WO2018159530A1 - Polishing solution, method for producing polishing solution, polishing solution stock solution, polishing solution stock solution containing body, and chemical mechanical polishing method - Google Patents

Polishing solution, method for producing polishing solution, polishing solution stock solution, polishing solution stock solution containing body, and chemical mechanical polishing method Download PDF

Info

Publication number
WO2018159530A1
WO2018159530A1 PCT/JP2018/006964 JP2018006964W WO2018159530A1 WO 2018159530 A1 WO2018159530 A1 WO 2018159530A1 JP 2018006964 W JP2018006964 W JP 2018006964W WO 2018159530 A1 WO2018159530 A1 WO 2018159530A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing liquid
polishing
acid
atom
mass
Prior art date
Application number
PCT/JP2018/006964
Other languages
French (fr)
Japanese (ja)
Inventor
上村 哲也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201880012596.3A priority Critical patent/CN110325614B/en
Priority to KR1020197023863A priority patent/KR20190109450A/en
Priority to KR1020217025423A priority patent/KR102405560B1/en
Priority to JP2019502975A priority patent/JP6890656B2/en
Publication of WO2018159530A1 publication Critical patent/WO2018159530A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1472Non-aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing liquid, a manufacturing method of the polishing liquid, a polishing liquid stock solution, a polishing liquid stock solution container, and a chemical mechanical polishing method.
  • CMP chemical mechanical polishing
  • a polishing liquid used in CMP for example, Patent Document 1 describes “a polishing liquid in which a reaction layer having a thickness of 100 nm or more is formed on a surface to be polished that has been in contact with the polishing liquid for 24 hours”. Has been.
  • Patent Document 1 prepared a polishing liquid in which colloidal silica was blended as abrasive grains and studied its characteristics. It has been found that when this polishing liquid is applied, dishing tends to occur on the surface of the object to be polished. Further, it has been found that many defects due to surface roughness such as scratches and partial corrosion occur on the surface to be polished of the object to be polished.
  • an object of the present invention is to provide a polishing liquid in which dishing and defects are unlikely to occur on a surface to be polished when applied to CMP of an object to be polished including a cobalt-containing layer.
  • Another object of the present invention is to provide a method for producing a polishing liquid, a polishing liquid stock solution, a polishing liquid stock solution container, and a chemical mechanical polishing method.
  • the inventors of the present invention solve the above-mentioned problems by a polishing liquid containing a predetermined component and capable of forming a reaction layer having a predetermined thickness when brought into contact with a cobalt substrate.
  • the present invention has been completed. That is, it has been found that the above-described problem can be achieved by the following configuration.
  • colloidal silica having an association degree of 1 to 3 An organic acid, An azole compound, Hydrogen peroxide, and a polishing liquid used for chemical mechanical polishing of the cobalt-containing layer, A polishing liquid in which a reaction layer having a thickness of 0.5 to 20 nm containing cobalt atoms is formed on the cobalt substrate when the polishing liquid and the cobalt substrate are brought into contact with each other for 24 hours.
  • the content of the colloidal silica having the association degree of 1 to 3 is 0.01 to 1% by mass with respect to the total mass of the polishing liquid.
  • an amino acid is contained
  • As the organic acid an amino acid is contained
  • As the azole compound containing a benzotriazole compound and an azole compound different from the benzotriazole compound, pH is 6.5 to 8.0
  • the polishing liquid and a barrier substrate made of any one metal selected from the group consisting of Ta, TaN, Ti, TiN, Ru, and Mn are contacted for 24 hours,
  • the polishing liquid according to [2], wherein the polishing rate ratio R1 calculated from the following formula (3) is 250 to 2500.
  • R1 Cobalt substrate polishing rate with the polishing liquid / Barrier substrate polishing rate with the polishing liquid [4]
  • the content of the colloidal silica having the association degree of 1 to 3 is 0.5 to 5 with respect to the total mass of the polishing liquid.
  • the organic acid is maleic acid, fumaric acid, 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, phthalic acid, isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, It is at least one selected from the group consisting of merophanic acid, planitic acid, pyromellitic acid, mellitic acid, diphenic acid, citric acid, succinic acid, malic acid, malonic acid, and anthranilic acid,
  • the polishing liquid according to [4] wherein the content of the organic acid is 0.01 to 0.3% by mass with respect to the total mass of the polishing liquid.
  • the polishing rate ratio R2 calculated from the following formula (4) is 0.01 to 2.0, and the polishing rate ratio R3 calculated from the following formula (5) is 0.05 to 2.0. , [4] or [5].
  • Formula (4): R2 Polishing speed of cobalt substrate with the above polishing liquid / Polishing speed of barrier substrate with the above polishing liquid
  • Formula (5): R3 Polishing rate of cobalt substrate with the polishing solution / Polishing rate of insulating film substrate with the polishing solution [7]
  • the hydrogen peroxide content is 0.001 to 5 mass%, [1] to [6 ]
  • the polishing liquid in any one of.
  • the metal impurity contains at least one specific metal atom selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom,
  • the specific metal atom is one selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom
  • the content of the specific metal atom is 0.01 to 100 mass ppb
  • the specific metal atoms are two or more selected from the group consisting of Fe atoms, Cu atoms, Ag atoms, and Zn atoms
  • the content of the specific metal atoms is 0 with respect to the total mass of the polishing liquid.
  • the metal impurity contains metal particles containing at least one specific metal atom selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom, When the specific metal atom contained in the metal particle is one selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom, the content of the specific metal atom contained in the metal particle is , And 0.01 to 50 mass ppb with respect to the total mass of the polishing liquid, When the specific metal atom contained in the metal particle is two or more selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom, each of the specific metal atom contained in the metal particle
  • T1 content of hydrogen peroxide / total content of specific metal atoms selected from the group consisting of Fe atoms, Cu atoms, Ag atoms, and Zn atoms contained in the metal impurities
  • the compound represented by the general formula (1) described later contains 0.00001 to 1000 mass ppb of the compound represented by the general formula (1) with respect to the total mass of the polishing liquid.
  • the azole compound contains a benzotriazole compound and any one or more selected from the group consisting of 1,2,4-triazole compounds, pyrazole compounds, and imidazole compounds. , [2] to [13].
  • the average particle diameter ratio T2 before and after chemical mechanical polishing of the colloidal silica having the degree of association of 1 to 3 calculated from the following formula (2) is 1 to 5, [1] to [14 ]
  • the polishing liquid in any one of.
  • T2 average particle diameter after chemical mechanical polishing / average particle diameter before chemical mechanical polishing
  • Colloidal silica having an association degree of 1 to 3, an organic acid, an azole compound, hydrogen peroxide A method for producing a polishing liquid, comprising a dilution step of mixing a polishing liquid stock solution containing water with water to obtain the polishing liquid according to any one of [1] to [15].
  • a polishing liquid stock solution container comprising the polishing liquid stock solution according to [17] or [18] and a container made of a metal material containing no iron and containing the polishing liquid stock solution.
  • a chemical mechanical polishing method comprising a step of relatively moving a polishing object and the polishing pad to polish the surface to be polished to obtain a polished object.
  • the chemical mechanical polishing method according to [20] wherein the object to be polished contains a cobalt-containing layer composed of at least one selected from the group consisting of cobalt and a cobalt alloy.
  • produce on a to-be-polished surface can be provided.
  • the manufacturing method of polishing liquid, polishing liquid stock solution, polishing liquid stock solution container, and the chemical mechanical polishing method can be provided.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the polishing liquid of the present invention contains a colloidal silica having an association degree of 1 to 3, an organic acid, an azole compound, and hydrogen peroxide, and is used for chemical mechanical polishing of a cobalt-containing layer.
  • a reaction layer containing cobalt atoms and having a thickness of 0.5 to 20 nm (hereinafter also referred to as “reaction layer 1”) is formed on the cobalt substrate. .) Is a polishing liquid to be formed.
  • the thickness of the reaction layer is 0.5 nm or more, and preferably 2 nm or more.
  • the thickness of the reaction layer is 20 nm or less, preferably 15 nm or less, and more preferably 10 nm or less. If the thickness of the reaction layer is less than 0.5 nm, it is difficult to obtain a sufficient polishing rate. On the other hand, if the thickness of the reaction layer exceeds 20 nm, dishing tends to occur on the surface to be polished.
  • the polishing liquid contains colloidal silica in order to improve the polishing rate. Colloidal silica comes into contact with the reaction layer during CMP and scrapes off the reaction layer.
  • the polishing liquid produces a reaction layer of more than 20 nm under predetermined conditions
  • the surface to be polished is cut more than intended. It is estimated that dishing occurs.
  • the degree of association of colloidal silica exceeds 3, defects are likely to occur on the surface to be polished, and dishing is also likely to occur.
  • Colloidal silica having an association degree exceeding 3 is distorted as compared with colloidal silica having an association degree of 1 to 3, so that the contact area of the particles to the polished surface is small and close to point contact. For this reason, it is presumed that the surface roughness of the surface to be polished becomes rough and defects occur.
  • the reaction layer is thin, it has been confirmed that dishing is likely to occur on the surface to be polished if it is scraped with colloidal silica having an association degree exceeding 3.
  • the organic acid and the azole compound contained in the polishing liquid contribute to the formation of the reaction layer, as well as metal ionized products (various metal ions including cobalt ions) scraped during the CMP process and the colloidal silica. It is presumed that this also contributes to the suppression of the binding.
  • the metal ionized product and the colloidal silica are combined, the particle size of the colloidal silica increases, dishing is more likely to occur on the surface to be polished, and defects are also likely to occur.
  • the reaction layer refers to a cobalt substrate (substrate made of cobalt) having a 10 mm ⁇ 10 mm surface to be polished, immersed in 10 mL of polishing liquid, and the cobalt substrate and polishing liquid are brought into contact at 25 ° C. for 24 hours.
  • a reaction layer formed on the polished surface of the cobalt substrate is intended.
  • a laminate in which the cobalt substrate and another substrate (for example, a silicon substrate) are stacked may be immersed in the polishing liquid.
  • the reaction layer contains cobalt atoms.
  • the reaction layer may further contain oxygen atoms and the like, and it is preferable that the surface of the reaction layer contains a complex of components in the polishing liquid.
  • the thickness of the reaction layer is determined according to the embodiment using a scanning electron microscope (SEM) after the contact between the polishing liquid and the cobalt substrate for 24 hours and the cross section of the contacted cobalt substrate. The thickness obtained by observation by the described method is intended.
  • the pH of the polishing liquid is not particularly limited, but is usually 1.0 to 14.0.
  • the polishing liquid is suitably used for CMP performed for planarization of a buried wiring (cobalt wiring) or the like when manufacturing a semiconductor integrated circuit device.
  • the polishing liquid is suitably used for CMP of an object to be polished having an insulating film layer, a barrier layer, and a cobalt-containing layer.
  • the object to be polished is normally filled with an insulating film layer having a convex part and a concave part, a barrier layer covering the insulating film layer along the surface irregularities of the insulating film layer, and a concave part of the insulating film layer.
  • a cobalt-containing layer made of at least one selected from the group consisting of cobalt and an alloy thereof covering the barrier layer.
  • the object to be polished 10 includes a substrate 12, an insulating film layer 14 having a recess disposed on the substrate 12, a barrier layer 16 disposed following the surface of the insulating film layer 14, and a recess in the insulating film layer 14. And a cobalt-containing layer 18 disposed so as to cover the barrier layer 16.
  • the object to be polished is usually polished in two stages. Specifically, as shown in FIG. 2, the first polishing for polishing the cobalt-containing layer 18 until the barrier layer 16 is exposed, and as shown in FIG. 3, the cobalt-containing layer 18 until the insulating film layer 14 is exposed. And 2nd grinding
  • the polishing liquid can be suitably applied to both the first polishing and the second polishing.
  • the pH of the polishing liquid is more preferably 6.5 to 8.0.
  • the pH is in the range of 6.5 to 8.0, when the polishing liquid is applied to CMP, the thickness of the reaction layer under a predetermined condition is easily adjusted to a desired range, so that dishing is less likely to occur.
  • the pH is preferably in the range of 6.8 to 7.8, and more preferably in the range of 6.8 to 7.2, in view of further suppressing the occurrence of dishing.
  • polishing scratches that are one of the defects are strongly affected by the state of the surface to be polished and the type of organic acid contained in the polishing liquid.
  • the polishing liquid When the polishing liquid is applied to the first polishing, the polishing liquid preferably contains an amino acid as an organic acid, as will be described later, and the polishing liquid containing an amino acid has polishing scratches when the pH is 6.5 or more. It has been confirmed that the occurrence of defects can be further suppressed.
  • the pH of the polishing liquid is more preferably 8.0 to 10.5.
  • the pH is in the range of 8.0 to 10.5
  • the polishing liquid is applied to CMP, the thickness of the reaction layer under a predetermined condition can be easily adjusted to a desired range, so that the occurrence of dishing is further suppressed. Is done.
  • polishing scratches that are one of the defects are strongly affected by the state of the surface to be polished and the type of organic acid contained in the polishing liquid.
  • the polishing liquid When the polishing liquid is applied to the second polishing, the polishing liquid contains maleic acid, fumaric acid, 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, phthalic acid, Selected from the group consisting of isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, merophanic acid, planitic acid, pyromellitic acid, mellitic acid, diphenic acid, citric acid, succinic acid, malic acid, malonic acid, and anthranilic acid It is preferable that the polishing liquid containing these organic acids can remarkably suppress polishing scratches when the pH is 8.0 or higher (preferably 8.2 or higher).
  • the pH is preferably in the range of 8.2 to 9.5, more preferably in the range of 8.7 to 9.5, in order to further suppress the occurrence of dishing and defects on the surface to be polished. More preferred.
  • the polishing liquid contains colloidal silica having an association degree of 1 to 3. Colloidal silica has the effect of scraping off the reaction layer formed in the object to be polished.
  • the polishing liquid contains colloidal silica, and the thickness of the reaction layer formed under predetermined conditions is estimated to be 0.5 to 20 nm, which is presumed to be one of the reasons for the effects of the present invention.
  • the average primary particle diameter is a particle diameter (equivalent circle diameter) of 1000 primary particles arbitrarily selected from an image taken using a transmission electron microscope TEM2010 (pressurized voltage 200 kV) manufactured by JEOL Ltd. Measure and find the arithmetic average.
  • the equivalent circle diameter is the diameter of the circle when assuming a true circle having the same projected area as the projected area of the particles at the time of observation.
  • the average secondary particle diameter corresponds to the average particle diameter (equivalent circle diameter) of the secondary particles in an aggregated state, and can be obtained by the same method as the above-described average primary particle diameter.
  • the degree of association of colloidal silica is 1 to 3, and 1.5 to 2.5 is preferable from the viewpoint that the polishing rate is more excellent.
  • the degree of association exceeds 3, the mechanical polishing force becomes excessive and dishing tends to occur. Further, since the surface to be polished becomes rough, defects are easily generated.
  • the average primary particle diameter of the colloidal silica is not particularly limited, but is preferably 1 to 100 nm from the viewpoint that the polishing liquid has better dispersion stability.
  • colloidal silica having an association degree of 1 to 3 examples include PL2, PL3, PL3H, and PL3L (all trade names are manufactured by Fuso Chemical Industry Co., Ltd.). Is mentioned.
  • the content of the colloidal silica having an association degree of 1 to 3 is not particularly limited and is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and preferably 10% by mass or less with respect to the total mass of the polishing liquid. 5 mass% or less is more preferable, 3 mass% or less is still more preferable, and 1 mass% or less is especially preferable.
  • the content of colloidal silica having an association degree of 1 to 3 is more preferably 0.01 to 1% by mass with respect to the total mass of the polishing liquid.
  • the content of the colloidal silica having an association degree of 1 to 3 is in the above range, dishing on the surface to be polished is less likely to occur, and an excellent polishing rate can be obtained.
  • the content of colloidal silica having an association degree of 1 to 3 is in the range of 0.01 to 0.15% by mass with respect to the total mass of the polishing liquid, the occurrence of dishing is further suppressed.
  • the content of colloidal silica having an association degree of 1 to 3 is more preferably 0.5 to 5% by mass with respect to the total mass of the polishing liquid.
  • the content of the colloidal silica having an association degree of 1 to 3 is in the above range, dishing on the surface to be polished is less likely to occur, and an excellent polishing rate can be obtained.
  • the content of colloidal silica having an association degree of 1 to 3 is in the range of 0.5 to 3% by mass with respect to the total mass of the polishing liquid, the occurrence of dishing is further suppressed.
  • colloidal silica having an association degree of 1 to 3 may be used alone or in combination of two or more.
  • the total content is preferably within the above range.
  • the average particle diameter ratio T2 before and after chemical mechanical polishing (CMP) calculated from the following formula (2) of colloidal silica having an association degree of 1 to 3 in the polishing liquid is preferably 5 or less.
  • T2 is 5 or less, defects are less likely to occur on the surface to be polished.
  • the lower limit of T2 is preferably 1 or more.
  • T2 is more preferably 2.5 or less, and even more preferably 2 or less.
  • Formula (2): T2 average particle diameter after chemical mechanical polishing / average particle diameter before chemical mechanical polishing
  • colloidal silica having an association degree of 1 to 3 is bonded to metal ionized products (various metal ions including cobalt ions) cut out during the CMP process, thereby increasing the average particle size.
  • the polishing liquid contains hydrogen peroxide as an oxidizing agent.
  • the oxidizing agent has a function of oxidizing a metal to be polished existing on the surface to be polished of the object to be polished.
  • the content of hydrogen peroxide is not particularly limited, but is preferably 0.001 to 5% by mass with respect to the total mass of the polishing liquid.
