WO2018159680A1 - Pump device and maintenance method for pump device - Google Patents

Pump device and maintenance method for pump device Download PDF

Info

Publication number
WO2018159680A1
WO2018159680A1 PCT/JP2018/007510 JP2018007510W WO2018159680A1 WO 2018159680 A1 WO2018159680 A1 WO 2018159680A1 JP 2018007510 W JP2018007510 W JP 2018007510W WO 2018159680 A1 WO2018159680 A1 WO 2018159680A1
Authority
WO
WIPO (PCT)
Prior art keywords
main shaft
lubricant
bearing
pump device
peripheral surface
Prior art date
Application number
PCT/JP2018/007510
Other languages
French (fr)
Japanese (ja)
Inventor
誠 安田
学 沼田
岡本 茂
Original Assignee
株式会社 荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018033087A external-priority patent/JP7023742B2/en
Application filed by 株式会社 荏原製作所 filed Critical 株式会社 荏原製作所
Priority to CN201880013202.6A priority Critical patent/CN110325744B/en
Publication of WO2018159680A1 publication Critical patent/WO2018159680A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip

Definitions

  • the present invention relates to a pump device and a maintenance method for the pump device.
  • the pump device supports a rotating main shaft with a bearing, and a lubricant is used for the bearing. If the pump device continues to be used, the bearing lubricant may leak out of the pump device due to deterioration over time, which may contaminate the surroundings and increase the number of maintenance such as replenishment or replacement of the lubricant.
  • Japanese Patent Publication No. 61-46679 Japanese Utility Model Publication No. 1-115069 JP-A-8-254213 Japanese Patent No. 5980217 Japanese Patent No. 5950997 Japanese Utility Model Publication No.59-116631 Japanese Patent No. 6073746
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a pump maintenance method for suppressing the leakage of the lubricant to the outside of the pump device, and to reduce the leakage of the lubricant to the outside of the pump device. It is an object to provide a manufacturing method of a lubricant leakage suppressing pump and a pump device capable of suppressing the leakage of the lubricant to the outside of the pump device.
  • an oil seal that is disposed at a position where a lubricant from a bearing that rotatably supports a main shaft that rotates in a predetermined direction can be scattered and slides on an outer peripheral surface of the main shaft is disposed on the main shaft.
  • a maintenance method for a pump device comprising: a step of forming a groove inclined in a direction in which the lubricant on the sliding surface is pushed back to the bearing side; and a step of attaching an oil seal to the main shaft.
  • the groove may be formed in at least a part of the sliding surface.
  • the groove may be formed in at least a part of the bearing side from the sliding surface. This increases the effect of pushing back the lubricant.
  • the step of separating, the step of forming the groove, and the step of attaching the oil seal may be performed on the pump device in which a predetermined amount or more of the lubricant leaks from the sliding surface to the opposite side of the bearing. Such maintenance prevents the lubricant from leaking to the opposite side of the bearing.
  • the method may include a step of removing the impeller from the main shaft, a step of removing the body cover from the bearing body, and a step of removing a shaft seal device provided on the main shaft, followed by the step of separating. . In this way, maintenance of the main shaft in the pump including the impeller, the pump body, and the body cover can be performed.
  • a lubricant leakage suppression pump comprising: a step of forming a groove inclined in a direction in which the lubricant is pushed back to the bearing side; and a step of attaching an oil seal to the main shaft.
  • a pump, a main shaft for rotating the impeller of the pump in a predetermined direction to send a carrier liquid by the operation of the pump, and the main shaft are rotatably supported.
  • the pump apparatus comprising: a bearing; and an oil seal that slides on the outer peripheral surface of the main shaft and prevents the lubricant from leaking from the sealed fluid side to the atmosphere side along the outer peripheral surface of the main shaft.
  • An oil seal is disposed at a position where the lubricant from the bearing scatters, and an outer peripheral surface of the main shaft on the outer side of the main shaft from the oil seal when the pump is operated.
  • a pump device is provided, characterized in that a groove inclined in a direction in which the lubricant exposed to the surface is pushed back to the sealed fluid side is provided. Since such a groove is provided in the main shaft, the lubricant is pushed back to the bearing side by the pumping action, so that leakage of the lubricant can be suppressed. Further, since the lubricant from the bearing is scattered on the oil seal, the sliding between the oil seal and the main shaft can be kept good.
  • the inclined groove forms a first flow in which the lubricant is pushed back to the bearing side, and a second flow in which the lubricant from the bearing reaches the sliding surface. It is desirable that a predetermined amount of the lubricant be interposed on the sliding surface between the oil seal and the outer peripheral surface of the main shaft. The leakage of the lubricant is suppressed by the first flow, and the sliding between the oil seal and the main shaft can be favorably maintained by the second flow.
  • the inclined groove is preferably provided in at least a part of the outer peripheral surface of the main shaft on the atmosphere side. With such a groove, the lubricant can be pushed back to the bearing side by a pumping action.
  • the inclined groove is provided on a sliding surface with the oil seal on the outer peripheral surface of the main shaft.
  • the inclined groove is preferably provided in at least a part of the outer peripheral surface of the main shaft on the sealed fluid side. This increases the effect of pushing back the lubricant.
  • a main shaft for rotating an impeller that pressurizes the carrier liquid by driving a driving device in a predetermined direction, a bearing that rotatably supports the main shaft, and the main shaft include: And a seal member that prevents the lubricant of the bearing from passing through the outer peripheral surface of the main shaft and leaking from the sealed fluid side to the atmosphere side, and the bearing cover is scattered from the bearing.
  • the lubricant is configured to flow through the bearing cover and to the seal member, and the lubricant on the outer peripheral surface of the main shaft rotates from the atmosphere side when the main shaft rotates on the outer peripheral surface of the main shaft.
  • a pump device is provided in which an inclined groove is provided so as to be returned to the sealed fluid side.
  • the lubricant supplied from the bearing through the bearing cover to the seal member via the bearing cover is formed with fine grooves on the spindle, which increases the contact area between the spindle and the lubricant. Since the lubricant exposed to the outer peripheral surface of the main shaft on the atmosphere side is returned from the seal member to the bearing side by the pumping action, the lubricant can be prevented from leaking from the seal member to the atmosphere side.
  • the pump device is preferably a horizontal shaft type pump device. Thereby, while the main shaft is stationary, the pump device can seal the sealed fluid by the action of the seal member.
  • the groove on the outer peripheral surface of the main shaft in the horizontal shaft type pump device has an increased tolerance for surface roughness and machining accuracy.
  • the inclined groove is provided in at least a part of a region adjacent to the atmosphere side with respect to a region facing the seal member on the outer peripheral surface of the main shaft.
  • the inclined groove preferably extends from the atmosphere side to the sealed fluid side in the outer peripheral surface of the main shaft. As a result, the lubricant is returned to the bearing side as the main shaft rotates.
  • the oil level of the lubricant is preferably at a liquid level below the main shaft. Thereby, when the main shaft is stationary, the lubricant does not leak to the atmosphere side along the inclined groove of the main shaft.
  • the seal member is an oil seal incorporated into the bearing cover, and the bearing cover has a sliding portion between the oil seal and the outer peripheral surface of the main shaft by the lubricant scattered from the bearing passing through the bearing cover. It is desirable to be configured to be supplied between. As a result, the lubricant splashed from the bearing passes through the bearing cover, and the lubricant is supplied between the sliding portion between the oil seal and the outer peripheral surface of the main shaft, so that the sliding between the oil seal and the main shaft can be kept good. it can.
  • the inclined groove is formed, the lubricant exposed from the seal member to the outer peripheral surface of the main spindle on the atmosphere side is pushed back to the bearing side by the pumping action, so that the lubricant leaks from the seal member to the atmosphere side. Can be suppressed.
  • the inclined groove is provided in at least a part of the atmosphere side contacting between the oil seal and the sliding portion of the outer peripheral surface of the main shaft.
  • the inclined groove is provided in a sliding portion between the oil seal and the outer peripheral surface of the main shaft.
  • the inclined groove is preferably provided in at least a part of the outer peripheral surface of the main shaft on the sealed fluid side. This increases the effect of returning the lubricant on the outer peripheral surface of the main shaft to the bearing side.
  • the bearing cover preferably has a structure for guiding the lubricant scattered on the bearing cover to the seal member on a surface on the bearing side. Thereby, the lubricant scattered from the bearing can be guided to the seal member.
  • the surface including at least the ceiling surface portion of the inner peripheral surface of the bearing cover is moved toward the main shaft as it approaches the seal member along the major axis direction of the main shaft. It is desirable to be inclined so as to approach. Thereby, the lubricant scattered from the bearing can be guided to the seal member.
  • the bearing cover preferably includes a bearing cover main body and a guide member for guiding the lubricant scattered from the bearing to the seal member as a structure for guiding the lubricant to the seal member. Thereby, the lubricant scattered from the bearing can be guided to the seal member.
  • the guide member is provided on the inner peripheral surface including the uppermost part of the inner peripheral surface of the bearing cover body, and has a protrusion shape extending to the seal member along the major axis direction of the main shaft, It is desirable that the surface of the guide member that faces the main shaft be inclined so as to approach the main shaft as it approaches the seal member along the major axis direction of the main shaft. Thereby, the lubricant flows along the inclination of the surface facing the main shaft of the guide member, so that the lubricant can be supplied to the seal member.
  • the guide member is provided on an inner peripheral surface of the bearing cover main body, has a protrusion shape extending to the seal member along the major axis direction of the main shaft, and is parallel to the major axis direction of the main shaft and In the vertical cross section including the guide member, it is desirable that they are arranged substantially horizontally.
  • the lubricant scattered from the bearing adheres to the upper surface of the inner peripheral surface of the bearing cover body, and then falls on the guide member along the circumferential direction of the inner surface of the bearing cover body.
  • the lubricant that has fallen on the guide member moves along the guide member to the seal member due to inertia. In this way, the lubricant can be supplied to the seal member.
  • the guide member is provided on an inner peripheral surface of the bearing cover main body, has a protrusion shape extending to the seal member along the major axis direction of the main shaft, and is parallel to the major axis direction of the main shaft and In a vertical cross section including the guide member, it is desirable that it is inclined downward as it approaches the seal member along the major axis direction of the main shaft.
  • the lubricant scattered from the bearing adheres to the upper surface of the inner peripheral surface of the bearing cover main body, and then falls on the guide member along the inner peripheral surface of the bearing cover main body in the circumferential direction.
  • the lubricant that has fallen on the guide member moves along the guide member to the seal member according to the inclination provided on the guide member. In this way, the lubricant can be supplied to the seal member.
  • the lubricant scattered from the bearing hits the bearing cover, falls on the main shaft, and the lubricating oil that has fallen on the main shaft by the deflector member is again blown to the bearing cover by centrifugal force.
  • the skipped lubricant is supplied to the seal member through the bearing cover. Thereby, the lubricant is supplied to the sliding surfaces of the seal member and the main shaft. This lubricant is returned to the bearing side by the pumping action of the groove formed on the surface of the main shaft.
  • the pump device has variable speed means, and the drive unit is driven by the variable speed means.
  • a main shaft for rotating an impeller that pressurizes the carrier liquid by driving a driving device in a predetermined direction, a bearing that rotatably supports the main shaft, and the main shaft include: And a seal member that prevents the lubricant of the bearing from passing through the outer peripheral surface of the main shaft and leaking from the sealed fluid side to the atmosphere side, and the bearing cover is scattered from the bearing.
  • a maintenance method for a pump device configured to allow the lubricant to flow through the bearing cover to the seal member, wherein a seal member that slides with an outer peripheral surface of the main shaft is connected to the seal member on the main shaft.
  • a maintenance method of pumping devices and a step of attaching the sealing member to the main shaft is provided. Such maintenance suppresses the lubricant from leaking to the atmosphere side of the seal member.
  • Lubricant leakage in the seal member that prevents the lubricant from leaking from the sealed fluid side to the atmosphere side is suppressed.
  • FIG. 3 is an enlarged cross-sectional view of the vicinity of a main shaft 1, an oil seal 11, and a bearing 2 that are maintenance targets according to the present embodiment.
  • 2B is an enlarged view of the vicinity of the oil seal 11 in FIG. 2A (the broken line portion in FIG. 2A).
  • the expanded sectional view of the main shaft 1, the oil seal 11, and the bearing 2 vicinity after a maintenance The figure which expanded further the oil seal 11 vicinity of FIG. 3A (dashed line part of FIG. 3A) further.
  • FIG. 3B Process drawing which shows the maintenance procedure of a pump.
  • the schematic sectional drawing of the pump which shows a maintenance process The schematic sectional drawing of the pump which shows a maintenance process following FIG.
  • the schematic sectional drawing of the pump which shows a maintenance process following FIG. The schematic sectional drawing of the pump which shows a maintenance process following FIG.
  • the schematic sectional drawing of the pump which shows a maintenance process following FIG. The schematic sectional drawing of a pump apparatus with few lubricating oil leaks.
  • the schematic sectional drawing of the pump used as the maintenance object in 2nd Embodiment The schematic exploded perspective view of the pump used as the maintenance object in 2nd Embodiment.
  • Process drawing which shows the maintenance procedure of a pump.
  • the schematic sectional drawing of the pump which shows a maintenance process The schematic sectional drawing of the pump which shows a maintenance process following FIG.
  • the schematic sectional drawing of the pump which shows a maintenance process following FIG. The schematic sectional drawing of the pump which shows a maintenance process following FIG.
  • the schematic sectional drawing of the pump which shows a maintenance process following FIG. The schematic sectional drawing of a pump apparatus with few lubricating oil leaks. It is a table
  • FIG. 30 is a cross-sectional view taken along the line B-B ′ of FIG. 29.
  • FIG. 31 is a cross-sectional view taken along arrow A of the pump device of FIG. 27 in the pump device according to Modification 2 of the fifth embodiment.
  • FIG. 32 is a cross-sectional view taken along the line C-C ′ of FIG. 31.
  • It is a schematic diagram which shows schematic structure of the pump apparatus which concerns on 6th Embodiment. It is DD sectional drawing of FIG. It is sectional drawing which shows the structure of a part of pump apparatus which concerns on 7th Embodiment.
  • the pump device 101 includes a pump 100 including an impeller 30, a pump body 32, and a body cover 21, a main shaft 1, bearings 2 and 3, a bearing body 4, bearing covers 5 and 6, and an oil seal 11, 12, etc. Further, the pump body 32 includes a suction port 32-2 and a discharge port 32-1 for the transport liquid.
  • the pump device 101 is often installed in a machine room, a pump room, a factory facility, or the like that is distinguished from a residence or a commercial space.
  • the main shaft 1 is attached to one end side (the right side in FIG. 1A and FIG. 1B) with an impeller 30 and is connected to the main shaft end 20 (the left side) on the other end side via a coupling. It is comprised so that the rotating shaft of an electric motor (not shown) may be connected.
  • the pump 100 When the pump 100 is operated, the pump 100 is driven by the electric motor to rotate in a predetermined direction, so that the pump 100 converts the carrier liquid flowing in from the suction port 32-2 into a centrifugal force due to the rotation of the impeller 30. And pressurize to flow out to the discharge port 32-1.
  • the pump device 101 is a horizontal shaft type pump device in which a main shaft 1 is covered with a bearing body 4 and extends in a substantially horizontal direction, and is rotatably supported by two bearings 2 and 3 arranged at intervals. is there.
  • a bearing cover 5 through which the main shaft 1 passes is attached to the bearing body 4 by bolts 10 a on the main shaft end 20 side of the bearing 2.
  • a bearing cover 6 through which the main shaft 1 passes is attached to the bearing body 4 by bolts 10b.
  • the main shaft 1 is a large-diameter shaft 1a between the bearing 2 on the main shaft end 20 side and the bearing 3 on the impeller 30 side.
  • the vertical surface of the bearing 2 on the impeller 30 side is in contact with one end of the large-diameter shaft 1a.
  • the motor-side vertical surface of the bearing 3 is in contact with the other end of the large-diameter shaft 1a.
  • the outer surfaces of the bearings 2 and 3 are sandwiched from both sides by the protruding portions 7 of the bearing covers 5 and 6 attached to the bearing body 4.
  • the lubricant is stored between the bearings 2 and 3 in the bearing body 4, and at the time of operation of the pump 100, at least a part of the bearings 2 and 3 must be immersed in the lubricant.
  • the lubricant in the bearing body 4 evaporates due to the temperature rise. Therefore, the bearing body 4 has a cap 14 for removing air and an oil gauge 15 for checking the reduction of the lubricant. Is provided. Further, the lubricant can be discharged out of the bearing body 4 by removing the plug 16.
  • liquid lubricant is used, but semi-solid grease may be used. As the pump 100 is operated, the bearings 2 and 3 become hot and the grease is liquefied.
  • Oil seals 11 and 12 are respectively incorporated in the bearing covers 5 and 6 in order to prevent the lubricant from leaking outside along the outer peripheral surface of the main shaft 1.
  • a draining ring 13 may be fitted to the main shaft 1 outside the bearing cover 6.
  • a wave washer 9, which is a kind of elastic washer, is preferably interposed between the vertical surface outside the bearing 3 and the bearing cover 6. A compressive stress is applied to the wave washer 9 by the tightening force of the bolt 10 b, and a reaction force to the motor side acts on the main shaft 1 via the bearing 3.
  • a fishing gear 17 is attached to the upper part of the bearing body 4.
  • the bearing body 4 is supported by a support base 18. Although the bearing body 4 covers the bearings 2 and 3, an opening 4a is provided in part (see FIG. 1B).
  • the impeller 30 side of the bearing body 4 is fixed to the intermediate plate 37 by bolts 36.
  • the intermediate plate 37 is fixed to the pump body 32 that houses the impeller 30 by bolts 38. Thereby, the bearing body 4 and the pump body 32 are integrated. Gaskets are interposed between the bearing body 4 and the intermediate plate 37 and between the intermediate plate 37 and the pump body 32 for sealing.
  • a body cover 21 through which the main shaft 1 passes is provided on the main shaft 1 side of the pump body 32.
  • a shaft seal device is applied to the through portion of the body cover 21.
  • FIG. 1 shows an example in which the gland packing 23 is used as the shaft seal device, a mechanical seal may be used. Since the shaft seal portion generates rotational friction, a shaft sleeve 25 for the gland packing 23 is fitted to the main shaft 1, and the gland packing is interposed between the shaft sleeve 25 and the tubular portion 21 a of the body cover 21. The gland packing 23 is fastened by bolts 29 through the presser 28.
  • An impeller 30 is fitted into a key 19 provided at the tip of the main shaft 1 and is fixed by a nut 31.
  • a liner ring 33 is provided between the shroud side I of the impeller 30 and the pump body 32, and a liner ring 34 is provided between the back shroud side B and the body cover 21.
  • a plurality of balance holes 35 are formed near the boss portion of the impeller 30.
  • FIG. 2A is an enlarged cross-sectional view of the vicinity of the main shaft 1, the oil seal 11 and the bearing 2 of the pump device 101 according to the present embodiment.
  • FIG. 2B is the figure which expanded further the oil seal 11 vicinity (FIG. 2A broken line part) of FIG. 2A.
  • the main shaft 1 rotates the impeller 30 in a predetermined direction (clockwise as viewed from the electric motor side (left side in FIG. 2A) in this example), so that the pump 100 can function as a liquid transport machine. I can do it.
  • the space S is surrounded by a horizontal plane including the radial center of the main shaft 1, the oil seal 11, the bearing cover 5, and the bearing 2.
  • the space surrounded by the outer peripheral surface of the main shaft 1, the oil seal 11, the bearing cover 5, the bearing 2, and the oil surface OL of the lubricant is filled with lubricant as mist.
  • the pump device 101 is a horizontal shaft type pump device, the axis of the main shaft 1 is substantially horizontal and substantially parallel to the oil surface OL of the lubricant.
  • the lubricant is periodically replaced or replenished during maintenance, and the oil level OL of the lubricating oil is near the center of the oil gauge 15, specifically, below the lower end of the main shaft 1 and the bearings 2, 3.
  • the pump 100 is operated in a state where a part of the bearings 2 and 3 located at a position lower than the main shaft 1 is immersed in the lubricating oil.
  • the reinforcing ring 11a has a substantially L-shaped radial cross section, and a seal lip member 11b is attached to the reinforcing ring 11a in an annular shape.
  • the main shaft 1 side of the seal lip member 11b has an approximately inverted cross-sectional shape, and an edge-shaped portion corresponding to the apex of the triangle forms a lip 11d.
  • the lip 11d is deformed when pressed on the outer peripheral surface of the main shaft 1, and slides on the outer peripheral surface of the main shaft 1 with a predetermined axial contact width.
  • a garter spring 11c that presses the lip 11d against the outer peripheral surface of the main shaft 1 is mounted on the outer periphery of the lip 11d.
  • the lip 11d slides on the outer peripheral surface of the main shaft 1, a lubricant is required between the sliding portions of the lip 11d and the main shaft 1. With the lubricant, heat generation due to friction of the sliding surface can be suppressed, and the life of the oil seal 11 and the main shaft 1 can be extended. As the lubricant between the sliding portions of the lip 11d and the main shaft 1, the lubricant in the bearing body 4 is used. Further, if the heat generated in the bearings 2 and 3 in the continuous operation of the pump 1 is transmitted to the lip 11d through the main shaft 1, the lip 11d may be cured and the life may be shortened. A predetermined distance is required between 11.
  • the sliding portion between the outer peripheral surface of the main shaft 1 and the oil seal 11 (pressure contact surface between the lip 11d and the outer peripheral surface of the main shaft 1) is divided into two spaces on the main shaft end 20 side and the bearing 2 side.
  • the space on the bearing 2 side of the oil seal 11 including the space S as the first space is referred to as the sealed fluid side, and the space outside the pump device 101 and on the spindle end 20 side from the oil seal 11 as the second space is the atmosphere. Called the side.
  • the pump device 101 may be used in a high temperature installation environment such as a pump room, or may be used in a factory facility that operates for 24 hours. Under such an environment, when the pump 100 is continuously operated, the lubricant at the sliding portion between the rotating member and the fixed member of the bearing 2 becomes high temperature, and the viscosity of the lubricant is lowered. There is a risk that the amount of lubricant leakage increases from the fluid side to the atmosphere side.
  • the lip groove 1b is formed on the sliding surface on the outer peripheral surface of the main shaft 1 due to deterioration over time, or the pressure of the garter spring 11c is weakened, so that the pressure of the lip 11d on the main shaft 1 is weakened, and the lubricant is removed.
  • the amount of leakage increases from the sealed fluid side to the atmosphere side.
  • the lubricant is used as the main shaft. 1 is acceptable as long as the main shaft 1 is moistened along the surface of 1.
  • the lubricant may hang down from the main shaft 1 or may be splashed by the centrifugal force caused by the rotation of the main shaft 1 to contaminate the surroundings.
  • the lubricant stored in the bearing body 4 is reduced, and the frequency of maintenance such as replenishment and replacement of the lubricant is increased.
  • FIG. 3A is an enlarged cross-sectional view of the vicinity of the main shaft 1, the oil seal 11, and the bearing 2 in the present embodiment shown in FIG. 3B is an enlarged view of the vicinity of the oil seal 11 in FIG. 3A (the broken line portion in FIG. 3A).
  • an inclined groove 1 c (unevenness) is formed on the outer peripheral surface of the main shaft 1.
  • the groove 1c is preferably formed over the entire circumference, but there may be a part where the groove 1c is not provided.
  • the recesses and projections of the groove 1c are desirably formed at regular intervals, but the recesses and projections may be formed at irregular intervals.
  • the direction of the inclination of the groove 1c can be said to be the direction in which the first flow FL1 is formed which is a lubricant flow that returns the lubricant on the sliding surface to the bearing 2 side when the main shaft 1 rotates. .
  • the pump 100 is operated in a state where the oil level OL of the lubricant is lower than the lower end of the main shaft 1 as described above, the pump device 101 is separated from the bearing 2 in the space S during the operation of the pump 100.
  • the oil seal 11 may be disposed at a position where the lubricant is scattered on the bearing cover 5 and the lubricant on the sliding surface between the lip 11d and the outer peripheral surface of the main shaft 1 exists.
  • the main shaft 1 of the oil seal 11 is adjusted by adjusting the position of the bearing cover 5 by adjusting the tightening force of the bolt 10 a and the thickness of the protruding portion 7. It is good to adjust the upper arrangement position.
  • the distance between the bearing 2 and the oil seal 11 is not less than the predetermined distance described above.
  • the distance between the bearing 2 and the oil seal 11 is about 5 to 50 mm.
  • One or a plurality of bolts 10a and protruding portions 7 may be used.
  • a second flow FL2 which is a flow of lubricant flowing on the sliding surface with the surface, is formed.
  • the lubricant is supplied to the oil seal 11 by the second flow FL2, and the lubricant is returned to the bearing body 4 by the first flow FL1, which is the flow of the lubricant by the groove 1c.
  • the oil seal 11 is disposed at a position where the lubricant from the bearing 2 scatters, and the outer peripheral surface of the main shaft 1 is disposed on the outer peripheral surface of the main shaft 1 from the oil seal 11 when the pump 100 is operated.
  • a groove 1c inclined in a direction in which the exposed lubricant is pushed back to the sealed fluid side is provided. Therefore, it is possible to prevent the lubricant from leaking to the atmosphere side while maintaining good sliding between the oil seal 11 and the outer peripheral surface of the main shaft 1.
  • the inclined groove 1c is provided in at least a part of a region adjacent to the atmosphere side with respect to the region facing the oil seal 11 on the outer peripheral surface of the main shaft 1. That is, the groove 1c may be formed on the atmosphere side at least adjacent to the sliding surface with the oil seal 11 on the outer peripheral surface of the main shaft 1 (reference A in FIG. 3B). Thereby, when the main shaft 1 rotates, an air flow is generated by the groove 1c, and an effect of pushing back the lubricant leaked to the atmosphere side by the lubricant flow FL1 is obtained.
  • the inclined groove 1 c is provided on the sliding surface with the oil seal 11 on the outer peripheral surface of the main shaft 1. That is, the groove 1c may be formed or extended on at least a part of a sliding surface (or lip groove 1b) with the lip 11d on the outer peripheral surface of the main shaft 1 (reference numeral B in FIG. 3B).
  • the pressure of the seal portion on the sliding surface that slides relatively decreases, and bubbles are generated in the oil film of the lubricant in the groove 1c on the sliding surface of the lip 11d and the main shaft 1.
  • the lip 11d, the main shaft 1 and the sliding surface can be reduced in friction (also referred to as “low friction”). Thereby, friction and wear between the lip 11d and the outer peripheral surface of the main shaft 1 can be reduced.
  • the inclined groove 1c is provided in at least a part of the outer peripheral surface of the main shaft 1 on the sealed fluid side. That is, the groove 1c is adjacent to the sliding surface with the oil seal 11 on the outer peripheral surface of the main shaft 1, and may be formed or further extended in at least a part on the sealed fluid side (reference numeral in FIG. 3B). C).
  • the lubricant can be returned to the bearing 2 more.
  • the oil surface OL of the lubricant is lower than that of the main shaft 1. The lubricant pushed back from the side can be quickly returned into the bearing 2 along the side surface 2-1 of the bearing 2 positioned below the main shaft 1 through the groove 1c.
  • the oil seal 11 is disposed at the position where the groove 1c is formed and the lubricant from the bearing 2 is scattered on the oil seal 11, thereby preventing the lubricant from being scattered outside and contaminating the surroundings, or the pump device.
  • Maintenance work for replenishing or replacing the lubricant to the bearing body 4 due to the leakage of the lubricant in 101 can be reduced.
  • the sealing performance can be ensured by returning the lubricant to the sealed fluid side by the first flow FL1, and as a result, the replacement life of the oil seal 11 is increased. Can be long.
  • a shaft sleeve (not shown) may be used at a position including at least the sliding surfaces of the oil seals 11 and 12 in the main shaft 1 for protecting the sliding surface of the main shaft 1.
  • the main shaft 1 is fitted in the shaft sleeve, and the main shaft 1 and the shaft sleeve rotate concentrically in the radial direction. Therefore, the shaft sleeve is a part of the main shaft.
  • the formation of the groove 1c and the lubricant from the bearing 2 or 3 are applied to the oil seal 11 ′ or 11 ′′.
  • the pump device 101 using a single-stage single-suction centrifugal pump has been described as an example.
  • any pump device particularly an oil bath type bearing using a lubricant, and a bearing lubricant are sealed.
  • the groove 1c and the arrangement of the bearing and the oil seal on the outer peripheral surface of the main shaft 1 according to the present embodiment can be applied to a horizontal shaft type pump device provided with an oil seal and a horizontal shaft pump.
  • the following maintenance can be performed on the pump apparatus 101 in FIG. 1 in which a predetermined amount or more of the lubricant leaks to the atmosphere side due to deterioration over time. That is, the oil seal 11 and the main shaft 1 in FIG. 2A and FIG. 2B are separated, and a groove 1c as shown in FIG. 3A and FIG. By attaching the oil seal 11 and the main shaft 1, the pump device 101 shown in FIG. 10 is obtained.
  • the oil seal 11 does not have to be completely separated from the main shaft 1. It is good also as a process separated from the sliding surface with the oil seal in the outer peripheral surface of the main shaft 1 by sliding the oil seal 11 on the main shaft 1.
  • FIG. 3A is an enlarged sectional view of the vicinity of the main shaft 1, the oil seal 11 and the bearing 2 after maintenance.
  • 3B is an enlarged view of the vicinity of the oil seal 11 in FIG. 3A (the broken line portion in FIG. 3A).
  • an inclined groove 1 c (unevenness) is formed on the outer peripheral surface of the main shaft 1.
  • the inclination direction of the groove 1c is inclined in a direction that increases from the motor side toward the bearing 2 side.
  • the inclination direction of the groove 1c is a direction in which the air-side lubricant is returned to the bearing 2 side when the main shaft 1 rotates. Thereby, it can suppress that a lubricant leaks.
  • the groove 1c is formed at least on the atmosphere side of the main shaft 1, an effect of pushing back the lubricant can be obtained by generating an air flow by the groove 1c when the main shaft 1 rotates.
  • the groove 1c may be formed or extended on at least a part of the sliding surface (or lip groove 1b) of the main shaft 1 (reference numeral B in FIG. 3B). Thereby, the friction between the oil seal 11 and the main shaft 1 can be reduced. Further, the groove 1c may be formed or extended from the sliding surface (or lip groove 1b) of the main shaft 1 to at least a part on the bearing 2 side (reference numeral C in FIG. 3B). This further increases the effect of pushing back the lubricant.
  • the oil seal 11 and the bearing 2 are arranged at a position where the lubricant scattered from the bearing 2 reaches the sliding surface between the oil seal 11 and the outer peripheral surface of the main shaft 1. Then, when the main shaft 1 rotates, a part of such a lubricant is pushed back to the bearing 2 side. As a result, leakage of the lubricant is suppressed, and an appropriate amount of lubricant is interposed on the sliding surface between the oil seal 11 and the main shaft 1.
  • Such maintenance can also be applied to the outer peripheral surface of the main shaft 1 facing the bearing 3 and the oil seal 12 and the bearing 3 and the oil seal 12 arranged on the impeller 30 side in FIG. 1. That is, the sliding surface between the oil seal 12 and the outer peripheral surface of the main shaft 1 is separated, and the groove 1c inclined from the sliding surface between the oil seal 12 and the main shaft 1 to the impeller 30 side (opposite side of the bearing 3) is formed. May be.
  • the inclination direction of the groove 1c is a direction in which the lubricant on the sliding surface is returned to the bearing 3 side when the main shaft 1 rotates, and is opposite to the groove 1c formed on the bearing 2 side.
  • FIG. 3C is an enlarged view when an oil seal 11 ′ different from FIG. 3B is applied.
  • a sealing sleeve 80 is provided as a part of the main shaft 1.
  • the seal lip member 81 includes an outer joint metal ring 82 having a substantially L-shaped cross section and an inner side having a substantially L-shaped cross section. Is held between the presser metal ring 83.
  • a cylindrical lip 84 is formed on the inner peripheral side of the seal lip member 81, and this cylindrical lip 84 corresponds to the lip 11 d of FIG.
  • the groove 1 c may be formed in the sealing sleeve 80 that is a part of the main shaft 1.
  • FIG. 3D is an enlarged view when an oil seal 11 ′′ different from that in FIG. 3B is applied.
  • the oil seal 11 ′′ has a cylindrical portion 92.
  • the cylindrical portion 92 prevents foreign matter from entering the oil seal 11 ′′. Therefore, it is possible to reduce wear of the sliding surfaces on the lip portion of the oil seal 11 ′′ and the outer peripheral surface of the main shaft 1 due to the mixing of foreign matter from the atmosphere side.
  • FIG. 4 is a process diagram illustrating a maintenance procedure of the pump device 101. Note that FIG. 4 is merely an example of a procedure, and each step may be appropriately replaced or omitted.
  • Step S1 disconnect from the motor (not shown).
  • step S2 the plug 16 is removed and the lubricant is removed from the bearing body 4 (step S2).
  • step S3 the bolt 38 for the pump body 32 is removed, and the intermediate plate 37, the body cover 21 and the bearing body 4 are removed from the pump body 32 (step S3). As a result, the state shown in FIG. 5 is obtained.
  • step S4 the nut 31 for the impeller 30 is removed, and the impeller 30 is removed from the main shaft 1 (step S4).
  • step S5 the key 19 on the impeller 30 side is removed from the main shaft 1.
  • step S5 the state shown in FIG. 6 is obtained.
  • step S5 the bolt 36 is removed, and the intermediate plate 37 and the body cover 21 are removed from the bearing body 4 (step S5).
  • step S6 the bolts 29 for the gland packing 23 are removed, and the gland packing 23 is removed (step S6). As a result, the state shown in FIG. 7 is obtained.
  • step S7 the draining ring 13 is extracted from the main shaft 1
  • step S8 the bolts 10a and 10b for the bearing covers 5 and 6 are removed, the bearing covers 5 and 6 and the oil seals 11 and 12 are removed from the bearing body 4, and the main shaft 1 is pulled out (step S8).
  • the state shown in FIG. 8 is obtained. In this way, the main shaft 1 and the oil seals 11 and 12 are separated.
  • the rotation state of the bearings 2 and 3 is inspected, and if the rotation is not smooth, the bearings 2 and 3 are replaced.
  • the groove 1c described with reference to FIGS. 3A and 3B is formed in the vicinity of the bearings 2 and 3 in the main shaft 1 (step S9).
  • the state shown in FIG. 9 is obtained.
  • the groove 1 c is formed by scratching the outer peripheral surface of the main shaft 1.
  • the groove 1c is preferably formed over the entire circumference, but there may be a part where the groove 1c is not provided.
  • the groove 1c may not be formed in the main shaft 1, but the groove 1c may be provided in advance on the outer peripheral surface of the main shaft 1 of a new pump.
  • the pump device 101 using the single-stage single-suction centrifugal pump has been described as an example.
  • any pump device, in particular, an oil bath type bearing using a lubricant, an oil seal, and a horizontal shaft pump are used. This embodiment can be applied to a horizontal shaft type pump device provided with
  • the pump device 101 that has been maintained according to the above-described procedure can reduce maintenance work for replenishment or replacement of lubricant due to lubricant leakage. Further, even when the pressure of the lip 11d becomes weak due to deterioration over time, the sealing performance can be secured by returning the lubricant to the bearing body 4 by the first flow FL1, and as a result, the replacement life of the oil seal 11 is extended. can do. Further, during the operation of the pump, the lubricant is supplied between the lip 11d and the sliding portion of the outer peripheral surface of the main shaft 1 by the second flow FL2 of the lubricant. Wear can be suppressed and the life of the oil seal 11 and the main shaft 1 can be extended. 1, the bearing 3 and the oil seal 12 disposed on the impeller 30 side, and the outer peripheral surface of the main shaft 1 facing the bearing 3 and the oil seal 12 are also applicable.
  • At least the upper half of the inner surface of the end wall of the outer box (bearing cover) is provided with an oil flow lower portion surrounding the rotating shaft.
  • Oil drops that flow along the inner wall of the outer wall of the outer box from the upper part of the rotating shaft flow down to the lower part of the outer box so as to avoid the rotating shaft by the lower part of the oil flow, and oil leaks from between the penetrating part and the rotating shaft.
  • the groove surrounding the rotation shaft is formed on the inner surface of the end wall, the oil droplet flows into the groove and is guided and flows down so as to avoid the rotation shaft. And it flows out from the groove
  • the oil droplets are guided by the groove and flow down so as to avoid the rotating shaft, so that the oil is prevented from leaking between the rotating shaft and the seal member.
  • the scattering of oil droplets from the bearing varies depending on the rotational speed of the rotating shaft. Due to the recent demand for energy saving, there are cases where the rotational speed of the pump is controlled (for example, the known constant pressure control or estimated terminal pressure control) using variable speed means such as an inverter. When the rotation speed of the rotating shaft is low, the scattering distance of the oil droplets scattered from the bearing is shortened, and the oil droplets do not reach the outer casing (bearing cover) and travel along the rotating shaft in the circumferential direction. There is a problem that oil may leak from between the rotating shafts. Further, as a lubricant for a bearing of a rotary machine, not only a liquid lubricant but also a semi-solid grease or the like may be used. However, in Patent Document 6, a semi-solid lubricant or a deteriorated and high viscosity is used. If lubricating oil is used, it will harden in the groove surrounding the rotating shaft and will not act to flow down the oil droplets.
  • Patent Document 7 an oil cover and an oil drain ring are arranged between the bearing and the bearing cover, and an oil relief groove is formed in a portion of the inner surface of the bearing cover facing the bearing.
  • the bearing cover, the oil cover, and the oil drain ring prevent the lubricating oil scattered from the bearing when the main shaft rotates from flowing out of the oil escape groove to the outside (motor side). It is disclosed that it functions as a lubricating oil outflow suppression device.
  • this lubricating oil spill suppression device has a problem that the number of parts increases because the oil cover is attached to the bearing cover. Moreover, it is used for the mechanism which seals lubricating oil with an oil relief groove.
  • a lubricant for a bearing of a rotating machine not only a liquid lubricant but also a semi-solid grease or the like may be used.
  • the lubricant outflow suppression device of Patent Document 7 is a semi-solid lubricant and a lubricant. An oil seal is not considered as a mechanism for sealing the oil.
  • the pumping portion machined on the rotating shaft has three actions: leakage prevention at rest, action of sucking the sealed fluid, and action of discharging the sealed fluid.
  • the shape of a pumping part is complicated and processing precision is requested
  • the leakage of the bearing lubricant in the pump device that pressurizes and feeds the carrier liquid varies depending on the installation location, the environment in which it is used, and the usage situation. Further, the range in which the leakage of the lubricant is allowed varies depending on the operator of the pump. Therefore, it is desired that the countermeasure against the leakage of the lubricant is a means that can be easily processed at the time of shipment or maintenance. In particular, when taking measures against lubricant leakage during maintenance, it is desirable that the measures can be performed regardless of the environmental temperature, the rotational speed of the pump, the type of lubricant in the bearing, the lubricant sealing device, and the like.
  • FIG. 11A and FIG. 11B are a schematic sectional view and an exploded perspective view of a target pump device 301, respectively.
  • the pump device 301 includes a pump 300 including an impeller 230, a pump body (pump casing) 232, and a body cover 221, a main shaft (shaft) 201, bearings 202 and 203, a bearing body 204, and bearing covers 205 and 206. And oil seals 211, 212, and the like.
  • the pump body 232 includes a suction port 232-2 and a discharge port 232-1 for the transport liquid.
  • the oil seals 211 and 212 are an example of a seal member that seals between the main shaft 201 and the bearing cover 205 that are concentrically arranged inside and outside in the radial direction.
  • the pump device 301 is often installed in a machine room, a pump room, a factory facility, or the like that is distinguished from a residence or a commercial space.
  • the main shaft 201 has an impeller 230 attached to one end side (the right side in FIG. 11A and FIG. 11B), and a main shaft end 220 (the left side) on the other end side via a coupling.
  • a rotating shaft (not shown) is connected.
  • the pump 300 When the pump 300 is operated, the main shaft 201 driven by the electric motor rotates in a predetermined direction.
  • the pump 300 pressurizes the carrier liquid flowing in from the suction port 232-2 by the centrifugal force generated by the rotation of the impeller 230, and flows out to the discharge port 232-1.
  • the pump device 301 is a horizontal axis type pump device.
  • the main shaft 201 is covered with a bearing body 204 and extends in a substantially horizontal direction, and is rotatably supported by two bearings 202 and 203 arranged with a space therebetween.
  • a bearing cover 205 through which the main shaft 201 passes is attached to the bearing body (bearing housing) 204 by a bolt 210a on the main shaft end 220 side of the bearing 202.
  • a bearing cover 206 through which the main shaft 201 passes is attached to the bearing body 204 with bolts 210b.
  • the bearing cover 205 covers at least a part of the outer ring of the bearing 203.
  • the bearing cover 205 and the bearing body 204 through which the main shaft 201 passes may be integrally formed.
  • the main shaft 201 is a large-diameter shaft 201a between the bearing 202 on the main shaft end 220 side and the bearing 203 on the impeller 230 side.
  • the vertical surface of the bearing 202 on the impeller 230 side is in contact with one end of the large-diameter shaft 201a.
  • the motor-side vertical surface of the bearing 203 is in contact with the other end of the large-diameter shaft 201a.
  • the outer surfaces of the outer rings of the bearings 202 and 203 are sandwiched from both sides by protruding portions 207 of bearing covers 205 and 206 attached to the bearing body 204. Thereby, the bearing cover 205 supports the bearing 202 as an example, and the bearing cover 206 supports the bearing 203.
  • the lubricant is stored between the bearings 202 and 203 in the bearing body 204, and at least a part of the bearings 202 and 203 is immersed in the lubricant when the pump 300 is operated.
  • the lubricant in the bearing body 204 evaporates due to a rise in temperature. Therefore, the bearing body 204 has a cap 214 for removing air and an oil gauge 215 for checking the reduction of the lubricant. Is provided.
  • the plug 216 is removed, the lubricant can be discharged out of the bearing body 204.
  • semi-solid grease may be used. As the pump 300 is operated, the bearings 202 and 203 become hot and the grease is liquefied.
  • Oil seals 211 and 212 are incorporated in the bearing covers 205 and 206 to prevent the lubricant from leaking outside along the outer peripheral surface of the main shaft 201.
  • a draining ring 213 may be fitted to the main shaft 201 outside the bearing cover 206.
  • a wave washer 209 which is a kind of elastic washer, is preferably interposed between the vertical surface outside the bearing 203 and the bearing cover 206. The wave washer 209 is given a compressive stress by the tightening force of the bolt 210 b, and the reaction force to the motor side acts on the main shaft 201 via the bearing 203.
  • the fishing tackle 217 is attached to the upper part of the bearing body 204.
  • the bearing body 204 is supported by a support base 218.
  • the opening 204a is provided in the bearing body 204 (see FIG. 11B).
  • the impeller 230 side of the bearing body 204 is fixed to the intermediate plate 237 by bolts 236, and the intermediate plate 237 is fixed to the pump body 232 in which the impeller 230 is housed by bolts 238. Thereby, the bearing body 204 and the pump body 232 are integrated. Gaskets are interposed between the bearing body 24 and the intermediate plate 237 and between the intermediate plate 237 and the pump body 232 for sealing.
  • the body cover 221 through which the main shaft 201 passes is provided on the main shaft 201 side of the pump body 232.
  • a through portion of the main shaft 201 of the body cover 221 includes a shaft seal device.
  • FIG. 11 shows an example in which the gland packing 223 is used as the shaft seal device, the shaft seal device may be a mechanical seal. Since the shaft seal portion generates rotational friction, a shaft sleeve 225 for the gland packing 223 is fitted to the main shaft 201, and the gland packing is interposed between the shaft sleeve 225 and the cylindrical portion 221 a of the body cover 221. The gland packing 223 is tightened by the bolt 229 through the presser 228.
  • the impeller 230 is fitted into a key 219 provided at the tip of the main shaft 201 and is fixed to the main shaft 201 by a nut 231.
  • the liner ring 233 is provided between the shroud side I of the impeller 230 and the pump body 232.
  • the liner ring 234 is provided between the back shroud side B and the body cover 221.
  • the plurality of balance holes 235 are formed in the vicinity of the boss portion of the impeller 230.
  • FIG. 12A is an enlarged cross-sectional view of the vicinity of the main shaft 201, the oil seal 211, and the bearing 202 of the pump device 301 according to the second embodiment.
  • 12B is an enlarged view of the vicinity of the oil seal 211 in FIG. 12A (the broken line portion in FIG. 12A).
  • the pump 300 when the impeller 230 is rotated in a predetermined direction (clockwise as viewed from the electric motor side (left side in FIG. 12A) in this example), the pump 300 functions as a liquid transport machine.
  • FIG. 12B a space S surrounded by a horizontal plane including the radial center of the main shaft 201, the oil seal 211, the bearing cover 205, and the bearing 202 is assumed.
  • the space surrounded by the outer peripheral surface of the main shaft 201, the oil seal 211, the bearing cover 205, the bearing 202, and the oil surface OL of the lubricant is filled with lubricant as oil smoke (mist).
  • the pump device 301 is a horizontal axis type pump device
  • the main shaft 201 is substantially horizontal and substantially parallel to the oil surface OL of the lubricant.
  • the lubricant is periodically replaced or replenished during maintenance, and the oil level OL of the lubricating oil is near the center of the oil gauge 215, specifically, below the lower end of the main shaft 201 and the bearings 202 and 203.
  • the pump 300 is operated in a state where a part of the bearings 202 and 203 located at a position lower than the main shaft 201 is immersed in the lubricating oil.
  • the oil seal 211 uses a deformable material such as felt, synthetic rubber, or synthetic resin, and performs a sealing action by bringing the tip into frictional contact with the main shaft 201.
  • the oil seal 211 in FIG. 12B illustrates a lip seal including a reinforcing ring 211a, a seal lip member 211b, a garter spring 211c, and the like.
  • the reinforcing ring 211a has a substantially L-shaped radial cross section, and a seal lip member 211b is attached to the reinforcing ring 211a in an annular shape.
  • the main shaft 201 side of the seal lip member 211b has a substantially inverted cross-sectional shape, and an edge-shaped portion corresponding to the apex of the triangle forms a lip 211d.
  • the lip 211d is deformed when pressed onto the outer peripheral surface of the main shaft 201 and slides on the outer peripheral surface of the main shaft 201 with a predetermined axial contact width.
  • a garter spring 211c that presses the lip 211d against the outer peripheral surface of the main shaft 201 is attached to the outer periphery of the lip 211d.
  • the lip 211d slides on the outer peripheral surface of the main shaft 201, a lubricant is required between the sliding portions of the lip 211d and the main shaft 201.
  • the life of the oil seal 211 and the main shaft 201 can be extended by suppressing heat generation due to friction of the sliding surface with the lubricant.
  • the lubricant between the sliding portions of the lip 211d and the main shaft 201 the lubricant in the bearing body 204 is used.
  • the lip 211d is cured to reduce the life, so that a predetermined distance is required between the bearings 202 and 203 and the oil seal 211. .
  • the first space on the main shaft end 220 side and the second space on the bearing 202 side at the sliding portion between the outer peripheral surface of the main shaft 201 and the oil seal 211 pressure contact surface between the lip 211d and the outer peripheral surface of the main shaft 201). It is divided into two spaces.
  • the first space is a space on the bearing 202 side of the oil seal 211 including the space S, and is referred to as a sealed fluid side.
  • the second space is a space on the outside of the pump device 301 and on the main shaft end 220 side from the oil seal 211, and is referred to as the atmosphere side.
  • the pump device 301 is used in an installation environment where the temperature is high, such as a pump chamber, as an example.
  • the pump device 301 is used in factory equipment that operates for 24 hours. In this way, when the pump 300 is continuously operated in an environment where the outside air temperature is high, the lubricant in the sliding portion between the rotating member and the fixed member of the bearing 202 becomes high temperature and the viscosity becomes low. Then, the oil seal 211 increases the amount of lubricant leaking from the sealed fluid side to the atmosphere side.
  • the lip groove 201b is formed due to aging on the sliding surface of the main shaft 201, the amount of the lubricant leaking from the sealed fluid side to the atmosphere side due to insufficient pressing of the lip 211d to the main shaft 201. Will increase. Further, when the pressure of the garter spring 211c is weakened due to aging, the pressure of the lip 211d on the main shaft 201 is insufficient, and the amount of lubricant leaking from the sealed fluid side to the atmosphere side increases.
  • the sliding surface between the oil seal 211 and the outer peripheral surface of the main shaft 201 requires a lubricant.
  • the pump device 301 is often installed in a pump chamber or the like. Therefore, the operator of the pump device 301 allows the lubricant that leaks from the sealed fluid side to the atmosphere side along the surface of the main shaft 201 to be wet. However, when the amount of lubricant that leaks from the sealed fluid side to the atmosphere side increases, the lubricant hangs down from the main shaft 201 or splashes due to the centrifugal force generated by the rotation of the main shaft 201, thereby contaminating the surroundings.
  • the lubricant stored in the bearing body 204 decreases, and the pump device 301 increases the frequency of maintenance such as replenishment and replacement of the lubricant. Therefore, in the present embodiment shown in FIG. 20, in order to return the lubricant leaking from the oil seal 211 to the atmosphere side to the sealed fluid side, the outer surface of the main shaft 201 shown in FIGS. 12A and 12B is shown in FIGS. 13A and 13B. A groove 201c as shown is formed.
  • FIG. 11 described above and FIG. 20 of the present embodiment the same reference numerals are given to the same configurations, and the description thereof is omitted.
  • FIG. 13A is an enlarged cross-sectional view of the vicinity of the main shaft 201, the oil seal 211, and the bearing 202 in the present embodiment shown in FIG. 13B is an enlarged view of the vicinity of the oil seal 211 in FIG. 13A (the broken line portion in FIG. 13A).
  • the main shaft 201 forms a groove 201c (unevenness) inclined on the outer peripheral surface.
  • the inclination direction of the groove 201c is on the main shaft end 220 side on the right side surface viewed from the electric motor side (main shaft end 220 side).
  • the groove 201c is preferably formed over the entire circumference of the main shaft 201, but a portion of the main shaft 201 that does not have the groove 201c may be provided.
  • the recesses and projections of the groove 201c are desirably formed at regular intervals, but the recesses and projections may be formed at irregular intervals.
  • the oil level OL of the lubricant is at a liquid level below the main shaft 201 as described above.
  • the oil seal 211 is a position where the lubricant from the bearing 202 scatters in the bearing cover 205 in the space S during the operation of the pump 300 and the lubricant on the sliding surface between the lip 211d and the outer peripheral surface of the main shaft 201 exists. It is good to arrange in.
  • the arrangement position of the oil seal 211 adjusts the position of the bearing cover 205 by adjusting the tightening force of the bolt 210a and the thickness of the protruding portion 207.
  • the arrangement position of the oil seal 211 may be adjusted not only by adjusting the position of the oil seal 211 in the direction of the main shaft 201 but also by adjusting the position of the bearing 202 in the axial direction.
  • the distance between the bearing 202 and the oil seal 211 is not less than the predetermined distance described above.
  • the distance between the bearing 202 and the oil seal 211 is about 5 to 50 mm.
  • One or a plurality of bolts 210a and protruding portions 207 may be used.
  • a second flow FL2 which is a flow of lubricant flowing on the sliding surface with the surface, is formed.
  • the lubricant is supplied to the oil seal 211 by the second flow FL2, and the lubricant is returned to the bearing body 204 by the first flow FL1, which is the flow of the lubricant by the groove 201c.
  • the oil seal 211 in the pump device 301 is disposed at a position where the lubricant from the bearing 202 scatters, and the outer peripheral surface of the main shaft 201 is provided with a groove 201c. Then, when the pump 300 is operated, the groove 201c is inclined in a direction in which the lubricant exposed from the oil seal 211 to the outer peripheral surface of the main shaft 201 on the atmosphere side is pushed back to the sealed fluid side. Thereby, the pump apparatus 301 can suppress the lubricant of the bearing 202 from leaking to the atmosphere side while maintaining good sliding between the oil seal 211 and the outer peripheral surface of the main shaft 201.
  • the inclined groove 201c is provided in at least a part of the outer peripheral surface of the main shaft 201 on the atmosphere side. That is, this groove 201c may be formed on the atmosphere side adjacent to at least the sliding surface with the oil seal 211 on the outer peripheral surface of the main shaft 201 (reference A in FIG. 13B). Accordingly, when the main shaft 201 rotates, an air flow is generated on the outer peripheral surface of the main shaft 201 by the groove 201c, and an effect of pushing back the lubricant leaked to the atmosphere side by the lubricant flow FL1 is obtained.
  • the inclined groove 201c is provided on a sliding surface with the oil seal 211 on the outer peripheral surface of the main shaft 201. That is, the groove 201c may be formed or extended in at least a part of a sliding surface (or lip groove 201b) with the lip 211d on the outer peripheral surface of the main shaft 201 (reference numeral B in FIG. 13B).
  • the sliding surface between the lip 211d and the main shaft 201 reduces the pressure of the seal portion on the sliding surface that slides relatively, and the lubricant oil film in the groove 201c on the sliding surface between the lip 211d and the main shaft 201 Bubbles are generated inside.
  • the bubbles can reduce the friction between the lip 211d, the main shaft 201, and the sliding surface (also referred to as “low friction”). As a result, friction and wear between the lip 211d and the outer peripheral surface of the main shaft 201 can be reduced.
  • the inclined groove 201c is provided in at least a part of the outer peripheral surface of the main shaft 201 on the sealed fluid side. That is, the groove 201c is adjacent to the sliding surface of the outer peripheral surface of the main shaft 201 with the oil seal 211, and may be formed or further extended in at least part of the sealed fluid side (reference numeral in FIG. 13B). C).
  • the pump device 301 can return the lubricant toward the bearing 202 more.
  • the oil surface OL of the lubricant is lower than that of the main shaft 201. The lubricant pushed back from the side can be quickly returned into the bearing 202 along the side surface 202-1 of the bearing 202 positioned below the main shaft 201 through the groove 201c.
  • the pump device 301 disposes the periphery by forming the groove 201c of the main shaft 201 and disposing the oil seal 211 at a position where the lubricant from the bearing 202 scatters on the oil seal 211, thereby contaminating the surroundings.
  • the maintenance work for replenishing or replacing the lubricant to the bearing body 204 can be reduced.
  • the pump apparatus 301 can ensure the sealing performance of the oil seal 211, the pump apparatus 301 can extend the replacement life of the oil seal 211 as a result.
  • the lubricant is supplied to the sliding portion of the lip 211d and the main shaft 201 by the second flow FL2 of the lubricant. Therefore, heat generation and wear due to friction of the sliding surface can be suppressed, and the life of the oil seal 211 and the main shaft 201 can be extended.
  • a groove 201 c is also formed on the outer peripheral surface of the main shaft 201 facing the oil seal 212 arranged on the impeller 230 side, and the lubricant from the bearing 203 is scattered on the oil seal 212.
  • the inclination direction of the groove 201c formed on the outer peripheral surface of the main shaft 201 facing the oil seal 212 is viewed from the impeller 230 side.
  • the left side surface is inclined in a direction that increases from the impeller 230 side toward the bearing 203 side.
  • the sliding surface of the oil seal 211 or 212 of the main shaft 201 may use a shaft sleeve (not shown) for protection. Since the main shaft 201 is fitted into the shaft sleeve, the main shaft 201 and the shaft sleeve rotate concentrically in the radial direction. Therefore, the shaft sleeve is a part of the main shaft 201. Further, also in the pump device 301 using the oil seal 211 ′ of FIG. 13C described later, the oil seal 211 ′ is formed at a position where the groove 201c is formed and the lubricant from the bearing 202 or 203 can be scattered on the oil seal 211 ′.
  • the pump device 301 can suppress the lubricant from leaking to the atmosphere side while maintaining good sliding between the oil seal 211 ′ and the main shaft 201.
  • the oil seal 211 ′ ′ is provided at a position where the groove 201c is formed and the lubricant from the bearing 202 or 203 can be scattered on the oil seal 211 ′.
  • the pump device 301 can suppress the leakage of the lubricant to the atmosphere side while maintaining good sliding between the oil seal 211 ′ and the main shaft 201.
  • FIG. 11A illustrated and demonstrated the pump apparatus 301 using the single stage piece suction centrifugal pump.
  • the groove 201c and the arrangement of the bearing and the oil seal on the outer peripheral surface of the main shaft 201 according to the present embodiment are arranged according to any pump device, particularly an oil bath type bearing using a lubricant, and an oil seal for sealing the lubricant of the bearing.
  • a horizontal axis type pump device provided with a horizontal axis pump.
  • an operator who performs maintenance performs the following maintenance on the pump device 301 in FIG. 11 in which a predetermined amount or more of lubricant leaks to the atmosphere due to aging. You can also. That is, the operator separates the oil seal 211 and the main shaft 201 in FIGS. 12A and 12B, forms a groove 201 c as shown in FIGS. 13A and 13B on the outer peripheral surface of the main shaft 201, and then returns to the original oil seal. By attaching 211 or a new oil seal 211 and the main shaft 201, a pump device 301 shown in FIG.
  • the oil seal 211 does not have to be completely separated from the main shaft 201.
  • the oil seal 211 may be slid on the main shaft 201 and separated from the sliding surface with the main shaft 201.
  • FIG. 13A is an enlarged cross-sectional view of the vicinity of the main shaft 201, the oil seal 211, and the bearing 202 after maintenance.
  • 13B is an enlarged view of the vicinity of the oil seal 211 in FIG. 13A (the broken line portion in FIG. 13A).
  • an inclined groove 201 c (unevenness) is formed on the outer peripheral surface of the main shaft 201.
  • the inclination direction of the groove 201c in the vicinity of the oil seal 211 is the bearing 202 from the motor side on the right side surface when viewed from the motor side (main shaft end 220 side). It is inclined in the direction of increasing toward the side.
  • the inclination direction of the groove 201c is a direction in which the air-side lubricant is returned to the bearing 202 side when the main shaft 201 rotates. Thereby, it can suppress that a lubricant leaks.
  • the groove 201c is formed at least on the atmosphere side of the main shaft 201, an effect of pushing back the lubricant is obtained by rotating the main shaft 201 to generate an air flow by the groove 201c.
  • the groove 201c may be formed or extended on at least a part of the sliding surface (or lip groove 201b) of the main shaft 201 (reference numeral B in FIG. 13B). Thereby, the friction between the oil seal 211 and the main shaft 201 can be reduced.
  • the groove 201c may be formed or extended from at least a part of the bearing 202 side (symbol C in FIG. 13B) from the sliding surface (or lip groove 201b) of the main shaft 201. This further increases the effect of pushing the lubricant back to the bearing 202 side.
  • the oil seal 211 and the bearing 202 are disposed at a position where the lubricant scattered from the bearing 202 reaches the sliding surface between the oil seal 211 and the outer peripheral surface of the main shaft 201. Then, when the main shaft 201 rotates, a part of such a lubricant is pushed back to the bearing 202 side. As a result, leakage of the lubricant is suppressed, and an appropriate amount of lubricant is interposed on the sliding surface between the oil seal 211 and the main shaft 201.
  • Such maintenance can also be applied to the outer peripheral surface of the main shaft 201 facing the oil seal 212 disposed on the impeller 230 side in FIG. That is, the operator separates the sliding surface between the oil seal 212 and the outer peripheral surface of the main shaft 201, and the groove is inclined to the impeller 230 side (opposite the bearing 203) from the sliding surface between the oil seal 212 and the main shaft 201.
  • 201c may be formed.
  • the inclination direction of the groove 201c formed in the main shaft 201 facing the oil seal 212 is a direction in which the lubricant on the sliding surface is returned to the bearing 203 side when the main shaft 201 rotates, and the oil seal on the bearing 202 side. This is the opposite of the groove 201 c formed in the main shaft 201 facing to 211.
  • FIG. 13C is an enlarged view when an oil seal 211 ′ different from FIG. 13B is applied.
  • the sealing sleeve 280 is provided as a part of the main shaft 201.
  • the presser metal ring 283 is clamped.
  • a cylindrical lip 284 is formed on the inner peripheral side of the seal lip member 281. This cylindrical lip 284 corresponds to the lip 211d in FIG.
  • FIG. 13D is an enlarged view when an oil seal 211 ′′ different from that in FIG. 13B is applied.
  • the oil seal 211 ′′ has a cylindrical portion 292.
  • foreign matter such as dust may enter the sliding surface between the oil seal and the outer peripheral surface of the main shaft 201 from the atmosphere side. Therefore, the cylindrical portion 292 prevents foreign matter from entering the oil seal 211 ′′. Therefore, the oil seal 211 ′′ can reduce the wear of the sliding surface on the lip portion of the oil seal 211 ′′ and the outer peripheral surface of the main shaft 201 due to the entry of foreign matter from the atmosphere side.
  • FIG. 14 is a process diagram showing a maintenance procedure of the pump device 301.
  • FIG. 14 is merely an example of a procedure, and each step may be appropriately replaced or omitted.
  • step S21 of FIG. 14 the maintenance of this embodiment for the pump device 301 of FIG. 11A is started.
  • Step S21 the operator disconnects from the motor (not shown). Further, the operator removes the plug 216 and removes the lubricant from the bearing body 204 (step S22). Subsequently, the operator removes the bolt 238 for the pump body 232, and removes the intermediate plate 237, the body cover 221 and the bearing body 204 from the pump body 232 (step S23). As a result, the state shown in FIG. 15 is obtained.
  • step S24 the operator removes the nut 231 for the impeller 230 and removes the impeller 230 from the main shaft 201. Then, the operator removes the key 219 on the impeller 230 side from the main shaft 201. As a result, the state shown in FIG. 16 is obtained. Further, the operator removes the bolt 36 and removes the intermediate plate 237 and the body cover 221 from the bearing body 204 (step S25). Next, the worker removes the bolt 229 for the gland packing 223 and removes the gland packing 223 (step S26). As a result, the state shown in FIG. 17 is obtained.
  • step S27 the operator pulls out the draining ring 213 from the main shaft 201 (step S27).
  • the operator removes the bolts 210a and 210b for the bearing covers 205 and 206, removes the bearing covers 205 and 206 and the oil seals 211 and 212 from the bearing body 204, and removes the main shaft 201 (step S28).
  • step S28 removes the main shaft 201 (step S28).
  • the state shown in FIG. 18 is obtained.
  • the main shaft 201 is separated from the oil seals 211 and 212.
  • the worker forms the groove 201c described with reference to FIGS. 13A and 13B in the vicinity of the bearings 202 and 203 on the main shaft 201 (step S29).
  • the state shown in FIG. 19 is obtained.
  • the operator forms the groove 201 c by scratching the outer peripheral surface of the main shaft 201.
  • the groove 201c is desirably formed over the entire circumference, but there may be a portion where the groove 201c is not provided in part.
  • the maintenance worker leaks the lubricant along the main shaft 201 by a simple method in which the outer peripheral surface of the main shaft 201 is scratched in a predetermined direction to form the groove 201c. Can be suppressed.
  • the operator may provide the groove 201c in advance on the outer peripheral surface of the main shaft 201 of a new pump instead of forming the groove 201c in the main shaft 201.
  • the pump device 301 using a single-stage single-suction centrifugal pump has been described as an example.
  • any pump device in particular, an oil bath type bearing using a lubricant, an oil seal, and a horizontal shaft pump are used. This embodiment can be applied to a horizontal shaft type pump device provided with
  • the pump device 301 that has been maintained according to the above-described procedure can reduce maintenance work for replenishment or replacement of lubricant due to lubricant leakage. Even when the pressure on the lip 211d is weakened due to aging, the pump device 301 that has been maintained in the above-described procedure ensures the sealing performance by returning the lubricant to the bearing body 204 by the first flow FL1. As a result, the replacement life of the oil seal 211 can be extended. Further, during the pump operation, the lubricant is supplied between the sliding portion of the outer peripheral surface of the lip 211d and the main shaft 201 by the second flow FL2 of the lubricant.
  • the sliding surfaces of the oil seal 211 and the main shaft 201 can suppress heat generation and wear due to friction, so that the life of the oil seal 211 and the main shaft 201 can be extended.
  • the groove 201 c can also be applied to the outer peripheral surface of the main shaft 201 facing the bearing 203 and the oil seal 212 and the bearing 203 and the oil seal 212 arranged on the impeller 230 side.
  • FIGS. 21 and 22 are tables showing an example of comparison of lubricant leakage between the pump device of FIG. 11A and the pump device of FIG.
  • the table of FIG. 21 shows the result of the maintenance worker periodically checking for leakage of the lubricant at the time interval TMx at the site where the pump 300 is continuously operated. Therefore, TM0 to TM9 in FIGS. 21 and 22 indicate a period after the operation of the pump devices 310 and 311 is started, and specifically, n times (n) the time interval TMx after the operation of the pump devices 310 and 311 is started. : 0 to 9).
  • the pump apparatus is regularly maintained every year from about 3 months.
  • the oil seal 211 will be described, but the same effect is recognized for the oil seal 212.
  • the pump device 310 is a pump device in which the groove 201c is not provided on the outer surface of the main shaft 201, and is the pump device 301 shown in FIG. 11A.
  • a pump device 311 in FIG. 21 is the pump device 301 shown in FIG. That is, the pump device 310 is different from the pump device 311 only in that the groove 201 c is not formed on the outer surface of the main shaft 201.
  • the pump device 311 is formed by forming an inclined groove 201c on the outer surface of the main shaft 201 of the pump device 310 in accordance with the maintenance procedure of FIG. It was.
  • the oil seal 211 that is a sealing member of the pump devices 310 and 311 is deteriorated with age, and the lip 11d is hardened due to deterioration over time. Therefore, the oil seal 211 is a consumable part. Even at this site, when a useful life elapses from a new article, it is replaced by a maintenance worker.
  • the lubricant leakage indicates a state where the lubricant leaking from the oil seal 211 to the atmosphere is scattered from the outer surface of the main shaft 201. That is, a state where the lubricant on the atmosphere side is scattered from the main shaft 201 and contaminates the periphery is referred to as “lubricant leakage”.
  • the sealing action is significantly reduced due to the lip 211d of the oil seal 211 being hardened.
  • the service life of the oil seal 211 varies depending on the use environment of the pump device, the lubricant, and the like, but is generally about 2 to 5 years. In the maintenance whose results are shown in FIGS. 21 and 22, the operator determines that the useful life of the oil seal 211 has been reached when the lubricant leaking to the atmosphere side exceeds the allowable leakage amount Mx.
  • the allowable leakage amount Mx varies depending on the installation environment and the operator of the pump device 300, but in general, the maintenance worker attaches the lubricant leaked from the oil seal 211 to the atmosphere side through the support 218 and adheres to the ground. If it is in a state where the scattering of the lubricant from the main shaft 201 is constantly confirmed, it is determined that the allowable leakage amount Mx has been exceeded.
  • FIG. 21 shows the amount of lubricant leakage for each maintenance cycle.
  • the maintenance worker confirmed a small amount of lubricant leakage (a few drops of traces) with the pump device 310.
  • the lubricant leakage could not be confirmed by the pump device 311.
  • the maintenance operator confirmed a small amount of lubricant leakage (several tens of drops of traces) with the pump device 310.
  • the lubricant leakage could not be confirmed by the pump device 311.
  • the maintenance worker confirmed the leakage of the lubricant in both the pump devices 310 and 311. It is considered that this is because the lip 211d is hardened due to aging and the sealing action is lowered. However, the lubricant leakage of the pump device 310 has reached the leakage allowable amount Mx or more, whereas the pump device 311 is smaller than the leakage allowable amount Mx. Accordingly, the maintenance worker determined that the oil seal 211 of the pump device 310 has reached the useful life and replaced it. In addition, as a preventive maintenance, the oil seal 211 was also replaced in the pump device 311 that did not reach the service life.
  • the maintenance worker leaks a small amount of lubricant with the pump device 310 (a trace of several tens of drops). ) was confirmed, but the pump device 311 could not confirm lubricant leakage.
  • the pump device 310 confirms a small amount of lubricant leakage in the period TM1 even after the oil seal 211 is replaced in the fourth maintenance. This is considered to be due to the effect of the lip groove 201b formed on the main shaft 201 of the pump device 310.
  • the maintenance worker leaks a small amount of lubricant (several tens of drops of traces) with the pump device 310. ) Was confirmed, but the pump device 311 could not confirm lubricant leakage.
  • the maintenance worker confirmed the oil leak with the pump device 310 (a small amount of oil leak). On the other hand, no leakage of lubricant could be confirmed by the pump device 311.
  • the pump device 311 it is possible to suppress the leakage of the lubricant as compared with the pump device 310.
  • FIG. 22 is a graph showing the results shown in the table of FIG. 21 as changes in elapsed time.
  • 22A shows a change in the elapsed time of the amount of lubricant leakage of the pump device 310
  • FIG. 22B shows a change in the elapsed time of the amount of lubricant leak of the pump device 311.
  • the horizontal axis represents elapsed time
  • the vertical axis represents the amount of lubricant leakage.
  • the dotted lines in FIGS. 22A and 22B indicate the leakage allowable amount Mx.
  • the pump device 310 has a small amount of lubricant leakage as shown in the region R1 of the graph, whereas the pump device 311 lubricates more than the pump device 310 as shown in the region R2 of the graph. Agent leakage can be suppressed.
  • the leakage amount of the lubricant in the pump device 310 increases and further exceeds the allowable leakage amount Mx when the period TM4 elapses.
  • the service life of the oil seal 211 at 310 was determined. For this reason, both the pump devices 310 and 311 replace the oil seal 211 after the period TM4 has elapsed from the start of operation.
  • the pump device 311 is different from the pump device 310 in that the leakage of lubricant below the allowable leakage amount Mx is confirmed, and the oil seal 211 has not reached its useful life. It can be used continuously after the period TM4.
  • the pump device 310 has a small amount of lubricant leakage as shown in a region R3 in the graph of FIG. 311 can suppress the lubricant leakage more than the pump device 310 as indicated by a region R4 in the graph of FIG.
  • the pump device 311 can suppress the lubricant leakage more than the pump device 310.
  • the pump device 311 can suppress the leakage of the lubricant from the oil seal 211.
  • the oil pressure is set to about 20% to 80% compared to the pressure of the lip 211d in a general oil seal. In some cases, the lifetime of the seals 211 and 212 may be increased. Thus, even in the pump device in which the lip 211d is weakly pressed, if the inclined groove 201c is formed in the main shaft 201, the lubricant leaked to the atmosphere side is returned to the sealed fluid side by the first flow FL1, Lubricant leakage can be suppressed.
  • a groove 201c inclined to the main shaft 201 by the maintenance method described above with reference to FIG. 14 according to the request from the operator of the pump. May be formed.
  • the pump device 301 is capable of rotating the main shaft 201 and the main shaft 201 that rotates the impeller 230 that pressurizes the carrier liquid in a predetermined direction by driving the electric motor that is an example of the driving device.
  • a bearing cover 205 through which the main shaft 201 passes, and a seal member that prevents the lubricant in the bearing 202 from leaking from the sealed fluid side to the atmosphere side through the outer peripheral surface of the main shaft 201.
  • An oil seal 211 is provided.
  • the bearing cover 205 is configured such that the lubricant scattered from the bearing 202 flows through the bearing cover 205 to the oil seal 211.
  • an inclined groove 201 c is formed on the outer peripheral surface of the main shaft 201 so that when the main shaft 201 rotates, the lubricant exposed on the outer peripheral surface of the main shaft 201 on the atmosphere side is pushed back to the sealed fluid side. Is provided.
  • the pump device 301 is a horizontal axis type pump device including a horizontal axis pump 300. With this configuration, the sealed fluid can be sealed by the action of the oil seal 211 while the main shaft 201 is stationary.
  • the inclined groove 201c is provided in at least a part of the outer peripheral surface of the main shaft 201 on the atmosphere side.
  • the seal member is the oil seal 211 incorporated in the bearing cover 205
  • the lubricant scattered from the bearing 202 is supplied to the oil seal 211 through the bearing cover 205, so that the oil seal 211 and the main shaft 201 are supplied. Since the lubricant is supplied between the oil seal 211 and the main shaft 201, the sliding between the oil seal 211 and the main shaft 201 can be kept good. Further, since the inclined groove 201c is formed, the lubricant exposed on the outer peripheral surface of the main shaft 201 on the atmosphere side is pushed back from the oil seal 211 to the bearing 202 side by the pumping action, so that the lubricant is brought to the atmosphere side. Leakage can be suppressed.
  • FIG. 23 is a longitudinal sectional view showing a partial configuration of a pump device according to a comparative example.
  • FIG. 23 is a longitudinal sectional view showing a configuration of a part of a pump device according to a comparative example
  • FIG. 24 is a sectional view at X of the pump device of FIG.
  • a pump device 401 shown in FIG. 23 is different from the pump device 301 shown in FIG. 20 in the shape of a bearing cover 405. Therefore, the same reference numerals are used for components having the same functions as those of the pump device 301 in FIG. As shown in FIG.
  • the surface below the oil surface of the lubricating oil OL is the bottom surface portion 405b, and the surface facing the bottom surface portion 405b across the axis is the ceiling surface portion 405u
  • a surface other than the bottom surface portion 405b, the bottom surface portion 405b, and the ceiling surface portion 405u is referred to as a side surface portion 405a.
  • the bearing-side end portion of the ceiling surface portion 405u of the bearing cover 405 is referred to as a bearing-side end portion 405u1
  • the end portion on the sealing member side is referred to as a sealing member-side end portion 405u2.
  • the cross section of the bearing cover 405 shown in FIG. 24 is substantially circular, it may be polygonal regardless of this.
  • the bearing cover 405 in the pump device 401 will be described.
  • the distance Ln1 between the bearing 202 of the bearing cover 405 through which the main shaft 201 passes and the surface of the bearing cover 405 facing the bearing 202 exceeds the distance Ln0 where the lubricant scatters from the bearing 202 during operation of the pump 300. That is, the distance Ln1 is longer than the distance Ln0.
  • the oil droplets Od of the lubricant (here, lubricant oil as an example) splashed from the bearing 402 to the ceiling surface portion 405u is on a plane substantially perpendicular to the inner peripheral axis of the bearing cover 405. Then, it falls to the bottom surface portion 405b or the main shaft 201 of the inner surface of the bearing cover 405. For this reason, the lubricating oil supplied to the oil seal 211 through the bearing cover 405 is remarkably reduced, and furthermore, the lubricating oil is returned to the bearing 402 side by the pumping action of the groove 201c formed on the surface of the main shaft 201.
  • the bearing cover according to the third embodiment has a structure on the inner peripheral surface for guiding the lubricant scattered on the bearing cover to the oil seal 211. With this configuration, the lubricant can be supplied to the oil seal 211 even if the distance Ln1 is longer than the distance Ln0 at which the lubricant scatters from the bearing 202.
  • the bearing cover 505 according to the third embodiment will be specifically described.
  • FIG. 25 is a longitudinal sectional view showing a configuration of a part of the pump device according to the third embodiment.
  • the pump device 501 shown in FIG. 25 is different from the pump device 401 according to the comparative example of FIG. 23 only in the shape of the bearing cover 505. Therefore, hereinafter, the same functional configuration as that of the pump device 301 in FIG. As shown in FIG.
  • a portion below the oil surface of the lubricating oil OL is a bottom surface portion 505b, and a surface facing the bottom surface portion 505b across the axis is a ceiling surface portion 505u,
  • a surface other than the bottom surface portion 505b, the bottom surface portion 505b, and the ceiling surface portion 505u is referred to as a side surface portion 505a.
  • the bearing-side end portion of the ceiling surface portion 505u of the bearing cover 505 is referred to as a bearing-side end portion 505u1
  • the end portion on the seal member side is referred to as a seal member-side end portion 505u2.
  • the length Lm1 between the bearing 202 and the surface of the bearing cover 505 facing the bearing 202 through which the main shaft 201 passes exceeds the distance Lm0 that the lubricant fly from the bearing 202. ing.
  • a broken line L2 in FIG. 24A in the pump device 501, as a structure for guiding the lubricant to the oil seal 211, a surface including at least a part of the ceiling surface portion 505u of the inner peripheral surface of the bearing cover 505. Is inclined so as to approach the main shaft 201 as the oil seal 211 is approached.
  • the inner peripheral surface of the bearing cover 505 is inclined at an angle ⁇ m from the broken line L1 that is a horizontal plane from the bearing-side end portion 505u1 to the seal member-side end portion 505u2, and the bearing cover 505 is
  • the inner diameter on the oil seal 211 side is smaller than the inner diameter on the bearing 202 side. That is, with this configuration, the bearing cover 505 forms a flow indicated by an arrow FLm1 in FIG. 25 (second flow FL2), and the groove 201c seals the lubricant leaked to the atmosphere side of the outer peripheral surface of the main shaft 201. A first flow FL1 returning to the fluid side is formed.
  • the lubricant is supplied to the oil seal 211 along the inclination of the inner peripheral surface of the oil seal 211, so that the lubricant is supplied to the sliding surfaces of the oil seal 211 and the main shaft 201, and the pumping of the groove 201c is performed. By the action, the lubricant is returned to the sealed fluid side.
  • the angle ⁇ m described above depends on the amount and viscosity of the lubricant to be scattered, and further on the distance Lm1. Further, if the distance Lm1 is long, the lubricant is likely to fall before reaching the seal member side end 505u2, and therefore the distance Lm1 and the angle ⁇ m are preferably proportional.
  • FIG. 26 is a longitudinal sectional view showing a partial configuration of the pump device according to the fourth embodiment.
  • the pump device 601 according to the fourth embodiment further includes a deflector member 640 as compared with the pump device 401 according to the comparative example of FIG. Accordingly, the same components as those of the pump device 401 are denoted by the same reference numerals, and description thereof is omitted.
  • the deflector member 640 is disposed between the bearing 202 and the oil seal 211 and is attached to the main shaft 201.
  • the deflector member 640 is a draining collar and shakes off the liquid flowing along the rotating main shaft 201.
  • a bearing cover 205, a bearing cover 505, or a bearing cover 705 described later may be used instead of the bearing cover 405.
  • FIG. 27 is a cross-sectional view showing a partial configuration of the pump device according to the fifth embodiment.
  • 28 is a cross-sectional view of arrow A in the pump device of FIG.
  • the pump device 701 according to the fifth embodiment further includes a guide member 750 constituting a part of the bearing cover 705, as compared with the pump device 401 according to the comparative example of FIG. Prepare. Therefore, the same components as those of the pump device 401 are denoted by the same reference numerals, and a part of the description is omitted.
  • the bearing cover 705 includes a bearing cover main body 710 and a guide member 750 that guides the lubricant scattered from the bearing 202 to the oil seal 211.
  • the bearing cover body 710 has the same shape as the bearing cover 405.
  • the guide member 750 has a structure for guiding the lubricant to the oil seal 211, and the configuration of the bearing cover 705 forms a second flow FL 2 for guiding the lubricant scattered from the bearing 202 to the oil seal 211. Can do.
  • the bearing cover 705 is a protruding guide member having a width W extending along the major axis direction of the main shaft 201 on the inner peripheral surface including the uppermost portion of the inner peripheral surface of the bearing cover main body 710.
  • a surface 750u of the guide member 750 facing the main shaft 201 as shown in FIG. 27 approaches the main shaft 210 as it approaches the oil seal 211 along the major axis direction of the main shaft 210 from the bearing 202 side. It is inclined to.
  • the lubricant flows along the slope of the surface 750 u facing the main shaft 201 of the guide member 750, so that the lubricant can be supplied to the oil seal 211.
  • the space S can be made wider than that of the pump device 501, an increase in temperature in the space S can be suppressed, leading to a longer life of the oil seal 211.
  • FIG. 29 is a cross-sectional view of arrow A in the pump device of FIG. 27 in the pump device according to Modification 1 of the fifth embodiment.
  • 30 is a cross-sectional view taken along the line BB ′ of FIG.
  • the bearing cover 705 is provided with a protrusion-shaped guide member 750 a having a thickness H extending in the major axis direction of the main shaft 201 from the bearing 202 side to the oil seal 211 on the inner peripheral surface of the bearing cover main body 710. ing.
  • the pair of guide members 750a are arranged so as to extend substantially horizontally in a vertical cross section (for example, a BB ′ cross section shown in FIG. 30) parallel to the long axis direction and including the guide member 750a. Yes.
  • the lubricant scattered from the bearing 202 adheres to the upper surface of the inner peripheral surface of the bearing cover main body 710, and then falls on the guide member 750a along the inner peripheral surface of the bearing cover main body 710 in the circumferential direction ( (Second flow FL2 in FIG. 29).
  • the lubricant that has fallen on the guide member 750a moves along the guide member 750a to the oil seal 211 due to inertia (second flow FL2 in FIG. 30).
  • second flow FL2 in FIG. 30
  • the lubricant can be supplied to the oil seal 211.
  • the guide member 750a is provided at a position including a horizontal plane passing through the axis on the inner peripheral surface of the bearing cover main body 710, but the upper surface of the guide member 750a is on the inner peripheral surface of the bearing cover main body 710. You may be provided in the position above the horizontal surface which passes along an axis. Thereby, the guide member 750 a can supply more lubricant to the oil seal 211 than the guide member 750.
  • the upper surface of the guide member 750a should just be provided in the position above the position where the height is the lowest among the sliding surfaces of the oil seal 211 and the main shaft 201.
  • the lubricant can be supplied to the sliding surfaces of the oil seal 211 and the main shaft 201 after the lubricant has flowed on the upper surface of the guide member 750a.
  • FIG. 31 is a cross-sectional view taken along arrow A in the pump device of FIG. 27 in the pump device according to Modification 2 of the fifth embodiment.
  • 32 is a cross-sectional view taken along the line CC ′ of FIG.
  • a protrusion-shaped guide member 750c having a thickness H extending from the bearing 202 side to the oil seal 211 in the major axis direction of the main shaft 201 is provided on the inner peripheral surface of the bearing cover main body 710. Further, as shown in FIG. 32, the pair of guide members 750c is parallel to the major axis direction of the main shaft 201 and includes a vertical cross section including the guide member 750c (for example, the CC ′ cross section shown in FIG. 32). As it approaches the oil seal 211 along the major axis direction of the main shaft 201, it is inclined downward.
  • the lubricant scattered from the bearing 202 adheres to the upper surface of the inner peripheral surface of the bearing cover main body 710, and then falls on the guide member 750c along the inner peripheral surface of the bearing cover main body 710 in the circumferential direction.
  • the lubricant that has fallen on the guide member 750c moves along the guide member 750c to the oil seal 211 in accordance with the inclination provided on the guide member 750c. In this way, the lubricant can be supplied to the oil seal 211.
  • the guide member 750c is provided below the horizontal plane passing through the axis on the inner peripheral surface of the bearing cover main body 710, but the lower end of the guide member 750c (on the oil seal 211 side).
  • the upper surface of the end portion may be provided above the oil seal 211.
  • the guide member 750c can supply the lubricant to the oil seal 211 more quickly than the guide member 750a.
  • the upper surface of the lower end (the end portion on the oil seal 211 side) of the guide member 750c only needs to be provided at a position above the lowest position among the sliding surfaces of the oil seal 211 and the main shaft 201.
  • the lubricant can be supplied to the sliding surfaces of the oil seal 211 and the main shaft 201 after the lubricant has flowed on the upper surface of the guide member 750c.
  • guide members 750a and 750c form a pair, only one of them may be provided, or three or more guide members may be provided in the bearing cover main body 710. When there are a plurality of guide members 750a or 750c, they may have different shapes. Further, the guide member 750, the guide member 750a, and the guide member 750c may be combined.
  • the maintenance procedure shown in FIG. 14 can be used to suppress lubricant leakage in the pump device of the prior art without any difference from the conventional procedure.
  • a groove 201c is formed in the main shaft 201 in step S29.
  • the bearing cover 405 is attached, and thereafter, the pump device may be assembled by a normal procedure.
  • a deflector member 640 may be further provided between the bearing 202 and the seal member of the pump device according to the third and fifth embodiments.
  • FIG. 33 is a schematic diagram illustrating a schematic configuration of a pump device according to a sixth embodiment.
  • the pump device 801 according to the sixth embodiment includes a pump 800 and an electric motor 860 having a rotary shaft 861 coupled to the main shaft 820 of the pump 800 via a coupling.
  • the configuration of the pump 800 is the same as that of the pump 300 according to the second embodiment, and thus detailed description thereof is omitted.
  • the pump device 801 communicates with the pump 800 and passes a suction pipe 830 through which water sucked from the water tank passes, and a discharge pipe 840 communicates with the pump 830 and passes water discharged from the pump 800.
  • the pump device 801 further includes an enclosure member 870 and a base 880 that supports the pump 800, the enclosure member 870, and the electric motor 860.
  • FIG. 34 is a cross-sectional view taken along the line DD of FIG.
  • the main shaft 820 is covered with an oil seal 811 in a cross section substantially perpendicular to the major axis of the main shaft 820, and the oil seal 811 is covered with a bearing cover 805. Further, the bearing cover 805 is covered with an enclosing member 870 with a space therebetween.
  • the lubricant leakage shown in FIGS. 21 and 22 is equal to the lubricant adhered to the inner surface of the enclosure member.
  • FIG. 35 is a cross-sectional view showing a partial configuration of the pump device according to the seventh embodiment.
  • the same components as those in FIG. 20 are denoted by the same reference numerals and description thereof is omitted.
  • a seal member 511b shown in FIG. 35 is a labyrinth seal which is a kind of non-contact seal. Specifically, labyrinth grooves 541 and 542 called labyrinths are provided in a through portion of the main shaft 201 of the bearing cover 205, that is, a flange surface 540 facing the outer peripheral surface of the main shaft 201 in the bearing cover 205.
  • the seal member 511b includes a flange surface 540 and labyrinth grooves 541 and 542. According to the labyrinth groove structure, the lubricant that has entered the gap between the flange surface 540 and the main shaft 201 through the side surface of the bearing cover 205 stays in the labyrinth grooves 541 and 542 due to the surface tension of the lubricant, and the labyrinth groove Guided downward along 541 and 542.
  • the gap between the flange surface 540 and the outer peripheral surface of the main shaft 201 is divided into an atmosphere side on the main shaft end 220 side and a sealed fluid side on the bearing 202 side. Also in the pump device of this embodiment, if the inclined groove 201c is formed in the main shaft 201, the lubricant on the main shaft 201 is returned to the sealed fluid side by the first flow FL1, and the lubricant leakage can be suppressed.
  • This groove 201c may be formed in a region adjacent to the atmosphere side with respect to a region facing the flange surface 540 of at least the outer peripheral surface of the main shaft 201 (region A1 in FIG. 35). Further, the inclined groove 201c may be provided in a region (region B1 in FIG. 35) facing the flange surface 540 in the outer peripheral surface of the main shaft 201. Furthermore, the inclined groove 201c may be provided in at least a part of a region on the sealed fluid side (region C1 in FIG. 35) of the outer peripheral surface of the main shaft 201.
  • the groove 201c is formed in at least a part on the atmosphere side adjacent to the facing surface of the flange surface 540 on the outer peripheral surface of the main shaft 201, and may further extend to the sealed fluid side. Thereby, like the structure using the oil seal for the seal member, leakage of the lubricant can be suppressed.
  • the lubricant supplied to the seal member by the second flow FL2 leaks to the atmosphere side.
  • leakage of the lubricant can be suppressed. Therefore, it can be applied to various pump devices.
  • the pump device 301 illustrated in FIG. 11A is referred to as a pump device 310
  • the pump device 301 illustrated in FIG. 20 is referred to as a pump device 311.
  • the groove 201c is inclined so that when the pump 300 is operated and the main shaft 201 rotates, the lubricant exposed on the outer peripheral surface of the main shaft 201 on the atmosphere side is returned to the sealed fluid side. That is, the groove 201c is inclined so that the lubricant on the outer peripheral surface of the main shaft 201 is returned from the atmosphere side to the sealed fluid side when the pump 300 is operated and the main shaft 201 rotates.
  • the inclined groove 201c is a fluid to be sealed from the atmosphere side on the right side surface viewed from the motor side (main shaft end 220 side). It is a plurality of linear irregularities inclined in the direction of increasing toward the side.
  • the space on the bearing 203 side is the sealed fluid side and the impeller 30 side. Is the atmosphere side. And it provides in at least one part of the area
  • the inclined groove 201c may extend from the atmosphere side to the sealed fluid side of the outer peripheral surface of the main shaft 201.
  • the linear irregularities of the groove 201c are a plurality of linear irregularities that are substantially parallel to each other, and the linear irregularities include lines that are slightly curved or broken in the process of formation. Further, the plurality of linear irregularities of the groove 201c are formed at a predetermined interval, and the predetermined interval is, for example, about 10 ⁇ m to 500 ⁇ m, and different intervals may be mixed evenly.
  • the surface roughness of the main shaft 201 in which the groove 201c of the pump device 311 is formed may be equal to or greater than the surface roughness of the sliding surface with the oil seal 211 of the main shaft 201 of the pump device 310.
  • one of the maximum height roughness Rz and the centerline average roughness Ra in the surface roughness of the main shaft 201 in which the groove 201c of the pump device 311 is formed is equal to the oil seal 211 of the main shaft 201 of the pump device 310.
  • the sliding surface is preferably equal to or greater than the sliding surface. However, when the surface roughness of the main shaft 201 is increased, the wear of the lip 11d is accelerated.
  • the maximum height roughness Rz of the main shaft 201 in which the groove 201c of the pump device 311 is formed is preferably 0.8 ⁇ mRz to 200 ⁇ mRz.
  • the center line average roughness Ra of the main shaft 201 in which the groove 201c of the pump device 310 is formed is preferably 0.1 ⁇ mRa to 50 ⁇ mRa.
  • the groove 201c is fine, and the lubricant that has flowed to the seal member by the second flow FL2 during operation of the pump 300 forms an oil surface that covers the plurality of irregularities of the groove 201c.
  • the contact area between the main shaft 201 and the lubricant increases, and the lubricant leaking from the seal member to the atmosphere side can be prevented from scattering from the main shaft 201.
  • the lubricant on the main shaft 201 can be prevented from returning to the sealed fluid side and leaking to the atmosphere side by the pumping action of the groove 201c.
  • the main shaft 201 on which the oil seal 211 slides is finished by a processing method using a finishing tool such as a grinder and not feeding (that is, not moving the finishing tool in the axial direction).
  • a finishing tool such as a grinder and not feeding
  • the line direction which is the finishing processing flaw is substantially perpendicular to the axis.
  • the operator forms a groove 201c in which the processing flaw is inclined with respect to the axis in the maintenance procedure described above on the main shaft 201 of the pump device 310 finished so that the processing flaw is almost perpendicular to the axis. Also good.
  • the operator may perform finishing using a finishing tool equivalent to the main shaft 201 of the pump device 310 while feeding (that is, moving the finishing tool in the axial direction).
  • the above description of surface roughness conforms to JISB0601: 2001.
  • the surface roughness of the main shaft 201 in which the groove 201c of the pump device 310 is formed indicates the surface roughness in a cross section perpendicular to the stripe direction of the groove 201c.
  • Patent Document 5 discloses that when the surface roughness of the shaft 201 is 2.5 ⁇ m or more, it causes leakage at rest.
  • the height of the oil surface OL of the lubricant when the pump 300 is stopped is lower than the sliding surface of the oil seal 211 and the main shaft 201.
  • the lubricant is grease
  • the grease is cooled and solidified while the rotating shaft 201 is stationary, and the oil surface of the lubricant does not exist. Therefore, the liquefied grease does not act on the sliding surfaces of the oil seal 211 and the main shaft 201.
  • the horizontal axis pump device 311 including the horizontal axis pump 300 is compared with that during the operation of forming the second flow FL2.
  • the sealed fluid does not act in the direction of leaking to the atmosphere side. Therefore, while the rotary shaft 201 is stationary, the horizontal shaft-type pump device 311 is operated by the seal member (pressing the lip 211d or flowing down by the labyrinth grooves 541 and 542) regardless of the surface roughness of the main shaft 201. Can be easily sealed.
  • the groove 201c of the pump device 310 has a wider range of tolerances for surface roughness and processing accuracy. Furthermore, the processing method for the main shaft 201 for forming the groove 201c and the allowable range of the finishing tool are widened.
  • the lubricant can be supplied to the oil seal 211 along the space S side surface of the bearing cover 205 by the action of the second flow FL2, so that the lead angle ⁇ is By being too large, the lubricant on the sliding surface of the oil seal 211 will not be insufficient.
  • it may be 10 ° to 80 °.
  • the lead angle ⁇ is about 45 °, the operator who finishes the main shaft 201 can easily recognize the target of inclination, so that workability is improved.
  • the pump 300 may be operated using variable speed means.
  • the amount of lubricant scattered from the bearing 202 and the amount of lubricant returned in the groove 201c are both proportional to the rotational speed. For example, when the rotation speed of the main shaft 201 is reduced to 50% of the normal speed, the amount of lubricant scattered from the bearing 202 decreases and the second flow FL2 for supplying the lubricant to the seal member decreases. Since the pumping action is reduced and the first flow FL1 is also reduced, the shortage of the lubricant and the leakage of the lubricant in the oil seal 211 can be suppressed. Therefore, the pump device 311 can also be used for an automatic water supply pump or the like that performs variable speed operation.
  • the embodiments and modifications described for the bearing cover 205 and the oil seal 211 may be implemented in the bearing cover 206 and the oil seal 212, and the embodiments and modifications described in the pump device 301 are pump devices. 101 is also applicable.
  • the present invention can be used for a pump device and a maintenance method of the pump device.

