 4 is an optical coherence tomography image of a silicon nitride slurry, showing a silicon nitride slurry (fluidized bed). FIG. 5 is an optical coherence tomography image of a silicon nitride slurry, showing a slide glass onto which silicon nitride slurry has been dropped, and a silicon nitride slurry (fluidized bed), and showing the silicon nitride slurry being dried. FIG. 6 is an optical coherence tomographic image of a silicon nitride slurry, showing a slide glass onto which silicon nitride slurry has been dropped and a silicon nitride slurry (fluidized bed), and showing the silicon nitride slurry after drying.
 図5の結果から、乾燥途中の窒化ケイ素スラリーでは光が散乱するため、スライドガラスと窒化ケイ素スラリーの界面が明確に確認された。
 分散剤を添加した窒化ケイ素スラリーの内部構造は、窒化ケイ素微粒子のブラウン運動に起因すると思われる速い構造の揺らぎが観察された。また、分散剤を添加した窒化ケイ素スラリーは、その表面から乾燥に伴うと思われる構造の変化も確認された。
From the result of FIG. 5, since light is scattered in the silicon nitride slurry in the middle of drying, the interface between the slide glass and the silicon nitride slurry was clearly confirmed.
As for the internal structure of the silicon nitride slurry to which the dispersing agent was added, a rapid fluctuation of the structure, which was probably caused by the Brownian motion of the silicon nitride fine particles, was observed. In addition, it was confirmed that the silicon nitride slurry to which the dispersant was added had a structural change that seems to be caused by drying from the surface.
[実験例3]
 市販の酸化アルミニウム顆粒(商品名:AKS-20、住友化学社製)を用いて乾式成形により成形体を得た。
 得られた成形体に、図1に示したものと同様の光干渉断層撮影(OCT)装置(商品名:IVS-2000、santec社製)を用いて、中心波長1310nmの光を照射し、成形体の内部構造を観察した。
 結果を図7に示す。図7は、成形体の光干渉断層撮影像である。図7において、酸化アルミニウム顆粒に相当する寸法の構造が観察された。
[Experiment 3]
A molded product was obtained by dry molding using commercially available aluminum oxide granules (trade name: AKS-20, manufactured by Sumitomo Chemical Co., Ltd.).
The obtained molded body was irradiated with light having a central wavelength of 1310 nm using an optical coherence tomography (OCT) apparatus (trade name: IVS-2000, manufactured by Santec) similar to that shown in FIG. The internal structure of the body was observed.
The results are shown in FIG. FIG. 7 is an optical coherence tomography image of the molded body. In FIG. 7, a structure with dimensions corresponding to aluminum oxide granules was observed.
[実験例4]
 実験例3における顆粒を透明な成形型に投入して、加圧しながら内部構造を観察した。
 図1に示したものと同様の光干渉断層撮影(OCT)装置を用いて、波長1310nmの光を照射し、内部構造を観察した。光干渉断層撮影装置として、商品名:IVS-2000、santec社製を用いた。
 結果を図8に示す。図8は、酸化アルミニウム顆粒の光干渉断層撮影像である。
 実験例4では、顆粒が変形しながら顆粒間の隙間が減少し、成形されていく様子がリアルタイムで観察された。
[Experimental Example 4]
The granules in Experimental Example 3 were put into a transparent mold and the internal structure was observed while applying pressure.
Using an optical coherence tomography (OCT) apparatus similar to that shown in FIG. 1, light having a wavelength of 1310 nm was irradiated to observe the internal structure. As an optical coherence tomography apparatus, trade name: IVS-2000, manufactured by santec was used.
The results are shown in FIG. FIG. 8 is an optical coherence tomography image of aluminum oxide granules.
In Experimental Example 4, it was observed in real time that the granule was deformed and the gap between the granules decreased and was formed.
[実験例5]
 実験例3で生成した酸化アルミニウムの成形体を、1400℃にて2時間焼成し、焼結体を生成した。
 得られた焼結体に、図1に示したものと同様の光干渉断層撮影(OCT)装置を用いて、中心波長1310nmの光を照射し、焼結体の内部構造を観察した。光干渉断層撮影装置として、商品名:IVS-2000、santec社製を用いた。実験例5では、波長可変光源を用いて、焼結体の内部構造を厚み方向に沿って順に観察した。
[Experimental Example 5]
The aluminum oxide molded body produced in Experimental Example 3 was fired at 1400 ° C. for 2 hours to produce a sintered body.
The obtained sintered body was irradiated with light having a central wavelength of 1310 nm using an optical coherence tomography (OCT) apparatus similar to that shown in FIG. 1, and the internal structure of the sintered body was observed. As an optical coherence tomography apparatus, trade name: IVS-2000, manufactured by santec was used. In Experimental Example 5, the internal structure of the sintered body was observed in order along the thickness direction using a wavelength variable light source.
 結果を図9から図23に示す。図9から図23は、それぞれ、焼結体の光干渉断層撮影像である。図9から図23は、光源に近い側から順に、焼結体の内部構造を厚み方向に沿って観察した結果を示す。
 図9から図23の結果から、焼結体はおおむね均質であった。また、図9から図23において、いくつかのコントラストが大きい領域が観察された。この領域は、光干渉断層撮影で得られる像の性質を考えると、緻密化が不十分な領域に相当すると思われる。
The results are shown in FIGS. 9 to 23 are optical coherence tomography images of the sintered bodies, respectively. 9 to 23 show results of observing the internal structure of the sintered body along the thickness direction in order from the side closer to the light source.
From the results of FIGS. 9 to 23, the sintered body was almost homogeneous. Further, in FIGS. 9 to 23, several regions having a large contrast were observed. This region seems to correspond to a region that is not sufficiently densified in view of the properties of the image obtained by optical coherence tomography.
[解析システムおよび解析方法]
 次に、本実施形態に係る解析システムおよび解析方法について説明する。
 図24は、本実施形態に係る解析システムの機能構成の例を示す概略ブロック図である。図24に示す構成で、解析システム1は、光干渉断層撮影装置10と、解析装置20と、学習装置30とを備える。解析装置20は、第1通信部210と、第1記憶部280と、第1制御部290とを備える。第1制御部290は、断層画像生成部291と、解析処理部292と、スペックルノイズ除去処理部293と、不均一状態検出部294とを備える。学習装置30は、第2通信部310と、第2記憶部380と、第2制御部390とを備える。第2記憶部380は、学習用データ記憶部381を備える。第2制御部390は、学習用データ取得部391と、機械学習部392とを備える。
 図24における光干渉断層撮影装置10は、図1における光干渉断層撮影装置10と同様であり、同一の符号(10)を付して説明を省略する。
[Analysis system and analysis method]
Next, an analysis system and an analysis method according to this embodiment will be described.
FIG. 24 is a schematic block diagram illustrating an example of a functional configuration of the analysis system according to the present embodiment. With the configuration shown in FIG. 24, the analysis system 1 includes an optical coherence tomography apparatus 10, an analysis apparatus 20, and a learning apparatus 30. The analysis device 20 includes a first communication unit 210, a first storage unit 280, and a first control unit 290. The first control unit 290 includes a tomographic image generation unit 291, an analysis processing unit 292, a speckle noise removal processing unit 293, and a non-uniform state detection unit 294. The learning device 30 includes a second communication unit 310, a second storage unit 380, and a second control unit 390. The second storage unit 380 includes a learning data storage unit 381. The second control unit 390 includes a learning data acquisition unit 391 and a machine learning unit 392.
The optical coherence tomography apparatus 10 in FIG. 24 is the same as the optical coherence tomography apparatus 10 in FIG. 1, and is denoted by the same reference numeral (10) and description thereof is omitted.
 解析システム1は、セラミックスである試料100を解析する。特に、解析システム1は、試料100の断層画像を取得し、断層画像内における輝度に基づいて、試料100の状態を解析する。
 解析装置20は、光干渉断層撮影装置10による試料100の測定結果に基づいて試料100の断層画像を生成し、得られた断層画像を用いて試料100の状態を解析する。
 解析装置20は、例えばパソコン(Personal Computer;PC)またはワークステーション(Workstation)等のコンピュータを用いて構成される。
The analysis system 1 analyzes a sample 100 that is ceramic. In particular, the analysis system 1 acquires a tomographic image of the sample 100 and analyzes the state of the sample 100 based on the luminance in the tomographic image.
The analysis device 20 generates a tomographic image of the sample 100 based on the measurement result of the sample 100 by the optical coherence tomography apparatus 10, and analyzes the state of the sample 100 using the obtained tomographic image.
The analysis device 20 is configured using a computer such as a personal computer (PC) or a workstation.
 第1通信部210は、他の装置と通信を行う。特に、第1通信部210は、光干渉断層撮影装置10と通信を行って、光干渉断層撮影装置10による試料100の測定結果を受信する。また、第1通信部210は、学習装置30の第2通信部310と通信を行って、学習装置30によるスペックルノイズ(Speckle Noise)除去処理の学習結果を学習装置30から受信する。さらに、第1通信部210は、学習装置30の第2通信部310と通信を行って、試料100の断層画像を学習装置30へ送信する。 The first communication unit 210 communicates with other devices. In particular, the first communication unit 210 communicates with the optical coherence tomography apparatus 10 and receives the measurement result of the sample 100 by the optical coherence tomography apparatus 10. In addition, the first communication unit 210 communicates with the second communication unit 310 of the learning device 30 and receives a learning result of speckle noise (Speckle Noise) removal processing by the learning device 30 from the learning device 30. Further, the first communication unit 210 communicates with the second communication unit 310 of the learning device 30 to transmit a tomographic image of the sample 100 to the learning device 30.
 第1記憶部280は、各種データを記憶する。第1記憶部280は、解析装置20が備える記憶デバイスを用いて構成される。
 第1制御部290は、解析装置20の各部を制御して各種処理を行う。第1制御部290は、解析装置20が備えるCPU(Central Processing Unit、中央処理装置)が、第1記憶部280からプログラムを読み出して実行することで構成される。
The first storage unit 280 stores various data. The first storage unit 280 is configured using a storage device provided in the analysis apparatus 20.
The first control unit 290 controls each unit of the analysis device 20 and performs various processes. The first control unit 290 is configured by a CPU (Central Processing Unit) included in the analysis apparatus 20 reading out and executing a program from the first storage unit 280.
 断層画像生成部291は、光干渉断層撮影装置10による光干渉断層撮影にてセラミックスの製造過程における物性状態それぞれの断層画像を生成する。具体的には、断層画像生成部291は、光干渉断層撮影装置10による試料100の測定結果に基づいて試料100の断層画像を生成する。断層画像生成部291が断層画像を生成する方法として、光干渉断層撮影における公知の断層画像生成方法を用いることができる。 The tomographic image generation unit 291 generates a tomographic image of each physical property state in the ceramic manufacturing process by optical coherence tomography by the optical coherence tomography apparatus 10. Specifically, the tomographic image generation unit 291 generates a tomographic image of the sample 100 based on the measurement result of the sample 100 by the optical coherence tomography apparatus 10. As a method for generating a tomographic image by the tomographic image generating unit 291, a known tomographic image generating method in optical coherence tomography can be used.
 断層画像生成部291が生成する断層画像の向きは特定の向きに限定されない。例えば、光干渉断層撮影装置10が試料100を3次元的にスキャンし、断層画像生成部291が試料100の3次元画像を生成するようにしてもよい。これにより、断層画像生成部291は、試料100のスキャン範囲内における任意の位置および任意の向きの断層画像を生成することができる。 The direction of the tomographic image generated by the tomographic image generation unit 291 is not limited to a specific direction. For example, the optical coherence tomography apparatus 10 may scan the sample 100 three-dimensionally, and the tomographic image generation unit 291 may generate a three-dimensional image of the sample 100. Thereby, the tomographic image generation unit 291 can generate a tomographic image at an arbitrary position and an arbitrary direction within the scan range of the sample 100.
 図25は、セラミックスである試料100の物性状態の分類例を示す図である。図25の例では、セラミックスの物性状態が原料状態、スラリー状態、乾燥状態、成形状態および焼結状態に分類されている。
 原料状態は、セラミックスの原料粉体と溶媒とを混ぜ合せる前の状態である。
 セラミックスの原料紛体と溶媒とを混ぜ合わせることで、スラリーを得られる。スラリー状態は、セラミックスがスラリーの状態である。
FIG. 25 is a diagram illustrating a classification example of the physical property state of the sample 100 which is ceramic. In the example of FIG. 25, the physical properties of ceramics are classified into a raw material state, a slurry state, a dry state, a molded state, and a sintered state.
The raw material state is a state before the ceramic raw material powder and the solvent are mixed.
A slurry can be obtained by mixing a ceramic raw material powder and a solvent. The slurry state is a state in which ceramics are in a slurry state.
 スラリーを乾燥させることで、乾燥体を得られる。乾燥状態は、セラミックスが乾燥体の状態である。
 乾燥体を成形することで成形体を得られる。成形状態は、セラミックスが成形体の状態である。
 成形体を焼結することで焼結体を得られる。焼結状態は、セラミックスが焼結体の状態である。
A dried product can be obtained by drying the slurry. The dry state is a state in which the ceramic is a dry body.
A molded body can be obtained by molding the dried body. The molded state is a state in which the ceramic is a molded body.
A sintered body can be obtained by sintering the molded body. The sintered state is a state in which the ceramic is a sintered body.
 断層画像生成部291は、セラミックスである試料100の物性状態のうち何れか1つ以上について試料100の断層画像を生成する。特に、断層画像生成部291が、上記の物性状態の全部について試料100の断層画像を生成するなど、試料100の物性状態のうち何れか複数それぞれについて試料100の断層画像を生成するようにしてもよい。解析装置20が、試料100の複数の物性状態それぞれについて試料100の断層画像を解析することで、試料100における光学的不均一状態の有無を判定できるだけでなく、どの物性状態で光学的不均一状態が生じたかについて情報を得られる。 The tomographic image generation unit 291 generates a tomographic image of the sample 100 for any one or more of the physical properties of the sample 100 that are ceramics. In particular, the tomographic image generation unit 291 may generate a tomographic image of the sample 100 for each of a plurality of physical properties of the sample 100, such as generating a tomographic image of the sample 100 for all of the above physical properties. Good. By analyzing the tomographic image of the sample 100 for each of a plurality of physical property states of the sample 100, the analysis apparatus 20 can not only determine the presence or absence of an optical non-uniform state in the sample 100, but also in which physical property state the optical non-uniform state You can get information about what happened.
 解析処理部292は、断層画像生成部291が生成した試料100の断層画像を用いて、試料100における光学的不均一状態を検出する。ここでいう試料100における光学的不均一状態は、光の反射の状況が、試料100全体における傾向と異なる状態である。試料100の断層画像では、光学的不均一状態は、輝度の違いとして示される。以下では、断層画像内で輝度が断層画像全体における傾向と異なる部分を、断層画像における光学的不均一部分と称する。