  • the content of hydrogen peroxide in the polishing liquid is 0.001 with respect to the total mass of the polishing liquid in that dishing on the surface to be polished is less likely to occur. Is more preferably 2.5% by mass, and still more preferably 0.06-2% by mass.
  • the content of hydrogen peroxide in the polishing liquid is 0 in that dishing on the surface to be polished is less likely to occur with respect to the total mass of the polishing liquid.
  • 0.001 to 3 mass% is more preferable, 0.1 to 1.2 mass% is still more preferable, and 0.6 to 1 mass% is particularly preferable.
  • the polishing liquid contains an organic acid.
  • the organic acid has an effect of promoting oxidation of the metal, adjusting the pH of the polishing liquid, and acting as a buffer.
  • an organic acid is a compound having one or more acidic groups in one molecule, and examples of the acidic group include a carboxy group, a sulfonic acid group, and a phosphoric acid group. It does not restrict
  • organic acid examples include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, and n-heptane.
  • Acid 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid, 2- Hydroxybenzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, phthalic acid, isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, merophanic acid, planitic acid, pyromellitic acid, melittic acid, diphenic acid, citrate Acid, succinic acid, malic acid, malonic acid, anthranilic acid, tartaric acid, lactic acid, hydroxyethyliminodiacetic acid, And iminodiacetic acid and salts thereof such as ammonium salts and alkali metal salts thereof; glycine, ⁇ -
  • the content of the organic acid is not particularly limited, but is preferably 0.01 to 30% by mass with respect to the total mass of the polishing liquid.
  • an organic acid may be used individually by 1 type, or may use 2 or more types together. When two or more organic acids are used in combination, the total content is preferably within the above range.
  • the polishing liquid contains an amino acid as an organic acid in that dishing on the surface to be polished is less likely to occur and / or defects are less likely to occur.
  • glycine, ⁇ -alanine, ⁇ -alanine, L-aspartic acid, or N-methylglycine is more preferable, glycine or N-methylglycine is more preferable, and glycine is particularly preferable.
  • the content of the organic acid in the polishing liquid is not particularly limited, and is preferably 0.1% by mass or more and 0.8% by mass or more with respect to the total mass of the polishing liquid. Is more preferable, 30 mass% or less is preferable, 15 mass% or less is more preferable, 8 mass% or less is still more preferable, and 4 mass% or less is especially preferable.
  • the content of the organic acid is 0.8 to 4% by mass with respect to the total mass of the polishing liquid, dishing and defects on the surface to be polished are less likely to occur.
  • An organic acid may be used individually by 1 type, or may use 2 or more types together.
  • an amino acid and another organic acid are preferred in that dishing on the surface to be polished is less likely to occur and / or defects are less likely to occur.
  • the organic acid include maleic acid, fumaric acid, 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, phthalic acid, isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, Melofanoic acid, planitic acid, pyromellitic acid, mellitic acid, diphenic acid, citric acid, succinic acid, malic acid, malonic acid or anthranilic acid are preferred.
  • the content of other organic acids is preferably 30% by mass or less based on the total amount of organic acids. More preferred is mass%. In addition, it is preferable that the minimum is 1 mass% or more. When two or more organic acids are used in combination, the total content is preferably within the above range.
  • the polishing liquid when the polishing liquid is applied to the second polishing, the polishing liquid is organic acid such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid.
  • organic acid such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid.
  • 2-ethylbutyric acid 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, glutaric acid , Adipic acid, pimelic acid, maleic acid, fumaric acid, 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, phthalic acid, isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, merophane Acid, planitic acid, pyromellitic acid, mellitic acid, diphenic acid, citric acid, succinic acid, malic acid, malonic acid, anthranilic acid, liquor Acid, lactic acid, hydroxyethyliminodiacetic acid, and iminodiacetic acid, as well
  • maleic acid, fumaric acid, 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid are less likely to cause dishing on the surface to be polished and / or less likely to cause defects.
  • maleic acid, 2-hydroxybenzoic acid, 4-hydroxybenzoic acid, phthalic acid, trimellitic acid, citric acid, succinic acid, malic acid, malonic acid, or anthranilic acid are more preferable, and maleic acid or citric acid is further Maleic acid is preferred and particularly preferred.
  • a combination with at least one selected from the group consisting of acids, succinic acid, malic acid, malonic acid, phthalic acid, 4-hydroxybenzoic acid, 2-hydroxybenzoic acid, anthranilic acid, and trimellitic acid is preferable.
  • Citric acid, malonic acid, 4-hydroxybenzoic acid, 2-hydroxybenzoic acid, anthranilic acid, and a combination of at least one selected from the group consisting of trimellitic acid are more preferable.
  • At least one selected from the group consisting of hydroxybenzoic acid, 2-hydroxybenzoic acid, anthranilic acid, and trimellitic acid Combination of more preferable.
  • the content of the organic acid in the polishing liquid is not particularly limited, and is preferably 0.01 to 30% by mass with respect to the total mass of the polishing liquid, and 0.01 to 12 % By mass is more preferable, 0.01 to 5% by mass is more preferable, and 0.01 to 0.3% by mass is still more preferable. In addition, when using 2 or more types of organic acids, it is preferable that total content is in the said range.
  • the polishing liquid contains an azole compound.
  • the azole compound has a function of forming a reaction layer on the metal surface of the polished surface. Moreover, it has the function to improve the oxidation action by the hydrogen peroxide mentioned later.
  • an azole compound means a compound containing a hetero five-membered ring containing one or more nitrogen atoms, and the number of nitrogen atoms is preferably 1 to 4.
  • the azole compound may contain atoms other than nitrogen atoms as heteroatoms. Further, the azole compound may have a substituent on the hetero five-membered ring.
  • azole compounds examples include pyrrole skeleton, imidazole skeleton, pyrazole skeleton, isothiazole skeleton, isoxazole skeleton, triazole skeleton, tetrazole skeleton, imidazole skeleton, thiazole skeleton, oxazole skeleton, isoxazole skeleton, thiadiazole skeleton, oxadi Examples thereof include compounds having an azole skeleton or a tetrazole skeleton.
  • the azole compound may be an azole compound having a polycyclic structure in which an aromatic hydrocarbon ring or an aromatic heterocyclic ring is further condensed to the skeleton.
  • Examples of the azole compound containing the polycyclic structure include an indole skeleton, a purine skeleton, an indazole skeleton, a benzimidazole skeleton, a carbazole skeleton, a benzoxazole skeleton, a benzothiazole skeleton, a benzothiadiazole skeleton, or a naphthimidazole skeleton. And the like.
  • the substituent that the azole compound may contain is not particularly limited, and examples thereof include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), an alkyl group (a linear, branched, or cyclic alkyl group).
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom
  • an alkyl group a linear, branched, or cyclic alkyl group.
  • it may be a polycyclic alkyl group such as a bicycloalkyl group or may contain an active methine group), an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group (regarding the position of substitution), an acyl group, Alkoxycarbonyl group, aryloxycarbonyl group, heterocyclic oxycarbonyl group, carbamoyl group (Examples of the carbamoyl group having a substituent include N-hydroxycarbamoyl group, N-acylcarbamoyl group, N-sulfonylcarbamoyl group, N-carbamoyl group) Carbamoyl group, thiocarbamoyl group, and N-sulfamoylcarbamo Carbazoyl group, carboxy group or a salt thereof, oxalyl group, oxamoyl group, cyano group, carbonimidoyl
  • active methine group means a methine group substituted with two electron-attracting groups.
  • the “electron withdrawing group” is, for example, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a carbamoyl group, an alkylsulfonyl group, an arylsulfonyl group, a sulfamoyl group, a trifluoromethyl group, a cyano group, a nitro group, or A carbonimidoyl group is intended.
  • Two electron-withdrawing groups may be bonded to each other to form a cyclic structure.
  • the term “salt” is intended to include cations such as alkali metals, alkaline earth metals, and heavy metals; organic cations such as ammonium ions and phosphonium ions.
  • the azole compound has a triazole skeleton compound (triazole compound), a pyrazole compound, or an imidazole skeleton in that dishing on the polished surface is less likely to occur and / or defects are less likely to occur.
  • a compound (imidazole compound) is preferable, and a compound having a triazole skeleton is more preferable.
  • a compound having a benzotriazole skeleton (benzotriazole-based compound) or 1 in that dishing on a polished surface is less likely to occur and / or defects are less likely to occur.
  • 2,4-triazole skeleton compounds (1,2,4-triazole compounds) are preferred, and benzotriazole skeleton compounds are more preferred.
  • Examples of the compound having a benzotriazole skeleton include 5-methylbenzotriazole, 5-aminobenzotriazole, benzotriazole, and 5,6-dimethylbenzene ⁇ BR> tower] triazole.
  • Examples of the compound having a 1,2,4-triazole skeleton include 3-amino-1,2,4-triazole or 1,2,4-triazole.
  • the azole compounds may be used alone or in combination of two or more. However, benzoic compounds are less likely to cause dishing on the surface to be polished and / or less likely to cause defects. It is preferable to use a compound having a triazole skeleton in combination with a compound different from the benzotriazole-based compound (a compound not containing a benzotriazole skeleton).
  • a compound containing a benzotriazole skeleton strongly coordinates to cobalt oxidized by hydrogen peroxide that is an oxidizing agent, and easily forms a reaction layer.
  • a reaction layer formed when a polishing liquid containing a benzotriazole-based compound and a compound different from benzotriazole is applied to CMP is a layer different from a layer formed from a benzotriazole-based compound and benzotriazole. It is estimated that it contains the layer formed by. It is presumed that the layer formed of the benzotriazole-based compound strongly coordinated to the oxidized cobalt is dense and has an action of further suppressing the occurrence of dishing.
  • the compound containing no benzotriazole skeleton is not particularly limited, but has a 1,2,4-triazole skeleton in that dishing on the polished surface is less likely to occur and / or defects are less likely to occur. It is preferably at least one selected from the group consisting of a compound, a pyrazole-based compound, and a compound having an imidazole skeleton.
  • the content of the azole compound is not particularly limited, and is preferably 0.001 to 10% by mass with respect to the total mass of the polishing liquid. In addition, when using 2 or more types of azole type compounds, it is preferable that total content is in the said range.
  • the content of the azole compound is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and more preferably 2% by mass with respect to the total mass of the polishing liquid. The following is preferable, 1.3 mass% or less is more preferable, and 0.4 mass% or less is still more preferable.
  • dishing is less likely to occur on the polished surface.
  • the polishing liquid contains two or more azole compounds (preferably, a compound having a benzotriazole skeleton and a compound different from the benzotriazole compounds).
  • the mass ratio of the content of the other azole compound to the azole compound having the smallest content in the polishing liquid is preferably 5 or more, more preferably 100 or more. More preferably, 1800 or less is preferable, 1300 or less is more preferable, and 400 or less is still more preferable.
  • the content of the compound having a benzotriazole skeleton is preferably smaller than the content of a compound different from the benzotriazole-based compound.
  • the content of the azole compound is preferably 0.1% by mass or more, more preferably 0.12% by mass or more, and 6% by mass with respect to the total mass of the polishing liquid.
  • the following is preferable, 3.5% by mass or less is more preferable, 0.8% by mass or less is further preferable, and 0.5% by mass or less is particularly preferable.
  • dishing is less likely to occur on the polished surface.
  • dishing is less likely to occur on the surface to be polished, and the stability over time is excellent.
  • the polishing liquid when the polishing liquid is applied to the second polishing, the polishing liquid contains two or more azole compounds (preferably a compound having a benzotriazole skeleton and a compound different from the benzotriazole compound). )),
  • the content of each is not particularly limited, and the mass ratio of the content of the other azole compound to the azole compound having the smallest content in the polishing liquid is 0.05 or more. Is preferably 0.5 or more, more preferably 50 or less, and even more preferably 10 or less. Further, the content of the compound having a benzotriazole skeleton is preferably larger than the content of a compound different from the benzotriazole-based compound.
  • the azole compound having the smallest content in the polishing liquid is intended to mean the least content of two or more azole compounds, and a plurality of azole compounds of two or more azole compounds. This may be the case for compounds.
  • three or more azole compounds may be used in combination. When three or more azole compounds are used in combination, the content of each azole compound is preferably within the above range.
  • the polishing liquid may contain components other than the above as optional components. Below, an arbitrary component is demonstrated.
  • the polishing liquid may further contain abrasive grains other than colloidal silica.
  • the abrasive grains are not particularly limited, and abrasive grains other than known colloidal silica can be used.
  • abrasive grains include inorganic abrasive grains such as silica (precipitated silica other than colloidal silica or fumed silica), alumina, zirconia, ceria, titania, germania, and silicon carbide; polystyrene, polyacryl, polyvinyl chloride, etc.
  • Organic abrasive grains are examples of the abrasive grains.
  • the polishing liquid preferably contains an organic solvent. It does not restrict
  • acetone More specifically, for example, acetone, methyl ethyl ketone, tetrahydrofuran, dioxane, dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide, acetonitrile, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, ethylene glycol, propylene glycol , And ethoxyethanol.
  • methyl ethyl ketone, tetrahydrofuran, dioxane, N-methylpyrrolidone, methanol, ethanol, propylene glycol, or ethylene glycol is preferable, methanol, ethanol, propylene glycol, or ethylene glycol is more preferable, and methanol, propylene glycol, or ethylene glycol. Is more preferable.
  • the content of the organic solvent is not particularly limited, but is preferably 0.01 to 20% by mass and more preferably 0.01 to 10% by mass with respect to the total mass of the polishing liquid in terms of more excellent effects of the present invention. 0.01 to 8% by mass is more preferable. When the content of the organic solvent is in the range of 0.01 to 20% by mass, defects on the surface to be polished are less likely to occur.
  • the organic solvent may be used individually by 1 type, or may use 2 or more types together. When two or more organic solvents are used in combination, the total content is preferably within the above range.
  • the polishing liquid may contain a surfactant and / or a hydrophilic polymer.
  • Surfactants and hydrophilic polymers (hereinafter also referred to as “hydrophilic polymers”) have a function of reducing the contact angle of the polishing liquid to the surface to be polished, and the polishing liquid tends to wet and spread on the surface to be polished.
  • the surfactant is not particularly limited, and a known surfactant selected from the group consisting of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, a nonionic surfactant, and the like may be used. it can.
  • anionic surfactant examples include carboxylic acid salts, sulfonic acid salts such as alkylbenzene sulfonic acids, sulfuric acid ester salts, and phosphoric acid ester salts.
  • cationic surfactant examples include aliphatic amine salts, aliphatic quaternary ammonium salts, benzalkonium chloride salts, benzethonium chloride, pyridinium salts, and imidazolinium salts.
  • amphoteric surfactants include carboxybetaine type, aminocarboxylate, imidazolinium betaine, lecithin, and alkylamine oxide.
  • nonionic surfactant examples include ether type, ether ester type, ester type, nitrogen-containing type, glycol type, and fluorine type surfactant.
  • hydrophilic polymers include polyglycols such as polyethylene glycol, alkyl ethers of polyglycols, polysaccharides such as polyvinyl alcohol, polyvinyl pyrrolidone, and alginic acid, carboxylic acid-containing polymers such as polymethacrylic acid, and polyacrylic acid, Examples include polyacrylamide, polymethacrylamide, and polyethyleneimine. Specific examples of such a hydrophilic polymer include water-soluble polymers described in JP2009-88243A, paragraphs 0042 to 0044, and JP2007-194261A, paragraph 0026.
  • the water-soluble polymer is preferably a water-soluble polymer selected from polyacrylamide, polymethacrylamide, polyethyleneimine, and polyvinylpyrrolidone.
  • polyacrylamide or polymethacrylamide those having a hydroxyalkyl group on a nitrogen atom (for example, N- (2-hydroxyethyl) acrylamide polymer) or those having a substituent having a polyalkyleneoxy chain are preferred, and the weight average The molecular weight is more preferably 2000 to 50000.
  • the polyethyleneimine those having a polyalkyleneoxy chain on the nitrogen atom are preferred, and those having a repeating unit represented by the following general formula are more preferred.
  • n a number of 2 to 200 (in the case of a mixture, the average number thereof).
  • Polyethyleneimine preferably has an HLB (Hydrophile-Lipophile Balance) value of 16 to 19.
  • the content of the surfactant or the hydrophilic polymer is not particularly limited, but is preferably 0.00001 to 2% by mass, more preferably 0.0001 to 1% by mass, and more preferably 0.0001 to 0% with respect to the total mass of the polishing liquid. More preferably, 5% by mass.
  • the content of the surfactant or the hydrophilic polymer is 0.0001 to 0.5% by mass, the colloidal silica having an association degree of 1 to 3 is formed after chemical mechanical polishing when the polishing liquid is applied to CMP.
  • the average particle diameter hardly fluctuates and is excellent due to the effect of the present invention.
  • surfactant or a hydrophilic polymer may be used individually by 1 type, or may use 2 or more types together.
  • a surfactant and a hydrophilic polymer may be used in combination.
  • the total content is preferably within the above range.
  • the polishing liquid may further contain a pH adjuster and / or a pH buffer so as to have a predetermined pH.
  • the pH adjusting agent and / or pH buffering agent include acid agents and / or alkali agents.
  • the pH adjusting agent and the pH buffering agent are compounds different from the organic acid. Although it does not restrict
  • the alkali agent is not particularly limited, but ammonium hydroxide and organic ammonium hydroxide; alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; carbonates such as sodium carbonate; trisodium phosphate And the like; borate and tetraborate; and the like.
  • the content of the pH adjusting agent and / or pH buffering agent is not particularly limited as long as it is an amount necessary to maintain the pH in a desired range, and is usually 0.0001 to 0 in the total mass of the polishing liquid. .1% by mass is preferable.