Abstract

This pump device has: a main shaft for rotating an impeller that pressurizes a conveyed liquid through driving of a drive machine in a predetermined direction; a bearing that rotatably supports the main shaft; a bearing cover that is penetrated by the main shaft; and a seal member that prevents a lubricant of the bearing from leaking from a sealed fluid side through the outer peripheral surface of the main shaft to the atmosphere side, wherein the bearing cover is configured such that the lubricant spattered from the bearing flows through the bearing cover to the seal member, and the main shaft is provided with, on the outer peripheral surface, a groove that is inclined so as to force back the lubricant on the outer peripheral surface of the main shaft from the atmosphere side to the sealed fluid side when the main shaft rotates.

Description

ポンプ装置およびポンプ装置のメンテナンス方法Pump device and maintenance method of pump device
 本発明は、ポンプ装置およびポンプ装置のメンテナンス方法に関する。 The present invention relates to a pump device and a maintenance method for the pump device.
 ポンプ装置は、回転する主軸を軸受によって支持しており、軸受には潤滑剤が用いられている。ポンプ装置の使用を続けると、経年劣化のため、軸受の潤滑剤がポンプ装置外へ漏れてしまい、周囲を汚したり、潤滑剤の補充や交換などのメンテナンス回数が増加したりするおそれがある。 The pump device supports a rotating main shaft with a bearing, and a lubricant is used for the bearing. If the pump device continues to be used, the bearing lubricant may leak out of the pump device due to deterioration over time, which may contaminate the surroundings and increase the number of maintenance such as replenishment or replacement of the lubricant.
特公昭61-46679号公報Japanese Patent Publication No. 61-46679 実開平1-115069号公報Japanese Utility Model Publication No. 1-115069 特開平8-254213号JP-A-8-254213 特許第5980217号公報Japanese Patent No. 5980217 特許第5950997号公報Japanese Patent No. 5950997 実開昭59-116631号公報Japanese Utility Model Publication No.59-116631 特許第6073746号公報Japanese Patent No. 6073746
 本発明はこのような問題点に鑑みてなされたものであり、本発明の課題は、ポンプ装置外へ潤滑剤が漏れるのを抑制するポンプメンテナンス方法、ポンプ装置外への潤滑剤の漏れが少ない潤滑剤漏れ抑制ポンプの製造方法、および、ポンプ装置外への潤滑剤の漏れを抑制することができるポンプ装置を提供することである。 The present invention has been made in view of such problems, and an object of the present invention is to provide a pump maintenance method for suppressing the leakage of the lubricant to the outside of the pump device, and to reduce the leakage of the lubricant to the outside of the pump device. It is an object to provide a manufacturing method of a lubricant leakage suppressing pump and a pump device capable of suppressing the leakage of the lubricant to the outside of the pump device.
 本発明の一態様によれば、所定方向に回転する主軸を回転可能に支持する軸受からの潤滑剤が飛散し得る位置に配置され、前記主軸の外周面と摺動するオイルシールを、前記主軸における前記オイルシールとの摺動面から離す工程と、前記主軸の外周面における前記オイルシールとの摺動面より前記軸受の反対側の少なくとも一部に、前記主軸が前記所定方向に回転した際に、前記摺動面の潤滑剤が前記軸受側に押し戻される方向に傾斜した溝を形成する工程と、前記主軸にオイルシールを取り付ける工程と、を備えるポンプ装置のメンテナンス方法が提供される。
 このような溝を形成することでポンピング作用によって潤滑剤が軸受側に押し戻されるため、潤滑剤の漏れを抑制できる。また、軸受からの潤滑剤がオイルシールに飛散するため、オイルシールと主軸との摺動を良好に保つことができる。
According to one aspect of the present invention, an oil seal that is disposed at a position where a lubricant from a bearing that rotatably supports a main shaft that rotates in a predetermined direction can be scattered and slides on an outer peripheral surface of the main shaft is disposed on the main shaft. When the main shaft rotates in the predetermined direction on at least a part of the outer surface of the main shaft opposite to the bearing from the sliding surface with the oil seal. Further, there is provided a maintenance method for a pump device comprising: a step of forming a groove inclined in a direction in which the lubricant on the sliding surface is pushed back to the bearing side; and a step of attaching an oil seal to the main shaft.
By forming such a groove, the lubricant is pushed back to the bearing side by the pumping action, so that leakage of the lubricant can be suppressed. Further, since the lubricant from the bearing is scattered on the oil seal, the sliding between the oil seal and the main shaft can be kept good.
 前記溝を形成する工程では、前記摺動面の少なくとも一部にも溝を形成してもよい。
 これにより、潤滑剤を押し戻す効果が増大するとともに、オイルシールと主軸との摺動面における溝の圧力が低下して、潤滑剤に泡が生じることによって、オイルシールと主軸との摺動面を低摩擦化することができる。
In the step of forming the groove, the groove may be formed in at least a part of the sliding surface.
As a result, the effect of pushing back the lubricant is increased, and the pressure of the groove on the sliding surface between the oil seal and the main shaft is reduced, and bubbles are generated in the lubricant, thereby reducing the sliding surface between the oil seal and the main shaft. Low friction can be achieved.
 前記溝を形成する工程では、前記摺動面より前記軸受側の少なくとも一部にも溝を形成してもよい。
 これにより、潤滑剤を押し戻す効果が増大する。
In the step of forming the groove, the groove may be formed in at least a part of the bearing side from the sliding surface.
This increases the effect of pushing back the lubricant.
 前記摺動面から所定量以上の前記潤滑剤が前記軸受とは反対側に漏れるポンプ装置に対して、前記離す工程、前記溝を形成する工程および前記オイルシールを取り付ける工程を行ってもよい。
 このようなメンテナンスにより、潤滑剤が軸受とは反対側に漏れることが抑制される。
The step of separating, the step of forming the groove, and the step of attaching the oil seal may be performed on the pump device in which a predetermined amount or more of the lubricant leaks from the sliding surface to the opposite side of the bearing.
Such maintenance prevents the lubricant from leaking to the opposite side of the bearing.
 前記主軸を覆う軸受胴体から前記潤滑剤を抜く工程と、前記主軸に取り付けられた羽根車を収納したポンプ胴体から、前記軸受胴体および前記ポンプ胴体の内側に配置された胴体カバーを外す工程と、前記羽根車を主軸から抜く工程と、前記軸受胴体から前記前記胴体カバーを外す工程と、前記主軸に設けられた軸封装置を外す工程と、を備え、その後に前記離す工程を行ってもよい。
 このようにして、羽根車、ポンプ胴体および胴体カバーから構成されるポンプにおける主軸のメンテナンスを行うことができる。
Removing the lubricant from the bearing body covering the main shaft; removing the body cover disposed inside the bearing body and the pump body from the pump body housing the impeller attached to the main shaft; The method may include a step of removing the impeller from the main shaft, a step of removing the body cover from the bearing body, and a step of removing a shaft seal device provided on the main shaft, followed by the step of separating. .
In this way, maintenance of the main shaft in the pump including the impeller, the pump body, and the body cover can be performed.
 また、本発明の別の態様によれば、主軸の外周面におけるオイルシールとの摺動面より軸受の反対側の少なくとも一部に、前記主軸が所定方向に回転した際に、前記摺動面の潤滑剤が前記軸受側に押し戻される方向に傾斜した溝を形成する工程と、前記主軸にオイルシールを取り付ける工程と、を備える潤滑剤漏れ抑制ポンプの製造方法が提供される。
 このような溝を主軸に形成することでポンピング作用によって潤滑油が軸受側に押し戻されるため、潤滑油の漏れを抑制できる。
According to another aspect of the present invention, when the main shaft rotates in a predetermined direction on at least a part of the outer peripheral surface of the main shaft opposite to the bearing with the oil seal, the sliding surface There is provided a method of manufacturing a lubricant leakage suppression pump comprising: a step of forming a groove inclined in a direction in which the lubricant is pushed back to the bearing side; and a step of attaching an oil seal to the main shaft.
By forming such a groove on the main shaft, the lubricating oil is pushed back to the bearing side by the pumping action, so that leakage of the lubricating oil can be suppressed.
 また、本発明の別の態様によれば、ポンプと、前記ポンプの運転により搬送液を送るために前記ポンプの羽根車を所定方向に回転するための主軸と、前記主軸を回転可能に支持する軸受と、前記主軸の外周面と摺動し、潤滑剤が前記主軸の外周面を伝わって被密封流体側から大気側に漏れるのを防止するオイルシールと、を、備えたポンプ装置において、前記オイルシールは、前記軸受からの前記潤滑剤が飛散する位置に配置されるとともに、前記主軸の外周面には、前記ポンプが運転した際に、前記オイルシールから前記大気側の前記主軸の外周面に露出した潤滑剤が被密封流体側に押し戻される方向に傾斜した溝が設けられていることを特徴とする、ポンプ装置が提供される。
 このような溝が主軸に設けられていることでポンピング作用によって潤滑剤が軸受側に押し戻されるため、潤滑剤の漏れを抑制できる。また、軸受からの潤滑剤がオイルシールに飛散するため、オイルシールと主軸との摺動を良好に保つことができる。
According to another aspect of the present invention, a pump, a main shaft for rotating the impeller of the pump in a predetermined direction to send a carrier liquid by the operation of the pump, and the main shaft are rotatably supported. In the pump apparatus comprising: a bearing; and an oil seal that slides on the outer peripheral surface of the main shaft and prevents the lubricant from leaking from the sealed fluid side to the atmosphere side along the outer peripheral surface of the main shaft. An oil seal is disposed at a position where the lubricant from the bearing scatters, and an outer peripheral surface of the main shaft on the outer side of the main shaft from the oil seal when the pump is operated. A pump device is provided, characterized in that a groove inclined in a direction in which the lubricant exposed to the surface is pushed back to the sealed fluid side is provided.
Since such a groove is provided in the main shaft, the lubricant is pushed back to the bearing side by the pumping action, so that leakage of the lubricant can be suppressed. Further, since the lubricant from the bearing is scattered on the oil seal, the sliding between the oil seal and the main shaft can be kept good.
 前記ポンプが運転することにより、前記傾斜した溝は、前記潤滑剤が前記軸受側に押し戻される第1の流れを形成するとともに、前記軸受からの潤滑剤が前記摺動面に達する第2の流れを形成することにより、所定量の前記潤滑剤が前記オイルシールと前記主軸の外周面との摺動面に介在するのが望ましい。
 第1の流れにより潤滑剤の漏れが抑制され、第2の流れによりオイルシールと主軸との摺動を良好に保つことができる。
When the pump is operated, the inclined groove forms a first flow in which the lubricant is pushed back to the bearing side, and a second flow in which the lubricant from the bearing reaches the sliding surface. It is desirable that a predetermined amount of the lubricant be interposed on the sliding surface between the oil seal and the outer peripheral surface of the main shaft.
The leakage of the lubricant is suppressed by the first flow, and the sliding between the oil seal and the main shaft can be favorably maintained by the second flow.
 前記傾斜した溝は、前記主軸の外周面の大気側の少なくとも一部に設けられているのが望ましい。
 このような溝により、ポンピング作用によって潤滑剤を軸受側に押し戻すことができる。
The inclined groove is preferably provided in at least a part of the outer peripheral surface of the main shaft on the atmosphere side.
With such a groove, the lubricant can be pushed back to the bearing side by a pumping action.
 前記傾斜した溝は、前記主軸の外周面における前記オイルシールとの摺動面に設けられているのが望ましい。
 これにより、潤滑剤を押し戻す効果が増大するとともに、オイルシールと主軸との摺動面における溝の圧力が低下して、潤滑剤に泡が生じることによって、オイルシールと主軸との摺動面を低摩擦化することができる。
It is preferable that the inclined groove is provided on a sliding surface with the oil seal on the outer peripheral surface of the main shaft.
As a result, the effect of pushing back the lubricant is increased, and the pressure of the groove on the sliding surface between the oil seal and the main shaft is reduced, and bubbles are generated in the lubricant, thereby reducing the sliding surface between the oil seal and the main shaft. Low friction can be achieved.
 前記傾斜した溝は、前記主軸の外周面の被密封流体側の少なくとも一部に設けられているのが望ましい。
 これにより、潤滑剤を押し戻す効果が増大する。
The inclined groove is preferably provided in at least a part of the outer peripheral surface of the main shaft on the sealed fluid side.
This increases the effect of pushing back the lubricant.
 本発明の別の態様によれば、駆動機の駆動により搬送液を加圧する羽根車を予め定められた方向に回転するための主軸と、前記主軸を回転可能に支持する軸受と、前記主軸が貫通する軸受カバーと、前記軸受の潤滑剤が前記主軸の外周面を伝わって被密封流体側から大気側に漏れるのを防止するシール部材と、を備え、前記軸受カバーは、前記軸受から飛散した前記潤滑剤が当該軸受カバーをつたって前記シール部材に流れるように構成され、前記主軸の外周面には、前記主軸が回転した際に、前記主軸の外周面の前記潤滑剤が前記大気側から被密封流体側に戻されるように傾斜した溝が設けられている、ポンプ装置が提供される。
 これにより、軸受から飛散した潤滑剤が軸受カバーをつたってシール部材に供給された潤滑剤が、主軸に微細な溝が形成されていることで、主軸と潤滑剤との接触面積が増え、主軸から飛散するのを抑制できるとともにポンピング作用によって、シール部材から大気側の主軸の外周面に露出した潤滑剤が軸受側に戻されるため、潤滑剤がシール部材から大気側に漏れるのを抑制できる。
According to another aspect of the present invention, a main shaft for rotating an impeller that pressurizes the carrier liquid by driving a driving device in a predetermined direction, a bearing that rotatably supports the main shaft, and the main shaft include: And a seal member that prevents the lubricant of the bearing from passing through the outer peripheral surface of the main shaft and leaking from the sealed fluid side to the atmosphere side, and the bearing cover is scattered from the bearing. The lubricant is configured to flow through the bearing cover and to the seal member, and the lubricant on the outer peripheral surface of the main shaft rotates from the atmosphere side when the main shaft rotates on the outer peripheral surface of the main shaft. A pump device is provided in which an inclined groove is provided so as to be returned to the sealed fluid side.
As a result, the lubricant supplied from the bearing through the bearing cover to the seal member via the bearing cover is formed with fine grooves on the spindle, which increases the contact area between the spindle and the lubricant. Since the lubricant exposed to the outer peripheral surface of the main shaft on the atmosphere side is returned from the seal member to the bearing side by the pumping action, the lubricant can be prevented from leaking from the seal member to the atmosphere side.
 前記ポンプ装置は、横軸形のポンプ装置であることが望ましい。
 これにより、主軸の静止中、前記ポンプ装置は、シール部材の作用によって被密封流体をシールできる。よって、横軸形のポンプ装置における主軸の外周面の溝は、表面粗さ並びに加工精度の許容範囲が広がる。
The pump device is preferably a horizontal shaft type pump device.
Thereby, while the main shaft is stationary, the pump device can seal the sealed fluid by the action of the seal member. Thus, the groove on the outer peripheral surface of the main shaft in the horizontal shaft type pump device has an increased tolerance for surface roughness and machining accuracy.
 前記傾斜した溝は、前記主軸の外周面のうち前記シール部材に対向する領域に対して大気側の方に隣接する領域の少なくとも一部に設けられていることが望ましい。
 これにより、主軸が回転するのに伴って、傾斜した溝が形成されている主軸の外周面の大気側において、主軸の外周面の大気側から軸受の方向への風ができ、この風によって潤滑剤が軸受の方向へ押し戻される。
It is desirable that the inclined groove is provided in at least a part of a region adjacent to the atmosphere side with respect to a region facing the seal member on the outer peripheral surface of the main shaft.
As a result, as the main shaft rotates, on the air side of the outer peripheral surface of the main shaft on which the inclined groove is formed, air is generated from the air side of the outer peripheral surface of the main shaft toward the bearing, and lubrication is performed by this wind. The agent is pushed back in the direction of the bearing.
 前記傾斜した溝は、前記主軸の外周面のうち前記大気側から前記被密封流体側まで延在することが望ましい。
 これにより、主軸が回転するのに伴って潤滑剤が軸受側へ戻される。
The inclined groove preferably extends from the atmosphere side to the sealed fluid side in the outer peripheral surface of the main shaft.
As a result, the lubricant is returned to the bearing side as the main shaft rotates.
 前記主軸の静止時に、前記潤滑剤の油面は前記主軸より下の液位であることが望ましい。
 これにより、主軸の静止時に、潤滑剤が主軸の傾斜した溝に沿って大気側に漏れない。
When the main shaft is stationary, the oil level of the lubricant is preferably at a liquid level below the main shaft.
Thereby, when the main shaft is stationary, the lubricant does not leak to the atmosphere side along the inclined groove of the main shaft.
 前記シール部材は、前記軸受カバーに組み込まれたオイルシールであって、前記軸受カバーは、前記軸受から飛散した前記潤滑剤が当該軸受カバーをつたってオイルシールと前記主軸の外周面の摺動部間に供給されるように構成されるのが望ましい。
 これにより、軸受から飛散した潤滑剤が軸受カバーをつたってオイルシールと主軸の外周面の摺動部間に潤滑剤が供給されるので、オイルシールと主軸との摺動を良好に保つことができる。更に、傾斜した溝が形成されていることで、ポンピング作用によって、シール部材から大気側の主軸の外周面に露出した潤滑剤が軸受側に押し戻されるため、潤滑剤がシール部材から大気側に漏れるのを抑制できる。
The seal member is an oil seal incorporated into the bearing cover, and the bearing cover has a sliding portion between the oil seal and the outer peripheral surface of the main shaft by the lubricant scattered from the bearing passing through the bearing cover. It is desirable to be configured to be supplied between.
As a result, the lubricant splashed from the bearing passes through the bearing cover, and the lubricant is supplied between the sliding portion between the oil seal and the outer peripheral surface of the main shaft, so that the sliding between the oil seal and the main shaft can be kept good. it can. Further, since the inclined groove is formed, the lubricant exposed from the seal member to the outer peripheral surface of the main spindle on the atmosphere side is pushed back to the bearing side by the pumping action, so that the lubricant leaks from the seal member to the atmosphere side. Can be suppressed.
 前記傾斜した溝は、前記オイルシールと前記主軸の外周面の摺動部間に接する大気側の少なくとも一部に設けられているのが望ましい。
 これにより、主軸の外周面の大気側から軸受の方向への風ができ、この風によって潤滑剤が軸受の方向へ押し戻される。
It is desirable that the inclined groove is provided in at least a part of the atmosphere side contacting between the oil seal and the sliding portion of the outer peripheral surface of the main shaft.
As a result, wind is generated from the atmosphere side of the outer peripheral surface of the main shaft toward the bearing, and the lubricant is pushed back toward the bearing by the wind.
 前記傾斜した溝は、前記オイルシールと前記主軸の外周面の摺動部に設けられているのが望ましい。
 これにより、潤滑剤を押し戻す効果が増大するとともに、オイルシールと主軸との摺動面における溝の圧力が低下して、潤滑剤に泡が生じることによって、オイルシールと主軸との摺動面を低摩擦化することができる。
It is desirable that the inclined groove is provided in a sliding portion between the oil seal and the outer peripheral surface of the main shaft.
As a result, the effect of pushing back the lubricant is increased, and the pressure of the groove on the sliding surface between the oil seal and the main shaft is reduced, and bubbles are generated in the lubricant, thereby reducing the sliding surface between the oil seal and the main shaft. Low friction can be achieved.
 前記傾斜した溝は、前記主軸の外周面の被密封流体側の少なくとも一部に設けられているのが望ましい。
 これにより、主軸の外周面の潤滑剤を軸受側に戻す効果が増大する。
The inclined groove is preferably provided in at least a part of the outer peripheral surface of the main shaft on the sealed fluid side.
This increases the effect of returning the lubricant on the outer peripheral surface of the main shaft to the bearing side.
 前記軸受カバーは、前記軸受側の面に、当該軸受カバーに飛散した潤滑剤を前記シール部材に案内する構造を有するのが望ましい。
 これにより、軸受から飛散した潤滑剤をシール部材に案内することができる。
The bearing cover preferably has a structure for guiding the lubricant scattered on the bearing cover to the seal member on a surface on the bearing side.
Thereby, the lubricant scattered from the bearing can be guided to the seal member.
 前記潤滑剤を前記シール部材に案内する構造として、前記軸受カバーの内周面のうちの少なくとも天井面部を含む面は、前記主軸の長軸方向に沿って前記シール部材に近づくに従って、当該主軸に近づくように傾斜していることが望ましい。
 これにより、軸受から飛散した潤滑剤をシール部材に案内することができる。
As a structure for guiding the lubricant to the seal member, the surface including at least the ceiling surface portion of the inner peripheral surface of the bearing cover is moved toward the main shaft as it approaches the seal member along the major axis direction of the main shaft. It is desirable to be inclined so as to approach.
Thereby, the lubricant scattered from the bearing can be guided to the seal member.
 前記軸受カバーは、軸受カバー本体と、前記潤滑剤を前記シール部材に案内する構造として前記軸受から飛散した前記潤滑剤を前記シール部材に案内するガイド部材と、を有するのが望ましい。
 これにより、軸受から飛散した潤滑剤をシール部材に案内することができる。
The bearing cover preferably includes a bearing cover main body and a guide member for guiding the lubricant scattered from the bearing to the seal member as a structure for guiding the lubricant to the seal member.
Thereby, the lubricant scattered from the bearing can be guided to the seal member.
 前記ガイド部材は、前記軸受カバー本体の内周面のうちの最上部を含む内周面に設けられ、主軸の長軸方向に沿って前記シール部材へと伸びる突起形状を有しており、
 前記ガイド部材の前記主軸に対向する面は、前記主軸の長軸方向に沿って前記シール部材に近づくに従って当該主軸に近づくように傾斜しているのが望ましい。
 これにより、潤滑剤が、ガイド部材の主軸に対向する面の傾斜にそって流れるので、潤滑剤をシール部材に供給することができる。
The guide member is provided on the inner peripheral surface including the uppermost part of the inner peripheral surface of the bearing cover body, and has a protrusion shape extending to the seal member along the major axis direction of the main shaft,
It is desirable that the surface of the guide member that faces the main shaft be inclined so as to approach the main shaft as it approaches the seal member along the major axis direction of the main shaft.
Thereby, the lubricant flows along the inclination of the surface facing the main shaft of the guide member, so that the lubricant can be supplied to the seal member.
 前記ガイド部材は、前記軸受カバー本体の内周面に設けられ、主軸の長軸方向に沿って前記シール部材へと伸びる突起形状を有しており、前記主軸の長軸方向と平行で且つ当該ガイド部材を含む鉛直断面において、略水平に配置されているのが望ましい。
 これにより、軸受から飛び散った潤滑剤が、軸受カバー本体の内周面の上面に付着し、その後に軸受カバー本体の内周面を円周方向につたってガイド部材に落ちる。ガイド部材に落ちた潤滑剤は、慣性により、このガイド部材をつたってシール部材まで移動する。このようにして、潤滑剤をシール部材に供給することができる。
The guide member is provided on an inner peripheral surface of the bearing cover main body, has a protrusion shape extending to the seal member along the major axis direction of the main shaft, and is parallel to the major axis direction of the main shaft and In the vertical cross section including the guide member, it is desirable that they are arranged substantially horizontally.
As a result, the lubricant scattered from the bearing adheres to the upper surface of the inner peripheral surface of the bearing cover body, and then falls on the guide member along the circumferential direction of the inner surface of the bearing cover body. The lubricant that has fallen on the guide member moves along the guide member to the seal member due to inertia. In this way, the lubricant can be supplied to the seal member.
 前記ガイド部材は、前記軸受カバー本体の内周面に設けられ、主軸の長軸方向に沿って前記シール部材へと伸びる突起形状を有しており、前記主軸の長軸方向と平行で且つ当該ガイド部材を含む鉛直断面において、前記主軸の長軸方向に沿って前記シール部材に近づくに従って下方に傾斜しているのが望ましい。
 これにより、軸受から飛び散った潤滑剤が、軸受カバー本体の内周面の上面に付き、その後に軸受カバー本体の内周面を円周方向につたってガイド部材に落ちる。ガイド部材に落ちた潤滑剤は、ガイド部材に設けられた傾斜に従って、当該ガイド部材をつたってシール部材まで移動する。このようにして、潤滑剤をシール部材に供給することができる。
The guide member is provided on an inner peripheral surface of the bearing cover main body, has a protrusion shape extending to the seal member along the major axis direction of the main shaft, and is parallel to the major axis direction of the main shaft and In a vertical cross section including the guide member, it is desirable that it is inclined downward as it approaches the seal member along the major axis direction of the main shaft.
Thereby, the lubricant scattered from the bearing adheres to the upper surface of the inner peripheral surface of the bearing cover main body, and then falls on the guide member along the inner peripheral surface of the bearing cover main body in the circumferential direction. The lubricant that has fallen on the guide member moves along the guide member to the seal member according to the inclination provided on the guide member. In this way, the lubricant can be supplied to the seal member.
 前記潤滑剤を前記シール部材に案内する構造として、前記軸受と前記シール部材との間に位置において、前記主軸に取り付けられているデフレクタ部材を更に備えるのが望ましい。
 これにより、軸受から飛散した潤滑剤が軸受カバーに当たり、主軸に落ち、デフレクタ部材が主軸に落ちた潤滑油を再度、軸受カバーに遠心力で飛ばす。この飛ばされた潤滑剤は、軸受カバーをつたってシール部材に供給される。これにより、シール部材と主軸の摺動面に潤滑剤が供給される。この潤滑剤は、主軸の表面に形成された溝のポンピング作用によって、軸受側に戻される。
As a structure for guiding the lubricant to the seal member, it is preferable to further include a deflector member attached to the main shaft at a position between the bearing and the seal member.
As a result, the lubricant scattered from the bearing hits the bearing cover, falls on the main shaft, and the lubricating oil that has fallen on the main shaft by the deflector member is again blown to the bearing cover by centrifugal force. The skipped lubricant is supplied to the seal member through the bearing cover. Thereby, the lubricant is supplied to the sliding surfaces of the seal member and the main shaft. This lubricant is returned to the bearing side by the pumping action of the groove formed on the surface of the main shaft.
 前記ポンプ装置は、可変速手段を有し前記可変速手段によって前記駆動機が駆動されるのが望ましい。 Preferably, the pump device has variable speed means, and the drive unit is driven by the variable speed means.
 本発明の別の態様によれば、駆動機の駆動により搬送液を加圧する羽根車を予め定められた方向に回転するための主軸と、前記主軸を回転可能に支持する軸受と、前記主軸が貫通する軸受カバーと、前記軸受の潤滑剤が前記主軸の外周面を伝わって被密封流体側から大気側に漏れるのを防止するシール部材と、を備え、前記軸受カバーは、前記軸受から飛散した前記潤滑剤が当該軸受カバーをつたって前記シール部材に流れるように構成されているポンプ装置のメンテナンス方法であって、前記主軸の外周面と摺動するシール部材を、前記主軸における前記シール部材との摺動面から離す工程と、前記主軸が回転した際に、前記大気側の前記主軸の外周面に露出した前記潤滑剤が被密封流体側に押し戻されるように傾斜した溝を、前記主軸の外周面に形成する工程と、前記主軸にシール部材を取り付ける工程と、を有するポンプ装置のメンテナンス方法が提供される。
 このようなメンテナンスにより、潤滑剤が、シール部材の大気側に漏れることが抑制される。
According to another aspect of the present invention, a main shaft for rotating an impeller that pressurizes the carrier liquid by driving a driving device in a predetermined direction, a bearing that rotatably supports the main shaft, and the main shaft include: And a seal member that prevents the lubricant of the bearing from passing through the outer peripheral surface of the main shaft and leaking from the sealed fluid side to the atmosphere side, and the bearing cover is scattered from the bearing. A maintenance method for a pump device configured to allow the lubricant to flow through the bearing cover to the seal member, wherein a seal member that slides with an outer peripheral surface of the main shaft is connected to the seal member on the main shaft. A groove inclined so that the lubricant exposed to the outer peripheral surface of the main shaft on the atmosphere side is pushed back to the sealed fluid side when the main shaft rotates. Forming on a peripheral surface, a maintenance method of pumping devices and a step of attaching the sealing member to the main shaft is provided.
Such maintenance suppresses the lubricant from leaking to the atmosphere side of the seal member.
 潤滑剤が被密封流体側から大気側に漏れるのを防止するシール部材における潤滑剤の漏れを抑制する。 Lubricant leakage in the seal member that prevents the lubricant from leaking from the sealed fluid side to the atmosphere side is suppressed.
本実施形態におけるメンテナンス対象となるポンプの概略断面図。The schematic sectional drawing of the pump used as the maintenance object in this embodiment. 本実施形態におけるメンテナンス対象となるポンプの概略分解斜視図。The schematic exploded perspective view of the pump used as the maintenance object in this embodiment. 本実施形態に係るメンテナンス対象となる主軸1、オイルシール11および軸受2近傍の拡大断面図。FIG. 3 is an enlarged cross-sectional view of the vicinity of a main shaft 1, an oil seal 11, and a bearing 2 that are maintenance targets according to the present embodiment. 図2Aのオイルシール11近傍(図2Aの破線部)をさらに拡大した図。2B is an enlarged view of the vicinity of the oil seal 11 in FIG. 2A (the broken line portion in FIG. 2A). メンテナンス後の主軸1、オイルシール11および軸受2近傍の拡大断面図。The expanded sectional view of the main shaft 1, the oil seal 11, and the bearing 2 vicinity after a maintenance. 図3Aのオイルシール11近傍(図3Aの破線部)をさらに拡大した図。The figure which expanded further the oil seal 11 vicinity of FIG. 3A (dashed line part of FIG. 3A) further. 図3Bとは異なるオイルシール11’を用いた場合の拡大図。The enlarged view at the time of using the oil seal 11 'different from FIG. 3B. 図3Bとは異なるオイルシール11’’を用いた場合の拡大図。The enlarged view at the time of using the oil seal 11 '' different from FIG. 3B. ポンプのメンテナンス手順を示す工程図。Process drawing which shows the maintenance procedure of a pump. メンテナンス工程を示すポンプの概略断面図。The schematic sectional drawing of the pump which shows a maintenance process. 図5に引き続く、メンテナンス工程を示すポンプの概略断面図。The schematic sectional drawing of the pump which shows a maintenance process following FIG. 図6に引き続く、メンテナンス工程を示すポンプの概略断面図。The schematic sectional drawing of the pump which shows a maintenance process following FIG. 図7に引き続く、メンテナンス工程を示すポンプの概略断面図。The schematic sectional drawing of the pump which shows a maintenance process following FIG. 図8に引き続く、メンテナンス工程を示すポンプの概略断面図。The schematic sectional drawing of the pump which shows a maintenance process following FIG. 潤滑油漏れが少ないポンプ装置の概略断面図。The schematic sectional drawing of a pump apparatus with few lubricating oil leaks. 第2の実施形態におけるメンテナンス対象となるポンプの概略断面図。The schematic sectional drawing of the pump used as the maintenance object in 2nd Embodiment. 第2の実施形態におけるメンテナンス対象となるポンプの概略分解斜視図。The schematic exploded perspective view of the pump used as the maintenance object in 2nd Embodiment. 第2の実施形態に係るメンテナンス対象となる主軸201、オイルシール211および軸受202近傍の拡大断面図。The expanded sectional view of the main axis | shaft 201 used as the maintenance object which concerns on 2nd Embodiment, the oil seal 211, and the bearing 202 vicinity. 図12Aのオイルシール211近傍(図2Aの破線部)をさらに拡大した図。The figure which further expanded the oil seal 211 vicinity (dashed line part of FIG. 2A) of FIG. 12A. メンテナンス後の主軸201、オイルシール211および軸受202近傍の拡大断面図。The expanded sectional view of the main shaft 201 after maintenance, the oil seal 211, and the bearing 202 vicinity. 図13Aのオイルシール211近傍(図3Aの破線部)をさらに拡大した図。The figure which further expanded the oil seal 211 vicinity (dashed line part of FIG. 3A) of FIG. 13A. 図13Bとは異なるオイルシール211’を用いた場合の拡大図。The enlarged view at the time of using the oil seal 211 'different from FIG. 13B. 図13Bとは異なるオイルシール211’’を用いた場合の拡大図。The enlarged view at the time of using the oil seal 211 '' different from FIG. 13B. ポンプのメンテナンス手順を示す工程図。Process drawing which shows the maintenance procedure of a pump. メンテナンス工程を示すポンプの概略断面図。The schematic sectional drawing of the pump which shows a maintenance process. 図15に引き続く、メンテナンス工程を示すポンプの概略断面図。The schematic sectional drawing of the pump which shows a maintenance process following FIG. 図16に引き続く、メンテナンス工程を示すポンプの概略断面図。The schematic sectional drawing of the pump which shows a maintenance process following FIG. 図17に引き続く、メンテナンス工程を示すポンプの概略断面図。The schematic sectional drawing of the pump which shows a maintenance process following FIG. 図18に引き続く、メンテナンス工程を示すポンプの概略断面図。The schematic sectional drawing of the pump which shows a maintenance process following FIG. 潤滑油漏れが少ないポンプ装置の概略断面図。The schematic sectional drawing of a pump apparatus with few lubricating oil leaks. 従来技術のポンプ装置と第2の実施形態に係るポンプ装置で、潤滑剤の漏れを比較した一例を示す表である。It is a table | surface which shows an example which compared the leakage of the lubricant with the pump apparatus of a prior art, and the pump apparatus which concerns on 2nd Embodiment. 図21の表に示す結果を、経過時間における変化として示したグラフである。It is the graph which showed the result shown in the table | surface of FIG. 21 as a change in elapsed time. 比較例に係るポンプ装置の一部の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows a part of structure of the pump apparatus which concerns on a comparative example. 図23のポンプ装置のXにおける断面図である。It is sectional drawing in X of the pump apparatus of FIG. 第3の実施形態の変形例に係るポンプ装置の一部の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of a part of pump apparatus which concerns on the modification of 3rd Embodiment. 第4の実施形態に係るポンプ装置の一部の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of a part of pump apparatus which concerns on 4th Embodiment. 第5の実施形態に係るポンプ装置の一部の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of a part of pump apparatus which concerns on 5th Embodiment. 図27のポンプ装置における矢印Aの断面矢視図である。It is a cross-sectional arrow view of the arrow A in the pump apparatus of FIG. 第5の実施形態の変形例1に係るポンプ装置において、図27のポンプ装置の矢印Aの断面矢視図である。In the pump apparatus which concerns on the modification 1 of 5th Embodiment, it is a cross-sectional arrow view of the arrow A of the pump apparatus of FIG. 図29のB-B’断面図である。FIG. 30 is a cross-sectional view taken along the line B-B ′ of FIG. 29. 図31は、第5の実施形態の変形例2に係るポンプ装置において、図27のポンプ装置の矢印Aの断面矢視図である。FIG. 31 is a cross-sectional view taken along arrow A of the pump device of FIG. 27 in the pump device according to Modification 2 of the fifth embodiment. 図31のC-C’断面図である。FIG. 32 is a cross-sectional view taken along the line C-C ′ of FIG. 31. 第6の実施形態に係るポンプ装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the pump apparatus which concerns on 6th Embodiment. 図33のD-D断面図である。It is DD sectional drawing of FIG. 第7の実施形態に係るポンプ装置の一部の構成を示す断面図である。It is sectional drawing which shows the structure of a part of pump apparatus which concerns on 7th Embodiment.
 まずは、本発明において対象となるポンプ装置と、そのようなポンプ装置において、潤滑剤の漏れが発生する原因を説明する。 First, the pump device that is the subject of the present invention and the cause of the occurrence of lubricant leakage in such a pump device will be described.
 図1Aおよび図1Bはそれぞれ、対象となるポンプ装置101の概略断面図および分解斜視図である。ポンプ装置101は、羽根車30と、ポンプ胴体32と、胴体カバー21とを備えたポンプ100と、主軸1、軸受2,3、軸受胴体4、軸受カバー5,6、および、オイルシール11,12、などを備えている。また、ポンプ胴体32は、搬送液の吸込口32-2並びに吐出口32-1を備える。ポンプ装置101は、住居や商業スペースとは区別された機械室やポンプ室、または工場設備内等に設置されることが多い。 1A and 1B are a schematic cross-sectional view and an exploded perspective view of a target pump device 101, respectively. The pump device 101 includes a pump 100 including an impeller 30, a pump body 32, and a body cover 21, a main shaft 1, bearings 2 and 3, a bearing body 4, bearing covers 5 and 6, and an oil seal 11, 12, etc. Further, the pump body 32 includes a suction port 32-2 and a discharge port 32-1 for the transport liquid. The pump device 101 is often installed in a machine room, a pump room, a factory facility, or the like that is distinguished from a residence or a commercial space.
 主軸1は、一端側(図1Aおよび図1Bの右側)に羽根車30が取り付けられ、他端側である主軸端20(同左側)には、カップリングを介して、駆動機の一種である電動機(不図示)の回転軸が連結されるように構成されている。ポンプ100の運転時には、電動機に駆動されて主軸1が予め定められた方向に回転することにより、ポンプ100は、吸込口32-2から流入した搬送液を、羽根車30の回転による遠心力にて加圧して、吐出口32-1へと流出する。ポンプ装置101は、主軸1が軸受胴体4に覆われて略水平方向に延びており、間隔を隔てて配置された2つの軸受2,3によって回転可能に支持される横軸形のポンプ装置である。また、軸受2の主軸端20側に、主軸1が貫通する軸受カバー5がボルト10aによって軸受胴体4に取り付けられている。軸受3の羽根車30側において、主軸1が貫通する軸受カバー6がボルト10bによって軸受胴体4に取り付けられている。 The main shaft 1 is attached to one end side (the right side in FIG. 1A and FIG. 1B) with an impeller 30 and is connected to the main shaft end 20 (the left side) on the other end side via a coupling. It is comprised so that the rotating shaft of an electric motor (not shown) may be connected. When the pump 100 is operated, the pump 100 is driven by the electric motor to rotate in a predetermined direction, so that the pump 100 converts the carrier liquid flowing in from the suction port 32-2 into a centrifugal force due to the rotation of the impeller 30. And pressurize to flow out to the discharge port 32-1. The pump device 101 is a horizontal shaft type pump device in which a main shaft 1 is covered with a bearing body 4 and extends in a substantially horizontal direction, and is rotatably supported by two bearings 2 and 3 arranged at intervals. is there. A bearing cover 5 through which the main shaft 1 passes is attached to the bearing body 4 by bolts 10 a on the main shaft end 20 side of the bearing 2. On the impeller 30 side of the bearing 3, a bearing cover 6 through which the main shaft 1 passes is attached to the bearing body 4 by bolts 10b.
 主軸端20側の軸受2,羽根車30側の軸受3間において、主軸1は大径軸1aとなっている。軸受2の羽根車30側の鉛直面は、大径軸1aの一端部に当接される。軸受3のモータ側の鉛直面は、大径軸1aの他端部に当接される。軸受2,3の外側の面は、軸受胴体4に取り付けられた軸受カバー5,6の突起部分7によってそれぞれ両側から挟み込まれている。 The main shaft 1 is a large-diameter shaft 1a between the bearing 2 on the main shaft end 20 side and the bearing 3 on the impeller 30 side. The vertical surface of the bearing 2 on the impeller 30 side is in contact with one end of the large-diameter shaft 1a. The motor-side vertical surface of the bearing 3 is in contact with the other end of the large-diameter shaft 1a. The outer surfaces of the bearings 2 and 3 are sandwiched from both sides by the protruding portions 7 of the bearing covers 5 and 6 attached to the bearing body 4.
 軸受胴体4内の軸受2,3間には潤滑剤が貯蔵されており、ポンプ100の運転時には、必ず軸受2,3の少なくとも一部が潤滑剤に浸った状態である必要がある。ポンプ100の運転中において、軸受胴体4内の潤滑剤は、温度上昇により蒸発するので、軸受胴体4には空気抜きを目的とするキャップ14と、潤滑剤の減り具合を見るためのオイルゲージ15とが設けられている。また、プラグ16を抜くことで潤滑剤を軸受胴体4外へ排出できるようになっている。なお、本実施形態における潤滑剤としては、液状の潤滑油が用いられるが、半固状のグリースが用いられてもよい。ポンプ100の運転にて軸受2,3が高温となりグリースは液化する。 The lubricant is stored between the bearings 2 and 3 in the bearing body 4, and at the time of operation of the pump 100, at least a part of the bearings 2 and 3 must be immersed in the lubricant. During the operation of the pump 100, the lubricant in the bearing body 4 evaporates due to the temperature rise. Therefore, the bearing body 4 has a cap 14 for removing air and an oil gauge 15 for checking the reduction of the lubricant. Is provided. Further, the lubricant can be discharged out of the bearing body 4 by removing the plug 16. As the lubricant in the present embodiment, liquid lubricant is used, but semi-solid grease may be used. As the pump 100 is operated, the bearings 2 and 3 become hot and the grease is liquefied.
 潤滑剤が主軸1の外周面を伝わって外部に漏れるのを防止するために、軸受カバー5,6にはオイルシール11,12がそれぞれ組み込まれている。また、軸受カバー6の外側において、主軸1に水切りリング13が嵌められていてもよい。さらに、軸受3の外側の鉛直面と、軸受カバー6との間には、弾性座金の一種である波座金9が介在されているとよい。この波座金9には、ボルト10bの締め付け力により圧縮応力が与えられており、主軸1には軸受3を介して電動機側への反力が作用する。 Oil seals 11 and 12 are respectively incorporated in the bearing covers 5 and 6 in order to prevent the lubricant from leaking outside along the outer peripheral surface of the main shaft 1. Further, a draining ring 13 may be fitted to the main shaft 1 outside the bearing cover 6. Further, a wave washer 9, which is a kind of elastic washer, is preferably interposed between the vertical surface outside the bearing 3 and the bearing cover 6. A compressive stress is applied to the wave washer 9 by the tightening force of the bolt 10 b, and a reaction force to the motor side acts on the main shaft 1 via the bearing 3.
 軸受胴体4の上部には釣り具17が取り付けられている。また、軸受胴体4は支持台18で支持されている。軸受胴体4は軸受2,3を覆っているが、一部に開口4aが設けられている(図1B参照)。また、軸受胴体4の羽根車30側はボルト36によって中間板37に固定される。また、中間板37は羽根車30を収納したポンプ胴体32にボルト38によって固定される。これにより、軸受胴体4とポンプ胴体32とが一体化される。軸受胴体4と中間板37との間および中間板37とポンプ胴体32との間にはガスケットが介在されてシールしている。 A fishing gear 17 is attached to the upper part of the bearing body 4. The bearing body 4 is supported by a support base 18. Although the bearing body 4 covers the bearings 2 and 3, an opening 4a is provided in part (see FIG. 1B). The impeller 30 side of the bearing body 4 is fixed to the intermediate plate 37 by bolts 36. The intermediate plate 37 is fixed to the pump body 32 that houses the impeller 30 by bolts 38. Thereby, the bearing body 4 and the pump body 32 are integrated. Gaskets are interposed between the bearing body 4 and the intermediate plate 37 and between the intermediate plate 37 and the pump body 32 for sealing.
 ポンプ胴体32の主軸1側には、主軸1が貫通する胴体カバー21が設けられる。胴体カバー21の貫通部分には軸封装置が施されている。図1には軸封装置としてグランドパッキン23を用いる例を示しているが、メカニカルシールであってもよい。軸封部は回転摩擦を生じるので、主軸1にはグランドパッキン23用の軸スリーブ25が嵌合されており、その軸スリーブ25と胴体カバー21の筒状部21aとの間には、グランドパッキン押さえ28を介して、ボルト29によってグランドパッキン23が締め付けられている。 A body cover 21 through which the main shaft 1 passes is provided on the main shaft 1 side of the pump body 32. A shaft seal device is applied to the through portion of the body cover 21. Although FIG. 1 shows an example in which the gland packing 23 is used as the shaft seal device, a mechanical seal may be used. Since the shaft seal portion generates rotational friction, a shaft sleeve 25 for the gland packing 23 is fitted to the main shaft 1, and the gland packing is interposed between the shaft sleeve 25 and the tubular portion 21 a of the body cover 21. The gland packing 23 is fastened by bolts 29 through the presser 28.