 上記のように、断層画像生成部291が試料100の複数の物性状態のそれぞれにおける試料100の断層画像を生成し、解析処理部292が、それらの断層画像を用いて、いずれの物性状態において光学的不均一状態が生じているかの解析処理を行うようにしてもよい。
The analysis processing unit 292 detects an optical non-uniform state in the sample 100 using the tomographic image of the sample 100 generated by the tomographic image generation unit 291. The optical non-uniform state in the sample 100 here is a state in which the state of light reflection is different from the tendency in the entire sample 100. In the tomographic image of the sample 100, the optical non-uniform state is shown as a difference in luminance. Hereinafter, a portion of the tomographic image whose luminance is different from the tendency in the entire tomographic image is referred to as an optically non-uniform portion in the tomographic image.
As described above, the tomographic image generation unit 291 generates a tomographic image of the sample 100 in each of the plurality of physical property states of the sample 100, and the analysis processing unit 292 uses these tomographic images to perform optical in any physical property state. You may make it perform the analysis process about whether the target nonuniform state has arisen.
 スペックルノイズ除去処理部293は、試料100の断層画像におけるノイズを除去する。特に、スペックルノイズ除去処理部293は、試料100の断層画像におけるスペックルノイズを除去する。セラミックスの断層画像の場合、スペックルノイズは、セラミックスの物性状態を構成する微粒子に起因して生じる。
 スペックルノイズ除去処理部293は、学習装置30が機械学習にて取得するスペックルノイズ除去方法に従って、断層画像に適用するスペックルノイズの除去方法を決定し、決定した方法を実行する。
The speckle noise removal processing unit 293 removes noise in the tomographic image of the sample 100. In particular, the speckle noise removal processing unit 293 removes speckle noise in the tomographic image of the sample 100. In the case of a tomographic image of ceramics, speckle noise is caused by fine particles constituting the physical state of ceramics.
The speckle noise removal processing unit 293 determines a speckle noise removal method to be applied to the tomographic image according to the speckle noise removal method acquired by the learning device 30 through machine learning, and executes the determined method.
 不均一状態検出部294は、スペックルノイズの除去処理後の試料100の断層画像を用いて、試料100における光学的不均一状態を検出する。不均一状態検出部294は、断層画像内で光学的不均一状態が生じているエリアを検出することに加えて、光学的不均一状態の種類を判定する。具体的には、断層画像で輝度が他と異なるエリアの形状および大きさに基づいて、光学的不均一状態が気孔またはき裂の何れかを判定する。但し、不均一状態検出部294が検出する光学的不均一状態は気孔またはき裂に限定されない。
 不均一状態検出部294が、試料100の複数の物性状態のそれぞれにおけるスペックルノイズの除去処理後の試料100の断層画像を用いて、いずれの物性状態において光学的不均一状態が生じているかの解析処理を行うようにしてもよい。
The non-uniform state detection unit 294 detects an optical non-uniform state in the sample 100 using the tomographic image of the sample 100 after the speckle noise removal process. The non-uniform state detection unit 294 determines the type of the optical non-uniform state in addition to detecting the area where the optical non-uniform state occurs in the tomographic image. Specifically, it is determined whether the optical nonuniformity is a pore or a crack based on the shape and size of an area having a luminance different from that in the tomographic image. However, the optical non-uniform state detected by the non-uniform state detection unit 294 is not limited to pores or cracks.
The non-uniform state detection unit 294 uses the tomographic image of the sample 100 after the speckle noise removal processing in each of the plurality of physical state of the sample 100 to determine in which physical state the optical non-uniform state has occurred. Analysis processing may be performed.
 学習装置30は、断層画像からスペックルノイズを除去する方法を機械学習する。学習装置30は、セラミックスの物性状態毎、かつ、光学的不均一状態の種類毎に、断層画像からスペックルノイズを除去する方法を機械学習する。あるいは後述するように、学習装置30が、セラミックスの物性状態毎、光学的不均一状態の種類毎、かつ、セラミックスを構成する物質の種類毎に、断層画像からスペックルノイズを除去する方法を機械学習するようにしてもよい。
 学習装置30は、例えばパソコン(Personal Computer;PC)またはワークステーション(Workstation)等のコンピュータを用いて構成される。
The learning device 30 performs machine learning on a method for removing speckle noise from a tomographic image. The learning device 30 performs machine learning on a method of removing speckle noise from a tomographic image for each physical property state of ceramics and for each type of optical non-uniform state. Alternatively, as will be described later, the learning device 30 is a machine that removes speckle noise from a tomographic image for each physical property state of ceramics, for each type of optical non-uniform state, and for each type of substance constituting the ceramic. You may make it learn.
The learning device 30 is configured using a computer such as a personal computer (PC) or a workstation.
 第2通信部310は、他の装置と通信を行う。特に、第2通信部310は、解析装置20の第1通信部210と通信を行って、学習装置30によるスペックルノイズ除去処理の学習結果を解析装置20へ送信する。また、第2通信部310は、解析装置20の第1通信部210と通信を行って、試料100の断層画像を解析装置20から受信する。
 第2記憶部380は、各種データを記憶する。第2記憶部380は、学習装置30が備える記憶デバイスを用いて構成される。
The second communication unit 310 communicates with other devices. In particular, the second communication unit 310 communicates with the first communication unit 210 of the analysis device 20 and transmits the learning result of the speckle noise removal processing by the learning device 30 to the analysis device 20. In addition, the second communication unit 310 communicates with the first communication unit 210 of the analysis apparatus 20 and receives a tomographic image of the sample 100 from the analysis apparatus 20.
The second storage unit 380 stores various data. The second storage unit 380 is configured using a storage device provided in the learning device 30.
 学習用データ記憶部381は、学習用データを記憶する。ここでいう学習用データは、学習装置30がスペックルノイズの除去方法を機械学習するためのデータである。
 学習用データ記憶部381は、セラミックスの物性状態毎、かつ、光学的不均一状態の種類毎に、学習用データを記憶する。あるいは、学習用データ記憶部381が、セラミックスの物性状態毎、光学的不均一状態の種類毎、かつ、セラミックスを構成する物質の種類毎に、学習用データを記憶するようにしてもよい。
The learning data storage unit 381 stores learning data. The learning data here is data for the learning device 30 to machine-learn the speckle noise removal method.
The learning data storage unit 381 stores learning data for each physical property state of ceramics and for each type of optical non-uniform state. Alternatively, the learning data storage unit 381 may store learning data for each physical property state of ceramics, for each type of optical non-uniform state, and for each type of substance constituting the ceramic.
 図26は、学習用データの第1例を示す図である。図26は、セラミックスの焼結体における気孔を検出する場合に断層画像に適用するスペックルノイズの除去方法を学習するための学習用データの例を示している。図26では、学習用データが表形式で示されており、1行が1つの学習用データに該当する。学習用データの各々は、識別番号と、原画像と、目標画像とを組み合わせて構成されている。 FIG. 26 is a diagram showing a first example of learning data. FIG. 26 shows an example of learning data for learning a speckle noise removal method applied to a tomographic image when pores in a ceramic sintered body are detected. In FIG. 26, the learning data is shown in a table format, and one row corresponds to one learning data. Each of the learning data is configured by combining an identification number, an original image, and a target image.
 識別番号は、学習用データを識別する番号である。
 原画像としては、セラミックスの物性状態および光学的不均一状態の種類がユーザに既知となっている、スペックルノイズ除去前の断層画像が用いられる。図26では、セラミックスの焼結体における気孔を検出する場合について機械学習を行うためのデータの例を示していることから、気孔が写っている断層画像が原画像として用いられている。
 原画像の背景部分にはスペックルノイズが含まれている。識別番号A1の学習用データの場合、領域A111が背景部分に該当し、領域A112が気孔の部分の画像の領域に該当し、領域A113が気孔と気孔以外の部分との境界部分の画像の領域に該当する。
The identification number is a number for identifying learning data.
As the original image, a tomographic image before the removal of speckle noise in which the user knows the physical property state and the optical non-uniform state type of the ceramic is used. FIG. 26 shows an example of data for performing machine learning in the case of detecting pores in a ceramic sintered body, and thus a tomographic image showing pores is used as an original image.
The background portion of the original image includes speckle noise. In the case of the learning data with the identification number A1, the region A111 corresponds to the background portion, the region A112 corresponds to the region of the pore portion image, and the region A113 is the image region of the boundary portion between the pore and the portion other than the pores. It corresponds to.
 気孔の部分の画像の領域である領域A112は、比較的暗い領域となっている。気孔の境界部分の画像の領域である領域A113は、比較的明るい領域となっている。
 背景画像の領域A111は、比較的暗い領域だが、スペックルノイズが含まれているため領域A112よりも明るくなっている。領域A111がやや明るいことで、領域A111と領域A112とが比較的区別しにくい。この点で、スペックルノイズ除去前の画像では気孔の領域を検出しにくい。
A region A112 that is an image region of the pore portion is a relatively dark region. A region A113, which is an image region at the boundary portion of the pores, is a relatively bright region.
The background image area A111 is a relatively dark area, but is brighter than the area A112 because it includes speckle noise. Since the area A111 is slightly bright, the area A111 and the area A112 are relatively difficult to distinguish. In this regard, it is difficult to detect the pore region in the image before speckle noise removal.
 識別番号A2の学習用データの場合、領域A121が背景部分に該当し、領域A122が気孔の部分の画像の領域に該当し、領域A123が気孔と気孔以外の部分との境界部分の画像の領域に該当する。識別番号A3の学習用データの場合、領域A131が背景部分に該当し、領域A132が気孔の部分の画像の領域に該当し、領域A133が気孔と気孔以外の部分との境界部分の画像の領域に該当する。 In the case of the learning data with the identification number A2, the region A121 corresponds to the background portion, the region A122 corresponds to the image region of the pore portion, and the region A123 is the image region of the boundary portion between the pore and the portion other than the pore. It corresponds to. In the case of the learning data with the identification number A3, the region A131 corresponds to the background portion, the region A132 corresponds to the image region of the pore portion, and the region A133 is the image region of the boundary portion between the pore and the portion other than the pore. It corresponds to.
 目標画像としては、原画像からスペックルノイズを除去した画像が用いられる。実際に原画像に対してスペックルノイズ除去処理を行った画像を目標画像として用いるようにしてもよい。
 あるいは、ユーザが原画像に基づいて生成した画像を目標画像として用いるようにしてもよい。例えば、ユーザが原画像を加工して目標画像を生成するようにしてもよい。あるいは、ユーザが、原画像を参照して目標画像を描画するようにしてもよい。
 あるいは、原画像と同じ画角となるように設置された赤外線カメラが撮影した画像など、光干渉断層撮影以外の方法で撮影された断層画像を目標画像として用いるようにしてもよい。
As the target image, an image obtained by removing speckle noise from the original image is used. An image obtained by actually performing speckle noise removal processing on the original image may be used as the target image.
Alternatively, an image generated by the user based on the original image may be used as the target image. For example, the user may process the original image to generate the target image. Alternatively, the user may draw the target image with reference to the original image.
Alternatively, a tomographic image captured by a method other than optical coherence tomography, such as an image captured by an infrared camera installed so as to have the same angle of view as the original image, may be used as the target image.
 識別番号A1の学習用データの場合、領域A211が、原画像の領域A111およびA112に相当する。背景画像の領域からスペックルノイズが除去されたことで、背景画像の領域と機能の部分の画像の領域とが同様の輝度になっている。領域A212は、原画像の領域A113に相当する。領域A212は、領域A113と同じく、比較的明るい領域となっている。
 背景画像の領域からスペックルノイズが除去されて暗くなったことで、比較的明るい領域A212を検出し易くなっている。この点で、スペックルノイズ除去後の画像では、気孔の領域を検出し易くなっている。
In the case of the learning data with the identification number A1, the area A211 corresponds to the areas A111 and A112 of the original image. By removing speckle noise from the background image area, the background image area and the functional image area have the same brightness. A region A212 corresponds to the region A113 of the original image. The area A212 is a relatively bright area like the area A113.
Since the speckle noise is removed from the background image area to make it darker, it is easier to detect the relatively bright area A212. In this regard, it is easy to detect the pore region in the image after speckle noise removal.
 識別番号A2の学習用データの場合、領域A221が、原画像の領域A121およびA122に相当する。領域A222が、原画像の領域A123に相当する。識別番号A3の学習用データの場合、領域A231が、原画像の領域A131およびA132に相当する。領域A232が、原画像の領域A133に相当する。 In the case of the learning data with the identification number A2, the area A221 corresponds to the areas A121 and A122 of the original image. An area A222 corresponds to the area A123 of the original image. In the case of the learning data with the identification number A3, the area A231 corresponds to the areas A131 and A132 of the original image. A region A232 corresponds to the region A133 of the original image.
 図27は、学習用データの第2例を示す図である。図27は、セラミックスの焼結体におけるき裂を検出する場合に断層画像に適用するスペックルノイズの除去方法を学習するための学習用データの例を示している。図27では、学習用データが表形式で示されており、1行が1つの学習用データに該当する。図26を参照して説明したように、学習用データの各々は、識別番号と、原画像と、目標画像とを組み合わせて構成されている。 FIG. 27 is a diagram showing a second example of learning data. FIG. 27 shows an example of learning data for learning a speckle noise removal method applied to a tomographic image when a crack in a ceramic sintered body is detected. In FIG. 27, the learning data is shown in a table format, and one row corresponds to one learning data. As described with reference to FIG. 26, each of the learning data is configured by combining an identification number, an original image, and a target image.
 図26を参照して説明したように、識別番号は、学習用データを識別する番号である。
 図26を参照して説明したように、原画像としては、セラミックスの物性状態および光学的不均一状態の種類がユーザに既知となっている、スペックルノイズ除去前の断層画像が用いられる。
As described with reference to FIG. 26, the identification number is a number for identifying learning data.
As described with reference to FIG. 26, as the original image, a tomographic image before removal of speckle noise, in which the types of physical properties and optical nonuniformity of ceramics are known to the user, is used.