  • the above polishing liquid contains N-cocoyl sarcosinate, N-lauroyl sarcosinate, N-stearoyl sarcosinate, N-oleoyl sarcosinate, N-myristoyl sarcosinate, N-lauroyl as an anticorrosive for cobalt.
  • the cobalt anticorrosive has a function of suppressing excessive corrosion of cobalt by forming a complex (composite compound) by coordinating with cobalt in the surface of the object to be polished.
  • the content of the cobalt anticorrosive is not particularly limited, but is preferably 0.001 to 5% by mass, more preferably 0.001 to 1% by mass, and 0.001 to 0.5% by mass with respect to the total mass of the polishing liquid. % Is more preferable.
  • the content of the cobalt anticorrosive is 0.001 to 5% by mass, dishing is less likely to occur on the surface to be polished, and defects are less likely to occur on the surface to be polished.
  • the said cobalt anticorrosive agent may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of the said cobalt anticorrosive agent together, it is preferable that total content is in the said range.
  • the polishing liquid preferably contains water.
  • the water contained in the polishing liquid is not particularly limited, but ion exchange water, pure water, or the like can be used.
  • the water content is not particularly limited, but is preferably 90 to 99% by mass based on the total mass of the polishing liquid.
  • the polishing liquid may contain a metal impurity containing a metal atom.
  • metal impurities containing metal atoms are metal ions and solids (metal simple substance, particulate metal-containing compounds, etc.). These are hereinafter collectively referred to as “metal particles”. .) Is intended as a metal impurity contained in the polishing liquid.
  • the metal atom is an Fe atom
  • a solid containing Fe ion and Fe atom is applicable.
  • the content of metal atoms contained in the metal impurities in the polishing liquid is intended to be the content of metal atoms measured by ICP-MS (inductively coupled plasma mass spectrometry).
  • the method for measuring the metal atom content using ICP-MS is as described in the examples described later. Further, the content of metal atoms contained in the metal particles in the polishing liquid is intended to be the content of metal atoms measured by SNP-ICP-MS (single nanoparticle inductively coupled plasma mass spectrometry). The method for measuring the metal atom content using SNP-ICP-MS is as described in the examples described later.
  • the kind in particular of metal atom contained in a metal impurity is not restrict
  • content of the at least 1 sort (s) of specific metal atom chosen from the group which consists of a Fe atom, Cu atom, Ag atom, and Zn atom among the said metal atoms is as follows.
  • the polishing liquid contains one type of specific metal atom selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom
  • the content of the one type of specific metal atom is determined by the polishing liquid.
  • the content of the specific metal atom is in the above range with respect to the total mass of the polishing liquid, dishing and defects on the surface to be polished are less likely to occur, and stability over time is excellent. Further, when two or more specific metal atoms selected from the group consisting of Fe atoms, Cu atoms, Ag atoms, and Zn atoms are contained, the content of each specific metal atom is based on the total mass of the polishing liquid.
  • 0.001 to 200 mass ppb is preferable, 0.01 to 200 mass ppb is more preferable, 0.01 to 100 mass ppb is still more preferable, 0.01 to 50 mass ppb is particularly preferable, and 0.01 to 20 mass ppb. Is most preferred. That is, for example, when two kinds of specific metal atoms of Fe atom and Cu atom are contained in the polishing liquid, both the content of Fe atom and the content of Cu atom are in the range of 0.001 to 200 mass ppb. It is preferable.
  • the polishing liquid contains the metal particles, when the metal particles contain one kind of specific metal atom, the content of one kind is 0.01 to 50 mass ppb is preferable, and 0.01 to 8 mass ppb is more preferable.
  • the polishing liquid contains the metal particles
  • the metal particles when the metal particles contain two or more kinds of specific metal atoms, each content is 0.01 to 50 with respect to the total mass of the polishing liquid.
  • Mass ppb is preferable, and 0.01 to 8 mass ppb is more preferable. That is, for example, when the metal particles containing Fe atoms and the metal particles containing Cu atoms are contained in the polishing liquid, both the Fe atom content and the Cu atom content are in the range of 0.01 to 50 mass ppb. It is preferable to be within.
  • the metal impurities containing the metal atoms may be added to the polishing liquid, or may be inevitably mixed in the chemical liquid in the polishing liquid manufacturing process. As a case where it is inevitably mixed in the manufacturing process of the polishing liquid, for example, when the metal impurity containing the metal atom is contained in a raw material (for example, an organic solvent) used for manufacturing the polishing liquid, and Although mixing (for example, contamination) etc. are mentioned at the manufacturing process of polishing liquid, it is not restrict
  • the polishing liquid is calculated from the following formula (1): hydrogen peroxide and a specific metal atom selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom contained in the metal impurity.
  • the content ratio T1 is preferably 30,000 to 500,000.
  • T1 hydrogen peroxide content / total content of specific metal atoms selected from the group consisting of Fe atoms, Cu atoms, Ag atoms, and Zn atoms contained in metal impurities
  • Hydrogen peroxide generates hydroperoxo species having strong oxidizing power by decomposing using metal atoms such as Fe as a catalyst.
  • the cobalt atom has a lower oxidation potential than the copper atom, which is a wiring metal element, and tends to be relatively easily oxidized. Therefore, when the object to be polished is a cobalt-containing layer, the surface to be polished is easily scraped by the generated hydroperoxo species, and excessive corrosion occurs, resulting in dishing.
  • T1 is 30000 or more in the polishing liquid, the generation of the hydroperoxo species can be further suppressed, so that dishing is less likely to occur on the surface to be polished, and defects on the surface to be polished are less likely to occur.
  • the polishing liquid when the T1 is 500,000 or less, the surface to be polished is sufficiently large because the difference between the hydrogen peroxide content and the metal ion content is sufficiently large (that is, the metal itself is difficult to oxidize). In addition, dishing is less likely to occur, and defects on the polished surface are less likely to occur.
  • the T1 is more preferably 110000 or less and even more preferably 80000 or less in that dishing and defects on the surface to be polished are less likely to occur.
  • the polishing liquid is applied to the second polishing, the T1 is more preferably 100,000 or more, and further preferably 250,000 or more in that dishing and defects on the surface to be polished are less likely to occur.
  • the polishing liquid may contain a compound represented by the following general formula (1).
  • R 1 to R 3 each independently represents a hydrogen atom or an alkyl group.
  • Examples of the compound represented by the general formula (1) include alkaline agents such as ammonia; alkanolamines such as ethanolamine, diethanolamine, triethanolamine, and triisopropanolamine;
  • the content of the compound represented by the general formula (1) in the polishing liquid is preferably 1500 mass ppb or less, more preferably 1000 mass ppb or less, and further preferably 250 mass ppb or less with respect to the total mass of the polishing liquid. It is preferably 8 mass ppb or less.
  • the content of the compound represented by the general formula (1) is 1500 mass ppb or less, the coordination to cobalt on the surface to be polished by the compound is suppressed, and on the other hand, due to the azole compound.
  • a complex layer with cobalt is easily formed. As a result, dishing is less likely to occur on the surface to be polished, and defects on the surface to be polished are less likely to occur.
  • the minimum of content of the compound represented by the said General formula (1) in polishing liquid is not specifically limited, For example, it is 0.00001 mass ppb or more.
  • content of the compound represented by General formula (1) in the said polishing liquid can be measured using GCMS (gas chromatography mass spectrometry). The measurement conditions and the like are as described in the examples.
  • the polishing liquid is suitably used for CMP performed for planarization of a buried wiring (cobalt wiring) or the like when manufacturing a semiconductor integrated circuit device.
  • the polishing liquid is preferably the polishing liquid of Embodiment 1 below, and when the polishing liquid is applied to the second polishing, the polishing liquid of the following Embodiment 2 is used. It is preferable that
  • the polishing liquid of Embodiment 1 is A polishing liquid for chemical mechanical polishing containing colloidal silica having an association degree of 1 to 3, an organic acid, an azole compound, and hydrogen peroxide, The content of the colloidal silica having an association degree of 1 to 3 is 0.01 to 1% by mass with respect to the total mass of the polishing liquid.
  • the organic acid an amino acid is contained
  • the azole compound contains at least two or more triazole compounds, and has a pH of 6.5 to 8.0.
  • reaction layer 1 a reaction layer containing cobalt atoms is formed on the cobalt substrate, and the polishing liquid
  • the metal substrate is contacted with a barrier substrate made of any one metal selected from the group consisting of Ta, TaN, Ti, TiN, Ru, and Mn for 24 hours, the metal contains atoms of the metal on the barrier substrate.
  • the polishing liquid forms a reaction layer (hereinafter also referred to as “reaction layer 2”) having a thickness of 0.01 to 5 nm.
  • the thickness of the reaction layer 2 is 0.01 nm or more, preferably 0.1 nm or more.
  • the thickness of the reaction layer 2 is 5 nm or less, and preferably 3.0 nm or less. If the thickness of the reaction layer 2 is 0.01 nm or more and 5 nm or less, the effect of the present invention is more excellent.
  • the reaction layer 2 is a barrier made of any one metal (barrier metal) selected from the group consisting of Ta, TaN, Ti, TiN, Ru, and Mn having a surface to be polished of 10 mm ⁇ 10 mm. Reaction formed on the surface to be polished of the barrier substrate when a substrate (metal substrate made of a barrier metal) is immersed in 10 mL of polishing liquid and the barrier substrate and the polishing liquid are contacted at 25 ° C. for 24 hours. Intended layer. When the barrier substrate is immersed in the polishing liquid, a laminate in which the barrier substrate and another substrate (for example, a silicon substrate) are stacked may be immersed in the polishing liquid.
  • a substrate metal substrate made of a barrier metal
  • the reaction layer 2 contains any one metal atom (barrier metal atom) selected from the group consisting of Ta, TaN, Ti, TiN, Ru, and Mn.
  • the reaction layer 2 may further contain oxygen atoms and the like, and the reaction layer surface preferably contains a complex of components in the polishing liquid.
  • the thickness of the reaction layer 2 is described in Examples using a scanning electron microscope (SEM) for the cross section of the barrier substrate after contacting the polishing liquid and the barrier substrate for 24 hours. The thickness obtained by observing by this method is intended.
  • the polishing liquid only needs to be able to form the reaction layer 2 on the barrier substrate made of any one metal selected from the group consisting of Ta, TaN, Ti, TiN, Ru, and Mn according to the predetermined conditions. It is preferable that the reaction layer 2 can be formed on each of a substrate made of Ta, a substrate made of TaN, a substrate made of Ti, a substrate made of TiN, a substrate made of Ru, and a substrate made of Mn.
  • the polishing liquid is preferably adjusted so that the polishing rate ratio R1 calculated from the following formula (3) is 250 to 2500 from the viewpoint of further suppressing the occurrence of dishing on the surface to be polished.
  • R1 Cobalt substrate polishing rate with the polishing solution / Barrier substrate polishing rate with the polishing solution
  • the polishing of the barrier layer has a larger contribution of mechanical polishing than chemical polishing. In other words, even if the reaction layer 2 is formed, the polishing rate does not increase greatly. For this reason, when making polishing rate ratio R1 into the said predetermined
  • colloidal silica having an association degree of 1 to 3, the organic acid, the azole compound, and the optional component contained in the polishing liquid of Embodiment 1 are as described above, and the preferred embodiments are also the same. Moreover, it is as above-mentioned also about the said reaction layer 1, A preferable aspect is also the same.
  • the polishing liquid of Embodiment 2 is A polishing liquid for chemical mechanical polishing containing colloidal silica having an association degree of 1 to 3, an organic acid, an azole compound, and hydrogen peroxide,
  • the content of the colloidal silica having the association degree of 1 to 3 is 0.5 to 5% by mass with respect to the total mass of the polishing liquid.
  • As the azole compound a triazole compound is contained, pH is 8.0-10.5, When the polishing liquid and the cobalt substrate are brought into contact for 24 hours, a reaction layer (corresponding to the “reaction layer 1”) having a thickness of 0.5 to 20 nm containing cobalt atoms is formed on the cobalt substrate.
  • reaction layer 3 A polishing liquid in which a 10 nm reaction layer (hereinafter also referred to as “reaction layer 3”) is formed is preferable.
  • the thickness of the reaction layer 3 is 0.01 nm or more, preferably 0.1 nm or more.
  • the thickness of the reaction layer 3 is 10 nm or less, preferably 5 nm or less. If the thickness of the reaction layer 3 is 0.01 nm or more and 10 nm or less, the effect of the present invention is more excellent.
  • the reaction layer 3 is obtained by immersing an insulating film substrate made of any one inorganic component selected from the group consisting of SiOx and SiOC having a surface to be polished of 10 mm ⁇ 10 mm in 10 mL of polishing liquid, The reaction layer formed on the surface to be polished of the insulating film substrate when the insulating film substrate and the polishing liquid are brought into contact at 25 ° C. for 24 hours is intended.
  • a laminate in which the insulating film substrate and another substrate for example, a silicon substrate
  • the reaction layer 3 contains the inorganic component.
  • the reaction layer 3 may further contain oxygen atoms and the like, and the reaction layer surface preferably contains a complex of components in the polishing liquid.
  • the thickness of the reaction layer 3 is determined by measuring the cross section of the insulating film substrate after contacting the polishing liquid and the insulating film substrate for 24 hours using a scanning electron microscope (SEM). The thickness obtained by observation by the method described in 1 is intended.
  • the polishing liquid only needs to be able to form the reaction layer 3 on the insulating film substrate made of any one of the inorganic components selected from the group consisting of SiOx and SiOC under the predetermined conditions. It is preferable that the reaction layer 3 can be formed on each of all the substrates.
  • the polishing liquid is preferably adjusted so that the polishing rate ratio R2 calculated from the following formula (4) is 0.01 to 2.0 from the viewpoint of further suppressing the occurrence of dishing on the surface to be polished. . Further, it is preferable that the polishing rate ratio R3 calculated from the following formula (5) is adjusted to be 0.05 to 2.0.
  • Formula (4): R2 Polishing speed of cobalt substrate with the above polishing liquid / Polishing speed of barrier substrate with the above polishing liquid
  • R3 Polishing rate of cobalt substrate with the polishing solution / Polishing rate of insulating film substrate with the polishing solution
  • the colloidal silica having an association degree of 1 to 3, the organic acid, the azole compound, and the optional component contained in the polishing liquid of Embodiment 2 are as described above.
  • the reaction layer 1 and the reaction layer 2 are also as described above.
  • the polishing liquid can be produced by a known method. For example, it can manufacture by mixing each said component.
  • the order and / or timing of mixing the above components is not particularly limited, and colloidal silica having an association degree of 1 to 3 may be previously dispersed in water adjusted in pH, and predetermined components may be mixed sequentially. Further, hydrogen peroxide, water, or hydrogen peroxide and water may be separately stored until immediately before the use of the abrasive and mixed immediately before use.
  • it is preferable to manufacture the said polishing liquid by the following method which has a dilution process which dilutes with water just before use.
  • a method for producing a polishing liquid according to one embodiment of the present invention provides a polishing liquid stock solution containing colloidal silica having an association degree of 1 to 3, an organic acid, an azole compound, and hydrogen peroxide. It is a method for producing a polishing liquid, which comprises a step of mixing water to obtain the above polishing liquid (hereinafter also referred to as “dilution step”).
  • the dilution step is a step of obtaining a polishing liquid by mixing water with a polishing liquid stock solution containing predetermined components.
  • the aspect of the polishing liquid is as described above. Moreover, it does not restrict
  • the polishing liquid stock solution used in the dilution step is a polishing liquid stock solution containing colloidal silica having an association degree of 1 to 3, an organic acid, an azole compound, and hydrogen peroxide, and further mixed with water.
  • the polishing liquid stock solution is used for producing the polishing liquid.
  • the polishing liquid stock solution it is sufficient that the polishing liquid is obtained by mixing a solvent such as water.
  • a solvent such as water.
  • an organic solvent, a surfactant, a hydrophilic polymer, a pH adjuster, a pH buffer if desired. You may contain an agent, a cobalt anticorrosive, etc.
  • the stock solution of polishing liquid is preferably a liquid obtained by concentrating the polishing liquid used in CMP for 2 to 50 times. That is, the polishing liquid stock solution is used after being diluted 2 to 50 times. Water is preferably used for dilution.
  • the method for producing the polishing liquid stock solution is not particularly limited, and can be produced by a known method. For example, it can manufacture by mixing each said component. The order of mixing the above components is not particularly limited, and colloidal silica may be dispersed in advance in water and / or an organic solvent whose pH has been adjusted, and predetermined components may be sequentially mixed. Further, when the polishing liquid stock solution is diluted 2 to 50 times with water, the pH change before and after dilution is preferably 0.01 to less than 1.
  • the inventor examined the performance state of the polishing stock solution before and after dilution.
  • the pH change before and after dilution was 0.01 to less than 1, it was confirmed that the performance change due to dilution was suppressed. ing. Specifically, it was confirmed that when the pH change before and after the dilution of the polishing liquid stock solution is 0.01 or more, the performance change accompanying the dilution does not substantially occur.
  • the pH change before and after dilution of the polishing liquid stock solution is less than 1, it has been confirmed that the performance change accompanying dilution is small and the performance is not significantly impaired.
  • a concentrated liquid of the polishing liquid containing a predetermined component is prepared, and hydrogen peroxide or hydrogen peroxide and water are added thereto to obtain predetermined characteristics.
  • the method of manufacturing the polishing liquid which has is mentioned.
  • the polishing liquid stock solution container of the present invention comprises the above polishing liquid stock solution and a container made of a metal material containing no iron and containing the above polishing liquid stock solution.
  • the “metal material not containing iron” intends a metal material substantially free of iron.
  • the content of iron atoms is 30% or less, preferably 20% or less, based on the total atomic weight. Intended for metal materials.