 主軸1の先端に設けられたキー19には羽根車30が嵌め込まれ、ナット31によって固定されている。羽根車30のシュラウド側Iとポンプ胴体32との間にライナーリング33が設けられ、また、バックシュラウド側Bと胴体カバー21との間にライナーリング34が設けられている。そして、羽根車30のボス部に近いところに複数個のバランスホール35が形成されている。 An impeller 30 is fitted into a key 19 provided at the tip of the main shaft 1 and is fixed by a nut 31. A liner ring 33 is provided between the shroud side I of the impeller 30 and the pump body 32, and a liner ring 34 is provided between the back shroud side B and the body cover 21. A plurality of balance holes 35 are formed near the boss portion of the impeller 30.
 図2Aは、本実施形態に係るポンプ装置101の主軸1、オイルシール11および軸受2近傍の拡大断面図である。また、図2Bは、図2Aのオイルシール11近傍(図2Aの破線部)をさらに拡大した図である。図示のように、主軸1は羽根車30を所定方向(本例では、電動機側(図2Aの左側)から見て時計回り)に回転させることによって、ポンプ100は液体輸送機械として作用することが出来る。以下、図2Bに示すように、主軸1の径方向中心を含む水平面、オイルシール11、軸受カバー5、軸受2で囲まれた空間Sとする。また、主軸1の外周面、オイルシール11、軸受カバー5、軸受2、潤滑剤の油面OLで囲まれた空間には、潤滑剤が油煙(ミスト)となって充満している。 FIG. 2A is an enlarged cross-sectional view of the vicinity of the main shaft 1, the oil seal 11 and the bearing 2 of the pump device 101 according to the present embodiment. Moreover, FIG. 2B is the figure which expanded further the oil seal 11 vicinity (FIG. 2A broken line part) of FIG. 2A. As shown in the figure, the main shaft 1 rotates the impeller 30 in a predetermined direction (clockwise as viewed from the electric motor side (left side in FIG. 2A) in this example), so that the pump 100 can function as a liquid transport machine. I can do it. Hereinafter, as shown in FIG. 2B, the space S is surrounded by a horizontal plane including the radial center of the main shaft 1, the oil seal 11, the bearing cover 5, and the bearing 2. The space surrounded by the outer peripheral surface of the main shaft 1, the oil seal 11, the bearing cover 5, the bearing 2, and the oil surface OL of the lubricant is filled with lubricant as mist.
 ポンプ装置101は、横軸形のポンプ装置であるため、主軸1の軸心は略水平であり潤滑剤の油面OLと略平行である。また、潤滑剤は、メンテナンスにて定期的に交換または補充され、潤滑油の油面OLは、オイルゲージ15の中心付近、具体的には、主軸1の下端より下であり且つ軸受2,3の下端より上の液位にて使用される。つまり、通常の状態では、主軸1より低い位置にある軸受2,3の一部分が潤滑油に浸った状態でポンプ100は運転される。 Since the pump device 101 is a horizontal shaft type pump device, the axis of the main shaft 1 is substantially horizontal and substantially parallel to the oil surface OL of the lubricant. The lubricant is periodically replaced or replenished during maintenance, and the oil level OL of the lubricating oil is near the center of the oil gauge 15, specifically, below the lower end of the main shaft 1 and the bearings 2, 3. Used at the liquid level above the lower end of That is, in a normal state, the pump 100 is operated in a state where a part of the bearings 2 and 3 located at a position lower than the main shaft 1 is immersed in the lubricating oil.
 図2Bでは、オイルシール11として、補強環11a、シールリップ部材11b、ガータスプリング11cなどから構成されるリップシールを例示している。補強環11aは径方向断面形状がほぼ横L字形であり、この補強環11aにシールリップ部材11bが環状に被着されている。シールリップ部材11bの主軸1側は断面形状がほぼ逆三角形であり、その三角形の頂点に対応するエッジ形状の部分がリップ11dを形成している。このリップ11dは、主軸1の外周面上に圧接されたとき変形して所定の軸方向接触幅で主軸1の外周面上を摺動する。リップ11dの外周には、リップ11dを主軸1の外周面に対して圧接させるガータスプリング11cが装着されている。 2B illustrates the oil seal 11 as a lip seal including a reinforcing ring 11a, a seal lip member 11b, a garter spring 11c, and the like. The reinforcing ring 11a has a substantially L-shaped radial cross section, and a seal lip member 11b is attached to the reinforcing ring 11a in an annular shape. The main shaft 1 side of the seal lip member 11b has an approximately inverted cross-sectional shape, and an edge-shaped portion corresponding to the apex of the triangle forms a lip 11d. The lip 11d is deformed when pressed on the outer peripheral surface of the main shaft 1, and slides on the outer peripheral surface of the main shaft 1 with a predetermined axial contact width. A garter spring 11c that presses the lip 11d against the outer peripheral surface of the main shaft 1 is mounted on the outer periphery of the lip 11d.
 ここで、このリップ11dは、主軸1の外周面上を摺動するので、リップ11dと主軸1との摺動部間には、潤滑剤が必要である。潤滑剤によって、摺動面の摩擦による発熱を抑え、オイルシール11並びに主軸1の寿命を長くすることが出来る。このリップ11dと主軸1との摺動部間の潤滑剤には、軸受胴体4内の潤滑剤が用いられる。また、ポンプ1の連続運転における軸受2,3の発熱が主軸1を介してリップ11dに伝わると、リップ11dが硬化して寿命を低下させてしまう虞があるため、軸受2,3とオイルシール11間には所定の距離が必要である。 Here, since the lip 11d slides on the outer peripheral surface of the main shaft 1, a lubricant is required between the sliding portions of the lip 11d and the main shaft 1. With the lubricant, heat generation due to friction of the sliding surface can be suppressed, and the life of the oil seal 11 and the main shaft 1 can be extended. As the lubricant between the sliding portions of the lip 11d and the main shaft 1, the lubricant in the bearing body 4 is used. Further, if the heat generated in the bearings 2 and 3 in the continuous operation of the pump 1 is transmitted to the lip 11d through the main shaft 1, the lip 11d may be cured and the life may be shortened. A predetermined distance is required between 11.
 以降、主軸1の外周面とオイルシール11との摺動部(リップ11dと主軸1の外周面上との圧接面)にて、主軸端20側と軸受2側の2つの空間に仕切り、1つ目の空間として空間Sを含むオイルシール11の軸受2側の空間を被密封流体側と称し、2つ目の空間としてポンプ装置101の外側且つオイルシール11より主軸端20側の空間を大気側と称する。 Thereafter, the sliding portion between the outer peripheral surface of the main shaft 1 and the oil seal 11 (pressure contact surface between the lip 11d and the outer peripheral surface of the main shaft 1) is divided into two spaces on the main shaft end 20 side and the bearing 2 side. The space on the bearing 2 side of the oil seal 11 including the space S as the first space is referred to as the sealed fluid side, and the space outside the pump device 101 and on the spindle end 20 side from the oil seal 11 as the second space is the atmosphere. Called the side.
 ここで、上述したようにポンプ装置101は、ポンプ室等の高温となる設置環境にて使用されたり、24時間稼働する工場設備等で用いられたりすることもある。このような環境下で、ポンプ100を連続運転すると、軸受2の回転部材と固定部材との摺動部の潤滑剤が高温となって潤滑剤の粘性が低くなり、オイルシール11にて被密封流体側から大気側へ潤滑剤の漏れ量が多くなる虞がある。また、経年劣化により主軸1の外周面における摺動面にリップ溝1bが形成されたり、ガータスプリング11cの押圧が弱くなったりして、リップ11dの主軸1への押圧が弱くなり、潤滑剤が被密封流体側から大気側へ漏れ量が多くなる。 Here, as described above, the pump device 101 may be used in a high temperature installation environment such as a pump room, or may be used in a factory facility that operates for 24 hours. Under such an environment, when the pump 100 is continuously operated, the lubricant at the sliding portion between the rotating member and the fixed member of the bearing 2 becomes high temperature, and the viscosity of the lubricant is lowered. There is a risk that the amount of lubricant leakage increases from the fluid side to the atmosphere side. Further, the lip groove 1b is formed on the sliding surface on the outer peripheral surface of the main shaft 1 due to deterioration over time, or the pressure of the garter spring 11c is weakened, so that the pressure of the lip 11d on the main shaft 1 is weakened, and the lubricant is removed. The amount of leakage increases from the sealed fluid side to the atmosphere side.
 上述したように、オイルシール11と主軸1の外周面との摺動面には潤滑剤が必要であり、且つポンプ装置101は、ポンプ室等に設置されることが多いため、潤滑剤が主軸1の表面を伝って主軸1が湿っている程度であれば許容される。しかしながら、被密封流体側から大気側へと漏れる潤滑剤の量が増加すると、潤滑剤が主軸1から垂れ落ちたり、主軸1の回転による遠心力で跳ねたりして周囲を汚してしまうおそれがある。更には、軸受胴体4内に貯蔵されている潤滑剤が減ってしまって、潤滑剤の補充や交換等のメンテナンス頻度が多くなる。そこで、図10に示す本実施形態では、オイルシール11より大気側へ漏れた潤滑剤を被密封流体側へ戻すために、図2Aおよび図2Bに示す主軸1の外周面に図3Aおよび図3Bに示すような溝1cを形成する。また、以下、上述した図1と本実施形態の図10とにおいて、同様の構成には同じ符号を付与し、説明を省略する。 As described above, since a lubricant is necessary for the sliding surface between the oil seal 11 and the outer peripheral surface of the main shaft 1 and the pump device 101 is often installed in a pump chamber or the like, the lubricant is used as the main shaft. 1 is acceptable as long as the main shaft 1 is moistened along the surface of 1. However, when the amount of the lubricant that leaks from the sealed fluid side to the atmosphere side increases, the lubricant may hang down from the main shaft 1 or may be splashed by the centrifugal force caused by the rotation of the main shaft 1 to contaminate the surroundings. . Furthermore, the lubricant stored in the bearing body 4 is reduced, and the frequency of maintenance such as replenishment and replacement of the lubricant is increased. Therefore, in this embodiment shown in FIG. 10, in order to return the lubricant leaked from the oil seal 11 to the atmosphere side to the sealed fluid side, the outer peripheral surface of the main shaft 1 shown in FIGS. A groove 1c as shown in FIG. In addition, hereinafter, in FIG. 1 described above and FIG. 10 of the present embodiment, the same reference numerals are given to the same configurations, and description thereof is omitted.
 図3Aは、図10に示す本実施形態における主軸1、オイルシール11および軸受2近傍の拡大断面図である。また、図3Bは、図3Aのオイルシール11近傍(図3Aの破線部)をさらに拡大した図である。図示のように、主軸1の外周面には、傾斜した溝1c(凹凸)を形成する。電動機側(主軸端20側)から見て時計回りの方向に主軸1が回転する場合、溝1cの傾斜方向は、主軸端20側から軸受2側に向かって高くなる方向に傾斜させる。なお、この溝1cは全周に渡って形成されるのが望ましいが、一部に溝1cがない部分があっても構わない。また、溝1cの凹凸は一定の間隔にて形成されることが望ましいが、不規則な間隔で凹凸が形成されても構わない。 FIG. 3A is an enlarged cross-sectional view of the vicinity of the main shaft 1, the oil seal 11, and the bearing 2 in the present embodiment shown in FIG. 3B is an enlarged view of the vicinity of the oil seal 11 in FIG. 3A (the broken line portion in FIG. 3A). As illustrated, an inclined groove 1 c (unevenness) is formed on the outer peripheral surface of the main shaft 1. When the main shaft 1 rotates in a clockwise direction when viewed from the electric motor side (main shaft end 20 side), the inclination direction of the groove 1c is inclined in a direction increasing from the main shaft end 20 side toward the bearing 2 side. The groove 1c is preferably formed over the entire circumference, but there may be a part where the groove 1c is not provided. In addition, the recesses and projections of the groove 1c are desirably formed at regular intervals, but the recesses and projections may be formed at irregular intervals.
 主軸1が回転すると、大気側にある溝1cによって空気の流れが生じて大気側から被密封流体側に押し戻される。すなわち、溝1cの傾斜の方向は、主軸1が回転した際に、摺動面の潤滑剤が軸受2側に戻されるような潤滑剤の流れである第1の流れFL1を形成する方向とも言える。 When the main shaft 1 rotates, an air flow is generated by the groove 1c on the atmosphere side and is pushed back from the atmosphere side to the sealed fluid side. That is, the direction of the inclination of the groove 1c can be said to be the direction in which the first flow FL1 is formed which is a lubricant flow that returns the lubricant on the sliding surface to the bearing 2 side when the main shaft 1 rotates. .
 さらに、ポンプ装置101は、上述したように潤滑剤の油面OLが主軸1の下端よりも低い状態にてポンプ100が運転されるため、ポンプ100の運転中に、空間Sにおいて、軸受2からの潤滑剤が軸受カバー5に飛散し、リップ11dと主軸1の外周面との摺動面の潤滑剤が存在する位置にオイルシール11を配置するとよい。本実施形態におけるオイルシール11の配置位置調整の一例としては、ボルト10aの締め付け力と突起部分7の厚さを加減して、軸受カバー5の位置を調整することによって、オイルシール11の主軸1上の配置位置を調整するとよい。また、オイルシール11の主軸1方向の位置を調整するのみではなく軸受2の軸方向の位置を調整してもよい。調整の際には、軸受2とオイルシール11間には上述した所定の距離以上とする。一例として軸受2とオイルシール11との距離は5~50mm程度である。また、1もしくは複数個のボルト10aおよび突起部分7を用いても良い。 Furthermore, since the pump 100 is operated in a state where the oil level OL of the lubricant is lower than the lower end of the main shaft 1 as described above, the pump device 101 is separated from the bearing 2 in the space S during the operation of the pump 100. The oil seal 11 may be disposed at a position where the lubricant is scattered on the bearing cover 5 and the lubricant on the sliding surface between the lip 11d and the outer peripheral surface of the main shaft 1 exists. As an example of the arrangement position adjustment of the oil seal 11 in the present embodiment, the main shaft 1 of the oil seal 11 is adjusted by adjusting the position of the bearing cover 5 by adjusting the tightening force of the bolt 10 a and the thickness of the protruding portion 7. It is good to adjust the upper arrangement position. Further, not only the position of the oil seal 11 in the main shaft 1 direction but also the position of the bearing 2 in the axial direction may be adjusted. At the time of adjustment, the distance between the bearing 2 and the oil seal 11 is not less than the predetermined distance described above. As an example, the distance between the bearing 2 and the oil seal 11 is about 5 to 50 mm. One or a plurality of bolts 10a and protruding portions 7 may be used.
 空間Sにおいて、軸受2からの潤滑剤がオイルシール11に飛散する位置にオイルシール11を配置すると、軸受カバー5の空間S側の側面やオイルシール11を伝って、リップ11dと主軸1の外周面との摺動面に流れる潤滑剤の流れである第2の流れFL2が形成される。本実施形態では、第2の流れFL2によってオイルシール11への潤滑剤の補給しつつ、上述した溝1cによる潤滑剤の流れである第1の流れFL1によって潤滑剤の軸受胴体4へ戻す。この潤滑剤の流れFL1とFL2が繰り返されることによって、オイルシール11と主軸1の外周面との摺動を良好に保ちつつ、潤滑剤が大気側へ漏れるのを抑制できる。 In the space S, when the oil seal 11 is disposed at a position where the lubricant from the bearing 2 scatters on the oil seal 11, the outer periphery of the lip 11 d and the main shaft 1 is transmitted along the side surface of the bearing cover 5 on the space S side and the oil seal 11. A second flow FL2, which is a flow of lubricant flowing on the sliding surface with the surface, is formed. In the present embodiment, the lubricant is supplied to the oil seal 11 by the second flow FL2, and the lubricant is returned to the bearing body 4 by the first flow FL1, which is the flow of the lubricant by the groove 1c. By repeating the lubricant flows FL1 and FL2, it is possible to prevent the lubricant from leaking to the atmosphere side while maintaining good sliding between the oil seal 11 and the outer peripheral surface of the main shaft 1.
 オイルシール11は、軸受2からの潤滑剤が飛散する位置に配置されるとともに、主軸1の外周面には、ポンプ100が運転した際に、オイルシール11から大気側の主軸1の外周面に露出した潤滑剤が被密封流体側に押し戻される方向に傾斜した溝1cが設けられている。よって、オイルシール11と主軸1の外周面との摺動を良好に保ちつつ、潤滑剤が大気側へ漏れるのを抑制できる。 The oil seal 11 is disposed at a position where the lubricant from the bearing 2 scatters, and the outer peripheral surface of the main shaft 1 is disposed on the outer peripheral surface of the main shaft 1 from the oil seal 11 when the pump 100 is operated. A groove 1c inclined in a direction in which the exposed lubricant is pushed back to the sealed fluid side is provided. Therefore, it is possible to prevent the lubricant from leaking to the atmosphere side while maintaining good sliding between the oil seal 11 and the outer peripheral surface of the main shaft 1.
 ここで、傾斜した溝1cは、主軸1の外周面のうちオイルシール11に対向する領域に対して大気側の方に隣接する領域の少なくとも一部に設けられている。すなわち、この溝1cは、少なくとも主軸1の外周面におけるオイルシール11との摺動面に隣接し、且つ大気側に形成されていればよい(図3Bの符号A)。これにより、主軸1が回転すると、溝1cによって空気の流れが生じて、潤滑剤の流れFL1によって大気側に漏れた潤滑剤を押し戻す効果が得られる。 Here, the inclined groove 1c is provided in at least a part of a region adjacent to the atmosphere side with respect to the region facing the oil seal 11 on the outer peripheral surface of the main shaft 1. That is, the groove 1c may be formed on the atmosphere side at least adjacent to the sliding surface with the oil seal 11 on the outer peripheral surface of the main shaft 1 (reference A in FIG. 3B). Thereby, when the main shaft 1 rotates, an air flow is generated by the groove 1c, and an effect of pushing back the lubricant leaked to the atmosphere side by the lubricant flow FL1 is obtained.
 また、傾斜した溝1cは、主軸1の外周面におけるオイルシール11との摺動面に設けられている。すなわち、溝1cは主軸1の外周面におけるリップ11dとの摺動面(あるいはリップ溝1b)の少なくとも一部に形成もしくは延在していてもよい(図3Bの符号B)。相対的に摺動する摺動面におけるシール部の圧力が低下して、リップ11dと主軸1との摺動面における溝1c内の潤滑剤の油膜中に泡が生じる。この泡によって、リップ11dと主軸1と摺動面を低摩擦化(「低フリクション化」ともいう。)することができる。それによりリップ11dと主軸1の外周面の摩擦や摩耗を減らすことができる。 Further, the inclined groove 1 c is provided on the sliding surface with the oil seal 11 on the outer peripheral surface of the main shaft 1. That is, the groove 1c may be formed or extended on at least a part of a sliding surface (or lip groove 1b) with the lip 11d on the outer peripheral surface of the main shaft 1 (reference numeral B in FIG. 3B). The pressure of the seal portion on the sliding surface that slides relatively decreases, and bubbles are generated in the oil film of the lubricant in the groove 1c on the sliding surface of the lip 11d and the main shaft 1. By this bubble, the lip 11d, the main shaft 1 and the sliding surface can be reduced in friction (also referred to as “low friction”). Thereby, friction and wear between the lip 11d and the outer peripheral surface of the main shaft 1 can be reduced.
 更には、傾斜した溝1cは、主軸1の外周面の被密封流体側の少なくとも一部に設けられている。すなわち、溝1cは、主軸1の外周面のオイルシール11との摺動面に隣接し、且つ、被密封流体側の少なくとも一部に形成もしくはさらに延在していてもよい(図3Bの符号C)。そうすることで、より潤滑剤を軸受2の方へ戻すことができる。特に、溝1cを軸受2に当接するまで延伸し、大気側から押し戻された潤滑剤を軸受2の側面2-1まで到達させると、潤滑剤の油面OLは主軸1よりも低いので、大気側から押し戻された潤滑剤は、溝1cを伝って主軸1より下方に位置する軸受2の側面2-1を伝って、軸受2内へ速やかに戻すことができる。 Furthermore, the inclined groove 1c is provided in at least a part of the outer peripheral surface of the main shaft 1 on the sealed fluid side. That is, the groove 1c is adjacent to the sliding surface with the oil seal 11 on the outer peripheral surface of the main shaft 1, and may be formed or further extended in at least a part on the sealed fluid side (reference numeral in FIG. 3B). C). By doing so, the lubricant can be returned to the bearing 2 more. In particular, when the groove 1c is extended until it abuts against the bearing 2 and the lubricant pushed back from the atmosphere side reaches the side surface 2-1 of the bearing 2, the oil surface OL of the lubricant is lower than that of the main shaft 1. The lubricant pushed back from the side can be quickly returned into the bearing 2 along the side surface 2-1 of the bearing 2 positioned below the main shaft 1 through the groove 1c.
 よって、溝1cの形成並びに軸受2からの潤滑剤がオイルシール11に飛散する位置にオイルシール11を配置することで、潤滑剤が外部へ飛散して周囲を汚すのを防止したり、ポンプ装置101における潤滑剤の漏れに伴う軸受胴体4への潤滑剤の補充や交換のメンテナンス作業を軽減できる。また、経年劣化によりリップ11dの押圧が弱くなった場合でも、第1の流れFL1によって潤滑剤を被密封流体側へ戻すことでシール性を確保できるので、結果として、オイルシール11の交換寿命を長くすることができる。更には、ポンプ100が運転中は、潤滑剤の第2の流れFL2によって、リップ11dと主軸1の摺動部には、潤滑剤が供給されるため、摺動面の摩擦による発熱や摩耗を抑え、オイルシール11並びに主軸1の寿命を長くすることもできる。 Therefore, the oil seal 11 is disposed at the position where the groove 1c is formed and the lubricant from the bearing 2 is scattered on the oil seal 11, thereby preventing the lubricant from being scattered outside and contaminating the surroundings, or the pump device. Maintenance work for replenishing or replacing the lubricant to the bearing body 4 due to the leakage of the lubricant in 101 can be reduced. In addition, even when the pressure of the lip 11d becomes weak due to aging deterioration, the sealing performance can be ensured by returning the lubricant to the sealed fluid side by the first flow FL1, and as a result, the replacement life of the oil seal 11 is increased. Can be long. Furthermore, during the operation of the pump 100, since the lubricant is supplied to the sliding portion of the lip 11d and the main shaft 1 by the second flow FL2 of the lubricant, heat generation and wear due to friction of the sliding surface are generated. The life of the oil seal 11 and the main shaft 1 can be extended.
 また、図10に示すように羽根車30側に配置された軸受3とオイルシール12、軸受3とオイルシール12と対向する主軸1の外周面にも溝1cの形成並びに軸受3からの潤滑剤がオイルシール12に飛散する位置にオイルシール12を配置することで、オイルシール12と主軸1との摺動を良好に保ちつつ、オイルシール12からの潤滑剤の漏れを抑制することができる。 Further, as shown in FIG. 10, the bearing 3 and the oil seal 12 arranged on the impeller 30 side, the groove 1 c formed on the outer peripheral surface of the main shaft 1 facing the bearing 3 and the oil seal 12, and the lubricant from the bearing 3. By disposing the oil seal 12 at a position where the oil seal 12 scatters, it is possible to suppress the leakage of the lubricant from the oil seal 12 while maintaining good sliding between the oil seal 12 and the main shaft 1.
 なお、主軸1における少なくともオイルシール11並びに12の摺動面を含む位置には、主軸1の摺動面の保護のために不図示の軸スリーブを用いてもよい。その場合、主軸1は、軸スリーブに嵌入されており、主軸1と軸スリーブは径方向に同心状で同回転する。よって、軸スリーブは主軸の一部とする。更には、後述する図3Cまたは図3Dのオイルシール11’または11’’を用いたポンプ装置101でも、溝1cの形成並びに軸受2または3からの潤滑剤がオイルシール11’または11’’に飛散し得る位置にオイルシール11’または11’’を配置することでオイルシール11’または11’’と主軸1との摺動を良好に保ちつつ、大気側への潤滑剤の漏れを抑制することができる。 A shaft sleeve (not shown) may be used at a position including at least the sliding surfaces of the oil seals 11 and 12 in the main shaft 1 for protecting the sliding surface of the main shaft 1. In that case, the main shaft 1 is fitted in the shaft sleeve, and the main shaft 1 and the shaft sleeve rotate concentrically in the radial direction. Therefore, the shaft sleeve is a part of the main shaft. Furthermore, also in the pump device 101 using the oil seal 11 ′ or 11 ″ shown in FIG. 3C or 3D described later, the formation of the groove 1c and the lubricant from the bearing 2 or 3 are applied to the oil seal 11 ′ or 11 ″. By disposing the oil seal 11 ′ or 11 ″ at a position where it can be scattered, the sliding of the oil seal 11 ′ or 11 ″ and the main shaft 1 is kept good, and leakage of the lubricant to the atmosphere side is suppressed. be able to.
 また、図1Aでは、単段片吸込遠心ポンプを用いたポンプ装置101を例示して説明したが、任意のポンプ装置、特に潤滑剤を使用したオイルバス方式の軸受、軸受けの潤滑剤をシールするオイルシール、並びに横軸ポンプを備えた横軸形ポンプ装置に本実施形態である主軸1の外周面における溝1cならびに軸受とオイルシールの配置を適用可能である。 In FIG. 1A, the pump device 101 using a single-stage single-suction centrifugal pump has been described as an example. However, any pump device, particularly an oil bath type bearing using a lubricant, and a bearing lubricant are sealed. The groove 1c and the arrangement of the bearing and the oil seal on the outer peripheral surface of the main shaft 1 according to the present embodiment can be applied to a horizontal shaft type pump device provided with an oil seal and a horizontal shaft pump.
 実施形態の一例であるポンプ装置101では、経年劣化により所定量以上の潤滑剤が大気側へ漏れるようになった図1のポンプ装置101に対して、次のようなメンテナンスを行うこともできる。すなわち、図2Aおよび図2Bにおけるオイルシール11と主軸1とを分離し、主軸1の外周面に図3Aおよび図3Bに示すような溝1cを形成した上で、元のオイルシール11あるいは新品のオイルシール11と主軸1とを取り付けることにより図10に示すポンプ装置101となる。 In the pump apparatus 101 which is an example of the embodiment, the following maintenance can be performed on the pump apparatus 101 in FIG. 1 in which a predetermined amount or more of the lubricant leaks to the atmosphere side due to deterioration over time. That is, the oil seal 11 and the main shaft 1 in FIG. 2A and FIG. 2B are separated, and a groove 1c as shown in FIG. 3A and FIG. By attaching the oil seal 11 and the main shaft 1, the pump device 101 shown in FIG. 10 is obtained.
 この際、オイルシール11は、完全に主軸1から分離する必要はない。オイルシール11を主軸1上でスライドさせることで主軸1の外周面におけるオイルシールとの摺動面から離す工程としてもよい。 At this time, the oil seal 11 does not have to be completely separated from the main shaft 1. It is good also as a process separated from the sliding surface with the oil seal in the outer peripheral surface of the main shaft 1 by sliding the oil seal 11 on the main shaft 1.
 図3Aは、メンテナンス後の主軸1、オイルシール11および軸受2近傍の拡大断面図である。また、図3Bは、図3Aのオイルシール11近傍(図3Aの破線部)をさらに拡大した図である。図示のように、主軸1の外周面には、傾斜した溝1c(凹凸)が形成される。電動機側から見て時計回りの方向に主軸1が回転する場合、溝1cの傾斜方向は、電動機側から軸受2側に向かって高くなる方向に傾斜している。 FIG. 3A is an enlarged sectional view of the vicinity of the main shaft 1, the oil seal 11 and the bearing 2 after maintenance. 3B is an enlarged view of the vicinity of the oil seal 11 in FIG. 3A (the broken line portion in FIG. 3A). As illustrated, an inclined groove 1 c (unevenness) is formed on the outer peripheral surface of the main shaft 1. When the main shaft 1 rotates in the clockwise direction when viewed from the motor side, the inclination direction of the groove 1c is inclined in a direction that increases from the motor side toward the bearing 2 side.
 このような溝1cを形成することで、主軸1が回転すると、大気中にある溝1cによって空気の流れが生じることにより大気側から被密封流体側に潤滑剤が押し戻される。すなわち、溝1cの傾斜方向は、主軸1が回転した際に、大気側の潤滑剤が軸受2側に戻されるような方向とも言える。これにより、潤滑剤が漏れるのを抑制できる。 By forming such a groove 1c, when the main shaft 1 rotates, an air flow is generated by the groove 1c in the atmosphere, whereby the lubricant is pushed back from the atmosphere side to the sealed fluid side. That is, it can be said that the inclination direction of the groove 1c is a direction in which the air-side lubricant is returned to the bearing 2 side when the main shaft 1 rotates. Thereby, it can suppress that a lubricant leaks.
 この溝1cは、少なくとも主軸1の大気側に形成されていれば、主軸1が回転すると溝1cによって空気の流れが生じることにより潤滑剤を押し戻す効果が得られる。また、溝1cは主軸1における摺動面(あるいはリップ溝1b)の少なくとも一部に形成または延在していてもよい(図3Bの符号B)。これにより、オイルシール11と主軸1との摩擦を減らすこともできる。また、溝1cは主軸1における摺動面(あるいはリップ溝1b)から軸受2側(図3Bの符号C)の少なくとも一部に形成または延在していてもよい。これにより、潤滑剤を押し戻す効果がさらに増大する。 If the groove 1c is formed at least on the atmosphere side of the main shaft 1, an effect of pushing back the lubricant can be obtained by generating an air flow by the groove 1c when the main shaft 1 rotates. The groove 1c may be formed or extended on at least a part of the sliding surface (or lip groove 1b) of the main shaft 1 (reference numeral B in FIG. 3B). Thereby, the friction between the oil seal 11 and the main shaft 1 can be reduced. Further, the groove 1c may be formed or extended from the sliding surface (or lip groove 1b) of the main shaft 1 to at least a part on the bearing 2 side (reference numeral C in FIG. 3B). This further increases the effect of pushing back the lubricant.
 このように、本実施形態では、軸受2から飛散した潤滑剤がオイルシール11と主軸1の外周面との摺動面に達する位置にオイルシール11と軸受2が配置される。そして、主軸1が回転することにより、そのような潤滑剤の一部が軸受2側に押し戻される。結果として、潤滑剤が漏れるのが抑えられ、かつ、オイルシール11と主軸1との摺動面には適切な量の潤滑剤が介在することとなる。 Thus, in the present embodiment, the oil seal 11 and the bearing 2 are arranged at a position where the lubricant scattered from the bearing 2 reaches the sliding surface between the oil seal 11 and the outer peripheral surface of the main shaft 1. Then, when the main shaft 1 rotates, a part of such a lubricant is pushed back to the bearing 2 side. As a result, leakage of the lubricant is suppressed, and an appropriate amount of lubricant is interposed on the sliding surface between the oil seal 11 and the main shaft 1.
 なお、このようなメンテナンスは、図1において羽根車30側に配置された軸受3とオイルシール12、軸受3とオイルシール12と対向する主軸1の外周面にも適用可能である。すなわち、オイルシール12と主軸1の外周面との摺動面を離し、オイルシール12と主軸1との摺動面より羽根車30側(軸受3の反対側)に傾斜した溝1cを形成してもよい。溝1cの傾斜方向は、主軸1が回転した際に、摺動面の潤滑剤が軸受3側に戻されるよう方向であり、軸受2側に形成する溝1cとは逆である。 Note that such maintenance can also be applied to the outer peripheral surface of the main shaft 1 facing the bearing 3 and the oil seal 12 and the bearing 3 and the oil seal 12 arranged on the impeller 30 side in FIG. 1. That is, the sliding surface between the oil seal 12 and the outer peripheral surface of the main shaft 1 is separated, and the groove 1c inclined from the sliding surface between the oil seal 12 and the main shaft 1 to the impeller 30 side (opposite side of the bearing 3) is formed. May be. The inclination direction of the groove 1c is a direction in which the lubricant on the sliding surface is returned to the bearing 3 side when the main shaft 1 rotates, and is opposite to the groove 1c formed on the bearing 2 side.
 さらに、オイルシールとして種々のものを適用できる。
 図3Cは、図3Bとは異なるオイルシール11’を適用した場合の拡大図である。主軸1の一部として、シール用スリーブ80が設けられる。そして、オイルシール11’は、断面がL形状の樹脂製のシールリップ部材81を備え、該シールリップ部材81は、断面が略L形状の外側の結合金属環82と断面が略L形状の内側の押え金属環83とにより挟持される。シールリップ部材81の内周側に筒状リップ84が形成され、この筒状リップ84は図3Bのリップ11dに相当し、シール用スリーブ80の外周面と強く密接して被密封流体をシールする。図3Cに示すオイルシール11’を用いる場合には、主軸1の一部であるシール用スリーブ80に溝1cが形成されてもよい。
Further, various oil seals can be applied.
FIG. 3C is an enlarged view when an oil seal 11 ′ different from FIG. 3B is applied. As a part of the main shaft 1, a sealing sleeve 80 is provided. The oil seal 11 'includes a resin-made seal lip member 81 having an L-shaped cross section. The seal lip member 81 includes an outer joint metal ring 82 having a substantially L-shaped cross section and an inner side having a substantially L-shaped cross section. Is held between the presser metal ring 83. A cylindrical lip 84 is formed on the inner peripheral side of the seal lip member 81, and this cylindrical lip 84 corresponds to the lip 11 d of FIG. 3B and seals the fluid to be sealed in close contact with the outer peripheral surface of the sealing sleeve 80. . When the oil seal 11 ′ shown in FIG. 3C is used, the groove 1 c may be formed in the sealing sleeve 80 that is a part of the main shaft 1.
 図3Dは、図3Bとはまた異なるオイルシール11’’を適用した場合の拡大図である。オイルシール11’’は筒状部92を有する。設置環境によっては、大気側よりゴミ等の異物が混入する場合がある。そこで、筒状部92によりオイルシール11’’に異物が侵入するのを阻止する。よって、大気側からの異物の混入によるオイルシール11’’のリップ部と主軸1の外周面における摺動面の摩耗を減らすことができる。 FIG. 3D is an enlarged view when an oil seal 11 ″ different from that in FIG. 3B is applied. The oil seal 11 ″ has a cylindrical portion 92. Depending on the installation environment, foreign substances such as dust may enter from the atmosphere side. Therefore, the cylindrical portion 92 prevents foreign matter from entering the oil seal 11 ″. Therefore, it is possible to reduce wear of the sliding surfaces on the lip portion of the oil seal 11 ″ and the outer peripheral surface of the main shaft 1 due to the mixing of foreign matter from the atmosphere side.
 以下、メンテナンスの手順を詳細に説明する。
 図4は、ポンプ装置101のメンテナンス手順を示す工程図である。なお、図4は手順の一例にすぎず、適宜各工程を入れ替えたり、省略したりしてもよい。
Hereinafter, the maintenance procedure will be described in detail.
FIG. 4 is a process diagram illustrating a maintenance procedure of the pump device 101. Note that FIG. 4 is merely an example of a procedure, and each step may be appropriately replaced or omitted.
 まず、不図示の電動機との連結を外す。(ステップS1)。また、プラグ16を外して、軸受胴体4から潤滑剤を抜く(ステップS2)。続いて、ポンプ胴体32用のボルト38を外し、中間板37、胴体カバー21および軸受胴体4をポンプ胴体32から外す(ステップS3)。これにより、図5に示す状態となる。 First, disconnect from the motor (not shown). (Step S1). Further, the plug 16 is removed and the lubricant is removed from the bearing body 4 (step S2). Subsequently, the bolt 38 for the pump body 32 is removed, and the intermediate plate 37, the body cover 21 and the bearing body 4 are removed from the pump body 32 (step S3). As a result, the state shown in FIG. 5 is obtained.
 その後、羽根車30用のナット31を外し、羽根車30を主軸1から抜く(ステップS4)。そして、主軸1から羽根車30側のキー19を外す。これにより、図6に示す状態となる。さらに、ボルト36を外し、中間板37および胴体カバー21を軸受胴体4から外す(ステップS5)。次いで、グランドパッキン23用のボルト29を外してグランドパッキン23を外す(ステップS6)。これにより、図7に示す状態となる。 Thereafter, the nut 31 for the impeller 30 is removed, and the impeller 30 is removed from the main shaft 1 (step S4). Then, the key 19 on the impeller 30 side is removed from the main shaft 1. As a result, the state shown in FIG. 6 is obtained. Further, the bolt 36 is removed, and the intermediate plate 37 and the body cover 21 are removed from the bearing body 4 (step S5). Next, the bolts 29 for the gland packing 23 are removed, and the gland packing 23 is removed (step S6). As a result, the state shown in FIG. 7 is obtained.
 そして、水切りリング13が存在する場合は、水切りリング13を主軸1から抜き取る(ステップS7)。次いで、軸受カバー5,6用の各ボルト10a,10bを外し、軸受カバー5,6およびオイルシール11,12を軸受胴体4から外して主軸1を抜く(ステップS8)。これにより、図8に示す状態となる。このようにして、主軸1とオイルシール11,12とが分離される。主軸1を抜く際、軸受2,3の回転状態を点検し、円滑な回転ができない場合には軸受2,3を交換する。 And when the draining ring 13 exists, the draining ring 13 is extracted from the main shaft 1 (step S7). Next, the bolts 10a and 10b for the bearing covers 5 and 6 are removed, the bearing covers 5 and 6 and the oil seals 11 and 12 are removed from the bearing body 4, and the main shaft 1 is pulled out (step S8). As a result, the state shown in FIG. 8 is obtained. In this way, the main shaft 1 and the oil seals 11 and 12 are separated. When the main shaft 1 is pulled out, the rotation state of the bearings 2 and 3 is inspected, and if the rotation is not smooth, the bearings 2 and 3 are replaced.
 そして、主軸1における軸受2,3の近傍に、図3Aおよび図3Bを用いて説明した溝1cを形成する(ステップS9)。これにより、図9に示す状態となる。具体的には、主軸1の外周面に傷をつけることで溝1cを形成する。なお、この溝1cは全周に渡って形成されるのが望ましいが、一部に溝1cがない部分があっても構わない。 Then, the groove 1c described with reference to FIGS. 3A and 3B is formed in the vicinity of the bearings 2 and 3 in the main shaft 1 (step S9). As a result, the state shown in FIG. 9 is obtained. Specifically, the groove 1 c is formed by scratching the outer peripheral surface of the main shaft 1. The groove 1c is preferably formed over the entire circumference, but there may be a part where the groove 1c is not provided.
 その後、必要に応じてオイルシール11,12を新品のものとし、逆の手順によってポンプを組み立てればよい。これにより、図10に示す潤滑剤漏れが少ない新たなポンプ装置(潤滑剤漏れ抑制ポンプ装置)が製造されるとも言える。 Then, if necessary, the oil seals 11 and 12 are made new and the pump is assembled in the reverse procedure. Accordingly, it can be said that a new pump device (lubricant leakage suppressing pump device) with less lubricant leakage shown in FIG. 10 is manufactured.
 このように、本実施形態では、主軸1の外周面に所定方向に傾斜した傷をつけて溝1cを形成するという簡易な手法により、潤滑剤が主軸1を伝って漏れるのを抑制できる。 Thus, in this embodiment, it is possible to prevent the lubricant from leaking along the main shaft 1 by a simple method of forming a groove 1c by scratching the outer peripheral surface of the main shaft 1 in a predetermined direction.
 なお、メンテナンスとして主軸1に溝1cを形成するのではなく、新品のポンプの主軸1の外周面に予め溝1cを設けておいてもよい。また、図1Aでは、単段片吸込遠心ポンプを用いたポンプ装置101を例示して説明したが、任意のポンプ装置、特に潤滑剤を使用したオイルバス方式の軸受、オイルシール、並びに横軸ポンプを備えた横軸形ポンプ装置に本実施形態を適用可能である。 As a maintenance, the groove 1c may not be formed in the main shaft 1, but the groove 1c may be provided in advance on the outer peripheral surface of the main shaft 1 of a new pump. In FIG. 1A, the pump device 101 using the single-stage single-suction centrifugal pump has been described as an example. However, any pump device, in particular, an oil bath type bearing using a lubricant, an oil seal, and a horizontal shaft pump are used. This embodiment can be applied to a horizontal shaft type pump device provided with
 上述した手順にてメンテナンスを行ったポンプ装置101は、潤滑剤の漏れに伴う潤滑剤の補充や交換のメンテナンス作業を軽減できる。また、経年劣化によりリップ11dの押圧が弱くなった場合でも、第1の流れFL1によって潤滑剤を軸受胴体4へ戻すことでシール性を確保できるので、結果として、オイルシール11の交換寿命を長くすることができる。更には、ポンプ運転中は、潤滑剤の第2の流れFL2によって、リップ11dと主軸1の外周面の摺動部間には、潤滑剤が供給されるため、摺動面の摩擦による発熱や摩耗を抑え、オイルシール11並びに主軸1の寿命を長くすることもできる。なお、図1において羽根車30側に配置された軸受3とオイルシール12、軸受3とオイルシール12と対向する主軸1の外周面にも適用可能である。 The pump device 101 that has been maintained according to the above-described procedure can reduce maintenance work for replenishment or replacement of lubricant due to lubricant leakage. Further, even when the pressure of the lip 11d becomes weak due to deterioration over time, the sealing performance can be secured by returning the lubricant to the bearing body 4 by the first flow FL1, and as a result, the replacement life of the oil seal 11 is extended. can do. Further, during the operation of the pump, the lubricant is supplied between the lip 11d and the sliding portion of the outer peripheral surface of the main shaft 1 by the second flow FL2 of the lubricant. Wear can be suppressed and the life of the oil seal 11 and the main shaft 1 can be extended. 1, the bearing 3 and the oil seal 12 disposed on the impeller 30 side, and the outer peripheral surface of the main shaft 1 facing the bearing 3 and the oil seal 12 are also applicable.
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうることである。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲とすべきである。 The above-described embodiments are described for the purpose of enabling the person having ordinary knowledge in the technical field to which the present invention belongs to implement the present invention. Various modifications of the above embodiment can be naturally made by those skilled in the art, and the technical idea of the present invention can be applied to other embodiments. Therefore, the present invention should not be limited to the described embodiments, but should be the widest scope according to the technical idea defined by the claims.
 <第2の実施形態>
 続いて第2の実施形態について説明する。まず従来技術の問題点について説明する。
<Second Embodiment>
Next, a second embodiment will be described. First, problems of the prior art will be described.
 特許文献6では、外箱(軸受カバー)の端部壁内面の少なくとも上半分に、回転軸を囲繞する油流下部が設けられている。回転軸上方から外箱の端部壁内面に沿って流下する油滴は油流下部によって回転軸を避けるように外箱の下部に流下して、貫通部と回転軸との間から油が漏出するのを防止する。具体的には、端部壁内面には回転軸を囲繞する溝が形成されているので油滴が溝内に流入して回転軸を避けるように案内されて流下する。そして、溝最下部から流出し外箱の下部に貯留される。油滴は溝に案内されて回転軸を避けるように流下するので油が回転軸とシール部材との間から漏出することを防止する。 In Patent Document 6, at least the upper half of the inner surface of the end wall of the outer box (bearing cover) is provided with an oil flow lower portion surrounding the rotating shaft. Oil drops that flow along the inner wall of the outer wall of the outer box from the upper part of the rotating shaft flow down to the lower part of the outer box so as to avoid the rotating shaft by the lower part of the oil flow, and oil leaks from between the penetrating part and the rotating shaft. To prevent it. Specifically, since the groove surrounding the rotation shaft is formed on the inner surface of the end wall, the oil droplet flows into the groove and is guided and flows down so as to avoid the rotation shaft. And it flows out from the groove | channel lowest part and is stored by the lower part of an outer box. The oil droplets are guided by the groove and flow down so as to avoid the rotating shaft, so that the oil is prevented from leaking between the rotating shaft and the seal member.
 しかしながら、回転軸の回転速度によって軸受からの油滴の飛散は異なる。昨今の省エネルギー化の要望からインバータ等の可変速手段を用いてポンプの回転速度を制御(例えば、該知の圧力一定制御や推定末端圧制御等)する場合がある。回転軸の回転速度が低速の場合、軸受から飛散する油滴の飛散距離が短くなり、油滴が外箱(軸受カバー)まで到達せずに、回転軸を円周方向に伝って貫通部と回転軸との間から油が漏出する虞があるという問題がある。また、回転機械の軸受けの潤滑剤は、液状の潤滑油だけではなく半固形状のグリース等が用いられることがあるが、特許文献6で、半固形状の潤滑剤や劣化して粘性が高い潤滑油を用いると、回転軸を囲繞する溝内で固まってしまい、油滴を流下する作用を果たさない。 However, the scattering of oil droplets from the bearing varies depending on the rotational speed of the rotating shaft. Due to the recent demand for energy saving, there are cases where the rotational speed of the pump is controlled (for example, the known constant pressure control or estimated terminal pressure control) using variable speed means such as an inverter. When the rotation speed of the rotating shaft is low, the scattering distance of the oil droplets scattered from the bearing is shortened, and the oil droplets do not reach the outer casing (bearing cover) and travel along the rotating shaft in the circumferential direction. There is a problem that oil may leak from between the rotating shafts. Further, as a lubricant for a bearing of a rotary machine, not only a liquid lubricant but also a semi-solid grease or the like may be used. However, in Patent Document 6, a semi-solid lubricant or a deteriorated and high viscosity is used. If lubricating oil is used, it will harden in the groove surrounding the rotating shaft and will not act to flow down the oil droplets.