 図27では、セラミックスの焼結体におけるき裂を検出する場合について機械学習を行うためのデータの例を示していることから、き裂が写っている断層画像が原画像として用いられている。
 図26を参照して説明したように、原画像の背景部分にはスペックルノイズが含まれている。
 識別番号B1の学習用データの場合、領域A311が背景部分に該当し、領域A312がき裂の部分の画像の領域に該当する。
FIG. 27 shows an example of data for performing machine learning in the case of detecting a crack in a ceramic sintered body, and thus a tomographic image showing a crack is used as an original image.
As described with reference to FIG. 26, the background portion of the original image includes speckle noise.
In the case of the learning data with the identification number B1, the region A311 corresponds to the background portion, and the region A312 corresponds to the image region of the crack portion.
 き裂の部分の画像の領域である領域A312は、比較的明るい領域となっている。背景画像の領域A311は、比較的暗い領域だが、スペックルノイズが含まれていることで、やや明るくなっている。領域A311がやや明るいことで、領域A311と領域A312とが比較的区別しにくい。この点で、スペックルノイズ除去前の画像ではき裂の領域を検出しにくい。 A region A312 which is an image region of the crack portion is a relatively bright region. The background image area A311 is a relatively dark area, but is slightly brighter because it includes speckle noise. Since the area A311 is slightly bright, the area A311 and the area A312 are relatively difficult to distinguish. In this respect, it is difficult to detect a crack region in the image before speckle noise removal.
 識別番号B2の学習用データの場合、領域A321が背景部分に該当し、領域A322がき裂の部分の画像の領域に該当する。識別番号B3の学習用データの場合、領域A331が背景部分に該当し、領域A332がき裂の部分の画像の領域に該当する。 In the case of the learning data with the identification number B2, the region A321 corresponds to the background portion, and the region A322 corresponds to the image region of the crack portion. In the case of the learning data with the identification number B3, the region A331 corresponds to the background portion, and the region A332 corresponds to the image region of the crack portion.
 図26を参照して説明したように、目標画像としては、原画像からスペックルノイズを除去した画像が用いられる。
 識別番号B1の学習用データの場合、領域A411が、原画像の領域A311に相当する。背景画像の領域からスペックルノイズが除去されたことで、背景画像の領域がスペックルノイズ除去前より暗くなっている。領域A412は、原画像の領域A312に相当する。領域A412は、領域A312と同じく、比較的明るい領域となっている。
 背景画像の領域からスペックルノイズが除去されて暗くなったことで、比較的明るい領域A412を検出し易くなっている。この点で、スペックルノイズ除去後の画像では、き裂の領域を検出し易くなっている。
As described with reference to FIG. 26, an image obtained by removing speckle noise from the original image is used as the target image.
In the case of the learning data with the identification number B1, the area A411 corresponds to the area A311 of the original image. Since the speckle noise is removed from the background image area, the background image area is darker than before the speckle noise removal. Area A412 corresponds to area A312 of the original image. The area A412 is a relatively bright area like the area A312.
Since the speckle noise is removed from the background image area and it becomes dark, it is easy to detect the relatively bright area A412. In this regard, it is easy to detect a crack region in the image after speckle noise removal.
 識別番号B2の学習用データの場合、領域A421が、原画像の領域A321に相当する。領域A422が、原画像の領域A322に相当する。識別番号B3の学習用データの場合、領域A431が、原画像の領域A331に相当する。領域A432が、原画像の領域A332に相当する。 In the case of the learning data with the identification number B2, the area A421 corresponds to the area A321 of the original image. A region A422 corresponds to the region A322 of the original image. In the case of the learning data with the identification number B3, the area A431 corresponds to the area A331 of the original image. A region A432 corresponds to the region A332 of the original image.
 第2制御部390は、学習装置30の各部を制御して各種処理を行う。第2制御部390は、学習装置30が備えるCPU(Central Processing Unit、中央処理装置)が、第2記憶部380からプログラムを読み出して実行することで構成される。
 学習用データ取得部391は、学習用データを取得する。例えば、第2通信部310を介してユーザのパソコンなど学習用データを記憶している他の装置と通信を行い、学習用データを受信するようにしてもよい。あるいは、学習用データ取得部391が描画ツールに原画像を表示し、ユーザが原画像を目的画像に加工することで、学習用データ取得部391が原画像と目的画像との組を取得するようにしてもよい。そして、学習用データ取得部391が、得られた組毎に識別番号を付すことで学習用データを取得するようにしてもよい。
The second control unit 390 performs various processes by controlling each unit of the learning device 30. The second control unit 390 is configured by a CPU (Central Processing Unit) provided in the learning device 30 reads out and executes a program from the second storage unit 380.
The learning data acquisition unit 391 acquires learning data. For example, the learning data may be received by communicating with another device storing learning data such as a user's personal computer via the second communication unit 310. Alternatively, the learning data acquisition unit 391 displays the original image on the drawing tool, and the user processes the original image into the target image so that the learning data acquisition unit 391 acquires a set of the original image and the target image. It may be. Then, the learning data acquisition unit 391 may acquire the learning data by attaching an identification number to each obtained group.
 学習用データ取得部391は、学習用データをセラミックスの物性状態毎、かつ、光学的不均一状態の種類毎に学習用データ記憶部381に記憶させる。そのために、学習用データ取得部391が、セラミックスの物性状態毎、かつ、光学的不均一状態の種類毎に分類された学習用データを取得するようにしてもよい。あるいは、ユーザが、学習用データ毎にセラミックスの物性状態および光学的不均一状態の種類を特定し、学習用データ取得部391が、ユーザの特定に従って学習用データを分類するようにしてもよい。
 あるいは、学習用データ取得部391が、セラミックスの物性状態毎、光学的不均一状態の種類毎、かつ、セラミックスを構成する物質の種類毎に分類された学習用データを取得するようにしてもよい。あるいは、学習用データ取得部391が、セラミックスの物性状態毎、光学的不均一状態の種類毎、かつ、セラミックスを構成する物質の種類毎に学習用データを分類するようにしてもよい。
The learning data acquisition unit 391 stores the learning data in the learning data storage unit 381 for each physical property state of the ceramics and for each type of optical non-uniform state. Therefore, the learning data acquisition unit 391 may acquire the learning data classified for each physical property state of ceramics and for each type of optical non-uniform state. Alternatively, the user may specify the physical property state and the optical non-uniform state type of the ceramic for each learning data, and the learning data acquisition unit 391 may classify the learning data according to the user specification.
Alternatively, the learning data acquisition unit 391 may acquire the learning data classified for each physical property state of the ceramic, for each type of optical non-uniformity, and for each type of substance constituting the ceramic. . Alternatively, the learning data acquisition unit 391 may classify the learning data for each physical property state of the ceramic, for each type of optically non-uniform state, and for each type of substance constituting the ceramic.
 学習用データ取得部391が、光干渉断層撮影に基づく方法以外の方法で光学的不均一状態の種類を特定して得られた学習用データを取得するようにしてもよい。例えば、ユーザが、赤外線カメラを用いて試料100を撮影するなど、光干渉断層撮影に基づく方法以外の方法で撮影された画像を参照して光学的不均一状態を特定するようにしてもよい。あるいは、ユーザが試料100を切断して断面を目視確認することで、光学的不均一状態を特定するようにしてもよい。 The learning data acquisition unit 391 may acquire learning data obtained by specifying the type of optical nonuniformity by a method other than the method based on optical coherence tomography. For example, the user may specify the optical non-uniformity state by referring to an image photographed by a method other than a method based on optical coherence tomography, such as photographing the sample 100 using an infrared camera. Alternatively, the optical non-uniform state may be specified by the user cutting the sample 100 and visually confirming the cross section.
 機械学習部392は、スペックルノイズの除去処理における処理方法を、セラミックスの物性状態毎、かつ、光学的不均一状態の種類毎に機械学習する。機械学習部392は、学習用データ記憶部381からセラミックスの物性状態毎、かつ、光学的不均一状態の種類毎に学習用データを取得することで、物性状態毎、かつ、光学的不均一状態の種類毎に機械学習を行う。あるいは、機械学習部392が、セラミックスの物性状態毎、光学的不均一状態の種類毎、かつ、セラミックスを構成する物質の種類毎に学習用データを取得するようにしてもよい。機械学習部392が、この学習用データを用いて、物性状態毎、光学的不均一状態の種類毎、かつ、セラミックスを構成する物質の種類毎に機械学習を行うようにしてもよい。
 機械学習部392が用いる機械学習アルゴリズムは、特定のものに限定されない。機械学習部392が用いる機械学習アルゴリズムとして、原画像および目的画像を含む学習用データを適用可能な、公知のいろいろなアルゴリズムを用いることができる。
The machine learning unit 392 performs machine learning on the processing method in the speckle noise removal processing for each physical property state of ceramics and for each type of optical non-uniform state. The machine learning unit 392 acquires learning data from the learning data storage unit 381 for each physical property state of ceramics and for each type of optical non-uniform state, so that each physical property state and optical non-uniform state Machine learning is performed for each type. Alternatively, the machine learning unit 392 may acquire learning data for each physical property state of the ceramic, for each type of the optical non-uniform state, and for each type of substance constituting the ceramic. The machine learning unit 392 may use this learning data to perform machine learning for each physical property state, for each type of optical non-uniform state, and for each type of substance constituting the ceramic.
The machine learning algorithm used by the machine learning unit 392 is not limited to a specific one. As the machine learning algorithm used by the machine learning unit 392, various known algorithms to which learning data including an original image and a target image can be applied can be used.
 図28は、セラミックスの全ての物性状態、および、全ての光学的不均一状態に対して同一のスペックルノイズの除去処理方法を適用する不都合性の例を示す図である。
 図28では、物性状態と光学的不均一状態との組み合わせ毎に、「処理前」、「処理後(好適)」、「処理後(不適)」の画像を示している。図28に示す、物性状態と光学的不均一状態との組み合わせは、(1)スラリーにおける凝集構造を検出する場合、(2)成形体における顆粒痕を検出する場合、(3)焼結体における球状欠陥(気孔)を検出する場合、(4)焼結体における面状欠陥(クラック)を検出する場合である。
FIG. 28 is a diagram illustrating an example of inconvenience of applying the same speckle noise removal processing method to all physical properties of ceramics and all optical non-uniformity.
FIG. 28 shows images of “before processing”, “after processing (preferred)”, and “after processing (unsuitable)” for each combination of the physical property state and the optical non-uniform state. The combination of the physical property state and the optical non-uniform state shown in FIG. 28 is as follows: (1) when detecting an agglomerated structure in the slurry, (2) when detecting granule traces in the molded body, (3) in the sintered body When detecting spherical defects (pores), (4) when detecting planar defects (cracks) in the sintered body.
 「処理前」の画像は、スペックルノイズ除去処理前の画像である。
 「処理後(好適)」の画像は、物性状態毎、かつ、光学的不均一状態の種類毎に好適なスペックルノイズ除去処理アルゴリズムを選択し処理を行った場合の画像である。
 (1)スラリーにおける凝集構造を検出する場合、「処理後(好適)」での処理として、画素値の8ビット(bit)化、バックグラウンド処理による背景輝度の平均化、明るさおよびコントラストの調整の順に処理を行っている。
The “before processing” image is an image before the speckle noise removal processing.
The “post-processing (preferred)” image is an image obtained by performing processing by selecting a suitable speckle noise removal processing algorithm for each physical property state and each type of optical non-uniform state.
(1) When detecting an agglomerated structure in the slurry, as processing after “processing (preferred)”, pixel values are converted to 8 bits, background luminance is averaged by background processing, and brightness and contrast are adjusted. Processing is performed in the order of.
 (2)成形体における顆粒痕を検出する場合、「処理後(好適)」での処理として、画素値の8ビット化、バックグラウンド処理による背景輝度の平均化、フィルタ処理による画素の平均化、明るさおよびコントラストの調整の順に処理を行っている。この場合、バックグラウンド処理による背景輝度の平均化における設定値、および、明るさおよびコントラストの調整における設定値は、(1)スラリーにおける凝集構造を検出する場合と異なる。 (2) In the case of detecting granule traces in a molded product, as processing in “after processing (preferred)”, pixel values are converted into 8 bits, background luminance is averaged by background processing, and pixels are averaged by filtering. Processing is performed in the order of adjustment of brightness and contrast. In this case, the setting value for averaging the background luminance by the background processing and the setting value for adjusting the brightness and contrast are different from those in the case of detecting the aggregated structure in the slurry (1).
 (3)焼結体における球状欠陥を検出する場合、「処理後(好適)」での処理として、画素値の8ビット化、バックグラウンド処理による背景輝度の平均化、明るさおよびコントラストの調整の順に処理を行っている。処理手順自体は(1)スラリーにおける凝集構造を検出する場合と同様であるが、明るさおよびコントラストの調整における設定値が異なる。(3)焼結体における球状欠陥を検出する場合の、「処理後(好適)」における画像では、破線で囲んだ部分に球状欠陥の画像を抽出できている。 (3) When detecting a spherical defect in the sintered body, as processing after “processing (preferred)”, pixel values are converted to 8 bits, background luminance is averaged by background processing, and brightness and contrast are adjusted. Processing is performed in order. The processing procedure itself is the same as (1) the case where the aggregated structure in the slurry is detected, but the setting values for adjusting the brightness and contrast are different. (3) In the image after “processing (preferred)” when detecting spherical defects in the sintered body, an image of spherical defects can be extracted in a portion surrounded by a broken line.
 (4)焼結体における面状欠陥を検出する場合、「処理後(好適)」での処理として、画素値の8ビット化、バックグラウンド処理による背景輝度の平均化、明るさおよびコントラストの調整の順に処理を行っている。処理手順自体は(1)スラリーにおける凝集構造を検出する場合と同様であるが、バックグラウンド処理による背景輝度の平均化における設定値、および、明るさおよびコントラストの調整における設定値が異なる。 (4) When detecting a planar defect in a sintered body, as processing after “processing (preferred)”, pixel values are converted to 8 bits, background luminance is averaged by background processing, and brightness and contrast are adjusted. Processing is performed in the order of. The processing procedure itself is the same as (1) the case where the aggregated structure in the slurry is detected, but the setting values for averaging the background luminance by the background processing and the setting values for adjusting the brightness and contrast are different.