  • the above-mentioned polishing liquid stock solution is a metal material that does not contain iron (hereinafter referred to as “non-ferrous metal” from the viewpoint that the impurity content hardly increases even when the polishing liquid stock solution is stored for a predetermined period of time, and that the decomposition of hydrogen peroxide is suppressed. It is desirable to be accommodated in a container formed from “material”. The said container should just be formed with the non-ferrous metal material in the inner wall which contacts polishing liquid stock solution, and it does not specifically limit about another structure.
  • the inner wall is coated with at least one material selected from the group consisting of a nonmetallic material and an electropolished nonmetallic material, or the inner wall is made of a material.
  • a formed container is preferred.
  • the term “coating” means that the inner wall is covered with the material.
  • 70% or more of the total surface area of the inner wall is preferably covered with the material.
  • Non-metallic materials include, for example, polyethylene resin, polypropylene resin, polyethylene-polypropylene resin, ethylene tetrafluoride resin, ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer, ethylene tetrafluoride-hexafluoropropylene copolymer resin Resin materials such as tetrafluoroethylene-ethylene copolymer resin, ethylene trifluoride-ethylene copolymer resin, vinylidene fluoride resin, ethylene trifluoride-chloroethylene copolymer resin, and vinyl fluoride resin; chromium, and And metal materials such as nickel.
  • a nickel-chromium alloy is preferred as the metal material.
  • the nickel-chromium alloy is not particularly limited, and a known nickel-chromium alloy can be used. Among these, a nickel-chromium alloy having a nickel content of 40 to 75% by mass and a chromium content of 1 to 30% by mass is preferable. Examples of the nickel-chromium alloy include Hastelloy (trade name, the same applies hereinafter), Monel (trade name, the same applies hereinafter), Inconel (product name, the same applies hereinafter), and the like.
  • Hastelloy C-276 (Ni content 63% by mass, Cr content 16% by mass), Hastelloy-C (Ni content 60% by mass, Cr content 17% by mass), Hastelloy C-22 (Ni content 61% by mass, Cr content 22% by mass).
  • the nickel-chromium alloy may further contain boron, silicon, tungsten, molybdenum, copper, cobalt, and the like in addition to the above-described alloy as necessary.
  • the method for electropolishing the metal material is not particularly limited, and a known method can be used.
  • a known method can be used.
  • the methods described in paragraphs [0011]-[0014] of JP-A-2015-227501 and paragraphs [0036]-[0042] of JP-A-2008-264929 can be used.
  • the metal material may be buffed.
  • the buffing method is not particularly limited, and a known method can be used.
  • the size of the abrasive grains used for the buffing finish is not particularly limited, but is preferably # 400 or less in that the irregularities on the surface of the metal material are likely to be smaller.
  • the buffing is preferably performed before the electrolytic polishing.
  • a chemical mechanical polishing method including a step of moving the polishing body and the polishing pad relatively to polish the surface to be polished to obtain a polished target body (hereinafter also referred to as “polishing step”). Also referred to as “CMP method”.
  • the object to be polished to which the CMP method according to the above embodiment can be applied is not particularly limited, but the object to be polished (metal) containing at least one cobalt-containing layer selected from the group consisting of cobalt and a cobalt alloy.
  • a substrate with a layer) is preferred.
  • the cobalt alloy containing nickel is preferable.
  • the cobalt alloy contains nickel the nickel content is preferably 10% by mass or less, more preferably 1% by mass or less, still more preferably 0.1% by mass or less, and 0.00001% by mass in the total mass of the cobalt alloy. % Or more is preferable.
  • the electrode may be a through silicon via.
  • the object to be polished used in the CMP method according to the above embodiment can be manufactured by the following method. First, an interlayer insulating film such as silicon dioxide is laminated on a silicon substrate. Next, a concave portion (substrate exposed portion) having a predetermined pattern is formed on the surface of the interlayer insulating film by a known means such as resist layer formation or etching to form an interlayer insulating film composed of convex portions and concave portions.
  • a known means such as resist layer formation or etching to form an interlayer insulating film composed of convex portions and concave portions.
  • any one selected from the group consisting of metal or metal nitride for example, Ta, TaN, Ti, TiN, Ru, and Mn
  • a single metal or metal nitride is preferable.
  • CVD chemical vapor deposition
  • a cobalt-containing layer made of at least one selected from the group consisting of cobalt and a cobalt alloy that covers the barrier layer so as to fill the recesses is deposited, plated, CVD, or the like.
  • the thicknesses of the interlayer insulating film, barrier layer, and metal layer are preferably about 0.01 to 2.0 ⁇ m, 1 to 100 nm, and 0.01 to 2.5 ⁇ m, respectively.
  • the material constituting the barrier layer is not particularly limited, and a known low-resistance metal material can be used. As the low-resistance metal material, Ta, TaN, Ti, TiN, Ru, and Mn are more preferable.
  • the surface to be polished is not particularly limited.
  • the metal wiring manufacturing process using the object to be polished is usually because the metal atom contained in the barrier layer in the object to be polished and the metal atom contained in the cobalt-containing layer are different from each other in chemical and physical properties.
  • CMP is performed in two stages. That is, as described above, CMP is performed on the cobalt-containing layer in the first step, and CMP on the barrier layer is performed in the second step. Note that dishing in which the metal wiring is excessively polished is likely to occur in the first-stage CMP process, and in the second-stage CMP process, the fine metal wiring is densely arranged along with the dishing. Erosion is likely to occur due to excessive polishing of the insulating film at the location (the insulating film is disposed between the metal wirings).
  • the polishing apparatus capable of performing the CMP method is not particularly limited, and a known chemical mechanical polishing apparatus (hereinafter also referred to as “CMP apparatus”) can be used.
  • CMP apparatus for example, a holder that holds an object to be polished (for example, a semiconductor substrate) having a surface to be polished and a polishing pad to which a polishing pad is attached (a motor that can change the number of revolutions is attached).
  • a general CMP apparatus provided with a board can be used.
  • Reflexion manufactured by Applied Materials
  • polishing is preferably performed at a polishing pressure, that is, a pressure generated on the contact surface between the surface to be polished and the polishing pad of 3000 to 25000 Pa, and more preferably 6500 to 14000 Pa. .
  • the polishing is preferably performed at a rotation speed of the polishing platen of 50 to 200 rpm, more preferably 60 to 150 rpm.
  • the holder may be further rotated and / or swayed, the polishing platen may be rotated on a planetary surface, or the belt-like polishing pad may be elongated. It may be moved linearly in one direction.
  • the holder may be in a fixed, rotating, or swinging state.
  • polishing liquid supply method In the CMP method according to the above embodiment, the polishing liquid is continuously supplied to the polishing pad on the polishing surface plate by a pump or the like while the surface to be polished is polished. Although there is no restriction
  • the aspect of the polishing liquid is as described above.
  • the CMP method according to the above embodiment may further include the following steps before the polishing step.
  • the step include a step of mixing water with a polishing solution stock solution containing colloidal silica having an association degree of 1 to 3, an organic acid, an azole compound, and hydrogen peroxide.
  • the aspects of the polishing liquid, the polishing liquid stock solution, and the concentrated liquid are as described above.
  • Each raw material and each catalyst used in each Example shown below are those purified in advance by distillation, ion exchange, filtration or the like using a high purity grade having a purity of 99% by mass or more.
  • the ultrapure water used for the preparation of each polishing liquid was purified by the method described in JP-A-2007-254168. Thereafter, it was used after confirming that the content of each element of Na, Ca and Fe was less than 10 mass ppt with respect to the total mass of each chemical solution, by measurement by the SNP-ICP-MS method described later.
  • the preparation, filling, storage, and analysis of the polishing liquids of the examples and comparative examples were all performed in a clean room that satisfies ISO class 2 or lower. Moreover, the container used in each Example and the comparative example was used after wash
  • the measurement of the content of metal components and the measurement of the content of water are performed by concentrating to 1/100 in terms of volume, and measuring those below the detection limit in normal measurement. The content was calculated in terms of the concentration of the previous polishing liquid.
  • Example 1A Each component shown below was mixed to prepare a chemical mechanical polishing liquid.
  • Colloidal silica degree of association: 2, average primary particle size: 35 nm, product name “PL3”, manufactured by Fuso Chemical Industries
  • 0.1 mass% ⁇ Glycine corresponds to amino acid
  • 5-methylbenzotriazole corresponds to azole compound containing benzotriazole skeleton
  • 3-Amino-1,2,4-triazole corresponds to a compound not containing benzotriazole skeleton and a compound containing 1,2,4-triazole skeleton
  • Ethylene glycol corresponds to organic solvent, partly used as a solvent to dissolve 5-methylbenzotriazole
  • Hydrogen peroxide corresponds to oxidizing agent
  • the pH of the polishing liquid in Table 1 was adjusted to a predetermined value using sulfuric acid and / or potassium hydroxide as necessary.
  • Table 1 refers to Table 1A1, Table 1A2, Table 1B1, Table 1B2, Table 1C1, Table 1C2, Table 1D1, and Table 1D2.
  • Examples 2A to 83A, Comparative Examples 1A to 5A Each component shown in Table 1 was mixed by the same method as in Example 1A to obtain each polishing liquid.
  • each abbreviation in Table 1 shows the following compounds.
  • PL3 Cold silica, product name “PL3”, manufactured by Fuso Chemical Industries, association degree: 2, average primary particle size: 35 nm
  • PL2 Cold silica, product name “PL2”, manufactured by Fuso Chemical Industry Co., Ltd., degree of association: 2, average primary particle size: 25 nm
  • PL3L Coldloidal silica, product name “PL3L”, manufactured by Fuso Chemical Industry Co., Ltd., degree of association: 1, average primary particle size: 35 nm)
  • PL3H Coldloidal silica, product name “PL3H”, manufactured by Fuso Chemical Industries, association degree: 3, average primary particle size: 35 nm
  • ST-PS-MO Cold silica, product name “ST-PS-MO”,
  • Example 1B Each component shown below was mixed to prepare a chemical mechanical polishing liquid.
  • Colloidal silica degree of association: 2, average primary particle size: 35 nm, product name “PL3”, manufactured by Fuso Chemical Industries
  • 3.0% by mass ⁇ CA corresponds to citric acid and organic acid
  • Male corresponds to maleic acid and organic acid
  • Benzotriazole corresponds to azole compound containing benzotriazole skeleton
  • 0.1% by mass 3-amino-1,2,4-triazole corresponds to a compound not containing a benzotriazole skeleton and a compound containing a 1,2,4-triazole skeleton
  • Hydrogen peroxide corresponds to oxidizing agent
  • Ethylene glycol corresponds to organic solvent, partly used as a solvent to dissolve 5-methylbenzotriazole
  • the pH of the polishing liquid in Table 2 was adjusted to a predetermined value using sulfuric acid and / or potassium hydroxide as necessary.
  • Table 2 refers to Table 2A1, Table 2A2, Table 2A3, Table 2B1, Table 2B2, Table 2B3, Table 2C1, Table 2C2, Table 2C3, Table 2D1, Table 2D2, and Table 2D3. .
  • Examples 2B to 82B, Comparative Examples 1B to 3B Each component shown in Table 2 was mixed by the same method as in Example 1B to obtain each polishing liquid.
  • Each abbreviation in Table 2 indicates the following compounds and the like.
  • the same abbreviation in Table 1 is as above-mentioned.
  • CA corresponds to citric acid and organic acid
  • Succinic acid corresponds to organic acid
  • Malic acid corresponds to organic acid
  • Malonic acid corresponds to organic acid
  • Male corresponds to maleic acid and organic acid
  • a silicon substrate on which Ta with a thickness of 1500 nm is deposited is cut into a square of about 10 mm and left in a polyethylene cup with an internal volume of about 100 mL containing 10 mL of the above polishing liquid at room temperature (about 25 ° C.) for 24 hours. Soaked. After immersion, the sample taken out from the polishing liquid was washed with water and further air-dried using nitrogen to obtain a sample having a reaction layer formed on the Ta surface.
  • a silicon substrate on which SiOx having a thickness of 1500 nm is deposited is cut into a square of about 10 mm, and left in a polyethylene cup having an internal volume of about 100 mL containing 10 mL of the above polishing liquid at room temperature (about 25 ° C.) for 24 hours. Soaked. After immersion, the sample taken out from the polishing liquid was washed with water and further air-dried using nitrogen to obtain a sample having a reaction layer formed on the SiOx surface.
  • the sample introduction system used was a quartz torch, a coaxial PFA (perfluoroalkoxyalkane) nebulizer (for self-priming), and a platinum interface cone.
  • the measurement parameters for the cool plasma conditions are as follows.
  • the dispersion treated for 30 minutes was used as a standard substance for transport efficiency measurement.
  • the content of specific metal atoms contained in the metal particles was measured using the following analysis software attached to the manufacturer. -Content of specific metal atoms contained in metal particles: Synistix nano application module dedicated to nanoparticle analysis “SNP-ICP-MS”
  • Polishing is performed while supplying the polishing liquid to the polishing pad under the following conditions.
  • polishing rate and dishing are evaluated.
  • polishing rate and dishing are evaluated.
  • polishing rate and dishing are evaluated.
  • erosion was evaluated.
  • Polishing device Reflexion (manufactured by Applied Materials)
  • Substance to be polished wafer: (1) For polishing rate calculation; each of the above model films (Co film, Ta film, SiOx film, TaN film, Ti film, TiN film, Mn film, Ru film, or SiOC film) having a thickness of 1.5 ⁇ m on a silicon substrate A blanket wafer having a diameter of 300 mm.
  • a barrier metal layer barrier metal: Ta
  • a barrier metal layer barrier metal: Ta
  • a test substrate in which a barrier metal layer (barrier metal: Ta) having a thickness of 100 mm and a cobalt layer having a thickness of 7500 mm are sequentially stacked.
  • polishing rate calculation The blanket wafer of (1) was polished for 60 seconds, and the metal film thickness before and after polishing was calculated from the electrical resistance value at 49 equally spaced locations on the wafer surface. The average value of the values obtained by dividing by was used as the polishing rate (unit: nm / min).
  • Dishing is more than 15 nm and 18 nm or less.
  • F Dishing is more than 18 nm and 21 nm or less.
  • G Dishing is more than 21 nm and 25 nm or less.
  • H Dishing is over 25 nm.
  • polishing rate calculation The blanket wafer of (1) was polished for 60 seconds, and the metal film thickness before and after polishing was calculated from the electrical resistance value at 49 equally spaced locations on the wafer surface. The average value of the values obtained by dividing by was used as the polishing rate (unit: nm / min).
  • Dishing is more than 15 nm and 18 nm or less.
  • F Dishing is more than 18 nm and 21 nm or less.
  • G Dishing is more than 21 nm and 25 nm or less.
  • H Dishing is over 25 nm.
  • E Erosion is more than 15 nm and 20 nm or less.
  • F Erosion is more than 20 nm and 25 nm or less.
  • G Erosion is more than 25 nm and 30 nm or less.
  • H Erosion is over 30 nm.
  • the pattern wafer that had been subjected to the final polishing was evaluated for defect evaluation of the polishing liquid (60 nm or more) using ComPlus (defect inspection apparatus manufactured by AMAT).
  • D Number of defects after polishing exceeds 50 / Wf, 60 pieces / Wf or less
  • E Number of defects after polishing exceeds 60 pieces / Wf, 80 pieces / Wf or less
  • R1 Polishing speed of cobalt substrate with polishing liquid / Polishing speed of barrier substrate with polishing liquid (4)
  • R2 Cobalt substrate polishing rate with polishing solution / Barrier substrate polishing rate with polishing solution Formula (5):
  • R3 Polishing speed of cobalt substrate with polishing liquid / Polishing speed of insulating film substrate with polishing liquid
  • the “metal impurity amount” is a specific metal selected from the group consisting of Fe atoms, Cu atoms, Ag atoms, and Zn atoms The content of the atom with respect to the total mass of the polishing liquid is intended.
  • amount of metal particles means the total amount of polishing liquid of a specific metal atom selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom contained in solid metal impurities among the above metal impurities. Intended for content relative to mass.
  • H 2 O 2 / metal impurity amount (T1) is a value calculated from the following formula (1).
  • T1 Content of hydrogen peroxide / Total content of specific metal atoms selected from the group consisting of Fe atoms, Cu atoms, Ag atoms, and Zn atoms contained in metal impurities.
  • ppb) intends the content of the compound represented by the general formula (1) described above with respect to the total mass of the polishing liquid. The polishing liquid was adjusted with water (remainder) so that the total mass was 100% by mass.
  • Table 1A2, Table 1B2, Table 1C2, and Table 1D2 are respectively the Examples 1A to 83A and Comparative Examples 1A to 5A shown in Table 1A1, Table 1B1, Table 1C1, and Table 1D1, respectively.
  • the various evaluation result about polishing liquid is shown. That is, for example, in the case of Example 1A, Table 1A2 shows various evaluations using the polishing liquid of Table 1A1.
  • the thickness of the Co reaction layer in the polishing liquid of Example 1A is 4 nm
  • the dishing evaluation is 4 nm (corresponding to A)
  • the defect evaluation is A
  • the temporal stability is A.
  • the barrier metal is TaN
  • the thickness of the TaN reaction layer is 0.08 nm.
  • Table 2A2 and Table 2A3, Table 2B2 and Table 2B3, Table 2C2 and Table 2C3, Table 2D2 and Table 2D3 are shown in Table 2A1, Table 2B1 and Table 2C1, respectively.
  • 82B shows various evaluation results for the polishing liquids of Comparative example 1B to 3B. That is, for example, for Example 1B, Table 2A2 and Table 2A3 show various evaluations using the polishing liquid of Table 2A1.