 特許文献7で、軸受と軸受カバーとの間は、油カバーと油切リングとが配置されており、軸受カバーの内面における軸受と対向する部位は、油逃がし溝が形成されている。そして、特許文献7には、軸受カバーと油カバーと油切リングとは、主軸が回転した際に軸受から飛散する潤滑油が油逃がし溝より外部(電動機の側)に流出するのを抑制する潤滑油流出抑制装置として機能することが開示されている。 In Patent Document 7, an oil cover and an oil drain ring are arranged between the bearing and the bearing cover, and an oil relief groove is formed in a portion of the inner surface of the bearing cover facing the bearing. In Patent Document 7, the bearing cover, the oil cover, and the oil drain ring prevent the lubricating oil scattered from the bearing when the main shaft rotates from flowing out of the oil escape groove to the outside (motor side). It is disclosed that it functions as a lubricating oil outflow suppression device.
 しかしながら、この潤滑油流出抑制装置は、軸受カバーに油カバーを取り付けるため、部品点数が増えるという問題がある。また、油逃がし溝にて潤滑油をシールする機構に用いられる。回転機械の軸受けの潤滑剤は、液状の潤滑油だけではなく半固形状のグリース等が用いられることがあるが、特許文献7の潤滑油流出抑制装置は、半固形状の潤滑剤ならびに潤滑油をシールする機構としてのオイルシールが考慮されていない。 However, this lubricating oil spill suppression device has a problem that the number of parts increases because the oil cover is attached to the bearing cover. Moreover, it is used for the mechanism which seals lubricating oil with an oil relief groove. As a lubricant for a bearing of a rotating machine, not only a liquid lubricant but also a semi-solid grease or the like may be used. However, the lubricant outflow suppression device of Patent Document 7 is a semi-solid lubricant and a lubricant. An oil seal is not considered as a mechanism for sealing the oil.
 特許文献4には、回転軸に加工したポンピング部にて、静止時の漏れ防止、被密封流体を吸い込む作用、被密封流体を吐き出す作用の3つの作用を担う。また、摺動面が両方向に回転する場合にも対応しているため、ポンピング部の形状は複雑且つ加工精度が要求される。このため、メンテナンス時に潤滑剤の漏れ対策を行う場合、潤滑剤の漏れが起きたポンプが設置されている所で、このような加工を行うことは難しく、一旦、専用の加工機がある工場等に持ち帰って加工する必要があり、時間及び労力がかかるという問題があった。 In Patent Document 4, the pumping portion machined on the rotating shaft has three actions: leakage prevention at rest, action of sucking the sealed fluid, and action of discharging the sealed fluid. Moreover, since it corresponds also to the case where a sliding surface rotates to both directions, the shape of a pumping part is complicated and processing precision is requested | required. For this reason, when taking measures against lubricant leakage during maintenance, it is difficult to perform such processing where a pump where the lubricant has leaked is installed, such as factories with dedicated processing machines. There is a problem that it takes time and labor.
 更に、搬送液を加圧して圧送するポンプ装置における軸受の潤滑剤の漏れは、設置される場所、使用する環境、および、使用状況によって異なる。また、潤滑剤の漏れが許容される範囲は、ポンプの運用者によって異なる。よって、潤滑剤の漏れ対策は、出荷時やメンテナンス時に追加加工が容易な手段であることが望まれる。特に、メンテナンス時に潤滑剤の漏れ対策を行う場合、該対策は、環境温度、ポンプの回転速度、軸受の潤滑剤の種類、および、潤滑剤のシール装置等によらず作業できることが望まれる。 Furthermore, the leakage of the bearing lubricant in the pump device that pressurizes and feeds the carrier liquid varies depending on the installation location, the environment in which it is used, and the usage situation. Further, the range in which the leakage of the lubricant is allowed varies depending on the operator of the pump. Therefore, it is desired that the countermeasure against the leakage of the lubricant is a means that can be easily processed at the time of shipment or maintenance. In particular, when taking measures against lubricant leakage during maintenance, it is desirable that the measures can be performed regardless of the environmental temperature, the rotational speed of the pump, the type of lubricant in the bearing, the lubricant sealing device, and the like.
 まずは、本発明において対象となるポンプ装置と、そのようなポンプ装置において、潤滑剤の漏れが発生する原因を説明する。 First, the pump device that is the subject of the present invention and the cause of the occurrence of lubricant leakage in such a pump device will be described.
 図11Aおよび図11Bはそれぞれ、対象となるポンプ装置301の概略断面図および分解斜視図である。ポンプ装置301は、羽根車230と、ポンプ胴体(ポンプケーシング)232と、胴体カバー221とを備えたポンプ300と、主軸(シャフト)201、軸受202,203、軸受胴体204、軸受カバー205,206、および、オイルシール211,212、などを備えている。また、ポンプ胴体232は、搬送液の吸込口232-2並びに吐出口232-1を備える。ここで、オイルシール211,212は、径方向内外で同心状に配置されている主軸201と軸受カバー205との間をシールするシール部材の一例である。一例として、ポンプ装置301は住居や商業スペースとは区別された機械室やポンプ室、または工場設備内等に設置されることが多い。 FIG. 11A and FIG. 11B are a schematic sectional view and an exploded perspective view of a target pump device 301, respectively. The pump device 301 includes a pump 300 including an impeller 230, a pump body (pump casing) 232, and a body cover 221, a main shaft (shaft) 201, bearings 202 and 203, a bearing body 204, and bearing covers 205 and 206. And oil seals 211, 212, and the like. The pump body 232 includes a suction port 232-2 and a discharge port 232-1 for the transport liquid. Here, the oil seals 211 and 212 are an example of a seal member that seals between the main shaft 201 and the bearing cover 205 that are concentrically arranged inside and outside in the radial direction. As an example, the pump device 301 is often installed in a machine room, a pump room, a factory facility, or the like that is distinguished from a residence or a commercial space.
 主軸201は、一端側(図11Aおよび図11Bの右側)に羽根車230が取り付けられ、他端側である主軸端220(同左側)に、カップリングを介して、駆動機の一種である電動機(不図示)の回転軸が連結される。ポンプ300の運転時に、電動機に駆動された主軸201は、予め定められた方向に回転する。ポンプ300は、吸込口232-2から流入した搬送液を、羽根車230の回転による遠心力にて加圧して、吐出口232-1へと流出する。ポンプ装置301は、横軸形のポンプ装置である。具体的には、主軸201は、軸受胴体204に覆われて略水平方向に延びており、間隔を隔てて配置された2つの軸受202,203によって回転可能に支持される。また、軸受202の主軸端220側に、主軸201が貫通する軸受カバー205がボルト210aによって軸受胴体(軸受ハウジング)204に取り付けられている。軸受203の羽根車230側において、主軸201が貫通する軸受カバー206は、ボルト210bによって軸受胴体204に取り付けられている。これにより、軸受カバー205は、軸受203の外輪の少なくとも一部を覆っている。また、主軸201が貫通する軸受カバー205と軸受胴体204は一体に構成されてもよい。 The main shaft 201 has an impeller 230 attached to one end side (the right side in FIG. 11A and FIG. 11B), and a main shaft end 220 (the left side) on the other end side via a coupling. A rotating shaft (not shown) is connected. When the pump 300 is operated, the main shaft 201 driven by the electric motor rotates in a predetermined direction. The pump 300 pressurizes the carrier liquid flowing in from the suction port 232-2 by the centrifugal force generated by the rotation of the impeller 230, and flows out to the discharge port 232-1. The pump device 301 is a horizontal axis type pump device. Specifically, the main shaft 201 is covered with a bearing body 204 and extends in a substantially horizontal direction, and is rotatably supported by two bearings 202 and 203 arranged with a space therebetween. A bearing cover 205 through which the main shaft 201 passes is attached to the bearing body (bearing housing) 204 by a bolt 210a on the main shaft end 220 side of the bearing 202. On the impeller 230 side of the bearing 203, a bearing cover 206 through which the main shaft 201 passes is attached to the bearing body 204 with bolts 210b. Thereby, the bearing cover 205 covers at least a part of the outer ring of the bearing 203. Further, the bearing cover 205 and the bearing body 204 through which the main shaft 201 passes may be integrally formed.
 主軸端220側の軸受202,羽根車230側の軸受203間において、主軸201は大径軸201aとなっている。軸受202の羽根車230側の鉛直面は、大径軸201aの一端部に当接される。軸受203のモータ側の鉛直面は、大径軸201aの他端部に当接される。軸受202,203の外輪における外側の面は、軸受胴体204に取り付けられた軸受カバー205,206の突起部分207によってそれぞれ両側から挟み込まれている。これにより、軸受カバー205は一例として軸受202を支持し、軸受カバー206は軸受203を支持する。 The main shaft 201 is a large-diameter shaft 201a between the bearing 202 on the main shaft end 220 side and the bearing 203 on the impeller 230 side. The vertical surface of the bearing 202 on the impeller 230 side is in contact with one end of the large-diameter shaft 201a. The motor-side vertical surface of the bearing 203 is in contact with the other end of the large-diameter shaft 201a. The outer surfaces of the outer rings of the bearings 202 and 203 are sandwiched from both sides by protruding portions 207 of bearing covers 205 and 206 attached to the bearing body 204. Thereby, the bearing cover 205 supports the bearing 202 as an example, and the bearing cover 206 supports the bearing 203.
 軸受胴体204内の軸受202,203間には潤滑剤が貯蔵されており、ポンプ300の運転時には、軸受202,203の少なくとも一部が潤滑剤に浸る。ポンプ300の運転中に、軸受胴体204内の潤滑剤は、温度上昇により蒸発するので、軸受胴体204には空気抜きを目的とするキャップ214と、潤滑剤の減り具合を見るためのオイルゲージ215とが設けられている。また、プラグ216を抜くと潤滑剤を軸受胴体204外へ排出できる。なお、本実施形態における潤滑剤は、液状の潤滑油が用いられるが、半固状のグリースが用いられてもよい。ポンプ300の運転にて軸受202,203が高温となりグリースは液化する。 The lubricant is stored between the bearings 202 and 203 in the bearing body 204, and at least a part of the bearings 202 and 203 is immersed in the lubricant when the pump 300 is operated. During the operation of the pump 300, the lubricant in the bearing body 204 evaporates due to a rise in temperature. Therefore, the bearing body 204 has a cap 214 for removing air and an oil gauge 215 for checking the reduction of the lubricant. Is provided. Further, when the plug 216 is removed, the lubricant can be discharged out of the bearing body 204. In addition, although the liquid lubricant is used for the lubricant in the present embodiment, semi-solid grease may be used. As the pump 300 is operated, the bearings 202 and 203 become hot and the grease is liquefied.
 潤滑剤が主軸201の外周面を伝わって外部に漏れるのを防止するために、軸受カバー205,206は、オイルシール211,212が組み込まれている。また、軸受カバー206の外側の主軸201は、水切りリング213が嵌められていてもよい。さらに、軸受203の外側の鉛直面と、軸受カバー206との間に、弾性座金の一種である波座金209が介在されているとよい。この波座金209は、ボルト210bの締め付け力により圧縮応力が与えられており、主軸201は軸受203を介して電動機側への反力が作用する。 Oil seals 211 and 212 are incorporated in the bearing covers 205 and 206 to prevent the lubricant from leaking outside along the outer peripheral surface of the main shaft 201. Further, a draining ring 213 may be fitted to the main shaft 201 outside the bearing cover 206. Further, a wave washer 209, which is a kind of elastic washer, is preferably interposed between the vertical surface outside the bearing 203 and the bearing cover 206. The wave washer 209 is given a compressive stress by the tightening force of the bolt 210 b, and the reaction force to the motor side acts on the main shaft 201 via the bearing 203.
 釣り具217は、軸受胴体204の上部に取り付けられる。また、軸受胴体204は、支持台218で支持される。開口204aは、軸受胴体204に設けられる(図11B参照)。また、軸受胴体204の羽根車230側は、ボルト236によって中間板237に固定され、中間板237は、羽根車230を収納したポンプ胴体232にボルト238によって固定される。これにより、軸受胴体204とポンプ胴体232とが一体化される。軸受胴体24と中間板237との間および中間板237とポンプ胴体232との間は、ガスケットが介在されてシールしている。 The fishing tackle 217 is attached to the upper part of the bearing body 204. The bearing body 204 is supported by a support base 218. The opening 204a is provided in the bearing body 204 (see FIG. 11B). The impeller 230 side of the bearing body 204 is fixed to the intermediate plate 237 by bolts 236, and the intermediate plate 237 is fixed to the pump body 232 in which the impeller 230 is housed by bolts 238. Thereby, the bearing body 204 and the pump body 232 are integrated. Gaskets are interposed between the bearing body 24 and the intermediate plate 237 and between the intermediate plate 237 and the pump body 232 for sealing.
 ポンプ胴体232の主軸201側は、主軸201が貫通する胴体カバー221を設ける。胴体カバー221の主軸201の貫通部分は、軸封装置を備える。図11には軸封装置としてグランドパッキン223を用いる例を示しているが、軸封装置は、メカニカルシールでもよい。軸封部は回転摩擦を生じるので、主軸201にはグランドパッキン223用の軸スリーブ225が嵌合されており、その軸スリーブ225と胴体カバー221の筒状部221aとの間には、グランドパッキン押さえ228を介して、ボルト229によってグランドパッキン223が締め付けられる。 The body cover 221 through which the main shaft 201 passes is provided on the main shaft 201 side of the pump body 232. A through portion of the main shaft 201 of the body cover 221 includes a shaft seal device. Although FIG. 11 shows an example in which the gland packing 223 is used as the shaft seal device, the shaft seal device may be a mechanical seal. Since the shaft seal portion generates rotational friction, a shaft sleeve 225 for the gland packing 223 is fitted to the main shaft 201, and the gland packing is interposed between the shaft sleeve 225 and the cylindrical portion 221 a of the body cover 221. The gland packing 223 is tightened by the bolt 229 through the presser 228.
 羽根車230は、主軸201の先端に設けられたキー219に嵌め込まれ、ナット231によって主軸201に固定されている。ライナーリング233は、羽根車230のシュラウド側Iとポンプ胴体232との間に設けられる。また、ライナーリング234は、バックシュラウド側Bと胴体カバー221との間に設けられる。そして、複数個のバランスホール235は、羽根車230のボス部の近辺に形成されている。 The impeller 230 is fitted into a key 219 provided at the tip of the main shaft 201 and is fixed to the main shaft 201 by a nut 231. The liner ring 233 is provided between the shroud side I of the impeller 230 and the pump body 232. The liner ring 234 is provided between the back shroud side B and the body cover 221. The plurality of balance holes 235 are formed in the vicinity of the boss portion of the impeller 230.
 図12Aは、第2の実施形態に係るポンプ装置301の主軸201、オイルシール211および軸受202近傍の拡大断面図である。また、図12Bは、図12Aのオイルシール211近傍(図12Aの破線部)をさらに拡大した図である。図示のように、羽根車230を所定方向(本例では、電動機側(図12Aの左側)から見て時計回り)に回転すると、ポンプ300は液体輸送機械として作用する。以下、図12Bに示すように、主軸201の径方向中心を含む水平面、オイルシール211、軸受カバー205、軸受202で囲まれた空間Sとする。また、主軸201の外周面、オイルシール211、軸受カバー205、軸受202、潤滑剤の油面OLで囲まれた空間には、潤滑剤が油煙(ミスト)となって充満している。 FIG. 12A is an enlarged cross-sectional view of the vicinity of the main shaft 201, the oil seal 211, and the bearing 202 of the pump device 301 according to the second embodiment. 12B is an enlarged view of the vicinity of the oil seal 211 in FIG. 12A (the broken line portion in FIG. 12A). As illustrated, when the impeller 230 is rotated in a predetermined direction (clockwise as viewed from the electric motor side (left side in FIG. 12A) in this example), the pump 300 functions as a liquid transport machine. Hereinafter, as shown in FIG. 12B, a space S surrounded by a horizontal plane including the radial center of the main shaft 201, the oil seal 211, the bearing cover 205, and the bearing 202 is assumed. The space surrounded by the outer peripheral surface of the main shaft 201, the oil seal 211, the bearing cover 205, the bearing 202, and the oil surface OL of the lubricant is filled with lubricant as oil smoke (mist).
 ポンプ装置301は、横軸形のポンプ装置であるため、主軸201は、略水平であり且つ潤滑剤の油面OLと略平行である。また、潤滑剤は、メンテナンスにて定期的に交換または補充され、潤滑油の油面OLは、オイルゲージ215の中心付近、具体的には、主軸201の下端より下であり且つ軸受202,203の下端より上の液位にて使用される。つまり、主軸201より低い位置にある軸受202,203の一部分が潤滑油に浸った状態でポンプ300は運転される。 Since the pump device 301 is a horizontal axis type pump device, the main shaft 201 is substantially horizontal and substantially parallel to the oil surface OL of the lubricant. Further, the lubricant is periodically replaced or replenished during maintenance, and the oil level OL of the lubricating oil is near the center of the oil gauge 215, specifically, below the lower end of the main shaft 201 and the bearings 202 and 203. Used at the liquid level above the lower end of That is, the pump 300 is operated in a state where a part of the bearings 202 and 203 located at a position lower than the main shaft 201 is immersed in the lubricating oil.
 オイルシール211は、フェルト,合成ゴム,合成樹脂などの変形可能な材料を用い,先端を主軸201と摩擦接触させて密封作用を行う。図12Bのオイルシール211は、一例として、補強環211a、シールリップ部材211b、ガータスプリング211cなどから構成されるリップシールを例示している。補強環211aは径方向断面形状がほぼ横L字形であり、この補強環211aにシールリップ部材211bが環状に被着されている。シールリップ部材211bの主軸201側は断面形状がほぼ逆三角形であり、その三角形の頂点に対応するエッジ形状の部分がリップ211dを形成している。このリップ211dは、主軸201の外周面上に圧接されたとき変形して所定の軸方向接触幅で主軸201の外周面上を摺動する。リップ211dの外周には、リップ211dを主軸201の外周面に対して圧接させるガータスプリング211cが装着されている。 The oil seal 211 uses a deformable material such as felt, synthetic rubber, or synthetic resin, and performs a sealing action by bringing the tip into frictional contact with the main shaft 201. As an example, the oil seal 211 in FIG. 12B illustrates a lip seal including a reinforcing ring 211a, a seal lip member 211b, a garter spring 211c, and the like. The reinforcing ring 211a has a substantially L-shaped radial cross section, and a seal lip member 211b is attached to the reinforcing ring 211a in an annular shape. The main shaft 201 side of the seal lip member 211b has a substantially inverted cross-sectional shape, and an edge-shaped portion corresponding to the apex of the triangle forms a lip 211d. The lip 211d is deformed when pressed onto the outer peripheral surface of the main shaft 201 and slides on the outer peripheral surface of the main shaft 201 with a predetermined axial contact width. A garter spring 211c that presses the lip 211d against the outer peripheral surface of the main shaft 201 is attached to the outer periphery of the lip 211d.
 ここで、このリップ211dは、主軸201の外周面上を摺動するので、リップ211dと主軸201との摺動部間には、潤滑剤が必要である。潤滑剤によって、摺動面の摩擦による発熱を抑えることで、オイルシール211並びに主軸201の長寿命化出来る。このリップ211dと主軸201との摺動部間の潤滑剤は、軸受胴体204内の潤滑剤が用いられる。また、軸受202,203の熱が主軸201を介してリップ211dに伝わると、リップ211dは硬化して寿命を低下させるため、軸受202,203とオイルシール211間は、所定の距離が必要である。 Here, since the lip 211d slides on the outer peripheral surface of the main shaft 201, a lubricant is required between the sliding portions of the lip 211d and the main shaft 201. The life of the oil seal 211 and the main shaft 201 can be extended by suppressing heat generation due to friction of the sliding surface with the lubricant. As the lubricant between the sliding portions of the lip 211d and the main shaft 201, the lubricant in the bearing body 204 is used. In addition, when the heat of the bearings 202 and 203 is transmitted to the lip 211d through the main shaft 201, the lip 211d is cured to reduce the life, so that a predetermined distance is required between the bearings 202 and 203 and the oil seal 211. .
 以降、主軸201の外周面とオイルシール211との摺動部(リップ211dと主軸201の外周面上との圧接面)にて、主軸端220側の第1空間と軸受202側の第2空間の2つの空間に仕切る。第1空間は、空間Sを含むオイルシール211の軸受202側の空間であって、被密封流体側と称する。第2空間は、ポンプ装置301の外側且つオイルシール211より主軸端220側の空間であって、大気側と称する。 Thereafter, the first space on the main shaft end 220 side and the second space on the bearing 202 side at the sliding portion between the outer peripheral surface of the main shaft 201 and the oil seal 211 (pressure contact surface between the lip 211d and the outer peripheral surface of the main shaft 201). It is divided into two spaces. The first space is a space on the bearing 202 side of the oil seal 211 including the space S, and is referred to as a sealed fluid side. The second space is a space on the outside of the pump device 301 and on the main shaft end 220 side from the oil seal 211, and is referred to as the atmosphere side.
 ここで、上述したようにポンプ装置301は、一例として、ポンプ室等の高温となる設置環境にて使用される。また、他の例では、ポンプ装置301は、24時間稼働する工場設備等で用いられる。このように外気温が高温となる環境下で、ポンプ300を連続運転すると、軸受202の回転部材と固定部材との摺動部の潤滑剤は、高温となり粘性が低くなる。そうすると、オイルシール211は、被密封流体側から大気側へと潤滑剤が漏れる量が増加する。また、主軸201の摺動面は、経年劣化にてリップ溝201bが形成されると、リップ211dの主軸201への押圧が不足して、被密封流体側から大気側へと潤滑剤が漏れる量が増加する。また、ガータスプリング211cの押圧は、経年劣化により弱くなると、リップ211dの主軸201への押圧が不足して、潤滑剤が被密封流体側から大気側へと漏れる量が多くなる。 Here, as described above, the pump device 301 is used in an installation environment where the temperature is high, such as a pump chamber, as an example. In another example, the pump device 301 is used in factory equipment that operates for 24 hours. In this way, when the pump 300 is continuously operated in an environment where the outside air temperature is high, the lubricant in the sliding portion between the rotating member and the fixed member of the bearing 202 becomes high temperature and the viscosity becomes low. Then, the oil seal 211 increases the amount of lubricant leaking from the sealed fluid side to the atmosphere side. In addition, when the lip groove 201b is formed due to aging on the sliding surface of the main shaft 201, the amount of the lubricant leaking from the sealed fluid side to the atmosphere side due to insufficient pressing of the lip 211d to the main shaft 201. Will increase. Further, when the pressure of the garter spring 211c is weakened due to aging, the pressure of the lip 211d on the main shaft 201 is insufficient, and the amount of lubricant leaking from the sealed fluid side to the atmosphere side increases.
 上述したように、オイルシール211と主軸201の外周面との摺動面は、潤滑剤が必要である。且つ、ポンプ装置301は、ポンプ室等に設置されることが多い。そのため、被密封流体側から大気側へと漏れる潤滑剤が主軸201の表面を伝って主軸201が湿っている程度であれば、ポンプ装置301の運用者は許容する。しかしながら、被密封流体側から大気側へと漏れる潤滑剤が増加すると、潤滑剤は、主軸201から垂れ落ちたり、主軸201の回転による遠心力で跳ねたりして周囲を汚してしまう。更には、軸受胴体204内に貯蔵されている潤滑剤が減り、ポンプ装置301は、潤滑剤の補充や交換等のメンテナンス頻度が多くなる。そこで、図20に示す本実施形態では、オイルシール211より大気側へ漏れる潤滑剤を被密封流体側へ戻すために、図12Aおよび図12Bに示す主軸201の外周面に図13Aおよび図13Bに示すような溝201cを形成する。また、以下、上述した図11と本実施形態の図20とにおいて、同様の構成には同じ符号を付与し、説明を省略する。 As described above, the sliding surface between the oil seal 211 and the outer peripheral surface of the main shaft 201 requires a lubricant. The pump device 301 is often installed in a pump chamber or the like. Therefore, the operator of the pump device 301 allows the lubricant that leaks from the sealed fluid side to the atmosphere side along the surface of the main shaft 201 to be wet. However, when the amount of lubricant that leaks from the sealed fluid side to the atmosphere side increases, the lubricant hangs down from the main shaft 201 or splashes due to the centrifugal force generated by the rotation of the main shaft 201, thereby contaminating the surroundings. Furthermore, the lubricant stored in the bearing body 204 decreases, and the pump device 301 increases the frequency of maintenance such as replenishment and replacement of the lubricant. Therefore, in the present embodiment shown in FIG. 20, in order to return the lubricant leaking from the oil seal 211 to the atmosphere side to the sealed fluid side, the outer surface of the main shaft 201 shown in FIGS. 12A and 12B is shown in FIGS. 13A and 13B. A groove 201c as shown is formed. In addition, hereinafter, in FIG. 11 described above and FIG. 20 of the present embodiment, the same reference numerals are given to the same configurations, and the description thereof is omitted.
 図13Aは、図20に示す本実施形態における主軸201、オイルシール211および軸受202近傍の拡大断面図である。また、図13Bは、図13Aのオイルシール211近傍(図13Aの破線部)をさらに拡大した図である。図示のように、主軸201は、外周面に傾斜した溝201c(凹凸)を形成する。電動機側(主軸端220側)から見て時計回りの方向に主軸201が回転する場合、溝201cの傾斜方向は、電動機側(主軸端220側)から見て右側の側面において、主軸端220側から軸受202側に向かって高くなる方向に傾斜させる。なお、この溝201cは主軸201の全周に渡って形成されるのが望ましいが、主軸201の一部に溝201cがない部分があっても構わない。また、溝201cの凹凸は一定の間隔にて形成されることが望ましいが、不規則な間隔で凹凸が形成されても構わない。 FIG. 13A is an enlarged cross-sectional view of the vicinity of the main shaft 201, the oil seal 211, and the bearing 202 in the present embodiment shown in FIG. 13B is an enlarged view of the vicinity of the oil seal 211 in FIG. 13A (the broken line portion in FIG. 13A). As shown in the figure, the main shaft 201 forms a groove 201c (unevenness) inclined on the outer peripheral surface. When the main shaft 201 rotates in the clockwise direction when viewed from the electric motor side (main shaft end 220 side), the inclination direction of the groove 201c is on the main shaft end 220 side on the right side surface viewed from the electric motor side (main shaft end 220 side). To the bearing 202 side. The groove 201c is preferably formed over the entire circumference of the main shaft 201, but a portion of the main shaft 201 that does not have the groove 201c may be provided. In addition, the recesses and projections of the groove 201c are desirably formed at regular intervals, but the recesses and projections may be formed at irregular intervals.
 ポンプ300の運転によって主軸201が回転すると、大気側にある溝201cによって空気の流れが生じ、潤滑剤は大気側から被密封流体側に押し戻される。すなわち、溝201cの傾斜の方向は、ポンプ300の運転によって主軸201が回転した際に、主軸201の外周面の潤滑剤が主軸端220側から軸受202側に戻る第1の流れFL1を形成する方向である。 When the main shaft 201 is rotated by the operation of the pump 300, an air flow is generated by the groove 201c on the atmosphere side, and the lubricant is pushed back from the atmosphere side to the sealed fluid side. That is, the direction of the inclination of the groove 201c forms the first flow FL1 in which the lubricant on the outer peripheral surface of the main shaft 201 returns from the main shaft end 220 side to the bearing 202 side when the main shaft 201 rotates by the operation of the pump 300. Direction.
 さらに、ポンプ装置301は、主軸の静止時に、上述したように潤滑剤の油面OLは主軸201より下の液位である。オイルシール211は、ポンプ300の運転中に、空間Sにおいて、軸受202からの潤滑剤が軸受カバー205に飛散し、リップ211dと主軸201の外周面との摺動面の潤滑剤が存在する位置に配置するとよい。本実施形態におけるオイルシール211の配置位置の調整方法の一例として、オイルシール211の配置位置は、ボルト210aの締め付け力と突起部分207の厚さを加減し軸受カバー205の位置を調整する。また、オイルシール211の配置位置は、オイルシール211の主軸201方向の位置を調整するのみではなく軸受202の軸方向の位置を調整してもよい。調整の際には、軸受202とオイルシール211間には上述した所定の距離以上とする。一例として軸受202とオイルシール211との距離は5~50mm程度である。また、1もしくは複数個のボルト210aおよび突起部分207を用いても良い。 Furthermore, in the pump device 301, when the main shaft is stationary, the oil level OL of the lubricant is at a liquid level below the main shaft 201 as described above. The oil seal 211 is a position where the lubricant from the bearing 202 scatters in the bearing cover 205 in the space S during the operation of the pump 300 and the lubricant on the sliding surface between the lip 211d and the outer peripheral surface of the main shaft 201 exists. It is good to arrange in. As an example of the adjustment method of the arrangement position of the oil seal 211 in this embodiment, the arrangement position of the oil seal 211 adjusts the position of the bearing cover 205 by adjusting the tightening force of the bolt 210a and the thickness of the protruding portion 207. Further, the arrangement position of the oil seal 211 may be adjusted not only by adjusting the position of the oil seal 211 in the direction of the main shaft 201 but also by adjusting the position of the bearing 202 in the axial direction. At the time of adjustment, the distance between the bearing 202 and the oil seal 211 is not less than the predetermined distance described above. As an example, the distance between the bearing 202 and the oil seal 211 is about 5 to 50 mm. One or a plurality of bolts 210a and protruding portions 207 may be used.
 空間Sにおいて、軸受202からの潤滑剤がオイルシール211に飛散する位置にオイルシール211を配置すると、軸受カバー205の空間S側の側面やオイルシール211を伝って、リップ211dと主軸201の外周面との摺動面に流れる潤滑剤の流れである第2の流れFL2が形成される。本実施形態では、第2の流れFL2によってオイルシール211への潤滑剤の補給しつつ、上述した溝201cによる潤滑剤の流れである第1の流れFL1によって潤滑剤の軸受胴体204へ戻す。この潤滑剤の第1の流れFL1と第2の流れFL2が繰り返されることによって、オイルシール211と主軸201の外周面との摺動を良好に保ちつつ、潤滑剤が大気側へ漏れるのを抑制できる。 In the space S, when the oil seal 211 is disposed at a position where the lubricant from the bearing 202 scatters on the oil seal 211, the outer periphery of the lip 211 d and the main shaft 201 is transmitted along the side surface of the bearing cover 205 on the space S side and the oil seal 211. A second flow FL2, which is a flow of lubricant flowing on the sliding surface with the surface, is formed. In the present embodiment, the lubricant is supplied to the oil seal 211 by the second flow FL2, and the lubricant is returned to the bearing body 204 by the first flow FL1, which is the flow of the lubricant by the groove 201c. By repeating the first flow FL1 and the second flow FL2 of the lubricant, the sliding of the oil seal 211 and the outer peripheral surface of the main shaft 201 is kept good, and the leakage of the lubricant to the atmosphere side is suppressed. it can.
 ポンプ装置301における、オイルシール211は、軸受202からの潤滑剤が飛散する位置に配置するとともに、主軸201の外周面は、溝201cが設けられる。そして、溝201cは、ポンプ300が運転した際に、オイルシール211から大気側の主軸201の外周面に露出した潤滑剤が被密封流体側に押し戻される方向に傾斜する。これにより、ポンプ装置301は、オイルシール211と主軸201の外周面との摺動を良好に保ちつつ、軸受202の潤滑剤が大気側へ漏れるのを抑制できる。 The oil seal 211 in the pump device 301 is disposed at a position where the lubricant from the bearing 202 scatters, and the outer peripheral surface of the main shaft 201 is provided with a groove 201c. Then, when the pump 300 is operated, the groove 201c is inclined in a direction in which the lubricant exposed from the oil seal 211 to the outer peripheral surface of the main shaft 201 on the atmosphere side is pushed back to the sealed fluid side. Thereby, the pump apparatus 301 can suppress the lubricant of the bearing 202 from leaking to the atmosphere side while maintaining good sliding between the oil seal 211 and the outer peripheral surface of the main shaft 201.
 ここで、傾斜した溝201cは、主軸201の外周面の大気側の少なくとも一部に設けられている。すなわち、この溝201cは、少なくとも主軸201の外周面におけるオイルシール211との摺動面に隣接し、且つ大気側に形成されていればよい(図13Bの符号A)。これにより、主軸201が回転すると、主軸201の外周面は、溝201cによって空気の流れが生じて、潤滑剤の流れFL1によって大気側に漏れた潤滑剤を押し戻す効果が得られる。 Here, the inclined groove 201c is provided in at least a part of the outer peripheral surface of the main shaft 201 on the atmosphere side. That is, this groove 201c may be formed on the atmosphere side adjacent to at least the sliding surface with the oil seal 211 on the outer peripheral surface of the main shaft 201 (reference A in FIG. 13B). Accordingly, when the main shaft 201 rotates, an air flow is generated on the outer peripheral surface of the main shaft 201 by the groove 201c, and an effect of pushing back the lubricant leaked to the atmosphere side by the lubricant flow FL1 is obtained.
 また、傾斜した溝201cは、主軸201の外周面におけるオイルシール211との摺動面に設けられている。すなわち、溝201cは主軸201の外周面におけるリップ211dとの摺動面(あるいはリップ溝201b)の少なくとも一部に形成もしくは延在してもよい(図13Bの符号B)。リップ211dと主軸201との摺動面は、相対的に摺動する摺動面におけるシール部の圧力が低下して、リップ211dと主軸201との摺動面における溝201c内の潤滑剤の油膜中に泡が生じる。この泡によって、リップ211dと主軸201と摺動面を低摩擦化(「低フリクション化」ともいう。)することができる。それによりリップ211dと主軸201の外周面の摩擦や摩耗を減らすことができる。 Further, the inclined groove 201c is provided on a sliding surface with the oil seal 211 on the outer peripheral surface of the main shaft 201. That is, the groove 201c may be formed or extended in at least a part of a sliding surface (or lip groove 201b) with the lip 211d on the outer peripheral surface of the main shaft 201 (reference numeral B in FIG. 13B). The sliding surface between the lip 211d and the main shaft 201 reduces the pressure of the seal portion on the sliding surface that slides relatively, and the lubricant oil film in the groove 201c on the sliding surface between the lip 211d and the main shaft 201 Bubbles are generated inside. The bubbles can reduce the friction between the lip 211d, the main shaft 201, and the sliding surface (also referred to as “low friction”). As a result, friction and wear between the lip 211d and the outer peripheral surface of the main shaft 201 can be reduced.
 更には、傾斜した溝201cは、主軸201の外周面の被密封流体側の少なくとも一部に設けられている。すなわち、溝201cは、主軸201の外周面のオイルシール211との摺動面に隣接し、且つ、被密封流体側の少なくとも一部に形成もしくはさらに延在していてもよい(図13Bの符号C)。そうすることで、ポンプ装置301は、より潤滑剤を軸受202の方へ戻すことができる。特に、溝201cを軸受202に当接するまで延伸し、大気側から押し戻された潤滑剤を軸受202の側面202-1まで到達させると、潤滑剤の油面OLは主軸201よりも低いので、大気側から押し戻された潤滑剤は、溝201cを伝って主軸201より下方に位置する軸受202の側面202-1を伝って、軸受202内へ速やかに戻すことができる。 Furthermore, the inclined groove 201c is provided in at least a part of the outer peripheral surface of the main shaft 201 on the sealed fluid side. That is, the groove 201c is adjacent to the sliding surface of the outer peripheral surface of the main shaft 201 with the oil seal 211, and may be formed or further extended in at least part of the sealed fluid side (reference numeral in FIG. 13B). C). By doing so, the pump device 301 can return the lubricant toward the bearing 202 more. In particular, when the groove 201c is extended to contact the bearing 202 and the lubricant pushed back from the atmosphere side reaches the side surface 202-1 of the bearing 202, the oil surface OL of the lubricant is lower than that of the main shaft 201. The lubricant pushed back from the side can be quickly returned into the bearing 202 along the side surface 202-1 of the bearing 202 positioned below the main shaft 201 through the groove 201c.
 よって、ポンプ装置301は、主軸201の溝201cの形成並びに軸受202からの潤滑剤がオイルシール211に飛散する位置にオイルシール211を配置することで、潤滑剤が外部へ飛散して周囲を汚すのを防止し、軸受胴体204への潤滑剤の補充や交換のメンテナンス作業を軽減できる。また、経年劣化によりリップ211dの押圧が弱くなった場合でも、大気側に漏れた潤滑剤は、第1の流れFL1によって被密封流体側へ戻される。このように、ポンプ装置301は、オイルシール211のシール性を確保できるので、結果として、ポンプ装置301は、オイルシール211の交換寿命を長くすることができる。更には、ポンプ300の運転中は、潤滑剤の第2の流れFL2によって、リップ211dと主軸201の摺動部に潤滑剤が供給される。よって、摺動面の摩擦による発熱や摩耗を抑え、オイルシール211並びに主軸201の寿命を長くすることができる。 Therefore, the pump device 301 disposes the periphery by forming the groove 201c of the main shaft 201 and disposing the oil seal 211 at a position where the lubricant from the bearing 202 scatters on the oil seal 211, thereby contaminating the surroundings. Thus, the maintenance work for replenishing or replacing the lubricant to the bearing body 204 can be reduced. Even when the pressure on the lip 211d is weakened due to aging, the lubricant leaked to the atmosphere side is returned to the sealed fluid side by the first flow FL1. Thus, since the pump apparatus 301 can ensure the sealing performance of the oil seal 211, the pump apparatus 301 can extend the replacement life of the oil seal 211 as a result. Furthermore, during the operation of the pump 300, the lubricant is supplied to the sliding portion of the lip 211d and the main shaft 201 by the second flow FL2 of the lubricant. Therefore, heat generation and wear due to friction of the sliding surface can be suppressed, and the life of the oil seal 211 and the main shaft 201 can be extended.
 また、図20に示すように羽根車230側に配置されたオイルシール212と対向する主軸201の外周面にも溝201cの形成し、なお且つ軸受203からの潤滑剤がオイルシール212に飛散する位置にオイルシール212を配置することで、オイルシール212と主軸201との摺動を良好に保ちつつ、オイルシール212からの潤滑剤の漏れを抑制することができる。 Further, as shown in FIG. 20, a groove 201 c is also formed on the outer peripheral surface of the main shaft 201 facing the oil seal 212 arranged on the impeller 230 side, and the lubricant from the bearing 203 is scattered on the oil seal 212. By disposing the oil seal 212 at the position, it is possible to suppress the leakage of the lubricant from the oil seal 212 while maintaining good sliding between the oil seal 212 and the main shaft 201.
 羽根車230側から見て反時計回りの方向に主軸201が回転する場合、このオイルシール212と対向する主軸201の外周面に形成された溝201cの傾斜方向は、羽根車230側から見て左側の側面において、羽根車230側から軸受203側に向かって高くなる方向に傾斜されている。 When the main shaft 201 rotates in the counterclockwise direction when viewed from the impeller 230 side, the inclination direction of the groove 201c formed on the outer peripheral surface of the main shaft 201 facing the oil seal 212 is viewed from the impeller 230 side. The left side surface is inclined in a direction that increases from the impeller 230 side toward the bearing 203 side.
 なお、主軸201のオイルシール211または212の摺動面は、保護のために不図示の軸スリーブを用いてもよい。主軸201は軸スリーブに嵌入されているので、主軸201と軸スリーブは、径方向に同心状で同回転する。よって、軸スリーブは主軸201の一部とする。更には、後述する図13Cのオイルシール211’を用いたポンプ装置301においても、溝201cの形成並びに軸受202または203からの潤滑剤がオイルシール211’に飛散し得る位置にオイルシール211’を配置することで、ポンプ装置301は、オイルシール211’と主軸201との摺動を良好に保ちつつ、大気側への潤滑剤の漏れを抑制することができる。また、図13Dのオイルシール211’’を用いたポンプ装置301においても、溝201cの形成並びに軸受202または203からの潤滑剤がオイルシール211’ ’に飛散し得る位置にオイルシール211’ ’を配置することで、ポンプ装置301は、オイルシール211’ ’と主軸201との摺動を良好に保ちつつ、大気側への潤滑剤の漏れを抑制することができる。 In addition, the sliding surface of the oil seal 211 or 212 of the main shaft 201 may use a shaft sleeve (not shown) for protection. Since the main shaft 201 is fitted into the shaft sleeve, the main shaft 201 and the shaft sleeve rotate concentrically in the radial direction. Therefore, the shaft sleeve is a part of the main shaft 201. Further, also in the pump device 301 using the oil seal 211 ′ of FIG. 13C described later, the oil seal 211 ′ is formed at a position where the groove 201c is formed and the lubricant from the bearing 202 or 203 can be scattered on the oil seal 211 ′. By disposing, the pump device 301 can suppress the lubricant from leaking to the atmosphere side while maintaining good sliding between the oil seal 211 ′ and the main shaft 201. Also in the pump device 301 using the oil seal 211 ″ of FIG. 13D, the oil seal 211 ′ ′ is provided at a position where the groove 201c is formed and the lubricant from the bearing 202 or 203 can be scattered on the oil seal 211 ′. By disposing, the pump device 301 can suppress the leakage of the lubricant to the atmosphere side while maintaining good sliding between the oil seal 211 ′ and the main shaft 201.
 また、図11Aは、単段片吸込遠心ポンプを用いたポンプ装置301を例示して説明した。しかし、本実施形態である主軸201の外周面における溝201cならびに軸受とオイルシールの配置は、任意のポンプ装置、特に潤滑剤を使用したオイルバス方式の軸受、軸受けの潤滑剤をシールするオイルシール、並びに横軸ポンプを備えた横軸形ポンプ装置に適用可能である。 Moreover, FIG. 11A illustrated and demonstrated the pump apparatus 301 using the single stage piece suction centrifugal pump. However, the groove 201c and the arrangement of the bearing and the oil seal on the outer peripheral surface of the main shaft 201 according to the present embodiment are arranged according to any pump device, particularly an oil bath type bearing using a lubricant, and an oil seal for sealing the lubricant of the bearing. And a horizontal axis type pump device provided with a horizontal axis pump.
 実施形態の一例であるポンプ装置301で、メンテナンスを行う作業者は、経年劣化により所定量以上の潤滑剤が大気側へ漏れる図11のポンプ装置301に対して、次のようなメンテナンスを行うこともできる。すなわち、作業者は、図12Aおよび図12Bにおけるオイルシール211と主軸201とを分離し、主軸201の外周面に図13Aおよび図13Bに示すような溝201cを形成した上で、元のオイルシール211あるいは新品のオイルシール211と主軸201とを取り付けることにより図20に示すポンプ装置301となる。 In the pump device 301 as an example of the embodiment, an operator who performs maintenance performs the following maintenance on the pump device 301 in FIG. 11 in which a predetermined amount or more of lubricant leaks to the atmosphere due to aging. You can also. That is, the operator separates the oil seal 211 and the main shaft 201 in FIGS. 12A and 12B, forms a groove 201 c as shown in FIGS. 13A and 13B on the outer peripheral surface of the main shaft 201, and then returns to the original oil seal. By attaching 211 or a new oil seal 211 and the main shaft 201, a pump device 301 shown in FIG.
 この際、オイルシール211は、完全に主軸201から分離する必要はない。オイルシール211は、主軸201上でスライドされて主軸201との摺動面から離される工程としてもよい。 At this time, the oil seal 211 does not have to be completely separated from the main shaft 201. The oil seal 211 may be slid on the main shaft 201 and separated from the sliding surface with the main shaft 201.
 図13Aは、メンテナンス後の主軸201、オイルシール211および軸受202近傍の拡大断面図である。また、図13Bは、図13Aのオイルシール211近傍(図13Aの破線部)をさらに拡大した図である。図示のように、主軸201の外周面に、傾斜した溝201c(凹凸)は形成される。電動機側から見て時計回りの方向に主軸201が回転する場合、オイルシール211近傍の溝201cの傾斜方向は、電動機側(主軸端220側)から見て右側の側面において、電動機側から軸受202側に向かって高くなる方向に傾斜している。 FIG. 13A is an enlarged cross-sectional view of the vicinity of the main shaft 201, the oil seal 211, and the bearing 202 after maintenance. 13B is an enlarged view of the vicinity of the oil seal 211 in FIG. 13A (the broken line portion in FIG. 13A). As illustrated, an inclined groove 201 c (unevenness) is formed on the outer peripheral surface of the main shaft 201. When the main shaft 201 rotates in the clockwise direction when viewed from the motor side, the inclination direction of the groove 201c in the vicinity of the oil seal 211 is the bearing 202 from the motor side on the right side surface when viewed from the motor side (main shaft end 220 side). It is inclined in the direction of increasing toward the side.