 「処理後(不適)」の画像は、「処理後(好適)」の場合とは異なるスペックルノイズ除去処理アルゴリズムで処理を行った場合の画像を示している。具体的には、(3)焼結体における球状欠陥を検出する場合の「処理後(好適)」における処理を、(1)スラリーにおける凝集構造を検出する場合、(2)成形体における顆粒痕を検出する場合、(4)焼結体における面状欠陥を検出する場合の各々に適用している。この処理は、(3)焼結体における球状欠陥を検出する場合には好適な処理であるため、(3)焼結体における球状欠陥を検出する場合の「処理後(不適)」の画像は示されていない。 The “after-processing (unsuitable)” image shows an image when processing is performed using a speckle noise removal processing algorithm different from the “after-processing (preferred)” case. Specifically, (3) the processing in “after processing (preferred)” when detecting spherical defects in the sintered body, (1) when detecting the aggregated structure in the slurry, (2) granule traces in the molded body When (4) is detected, (4) it applies to each of the cases where the planar defect in a sintered compact is detected. Since this process is suitable for (3) detecting spherical defects in the sintered body, the image of “after processing (unsuitable)” when detecting (3) spherical defects in the sintered body is Not shown.
 (1)スラリーにおける凝集構造を検出する場合、「処理後(不適)」では、輝度の大きい一部の点のみが抽出されている。この画像は、比較的輝度が小さい点が抽出されていない点で、凝集構造が十分に示されていない画像となっている。
 (2)成形体における顆粒痕を検出する場合、「処理後(不適)」では、スペックルノイズを十分に除去できていない。この画像は、スペックルノイズを十分に除去できていない点で画像全体が不明瞭であり、光学的不均一状態の判定が困難になっている。
(1) When detecting an agglomeration structure in the slurry, only a part of points with high luminance are extracted in “after treatment (unsuitable)”. This image is an image in which the aggregation structure is not sufficiently shown in that a point with relatively low luminance is not extracted.
(2) When detecting granule traces in a molded product, speckle noise cannot be sufficiently removed after “after treatment (unsuitable)”. This image is unclear because the speckle noise cannot be sufficiently removed, and it is difficult to determine the optical non-uniform state.
 (4)焼結体における面状欠陥を検出する場合、「処理後(不適)」では、輝度の小さい領域の抽出が不十分である。この場合の「処理後(好適)」における画像と「処理後(不適)」における画像とを比較すると、「処理後(好適)」では、破線で囲んだ部分に面状欠陥の画像を抽出できている。これに対し、「処理後(不適)」では、破線で囲んだ部分に面状欠陥の画像を抽出できていない。 (4) When detecting a planar defect in a sintered body, extraction of a region with low luminance is insufficient after “processing (unsuitable)”. In this case, comparing the image after “Processing (preferred)” with the image after “Processing (unsuitable)”, “Image after processing (preferred)” can extract the image of the planar defect in the part surrounded by the broken line. ing. On the other hand, in “after processing (unsuitable)”, an image of a planar defect cannot be extracted in a portion surrounded by a broken line.
 このように、光学的不均一状態を検出するために、セラミックスの物性状態に応じて、かつ、光学的不均一状態に応じて、スペックルノイズ除去のための処理方法を選択する必要がある。そこで、機械学習部392は、セラミックスの物性状態毎、かつ、光学的不均一状態の種類毎に機械学習を行って、セラミックスの物性状態毎、かつ、光学的不均一状態の種類毎に処理方法を決定する。 Thus, in order to detect the optical non-uniform state, it is necessary to select a processing method for removing speckle noise according to the physical property state of the ceramic and according to the optical non-uniform state. Therefore, the machine learning unit 392 performs machine learning for each physical property state of the ceramic and for each type of optical non-uniform state, and a processing method for each physical property state of the ceramic and for each type of optical non-uniform state. To decide.
 また、セラミックスの原料によっても好適な処理方法が異なることが考えられる。一方、異なる原料であっても、屈折率および光の吸収率など光学的な特性が同じであれば、原料毎に処理方法を変える必要はないと考えられる。そこで、機械学習部392が、セラミックスの物性状態毎、光学的不均一状態の種類毎、かつ、セラミックスを構成する物質の種類毎(特に、物質を光学的な特性で分類した種類毎)に機械学習を行って、セラミックスの物性状態毎、光学的不均一状態の種類毎、かつ、セラミックスを構成する物質の種類毎に処理方法を決定するようにしてもよい。 It is also conceivable that the preferred treatment method varies depending on the ceramic raw material. On the other hand, even if it is a different raw material, if the optical characteristics such as the refractive index and the light absorption rate are the same, it is considered that it is not necessary to change the processing method for each raw material. Therefore, the machine learning unit 392 performs a machine operation for each physical property state of the ceramic, for each type of optical non-uniformity, and for each type of substance constituting the ceramic (particularly, for each type in which the substance is classified by optical characteristics). Learning may be performed to determine the processing method for each physical property state of the ceramic, for each type of optically inhomogeneous state, and for each type of substance constituting the ceramic.
 解析装置20に代えて光干渉断層撮影装置10が、断層画像生成部291を備えるようにしてもよい。あるいは、断層画像生成部291が、光干渉断層撮影装置10および解析装置20の何れとも別の装置として構成されていてもよい。
 解析装置20と学習装置30とが、同一のコンピュータを用いて構成されるなど、1つの装置として構成されていてもよい。
The optical coherence tomography apparatus 10 may include a tomographic image generation unit 291 instead of the analysis apparatus 20. Alternatively, the tomographic image generation unit 291 may be configured as a separate device from either the optical coherence tomography apparatus 10 or the analysis apparatus 20.
The analysis device 20 and the learning device 30 may be configured as one device, such as configured using the same computer.
 次に、図29から図34を用いて解析システム1の動作について説明する。
 図29は、試料100の解析を行う際に解析装置20が行う処理の手順の例を示すフローチャートである。
 図29の処理で、断層画像生成部291は、第1通信部210が光干渉断層撮影装置10から受信する試料100の測定結果を取得し、得られた測定結果に基づいて試料100の断層画像を生成する(ステップS11)。
 そして、解析処理部292は、ステップS11で得られた断層画像を解析する(ステップS12)。
 ステップS12の後、解析装置20は、図29の処理を終了する。
Next, the operation of the analysis system 1 will be described with reference to FIGS.
FIG. 29 is a flowchart illustrating an example of a procedure of processing performed by the analysis apparatus 20 when the sample 100 is analyzed.
In the process of FIG. 29, the tomographic image generation unit 291 acquires the measurement result of the sample 100 received by the first communication unit 210 from the optical coherence tomography apparatus 10, and the tomographic image of the sample 100 based on the obtained measurement result. Is generated (step S11).
Then, the analysis processing unit 292 analyzes the tomographic image obtained in step S11 (step S12).
After step S12, the analysis apparatus 20 ends the process of FIG.
 図30は、解析処理部292が、図29のステップS12(解析処理)で行う処理の手順の例を示すフローチャートである。
 図30の処理で、解析処理部292は、光学的不均一状態の種類毎に処理を行うループL1を開始する(ステップS21)。光学的不均一状態の種類の例として、気孔およびき裂が挙げられるが、これらに限定されない。
FIG. 30 is a flowchart illustrating an example of a procedure of processing performed by the analysis processing unit 292 in step S12 (analysis processing) in FIG.
In the processing of FIG. 30, the analysis processing unit 292 starts a loop L1 that performs processing for each type of optical nonuniformity (step S21). Examples of types of optical non-uniformity include, but are not limited to, pores and cracks.
 次に、解析処理部292のスペックルノイズ除去処理部293は、断層画像生成部291が図29のステップS11で生成した断層画像に対してスペックルノイズ除去処理を行う(ステップS22)。上述したように、学習装置30は、セラミックスの物性状態毎、かつ、光学的不均一状態の種類毎に機械学習を行ってスペックルノイズ除去方法を決定している。スペックルノイズ除去処理部293は、学習装置30が決定したスペックルノイズ除去方法のうち、解析対象の断層画像におけるセラミックスの物性状態、および、ループL1で処置対象となっている光学的不均一状態の種類に応じたスペックルノイズ除去方法を用いる。
 あるいは、学習装置30が、セラミックスの物性状態毎、光学的不均一状態の種類毎、かつ、セラミックスを構成する物質の種類に応じたスペックルノイズ除去方法を選択するようにしてもよい。例えばユーザが、セラミックスを構成する物質の種類を学習装置30にユーザ入力し、学習装置30が、ユーザ入力に応じたスペックルノイズ除去方法を選択するようにしてもよい。
Next, the speckle noise removal processing unit 293 of the analysis processing unit 292 performs speckle noise removal processing on the tomographic image generated by the tomographic image generation unit 291 in step S11 of FIG. 29 (step S22). As described above, the learning device 30 determines the speckle noise removal method by performing machine learning for each physical property state of the ceramic and for each type of the optically non-uniform state. The speckle noise removal processing unit 293 includes, in the speckle noise removal method determined by the learning device 30, a physical property state of ceramics in the tomographic image to be analyzed, and an optical non-uniform state that is a treatment target in the loop L1. The speckle noise removal method corresponding to the type of the is used.
Or you may make it the learning apparatus 30 select the speckle noise removal method according to the kind of substance which comprises ceramics for every physical property state, every kind of optical nonuniform state, and ceramics. For example, the user may input the type of material constituting the ceramics to the learning device 30 and the learning device 30 may select a speckle noise removal method according to the user input.
 次に、解析処理部292の不均一状態検出部294は、ステップS22で得られたノイズ除去後の断層画像を用いて、試料100における光学的不均一状態を検出する(ステップS23)。具体的には、不均一状態検出部294は、ノイズ除去後の断層画像における光学的不均一部分を検出する。光学的不均一部分を検出した場合、不均一状態検出部294は、光学的不均一部分の大きさおよび形状に基づいて、光学的不均一状態の種類を判定する。 Next, the non-uniform state detection unit 294 of the analysis processing unit 292 detects the optical non-uniform state in the sample 100 using the tomographic image after noise removal obtained in step S22 (step S23). Specifically, the non-uniform state detection unit 294 detects an optical non-uniform portion in the tomographic image after noise removal. When the optical non-uniform portion is detected, the non-uniform state detecting unit 294 determines the type of the optical non-uniform state based on the size and shape of the optical non-uniform portion.
 そして、解析処理部292は、ループL1の終端処理を行う(ステップS24)。具体的には、解析処理部292は、光学的不均一状態の全種類についてループL1の処理を行ったか否かを判定する。未処理の光学的不均一状態の種類があると判定した場合、ステップS21に戻り、未処理の光学的不均一状態の種類について引き続きループL1の処理を行う。一方、光学的不均一状態の全種類についてループL1の処理を行ったと判定した場合、解析処理部292は、ループL1を終了する。
 ステップS24でループL1を終了した場合、解析処理部292は、図30の処理を終了する。
And the analysis process part 292 performs the termination process of the loop L1 (step S24). Specifically, the analysis processing unit 292 determines whether or not the processing of the loop L1 has been performed for all types of optical nonuniformity. If it is determined that there is a type of unprocessed optical non-uniform state, the process returns to step S21, and the process of loop L1 is continued for the type of unprocessed optical non-uniform state. On the other hand, when it is determined that the process of the loop L1 has been performed for all types of optical nonuniformity, the analysis processing unit 292 ends the loop L1.
When the loop L1 is ended in step S24, the analysis processing unit 292 ends the process of FIG.
 図31は、スペックルノイズ除去方法を機械学習する際に学習装置30の機械学習部392が行う処理の手順の例を示すフローチャートである。上述したように、学習用データ記憶部381はセラミックスの物性状態毎、かつ、光学的不均一状態の種類毎に学習用データを記憶している。機械学習部392は、セラミックスの物性状態毎、かつ、光学的不均一状態の種類毎に図31の処理を行って、セラミックスの物性状態毎、かつ、光学的不均一状態の種類毎にスペックルノイズ除去方法を決定する。 FIG. 31 is a flowchart illustrating an example of a processing procedure performed by the machine learning unit 392 of the learning device 30 when machine learning is performed on the speckle noise removal method. As described above, the learning data storage unit 381 stores learning data for each physical property state of ceramics and for each type of optical non-uniform state. The machine learning unit 392 performs the processing of FIG. 31 for each physical property state of the ceramic and for each type of optical non-uniform state, and speckles for each physical property state of the ceramic and for each type of optical non-uniform state. Determine the noise removal method.
 図31の処理で、機械学習部392は、セラミックスの物性状態毎に処理を行うループL2を開始する(ステップS31)。
 さらに、機械学習部392は、光学的不均一状態の種類毎に処理を行うループL3を開始する(ステップS32)。
 次に、機械学習部392は、学習用データを取得する(ステップS33)。具体的には、機械学習部392は、ループL2で処理対象となっているセラミックスの物性状態、および、ループL3で処理対象となっている光学的不均一状態の種類の学習用データを学習用データ記憶部381から読み出す。
In the process of FIG. 31, the machine learning unit 392 starts a loop L2 that performs the process for each physical property state of the ceramic (step S31).
Further, the machine learning unit 392 starts a loop L3 that performs processing for each type of optical nonuniformity (step S32).
Next, the machine learning unit 392 acquires learning data (step S33). Specifically, the machine learning unit 392 uses the learning data of the types of the physical property state of the ceramics to be processed in the loop L2 and the optical non-uniform state types to be processed in the loop L3 for learning. Read from the data storage unit 381.
 次に、機械学習部392は、ステップS33で得られた学習用データを用いてスペックルノイズ除去方法を機械学習する(ステップS34)。この機械学習により、機械学習部392は、ループL2で処理対象となっているセラミックスの物性状態、かつ、ループL3で処理対象となっている光学的不均一状態の種類の場合のペックルノイズ除去方法を決定する。 Next, the machine learning unit 392 performs machine learning on the speckle noise removal method using the learning data obtained in step S33 (step S34). By this machine learning, the machine learning unit 392 removes the peckle noise in the case of the physical property state of the ceramics to be processed in the loop L2 and the optical non-uniform state type to be processed in the loop L3. To decide.
 そして、機械学習部392は、ループL3の終端処理を行う(ステップS35)。具体的には、機械学習部392は、光学的不均一状態の全種類についてループL3の処理を行ったか否かを判定する。未処理の光学的不均一状態の種類があると判定した場合、ステップS32に戻り、未処理の光学的不均一状態の種類について引き続きループL3の処理を行う。一方、光学的不均一状態の全種類についてループL3の処理を行ったと判定した場合、機械学習部392は、ループL3を終了する。 Then, the machine learning unit 392 performs a termination process of the loop L3 (step S35). Specifically, the machine learning unit 392 determines whether or not the process of the loop L3 has been performed for all types of optical nonuniformity states. If it is determined that there is a type of unprocessed optical non-uniform state, the process returns to step S32, and the processing of loop L3 is continued for the type of unprocessed optical non-uniform state. On the other hand, when it is determined that the process of the loop L3 has been performed for all types of optical nonuniformity, the machine learning unit 392 ends the loop L3.