  • the thickness of the Co reaction layer in the polishing liquid of Example 1B is 1 nm
  • dishing evaluation is 3.5 nm (corresponding to A)
  • erosion evaluation is 8.75 nm (corresponding to C)
  • defect evaluation is A
  • stability over time is A. It is.
  • the barrier metal is TaN
  • the thickness of the TaN reaction layer is 0.212 nm.
  • the content of the compound represented by the general formula (1) is 1000 mass ppb or less (preferably 250 mass ppb or less, based on the total mass of the polishing liquid In the case of preferably 8 mass ppb or less), it was confirmed that dishing and defects on the surface to be polished were less likely to occur, and the stability over time was excellent. Further, from the comparison of Examples 1A and 30A to 32A, the content of one specific metal atom selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom contained in the metal impurity is the total amount of the polishing liquid.
  • the polishing liquid is a specific metal selected from the group consisting of Fe atoms, Cu atoms, Ag atoms, and Zn atoms contained in hydrogen peroxide and metal impurities. It was confirmed that when the content ratio T1 with the atom is 30,000 to 500,000 (preferably 30,000 to 110,000, more preferably 30,000 to 80,000), dishing on the surface to be polished is less likely to occur. From the comparison between Example 1A and 39A to 41A, it was confirmed that dishing on the polished surface was less likely to occur when 5-methylbenzotriazole was included as the compound having a benzotriazole skeleton.
  • the average particle diameter ratio T2 before and after chemical mechanical polishing of colloidal silica having an association degree of 1 to 3 is 2.5 or less (preferably 2 or less) from the comparison of Examples 1B and 18B to 20B It was confirmed that defects on the polished surface are less likely to occur. Further, in comparison with Examples 1B and 21B to 23B, when the polishing solution has a pH of 8.2 to 9.5 (preferably 8.7 to 9.5), dishing and erosion on the surface to be polished and It was confirmed that defects are less likely to occur. Further, from the comparison of Examples 1B and 24B to 27B, the content of the compound represented by the general formula (1) is 1000 mass ppb or less (preferably 250 mass ppb or less, based on the total mass of the polishing liquid).
  • the content of one specific metal atom selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom contained in the metal impurity is the total amount of the polishing liquid.
  • dishing, erosion and defects on the surface to be polished are less likely to occur, and the stability over time is excellent.
  • the specific metal atom contained in the metal particle is 0.01 to 50 mass ppb (preferably 0.01 to 8 mass ppb) with respect to the total mass of the polishing liquid, the object to be polished It was confirmed that dishing and erosion on the surface and defects were less likely to occur, and the stability over time was excellent.
  • Example 1B and 40B to 42B From the comparison of Example 1B and 40B to 42B, when benzotriazole, 5-aminobenzotriazole, or 5,6-dimethylbenzoatriazole was contained as the compound having a benzotriazole skeleton, dishing and erosion on the polished surface were observed. It was confirmed that it is less likely to occur. Further, in comparison with Examples 1B, 40B to 48B, 52B, and 53B, a polishing liquid containing a compound having a benzotriazole skeleton and a compound different from the benzotriazole compound as an azole compound is applied to CMP. It was confirmed that dishing and erosion were less likely to occur on the polished surface.
  • the polishing liquid is a specific metal selected from the group consisting of Fe atoms, Cu atoms, Ag atoms, and Zn atoms contained in hydrogen peroxide and metal impurities. It was confirmed that dishing and erosion were less likely to occur on the surface to be polished when the content ratio T1 with the atom was 30,000 to 500,000 (preferably 100,000 to 500,000, more preferably 250,000 to 500,000).
  • Example 84A was prepared in the same manner as in Example 1A, except that each component was changed as shown in Table 3. Note that Example 84A corresponds to a polishing liquid stock solution. Further, water was used as a diluent, and the polishing liquid of Example 84A was diluted 10 times. The pH change before and after dilution was 0.01, and it was confirmed that there was no difference in performance of the polishing liquid before and after dilution.
  • Example 85A was prepared in the same manner as in Example 1A, except that each component was as shown in Table 3. In addition, Example 85A corresponds to a polishing liquid stock solution. Furthermore, the polishing liquid of Example 85A was diluted 50 times using water as a diluent. The pH change before and after dilution was 0.1, and it was confirmed that there was no difference in performance of the polishing liquid before and after dilution.
  • Example 1B (A) to Example 1B (E) Evaluation similar to Example 1B was performed, except that the polishing liquid of Example 1B was used and the dishing evaluation substrate and the erosion evaluation test substrate were changed to the following. The results are shown in Tables 4 to 8 as Examples 1B (A) to 1B (E), respectively.
  • a test substrate in which a barrier metal layer (barrier metal: TaN, Ti, TiN, Ru, or Mn) having a thickness of 100 mm and a cobalt layer having a thickness of 7500 are sequentially stacked.
  • a test substrate in which a barrier metal layer (barrier metal: TaN, Ti, TiN, Ru, or Mn) having a thickness of 100 mm and a cobalt layer having a thickness of 7500 are sequentially stacked.
  • the polishing liquid of Example 1B caused dishing and erosion on the substrate having any barrier metal layer of Ta, TaN, Ti, TiN, Ru, and Mn. It was confirmed that it was suppressed.
  • Example 83B was prepared in the same manner as in Example 1B except that each component was changed as shown in Table 9. Note that Example 83B corresponds to a polishing liquid stock solution. Further, water was used as a diluent, and the polishing solution of Example 83B was diluted twice. The pH change before and after dilution was 0.1, and it was confirmed that there was no difference in performance of the polishing liquid before and after dilution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

One objective of the present invention is to provide a polishing solution which is not likely to cause dishing and defects on a polished surface when applied to CMP of an object to be polished, said object containing a cobalt-containing layer. Another objective of the present invention is to provide a method for producing a polishing solution, a polishing solution stock solution, a polishing solution stock solution containing body, and a chemical mechanical polishing method. A polishing solution according to the present invention is a polishing solution for chemical mechanical polishing, which contains a colloidal silica having a degree of association of 1-3, an organic acid, an azole compound and hydrogen peroxide. If this polishing solution is in contact with a cobalt substrate for 24 hours, a reaction layer that contains cobalt atoms and has a thickness of 0.5-20 nm is formed on the cobalt substrate.

Description

研磨液、研磨液の製造方法、研磨液原液、研磨液原液収容体、化学的機械的研磨方法Polishing liquid, polishing liquid production method, polishing liquid stock solution, polishing liquid stock solution container, chemical mechanical polishing method
 本発明は、研磨液、研磨液の製造方法、研磨液原液、研磨液原液収容体、及び化学的機械的研磨方法に関する。 The present invention relates to a polishing liquid, a manufacturing method of the polishing liquid, a polishing liquid stock solution, a polishing liquid stock solution container, and a chemical mechanical polishing method.
 半導体集積回路(LSI:large-scale integrated circuit)の製造において、ベアウェハの平坦化、層間絶縁膜の平坦化、金属プラグの形成、及び埋め込み配線形成等に化学的機械的研磨(CMP:chemical mechanical polishing)法が用いられている。
 CMPに用いられる研磨液として、例えば特許文献1には、「研磨液と24時間接触した被研磨面に、厚さ100nm以上の反応層が形成されることを特徴とする研磨液。」が記載されている。
In the manufacture of large-scale integrated circuits (LSIs), chemical mechanical polishing (CMP) is used for planarization of bare wafers, planarization of interlayer insulating films, formation of metal plugs, and formation of embedded wiring. ) Method is used.
As a polishing liquid used in CMP, for example, Patent Document 1 describes “a polishing liquid in which a reaction layer having a thickness of 100 nm or more is formed on a surface to be polished that has been in contact with the polishing liquid for 24 hours”. Has been.
特開2004-123931号公報JP 2004-123931 A
 ところで、昨今では、配線の微細化の要求に伴い、銅にかわる配線金属元素としてコバルトが注目されている。
 本発明者は、特許文献1を参照し、砥粒としてコロイダルシリカを配合した研磨液を調製してその特性について検討したところ、コバルト又はその合金からなるコバルト含有層を被研磨体とするCMPにこの研磨液を適用した場合、被研磨体の被研磨面にディッシングが発生しやすいことを知見した。また、被研磨体の被研磨面にはスクラッチ等の表面荒れ及び部分腐食等に起因した欠陥が多く発生することを知見した。
By the way, in recent years, cobalt has attracted attention as a wiring metal element replacing copper, in accordance with the demand for miniaturization of wiring.
The present inventor, referring to Patent Document 1, prepared a polishing liquid in which colloidal silica was blended as abrasive grains and studied its characteristics. It has been found that when this polishing liquid is applied, dishing tends to occur on the surface of the object to be polished. Further, it has been found that many defects due to surface roughness such as scratches and partial corrosion occur on the surface to be polished of the object to be polished.
 そこで、本発明は、コバルト含有層を含む被研磨体のCMPに適用した際に、被研磨面にディッシング及び欠陥が発生しにくい研磨液を提供することを課題とする。
 また、本発明は、研磨液の製造方法、研磨液原液、研磨液原液収容体、及び化学的機械的研磨方法を提供することも課題とする。
Accordingly, an object of the present invention is to provide a polishing liquid in which dishing and defects are unlikely to occur on a surface to be polished when applied to CMP of an object to be polished including a cobalt-containing layer.
Another object of the present invention is to provide a method for producing a polishing liquid, a polishing liquid stock solution, a polishing liquid stock solution container, and a chemical mechanical polishing method.
 本発明者らは、上記課題を達成すべく鋭意検討した結果、所定の成分を含み、コバルト基板と接触させた際に所定の厚みの反応層を形成し得る研磨液が上記課題を解決することができることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記課題を達成することができることを見出した。
As a result of intensive studies to achieve the above-mentioned problems, the inventors of the present invention solve the above-mentioned problems by a polishing liquid containing a predetermined component and capable of forming a reaction layer having a predetermined thickness when brought into contact with a cobalt substrate. The present invention has been completed.
That is, it has been found that the above-described problem can be achieved by the following configuration.
 〔1〕会合度1~3のコロイダルシリカと、
 有機酸と、
 アゾール系化合物と、
 過酸化水素と、を含有し、コバルト含有層を化学的機械的研磨するために用いられる研磨液であって、
 上記研磨液とコバルト基板とを24時間接触させた際に、上記コバルト基板上に、コバルト原子を含有する厚み0.5~20nmの反応層が形成される、研磨液。
 〔2〕 上記会合度1~3のコロイダルシリカの含有量が、研磨液全質量に対して0.01~1質量%であり、
 上記有機酸として、アミノ酸を含有し、
 上記アゾール系化合物として、ベンゾトリアゾール系化合物と、ベンゾトリアゾール系化合物とは異なるアゾール系化合物とを含有し、
 pHが6.5~8.0であり、
 上記研磨液とTa、TaN、Ti、TiN、Ru、及びMnからなる群より選ばれるいずれか1種の金属からなるバリア基板とを24時間接触した際に、上記バリア基板上に、上記金属の原子を含有する厚み0.01~5nmの反応層が形成される、〔1〕に記載の研磨液。
 〔3〕 下記式(3)から算出される研磨速度比R1が250~2500である、〔2〕に記載の研磨液。
 式(3):
 R1=上記研磨液によるコバルト基板の研磨速度/上記研磨液によるバリア基板の研磨速度
 〔4〕 上記会合度1~3のコロイダルシリカの含有量が、研磨液全質量に対して0.5~5質量%であり、
 上記アゾール系化合物として、ベンゾトリアゾール系化合物と、ベンゾトリアゾール系化合物とは異なるアゾール系化合物とを含有し、
 pHが8.0~10.5であり、
 上記研磨液とTa、TaN、Ti、TiN、Ru、及びMnからなる群より選ばれるいずれか1種の金属からなるバリア基板とを24時間接触した際に、上記バリア基板上に上記金属の原子を含有する厚み0.01~5nmの反応層が形成され、
 上記研磨液とSiOx及びSiOCからなる群より選ばれるいずれか1種の無機成分からなる絶縁膜基板とを24時間接触した際に、上記絶縁膜基板上にケイ素原子を含む厚み0.01~10nmの反応層が形成される、〔1〕に記載の研磨液。
 〔5〕 上記有機酸が、マレイン酸、フマル酸、2-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、4-ヒドロキシ安息香酸、フタル酸、イソフタル酸、テレフタル酸、ヘミメリト酸、トリメリト酸、トリメシン酸、メロファン酸、プレーニト酸、ピロメリト酸、メリト酸、ジフェン酸、クエン酸、コハク酸、リンゴ酸、マロン酸、及びアントラニル酸からなる群より選ばれる少なくとも1種であり、
 上記有機酸の含有量が、研磨液全質量に対して、0.01~0.3質量%である、〔4〕に記載の研磨液。
 〔6〕 下記式(4)から算出される研磨速度比R2が0.01~2.0であり、下記式(5)から算出される研磨速度比R3が0.05~2.0である、〔4〕又は〔5〕に記載の研磨液。
 式(4):
 R2=上記研磨液によるコバルト基板の研磨速度/上記研磨液によるバリア基板の研磨速度
 式(5):
 R3=上記研磨液によるコバルト基板の研磨速度/上記研磨液による絶縁膜基板の研磨速度
 〔7〕 上記過酸化水素の含有量が、0.001~5質量%である、〔1〕~〔6〕のいずれかに記載の研磨液。
 〔8〕 更に、金属原子を含有する金属不純物を含有し、
 上記金属不純物は、Fe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる少なくとも1種の特定金属原子を含有し、
 上記特定金属原子が、Fe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる1種である場合、上記特定金属原子の含有量が、研磨液全質量に対して0.01~100質量ppbであり、
 上記特定金属原子が、Fe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる2種以上である場合、それぞれの上記特定金属原子の含有量が、研磨液全質量に対して0.01~100質量ppbである、〔1〕~〔7〕のいずれかに記載の研磨液。 〔9〕 上記金属不純物は、Fe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる少なくとも1種の特定金属原子を含有する金属粒子を含有し、
 上記金属粒子が含有する上記特定金属原子が、Fe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる1種である場合、上記金属粒子が含有する上記特定金属原子の含有量が、研磨液全質量に対して0.01~50質量ppbであり、
 上記金属粒子が含有する上記特定金属原子が、Fe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる2種以上である場合、上記金属粒子が含有するそれぞれの上記特定金属原子の含有量が、研磨液全質量に対して0.01~50質量ppbである、〔8〕に記載の研磨液。
 〔10〕 下記式(1)から算出される含有量比T1が、30000~500000である、〔8〕又は〔9〕に記載の研磨液。
 式(1):T1=上記過酸化水素の含有量/上記金属不純物が含有するFe原子、Cu原子、Ag原子、及びZn原子からなる群より選ばれる特定金属原子の合計含有量
 〔11〕 更に、後述する一般式(1)で表される化合物を含有し、上記一般式(1)で表される化合物が、研磨液全質量に対して、0.00001~1000質量ppbである、〔1〕~〔10〕のいずれかに記載の研磨液。
 〔12〕 更に、有機溶剤を含有し、上記有機溶剤の含有量が、研磨液全質量に対して0.01~20質量%である、〔1〕~〔11〕のいずれかに記載の研磨液。
 〔13〕 更に、N-ココイルサルコシナート、N-ラウロイルサルコシナート、N-ステアロイルサルコシナート、N-オレオイルサルコシナート、N-ミリストイルサルコシナート、N-ラウロイルグリシン、N-ミリストイルグリシン、N-パルミトイルグリシン、N-ラウロイルグルタミン酸、N-ココイルグルタミン酸、N-ココイルグルタミン酸カリウム、N-ラウロイルサルコシナートカリウム、N-ラウロイルアラニナート、N-ミリストイルアラニナート、及びN-ココイルアラニナートカリウムからなる群より選ばれる少なくとも1種の化合物を含有し、上記化合物の総含有量が、研磨液全質量に対して0.001~5質量%である、〔1〕~〔12〕のいずれかに記載の研磨液。
 〔14〕 上記アゾール系化合物として、ベンゾトリアゾール系化合物と、1,2,4-トリアゾール系化合物、ピラゾール系化合物、及びイミダゾール系化合物とからなる群より選ばれるいずれか1種以上と、を含有する、〔2〕~〔13〕のいずれかに記載の研磨液。
 〔15〕 上記会合度1~3のコロイダルシリカの下記式(2)から算出される化学的機械的研磨前後での平均粒子径の比T2が、1~5である、〔1〕~〔14〕のいずれかに記載の研磨液。
 式(2):
 T2=化学的機械的研磨後の平均粒子径/化学的機械的研磨前の平均粒子径
 〔16〕 会合度1~3のコロイダルシリカと、有機酸と、アゾール系化合物と、過酸化水素と、を含有する研磨液原液に対して、水を混合して〔1〕~〔15〕のいずれかに記載の研磨液を得る希釈工程を含有する、研磨液の製造方法。
 〔17〕 会合度1~3のコロイダルシリカと、有機酸と、アゾール系化合物と、過酸化水素と、を含有し、
 〔1〕~〔15〕のいずれかに記載の研磨液を調製するために、2~50倍に希釈して使用される研磨液原液。
 〔18〕 水で2~50倍に希釈した際、希釈前後でのpH変化が0.01~1未満である、〔17〕に記載の研磨液原液。
 〔19〕 〔17〕又は〔18〕に記載の研磨液原液と、上記研磨液原液を収容する、鉄を含有しない金属材料で形成された容器とを有する、研磨液原液収容体。
 〔20〕 研磨定盤に取り付けられた研磨パッドに、〔1〕~〔15〕のいずれかに記載の研磨液を供給しながら、被研磨体の被研磨面を上記研磨パッドに接触させ、上記被研磨体、及び上記研磨パッドを相対的に動かして上記被研磨面を研磨して研磨済み被研磨体を得る工程を含有する、化学的機械的研磨方法。
 〔21〕 上記被研磨体がコバルト及びコバルト合金からなる群から選択される少なくとも1種からなるコバルト含有層を含有する、〔20〕に記載の化学的機械的研磨方法。
[1] Colloidal silica having an association degree of 1 to 3,
An organic acid,
An azole compound,
Hydrogen peroxide, and a polishing liquid used for chemical mechanical polishing of the cobalt-containing layer,
A polishing liquid in which a reaction layer having a thickness of 0.5 to 20 nm containing cobalt atoms is formed on the cobalt substrate when the polishing liquid and the cobalt substrate are brought into contact with each other for 24 hours.