 このような溝201cを形成することで、主軸201が回転すると、大気中にある溝201cによって空気の流れが生じる。そして、大気側から被密封流体側に潤滑剤が押し戻される。すなわち、溝201cの傾斜方向は、主軸201が回転した際に、大気側の潤滑剤が軸受202側に戻されるような方向とも言える。これにより、潤滑剤が漏れるのを抑制できる。 When such a groove 201c is formed, when the main shaft 201 rotates, an air flow is generated by the groove 201c in the atmosphere. Then, the lubricant is pushed back from the atmosphere side to the sealed fluid side. That is, it can be said that the inclination direction of the groove 201c is a direction in which the air-side lubricant is returned to the bearing 202 side when the main shaft 201 rotates. Thereby, it can suppress that a lubricant leaks.
 この溝201cは、少なくとも主軸201の大気側に形成されていれば、主軸201が回転することで溝201cによって空気の流れが生じて潤滑剤を押し戻す効果が得られる。また、溝201cは主軸201における摺動面(あるいはリップ溝201b)の少なくとも一部に形成または延在していてもよい(図13Bの符号B)。これにより、オイルシール211と主軸201との摩擦を減らすこともできる。また、溝201cは主軸201における摺動面(あるいはリップ溝201b)から軸受202側(図13Bの符号C)の少なくとも一部に形成または延在していてもよい。これにより、潤滑剤を軸受202側へ押し戻す効果がさらに増大する。 If the groove 201c is formed at least on the atmosphere side of the main shaft 201, an effect of pushing back the lubricant is obtained by rotating the main shaft 201 to generate an air flow by the groove 201c. Further, the groove 201c may be formed or extended on at least a part of the sliding surface (or lip groove 201b) of the main shaft 201 (reference numeral B in FIG. 13B). Thereby, the friction between the oil seal 211 and the main shaft 201 can be reduced. Further, the groove 201c may be formed or extended from at least a part of the bearing 202 side (symbol C in FIG. 13B) from the sliding surface (or lip groove 201b) of the main shaft 201. This further increases the effect of pushing the lubricant back to the bearing 202 side.
 このように、本実施形態では、軸受202から飛散した潤滑剤がオイルシール211と主軸201の外周面との摺動面に達する位置にオイルシール211と軸受202が配置される。そして、主軸201が回転することにより、そのような潤滑剤の一部が軸受202側に押し戻される。結果として、潤滑剤が漏れるのが抑えられ、かつ、オイルシール211と主軸201との摺動面には適切な量の潤滑剤が介在することとなる。 As described above, in this embodiment, the oil seal 211 and the bearing 202 are disposed at a position where the lubricant scattered from the bearing 202 reaches the sliding surface between the oil seal 211 and the outer peripheral surface of the main shaft 201. Then, when the main shaft 201 rotates, a part of such a lubricant is pushed back to the bearing 202 side. As a result, leakage of the lubricant is suppressed, and an appropriate amount of lubricant is interposed on the sliding surface between the oil seal 211 and the main shaft 201.
 なお、このようなメンテナンスは、図11において羽根車230側に配置されたオイルシール212に対向する主軸201の外周面にも適用可能である。すなわち、作業者は、オイルシール212と主軸201の外周面との摺動面を離し、オイルシール212と主軸201との摺動面より羽根車230側(軸受203の反対側)に傾斜した溝201cを形成してもよい。オイルシール212と対向する主軸201に形成される溝201cの傾斜方向は、主軸201が回転した際に、摺動面の潤滑剤が軸受203側に戻される方向であり、軸受202側のオイルシール211と対向する主軸201に形成する溝201cとは逆である。 Note that such maintenance can also be applied to the outer peripheral surface of the main shaft 201 facing the oil seal 212 disposed on the impeller 230 side in FIG. That is, the operator separates the sliding surface between the oil seal 212 and the outer peripheral surface of the main shaft 201, and the groove is inclined to the impeller 230 side (opposite the bearing 203) from the sliding surface between the oil seal 212 and the main shaft 201. 201c may be formed. The inclination direction of the groove 201c formed in the main shaft 201 facing the oil seal 212 is a direction in which the lubricant on the sliding surface is returned to the bearing 203 side when the main shaft 201 rotates, and the oil seal on the bearing 202 side. This is the opposite of the groove 201 c formed in the main shaft 201 facing to 211.
 さらに、オイルシールは、種々のものを適用できる。
 図13Cは、図13Bとは異なるオイルシール211’を適用した場合の拡大図である。シール用スリーブ280は、主軸201の一部として設けられる。そして、オイルシール211’は、断面がL形状の樹脂製のシールリップ部材281を備え、該シールリップ部材281は、断面が略L形状の外側の結合金属環282と断面が略L形状の内側の押え金属環283とにより挟持される。シールリップ部材281の内周側に筒状リップ284が形成され、この筒状リップ284は図13Bのリップ211dに相当し、シール用スリーブ280の外周面と強く密接して被密封流体をシールする。図13Cに示すオイルシール211’を用いる場合には、溝201cは、主軸201の一部であるシール用スリーブ280に形成される。
Further, various oil seals can be applied.
FIG. 13C is an enlarged view when an oil seal 211 ′ different from FIG. 13B is applied. The sealing sleeve 280 is provided as a part of the main shaft 201. The oil seal 211 'includes a resin-made seal lip member 281 having an L-shaped cross section, and the seal lip member 281 includes an outer joint metal ring 282 having a substantially L-shaped cross section and an inner side having a substantially L-shaped cross section. The presser metal ring 283 is clamped. A cylindrical lip 284 is formed on the inner peripheral side of the seal lip member 281. This cylindrical lip 284 corresponds to the lip 211d in FIG. 13B, and seals the fluid to be sealed in close contact with the outer peripheral surface of the sealing sleeve 280. . When the oil seal 211 ′ shown in FIG. 13C is used, the groove 201c is formed in the sealing sleeve 280 that is a part of the main shaft 201.
 図13Dは、図13Bとはまた異なるオイルシール211’’を適用した場合の拡大図である。オイルシール211’’は筒状部292を有する。設置環境によっては、大気側よりゴミ等の異物がオイルシールと主軸201の外周面との摺動面に混入する場合がある。そこで、筒状部292は、オイルシール211’’に異物が侵入するのを阻止する。よって、オイルシール211’’は、大気側からの異物の混入によるオイルシール211’’のリップ部と主軸201の外周面における摺動面の摩耗を減らすことができる。 FIG. 13D is an enlarged view when an oil seal 211 ″ different from that in FIG. 13B is applied. The oil seal 211 ″ has a cylindrical portion 292. Depending on the installation environment, foreign matter such as dust may enter the sliding surface between the oil seal and the outer peripheral surface of the main shaft 201 from the atmosphere side. Therefore, the cylindrical portion 292 prevents foreign matter from entering the oil seal 211 ″. Therefore, the oil seal 211 ″ can reduce the wear of the sliding surface on the lip portion of the oil seal 211 ″ and the outer peripheral surface of the main shaft 201 due to the entry of foreign matter from the atmosphere side.
 以下、メンテナンスの手順を詳細に説明する。
 図14は、ポンプ装置301のメンテナンス手順を示す工程図である。なお、図14は手順の一例にすぎず、適宜各工程を入れ替えたり、省略したりしてもよい。図14のステップS21で、図11Aのポンプ装置301に対する本実施形態のメンテナンスを開始する。
Hereinafter, the maintenance procedure will be described in detail.
FIG. 14 is a process diagram showing a maintenance procedure of the pump device 301. FIG. 14 is merely an example of a procedure, and each step may be appropriately replaced or omitted. In step S21 of FIG. 14, the maintenance of this embodiment for the pump device 301 of FIG. 11A is started.
 まず、作業者は、不図示の電動機との連結を外す。(ステップS21)。また、作業者は、プラグ216を外して、軸受胴体204から潤滑剤を抜く(ステップS22)。続いて、作業者は、ポンプ胴体232用のボルト238を外し、中間板237、胴体カバー221および軸受胴体204をポンプ胴体232から外す(ステップS23)。これにより、図15に示す状態となる。 First, the operator disconnects from the motor (not shown). (Step S21). Further, the operator removes the plug 216 and removes the lubricant from the bearing body 204 (step S22). Subsequently, the operator removes the bolt 238 for the pump body 232, and removes the intermediate plate 237, the body cover 221 and the bearing body 204 from the pump body 232 (step S23). As a result, the state shown in FIG. 15 is obtained.
 その後、作業者は、羽根車230用のナット231を外し、羽根車230を主軸201から抜く(ステップS24)。そして、作業者は、主軸201から羽根車230側のキー219を外す。これにより、図16に示す状態となる。さらに、作業者は、ボルト36を外し、中間板237および胴体カバー221を軸受胴体204から外す(ステップS25)。次いで、作業者は、グランドパッキン223用のボルト229を外してグランドパッキン223を外す(ステップS26)。これにより、図17に示す状態となる。 Thereafter, the operator removes the nut 231 for the impeller 230 and removes the impeller 230 from the main shaft 201 (step S24). Then, the operator removes the key 219 on the impeller 230 side from the main shaft 201. As a result, the state shown in FIG. 16 is obtained. Further, the operator removes the bolt 36 and removes the intermediate plate 237 and the body cover 221 from the bearing body 204 (step S25). Next, the worker removes the bolt 229 for the gland packing 223 and removes the gland packing 223 (step S26). As a result, the state shown in FIG. 17 is obtained.
 そして、水切りリング213が存在する場合は、作業者は、水切りリング213を主軸201から抜き取る(ステップS27)。次いで、作業者は、軸受カバー205,206用の各ボルト210a,210bを外し、軸受カバー205,206およびオイルシール211,212を軸受胴体204から外して主軸201を抜く(ステップS28)。これにより、図18に示す状態となる。このようにして、主軸201は、オイルシール211,212と分離される。作業者は、主軸201を抜く際、軸受202,203の回転状態を点検し、円滑な回転ができない場合には軸受202,203を交換する。 And when the draining ring 213 exists, the operator pulls out the draining ring 213 from the main shaft 201 (step S27). Next, the operator removes the bolts 210a and 210b for the bearing covers 205 and 206, removes the bearing covers 205 and 206 and the oil seals 211 and 212 from the bearing body 204, and removes the main shaft 201 (step S28). As a result, the state shown in FIG. 18 is obtained. In this way, the main shaft 201 is separated from the oil seals 211 and 212. When the operator pulls out the main shaft 201, the operator checks the rotation state of the bearings 202 and 203, and replaces the bearings 202 and 203 when smooth rotation is not possible.
 そして、作業者は、主軸201における軸受202,203の近傍に、図13Aおよび図13Bを用いて説明した溝201cを形成する(ステップS29)。これにより、図19に示す状態となる。具体的には、作業者は、主軸201の外周面に傷をつけることで溝201cを形成する。なお、この溝201cは全周に渡って形成されるのが望ましいが、一部に溝201cがない部分があっても構わない。 Then, the worker forms the groove 201c described with reference to FIGS. 13A and 13B in the vicinity of the bearings 202 and 203 on the main shaft 201 (step S29). As a result, the state shown in FIG. 19 is obtained. Specifically, the operator forms the groove 201 c by scratching the outer peripheral surface of the main shaft 201. The groove 201c is desirably formed over the entire circumference, but there may be a portion where the groove 201c is not provided in part.
 その後、作業者は、必要に応じてオイルシール211,212を新品のものとし、逆の手順によってポンプを組み立てればよい。これにより、図20に示す潤滑剤漏れが少ない新たなポンプ装置(潤滑剤漏れ抑制ポンプ装置)が製造されるとも言える。 After that, the operator may replace the oil seals 211 and 212 with new ones as necessary, and assemble the pump by the reverse procedure. Accordingly, it can be said that a new pump device (lubricant leakage suppressing pump device) with less lubricant leakage shown in FIG. 20 is manufactured.
 このように、本実施形態では、メンテナンスの作業者は、主軸201の外周面に所定方向に傾斜した傷をつけて溝201cを形成するという簡易な手法により、潤滑剤が主軸201を伝って漏れるのを抑制できる。 As described above, in this embodiment, the maintenance worker leaks the lubricant along the main shaft 201 by a simple method in which the outer peripheral surface of the main shaft 201 is scratched in a predetermined direction to form the groove 201c. Can be suppressed.
 なお、メンテナンスとして作業者が主軸201に溝201cを形成するのではなく、新品のポンプの主軸201の外周面に予め溝201cを設けておいてもよい。また、図11Aでは、単段片吸込遠心ポンプを用いたポンプ装置301を例示して説明したが、任意のポンプ装置、特に潤滑剤を使用したオイルバス方式の軸受、オイルシール、並びに横軸ポンプを備えた横軸形ポンプ装置に本実施形態を適用可能である。 It should be noted that, as a maintenance, the operator may provide the groove 201c in advance on the outer peripheral surface of the main shaft 201 of a new pump instead of forming the groove 201c in the main shaft 201. In FIG. 11A, the pump device 301 using a single-stage single-suction centrifugal pump has been described as an example. However, any pump device, in particular, an oil bath type bearing using a lubricant, an oil seal, and a horizontal shaft pump are used. This embodiment can be applied to a horizontal shaft type pump device provided with
 上述した手順にてメンテナンスを行ったポンプ装置301は、潤滑剤の漏れに伴う潤滑剤の補充や交換のメンテナンス作業を軽減できる。また、経年劣化によりリップ211dの押圧が弱くなった場合でも、上述した手順にてメンテナンスを行ったポンプ装置301は、第1の流れFL1によって潤滑剤を軸受胴体204へ戻すことでシール性を確保できるので、結果として、オイルシール211の交換寿命を長くできる。更には、ポンプ運転中に、潤滑剤は、潤滑剤の第2の流れFL2によって、リップ211dと主軸201の外周面の摺動部間に供給される。そのため、オイルシール211と主軸201の摺動面は、摩擦による発熱や摩耗を抑えることができるので、オイルシール211並びに主軸201の寿命を長くできる。なお、図11において羽根車230側に配置された軸受203とオイルシール212、軸受203とオイルシール212と対向する主軸201の外周面にも溝201cは適用可能である。 The pump device 301 that has been maintained according to the above-described procedure can reduce maintenance work for replenishment or replacement of lubricant due to lubricant leakage. Even when the pressure on the lip 211d is weakened due to aging, the pump device 301 that has been maintained in the above-described procedure ensures the sealing performance by returning the lubricant to the bearing body 204 by the first flow FL1. As a result, the replacement life of the oil seal 211 can be extended. Further, during the pump operation, the lubricant is supplied between the sliding portion of the outer peripheral surface of the lip 211d and the main shaft 201 by the second flow FL2 of the lubricant. Therefore, the sliding surfaces of the oil seal 211 and the main shaft 201 can suppress heat generation and wear due to friction, so that the life of the oil seal 211 and the main shaft 201 can be extended. In FIG. 11, the groove 201 c can also be applied to the outer peripheral surface of the main shaft 201 facing the bearing 203 and the oil seal 212 and the bearing 203 and the oil seal 212 arranged on the impeller 230 side.
 図21、図22は、図11Aのポンプ装置と図20のポンプ装置で、潤滑剤の漏れを比較した一例を示す表である。図21の表は、継続的にポンプ300が運転されている現場で、メンテナンス作業者が時間間隔TMxで定期的に潤滑剤の漏れを確認した結果を示す。よって、図21、図22のTM0~TM9は、ポンプ装置310、311の運用開始後の期間を示し、具体的には、ポンプ装置310、311の運用開始後から時間間隔TMxのn倍(n:0~9)の期間である。なお、一般的に、ポンプ装置は、約3ヶ月から1年間毎に定期的なメンテナンスが行われる。以下、説明を簡単にするため、オイルシール211についてのみ説明するが、オイルシール212についても同様の効果が認められる。 21 and 22 are tables showing an example of comparison of lubricant leakage between the pump device of FIG. 11A and the pump device of FIG. The table of FIG. 21 shows the result of the maintenance worker periodically checking for leakage of the lubricant at the time interval TMx at the site where the pump 300 is continuously operated. Therefore, TM0 to TM9 in FIGS. 21 and 22 indicate a period after the operation of the pump devices 310 and 311 is started, and specifically, n times (n) the time interval TMx after the operation of the pump devices 310 and 311 is started. : 0 to 9). In general, the pump apparatus is regularly maintained every year from about 3 months. Hereinafter, for the sake of simplicity, only the oil seal 211 will be described, but the same effect is recognized for the oil seal 212.
 ここで、図21、図22に潤滑剤の漏れの結果を示すポンプ装置について説明する。ポンプ装置310は、主軸201の外表面に溝201cが設けられていないポンプ装置であり、図11Aに示すポンプ装置301である。図21のポンプ装置311は、図20に示すポンプ装置301である。すなわち、ポンプ装置310は、ポンプ装置311と比べて、主軸201の外表面に溝201cが形成されていない点のみが異なっている。具体的には、メンテナンスの作業者が期間TM8以上使用したポンプ装置310に、図14のメンテナンス手順に沿ってポンプ装置310の主軸201の外表面に傾斜した溝201cを形成することでポンプ装置311とした。 Here, the pump device showing the result of lubricant leakage in FIGS. 21 and 22 will be described. The pump device 310 is a pump device in which the groove 201c is not provided on the outer surface of the main shaft 201, and is the pump device 301 shown in FIG. 11A. A pump device 311 in FIG. 21 is the pump device 301 shown in FIG. That is, the pump device 310 is different from the pump device 311 only in that the groove 201 c is not formed on the outer surface of the main shaft 201. Specifically, the pump device 311 is formed by forming an inclined groove 201c on the outer surface of the main shaft 201 of the pump device 310 in accordance with the maintenance procedure of FIG. It was.
 また、ポンプ装置310、311のシール部材であるオイルシール211は、経年劣化でリップ11dが硬化してシール性が低下する。そのため、オイルシール211は、消耗部品である。この現場においても、新品から耐用寿命を経過するとメンテナンス作業者によって交換されている。また、潤滑剤漏れは、オイルシール211から大気側に漏れ出した潤滑剤が、主軸201の外表面から飛散した状態を示す。つまり、大気側の潤滑剤が主軸201から飛散して周囲を汚した状態を『潤滑剤漏れ』と記す。 Also, the oil seal 211 that is a sealing member of the pump devices 310 and 311 is deteriorated with age, and the lip 11d is hardened due to deterioration over time. Therefore, the oil seal 211 is a consumable part. Even at this site, when a useful life elapses from a new article, it is replaced by a maintenance worker. The lubricant leakage indicates a state where the lubricant leaking from the oil seal 211 to the atmosphere is scattered from the outer surface of the main shaft 201. That is, a state where the lubricant on the atmosphere side is scattered from the main shaft 201 and contaminates the periphery is referred to as “lubricant leakage”.
 オイルシール211の耐用寿命に達すると、オイルシール211のリップ211dが硬化する等でシール作用が著しく低下する。オイルシール211の耐用寿命は、ポンプ装置の使用環境や潤滑剤等によって異なるが、一般的には2年間から5年程度である。また、図21、図22に結果を示すメンテナンスにおいて、作業者は、大気側に漏れる潤滑剤が漏れ許容量Mxを超えたら、オイルシール211の耐用寿命に達したと判断する。漏れ許容量Mxは、ポンプ装置300の設置環境や運用者によって異なるが、一般的には、メンテナンス作業者は、オイルシール211から大気側に漏れた潤滑剤が支持台218を伝って地面に付着しているか、潤滑剤の主軸201からの飛散が常時確認される等の状態の場合、漏れ許容量Mxを超えたと判断する。 When the service life of the oil seal 211 is reached, the sealing action is significantly reduced due to the lip 211d of the oil seal 211 being hardened. The service life of the oil seal 211 varies depending on the use environment of the pump device, the lubricant, and the like, but is generally about 2 to 5 years. In the maintenance whose results are shown in FIGS. 21 and 22, the operator determines that the useful life of the oil seal 211 has been reached when the lubricant leaking to the atmosphere side exceeds the allowable leakage amount Mx. The allowable leakage amount Mx varies depending on the installation environment and the operator of the pump device 300, but in general, the maintenance worker attaches the lubricant leaked from the oil seal 211 to the atmosphere side through the support 218 and adheres to the ground. If it is in a state where the scattering of the lubricant from the main shaft 201 is constantly confirmed, it is determined that the allowable leakage amount Mx has been exceeded.
 図21にメンテナンス回数ごとの潤滑剤の漏れ量を示す。
 1回目のメンテナンスの際、つまり、オイルシール211及び主軸201を期間TM1の間使用した場合、メンテナンス作業者は、ポンプ装置310で少量の潤滑剤漏れ(数滴の痕跡)を確認したのに対し、ポンプ装置311で潤滑剤漏れを確認できなかった。
FIG. 21 shows the amount of lubricant leakage for each maintenance cycle.
During the first maintenance, that is, when the oil seal 211 and the main shaft 201 are used during the period TM1, the maintenance worker confirmed a small amount of lubricant leakage (a few drops of traces) with the pump device 310. The lubricant leakage could not be confirmed by the pump device 311.
 2回目のメンテナンスの際、つまり、オイルシール211及び主軸201を期間TM2の間使用した場合、メンテナンス作業者は、ポンプ装置310で少量の潤滑剤漏れ(数10滴の痕跡)を確認したのに対し、ポンプ装置311で潤滑剤漏れを確認できなかった。 During the second maintenance, that is, when the oil seal 211 and the main shaft 201 are used for the period TM2, the maintenance operator confirmed a small amount of lubricant leakage (several tens of drops of traces) with the pump device 310. On the other hand, the lubricant leakage could not be confirmed by the pump device 311.
 4回目のメンテナンスの際、つまり、オイルシール211及び主軸201を期間TM4の間使用した場合、メンテナンス作業者は、ポンプ装置310、311の両方に潤滑剤の漏れを確認した。これは、経年劣化でリップ211dが硬化しシール作用が低下したと考えられる。ただし、ポンプ装置310の潤滑剤漏れは漏れ許容量Mx以上に達したのに対し、ポンプ装置311は漏れ許容量Mxより少ない。そこで、メンテナンス作業者は、ポンプ装置310のオイルシール211が耐用寿命に達したと判断し交換した。また、予防保全として耐用寿命に未達のポンプ装置311もオイルシール211の交換がなされた。 During the fourth maintenance, that is, when the oil seal 211 and the main shaft 201 were used during the period TM4, the maintenance worker confirmed the leakage of the lubricant in both the pump devices 310 and 311. It is considered that this is because the lip 211d is hardened due to aging and the sealing action is lowered. However, the lubricant leakage of the pump device 310 has reached the leakage allowable amount Mx or more, whereas the pump device 311 is smaller than the leakage allowable amount Mx. Accordingly, the maintenance worker determined that the oil seal 211 of the pump device 310 has reached the useful life and replaced it. In addition, as a preventive maintenance, the oil seal 211 was also replaced in the pump device 311 that did not reach the service life.
 5回目のメンテナンスの際、つまり、交換後のオイルシール211を期間TM1、主軸201を期間TM5の間使用した場合、メンテナンス作業者は、ポンプ装置310で少量の潤滑剤漏れ(数10滴の痕跡)を確認したのに対し、ポンプ装置311で潤滑剤漏れを確認できなかった。ここで、ポンプ装置310は、メンテナンス4回目でオイルシール211を交換後したにもかかわらず、期間TM1で少量の潤滑剤漏れを確認している。これは、ポンプ装置310の主軸201にリップ溝201bが形成された影響だと考えられる。 During the fifth maintenance, that is, when the oil seal 211 after replacement is used for the period TM1 and the main shaft 201 for the period TM5, the maintenance worker leaks a small amount of lubricant with the pump device 310 (a trace of several tens of drops). ) Was confirmed, but the pump device 311 could not confirm lubricant leakage. Here, the pump device 310 confirms a small amount of lubricant leakage in the period TM1 even after the oil seal 211 is replaced in the fourth maintenance. This is considered to be due to the effect of the lip groove 201b formed on the main shaft 201 of the pump device 310.
 6回目のメンテナンスの際、つまり、交換後のオイルシール211を期間TM2、主軸201を期間TM6の間使用した場合、メンテナンス作業者は、ポンプ装置310で少量の潤滑剤漏れ(数10滴の痕跡)を確認したのに対し、ポンプ装置311で潤滑剤漏れを確認できなかった。 During the sixth maintenance, that is, when the oil seal 211 after replacement is used for the period TM2 and the main shaft 201 is used for the period TM6, the maintenance worker leaks a small amount of lubricant (several tens of drops of traces) with the pump device 310. ) Was confirmed, but the pump device 311 could not confirm lubricant leakage.
 7回目のメンテナンスの際、つまり、交換後のオイルシール211を期間TM3、主軸201を期間TM7の間使用した場合、メンテナンス作業者は、ポンプ装置310で油漏れを確認した(少量ずつの油漏れが常時確認される)のに対し、ポンプ装置311で潤滑剤漏れが確認できなかった。 During the seventh maintenance, that is, when the replaced oil seal 211 is used for the period TM3 and the main shaft 201 is used for the period TM7, the maintenance worker confirmed the oil leak with the pump device 310 (a small amount of oil leak). On the other hand, no leakage of lubricant could be confirmed by the pump device 311.
 このようにポンプ装置311によれば、ポンプ装置310よりも、潤滑剤漏れを抑制することができる。 Thus, according to the pump device 311, it is possible to suppress the leakage of the lubricant as compared with the pump device 310.
 図22は、図21の表に示す結果を、経過時間における変化として示したグラフである。図22(A)は、ポンプ装置310の潤滑剤漏れの量の経過時間における変化を示し、図22(B)は、ポンプ装置311の潤滑剤漏れの量の経過時間における変化を示す。図22(A)、図22(B)ともに、横軸に経過時間、立軸に潤滑剤の漏れ量を示す。また、図22(A)、図22(B)の点線は漏れ許容量Mxを示す。 FIG. 22 is a graph showing the results shown in the table of FIG. 21 as changes in elapsed time. 22A shows a change in the elapsed time of the amount of lubricant leakage of the pump device 310, and FIG. 22B shows a change in the elapsed time of the amount of lubricant leak of the pump device 311. In both FIGS. 22A and 22B, the horizontal axis represents elapsed time, and the vertical axis represents the amount of lubricant leakage. Also, the dotted lines in FIGS. 22A and 22B indicate the leakage allowable amount Mx.
 期間TM3において、ポンプ装置310は、グラフの領域R1に示すように少量の潤滑剤漏れ量があるのに対して、ポンプ装置311では、グラフの領域R2に示すように、ポンプ装置310よりも潤滑剤漏れを抑制することができる。 In the period TM3, the pump device 310 has a small amount of lubricant leakage as shown in the region R1 of the graph, whereas the pump device 311 lubricates more than the pump device 310 as shown in the region R2 of the graph. Agent leakage can be suppressed.
 期間TM3経過後期間TM4経過までの期間T1において、ポンプ装置310の潤滑剤の漏れ量は増加し、更に期間TM4経過時に漏れ許容量Mxを超えているので、作業者は、期間TM4がポンプ装置310におけるオイルシール211の耐用寿命であると判断した。そのため、ポンプ装置310、311の両方とも運用開始から期間TM4経過後にオイルシール211を交換している。ここで、図22に示すように、期間T1において、ポンプ装置311は、ポンプ装置310と異なり、漏れ許容量Mx以下の潤滑剤漏れが確認され、オイルシール211は、耐用寿命に達しておらず期間TM4以降も継続して使用できる。しかしながら、作業者は、予防保全のためポンプ装置311のオイルシール211を交換した。同様にして、期間TM7経過後期間TM8経過までの期間T2において、オイルシール211の経年劣化により、ポンプ装置310、311の両方とも潤滑剤漏れがあるが、ポンプ装置310に比べてポンプ装置311の漏れ量は少ない。 In the period T1 after the period TM3 elapses until the period TM4 elapses, the leakage amount of the lubricant in the pump device 310 increases and further exceeds the allowable leakage amount Mx when the period TM4 elapses. The service life of the oil seal 211 at 310 was determined. For this reason, both the pump devices 310 and 311 replace the oil seal 211 after the period TM4 has elapsed from the start of operation. Here, as shown in FIG. 22, in the period T1, the pump device 311 is different from the pump device 310 in that the leakage of lubricant below the allowable leakage amount Mx is confirmed, and the oil seal 211 has not reached its useful life. It can be used continuously after the period TM4. However, the operator replaced the oil seal 211 of the pump device 311 for preventive maintenance. Similarly, in the period T <b> 2 after the period TM <b> 7 elapses until the period TM <b> 8 elapses, both the pump devices 310 and 311 leak lubricant due to the aging deterioration of the oil seal 211, but the pump device 311 has a higher capacity than the pump device 310. Leakage is small.
 期間TM4以降の期間T3においては、両方のポンプ装置310、311において、オイルシール211が主軸201に対して摺動することによって主軸201にリップ溝201bが形成されていることが確認された。 In the period T3 after the period TM4, it was confirmed that the lip groove 201b was formed in the main shaft 201 by sliding the oil seal 211 with respect to the main shaft 201 in both pump devices 310 and 311.
 オイルシール211交換後であって期間TM4経過後期間TM7経過までの期間において、ポンプ装置310は、図22のグラフの領域R3に示すように少量の潤滑剤漏れがあるのに対して、ポンプ装置311は、図22のグラフの領域R4に示すように、ポンプ装置310よりも潤滑剤漏れを抑制することができる。このようにポンプ装置311は、主軸201にリップ溝201bが形成されたとしても、ポンプ装置310よりも潤滑剤漏れを抑制することができる。 In the period after the oil seal 211 has been replaced and the period TM4 has elapsed and until the period TM7 has elapsed, the pump device 310 has a small amount of lubricant leakage as shown in a region R3 in the graph of FIG. 311 can suppress the lubricant leakage more than the pump device 310 as indicated by a region R4 in the graph of FIG. Thus, even if the lip groove 201b is formed in the main shaft 201, the pump device 311 can suppress the lubricant leakage more than the pump device 310.
 図21、図22に示すように、オイルシール211の経年劣化によってオイルシール211が正常に作用しない期間T1、期間T2では、ポンプ装置310、311の両方において、大気側に漏れた潤滑剤の質量が増すため、主軸201の回転による遠心力によって潤滑剤が飛散してしまう。しかしながら、オイルシール211が正常に作用し漏れ量が少量の間では、ポンプ装置311の大気側に漏れた潤滑剤は、ポンプ装置310と比較して溝201cによって主軸201との接触面積が増えるので、主軸201から飛散しにくくなる。加えて、ポンプ装置311の大気側の主軸201の外周面に露出した潤滑剤は、傾斜した溝201cによる第1の流れFL1によって被密封流体側に即座に戻される。よって、ポンプ装置310と比較してポンプ装置311は、オイルシール211からの潤滑剤の漏れを抑制することができる。 As shown in FIGS. 21 and 22, in periods T1 and T2 in which the oil seal 211 does not normally operate due to aging of the oil seal 211, the mass of the lubricant leaked to the atmosphere in both the pump devices 310 and 311. Therefore, the lubricant is scattered by the centrifugal force generated by the rotation of the main shaft 201. However, when the oil seal 211 operates normally and the amount of leakage is small, the lubricant leaked to the atmosphere side of the pump device 311 increases the contact area with the main shaft 201 by the groove 201c as compared with the pump device 310. It becomes difficult to scatter from the main shaft 201. In addition, the lubricant exposed on the outer peripheral surface of the main shaft 201 on the atmosphere side of the pump device 311 is immediately returned to the sealed fluid side by the first flow FL1 due to the inclined groove 201c. Therefore, as compared with the pump device 310, the pump device 311 can suppress the leakage of the lubricant from the oil seal 211.
 更に、上述したように、ポンプ装置301は、ポンプ室等に設置されることが多いため、一般的なオイルシールにおけるリップ211dの押圧に比べて20%から80%程度の押圧とすることでオイルシール211、212の長寿命化を図る場合がある。このように、リップ211dの押圧が弱いポンプ装置においても、主軸201に傾斜した溝201cを形成すれば、大気側に漏れた潤滑剤は、第1の流れFL1によって被密封流体側へ戻され、潤滑剤の漏れを抑制できる。また、上述したポンプ装置310程度の少量の潤滑剤漏れは許容される場合が多いため、ポンプの運用者からの要望に応じて、図14に上述したメンテナンス方法にて主軸201に傾斜した溝201cを形成してもよい。 Furthermore, as described above, since the pump device 301 is often installed in a pump chamber or the like, the oil pressure is set to about 20% to 80% compared to the pressure of the lip 211d in a general oil seal. In some cases, the lifetime of the seals 211 and 212 may be increased. Thus, even in the pump device in which the lip 211d is weakly pressed, if the inclined groove 201c is formed in the main shaft 201, the lubricant leaked to the atmosphere side is returned to the sealed fluid side by the first flow FL1, Lubricant leakage can be suppressed. Further, since a small amount of lubricant leakage of about the above-described pump device 310 is often tolerated, a groove 201c inclined to the main shaft 201 by the maintenance method described above with reference to FIG. 14 according to the request from the operator of the pump. May be formed.
 以上、第2の実施形態に係るポンプ装置301は、駆動機の一例である電動機の駆動により搬送液を加圧する羽根車230を予め定められた方向に回転する主軸201と、主軸201を回転可能に支持する軸受202と、主軸201が貫通する軸受カバー205と、軸受け202の潤滑剤が主軸201の外周面を伝わって被密封流体側から大気側に漏れるのを防止するシール部材の一例であるオイルシール211とを備える。軸受カバー205は、軸受202から飛散した潤滑剤が当該軸受カバー205をつたってオイルシール211に流れるように構成されている。更に、このポンプ装置301において、主軸201の外周面には、主軸201が回転した際に、大気側の主軸201の外周面に露出した潤滑剤が被密封流体側に押し戻される傾斜した溝201cが設けられている。 As described above, the pump device 301 according to the second embodiment is capable of rotating the main shaft 201 and the main shaft 201 that rotates the impeller 230 that pressurizes the carrier liquid in a predetermined direction by driving the electric motor that is an example of the driving device. And a bearing cover 205 through which the main shaft 201 passes, and a seal member that prevents the lubricant in the bearing 202 from leaking from the sealed fluid side to the atmosphere side through the outer peripheral surface of the main shaft 201. An oil seal 211 is provided. The bearing cover 205 is configured such that the lubricant scattered from the bearing 202 flows through the bearing cover 205 to the oil seal 211. Further, in this pump device 301, an inclined groove 201 c is formed on the outer peripheral surface of the main shaft 201 so that when the main shaft 201 rotates, the lubricant exposed on the outer peripheral surface of the main shaft 201 on the atmosphere side is pushed back to the sealed fluid side. Is provided.
 この構成により、軸受202から飛散し軸受カバー205をつたってオイルシール211に流れる潤滑剤を、主軸201の外周面の溝201cによるポンピング作用によって大気側から被密封流体側に戻し、潤滑剤漏れを抑制できる。 With this configuration, the lubricant scattered from the bearing 202 and flowing through the bearing cover 205 to the oil seal 211 is returned from the atmosphere side to the sealed fluid side by the pumping action by the groove 201c on the outer peripheral surface of the main shaft 201, and the lubricant leakage is prevented. Can be suppressed.
 また、ポンプ装置301は、横軸のポンプ300を備えた横軸形のポンプ装置である。この構成により、主軸201の静止中は、オイルシール211の作用によって被密封流体をシールできる。 The pump device 301 is a horizontal axis type pump device including a horizontal axis pump 300. With this configuration, the sealed fluid can be sealed by the action of the oil seal 211 while the main shaft 201 is stationary.
 また、傾斜した溝201cは、主軸201の外周面の大気側の少なくとも一部に設けられている。この構成により、主軸201が回転するのに伴って、主軸201の外周面の大気側の少なくとも一部で、軸受202の方向への風ができ、この風によって潤滑油が軸受202の方向へ押される。また、ポンピング作用によって、潤滑油が軸受202の方向へ戻される。 In addition, the inclined groove 201c is provided in at least a part of the outer peripheral surface of the main shaft 201 on the atmosphere side. With this configuration, as the main shaft 201 rotates, at least a part of the outer peripheral surface of the main shaft 201 on the atmosphere side generates air in the direction of the bearing 202, and the lubricating oil is pushed in the direction of the bearing 202 by this air. It is. Further, the lubricating oil is returned toward the bearing 202 by the pumping action.
 更には、シール部材が軸受カバー205に組み込まれたオイルシール211であれば、軸受202から飛散した潤滑剤が軸受カバー205をつたってオイルシール211に供給されることで、オイルシール211と主軸201との間に潤滑剤が供給されるので、オイルシール211と主軸201との摺動を良好に保つことができる。更に、傾斜した溝201cが形成されていることで、ポンピング作用によって、オイルシール211から大気側の主軸201の外周面に露出した潤滑剤が軸受202側に押し戻されるため、潤滑剤が大気側に漏れるのを抑制できる。 Further, if the seal member is the oil seal 211 incorporated in the bearing cover 205, the lubricant scattered from the bearing 202 is supplied to the oil seal 211 through the bearing cover 205, so that the oil seal 211 and the main shaft 201 are supplied. Since the lubricant is supplied between the oil seal 211 and the main shaft 201, the sliding between the oil seal 211 and the main shaft 201 can be kept good. Further, since the inclined groove 201c is formed, the lubricant exposed on the outer peripheral surface of the main shaft 201 on the atmosphere side is pushed back from the oil seal 211 to the bearing 202 side by the pumping action, so that the lubricant is brought to the atmosphere side. Leakage can be suppressed.
 <第3の実施形態>
 続いて第3の実施形態について説明する。図23は、比較例に係るポンプ装置の一部の構成を示す縦断面図である。図23は、比較例に係るポンプ装置の一部の構成を示す縦断面図であり、また、図24は、図23のポンプ装置のXにおける断面図である。図23に示すポンプ装置401は、図20に示すポンプ装置301と軸受カバー405の形状が異なる。よって、図20のポンプ装置301と同等の機能の構成には同じ符号を用い、一部説明を省略する。なお、図24に示すように、軸受カバー405の主軸201側の面において、潤滑油OLの油面以下の部分を底面部405b、底面部405bと軸線を挟んで対向した面を天井面部405u、底面部405b、底面部405bと天井面部405u以外の面を側面部405aと称す。また、軸受カバー405の天井面部405uにおける軸受側の端部を軸受側端部405u1、シール部材側の端部をシール部材側端部405u2と称す。なお、図24に示す軸受カバー405の断面は略円形であるが、これに依らず、多角形でもよい。
<Third Embodiment>
Next, a third embodiment will be described. FIG. 23 is a longitudinal sectional view showing a partial configuration of a pump device according to a comparative example. FIG. 23 is a longitudinal sectional view showing a configuration of a part of a pump device according to a comparative example, and FIG. 24 is a sectional view at X of the pump device of FIG. A pump device 401 shown in FIG. 23 is different from the pump device 301 shown in FIG. 20 in the shape of a bearing cover 405. Therefore, the same reference numerals are used for components having the same functions as those of the pump device 301 in FIG. As shown in FIG. 24, on the surface of the bearing cover 405 on the main shaft 201 side, the surface below the oil surface of the lubricating oil OL is the bottom surface portion 405b, and the surface facing the bottom surface portion 405b across the axis is the ceiling surface portion 405u, A surface other than the bottom surface portion 405b, the bottom surface portion 405b, and the ceiling surface portion 405u is referred to as a side surface portion 405a. Further, the bearing-side end portion of the ceiling surface portion 405u of the bearing cover 405 is referred to as a bearing-side end portion 405u1, and the end portion on the sealing member side is referred to as a sealing member-side end portion 405u2. In addition, although the cross section of the bearing cover 405 shown in FIG. 24 is substantially circular, it may be polygonal regardless of this.
 この比較例に係るポンプ装置401における前記軸受カバー405について説明する。主軸201が貫通する軸受カバー405の軸受202と軸受カバー405の軸受202に対向する面との間の距離Ln1は、ポンプ300運転中に軸受202から潤滑剤が飛散する距離Ln0を超えている。すなわち、距離Ln1は距離Ln0より長い。および/または、図23の破線L1に示すように、軸受カバー405の天井面部405uの軸受側端部405u1からシール部材側端部405u2までの頂点を結ぶ線が略水平であると、図23もしくは図24の矢印FLn1で示すように、軸受402から天井面部405uへ飛散した潤滑剤(ここでは一例として潤滑油)の油滴Odは、軸受カバー405の内周の軸線に略垂直な平面上を伝って軸受カバー405の内面の底面部405bもしくは主軸201へ落ちる。このため、軸受カバー405を伝ってオイルシール211に供給される潤滑油が著しく減少し、更には、主軸201の表面に形成された溝201cのポンピング作用で潤滑油が軸受402側に戻されるので、主軸201の摺動面の潤滑剤が不足して、主軸201とオイルシール211の摩擦によって音が鳴ったり、リップ211dが摩耗してオイルシール211の寿命が短くなったりするという問題がある。 The bearing cover 405 in the pump device 401 according to this comparative example will be described. The distance Ln1 between the bearing 202 of the bearing cover 405 through which the main shaft 201 passes and the surface of the bearing cover 405 facing the bearing 202 exceeds the distance Ln0 where the lubricant scatters from the bearing 202 during operation of the pump 300. That is, the distance Ln1 is longer than the distance Ln0. And / or, as indicated by a broken line L1 in FIG. 23, if the line connecting the apex from the bearing side end 405u1 to the seal member side end 405u2 of the ceiling surface portion 405u of the bearing cover 405 is substantially horizontal, As indicated by an arrow FLn1 in FIG. 24, the oil droplets Od of the lubricant (here, lubricant oil as an example) splashed from the bearing 402 to the ceiling surface portion 405u is on a plane substantially perpendicular to the inner peripheral axis of the bearing cover 405. Then, it falls to the bottom surface portion 405b or the main shaft 201 of the inner surface of the bearing cover 405. For this reason, the lubricating oil supplied to the oil seal 211 through the bearing cover 405 is remarkably reduced, and furthermore, the lubricating oil is returned to the bearing 402 side by the pumping action of the groove 201c formed on the surface of the main shaft 201. Further, there is a problem that the lubricant on the sliding surface of the main shaft 201 is insufficient, a sound is generated due to friction between the main shaft 201 and the oil seal 211, and the life of the oil seal 211 is shortened due to wear of the lip 211d.
 上述したように、ポンプ300の連続運転における軸受202の発熱が主軸201を介してオイルシール211のリップ211dに伝わると、リップ211dが硬化してオイルシール211の寿命を低下させてしまう虞があるため、軸受202とオイルシール211間には所定の距離(Ln1)が必要である。そこで、第3の実施形態に係る軸受カバーは、当該軸受カバーに飛散した潤滑剤をオイルシール211に案内する構造を内周面に有する。この構成により、距離Ln1が軸受202から潤滑剤が飛散する距離Ln0より長くても潤滑剤をオイルシール211に供給することができる。以下、第3の実施形態に係る軸受カバー505について具体的に説明する。 As described above, when heat generated in the bearing 202 in the continuous operation of the pump 300 is transmitted to the lip 211d of the oil seal 211 via the main shaft 201, the lip 211d may be cured and the life of the oil seal 211 may be reduced. Therefore, a predetermined distance (Ln1) is required between the bearing 202 and the oil seal 211. Therefore, the bearing cover according to the third embodiment has a structure on the inner peripheral surface for guiding the lubricant scattered on the bearing cover to the oil seal 211. With this configuration, the lubricant can be supplied to the oil seal 211 even if the distance Ln1 is longer than the distance Ln0 at which the lubricant scatters from the bearing 202. Hereinafter, the bearing cover 505 according to the third embodiment will be specifically described.
 図25は、第3の実施形態に係るポンプ装置の一部の構成を示す縦断面図である。図25に示すポンプ装置501は、図23の比較例に係るポンプ装置401と軸受カバー505の形状のみが異なる。よって、以下、図20のポンプ装置301と同等の機能の構成は同じ符号を用い、説明を省略する。なお、図24に示すように、軸受カバー505の主軸201側の面において、潤滑油OLの油面以下の部分を底面部505b、底面部505bと軸線を挟んで対向した面を天井面部505u、底面部505b、底面部505bと天井面部505u以外の面を側面部505aと称す。また、軸受カバー505の天井面部505uにおける軸受側の端部を軸受側端部505u1、シール部材側の端部をシール部材側端部505u2と称す。 FIG. 25 is a longitudinal sectional view showing a configuration of a part of the pump device according to the third embodiment. The pump device 501 shown in FIG. 25 is different from the pump device 401 according to the comparative example of FIG. 23 only in the shape of the bearing cover 505. Therefore, hereinafter, the same functional configuration as that of the pump device 301 in FIG. As shown in FIG. 24, on the surface of the bearing cover 505 on the main shaft 201 side, a portion below the oil surface of the lubricating oil OL is a bottom surface portion 505b, and a surface facing the bottom surface portion 505b across the axis is a ceiling surface portion 505u, A surface other than the bottom surface portion 505b, the bottom surface portion 505b, and the ceiling surface portion 505u is referred to as a side surface portion 505a. Further, the bearing-side end portion of the ceiling surface portion 505u of the bearing cover 505 is referred to as a bearing-side end portion 505u1, and the end portion on the seal member side is referred to as a seal member-side end portion 505u2.