 ステップS35でループL3を終了した場合、機械学習部392は、ループL2の終端処理を行う(ステップS36)。機械学習部392は、セラミックスの全ての物性状態についてループL2の処理を行ったか否かを判定する。未処理の物性状態があると判定した場合、ステップS31に戻り、未処理の物性状態について引き続きループL2の処理を行う。一方、セラミックスの全ての物性状態についてループL2の処理を行ったと判定した場合、機械学習部392は、ループL2を終了する。
 ステップS36でループL2を終了した場合、機械学習部392は、図31の処理を終了する。
When the loop L3 is terminated in step S35, the machine learning unit 392 performs a termination process for the loop L2 (step S36). The machine learning unit 392 determines whether or not the process of the loop L2 has been performed for all the physical properties of the ceramic. If it is determined that there is an unprocessed physical property state, the process returns to step S31, and the processing of the loop L2 is continued for the unprocessed physical property state. On the other hand, when it is determined that the process of the loop L2 has been performed for all the physical property states of the ceramics, the machine learning unit 392 ends the loop L2.
When the loop L2 is ended in step S36, the machine learning unit 392 ends the process of FIG.
 あるいは、機械学習部392が、セラミックスの物性状態毎、光学的不均一状態の種類毎、かつ、セラミックスを構成する物質の種類毎に機械学習を行うようにしてもよい。そのために、危害学習部392が、図31の処理で、セラミックスの物性状態毎のループ、および、光学的不均一状態の種類毎のループに加えて、セラミックスを構成する物質の種類毎のループを含む3重ループの処理を行うようにしてもよい。 Alternatively, the machine learning unit 392 may perform machine learning for each physical property state of ceramics, for each type of optical non-uniform state, and for each type of substance constituting the ceramic. Therefore, in the process of FIG. 31, the hazard learning unit 392 performs a loop for each type of substance constituting the ceramic in addition to a loop for each physical property state of the ceramic and a loop for each type of optical non-uniform state. A triple loop process may be performed.
 図32は、スペックルノイズ除去処理部293がスペックルノイズ除去処理を行う処理の手順の第1例を示す図である。図32は、例えば、焼結体における気孔を検出する場合にスペックルノイズ除去処理部293が行う処理の手順の例を示している。スペックルノイズ除去処理部293は、図30のステップS22で、セラミックスの物性状態毎、かつ、光学的不均一状態の種類毎に行うスペックルノイズ除去処理の1つとして、図32の処理を行う。 FIG. 32 is a diagram illustrating a first example of a processing procedure in which the speckle noise removal processing unit 293 performs the speckle noise removal processing. FIG. 32 shows an example of a procedure of processing performed by the speckle noise removal processing unit 293 when detecting pores in the sintered body, for example. The speckle noise removal processing unit 293 performs the process of FIG. 32 as one of the speckle noise removal processes performed for each physical property state of the ceramic and for each type of optical non-uniform state in step S22 of FIG. .
 図32で、原画像は、スペックルノイズ除去前の画像である。目的画像は、スペックルノイズ除去後の画像である。
 図32の処理で、スペックルノイズ除去処理部293は、原画像を用いて処理Aを行う(ステップS41)。次に、スペックルノイズ除去処理部293は、処理Aで得られた画像と原画像とを用いて処理Bを行う(ステップS42)。さらに、スペックルノイズ除去処理部293は、処理Bで得られた画像を用いて処理Cを行う(ステップS43)。また、スペックルノイズ除去処理部293は、原画像を用いて処理Dを行う(ステップS44)。そして、スペックルノイズ除去処理部293は、処理Cで得られた画像と処理Dで得られた画像とを用いて処理Eを行う(ステップS45)。処理Eにて目的画像を得られる。
 機械学習部392が、焼結体における気孔を検出する場合について、機械学習にて図32の処理手順に決定する。スペックルノイズ除去処理部293は、機械学習部392が決定した処理手順に従って、図32の処理を行う。
In FIG. 32, the original image is an image before speckle noise removal. The target image is an image after speckle noise is removed.
In the process of FIG. 32, the speckle noise removal processing unit 293 performs the process A using the original image (step S41). Next, the speckle noise removal processing unit 293 performs process B using the image obtained in process A and the original image (step S42). Further, the speckle noise removal processing unit 293 performs the process C using the image obtained in the process B (step S43). Further, the speckle noise removal processing unit 293 performs the process D using the original image (step S44). And the speckle noise removal process part 293 performs the process E using the image obtained by the process C, and the image obtained by the process D (step S45). A target image is obtained by processing E.
When the machine learning unit 392 detects pores in the sintered body, the machine learning unit 392 determines the processing procedure of FIG. 32 by machine learning. The speckle noise removal processing unit 293 performs the processing of FIG. 32 according to the processing procedure determined by the machine learning unit 392.
 図33は、スペックルノイズ除去処理部293がスペックルノイズ除去処理を行う処理の手順の第2例を示す図である。図33は、例えば焼結体におけるき裂を検出する場合など、図32の場合とは異なる物性状態および光学的不均一状態の場合の処理手順の例を示している。スペックルノイズ除去処理部293は、図30のステップS22で、セラミックスの物性状態毎、かつ、光学的不均一状態の種類毎に行うスペックルノイズ除去処理の1つとして、図33の処理を行う。 FIG. 33 is a diagram illustrating a second example of a processing procedure in which the speckle noise removal processing unit 293 performs the speckle noise removal processing. FIG. 33 shows an example of a processing procedure in the case of a physical property state and an optical non-uniform state different from the case of FIG. 32, for example, when detecting a crack in a sintered body. The speckle noise removal processing unit 293 performs the process of FIG. 33 as one of the speckle noise removal processes performed for each physical property state of the ceramic and for each type of optical non-uniform state in step S22 of FIG. .
 図33で、原画像は、スペックルノイズ除去前の画像である。目的画像は、スペックルノイズ除去後の画像である。
 図33に示す例で、スペックルノイズ除去処理部293は、原画像を用いて処理Bを行い(ステップS51)、処理Bで得られた画像を用いて処理Fを行う(ステップS52)。さらに、スペックルノイズ除去処理部293は、処理Fで得られた画像を用いて処理Cを行い(ステップS53)、処理Cで得られた画像を用いて処理Bを行う(ステップS54)。さらに、スペックルノイズ除去処理部293は、ステップS54の処理Bで得られた画像を用いて処理Gを行い、目的画像を得る。
In FIG. 33, the original image is an image before speckle noise removal. The target image is an image after speckle noise is removed.
In the example shown in FIG. 33, the speckle noise removal processing unit 293 performs the process B using the original image (step S51), and performs the process F using the image obtained in the process B (step S52). Further, the speckle noise removal processing unit 293 performs the process C using the image obtained in the process F (step S53), and performs the process B using the image obtained in the process C (step S54). Further, the speckle noise removal processing unit 293 performs a process G using the image obtained in the process B of step S54 to obtain a target image.
 図32が原画像を複数回用いる場合の例を示しているのに対し、図33は、原画像を1回用いる場合の例を示している。
 機械学習部392が、焼結体におけるき裂を検出する場合について、機械学習にて図33の処理手順に決定する。スペックルノイズ除去処理部293は、機械学習部392が決定した処理手順に従って、図33の処理を行う。
FIG. 32 shows an example in which the original image is used a plurality of times, whereas FIG. 33 shows an example in which the original image is used once.
When the machine learning unit 392 detects a crack in the sintered body, the machine learning unit 392 determines the processing procedure of FIG. 33 by machine learning. The speckle noise removal processing unit 293 performs the process of FIG. 33 according to the processing procedure determined by the machine learning unit 392.
 図34は、スペックルノイズ除去処理部293がスペックルノイズ除去処理を行う処理の手順の第3例を示す図である。図34は、例えば焼結体における球状欠陥(気孔)を検出する場合の処理手順の例を、図32の場合よりも詳細に示している。図32および図33では、スペックルノイズ除去処理部293が行う処理として想定されるパターンの例を示しているのに対し、図34では、より具体的な処理の例を示している。スペックルノイズ除去処理部293は、図30のステップS22で、セラミックスの物性状態毎、かつ、光学的不均一状態の種類毎に行うスペックルノイズ除去処理の1つとして、図34の処理を行う。 FIG. 34 is a diagram illustrating a third example of a processing procedure in which the speckle noise removal processing unit 293 performs the speckle noise removal processing. FIG. 34 shows an example of a processing procedure in the case of detecting spherical defects (pores) in the sintered body, for example, in more detail than in the case of FIG. 32 and 33 show examples of patterns assumed as processing performed by the speckle noise removal processing unit 293, whereas FIG. 34 shows more specific processing examples. The speckle noise removal processing unit 293 performs the process of FIG. 34 as one of the speckle noise removal processes performed for each physical property state of the ceramic and for each type of optical non-uniform state in step S22 of FIG. .
 図34で、原画像は、スペックルノイズ除去前の画像である。目的画像は、スペックルノイズ除去後の画像である。また、四角の各々が、画像に対する処理を示す。
 例えば、Green、Blue、Redは、それぞれ画像の緑の画素値、青の画素値、赤の画素値を読み込む処理を示す。Clo(Closing)は、最大値フィルタによる拡張を行い、拡張と同じ回数だけ最小値フィルタによる収縮を行う処理を示す。BDAは、判別分析法で計算した閾値による二値化を示す。Ran(Range)は、画素ごとに注目画素を中心とした3×3ウィンドウ内の画素の最大値-最小値を出力する処理を示す。LBWは、外接矩形に対して充填率の低いもの(例えば、0.9未満)を残す処理を示す。Ave(Average)は、平均化処理((f1+f2)/2)を示す。
In FIG. 34, the original image is an image before speckle noise removal. The target image is an image after speckle noise is removed. Each square represents processing for an image.
For example, Green, Blue, and Red indicate processes for reading a green pixel value, a blue pixel value, and a red pixel value of an image, respectively. Clo (Closing) indicates a process of performing expansion by the maximum value filter and performing contraction by the minimum value filter as many times as expansion. BDA indicates binarization by a threshold value calculated by a discriminant analysis method. Ran (Range) indicates a process of outputting the maximum value-minimum value of the pixels in the 3 × 3 window centered on the target pixel for each pixel. LBW indicates processing for leaving a low filling rate (for example, less than 0.9) for the circumscribed rectangle. Ave (Average) indicates an averaging process ((f1 + f2) / 2).
 機械学習部392は、例えば、原画像、目標画像に加えて重み画像を含む学習用データを用いて、遺伝的アルゴリズム(Genetic Algorithm;GA)と、遺伝的プログラミング(Genetic Programming;GP)とを併用した進化計算による機械学習を行って、図34の処理手順に決定する。遺伝的プログラミングでは、演算を木構造で表した木を対象として遺伝的アルゴリズムの場合と同様の処理を行う。
 スペックルノイズ除去処理部293は、機械学習部392が決定した処理手順に従って、図34の処理を行う。
 但し、上述したように、機械学習部392が用いる機械学習アルゴリズムは、特定のものに限定されない。
The machine learning unit 392 uses a genetic algorithm (GA) and genetic programming (GP) in combination using learning data including a weight image in addition to an original image and a target image, for example. Machine learning based on the evolutionary calculation is performed, and the processing procedure of FIG. In genetic programming, the same processing as in the case of a genetic algorithm is performed on a tree in which operations are expressed in a tree structure.
The speckle noise removal processing unit 293 performs the process of FIG. 34 according to the processing procedure determined by the machine learning unit 392.
However, as described above, the machine learning algorithm used by the machine learning unit 392 is not limited to a specific one.
[セラミックスの製造システムの構成]
 解析システム1を用いてセラミックスの製造システムを構成するようにしてもよい。
 図35は、本実施形態に係るセラミックスの製造システムの機能構成の例を示す概略ブロック図である。図35に示す構成で、セラミックスの製造システム2は、解析システム1と、調製装置40と、成形装置50と、焼結装置60とを備える。調製装置40は、調製制御部41を備える。成形装置50は、成形制御部51を備える。焼結装置60は、焼結制御部61を備える。
 図35における解析システム1は、図24における解析システム1と同様であり、同一の符号(1)を付して説明を省略する。
[Configuration of ceramic manufacturing system]
A ceramic manufacturing system may be configured using the analysis system 1.
FIG. 35 is a schematic block diagram illustrating an example of a functional configuration of the ceramic manufacturing system according to the present embodiment. In the configuration shown in FIG. 35, the ceramic manufacturing system 2 includes an analysis system 1, a preparation device 40, a molding device 50, and a sintering device 60. The preparation device 40 includes a preparation control unit 41. The molding apparatus 50 includes a molding control unit 51. The sintering apparatus 60 includes a sintering control unit 61.
The analysis system 1 shown in FIG. 35 is the same as the analysis system 1 shown in FIG.
 セラミックスの製造システム2は、セラミックスを製造する。
 調製装置40は、セラミックスの原料および溶媒を調製する。ここでいう調製は、セラミックスの原料及び溶媒を所定の分量で混ぜ合わせることである。調製によってスラリーを得られる。
 調製制御部41は、調製装置40による調製を制御する。例えば、調製制御部41は、原料および溶媒の分量、混ぜ合わせの強さ、および、混ぜ合わせの時間を制御する。解析システム1の解析で調製の際に光学的不均一状態が生じたと判定された場合、調製制御部41は、解析結果に従って調製の制御を行う。
The ceramic manufacturing system 2 manufactures ceramics.
The preparation device 40 prepares a ceramic raw material and a solvent. The preparation here is to mix the ceramic raw material and the solvent in a predetermined amount. A slurry is obtained by preparation.
The preparation control unit 41 controls the preparation by the preparation device 40. For example, the preparation control unit 41 controls the amount of raw material and solvent, the strength of mixing, and the mixing time. When it is determined in the analysis of the analysis system 1 that an optical non-uniform state has occurred during the preparation, the preparation control unit 41 controls the preparation according to the analysis result.
 成形装置50は、セラミックスの成形を行う。具体的には、成形装置50は、調製装置40が生成したスラリーを乾燥させた乾燥体に対して成形を行う。
 成形制御部51は、成形装置50による成形を制御する。例えば、成形装置50が乾燥体に対してプレスを行う場合、成形制御部51は、プレスの強さおよび時間を制御する。解析システム1の解析で成形の際に光学的不均一状態が生じたと判定された場合、調製制御部41は、解析結果に従って成形の制御を行う。
The molding apparatus 50 performs ceramic molding. Specifically, the molding device 50 performs molding on a dried body obtained by drying the slurry generated by the preparation device 40.
The molding control unit 51 controls molding by the molding apparatus 50. For example, when the molding apparatus 50 performs pressing on the dry body, the molding control unit 51 controls the strength and time of the press. When it is determined in the analysis of the analysis system 1 that an optical non-uniform state has occurred during molding, the preparation control unit 41 controls molding according to the analysis result.