[2] The content of the colloidal silica having the association degree of 1 to 3 is 0.01 to 1% by mass with respect to the total mass of the polishing liquid.
As the organic acid, an amino acid is contained,
As the azole compound, containing a benzotriazole compound and an azole compound different from the benzotriazole compound,
pH is 6.5 to 8.0,
When the polishing liquid and a barrier substrate made of any one metal selected from the group consisting of Ta, TaN, Ti, TiN, Ru, and Mn are contacted for 24 hours, The polishing liquid according to [1], wherein a reaction layer containing atoms and having a thickness of 0.01 to 5 nm is formed.
[3] The polishing liquid according to [2], wherein the polishing rate ratio R1 calculated from the following formula (3) is 250 to 2500.
Formula (3):
R1 = Cobalt substrate polishing rate with the polishing liquid / Barrier substrate polishing rate with the polishing liquid [4] The content of the colloidal silica having the association degree of 1 to 3 is 0.5 to 5 with respect to the total mass of the polishing liquid. Mass%,
As the azole compound, containing a benzotriazole compound and an azole compound different from the benzotriazole compound,
pH is 8.0-10.5,
When the polishing liquid is brought into contact with a barrier substrate made of any one metal selected from the group consisting of Ta, TaN, Ti, TiN, Ru, and Mn for 24 hours, atoms of the metal on the barrier substrate A reaction layer containing 0.01 to 5 nm in thickness is formed,
When the polishing liquid and an insulating film substrate made of any one of inorganic components selected from the group consisting of SiOx and SiOC are brought into contact for 24 hours, a thickness of 0.01 to 10 nm containing silicon atoms on the insulating film substrate The polishing liquid according to [1], wherein the reaction layer is formed.
[5] The organic acid is maleic acid, fumaric acid, 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, phthalic acid, isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, It is at least one selected from the group consisting of merophanic acid, planitic acid, pyromellitic acid, mellitic acid, diphenic acid, citric acid, succinic acid, malic acid, malonic acid, and anthranilic acid,
The polishing liquid according to [4], wherein the content of the organic acid is 0.01 to 0.3% by mass with respect to the total mass of the polishing liquid.
[6] The polishing rate ratio R2 calculated from the following formula (4) is 0.01 to 2.0, and the polishing rate ratio R3 calculated from the following formula (5) is 0.05 to 2.0. , [4] or [5].
Formula (4):
R2 = Polishing speed of cobalt substrate with the above polishing liquid / Polishing speed of barrier substrate with the above polishing liquid Formula (5):
R3 = Polishing rate of cobalt substrate with the polishing solution / Polishing rate of insulating film substrate with the polishing solution [7] The hydrogen peroxide content is 0.001 to 5 mass%, [1] to [6 ] The polishing liquid in any one of.
[8] Furthermore, containing a metal impurity containing a metal atom,
The metal impurity contains at least one specific metal atom selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom,
When the specific metal atom is one selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom, the content of the specific metal atom is 0.01 to 100 mass ppb,
When the specific metal atoms are two or more selected from the group consisting of Fe atoms, Cu atoms, Ag atoms, and Zn atoms, the content of the specific metal atoms is 0 with respect to the total mass of the polishing liquid. The polishing liquid according to any one of [1] to [7], having a mass of 0.01 to 100 mass ppb. [9] The metal impurity contains metal particles containing at least one specific metal atom selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom,
When the specific metal atom contained in the metal particle is one selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom, the content of the specific metal atom contained in the metal particle is , And 0.01 to 50 mass ppb with respect to the total mass of the polishing liquid,
When the specific metal atom contained in the metal particle is two or more selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom, each of the specific metal atom contained in the metal particle The polishing liquid according to [8], wherein the content is 0.01 to 50 mass ppb with respect to the total mass of the polishing liquid.
[10] The polishing liquid according to [8] or [9], wherein the content ratio T1 calculated from the following formula (1) is 30,000 to 500,000.
Formula (1): T1 = content of hydrogen peroxide / total content of specific metal atoms selected from the group consisting of Fe atoms, Cu atoms, Ag atoms, and Zn atoms contained in the metal impurities [11] The compound represented by the general formula (1) described later contains 0.00001 to 1000 mass ppb of the compound represented by the general formula (1) with respect to the total mass of the polishing liquid. ] The polishing liquid according to any one of [10] to [10].
[12] The polishing according to any one of [1] to [11], further comprising an organic solvent, wherein the content of the organic solvent is 0.01 to 20% by mass relative to the total mass of the polishing liquid. liquid.
[13] Further, N-cocoyl sarcosinate, N-lauroyl sarcosinate, N-stearoyl sarcosinate, N-oleoyl sarcosinate, N-myristoyl sarcosinate, N-lauroyl glycine, N-myristoyl glycine N-palmitoyl glycine, N-lauroyl glutamic acid, N-cocoyl glutamic acid, potassium N-cocoyl glutamate, potassium N-lauroyl sarcosinate, N-lauroyl alaninate, N-myristoyl alaninate, and potassium N-cocoyl alaninate Any one of [1] to [12], comprising at least one compound selected from the group consisting of, wherein the total content of the compounds is 0.001 to 5% by mass relative to the total mass of the polishing liquid The polishing liquid as described.
[14] The azole compound contains a benzotriazole compound and any one or more selected from the group consisting of 1,2,4-triazole compounds, pyrazole compounds, and imidazole compounds. , [2] to [13].
[15] The average particle diameter ratio T2 before and after chemical mechanical polishing of the colloidal silica having the degree of association of 1 to 3 calculated from the following formula (2) is 1 to 5, [1] to [14 ] The polishing liquid in any one of.
Formula (2):
T2 = average particle diameter after chemical mechanical polishing / average particle diameter before chemical mechanical polishing [16] Colloidal silica having an association degree of 1 to 3, an organic acid, an azole compound, hydrogen peroxide, A method for producing a polishing liquid, comprising a dilution step of mixing a polishing liquid stock solution containing water with water to obtain the polishing liquid according to any one of [1] to [15].
[17] A colloidal silica having an association degree of 1 to 3, an organic acid, an azole compound, and hydrogen peroxide,
A polishing liquid stock solution used by diluting 2 to 50 times to prepare the polishing liquid according to any one of [1] to [15].
[18] The polishing liquid stock solution according to [17], wherein the pH change before and after dilution is 0.01 to less than 1 when diluted 2 to 50 times with water.
[19] A polishing liquid stock solution container comprising the polishing liquid stock solution according to [17] or [18] and a container made of a metal material containing no iron and containing the polishing liquid stock solution.
[20] While supplying the polishing liquid according to any one of [1] to [15] to the polishing pad attached to the polishing surface plate, the surface to be polished is brought into contact with the polishing pad, A chemical mechanical polishing method comprising a step of relatively moving a polishing object and the polishing pad to polish the surface to be polished to obtain a polished object.
[21] The chemical mechanical polishing method according to [20], wherein the object to be polished contains a cobalt-containing layer composed of at least one selected from the group consisting of cobalt and a cobalt alloy.
 本発明によれば、コバルト含有層を含む被研磨体のCMPに適用した際に、被研磨面にディッシング及び欠陥が発生しにくい研磨液を提供することができる。
 また、本発明によれば、研磨液の製造方法、研磨液原液、研磨液原液収容体、及び化学的機械的研磨方法を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, when it applies to CMP of the to-be-polished body containing a cobalt containing layer, the polishing liquid which a dishing and a defect cannot generate | occur | produce on a to-be-polished surface can be provided.
Moreover, according to this invention, the manufacturing method of polishing liquid, polishing liquid stock solution, polishing liquid stock solution container, and the chemical mechanical polishing method can be provided.
被研磨体の一例を示す断面図である。It is sectional drawing which shows an example of a to-be-polished body. 被研磨体に対して第1研磨を行った後の断面図である。It is sectional drawing after performing 1st grinding | polishing with respect to a to-be-polished body. 被研磨体に対して更に第2研磨を行った後の断面図である。It is sectional drawing after performing 2nd grinding | polishing further with respect to a to-be-polished body.
 以下、本発明について、実施態様に基づき、詳細に説明する。
 なお、以下に記載する構成要件の説明は、本発明の実施態様に基づいてなされるもので、本発明はそのような実施態様に限定されない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
Hereinafter, the present invention will be described in detail based on embodiments.
In addition, description of the component requirement described below is made | formed based on the embodiment of this invention, and this invention is not limited to such an embodiment.
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
[研磨液]
 本発明の研磨液は、会合度1~3のコロイダルシリカと、有機酸と、アゾール系化合物と、過酸化水素と、を含有し、コバルト含有層を化学的機械的研磨するために用いられる研磨液であって、上記研磨液とコバルト基板とを24時間接触させた際に、上記コバルト基板上に、コバルト原子を含有する厚み0.5~20nmの反応層(以下「反応層1」ともいう。)が形成される研磨液である。
[Polishing liquid]
The polishing liquid of the present invention contains a colloidal silica having an association degree of 1 to 3, an organic acid, an azole compound, and hydrogen peroxide, and is used for chemical mechanical polishing of a cobalt-containing layer. When the polishing liquid and the cobalt substrate are brought into contact with each other for 24 hours, a reaction layer containing cobalt atoms and having a thickness of 0.5 to 20 nm (hereinafter also referred to as “reaction layer 1”) is formed on the cobalt substrate. .) Is a polishing liquid to be formed.
 上記研磨液の特徴点の一つとして、研磨液とコバルト基板とを24時間接触させた際に、コバルト基板上に、コバルト原子を含有する厚さ0.5~20nmの反応層が形成される点が挙げられる。 As one of the characteristics of the polishing liquid, when the polishing liquid and the cobalt substrate are brought into contact with each other for 24 hours, a reaction layer having a thickness of 0.5 to 20 nm containing cobalt atoms is formed on the cobalt substrate. A point is mentioned.
 上記反応層の厚さは0.5nm以上であり、2nm以上が好ましい。また、上記反応層の厚さは20nm以下であり、15nm以下が好ましく、10nm以下がより好ましい。 上記反応層の厚さが0.5nm未満であると十分な研磨速度が得られにくい。
 一方、上記反応層の厚さが20nm超であると、被研磨面にディッシングが発生しやすい。上記研磨液は、研磨速度を向上するためにコロイダルシリカを含有する。コロイダルシリカはCMP中に反応層と接触し、反応層を削り取っていくため、所定の条件下で20nm超の反応層を生ずる研磨液である場合、被研磨面が意図したよりも削られてしまい、ディッシングが生ずるものと推測される。
 また、コロイダルシリカの会合度が3を超えると、被研磨面に欠陥が発生しやすく、また、ディッシングも生じやすくなる。会合度が3を超えるコロイダルシリカは、粒子の形が会合度1~3のコロイダルシリカと比べて歪んでいるために、粒子の被研磨面に対する接触面積が小さく、点接触に近い。このため、被研磨面の面粗さが粗くなり欠陥が発生するものと推測される。また、上記反応層の厚みが薄い場合であっても、会合度が3を超えるコロイダルシリカで削ると、被研磨面にディッシングが生じやすいことが確認されている。
 また、研磨液が含有する有機酸及びアゾール系化合物は、上記反応層の形成に寄与するほか、CMPの過程において削り出された金属のイオン化物(コバルトイオンを含む各種金属イオン)と上記コロイダルシリカとの結合を抑制することにも寄与していると推測される。上記金属のイオン化物と上記コロイダルシリカとが結合すると、コロイダルシリカの粒子径が増大し、被研磨面にディッシングがより発生しやすくなり、また、欠陥も発生しやすくなる。
The thickness of the reaction layer is 0.5 nm or more, and preferably 2 nm or more. The thickness of the reaction layer is 20 nm or less, preferably 15 nm or less, and more preferably 10 nm or less. If the thickness of the reaction layer is less than 0.5 nm, it is difficult to obtain a sufficient polishing rate.
On the other hand, if the thickness of the reaction layer exceeds 20 nm, dishing tends to occur on the surface to be polished. The polishing liquid contains colloidal silica in order to improve the polishing rate. Colloidal silica comes into contact with the reaction layer during CMP and scrapes off the reaction layer. Therefore, when the polishing liquid produces a reaction layer of more than 20 nm under predetermined conditions, the surface to be polished is cut more than intended. It is estimated that dishing occurs.
When the degree of association of colloidal silica exceeds 3, defects are likely to occur on the surface to be polished, and dishing is also likely to occur. Colloidal silica having an association degree exceeding 3 is distorted as compared with colloidal silica having an association degree of 1 to 3, so that the contact area of the particles to the polished surface is small and close to point contact. For this reason, it is presumed that the surface roughness of the surface to be polished becomes rough and defects occur. Even when the reaction layer is thin, it has been confirmed that dishing is likely to occur on the surface to be polished if it is scraped with colloidal silica having an association degree exceeding 3.
Further, the organic acid and the azole compound contained in the polishing liquid contribute to the formation of the reaction layer, as well as metal ionized products (various metal ions including cobalt ions) scraped during the CMP process and the colloidal silica. It is presumed that this also contributes to the suppression of the binding. When the metal ionized product and the colloidal silica are combined, the particle size of the colloidal silica increases, dishing is more likely to occur on the surface to be polished, and defects are also likely to occur.
 本明細書における反応層とは、10mm×10mmの被研磨面を備えるコバルト基板(コバルトからなる基板)を、10mLの研磨液に浸漬し、コバルト基板と研磨液とを25℃で24時間接触させた際、コバルト基板の被研磨面上に形成される反応層を意図する。 なお、研磨液にコバルト基板を浸漬する際には、コバルト基板と他の基板(例えば、シリコン基板)とを積層した積層体を研磨液に浸漬する形態であってもよい。 In the present specification, the reaction layer refers to a cobalt substrate (substrate made of cobalt) having a 10 mm × 10 mm surface to be polished, immersed in 10 mL of polishing liquid, and the cobalt substrate and polishing liquid are brought into contact at 25 ° C. for 24 hours. In this case, a reaction layer formed on the polished surface of the cobalt substrate is intended. When the cobalt substrate is immersed in the polishing liquid, a laminate in which the cobalt substrate and another substrate (for example, a silicon substrate) are stacked may be immersed in the polishing liquid.
 上記反応層は、コバルト原子を含有する。上記反応層は、更に酸素原子等を含有してもよく、反応層の表面には研磨液中の成分の錯体を含有することが好ましい。
 ここで、上記反応層の厚さは、研磨液とコバルト基板とを24時間接触させた後、接触後のコバルト基板の断面を走査型電子顕微鏡(SEM:scanning electron microscope)を用いて実施例に記載の方法により観察して得られる厚さを意図する。
The reaction layer contains cobalt atoms. The reaction layer may further contain oxygen atoms and the like, and it is preferable that the surface of the reaction layer contains a complex of components in the polishing liquid.
Here, the thickness of the reaction layer is determined according to the embodiment using a scanning electron microscope (SEM) after the contact between the polishing liquid and the cobalt substrate for 24 hours and the cross section of the contacted cobalt substrate. The thickness obtained by observation by the described method is intended.
〔pH〕
 上記研磨液のpHは特に制限されないが、通常1.0~14.0が好ましい。
[PH]
The pH of the polishing liquid is not particularly limited, but is usually 1.0 to 14.0.
 後述するように、上記研磨液は、半導体集積回路装置の製造に際して埋め込み配線(コバルト配線)の平坦化等のために実施されるCMPに好適に用いられる。
 例えば、上記研磨液は、絶縁膜層と、バリア層と、コバルト含有層とを有する被研磨体のCMPに好適に用いられる。上記被研磨体は、通常、凸部と凹部とを有する絶縁膜層と、絶縁膜層の表面の凹凸に沿って絶縁膜層を被覆するバリア層と、絶縁膜層の凹部を充填するようにバリア層を被覆するコバルト及びその合金からなる群から選択される少なくとも1種からなるコバルト含有層とを有する。図1に上記被研磨体の一例を示す。被研磨体10は、基板12と、基板12上に配置された凹部を有する絶縁膜層14と、絶縁膜層14の表面に追従して配置されたバリア層16と、絶縁膜層14の凹部を充填し、バリア層16を被覆するように配置されたコバルト含有層18とを有する。
 上記被研磨体は、通常、2段階に渡って研磨が実施される。具体的には、図2に示すように、バリア層16が露出するまでコバルト含有層18を研磨する第1研磨と、図3に示すように、絶縁膜層14が露出するまでコバルト含有層18及びバリア層16を研磨する第2研磨とが実施される。上記研磨液は、上記第1研磨及び第2研磨のいずれにも好適に適用できる。
As will be described later, the polishing liquid is suitably used for CMP performed for planarization of a buried wiring (cobalt wiring) or the like when manufacturing a semiconductor integrated circuit device.
For example, the polishing liquid is suitably used for CMP of an object to be polished having an insulating film layer, a barrier layer, and a cobalt-containing layer. The object to be polished is normally filled with an insulating film layer having a convex part and a concave part, a barrier layer covering the insulating film layer along the surface irregularities of the insulating film layer, and a concave part of the insulating film layer. A cobalt-containing layer made of at least one selected from the group consisting of cobalt and an alloy thereof covering the barrier layer. FIG. 1 shows an example of the object to be polished. The object to be polished 10 includes a substrate 12, an insulating film layer 14 having a recess disposed on the substrate 12, a barrier layer 16 disposed following the surface of the insulating film layer 14, and a recess in the insulating film layer 14. And a cobalt-containing layer 18 disposed so as to cover the barrier layer 16.