 第3の実施形態に係るポンプ装置501は、軸受202と主軸201が貫通する軸受カバー505の軸受202に対向する面との間の長さLm1が、軸受202から潤滑剤が飛ぶ距離Lm0を超えている。図24(a)の破線L2に示すように、ポンプ装置501において、オイルシール211に潤滑剤を案内する構造として、軸受カバー505の内周面のうちの少なくとも天井面部505uの一部を含む面は、オイルシール211に近づくにしたがって、当該主軸201に近づくように傾斜している。具体的には、軸受カバー505の内周面は、軸受側端部505u1からシール部材側端部505u2に向って、水平面である破線L1から角度θmにて傾斜しており、軸受カバー505は、軸受202側の内径に比べてオイルシール211側の内径が小さい。つまり、この構成により、軸受カバー505は、図25の矢印FLm1に示す流れ(第2の流れFL2)を形成し、溝201cは、主軸201の外周面の大気側へ漏れた潤滑剤を被密封流体側に戻す第1の流れFL1を形成する。これにより、潤滑剤がオイルシール211の内周面の傾斜をつたってオイルシール211に供給されるので、オイルシール211と主軸201の摺動面に潤滑剤が供給されるとともに、溝201cのポンピング作用によって、潤滑剤が被密封流体側に戻される。 In the pump device 501 according to the third embodiment, the length Lm1 between the bearing 202 and the surface of the bearing cover 505 facing the bearing 202 through which the main shaft 201 passes exceeds the distance Lm0 that the lubricant fly from the bearing 202. ing. As shown by a broken line L2 in FIG. 24A, in the pump device 501, as a structure for guiding the lubricant to the oil seal 211, a surface including at least a part of the ceiling surface portion 505u of the inner peripheral surface of the bearing cover 505. Is inclined so as to approach the main shaft 201 as the oil seal 211 is approached. Specifically, the inner peripheral surface of the bearing cover 505 is inclined at an angle θm from the broken line L1 that is a horizontal plane from the bearing-side end portion 505u1 to the seal member-side end portion 505u2, and the bearing cover 505 is The inner diameter on the oil seal 211 side is smaller than the inner diameter on the bearing 202 side. That is, with this configuration, the bearing cover 505 forms a flow indicated by an arrow FLm1 in FIG. 25 (second flow FL2), and the groove 201c seals the lubricant leaked to the atmosphere side of the outer peripheral surface of the main shaft 201. A first flow FL1 returning to the fluid side is formed. As a result, the lubricant is supplied to the oil seal 211 along the inclination of the inner peripheral surface of the oil seal 211, so that the lubricant is supplied to the sliding surfaces of the oil seal 211 and the main shaft 201, and the pumping of the groove 201c is performed. By the action, the lubricant is returned to the sealed fluid side.
 なお、上述した角度θmは、飛散される潤滑剤の量や粘性、更には、距離Lm1による。また、距離Lm1が長いとシール部材側端部505u2に到達するまでに潤滑剤が落下しやすくなるため、距離Lm1と角度θmは比例するとよい。 Note that the angle θm described above depends on the amount and viscosity of the lubricant to be scattered, and further on the distance Lm1. Further, if the distance Lm1 is long, the lubricant is likely to fall before reaching the seal member side end 505u2, and therefore the distance Lm1 and the angle θm are preferably proportional.
 <第4の実施形態>
 続いて第4の実施形態について説明する。図26は、第4の実施形態に係るポンプ装置の一部の構成を示す縦断面図である。図26に示すように、第4の実施形態に係るポンプ装置601は、図23の比較例に係るポンプ装置401に比べて、デフレクタ部材640を更に備える。よって、ポンプ装置401と同等の構成は同じ符号を用い、説明を省略する。デフレクタ部材640は、軸受202とオイルシール211との間に配置され、主軸201に取り付けられている。デフレクタ部材640は、水切りつばであって、回転する主軸201に沿って流れる液体を振り切る。
<Fourth Embodiment>
Next, a fourth embodiment will be described. FIG. 26 is a longitudinal sectional view showing a partial configuration of the pump device according to the fourth embodiment. As shown in FIG. 26, the pump device 601 according to the fourth embodiment further includes a deflector member 640 as compared with the pump device 401 according to the comparative example of FIG. Accordingly, the same components as those of the pump device 401 are denoted by the same reference numerals, and description thereof is omitted. The deflector member 640 is disposed between the bearing 202 and the oil seal 211 and is attached to the main shaft 201. The deflector member 640 is a draining collar and shakes off the liquid flowing along the rotating main shaft 201.
 この構成によれば、図26の矢印に示すように、軸受202から飛散した潤滑剤が軸受カバー405を伝ってオイルシール211まで到達できずに主軸201に落ちた場合、デフレクタ部材640が落ちた潤滑剤を再度軸受カバー405に遠心力で飛ばす。この飛ばされた潤滑剤は、軸受カバー405をつたってオイルシール211に供給される。これにより、オイルシール211と主軸201の摺動面に潤滑剤が供給される。この潤滑剤は、主軸201の表面に形成された溝201cのポンピング作用によって、軸受202側に戻される。溝201cのポンピング作用によって軸受202側に戻された潤滑剤の一部は、デフレクタ部材640によって軸受カバー405に飛ばされることで、オイルシール211と主軸201の摺動面に潤滑剤が供給される。 According to this configuration, as shown by the arrow in FIG. 26, when the lubricant scattered from the bearing 202 does not reach the oil seal 211 through the bearing cover 405 and falls on the main shaft 201, the deflector member 640 falls. The lubricant is again blown to the bearing cover 405 by centrifugal force. The skipped lubricant is supplied to the oil seal 211 via the bearing cover 405. Thereby, the lubricant is supplied to the sliding surfaces of the oil seal 211 and the main shaft 201. This lubricant is returned to the bearing 202 side by the pumping action of the groove 201 c formed on the surface of the main shaft 201. Part of the lubricant returned to the bearing 202 side by the pumping action of the groove 201c is blown to the bearing cover 405 by the deflector member 640, whereby the lubricant is supplied to the sliding surfaces of the oil seal 211 and the main shaft 201. .
 なお、第4の実施形態において、軸受カバー405に代えて、軸受カバー205、軸受カバー505、または、後述する軸受カバー705を用いてもよい。 In the fourth embodiment, a bearing cover 205, a bearing cover 505, or a bearing cover 705 described later may be used instead of the bearing cover 405.
 <第5の実施形態>
 続いて第5の実施形態について説明する。図27は、第5の実施形態に係るポンプ装置の一部の構成を示す断面図である。図28は、図27のポンプ装置における矢印Aの断面矢視図である。図27及び図28に示すように、第5の実施形態に係るポンプ装置701は、図23の比較例に係るポンプ装置401に比べて、軸受カバー705の一部を構成するガイド部材750を更に備える。よって、ポンプ装置401と同等の構成は同じ符号を用い、一部説明を省略する。
<Fifth Embodiment>
Next, a fifth embodiment will be described. FIG. 27 is a cross-sectional view showing a partial configuration of the pump device according to the fifth embodiment. 28 is a cross-sectional view of arrow A in the pump device of FIG. As shown in FIGS. 27 and 28, the pump device 701 according to the fifth embodiment further includes a guide member 750 constituting a part of the bearing cover 705, as compared with the pump device 401 according to the comparative example of FIG. Prepare. Therefore, the same components as those of the pump device 401 are denoted by the same reference numerals, and a part of the description is omitted.
 軸受カバー705は、軸受カバー本体710と、軸受202から飛散した潤滑剤をオイルシール211に案内するガイド部材750と、を有する。軸受カバー本体710は軸受カバー405と同形状である。ガイド部材750は、潤滑剤をオイルシール211に案内する構造であって、この軸受カバー705の構成により、軸受202から飛散した潤滑剤をオイルシール211に案内する第2の流れFL2を形成することができる。 The bearing cover 705 includes a bearing cover main body 710 and a guide member 750 that guides the lubricant scattered from the bearing 202 to the oil seal 211. The bearing cover body 710 has the same shape as the bearing cover 405. The guide member 750 has a structure for guiding the lubricant to the oil seal 211, and the configuration of the bearing cover 705 forms a second flow FL 2 for guiding the lubricant scattered from the bearing 202 to the oil seal 211. Can do.
 図28に示すように、軸受カバー705は、軸受カバー本体710の内周面のうちの最上部を含む内周面に、主軸201の長軸方向に沿って伸びる幅Wの突起形状のガイド部材750が設けられ、また、図27に示すようにガイド部材750の主軸201に対向する面750uは、軸受け202側から主軸210の長軸方向に沿ってオイルシール211に近づくに従って主軸210に近づくように傾斜している。
 この構成により、潤滑剤が、ガイド部材750の主軸201に対向する面750uの傾斜にそって流れるので、潤滑剤をオイルシール211に供給することができる。また、ポンプ装置501に比べて空間Sを広くできるので、空間S内の温度上昇を抑えることができ、オイルシール211の長寿命化につながる。
As shown in FIG. 28, the bearing cover 705 is a protruding guide member having a width W extending along the major axis direction of the main shaft 201 on the inner peripheral surface including the uppermost portion of the inner peripheral surface of the bearing cover main body 710. 27, and a surface 750u of the guide member 750 facing the main shaft 201 as shown in FIG. 27 approaches the main shaft 210 as it approaches the oil seal 211 along the major axis direction of the main shaft 210 from the bearing 202 side. It is inclined to.
With this configuration, the lubricant flows along the slope of the surface 750 u facing the main shaft 201 of the guide member 750, so that the lubricant can be supplied to the oil seal 211. Further, since the space S can be made wider than that of the pump device 501, an increase in temperature in the space S can be suppressed, leading to a longer life of the oil seal 211.
 <変形例1>
 続いて第5の実施形態の変形例1について説明する。図29は、第5の実施形態の変形例1に係るポンプ装置において、図27のポンプ装置における矢印Aの断面矢視図である。図30は、図29のB-B’における断面図である。
<Modification 1>
Subsequently, Modification 1 of the fifth embodiment will be described. FIG. 29 is a cross-sectional view of arrow A in the pump device of FIG. 27 in the pump device according to Modification 1 of the fifth embodiment. 30 is a cross-sectional view taken along the line BB ′ of FIG.
 図29に示すように、軸受カバー705は、軸受カバー本体710の内周面に、軸受202側からオイルシール211まで主軸201の長軸方向に伸びる厚みHの突起形状のガイド部材750aが設けられている。図30に示すように、一対のガイド部材750aが長軸方向と平行且つ当該ガイド部材750aを含む鉛直断面(例えば図30に示すB-B’断面)において、略水平に延びるように配置されている。 As shown in FIG. 29, the bearing cover 705 is provided with a protrusion-shaped guide member 750 a having a thickness H extending in the major axis direction of the main shaft 201 from the bearing 202 side to the oil seal 211 on the inner peripheral surface of the bearing cover main body 710. ing. As shown in FIG. 30, the pair of guide members 750a are arranged so as to extend substantially horizontally in a vertical cross section (for example, a BB ′ cross section shown in FIG. 30) parallel to the long axis direction and including the guide member 750a. Yes.
 この構成により、軸受202から飛び散った潤滑剤が、軸受カバー本体710の内周面の上面に付着し、その後に軸受カバー本体710の内周面を円周方向につたってガイド部材750aに落ちる(図29の第2の流れFL2)。ガイド部材750aに落ちた潤滑剤は、慣性により、このガイド部材750aをつたってオイルシール211まで移動する(図30の第2の流れFL2)。このような第2の流れFL2にて、潤滑剤をオイルシール211に供給することができる。なお、本実施形態では、ガイド部材750aは、軸受カバー本体710の内周面における軸線を通る水平面を含む位置に設けられているが、ガイド部材750aの上面が軸受カバー本体710の内周面における軸線を通る水平面より上の位置に設けられていてもよい。これにより、ガイド部材750aはガイド部材750に比べて、より多くの潤滑剤をオイルシール211に供給することができる。なお、ガイド部材750aの上面は、オイルシール211と主軸201の摺動面のうち高さが最も低い位置より上の位置に設けられていればよい。これにより、ガイド部材750aの上面を潤滑剤が流れた後に、オイルシール211と主軸201の摺動面に潤滑剤を供給することができる。 With this configuration, the lubricant scattered from the bearing 202 adheres to the upper surface of the inner peripheral surface of the bearing cover main body 710, and then falls on the guide member 750a along the inner peripheral surface of the bearing cover main body 710 in the circumferential direction ( (Second flow FL2 in FIG. 29). The lubricant that has fallen on the guide member 750a moves along the guide member 750a to the oil seal 211 due to inertia (second flow FL2 in FIG. 30). In such a second flow FL2, the lubricant can be supplied to the oil seal 211. In the present embodiment, the guide member 750a is provided at a position including a horizontal plane passing through the axis on the inner peripheral surface of the bearing cover main body 710, but the upper surface of the guide member 750a is on the inner peripheral surface of the bearing cover main body 710. You may be provided in the position above the horizontal surface which passes along an axis. Thereby, the guide member 750 a can supply more lubricant to the oil seal 211 than the guide member 750. In addition, the upper surface of the guide member 750a should just be provided in the position above the position where the height is the lowest among the sliding surfaces of the oil seal 211 and the main shaft 201. Thus, the lubricant can be supplied to the sliding surfaces of the oil seal 211 and the main shaft 201 after the lubricant has flowed on the upper surface of the guide member 750a.
 <変形例2>
 続いて第5の実施形態の変形例2について説明する。図31は、第5の実施形態の変形例2に係るポンプ装置において、図27のポンプ装置における矢印Aの断面矢視図である。図32は、図31のC-C’断面図である。
<Modification 2>
Subsequently, Modification 2 of the fifth embodiment will be described. FIG. 31 is a cross-sectional view taken along arrow A in the pump device of FIG. 27 in the pump device according to Modification 2 of the fifth embodiment. 32 is a cross-sectional view taken along the line CC ′ of FIG.
 図31に示すように、軸受カバー本体710の内周面に、軸受202側からオイルシール211まで主軸201の長軸方向に伸びる厚みHの突起形状のガイド部材750cが設けられている。更に図32に示すように、一対のガイド部材750cは、主軸201の長軸方向と平行且つ当該ガイド部材750cを含む鉛直断面(例えば図32に示すC-C’断面)において、軸受202側から主軸201の長軸方向に沿ってオイルシール211に近づくに従って下方に傾斜している。 31, a protrusion-shaped guide member 750c having a thickness H extending from the bearing 202 side to the oil seal 211 in the major axis direction of the main shaft 201 is provided on the inner peripheral surface of the bearing cover main body 710. Further, as shown in FIG. 32, the pair of guide members 750c is parallel to the major axis direction of the main shaft 201 and includes a vertical cross section including the guide member 750c (for example, the CC ′ cross section shown in FIG. 32). As it approaches the oil seal 211 along the major axis direction of the main shaft 201, it is inclined downward.
 この構成により、軸受202から飛び散った潤滑剤が、軸受カバー本体710の内周面の上面に付き、その後に軸受カバー本体710の内周面を円周方向につたってガイド部材750cに落ちる。ガイド部材750cに落ちた潤滑剤は、ガイド部材750cに設けられた傾斜に従って、当該ガイド部材750cをつたってオイルシール211まで移動する。このようにして、潤滑剤をオイルシール211に供給することができる。
 なお、本実施形態では、図32に示す通り、ガイド部材750cは、軸受カバー本体710の内周面における軸線を通る水平面より下方に設けられているが、ガイド部材750cの下端(オイルシール211側の端部)の上面がオイルシール211より上に設けられていてもよい。これにより、ガイド部材750cはガイド部材750aに比べて、より迅速に潤滑剤をオイルシール211に供給することができる。ガイド部材750cの下端(オイルシール211側の端部)の上面が、オイルシール211と主軸201の摺動面のうち高さが最も低い位置より上の位置に設けられればよい。これにより、ガイド部材750cの上面を潤滑剤が流れた後に、オイルシール211と主軸201の摺動面に潤滑剤を供給することができる。
With this configuration, the lubricant scattered from the bearing 202 adheres to the upper surface of the inner peripheral surface of the bearing cover main body 710, and then falls on the guide member 750c along the inner peripheral surface of the bearing cover main body 710 in the circumferential direction. The lubricant that has fallen on the guide member 750c moves along the guide member 750c to the oil seal 211 in accordance with the inclination provided on the guide member 750c. In this way, the lubricant can be supplied to the oil seal 211.
In this embodiment, as shown in FIG. 32, the guide member 750c is provided below the horizontal plane passing through the axis on the inner peripheral surface of the bearing cover main body 710, but the lower end of the guide member 750c (on the oil seal 211 side). The upper surface of the end portion may be provided above the oil seal 211. Thus, the guide member 750c can supply the lubricant to the oil seal 211 more quickly than the guide member 750a. The upper surface of the lower end (the end portion on the oil seal 211 side) of the guide member 750c only needs to be provided at a position above the lowest position among the sliding surfaces of the oil seal 211 and the main shaft 201. Thus, the lubricant can be supplied to the sliding surfaces of the oil seal 211 and the main shaft 201 after the lubricant has flowed on the upper surface of the guide member 750c.
 また、ガイド部材750a、750cは一対をなしているが、どちらか一方のみでもよいし3個以上の複数個のガイド部材を軸受カバー本体710に設けてもよい。ガイド部材750aまたは750cが複数の場合は、それぞれ異なる形状でもよい。また、ガイド部材750、ガイド部材750a、および、ガイド部材750cを組み合わせてもよい。 Further, although the guide members 750a and 750c form a pair, only one of them may be provided, or three or more guide members may be provided in the bearing cover main body 710. When there are a plurality of guide members 750a or 750c, they may have different shapes. Further, the guide member 750, the guide member 750a, and the guide member 750c may be combined.
 また、上述した第3の実施形態から第5の実施形態によれば、図14に示したメンテナンス手順を用いて従来の手順と差異なく従来技術のポンプ装置における潤滑剤漏れを抑制することができる。具体的には、一例として、図14のステップ28にて軸受カバー205を取り外した後、ステップS29にて主軸201に溝201cを形成する。その後、軸受カバー405を取り付け、以降は、通常の手順にてポンプ装置を組み立てればよい。このように、主軸201に溝201cを形成し、軸受カバー205に代えて軸受カバー405を取り付けることで、ポンプ装置の設置現場にて潤滑油漏れを抑制できる。第3の実施形態および第5の実施形態のポンプ装置の軸受202とシール部材との間に、更にデフレクタ部材640を設けてもよい。 Further, according to the third to fifth embodiments described above, the maintenance procedure shown in FIG. 14 can be used to suppress lubricant leakage in the pump device of the prior art without any difference from the conventional procedure. . Specifically, as an example, after removing the bearing cover 205 in step 28 of FIG. 14, a groove 201c is formed in the main shaft 201 in step S29. Thereafter, the bearing cover 405 is attached, and thereafter, the pump device may be assembled by a normal procedure. Thus, by forming the groove 201c in the main shaft 201 and attaching the bearing cover 405 instead of the bearing cover 205, it is possible to suppress the leakage of lubricating oil at the installation site of the pump device. A deflector member 640 may be further provided between the bearing 202 and the seal member of the pump device according to the third and fifth embodiments.
 <第6の実施形態>
 続いて第6の実施形態について説明する。第6の実施形態に係るポンプ装置は、オイルシールからの潤滑剤の漏れを検出するための囲い部材が設けられている。図33は、第6の実施形態に係るポンプ装置の概略構成を示す模式図である。図33に示すように、第6の実施形態に係るポンプ装置801は、ポンプ800と、ポンプ800の主軸820にカップリングを介して回転軸861が連結されている電動機860と、を備える。ここでポンプ800の構成は、第2の実施形態に係るポンプ300と同様の構成であるので、その詳細な説明を省略する。更にポンプ装置801は、当該ポンプ800に連通しており且つ水槽から吸い上げられた水が通る吸込管830と、当該ポンプ830に連通しており且つ当該ポンプ800から吐き出された水が通る吐出管840とを備える。更にポンプ装置801は、囲い部材870と、ポンプ800、囲い部材870及び電動機860を支持する架台880と、を備える。
<Sixth Embodiment>
Next, a sixth embodiment will be described. The pump device according to the sixth embodiment is provided with an enclosure member for detecting leakage of the lubricant from the oil seal. FIG. 33 is a schematic diagram illustrating a schematic configuration of a pump device according to a sixth embodiment. As shown in FIG. 33, the pump device 801 according to the sixth embodiment includes a pump 800 and an electric motor 860 having a rotary shaft 861 coupled to the main shaft 820 of the pump 800 via a coupling. Here, the configuration of the pump 800 is the same as that of the pump 300 according to the second embodiment, and thus detailed description thereof is omitted. Furthermore, the pump device 801 communicates with the pump 800 and passes a suction pipe 830 through which water sucked from the water tank passes, and a discharge pipe 840 communicates with the pump 830 and passes water discharged from the pump 800. With. The pump device 801 further includes an enclosure member 870 and a base 880 that supports the pump 800, the enclosure member 870, and the electric motor 860.
 図34は、図33のD-D断面図である。図34に示すように、主軸820の長軸に略垂直な断面において、主軸820はオイルシール811に覆われており、このオイルシール811は軸受カバー805に覆われている。更に、この軸受カバー805は、間隔を設けて囲い部材870に覆われている。これにより、オイルシール811から大気側に漏れた潤滑剤が、主軸820の回転によって飛散した場合、飛散した潤滑剤は囲い部材の内面に付着する。これにより、囲い部材の内側面を観察することにより、オイルシール811の潤滑剤の漏れを点検する点検員は、オイルシール811からの飛散した潤滑剤の量を確認することができる。例えば、図21並びに図22が示す潤滑剤漏れは、囲い部材の内側面に付着した潤滑剤に等しい。 34 is a cross-sectional view taken along the line DD of FIG. As shown in FIG. 34, the main shaft 820 is covered with an oil seal 811 in a cross section substantially perpendicular to the major axis of the main shaft 820, and the oil seal 811 is covered with a bearing cover 805. Further, the bearing cover 805 is covered with an enclosing member 870 with a space therebetween. As a result, when the lubricant leaked from the oil seal 811 to the atmosphere is scattered by the rotation of the main shaft 820, the scattered lubricant adheres to the inner surface of the enclosure member. Thereby, by observing the inner surface of the enclosure member, an inspector who checks the leakage of the lubricant in the oil seal 811 can check the amount of lubricant scattered from the oil seal 811. For example, the lubricant leakage shown in FIGS. 21 and 22 is equal to the lubricant adhered to the inner surface of the enclosure member.
 上述した実施例並びに変形例は、シール部材として、オイルシール211、212に代えて、オイルシール211’又は、オイルシール211’’にも適用できる。さらに、上述した実施例並びに変形例において、径方向内外で同心状に配置されている主軸201と軸受カバー205との間をシールするシール部材の例として、オイルシール211、212に代えて非接触シールが適用できる。 The above-described embodiments and modifications can be applied to the oil seal 211 ′ or the oil seal 211 ″ instead of the oil seals 211 and 212 as a seal member. Further, in the above-described embodiments and modifications, as an example of a seal member that seals between the main shaft 201 and the bearing cover 205 that are concentrically arranged inside and outside in the radial direction, the oil seals 211 and 212 are replaced by non-contact. Seal can be applied.
 <第7の実施形態>
 図35は、第7の実施形態に係るポンプ装置の一部の構成を示す断面図である。図20と同等の構成には、同じ符号を用い説明を省略する。図35に示すシール部材511bは、非接触シールの一種であるラビリンスシールである。具体的には、軸受カバー205の主軸201の貫通部、すなわち、軸受カバー205における主軸201の外周面に対向するフランジ面540にラビリンスと称されるラビリンス溝541、542を設ける。シール部材511bは、フランジ面540とラビリンス溝541、542とで構成される。かかるラビリンス溝構造によれば、軸受カバー205の側面を伝って、主軸201とのフランジ面540の隙間に入り込んだ潤滑剤は、潤滑剤の表面張力によってラビリンス溝541、542に滞留し、ラビリンス溝541、542に沿って下方に導かれる。
<Seventh Embodiment>
FIG. 35 is a cross-sectional view showing a partial configuration of the pump device according to the seventh embodiment. The same components as those in FIG. 20 are denoted by the same reference numerals and description thereof is omitted. A seal member 511b shown in FIG. 35 is a labyrinth seal which is a kind of non-contact seal. Specifically, labyrinth grooves 541 and 542 called labyrinths are provided in a through portion of the main shaft 201 of the bearing cover 205, that is, a flange surface 540 facing the outer peripheral surface of the main shaft 201 in the bearing cover 205. The seal member 511b includes a flange surface 540 and labyrinth grooves 541 and 542. According to the labyrinth groove structure, the lubricant that has entered the gap between the flange surface 540 and the main shaft 201 through the side surface of the bearing cover 205 stays in the labyrinth grooves 541 and 542 due to the surface tension of the lubricant, and the labyrinth groove Guided downward along 541 and 542.
 本実施形態では、フランジ面540と主軸201の外周面との隙間によって、主軸端220側の大気側と軸受202側の被密封流体側に仕切る。本実施形態のポンプ装置においても、主軸201に傾斜した溝201cを形成すれば、主軸201上の潤滑剤は、第1の流れFL1によって被密封流体側へ戻され、潤滑剤漏れを抑制できる。 In the present embodiment, the gap between the flange surface 540 and the outer peripheral surface of the main shaft 201 is divided into an atmosphere side on the main shaft end 220 side and a sealed fluid side on the bearing 202 side. Also in the pump device of this embodiment, if the inclined groove 201c is formed in the main shaft 201, the lubricant on the main shaft 201 is returned to the sealed fluid side by the first flow FL1, and the lubricant leakage can be suppressed.
 この溝201cは、少なくとも主軸201の外周面のうちフランジ面540に対向する領域に対して大気側の方に隣接した領域に形成されていればよい(図35の符号A1の領域)。また、傾斜した溝201cは、主軸201の外周面のうちフランジ面540に対向する領域(図35の符号B1の領域)に設けられてもよい。更に、傾斜した溝201cは、主軸201の外周面のうち被密封流体側の領域(図35の符号C1の領域)の少なくとも一部に設けられてもよい。すなわち、溝201cは、主軸201の外周面のフランジ面540の対向面に隣接して大気側の少なくとも一部に形成され、さらには被密封流体側まで延在していてもよい。これにより、シール部材にオイルシールを用いた構成と同様に、潤滑剤の漏れを抑制できる。 This groove 201c may be formed in a region adjacent to the atmosphere side with respect to a region facing the flange surface 540 of at least the outer peripheral surface of the main shaft 201 (region A1 in FIG. 35). Further, the inclined groove 201c may be provided in a region (region B1 in FIG. 35) facing the flange surface 540 in the outer peripheral surface of the main shaft 201. Furthermore, the inclined groove 201c may be provided in at least a part of a region on the sealed fluid side (region C1 in FIG. 35) of the outer peripheral surface of the main shaft 201. That is, the groove 201c is formed in at least a part on the atmosphere side adjacent to the facing surface of the flange surface 540 on the outer peripheral surface of the main shaft 201, and may further extend to the sealed fluid side. Thereby, like the structure using the oil seal for the seal member, leakage of the lubricant can be suppressed.
 このように、シール部材の種類に依らずに、主軸201に傾斜した溝201cを形成すれば、第2の流れFL2によってシール部材に供給された潤滑剤が大気側に漏れるのを、第1の流れFL1によって被密封流体側へ戻し、潤滑剤の漏れを抑制できる。よって、様々なポンプ装置に適用できる。 Thus, if the inclined groove 201c is formed in the main shaft 201 regardless of the type of the seal member, the lubricant supplied to the seal member by the second flow FL2 leaks to the atmosphere side. By returning to the sealed fluid side by the flow FL1, leakage of the lubricant can be suppressed. Therefore, it can be applied to various pump devices.
 ここで、上述した実施形態及び変形例に係る主軸に形成された傾斜した溝について説明する。以下、一例として、図11Aに示すポンプ装置301をポンプ装置310、図20に示すポンプ装置301をポンプ装置311と称して説明する。 Here, the inclined groove formed on the main shaft according to the embodiment and the modification described above will be described. Hereinafter, as an example, the pump device 301 illustrated in FIG. 11A is referred to as a pump device 310, and the pump device 301 illustrated in FIG. 20 is referred to as a pump device 311.
 溝201cは、ポンプ300が運転し主軸201が回転した際に、大気側の主軸201の外周面に露出した潤滑剤が被密封流体側に戻されるよう傾斜する。つまり、溝201cは、ポンプ300が運転し主軸201が回転した際に、主軸201の外周面の潤滑剤が大気側から被密封流体側に戻されるよう傾斜する。具体的には、傾斜した溝201cは、電動機側から見て時計回りの方向に主軸201が回転する場合、電動機側(主軸端220側)から見て右側の側面において、大気側から被密封流体側に向かって高くなる方向に傾斜した複数の線状の凹凸である。ここで、主軸201の外周面とオイルシール212との摺動部(リップ212dと主軸201の外周面上との圧接面)において、軸受203側の空間が被密封流体側であり羽根車30側の空間が大気側である。そして、主軸201の外周面のうちシール部材に対向する領域に対して大気側の方に隣接する領域の少なくとも一部に設けられる。更に、傾斜した溝201cは、主軸201の外周面のうち大気側から被密封流体側まで延在するとよい。 The groove 201c is inclined so that when the pump 300 is operated and the main shaft 201 rotates, the lubricant exposed on the outer peripheral surface of the main shaft 201 on the atmosphere side is returned to the sealed fluid side. That is, the groove 201c is inclined so that the lubricant on the outer peripheral surface of the main shaft 201 is returned from the atmosphere side to the sealed fluid side when the pump 300 is operated and the main shaft 201 rotates. Specifically, when the main shaft 201 rotates in the clockwise direction when viewed from the motor side, the inclined groove 201c is a fluid to be sealed from the atmosphere side on the right side surface viewed from the motor side (main shaft end 220 side). It is a plurality of linear irregularities inclined in the direction of increasing toward the side. Here, in the sliding portion (the pressure contact surface between the lip 212d and the outer peripheral surface of the main shaft 201) between the outer peripheral surface of the main shaft 201 and the oil seal 212, the space on the bearing 203 side is the sealed fluid side and the impeller 30 side. Is the atmosphere side. And it provides in at least one part of the area | region adjacent to the atmosphere side with respect to the area | region which opposes a sealing member among the outer peripheral surfaces of the main axis | shaft 201. FIG. Furthermore, the inclined groove 201c may extend from the atmosphere side to the sealed fluid side of the outer peripheral surface of the main shaft 201.
 溝201cの線状の凹凸は、相互に略平行な複数の直線状の凹凸であり、当該直線状の凹凸は、形成される過程で、多少湾曲したり途切れたりした線も含む。また、溝201cの複数の線状の凹凸は所定の間隔で形成され、当該所定の間隔は、一例として、10μmから500μm程度であり、等間隔でも異なる間隔が混在してもよい。 The linear irregularities of the groove 201c are a plurality of linear irregularities that are substantially parallel to each other, and the linear irregularities include lines that are slightly curved or broken in the process of formation. Further, the plurality of linear irregularities of the groove 201c are formed at a predetermined interval, and the predetermined interval is, for example, about 10 μm to 500 μm, and different intervals may be mixed evenly.
 ポンプ装置311の溝201cが形成された主軸201の表面粗さは、ポンプ装置310の主軸201のオイルシール211との摺動面の表面粗さ以上であればよい。たとえば、ポンプ装置311の溝201cが形成された主軸201の表面粗さにおける最大高さ粗さRz、中心線平均粗さRaのいずれか一方は、ポンプ装置310の主軸201のオイルシール211との摺動面の同等以上が好ましい。但し、主軸201の表面粗さが大きくなると、リップ11dの摩耗が早くなる。そこで、ポンプ装置311の溝201cが形成された主軸201の最大高さ粗さRzは、0.8μmRz~200μmRzが好ましい。ポンプ装置310の溝201cが形成された主軸201の中心線平均粗さRaは、0.1μmRa~50μmRaが好ましい。 The surface roughness of the main shaft 201 in which the groove 201c of the pump device 311 is formed may be equal to or greater than the surface roughness of the sliding surface with the oil seal 211 of the main shaft 201 of the pump device 310. For example, one of the maximum height roughness Rz and the centerline average roughness Ra in the surface roughness of the main shaft 201 in which the groove 201c of the pump device 311 is formed is equal to the oil seal 211 of the main shaft 201 of the pump device 310. The sliding surface is preferably equal to or greater than the sliding surface. However, when the surface roughness of the main shaft 201 is increased, the wear of the lip 11d is accelerated. Therefore, the maximum height roughness Rz of the main shaft 201 in which the groove 201c of the pump device 311 is formed is preferably 0.8 μmRz to 200 μmRz. The center line average roughness Ra of the main shaft 201 in which the groove 201c of the pump device 310 is formed is preferably 0.1 μmRa to 50 μmRa.
 このように、溝201cは微細であり、ポンプ300の運転中、第2の流れFL2によってシール部材に流れた潤滑剤は、溝201cの複数の凹凸を覆う油面を形成する。これにより、主軸201と潤滑剤との接触面積が増え、シール部材から大気側に漏れた潤滑剤が主軸201から飛散するのを抑制できる。更に、主軸201上の潤滑剤は、溝201cのポンピング作用によって、被密封流体側に戻されて大気側に漏れるのを抑制できる。 Thus, the groove 201c is fine, and the lubricant that has flowed to the seal member by the second flow FL2 during operation of the pump 300 forms an oil surface that covers the plurality of irregularities of the groove 201c. As a result, the contact area between the main shaft 201 and the lubricant increases, and the lubricant leaking from the seal member to the atmosphere side can be prevented from scattering from the main shaft 201. Further, the lubricant on the main shaft 201 can be prevented from returning to the sealed fluid side and leaking to the atmosphere side by the pumping action of the groove 201c.
 一般的にオイルシール211が摺動する主軸201は、グラインダ等の仕上げ加工具を用い、送りをかけない(つまり、軸線方向に仕上げ加工具を動かさない)加工方法で仕上げがなされる。そして、該仕上げの加工傷である筋目方向は、軸線に対してほぼ直角であることが好ましいとされている。作業者は、加工傷が軸線に対してほぼ直角になるように仕上げされたポンプ装置310の主軸201に、上述したメンテナンス手順にて、加工傷が軸線に対して傾斜した溝201cを形成してもよい。このとき、作業者は、ポンプ装置310の主軸201と同等の仕上げ加工具を用いて、送りをかけながら(つまり、軸線方向に仕上げ加工具を動かしながら)仕上げ加工を行うとよい。 Generally, the main shaft 201 on which the oil seal 211 slides is finished by a processing method using a finishing tool such as a grinder and not feeding (that is, not moving the finishing tool in the axial direction). And it is said that it is preferable that the line direction which is the finishing processing flaw is substantially perpendicular to the axis. The operator forms a groove 201c in which the processing flaw is inclined with respect to the axis in the maintenance procedure described above on the main shaft 201 of the pump device 310 finished so that the processing flaw is almost perpendicular to the axis. Also good. At this time, the operator may perform finishing using a finishing tool equivalent to the main shaft 201 of the pump device 310 while feeding (that is, moving the finishing tool in the axial direction).
 上記、表面粗さ(最大高さ粗さRz、中心線平均粗さRa)の表記はJISB0601:2001に準ずる。また、ポンプ装置310の溝201cが形成された主軸201の表面粗さは、溝201cの筋目方向と直角の断面における表面粗さを示す。 The above description of surface roughness (maximum height roughness Rz, centerline average roughness Ra) conforms to JISB0601: 2001. The surface roughness of the main shaft 201 in which the groove 201c of the pump device 310 is formed indicates the surface roughness in a cross section perpendicular to the stripe direction of the groove 201c.
 特許文献5には、軸201の表面粗さが2.5μm以上になると、静止時の漏れの原因になることが開示されている。一方、本発明の実施形態に係るポンプ装置311において、ポンプ300の停止時における潤滑剤の油面OLの高さは、オイルシール211と主軸201の摺動面より低い。また、潤滑剤がグリース場合、回転軸201の静止中、グリースは冷却されて固形となり潤滑剤の油面は存在しないので、オイルシール211と主軸201の摺動面に液化したグリースは作用しない。以下、潤滑油又は液化したグリースを被密封流体と称すると、このように、横軸のポンプ300を備えた横軸形のポンプ装置311において、第2の流れFL2を形成する運転中に比べて停止中は、被密封流体が大気側に漏れる方向に作用しない。よって、回転軸201の静止中に、横軸形のポンプ装置311は、主軸201の表面の粗さに関係なくシール部材の作用(リップ211dの押圧もしくはラビリンス溝541、542による流下)によって潤滑剤を容易にシールできる。そのため、特許文献5に記載の回転軸の溝に比べて、ポンプ装置310の溝201cは、表面粗さ並びに加工精度の許容範囲が広がる。更には、溝201cを形成するための主軸201への加工方法や仕上げ加工具の許容範囲も広がる。 Patent Document 5 discloses that when the surface roughness of the shaft 201 is 2.5 μm or more, it causes leakage at rest. On the other hand, in the pump device 311 according to the embodiment of the present invention, the height of the oil surface OL of the lubricant when the pump 300 is stopped is lower than the sliding surface of the oil seal 211 and the main shaft 201. When the lubricant is grease, the grease is cooled and solidified while the rotating shaft 201 is stationary, and the oil surface of the lubricant does not exist. Therefore, the liquefied grease does not act on the sliding surfaces of the oil seal 211 and the main shaft 201. Hereinafter, when the lubricating oil or the liquefied grease is referred to as a sealed fluid, the horizontal axis pump device 311 including the horizontal axis pump 300 is compared with that during the operation of forming the second flow FL2. During the stop, the sealed fluid does not act in the direction of leaking to the atmosphere side. Therefore, while the rotary shaft 201 is stationary, the horizontal shaft-type pump device 311 is operated by the seal member (pressing the lip 211d or flowing down by the labyrinth grooves 541 and 542) regardless of the surface roughness of the main shaft 201. Can be easily sealed. Therefore, compared with the groove of the rotating shaft described in Patent Document 5, the groove 201c of the pump device 310 has a wider range of tolerances for surface roughness and processing accuracy. Furthermore, the processing method for the main shaft 201 for forming the groove 201c and the allowable range of the finishing tool are widened.
 また、特許文献2には、摺動面と溝201cの筋目方向との角度であるリード角θが10から30°の範囲に設定されリード角θが大き過ぎるとポンプ作用が強すぎてシールとの間のオイルが流出して保持されるオイルの量が不足するとの記載がある。上述した本発明の実施形態並びに変形例では、第2の流れFL2の作用にて軸受カバー205の空間S側の側面を伝ってオイルシール211への潤滑剤の補給ができるので、リード角θが大きすぎることによって、オイルシール211の摺動面の潤滑剤が不足することはない。例えば、10°から80°でもよい。ここで、リード角θを略45°とすれば、主軸201に仕上げ加工を行う作業者が傾斜の目標を認識しやすいため作業性が向上する。 Further, in Patent Document 2, if the lead angle θ, which is the angle between the sliding surface and the line direction of the groove 201c, is set in the range of 10 to 30 ° and the lead angle θ is too large, the pump action is too strong and the seal There is a description that the amount of oil that flows out and is retained is insufficient. In the above-described embodiment and modification of the present invention, the lubricant can be supplied to the oil seal 211 along the space S side surface of the bearing cover 205 by the action of the second flow FL2, so that the lead angle θ is By being too large, the lubricant on the sliding surface of the oil seal 211 will not be insufficient. For example, it may be 10 ° to 80 °. Here, if the lead angle θ is about 45 °, the operator who finishes the main shaft 201 can easily recognize the target of inclination, so that workability is improved.
 なお、ポンプ300は、可変速手段を用いて運転してもよい。ポンプ装置311において、軸受202から飛散する潤滑剤の量と溝201cにて戻される潤滑剤の量は、双方とも回転速度に比例する。例えば、主軸201の回転速度が通常の50%に減速した時、軸受202から飛散する潤滑剤の量が減少しシール部材へ潤滑剤を供給する第2の流れFL2が減少するが、溝201cのポンピング作用も減少し第1の流れFL1も減少するので、オイルシール211における潤滑剤の不足および潤滑剤の漏れを抑制できる。よって、ポンプ装置311は、可変速運転を行う自動給水ポンプ等に用いることもできる。また、リップ溝201bなどの摩耗があった主軸201でも、主軸201の表面の大気側に溝201cを設けることにより、潤滑油がオイルシール211から大気側に漏れることを抑制できる。また、軸受カバー205とオイルシール211について説明した実施形態並びに変形例は、軸受カバー206とオイルシール212において実施してもよいし、ポンプ装置301にて説明した各実施形態並びに変形例はポンプ装置101にも適用できる。 The pump 300 may be operated using variable speed means. In the pump device 311, the amount of lubricant scattered from the bearing 202 and the amount of lubricant returned in the groove 201c are both proportional to the rotational speed. For example, when the rotation speed of the main shaft 201 is reduced to 50% of the normal speed, the amount of lubricant scattered from the bearing 202 decreases and the second flow FL2 for supplying the lubricant to the seal member decreases. Since the pumping action is reduced and the first flow FL1 is also reduced, the shortage of the lubricant and the leakage of the lubricant in the oil seal 211 can be suppressed. Therefore, the pump device 311 can also be used for an automatic water supply pump or the like that performs variable speed operation. In addition, even in the main shaft 201 having worn out such as the lip groove 201b, it is possible to prevent the lubricating oil from leaking from the oil seal 211 to the air side by providing the groove 201c on the air side of the surface of the main shaft 201. Further, the embodiments and modifications described for the bearing cover 205 and the oil seal 211 may be implemented in the bearing cover 206 and the oil seal 212, and the embodiments and modifications described in the pump device 301 are pump devices. 101 is also applicable.
 上述した各実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうることである。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲とすべきである。 Each embodiment described above is described for the purpose of enabling the person having ordinary knowledge in the technical field to which the present invention belongs to implement the present invention. Various modifications of the above embodiment can be naturally made by those skilled in the art, and the technical idea of the present invention can be applied to other embodiments. Therefore, the present invention should not be limited to the described embodiments, but should be the widest scope according to the technical idea defined by the claims.
 本発明は、ポンプ装置およびポンプ装置のメンテナンス方法に利用可能である。 The present invention can be used for a pump device and a maintenance method of the pump device.
1 主軸
1b リップ溝
1c 溝
2,3 軸受
4 軸受胴体
5,6 軸受カバー
11,12 オイルシール
13 水切りリング
21 胴体カバー
23 グランドパッキン
30 羽根車
32 ポンプ胴体
201 主軸
201b リップ溝
201c 溝
202,203 軸受
204 軸受胴体
205,206 軸受カバー
211,212 オイルシール
213 水切りリング
221 胴体カバー
223 グランドパッキン
230 羽根車
232 ポンプ胴体
300 ポンプ
1 Main shaft 1b Lip groove 1c Groove 2, 3 Bearing 4 Bearing body 5, 6 Bearing cover 11, 12 Oil seal 13 Drain ring 21 Body cover 23 Ground packing 30 Impeller 32 Pump body 201 Main shaft 201b Lip groove 201c Groove 202, 203 Bearing 204 Bearing body 205, 206 Bearing cover 211, 212 Oil seal 213 Draining ring 221 Body cover 223 Gland packing 230 Impeller 232 Pump body 300 Pump