 焼結装置60は、セラミックスの焼結を行う。具体的には、焼結装置60は、成形装置50が生成した成形体に対して焼結を行う。
 焼結制御部61は、焼結装置60による焼結を制御する。例えば、焼結制御部61は、焼結の温度および時間を制御する。解析システム1の解析で焼結の際に光学的不均一状態が生じたと判定された場合、調製制御部41は、解析結果に従って焼結の制御を行う。
The sintering device 60 sinters ceramics. Specifically, the sintering device 60 performs sintering on the molded body generated by the molding device 50.
The sintering control unit 61 controls sintering by the sintering apparatus 60. For example, the sintering control unit 61 controls the sintering temperature and time. When it is determined by the analysis of the analysis system 1 that an optical non-uniform state has occurred during sintering, the preparation control unit 41 controls the sintering according to the analysis result.
 このように、セラミックスの製造システム2が解析システム1による解析結果に基づいてセラミックスの製造を制御することで、例えば気孔およびき裂の発生頻度の低下など、セラミックス製造の精度の向上が期待される。
 調製制御部41、成形制御部51および焼結制御部61のうち何れか1つ以上が、解析システム1の一部として構成されていてもよい。あるいは、調製制御部41、成形制御部51および焼結制御部61のうち何れか1つ以上が、解析システム1、調製装置40、成形装置50および焼結装置60の何れとも別の装置として構成されていてもよい。
As described above, the ceramic production system 2 controls the production of ceramics based on the analysis result of the analysis system 1, so that it is expected that the ceramic production accuracy is improved, for example, the frequency of occurrence of pores and cracks is reduced. .
Any one or more of the preparation control unit 41, the molding control unit 51, and the sintering control unit 61 may be configured as a part of the analysis system 1. Alternatively, any one or more of the preparation control unit 41, the molding control unit 51, and the sintering control unit 61 is configured as a separate device from any of the analysis system 1, the preparation device 40, the molding device 50, and the sintering device 60. May be.
 以上のように、ハーフミラー12は、赤外線領域の光を参照光と照射光に分割し、セラミックスである試料100に照射光を照射する。参照ミラー13は、参照光を反射させる。検出器14は、参照ミラー13で反射した参照光と、セラミックスに照射光を照射して得られた戻り光との干渉を検出することにより、光干渉断層撮影を用いて試料100の内部構造を検出する。
 光干渉断層撮影装置10によれば、セラミックスの製造プロセスにおける構造形成過程をリアルタイムに三次元的に観察することができる。具体的には、光干渉断層撮影装置10によれば、セラミックスの製造プロセスにおけるいろいろな工程で、いろいろな深度でセラミックスの断層画像を得られる。
As described above, the half mirror 12 divides the light in the infrared region into the reference light and the irradiation light, and irradiates the sample 100 made of ceramics with the irradiation light. The reference mirror 13 reflects the reference light. The detector 14 detects the internal structure of the sample 100 using optical coherence tomography by detecting interference between the reference light reflected by the reference mirror 13 and the return light obtained by irradiating the ceramic with the irradiation light. To detect.
According to the optical coherence tomography apparatus 10, the structure formation process in the ceramic manufacturing process can be observed three-dimensionally in real time. Specifically, according to the optical coherence tomography apparatus 10, tomographic images of ceramics can be obtained at various depths at various steps in the ceramic manufacturing process.
 上記の赤外線領域の光は、中心波長が700ナノメートルから2000ナノメートルまで範囲内の光であって、かつセラミックスにて反射する光であってもよい。
 これにより、光がセラミックスに吸収されず、光干渉断層撮影によるセラミックスの測定をより高精度に行えることが期待される。
The light in the infrared region may be light having a center wavelength in a range from 700 nanometers to 2000 nanometers and reflected by ceramics.
As a result, it is expected that the ceramics can be measured with high accuracy by optical coherence tomography without the light being absorbed by the ceramics.
 また、断層画像生成部291は、光干渉断層撮影にてセラミックスの製造過程における物性状態それぞれの断層画像を生成する。解析処理部292は、物性状態それぞれにおける断層画像を用いて、いずれの物性状態において光学的不均一状態が生じているかの解析処理を行う。
 解析システム1によればセラミックスの製造過程における気孔またはき裂等の光学的不均一状態の発生状態を把握することができ、セラミックスの製造工程における条件の見直しに反映させることができる。
The tomographic image generation unit 291 generates a tomographic image of each physical property state in the ceramic manufacturing process by optical coherence tomography. The analysis processing unit 292 uses the tomographic image in each physical property state to perform analysis processing to determine in which physical property state the optical non-uniform state has occurred.
According to the analysis system 1, it is possible to grasp the state of occurrence of optical nonuniformity such as pores or cracks in the ceramic manufacturing process, which can be reflected in the review of conditions in the ceramic manufacturing process.
 上記の物性状態は、前記製造過程おける前記セラミックスの原料を含むスラリー状態、前記スラリー状態の材料を乾燥させた乾燥状態、前記スラリー状態の材料を乾燥後に成形した成形状態、および、前記成形状態の材料を焼結させた焼結状態のうち何れか複数であってもよい。
 これにより、解析システム1では、セラミックスにおける光学的不均一状態の有無を検出できるだけでなく、どの物性状態で光学的不均一状態が生じたかについて情報を得られる。
The physical property state includes a slurry state containing the ceramic raw material in the manufacturing process, a dried state in which the material in the slurry state is dried, a molded state in which the material in the slurry state is molded after drying, and the molded state Any of the sintered states obtained by sintering the material may be used.
As a result, the analysis system 1 can not only detect the presence / absence of an optical non-uniform state in the ceramics but also obtain information on which physical property state caused the optical non-uniform state.
 また、スペックルノイズ除去処理部293は、断層画像において物性状態を構成する微粒子に起因したスペックルノイズの除去処理を行う。不均一状態検出部294は、スペックルノイズの除去処理後の断層画像で輝度が他と異なるエリアの形状および大きさに基づいて、いずれの物性状態において光学的不均一状態が生じているかを判定する。
 不均一状態検出部294が、スペックルノイズ除去処理後の断層画像を用いて光学的不均一状態の検出を行う点で、光学的不均一状態の検出を高精度に行うことができる。
In addition, the speckle noise removal processing unit 293 performs a process for removing speckle noise caused by the fine particles constituting the physical property state in the tomographic image. The non-uniform state detection unit 294 determines in which physical property state an optical non-uniform state has occurred based on the shape and size of an area where the brightness is different from the other in the tomographic image after the speckle noise removal processing. To do.
The non-uniform state detection unit 294 can detect the optical non-uniform state with high accuracy in that the optical non-uniform state is detected using the tomographic image after the speckle noise removal processing.
 また、機械学習部392は、スペックルノイズの除去処理における処理方法を物性状態毎の機械学習に基づいて決定する。
 機械学習部392が、スペックルノイズの除去処理における処理方法を物性状態毎に決定することで、スペックルノイズ除去処理部293は、物性状態に応じてスペックルノイズの除去処理の方法を選択することができる。この点でスペックルノイズ除去処理部293は、スペックルノイズの除去処理を高精度に行うことができる。
Further, the machine learning unit 392 determines a processing method in the speckle noise removal processing based on machine learning for each physical property state.
The machine learning unit 392 determines the processing method in the speckle noise removal processing for each physical property state, so that the speckle noise removal processing unit 293 selects the speckle noise removal processing method according to the physical property state. be able to. In this respect, the speckle noise removal processing unit 293 can perform the speckle noise removal processing with high accuracy.
 また、機械学習部392は、スペックルノイズの除去処理における処理方法を光学的不均一状態の種類毎の機械学習に基づいて決定する。
 機械学習部392が、スペックルノイズの除去処理における処理方法を光学的不均一状態の種類毎に決定することで、スペックルノイズ除去処理部293は、光学的不均一状態の種類毎にスペックルノイズの除去処理を行うことができる。これにより、不均一状態検出部294による不均一状態の検出精度の向上が期待される。
Further, the machine learning unit 392 determines a processing method in the speckle noise removal processing based on machine learning for each type of optical non-uniform state.
The machine learning unit 392 determines the processing method in the speckle noise removal processing for each type of optical non-uniform state, so that the speckle noise removal processing unit 293 performs speckle for each type of optical non-uniform state. Noise removal processing can be performed. Thereby, improvement of the detection accuracy of the non-uniform state by the non-uniform state detection unit 294 is expected.
 また、機械学習部392は、光干渉断層撮影に基づく方法以外の方法で光学的不均一状態の種類を特定して得られた学習用データに基づいて機械学習を行う。
 これにより、学習用データの光学的不均一状態の種類毎の分類を高精度に行えると期待される。学習用データを光学的不均一状態の種類毎に高精度に分類できることで、機械学習部392によるスペックルノイズの除去処理の方法の学習精度の向上が期待される。
In addition, the machine learning unit 392 performs machine learning based on learning data obtained by specifying the type of optical nonuniformity by a method other than the method based on optical coherence tomography.
Thereby, it is expected that the learning data can be classified with high accuracy for each type of optical non-uniformity. Since the learning data can be classified with high accuracy for each type of optical non-uniform state, it is expected that the learning accuracy of the method of removing speckle noise by the machine learning unit 392 is improved.
 また、調製装置40、成形装置50および焼結装置60のうち少なくとも何れか1つは、解析システム1による解析結果に基づいて、セラミックスの調製、成形、焼結のうち少なくとも何れか1つの条件を変化させる。
 これにより、例えば気孔およびき裂の発生頻度の低下など、セラミックス製造の精度の向上が期待される。
Further, at least one of the preparation device 40, the molding device 50, and the sintering device 60 satisfies at least one of the conditions of ceramic preparation, molding, and sintering based on the analysis result by the analysis system 1. Change.
This is expected to improve the accuracy of ceramic production, for example, by reducing the frequency of occurrence of pores and cracks.
 上記したように、解析装置20および学習装置30は、いずれもコンピュータを用いて構成されていてもよい。
 図36は、実施形態に係るコンピュータの構成を示す概略ブロック図である。
 図36に示すコンピュータ70は、CPU71と、主記憶装置72と、補助記憶装置73と、インタフェース74とを備える。
As described above, both the analysis device 20 and the learning device 30 may be configured using a computer.
FIG. 36 is a schematic block diagram illustrating a configuration of a computer according to the embodiment.
A computer 70 shown in FIG. 36 includes a CPU 71, a main storage device 72, an auxiliary storage device 73, and an interface 74.
 コンピュータ70を用いて解析装置20を構成する場合、第1制御部290の各部の動作は、プログラムの形式で補助記憶装置73に記憶されている。CPU71は、プログラムを補助記憶装置73から読み出して主記憶装置72に展開し、当該プログラムに従って上記処理を実行する。また、CPU71は、プログラムに従って、第1記憶部280に対応する記憶領域を主記憶装置72に確保する。 When the analysis device 20 is configured using the computer 70, the operation of each unit of the first control unit 290 is stored in the auxiliary storage device 73 in the form of a program. The CPU 71 reads out the program from the auxiliary storage device 73, expands it in the main storage device 72, and executes the above processing according to the program. Further, the CPU 71 secures a storage area corresponding to the first storage unit 280 in the main storage device 72 according to the program.
 コンピュータ70を用いて学習装置30を構成する場合、第2制御部390の各部の動作は、プログラムの形式で補助記憶装置73に記憶されている。CPU71は、プログラムを補助記憶装置73から読み出して主記憶装置72に展開し、当該プログラムに従って上記処理を実行する。また、CPU71は、プログラムに従って、第2記憶部380に対応する記憶領域を主記憶装置72に確保する。 When the learning device 30 is configured using the computer 70, the operation of each unit of the second control unit 390 is stored in the auxiliary storage device 73 in the form of a program. The CPU 71 reads out the program from the auxiliary storage device 73, expands it in the main storage device 72, and executes the above processing according to the program. Further, the CPU 71 secures a storage area corresponding to the second storage unit 380 in the main storage device 72 according to the program.
 本発明の実施形態は、光干渉断層撮影を用いたセラミックスの内部構造観察方法であって、赤外線領域の光を参照光と照射光に分割する工程と、前記セラミックスに前記照射光を照射する工程と、反射させた前記参照光と、前記セラミックスに前記照射光を照射して得られた戻り光との干渉を観察することにより、前記セラミックスの内部構造を観察する工程とを含む、セラミックスの内部構造観察方法に関する。
 この実施形態によれば、セラミックスの製造プロセスにおける構造形成過程をリアルタイムに三次元的に観察することができる。
An embodiment of the present invention is a method for observing an internal structure of a ceramic using optical coherence tomography, a step of dividing light in an infrared region into reference light and irradiation light, and a step of irradiating the ceramic with the irradiation light And observing the internal structure of the ceramic by observing interference between the reflected reference light and the return light obtained by irradiating the ceramic with the irradiation light. The present invention relates to a structure observation method.
According to this embodiment, the structure formation process in the ceramic manufacturing process can be observed three-dimensionally in real time.
 1 解析システム
 2 セラミックスの製造システム
 10 光干渉断層撮影装置
 11 光源
 12 ハーフミラー
 13 参照ミラー
 14 検出器
 20 解析装置
 30 学習装置
 40 調製装置
 41 調製制御部
 50 成形装置
 51 成形制御部
 60 焼結装置
 61 焼結制御部
 100 試料
 210 第1通信部
 280 第1記憶部
 290 第1制御部
 291 断層画像生成部
 292 解析処理部
 293 スペックルノイズ除去処理部
 294 不均一状態検出部
 310 第2通信部
 380 第2記憶部
 381 学習用データ記憶部
 390 第2制御部
 391 学習用データ取得部
 392 機械学習部
DESCRIPTION OF SYMBOLS 1 Analysis system 2 Ceramic production system 10 Optical coherence tomography apparatus 11 Light source 12 Half mirror 13 Reference mirror 14 Detector 20 Analysis apparatus 30 Learning apparatus 40 Preparation apparatus 41 Preparation control part 50 Molding apparatus 51 Molding control part 60 Sintering apparatus 61 Sintering control unit 100 Sample 210 First communication unit 280 First storage unit 290 First control unit 291 Tomographic image generation unit 292 Analysis processing unit 293 Speckle noise removal processing unit 294 Non-uniform state detection unit 310 Second communication unit 380 First 2 storage unit 381 learning data storage unit 390 second control unit 391 learning data acquisition unit 392 machine learning unit