The object to be polished is usually polished in two stages. Specifically, as shown in FIG. 2, the first polishing for polishing the cobalt-containing layer 18 until the barrier layer 16 is exposed, and as shown in FIG. 3, the cobalt-containing layer 18 until the insulating film layer 14 is exposed. And 2nd grinding | polishing which grind | polishes the barrier layer 16 is implemented. The polishing liquid can be suitably applied to both the first polishing and the second polishing.
 研磨液を上記第1研磨に適用する場合、研磨液のpHは、6.5~8.0がより好ましい。pHが、6.5~8.0の範囲にあると、研磨液をCMPに適用した場合に、所定条件における反応層の厚さを所望の範囲に調整しやすいため、ディッシングがより発生しにくい。ディッシングの発生がさらに一層抑制される点で、なかでも、pHが、6.8~7.8の範囲にあることが好ましく、6.8~7.2の範囲にあることがより好ましい。また、欠陥の一つである研磨傷は、被研磨面の状態、及び研磨液が含有する有機酸の種類に強く影響を受ける。研磨液を上記第1研磨に適用する場合、研磨液は、後述するように有機酸としてアミノ酸を含有することが好ましく、アミノ酸を含有する研磨液は、pHが6.5以上の場合に研磨傷を顕著に抑制でき、欠陥の発生がより抑制されることが確認されている。 When the polishing liquid is applied to the first polishing, the pH of the polishing liquid is more preferably 6.5 to 8.0. When the pH is in the range of 6.5 to 8.0, when the polishing liquid is applied to CMP, the thickness of the reaction layer under a predetermined condition is easily adjusted to a desired range, so that dishing is less likely to occur. . Among them, the pH is preferably in the range of 6.8 to 7.8, and more preferably in the range of 6.8 to 7.2, in view of further suppressing the occurrence of dishing. In addition, polishing scratches that are one of the defects are strongly affected by the state of the surface to be polished and the type of organic acid contained in the polishing liquid. When the polishing liquid is applied to the first polishing, the polishing liquid preferably contains an amino acid as an organic acid, as will be described later, and the polishing liquid containing an amino acid has polishing scratches when the pH is 6.5 or more. It has been confirmed that the occurrence of defects can be further suppressed.
 研磨液を上記第2研磨に適用する場合、研磨液のpHは、8.0~10.5がより好ましい。pHが、8.0~10.5の範囲にあると、研磨液をCMPに適用した場合に、所定条件における反応層の厚さを所望の範囲に調整しやすいため、ディッシングの発生がより抑制される。また、欠陥の一つである研磨傷は、被研磨面の状態、及び研磨液が含有する有機酸の種類に強く影響を受ける。研磨液を上記第2研磨に適用する場合、研磨液は、後述するように有機酸としてマレイン酸、フマル酸、2-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、4-ヒドロキシ安息香酸、フタル酸、イソフタル酸、テレフタル酸、ヘミメリト酸、トリメリト酸、トリメシン酸、メロファン酸、プレーニト酸、ピロメリト酸、メリト酸、ジフェン酸、クエン酸、コハク酸、リンゴ酸、マロン酸、及びアントラニル酸からなる群より選ばれる少なくとも1種を含有することが好ましく、これらの有機酸を含有する研磨液は、pHが8.0以上の場合(好ましくは8.2以上の場合)に研磨傷を顕著に抑制でき、欠陥の発生がより抑制されることが確認されている。被研磨面でのディッシング及び欠陥の発生がさらに一層抑制される点で、pHが、8.2~9.5の範囲にあることが好ましく、8.7~9.5の範囲にあることがより好ましい。 When the polishing liquid is applied to the second polishing, the pH of the polishing liquid is more preferably 8.0 to 10.5. When the pH is in the range of 8.0 to 10.5, when the polishing liquid is applied to CMP, the thickness of the reaction layer under a predetermined condition can be easily adjusted to a desired range, so that the occurrence of dishing is further suppressed. Is done. In addition, polishing scratches that are one of the defects are strongly affected by the state of the surface to be polished and the type of organic acid contained in the polishing liquid. When the polishing liquid is applied to the second polishing, the polishing liquid contains maleic acid, fumaric acid, 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, phthalic acid, Selected from the group consisting of isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, merophanic acid, planitic acid, pyromellitic acid, mellitic acid, diphenic acid, citric acid, succinic acid, malic acid, malonic acid, and anthranilic acid It is preferable that the polishing liquid containing these organic acids can remarkably suppress polishing scratches when the pH is 8.0 or higher (preferably 8.2 or higher). It has been confirmed that the occurrence of is suppressed more. The pH is preferably in the range of 8.2 to 9.5, more preferably in the range of 8.7 to 9.5, in order to further suppress the occurrence of dishing and defects on the surface to be polished. More preferred.
〔コロイダルシリカ〕
 上記研磨液は、会合度1~3のコロイダルシリカを含有する。
 コロイダルシリカは、被研磨体中に形成される反応層を削り取る作用を有する。上記研磨液はコロイダルシリカを含有し、かつ、所定の条件により形成される上記反応層の厚さが0.5~20nmであることが、本発明の効果を奏する理由の一つと推測される。
[Colloidal silica]
The polishing liquid contains colloidal silica having an association degree of 1 to 3.
Colloidal silica has the effect of scraping off the reaction layer formed in the object to be polished. The polishing liquid contains colloidal silica, and the thickness of the reaction layer formed under predetermined conditions is estimated to be 0.5 to 20 nm, which is presumed to be one of the reasons for the effects of the present invention.
 本明細書において、会合度とは、会合度=平均二次粒子径/平均一次粒子径で求められる。
 平均一次粒子径は、日本電子(株)社製の透過型電子顕微鏡TEM2010(加圧電圧200kV)を用いて撮影された画像から任意に選択した一次粒子1000個の粒子径(円相当径)を測定し、それらを算術平均して求める。なお、円相当径とは、観察時の粒子の投影面積と同じ投影面積をもつ真円を想定したときの当該円の直径である。
 平均二次粒子径は、凝集した状態である二次粒子の平均粒子径(円相当径)に相当し、上述した平均一次粒子径と同様の方法により求めることができる。
 コロイダルシリカの会合度は、1~3であり、研磨速度がより優れる点で、1.5~2.5が好ましい。会合度が3を超える場合、機械研磨力が過剰になり、ディッシングが生じやすい。また、被研磨面が粗くなることにより、欠陥も発生しやすくなる。一方、会合度が1未満である場合、所望の研磨速度が得られにくい。なお、コロイダルシリカの平均一次粒子径は特に制限されないが、研磨液がより優れた分散安定性を有する点で、1~100nmが好ましい。
In the present specification, the degree of association is determined by the degree of association = average secondary particle diameter / average primary particle diameter.
The average primary particle diameter is a particle diameter (equivalent circle diameter) of 1000 primary particles arbitrarily selected from an image taken using a transmission electron microscope TEM2010 (pressurized voltage 200 kV) manufactured by JEOL Ltd. Measure and find the arithmetic average. The equivalent circle diameter is the diameter of the circle when assuming a true circle having the same projected area as the projected area of the particles at the time of observation.
The average secondary particle diameter corresponds to the average particle diameter (equivalent circle diameter) of the secondary particles in an aggregated state, and can be obtained by the same method as the above-described average primary particle diameter.
The degree of association of colloidal silica is 1 to 3, and 1.5 to 2.5 is preferable from the viewpoint that the polishing rate is more excellent. When the degree of association exceeds 3, the mechanical polishing force becomes excessive and dishing tends to occur. Further, since the surface to be polished becomes rough, defects are easily generated. On the other hand, when the degree of association is less than 1, it is difficult to obtain a desired polishing rate. The average primary particle diameter of the colloidal silica is not particularly limited, but is preferably 1 to 100 nm from the viewpoint that the polishing liquid has better dispersion stability.
 会合度1~3のコロイダルシリカの市販品としては、例えば、PL2、PL3、PL3H、及びPL3L等(いずれも商品名、扶桑化学工業社製)が挙げられる。
が挙げられる。
Examples of commercially available colloidal silica having an association degree of 1 to 3 include PL2, PL3, PL3H, and PL3L (all trade names are manufactured by Fuso Chemical Industry Co., Ltd.).
Is mentioned.
 会合度1~3のコロイダルシリカの含有量としては特に制限されず、研磨液全質量に対して0.01質量%以上が好ましく、0.05質量%以上がより好ましく、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましく、1質量%以下が特に好ましい。 The content of the colloidal silica having an association degree of 1 to 3 is not particularly limited and is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and preferably 10% by mass or less with respect to the total mass of the polishing liquid. 5 mass% or less is more preferable, 3 mass% or less is still more preferable, and 1 mass% or less is especially preferable.
 研磨液を上記第1研磨に適用する場合、会合度1~3のコロイダルシリカの含有量としては、研磨液全質量に対して0.01~1質量%がより好ましい。会合度1~3のコロイダルシリカの含有量が上記範囲にあると、被研磨面でのディッシングがより発生しにくく、又、より優れた研磨速度が得られる。なかでも、会合度1~3のコロイダルシリカの含有量が、研磨液全質量に対して0.01~0.15質量%の範囲にあると、ディッシングの発生がさらに一層抑制される。 When the polishing liquid is applied to the first polishing, the content of colloidal silica having an association degree of 1 to 3 is more preferably 0.01 to 1% by mass with respect to the total mass of the polishing liquid. When the content of the colloidal silica having an association degree of 1 to 3 is in the above range, dishing on the surface to be polished is less likely to occur, and an excellent polishing rate can be obtained. In particular, when the content of colloidal silica having an association degree of 1 to 3 is in the range of 0.01 to 0.15% by mass with respect to the total mass of the polishing liquid, the occurrence of dishing is further suppressed.
 一方、研磨液を上記第2研磨に適用する場合、会合度1~3のコロイダルシリカの含有量としては、研磨液全質量に対して0.5~5質量%がより好ましい。
 会合度1~3のコロイダルシリカの含有量が上記範囲にあると、被研磨面でのディッシングがより発生しにくく、又、より優れた研磨速度が得られる。なかでも、会合度1~3のコロイダルシリカの含有量が、研磨液全質量に対して0.5~3質量%の範囲にあると、ディッシングの発生がさらに一層抑制される。
On the other hand, when the polishing liquid is applied to the second polishing, the content of colloidal silica having an association degree of 1 to 3 is more preferably 0.5 to 5% by mass with respect to the total mass of the polishing liquid.
When the content of the colloidal silica having an association degree of 1 to 3 is in the above range, dishing on the surface to be polished is less likely to occur, and an excellent polishing rate can be obtained. In particular, when the content of colloidal silica having an association degree of 1 to 3 is in the range of 0.5 to 3% by mass with respect to the total mass of the polishing liquid, the occurrence of dishing is further suppressed.
 なお、会合度1~3のコロイダルシリカは1種を単独で用いても、2種以上を併用してもよい。2種以上の会合度1~3のコロイダルシリカを併用する場合には、合計含有量が上記範囲内であることが好ましい。 Incidentally, colloidal silica having an association degree of 1 to 3 may be used alone or in combination of two or more. When two or more kinds of colloidal silica having an association degree of 1 to 3 are used in combination, the total content is preferably within the above range.
 研磨液中、会合度1~3のコロイダルシリカの下記式(2)から算出される化学的機械的研磨(CMP)前後での平均粒子径の比T2が、5以下であることが好ましい。上記T2が5以下の場合、被研磨面で欠陥がより発生しにくい。上記T2の下限は、1以上であることが好ましい。上記T2は、2.5以下がより好ましく、2以下が更に好ましい。 式(2):
 T2=化学的機械的研磨後の平均粒子径/化学的機械的研磨前の平均粒子径
The average particle diameter ratio T2 before and after chemical mechanical polishing (CMP) calculated from the following formula (2) of colloidal silica having an association degree of 1 to 3 in the polishing liquid is preferably 5 or less. When T2 is 5 or less, defects are less likely to occur on the surface to be polished. The lower limit of T2 is preferably 1 or more. T2 is more preferably 2.5 or less, and even more preferably 2 or less. Formula (2):
T2 = average particle diameter after chemical mechanical polishing / average particle diameter before chemical mechanical polishing
 会合度1~3のコロイダルシリカは、CMPの過程において削り出された金属のイオン化物(コバルトイオンを含む各種金属イオン)と結合して平均粒子径が増大するものと推測される。 It is presumed that colloidal silica having an association degree of 1 to 3 is bonded to metal ionized products (various metal ions including cobalt ions) cut out during the CMP process, thereby increasing the average particle size.
〔過酸化水素〕
 上記研磨液は、酸化剤として過酸化水素を含有する。酸化剤は、被研磨体の被研磨面に存在する研磨対象となる金属を酸化する機能を有する。
〔hydrogen peroxide〕
The polishing liquid contains hydrogen peroxide as an oxidizing agent. The oxidizing agent has a function of oxidizing a metal to be polished existing on the surface to be polished of the object to be polished.
 過酸化水素の含有量としては特に制限されないが、研磨液全質量に対して、0.001~5質量%が好ましい。 The content of hydrogen peroxide is not particularly limited, but is preferably 0.001 to 5% by mass with respect to the total mass of the polishing liquid.
 研磨液を上記第1研磨に適用する場合、研磨液中の過酸化水素の含有量としては、被研磨面でのディッシングがより発生しにくい点で、研磨液全質量に対して、0.001~2.5質量%がより好ましく、0.06~2質量%が更に好ましい。 When the polishing liquid is applied to the first polishing, the content of hydrogen peroxide in the polishing liquid is 0.001 with respect to the total mass of the polishing liquid in that dishing on the surface to be polished is less likely to occur. Is more preferably 2.5% by mass, and still more preferably 0.06-2% by mass.
 一方、研磨液を上記第2研磨に適用する場合、研磨液中の過酸化水素の含有量としては、研磨液全質量に対して、被研磨面でのディッシングがより発生しにくい点で、0.001~3質量%がより好ましく、0.1~1.2質量%が更に好ましく、0.6~1質量%が特に好ましい。 On the other hand, when the polishing liquid is applied to the second polishing, the content of hydrogen peroxide in the polishing liquid is 0 in that dishing on the surface to be polished is less likely to occur with respect to the total mass of the polishing liquid. 0.001 to 3 mass% is more preferable, 0.1 to 1.2 mass% is still more preferable, and 0.6 to 1 mass% is particularly preferable.
〔有機酸〕
 上記研磨液は、有機酸を含有する。有機酸は、金属の酸化促進、研磨液のpH調整、及び緩衝剤としての作用を有する。
 本明細書において、有機酸とは、1分子内に1個以上の酸性基を有する化合物であり、酸性基とは、カルボキシ基、スルホン酸基、及びリン酸基等が挙げられる。
 有機酸としては特に制限されず、公知の有機酸を用いることができる。
 有機酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フマル酸、2-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、4-ヒドロキシ安息香酸、フタル酸、イソフタル酸、テレフタル酸、ヘミメリト酸、トリメリト酸、トリメシン酸、メロファン酸、プレーニト酸、ピロメリト酸、メリト酸、ジフェン酸、クエン酸、コハク酸、リンゴ酸、マロン酸、アントラニル酸、酒石酸、乳酸、ヒドロキシエチルイミノ二酢酸、及びイミノ二酢酸、並びにこれらのアンモニウム塩及びアルカリ金属塩等の塩;グリシン、α-アラニン、β-アラニン、N-メチルグリシン、L-2-アミノ酪酸、L-ノルバリン、L-バリン、L-ロイシン又はその誘導体、L-プロリン、L-オルニチン、L-リシン、タウリン、L-セリン、L-トレオニン、L-アロトレオニン、L-ホモセリン、L-チロシン、L-チロキシン、4-ヒドロキシ-L-プロリン、L-システィン、L-メチオニン、L-エチオニン、L-シスチン又はその誘導体、L-システィン酸、L-アスパラギン酸、L-グルタミン酸、4-アミノ酪酸、L-アスパラギン、L-グルタミン、アザセリン、L-アルギニン、L-カナバニン、L-シトルリン、δ-ヒドロキシ-L-リシン、クレアチン、L-キヌレニン、L-ヒスチジン又はその誘導体、及びL-トリプトファン等のアミノ酸;が挙げられる。
[Organic acid]
The polishing liquid contains an organic acid. The organic acid has an effect of promoting oxidation of the metal, adjusting the pH of the polishing liquid, and acting as a buffer.
In this specification, an organic acid is a compound having one or more acidic groups in one molecule, and examples of the acidic group include a carboxy group, a sulfonic acid group, and a phosphoric acid group.
It does not restrict | limit especially as an organic acid, A well-known organic acid can be used.
Examples of the organic acid include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, and n-heptane. Acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid, 2- Hydroxybenzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, phthalic acid, isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, merophanic acid, planitic acid, pyromellitic acid, melittic acid, diphenic acid, citrate Acid, succinic acid, malic acid, malonic acid, anthranilic acid, tartaric acid, lactic acid, hydroxyethyliminodiacetic acid, And iminodiacetic acid and salts thereof such as ammonium salts and alkali metal salts thereof; glycine, α-alanine, β-alanine, N-methylglycine, L-2-aminobutyric acid, L-norvaline, L-valine, L- Leucine or its derivatives, L-proline, L-ornithine, L-lysine, taurine, L-serine, L-threonine, L-allothreonine, L-homoserine, L-tyrosine, L-thyroxine, 4-hydroxy-L- Proline, L-cystine, L-methionine, L-ethionine, L-cystine or a derivative thereof, L-cystine acid, L-aspartic acid, L-glutamic acid, 4-aminobutyric acid, L-asparagine, L-glutamine, azaserine, L-arginine, L-canavanine, L-citrulline, δ-hydroxy-L-lysine, creatine, L- Nurenin, L- histidine or a derivative thereof, and amino acids L- tryptophan and the like; and the like.