Claims (18)

  1.  駆動機の駆動により搬送液を加圧する羽根車を予め定められた方向に回転する主軸と、
     前記主軸を回転可能に支持する軸受と、
     前記主軸が貫通する軸受カバーと、
     前記軸受の潤滑剤が前記主軸の外周面を伝わって被密封流体側から大気側に漏れるのを防止するシール部材と、
     を備え、
     前記軸受カバーは、前記軸受から飛散した前記潤滑剤が当該軸受カバーをつたって前記シール部材に流れるように構成され、
     前記主軸の外周面は、前記主軸が回転した際に、前記主軸の外周面の前記潤滑剤が前記大気側から前記被密封流体側に戻されるように傾斜した溝が設けられている、
    ポンプ装置。
    A main shaft that rotates in a predetermined direction an impeller that pressurizes the carrier liquid by driving a driving machine;
    A bearing that rotatably supports the main shaft;
    A bearing cover through which the main shaft passes;
    A seal member for preventing the lubricant of the bearing from leaking from the sealed fluid side to the atmosphere side along the outer peripheral surface of the main shaft;
    With
    The bearing cover is configured such that the lubricant scattered from the bearing flows through the bearing cover to the seal member.
    The outer peripheral surface of the main shaft is provided with an inclined groove so that when the main shaft rotates, the lubricant on the outer peripheral surface of the main shaft is returned from the atmosphere side to the sealed fluid side.
    Pump device.
  2.  前記ポンプ装置は、横軸形のポンプ装置であることを特徴とする、
     請求項1に記載のポンプ装置。
    The pump device is a horizontal shaft type pump device,
    The pump device according to claim 1.
  3.  前記傾斜した溝は、前記主軸の外周面のうち前記シール部材に対向する領域に対して大気側の方に隣接する領域の少なくとも一部に設けられている請求項1または2に記載のポンプ装置。 3. The pump device according to claim 1, wherein the inclined groove is provided in at least a part of a region adjacent to the atmosphere side with respect to a region facing the seal member on an outer peripheral surface of the main shaft. .
  4.  前記傾斜した溝は、前記主軸の外周面のうち前記大気側から前記被密封流体側まで延在する請求項3に記載のポンプ装置。 The pump device according to claim 3, wherein the inclined groove extends from the atmosphere side to the sealed fluid side in the outer peripheral surface of the main shaft.
  5.  前記主軸の静止時に、前記潤滑剤の油面は前記主軸より下の液位である
     請求項1から4のいずれか1項に記載のポンプ装置。
    5. The pump device according to claim 1, wherein an oil level of the lubricant is a liquid level below the main shaft when the main shaft is stationary. 6.
  6.  前記シール部材は、前記軸受カバーに組み込まれたオイルシールであって、
     前記軸受カバーは、前記軸受から飛散した前記潤滑剤が当該軸受カバーをつたってオイルシールと前記主軸の外周面の摺動部間に供給されるように構成される
     請求項1から5のいずれか1項に記載のポンプ装置。
    The seal member is an oil seal incorporated in the bearing cover,
    The said bearing cover is comprised so that the said lubricant scattered from the said bearing may be supplied between the sliding part of the outer peripheral surface of an oil seal and the said main shaft via the said bearing cover. The pump device according to item 1.
  7.  前記傾斜した溝は、前記オイルシールと前記主軸の外周面の摺動部間に接する大気側の少なくとも一部に設けられている請求項6に記載のポンプ装置。 The pump device according to claim 6, wherein the inclined groove is provided in at least a part of the atmosphere side contacting between the oil seal and the sliding portion of the outer peripheral surface of the main shaft.
  8.  前記傾斜した溝は、前記オイルシールと前記主軸の外周面の摺動部に設けられている請求項6または7に記載のポンプ装置。 The pump device according to claim 6 or 7, wherein the inclined groove is provided in a sliding portion between an outer peripheral surface of the oil seal and the main shaft.
  9.  前記傾斜した溝は、前記主軸の外周面の被密封流体側の少なくとも一部に設けられている請求項6から8のいずれか1項に記載のポンプ装置。 The pump device according to any one of claims 6 to 8, wherein the inclined groove is provided in at least a part of the outer peripheral surface of the main shaft on the sealed fluid side.
  10.  前記軸受カバーは、前記軸受側の面に、当該軸受カバーに飛散した潤滑剤を前記シール部材に案内する構造を有する請求項1から9のいずれか1項に記載のポンプ装置。 The pump device according to any one of claims 1 to 9, wherein the bearing cover has a structure in which a lubricant scattered on the bearing cover is guided to the seal member on a surface on the bearing side.
  11.  前記潤滑剤を前記シール部材に案内する構造として、前記軸受カバーの内周面のうちの少なくとも天井面部を含む面は、前記主軸の長軸方向に沿って前記シール部材に近づくに従って、当該主軸に近づくように傾斜している請求項10に記載のポンプ装置。 As a structure for guiding the lubricant to the seal member, the surface including at least the ceiling surface portion of the inner peripheral surface of the bearing cover is moved toward the main shaft as it approaches the seal member along the major axis direction of the main shaft. The pump device according to claim 10, which is inclined so as to approach.
  12.  前記軸受カバーは、軸受カバー本体と、前記潤滑剤を前記シール部材に案内する構造として前記軸受から飛散した前記潤滑剤を前記シール部材に案内するガイド部材と、を有する請求項10に記載のポンプ装置。 The pump according to claim 10, wherein the bearing cover includes a bearing cover main body and a guide member that guides the lubricant scattered from the bearing to the seal member as a structure that guides the lubricant to the seal member. apparatus.
  13.  前記ガイド部材は、前記軸受カバー本体の内周面のうちの最上部を含む内周面に設けられ、主軸の長軸方向に沿って前記シール部材へと伸びる突起形状を有しており、
     前記ガイド部材の前記主軸に対向する面は、前記主軸の長軸方向に沿って前記シール部材に近づくに従って当該主軸に近づくように傾斜している請求項12に記載のポンプ装置。
    The guide member is provided on the inner peripheral surface including the uppermost part of the inner peripheral surface of the bearing cover body, and has a protrusion shape extending to the seal member along the major axis direction of the main shaft,
    The pump device according to claim 12, wherein a surface of the guide member facing the main shaft is inclined so as to approach the main shaft as the seal member is approached along a major axis direction of the main shaft.
  14.  前記ガイド部材は、前記軸受カバー本体の内周面に設けられ、主軸の長軸方向に沿って前記シール部材へと伸びる突起形状を有しており、前記主軸の長軸方向と平行で且つ当該ガイド部材を含む鉛直断面において、略水平に配置されている請求項12に記載のポンプ装置。 The guide member is provided on an inner peripheral surface of the bearing cover main body, has a protrusion shape extending to the seal member along the major axis direction of the main shaft, and is parallel to the major axis direction of the main shaft and The pump device according to claim 12, wherein the pump device is arranged substantially horizontally in a vertical section including the guide member.
  15.  前記ガイド部材は、前記軸受カバー本体の内周面に設けられ、主軸の長軸方向に沿って前記シール部材へと伸びる突起形状を有しており、前記主軸の長軸方向と平行で且つ当該ガイド部材を含む鉛直断面において、前記主軸の長軸方向に沿って前記シール部材に近づくに従って下方に傾斜している請求項12に記載のポンプ装置。 The guide member is provided on an inner peripheral surface of the bearing cover main body, has a protrusion shape extending to the seal member along the major axis direction of the main shaft, and is parallel to the major axis direction of the main shaft and The pump device according to claim 12, wherein a vertical section including the guide member is inclined downward as approaching the seal member along a major axis direction of the main shaft.
  16.  前記潤滑剤を前記シール部材に案内する構造として、前記軸受と前記シール部材との間に位置において、前記主軸に取り付けられたデフレクタ部材を更に備える請求項10から15のいずれか1項に記載のポンプ装置。 16. The structure according to claim 10, further comprising a deflector member attached to the main shaft at a position between the bearing and the seal member as a structure for guiding the lubricant to the seal member. Pump device.
  17.  前記ポンプ装置は、可変速手段を有し
     前記可変速手段によって前記駆動機が駆動される、請求項1から16のいずれか1項に記載のポンプ装置。
    The pump device according to any one of claims 1 to 16, wherein the pump device includes variable speed means, and the drive unit is driven by the variable speed means.
  18.  駆動機の駆動により搬送液を加圧する羽根車を予め定められた方向に回転するための主軸と、前記主軸を回転可能に支持する軸受と、前記主軸が貫通する軸受カバーと、前記軸受の潤滑剤が前記主軸の外周面を伝わって被密封流体側から大気側に漏れるのを防止するシール部材と、を備え、前記軸受カバーは、前記軸受から飛散した前記潤滑剤が当該軸受カバーをつたって前記シール部材に流れるように構成されているポンプ装置のメンテナンス方法であって、
     前記主軸の外周面と摺動するシール部材を、前記主軸における前記シール部材との摺動面から離す工程と、
     前記主軸が回転した際に、前記大気側の前記主軸の外周面に露出した前記潤滑剤が被密封流体側に押し戻されるように傾斜した溝を、前記主軸の外周面に形成する工程と、
     前記主軸にシール部材を取り付ける工程と、
     を有するポンプ装置のメンテナンス方法。
    A main shaft for rotating an impeller that pressurizes the conveying liquid by driving a driving device in a predetermined direction, a bearing that rotatably supports the main shaft, a bearing cover through which the main shaft passes, and lubrication of the bearing And a seal member for preventing the agent from leaking from the sealed fluid side to the atmosphere side along the outer peripheral surface of the main shaft, and the bearing cover has the lubricant scattered from the bearing covered the bearing cover. A maintenance method for a pump device configured to flow through the seal member,
    Separating the seal member sliding with the outer peripheral surface of the main shaft from the sliding surface of the main shaft with the seal member;
    Forming an inclined groove on the outer peripheral surface of the main shaft so that the lubricant exposed on the outer peripheral surface of the main shaft on the atmosphere side is pushed back to the sealed fluid side when the main shaft rotates;
    Attaching a seal member to the main shaft;
    The maintenance method of the pump apparatus which has this.
PCT/JP2018/007510 2017-02-28 2018-02-28 Pump device and maintenance method for pump device WO2018159680A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880013202.6A CN110325744B (en) 2017-02-28 2018-02-28 Pump device and maintenance method for pump device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-037586 2017-02-28
JP2017037586 2017-02-28
JP2018-033087 2018-02-27
JP2018033087A JP7023742B2 (en) 2017-02-28 2018-02-27 Pumping equipment and maintenance method of pumping equipment