Claims (12)

  1.  赤外線領域の光を参照光と照射光に分割する工程と、
     セラミックスに前記照射光を照射する工程と、
     反射させた前記参照光と、前記セラミックスに前記照射光を照射して得られた戻り光との干渉を観察することにより、光干渉断層撮影を用いて前記セラミックスの内部構造を観察する工程とを含む、セラミックスの内部構造観察方法。
    Dividing the light in the infrared region into reference light and irradiation light;
    Irradiating ceramics with the irradiation light;
    Observing the internal structure of the ceramic using optical coherence tomography by observing the interference between the reflected reference light and the return light obtained by irradiating the ceramic with the irradiation light. A method for observing the internal structure of ceramics.
  2.  前記赤外線領域の光は、中心波長が700ナノメートルから2000ナノメートルまで範囲内の光であって、かつ前記セラミックスにて反射する光である、請求項1に記載のセラミックスの内部構造観察方法。 The method for observing an internal structure of ceramics according to claim 1, wherein the light in the infrared region is light having a central wavelength in a range from 700 nanometers to 2000 nanometers and reflected by the ceramics.
  3.  前記光干渉断層撮影にてセラミックスの製造過程における物性状態それぞれの断層画像を生成する工程と、
     前記物性状態それぞれにおける断層画像を用いて、いずれの物性状態において光学的不均一状態が生じているかの解析処理を行う工程とをさらに含む、
     請求項1または請求項2に記載のセラミックスの内部構造観察方法。
    Generating a tomographic image of each physical property state in the ceramic manufacturing process by the optical coherence tomography;
    A step of performing analysis processing on which physical property state an optical non-uniform state is generated using tomographic images in each of the physical property states,
    The method for observing the internal structure of ceramics according to claim 1 or 2.
  4.  前記物性状態は、前記製造過程おける前記セラミックスの原料を含むスラリー状態、前記スラリー状態の材料を乾燥させた乾燥状態、前記スラリー状態の材料を乾燥後に成形した成形状態、および、前記成形状態の材料を焼結させた焼結状態のうち、少なくとも何れか2つ以上である、
     請求項3に記載のセラミックスの内部構造観察方法。
    The physical properties include a slurry state containing the ceramic raw material in the manufacturing process, a dry state in which the material in the slurry state is dried, a molded state in which the material in the slurry state is molded after drying, and a material in the molded state Among the sintered state obtained by sintering, at least any two or more,
    The ceramic internal structure observation method according to claim 3.
  5.  前記解析処理は、前記断層画像において前記物性状態を構成する微粒子に起因したスペックルノイズの除去処理を行う工程と、
     前記スペックルノイズの除去処理後の断層画像で輝度が他と異なるエリアの形状および大きさに基づいて、いずれの前記物性状態において前記光学的不均一状態が生じているかを判定する工程とをさらに含む、
     請求項3または請求項4に記載のセラミックスの内部構造観察方法。
    The analysis process includes a process of removing speckle noise caused by fine particles constituting the physical property state in the tomographic image;
    A step of determining in which physical property state the optically non-uniform state occurs based on the shape and size of an area having a brightness different from that in the tomographic image after the speckle noise removal processing. Including,
    The method for observing the internal structure of the ceramic according to claim 3 or 4.
  6.  前記スペックルノイズの除去処理における処理方法を前記物性状態毎の機械学習に基づいて決定する工程をさらに含む、
     請求項5に記載のセラミックスの内部構造観察方法。
    Further including a step of determining a processing method in the speckle noise removal processing based on machine learning for each physical property state,
    The method for observing the internal structure of the ceramic according to claim 5.
  7.  前記スペックルノイズの除去処理における処理方法を前記光学的不均一状態の種類毎の機械学習に基づいて決定する工程をさらに含む、
     請求項5または請求項6に記載のセラミックスの内部構造観察方法。
    Further including a step of determining a processing method in the speckle noise removal processing based on machine learning for each type of the optical non-uniformity state.
    The ceramic internal structure observation method according to claim 5 or 6.
  8.  前記光干渉断層撮影に基づく方法以外の方法で前記光学的不均一状態の種類を特定して得られた学習用データに基づいて前記機械学習を行う工程をさらに含む、
     請求項7に記載のセラミックスの内部構造観察方法。
    Further comprising the step of performing the machine learning based on learning data obtained by specifying the type of the optical non-uniform state by a method other than the method based on the optical coherence tomography.
    The ceramic internal structure observation method according to claim 7.
  9.  光干渉断層撮影を用いたセラミックスの製造方法であって、
     セラミックスの原料物質である無機化合物を含むスラリー、または前記無機化合物の顆粒を調製する調製工程と、
     前記無機化合物を含むスラリーまたは前記顆粒を成形して成形体とする成形工程と、
     前記成形体を焼結する焼結工程と、
     赤外線領域の光を参照光と照射光に分割し、前記調製工程における前記スラリーもしくは前記顆粒、前記成形工程における前記成形体または前記焼結工程における焼結体のいずれかに、前記照射光を照射し、反射させた前記参照光と、前記スラリー、前記顆粒、前記成形体または前記焼結体に前記照射光を照射して得られた戻り光との干渉を観察することにより、前記スラリー、前記顆粒、前記成形体または前記焼結体の内部構造を観察する観察工程と、
    を含むセラミックスの製造方法。
    A ceramic manufacturing method using optical coherence tomography,
    A preparation step for preparing a slurry containing an inorganic compound as a raw material of ceramics, or granules of the inorganic compound;
    A molding step of molding the slurry containing the inorganic compound or the granule into a molded body; and
    A sintering step of sintering the molded body;
    The light in the infrared region is divided into reference light and irradiation light, and the irradiation light is irradiated to either the slurry or the granule in the preparation step, the molded body in the molding step, or the sintered body in the sintering step. And by observing interference between the reflected reference light and the return light obtained by irradiating the slurry, the granule, the compact or the sintered body with the irradiation light, the slurry, An observation step of observing the internal structure of the granule, the molded body or the sintered body;
    A method for producing ceramics comprising:
  10.  前記観察工程は、前記スラリーもしくは前記顆粒、または前記成形体の内部構造の観察結果に応じて、前記成形工程における成形条件または前記焼結工程における焼結条件を制御することを含む、請求項9に記載のセラミックスの製造方法。 The observation step includes controlling a molding condition in the molding step or a sintering condition in the sintering step according to an observation result of an internal structure of the slurry or the granule or the molded body. The manufacturing method of ceramics as described in 2.
  11.  光干渉断層撮影にてセラミックスの製造過程における物性状態それぞれの断層画像を生成する断層画像生成部と、
     前記物性状態それぞれにおける断層画像を用いて、いずれの物性状態において光学的不均一状態が生じているかの解析処理を行う解析処理部と、
     を備える解析システム。
    A tomographic image generator for generating a tomographic image of each physical property state in the ceramic manufacturing process by optical coherence tomography;
    Using the tomographic image in each of the physical property states, an analysis processing unit that performs analysis processing on which physical property state causes an optical non-uniform state; and
    An analysis system comprising:
  12.  請求項11に記載の解析システムと、
     調製装置、成形装置および焼結装置のうち少なくとも何れか1つと
     を備え、
     調製装置、成形装置および焼結装置のうち少なくとも何れか1つは、前記解析システムによる解析結果に基づいて、セラミックスの調製、成形、焼結のうち少なくとも何れか1つの条件を変化させる、
     セラミックスの製造システム。
    An analysis system according to claim 11;
    And at least one of a preparation device, a molding device, and a sintering device,
    At least any one of the preparation device, the molding device, and the sintering device changes at least one of the conditions of ceramic preparation, molding, and sintering based on the analysis result by the analysis system.
    Ceramic production system.
PCT/JP2018/007541 2017-02-28 2018-02-28 Method for observing inner structure of ceramic, method for producing ceramic, analysis system, and system for producing ceramic WO2018159689A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019503067A JP7153275B2 (en) 2017-02-28 2018-02-28 Analysis system and ceramic manufacturing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-037446 2017-02-28
JP2017037446 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159689A1 true WO2018159689A1 (en) 2018-09-07

Family

ID=63370036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007541 WO2018159689A1 (en) 2017-02-28 2018-02-28 Method for observing inner structure of ceramic, method for producing ceramic, analysis system, and system for producing ceramic

Country Status (2)

Country Link
JP (1) JP7153275B2 (en)
WO (1) WO2018159689A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740015A (en) * 2019-02-28 2021-04-30 地方独立行政法人神奈川县立产业技术综合研究所 Fluid sample internal structure observation device and internal structure analysis system, fluid sample internal structure observation method and internal structure analysis method, and ceramic manufacturing method
CN112819746A (en) * 2019-10-31 2021-05-18 合肥美亚光电技术股份有限公司 Nut kernel worm-eating defect detection method and device
US11257190B2 (en) * 2019-03-01 2022-02-22 Topcon Corporation Image quality improvement methods for optical coherence tomography
EP3855160A4 (en) * 2018-09-19 2022-06-01 Kyocera Corporation Observation method and observation device
US11408727B2 (en) * 2018-09-19 2022-08-09 Kyocera Corporation Observation method and observation apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041134A (en) * 2004-07-26 2006-02-09 National Institute Of Advanced Industrial & Technology Method and apparatus of degreasing using centrifugal field
JP2007523386A (en) * 2004-02-20 2007-08-16 ユニバーシティ・オブ・サウス・フロリダ Full color optical coherence tomography
US20160181470A1 (en) * 2014-12-18 2016-06-23 Trustees Of Princeton University High peak power quantum cascade superluminescent emitter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523386A (en) * 2004-02-20 2007-08-16 ユニバーシティ・オブ・サウス・フロリダ Full color optical coherence tomography
JP2006041134A (en) * 2004-07-26 2006-02-09 National Institute Of Advanced Industrial & Technology Method and apparatus of degreasing using centrifugal field
US20160181470A1 (en) * 2014-12-18 2016-06-23 Trustees Of Princeton University High peak power quantum cascade superluminescent emitter

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AVANAKI, M. R. N ET AL.: "A new algorithm for speckle reduction of optical coherence tomography images", PROCEEDINGS OF SPIE, vol. 83934, 2014, pages 893437.1 - 893437.9, XP060033564 *
STRAKOWSKI,M. ET AL.: "Polarization state analysis in optical coherence tomography", PROCEEDINGS OF SPIE, vol. 6347, 12 October 2006 (2006-10-12), XP055605575 *
TATAMI, JUNICHI ET AL.: "Three-dimensional realtime observation of ceramic slurries, compacts and sintered bodies using optical coherence tomography", PROCEEDINGS OF THE 2017 KANAGAWA MONOZUKURI TECHNOLOGY MEETING, vol. 29, 2017 *
UEMATSU, KEIZO ET AL: "Direct observation method for internal structure of ceramic green body", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 98, no. 5, 1990, pages 515 - 516, XP055612816 *
UEMATSU, KEIZO: "Direct Characterization of internal structures of granules and green bodies: liquid immersion technique", JOURNAL OF THE SOCIETY OF POWDER TECHNOLOGY JAPAN, vol. 28, no. 4, 1991, pages 251 - 256, XP055612814 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3855160A4 (en) * 2018-09-19 2022-06-01 Kyocera Corporation Observation method and observation device
US11408727B2 (en) * 2018-09-19 2022-08-09 Kyocera Corporation Observation method and observation apparatus
US11408726B2 (en) * 2018-09-19 2022-08-09 Kyocera Corporation Observation method and observation apparatus
CN112740015A (en) * 2019-02-28 2021-04-30 地方独立行政法人神奈川县立产业技术综合研究所 Fluid sample internal structure observation device and internal structure analysis system, fluid sample internal structure observation method and internal structure analysis method, and ceramic manufacturing method
US20220034778A1 (en) * 2019-02-28 2022-02-03 Kanagawa Institute Of Industrial Science And Technology Internal Structure Observation Device And Internal Structure Analysis System Of Fluid Sample, Internal Structure Observation Method And Internal Structure Analysis Method Of Fluid Sample, And Method For Manufacturing Ceramic
EP3933381A4 (en) * 2019-02-28 2023-01-04 Kanagawa Institute Of Industrial Science And Technology Fluid sample internal structure observation device and internal structure analysis system, fluid sample internal structure observation method and internal structure analysis method, and method for manufacturing ceramic
US11257190B2 (en) * 2019-03-01 2022-02-22 Topcon Corporation Image quality improvement methods for optical coherence tomography
US20220130021A1 (en) * 2019-03-01 2022-04-28 Topcon Corporation Image quality improvement methods for optical coherence tomography
CN112819746A (en) * 2019-10-31 2021-05-18 合肥美亚光电技术股份有限公司 Nut kernel worm-eating defect detection method and device
CN112819746B (en) * 2019-10-31 2024-04-23 合肥美亚光电技术股份有限公司 Nut kernel worm erosion defect detection method and device

Also Published As

Publication number Publication date
JPWO2018159689A1 (en) 2019-12-19
JP7153275B2 (en) 2022-10-14

Similar Documents

Publication Publication Date Title
WO2018159689A1 (en) Method for observing inner structure of ceramic, method for producing ceramic, analysis system, and system for producing ceramic
Sarthou et al. Wet‐route synthesis and characterization of Yb: CaF2 optical ceramics
JP2022036191A (en) Zirconia sintered body and manufacturing method therefor
JP7062900B2 (en) Zirconia powder and its manufacturing method
Ivanov et al. YAG and Y 2 O 3 laser ceramics from nonagglomerated nanopowders
Shahbazi et al. Optimizing the gel-casting parameters in synthesis of MgAl2O4 spinel
Moghtada et al. Tetragonality enhancement in BaTiO3 by mechanical activation of the starting Ba CO 3 and TiO2 powders: Characterization of the contribution of the mechanical activation and postmilling calcination phenomena
Wu et al. Laser‐quality Tm:(Lu0. 8Sc0. 2) 2O3 mixed sesquioxide ceramics shaped by gelcasting of well‐dispersed nanopowders
Liu et al. Effect of solid loading on the property of Al2O3 ceramics in stereolithographic additive manufacturing
Polisadova et al. Pulse cathodoluminescence of the impurity centers in ceramics based on the MgAl 2 O 4 spinel
He et al. Dispersion of nano-sized yttria powder using triammonium citrate dispersant for the fabrication of transparent ceramics
CN116635332A (en) Zirconia presintered body
Uematsu Processing defects in ceramic powders and powder compacts
Mehra et al. A novel technique for producing three-dimensional data using serial sectioning and semi-automatic image classification
Takahashi et al. In situ observation of evolution of internal structure of alumina during sintering by swept‐source OCT
Porozova et al. Role of nanopowder agglomerates in forming the structure and properties of ceramic materials
JP6862702B2 (en) Zirconia calcined body and its manufacturing method
JP2017128471A (en) Zirconia powder and method for producing the same
Basiri et al. Optimization of spray freeze drying parameters for spark plasma sintering of transparent MgAl2O4 spinel
US20220034778A1 (en) Internal Structure Observation Device And Internal Structure Analysis System Of Fluid Sample, Internal Structure Observation Method And Internal Structure Analysis Method Of Fluid Sample, And Method For Manufacturing Ceramic
JP7141055B2 (en) Ceramic internal structure observation apparatus and internal structure analysis system, ceramic internal structure observation method and internal structure analysis method, and ceramic manufacturing method
Porozova et al. Optimization of Sol-Gel Conditions for Producing Zirconium Dioxide Nanopowders
JP7408567B2 (en) Method for producing needle coke powder, needle coke powder, method for producing graphite compact, graphite compact, and graphite electrode
Liu et al. Gelling behavior of MgAl2O4 slurries with a common dispersant
Porozova et al. Surface composition and structure of highly porous materials based zirconia stabilized with yttria

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503067

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760472

Country of ref document: EP

Kind code of ref document: A1