Publications (1)

Publication Number Publication Date
WO2018159680A1 true WO2018159680A1 (en) 2018-09-07

Family

ID=63370051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007510 WO2018159680A1 (en) 2017-02-28 2018-02-28 Pump device and maintenance method for pump device

Country Status (2)

Country Link
CN (1) CN110325744B (en)
WO (1) WO2018159680A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481054U (en) * 1977-11-17 1979-06-08
JPS55110326U (en) * 1979-01-29 1980-08-02
JPS5986758A (en) * 1982-08-13 1984-05-19 エイ・ダブリユ−・チエスタ−トン・カンパニ− Packing sealing means, lubricator and centrifugal pump
WO2013121813A1 (en) * 2012-02-15 2013-08-22 イーグル工業株式会社 Shaft-sealing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406465A (en) * 1982-08-13 1983-09-27 A. W. Chesterton Company Centrifugal pump
JP4175834B2 (en) * 2002-06-10 2008-11-05 株式会社大阪真空機器製作所 Turbo molecular pump seal structure
FR2906206B1 (en) * 2006-09-27 2008-10-31 Valeo Systemes Dessuyage DRIVE MECHANISM WITH MEANS FOR GUIDING A DRIVE SHAFT
JP5310990B2 (en) * 2007-05-11 2013-10-09 Nok株式会社 Sealing device
CN101749267A (en) * 2008-11-30 2010-06-23 大连深蓝泵业有限公司 Spent fuel water tank cooling pump of pressure water reactor nuclear power plant
CN103946350B (en) * 2011-11-23 2016-08-17 Abb研究有限公司 Sealing system, has the industrial robot of sealing system, and for the method providing sealing surfaces

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481054U (en) * 1977-11-17 1979-06-08
JPS55110326U (en) * 1979-01-29 1980-08-02
JPS5986758A (en) * 1982-08-13 1984-05-19 エイ・ダブリユ−・チエスタ−トン・カンパニ− Packing sealing means, lubricator and centrifugal pump
WO2013121813A1 (en) * 2012-02-15 2013-08-22 イーグル工業株式会社 Shaft-sealing device

Also Published As

Publication number Publication date
CN110325744B (en) 2022-03-18
CN110325744A (en) 2019-10-11

Similar Documents

Publication Publication Date Title
CA2193482C (en) Seal/bearing assembly
EP0600559A1 (en) Rolling element bearing system comprising a filtering seal
AU760024B2 (en) Improved bearing isolator
CN101040128A (en) Rolling bearing
CA2751168C (en) Idler
JP4256391B2 (en) Rolling bearing
JP2018141462A (en) Pump device and maintenance method for pump device
US3747470A (en) Spindle provided with an anti-vibration mechanism
WO2018159680A1 (en) Pump device and maintenance method for pump device
US2910313A (en) Lubricated seal for centrifugal pump shafts
KR100605408B1 (en) Rotational machine
US10054229B2 (en) Dynamic radial seal
CN113958691A (en) Speed reducer with shaft and housing part
JP2009162341A (en) Rolling bearing
JP2011169362A (en) Rolling bearing lubricating structure
CN109505945A (en) A kind of harmonic speed reducer and its method for forcing oil lubrication
JP6517067B2 (en) Oil ring type slide bearing
JP2009144781A (en) Rolling bearing and rolling bearing device
US5362201A (en) Water pump lubricating chamber arrangement for motor vehicles
JP2000356223A (en) Oil-lubricated bearing structure, and pump, transmission, rotating driver and pump equipment provided with this structure
JP2011058520A (en) Rolling bearing device
US1924407A (en) Gland
CN116945012B (en) Polishing apparatus
JP2011069456A (en) Rolling bearing
JP2002303297A (en) Horizontal shaft type pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761908

Country of ref document: EP

Kind code of ref document: A1