 有機酸の含有量としては特に制限されないが、研磨液全質量に対して、0.01~30質量%が好ましい。
 なお、有機酸は1種を単独で用いても、2種以上を併用してもよい。2種以上の有機酸を併用する場合には、合計含有量が上記範囲内であることが好ましい。
The content of the organic acid is not particularly limited, but is preferably 0.01 to 30% by mass with respect to the total mass of the polishing liquid.
In addition, an organic acid may be used individually by 1 type, or may use 2 or more types together. When two or more organic acids are used in combination, the total content is preferably within the above range.
 研磨液を上記第1研磨に適用する場合、被研磨面でのディッシングがより発生しにくい、及び/又は欠陥がより発生しにくい点で、研磨液は有機酸としてアミノ酸を含有することが好ましく、なかでも、グリシン、α-アラニン、β-アラニン、L-アスパラギン酸、又はN-メチルグリシンがより好ましく、グリシン又はN-メチルグリシンが更に好ましく、グリシンが特に好ましい。 When applying the polishing liquid to the first polishing, it is preferable that the polishing liquid contains an amino acid as an organic acid in that dishing on the surface to be polished is less likely to occur and / or defects are less likely to occur. Among these, glycine, α-alanine, β-alanine, L-aspartic acid, or N-methylglycine is more preferable, glycine or N-methylglycine is more preferable, and glycine is particularly preferable.
 研磨液を上記第1研磨に適用する場合、研磨液中の有機酸の含有量は特に制限されず、研磨液全質量に対して、0.1質量%以上が好ましく、0.8質量%以上がより好ましく、30質量%以下が好ましく、15質量%以下がより好ましく、8質量%以下が更に好ましく、4質量%以下が特に好ましい。
 有機酸の含有量が、研磨液全質量に対して、0.8~4質量%の場合、被研磨面でのディッシング及び欠陥がより発生しにくい。
 有機酸は、1種を単独で用いても、2種以上を併用してもよい。
 また、被研磨面でのディッシングがより発生しにくい、及び/又は欠陥がより発生しにくい点で、アミノ酸と他の有機酸(アミノ酸を含まない。)とを組み合わせて使用することも好ましい。上記有機酸としては、例えば、マレイン酸、フマル酸、2-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、4-ヒドロキシ安息香酸、フタル酸、イソフタル酸、テレフタル酸、ヘミメリト酸、トリメリト酸、トリメシン酸、メロファン酸、プレーニト酸、ピロメリト酸、メリト酸、ジフェン酸、クエン酸、コハク酸、リンゴ酸、マロン酸、又はアントラニル酸が好ましい。なお、アミノ酸と他の有機酸(アミノ酸を含まない。)とを組み合わせて使用する場合には、他の有機酸の含有量は、有機酸の総量に対して、30質量%以下が好ましく、10質量%がより好ましい。なお、その下限は、1質量%以上であることが好ましい。
 2種以上の有機酸を併用する場合には、合計含有量が上記範囲内であることが好ましい。
When the polishing liquid is applied to the first polishing, the content of the organic acid in the polishing liquid is not particularly limited, and is preferably 0.1% by mass or more and 0.8% by mass or more with respect to the total mass of the polishing liquid. Is more preferable, 30 mass% or less is preferable, 15 mass% or less is more preferable, 8 mass% or less is still more preferable, and 4 mass% or less is especially preferable.
When the content of the organic acid is 0.8 to 4% by mass with respect to the total mass of the polishing liquid, dishing and defects on the surface to be polished are less likely to occur.
An organic acid may be used individually by 1 type, or may use 2 or more types together.
In addition, it is also preferable to use a combination of an amino acid and another organic acid (not containing an amino acid) in that dishing on the surface to be polished is less likely to occur and / or defects are less likely to occur. Examples of the organic acid include maleic acid, fumaric acid, 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, phthalic acid, isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, Melofanoic acid, planitic acid, pyromellitic acid, mellitic acid, diphenic acid, citric acid, succinic acid, malic acid, malonic acid or anthranilic acid are preferred. In addition, when using combining an amino acid and another organic acid (an amino acid is not included), the content of other organic acids is preferably 30% by mass or less based on the total amount of organic acids. More preferred is mass%. In addition, it is preferable that the minimum is 1 mass% or more.
When two or more organic acids are used in combination, the total content is preferably within the above range.
 一方、研磨液を上記第2研磨に適用する場合、研磨液は、有機酸として、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フマル酸、2-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、4-ヒドロキシ安息香酸、フタル酸、イソフタル酸、テレフタル酸、ヘミメリト酸、トリメリト酸、トリメシン酸、メロファン酸、プレーニト酸、ピロメリト酸、メリト酸、ジフェン酸、クエン酸、コハク酸、リンゴ酸、マロン酸、アントラニル酸、酒石酸、乳酸、ヒドロキシエチルイミノ二酢酸、及びイミノ二酢酸、並びにこれらのアンモニウム塩及びアルカリ金属塩等の塩よりなる群から選ばれるいずれか1種又は2種以上を含有することが好ましい。なかでも、被研磨面でのディッシングがより発生しにくい、及び/又は欠陥がより発生しにくい点で、マレイン酸、フマル酸、2-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、4-ヒドロキシ安息香酸、フタル酸、イソフタル酸、テレフタル酸、ヘミメリト酸、トリメリト酸、トリメシン酸、メロファン酸、プレーニト酸、ピロメリト酸、メリト酸、ジフェン酸、クエン酸、コハク酸、リンゴ酸、マロン酸、又はアントラニル酸が好ましく、マレイン酸、2-ヒドロキシ安息香酸、4-ヒドロキシ安息香酸、フタル酸、トリメリト酸、クエン酸、コハク酸、リンゴ酸、マロン酸、又はアントラニル酸がより好ましく、マレイン酸、又はクエン酸が更に好ましく、マレイン酸が特に好ましい。
 また、2種以上の有機酸を併用して使用する場合には、被研磨面でのディッシングがより発生しにくい、及び/又は欠陥がより発生しにくい点で、なかでも、マレイン酸と、クエン酸、コハク酸、リンゴ酸、マロン酸、フタル酸、4-ヒドロキシ安息香酸、2-ヒドロキシ安息香酸、アントラニル酸、及びトリメリト酸からなる群より選ばれる少なくとも1種との組み合わせが好ましく、マレイン酸と、クエン酸、マロン酸、4-ヒドロキシ安息香酸、2-ヒドロキシ安息香酸、アントラニル酸、及びトリメリト酸からなる群より選ばれる少なくとも1種との組み合わせがより好ましく、マレイン酸と、クエン酸、4-ヒドロキシ安息香酸、2-ヒドロキシ安息香酸、アントラニル酸、及びトリメリト酸からなる群より選ばれる少なくとも1種との組み合わせが更に好ましい。
On the other hand, when the polishing liquid is applied to the second polishing, the polishing liquid is organic acid such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid. 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, glutaric acid , Adipic acid, pimelic acid, maleic acid, fumaric acid, 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, phthalic acid, isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, merophane Acid, planitic acid, pyromellitic acid, mellitic acid, diphenic acid, citric acid, succinic acid, malic acid, malonic acid, anthranilic acid, liquor Acid, lactic acid, hydroxyethyliminodiacetic acid, and iminodiacetic acid, as well as to contain one kind or two or more species selected from the group consisting of salts such as their ammonium salts and alkali metal salts. Among them, maleic acid, fumaric acid, 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid are less likely to cause dishing on the surface to be polished and / or less likely to cause defects. Phthalic acid, isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, merophanic acid, planitic acid, pyromellitic acid, mellitic acid, diphenic acid, citric acid, succinic acid, malic acid, malonic acid, or anthranilic acid Preferably, maleic acid, 2-hydroxybenzoic acid, 4-hydroxybenzoic acid, phthalic acid, trimellitic acid, citric acid, succinic acid, malic acid, malonic acid, or anthranilic acid are more preferable, and maleic acid or citric acid is further Maleic acid is preferred and particularly preferred.
In addition, when two or more organic acids are used in combination, dishing on the surface to be polished is less likely to occur and / or defects are less likely to occur. A combination with at least one selected from the group consisting of acids, succinic acid, malic acid, malonic acid, phthalic acid, 4-hydroxybenzoic acid, 2-hydroxybenzoic acid, anthranilic acid, and trimellitic acid is preferable. , Citric acid, malonic acid, 4-hydroxybenzoic acid, 2-hydroxybenzoic acid, anthranilic acid, and a combination of at least one selected from the group consisting of trimellitic acid are more preferable. At least one selected from the group consisting of hydroxybenzoic acid, 2-hydroxybenzoic acid, anthranilic acid, and trimellitic acid Combination of more preferable.
 研磨液を上記第2研磨に適用する場合、研磨液中の有機酸の含有量は特に制限されず、研磨液全質量に対して、0.01~30質量%が好ましく、0.01~12質量%がより好ましく、0.01~5質量%がより好ましく、0.01~0.3質量%が更に好ましい。なお、2種以上の有機酸を使用する場合には、合計含有量が上記範囲内であることが好ましい。 When the polishing liquid is applied to the second polishing, the content of the organic acid in the polishing liquid is not particularly limited, and is preferably 0.01 to 30% by mass with respect to the total mass of the polishing liquid, and 0.01 to 12 % By mass is more preferable, 0.01 to 5% by mass is more preferable, and 0.01 to 0.3% by mass is still more preferable. In addition, when using 2 or more types of organic acids, it is preferable that total content is in the said range.
〔アゾール系化合物〕
 上記研磨液は、アゾール系化合物を含有する。アゾール系化合物は、被研磨面の金属表面に反応層を形成する作用を有する。また、後述する過酸化水素による酸化作用を向上させる機能を有する。
 本明細書において、アゾール系化合物とは、窒素原子を1個以上含有する複素五員環を含有する化合物のことを意図し、窒素原子数としては1~4個が好ましい。また、アゾール系化合物は、窒素原子以外の原子をヘテロ原子として含有してもよい。また、アゾール系化合物は、上記複素五員環上に置換基を有してもよい。
[Azole compounds]
The polishing liquid contains an azole compound. The azole compound has a function of forming a reaction layer on the metal surface of the polished surface. Moreover, it has the function to improve the oxidation action by the hydrogen peroxide mentioned later.
In the present specification, an azole compound means a compound containing a hetero five-membered ring containing one or more nitrogen atoms, and the number of nitrogen atoms is preferably 1 to 4. In addition, the azole compound may contain atoms other than nitrogen atoms as heteroatoms. Further, the azole compound may have a substituent on the hetero five-membered ring.
 上記アゾール系化合物としては、例えば、ピロール骨格、イミダゾール骨格、ピラゾール骨格、イソチアゾール骨格、イソオキサゾール骨格、トリアゾール骨格、テトラゾール骨格、イミダゾール骨格、チアゾール骨格、オキサゾール骨格、イソオキサゾール骨格、チアジアゾール骨格、オキサジアゾール骨格、又は、テトラゾール骨格を有する化合物等が挙げられる。
 上記アゾール系化合物としては、上記の骨格に更に芳香族炭化水素環又は芳香族複素環が縮合した多環構造を有するアゾール系化合物であってもよい。上記多環構造を含有するアゾール系化合物としては、例えば、インドール骨格、プリン骨格、インダゾール骨格、ベンゾイミダゾール骨格、カルバゾール骨格、ベンゾオキサゾール骨格、ベンゾチアゾール骨格、ベンゾチアジアゾール骨格、又は、ナフトイミダゾール骨格を含有する化合物等が挙げられる。
Examples of the azole compounds include pyrrole skeleton, imidazole skeleton, pyrazole skeleton, isothiazole skeleton, isoxazole skeleton, triazole skeleton, tetrazole skeleton, imidazole skeleton, thiazole skeleton, oxazole skeleton, isoxazole skeleton, thiadiazole skeleton, oxadi Examples thereof include compounds having an azole skeleton or a tetrazole skeleton.
The azole compound may be an azole compound having a polycyclic structure in which an aromatic hydrocarbon ring or an aromatic heterocyclic ring is further condensed to the skeleton. Examples of the azole compound containing the polycyclic structure include an indole skeleton, a purine skeleton, an indazole skeleton, a benzimidazole skeleton, a carbazole skeleton, a benzoxazole skeleton, a benzothiazole skeleton, a benzothiadiazole skeleton, or a naphthimidazole skeleton. And the like.
 アゾール系化合物が含有しうる置換基としては特に制限されないが、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又は沃素原子)、アルキル基(直鎖、分岐鎖状又は環状のアルキル基であり、ビシクロアルキル基のように多環アルキル基であっても、活性メチン基を含んでもよい)、アルケニル基、アルキニル基、アリール基、ヘテロ環基(置換する位置は問わない)、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、ヘテロ環オキシカルボニル基、カルバモイル基(置換基を有するカルバモイル基としては、例えば、N-ヒドロキシカルバモイル基、N-アシルカルバモイル基、N-スルホニルカルバモイル基、N-カルバモイルカルバモイル基、チオカルバモイル基、及びN-スルファモイルカルバモイル基等が挙げられる。)、カルバゾイル基、カルボキシ基又はその塩、オキサリル基、オキサモイル基、シアノ基、カルボンイミドイル基、ホルミル基、ヒドロキシ基、アルコキシ基(エチレンオキシ基又はプロピレンオキシ基を繰り返し単位として含む基を含む)、アリールオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルボニルオキシ基、カルバモイルオキシ基、スルホニルオキシ基、アミノ基、アシルアミノ基、スルホンアミド基、ウレイド基、チオウレイド基、N-ヒドロキシウレイド基、イミド基、カルボニルアミノ基、スルファモイルアミノ基、セミカルバジド基、チオセミカルバジド基、ヒドラジノ基、アンモニオ基、オキサモイルアミノ基、N-(アルキル又はアリール)スルホニルウレイド基、N-アシルウレイド基、N-アシルスルファモイルアミノ基、ヒドロキシアミノ基、ニトロ基、4級化された窒素原子を含むヘテロ環基(例えば、ピリジニオ基、イミダゾリオ基、キノリニオ基、及びイソキノリニオ基が挙げられる)、イソシアノ基、イミノ基、メルカプト基、(アルキル、アリール、又はヘテロ環)チオ基、(アルキル、アリール、又はヘテロ環)ジチオ基、(アルキル又はアリール)スルホニル基、(アルキル又はアリール)スルフィニル基、スルホ基又はその塩、スルファモイル基(置換基を有するスルファモイル基としては、例えばN-アシルスルファモイル基、及びN-スルホニルスルファモイル基が挙げられる)又はその塩、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、及びシリル基等が挙げられる。
 なかでも、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、又はヘテロ環基が好ましい。
The substituent that the azole compound may contain is not particularly limited, and examples thereof include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), an alkyl group (a linear, branched, or cyclic alkyl group). Yes, it may be a polycyclic alkyl group such as a bicycloalkyl group or may contain an active methine group), an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group (regarding the position of substitution), an acyl group, Alkoxycarbonyl group, aryloxycarbonyl group, heterocyclic oxycarbonyl group, carbamoyl group (Examples of the carbamoyl group having a substituent include N-hydroxycarbamoyl group, N-acylcarbamoyl group, N-sulfonylcarbamoyl group, N-carbamoyl group) Carbamoyl group, thiocarbamoyl group, and N-sulfamoylcarbamo Carbazoyl group, carboxy group or a salt thereof, oxalyl group, oxamoyl group, cyano group, carbonimidoyl group, formyl group, hydroxy group, alkoxy group (ethyleneoxy group or propyleneoxy group is repeated) Aryloxy group, heterocyclic oxy group, acyloxy group, carbonyloxy group, carbamoyloxy group, sulfonyloxy group, amino group, acylamino group, sulfonamido group, ureido group, thioureido group, N- Hydroxyureido group, imide group, carbonylamino group, sulfamoylamino group, semicarbazide group, thiosemicarbazide group, hydrazino group, ammonio group, oxamoylamino group, N- (alkyl or aryl) sulfonylureido group, N-acylureido N-acylsulfamoylamino group, hydroxyamino group, nitro group, heterocyclic group containing a quaternized nitrogen atom (for example, pyridinio group, imidazolio group, quinolinio group, and isoquinolinio group), isocyano Group, imino group, mercapto group, (alkyl, aryl, or heterocyclic) thio group, (alkyl, aryl, or heterocyclic) dithio group, (alkyl or aryl) sulfonyl group, (alkyl or aryl) sulfinyl group, sulfo group Or a salt thereof, a sulfamoyl group (the sulfamoyl group having a substituent includes, for example, N-acylsulfamoyl group and N-sulfonylsulfamoyl group) or a salt thereof, phosphino group, phosphinyl group, phosphinyl Oxy group, phosphinylamino group, silyl group, etc. It is.
Of these, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heterocyclic group is preferable.
 なお、ここで、「活性メチン基」とは、2つの電子求引性基で置換されたメチン基を意味する。「電子求引性基」とは、例えば、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルスルホニル基、アリールスルホニル基、スルファモイル基、トリフルオロメチル基、シアノ基、ニトロ基、又はカルボンイミドイル基を意図する。また、2つの電子求引性基は互いに結合して環状構造をとっていてもよい。また、「塩」とはアルカリ金属、アルカリ土類金属、及び重金属等の陽イオン;アンモニウムイオン、及びホスホニウムイオン等の有機の陽イオン;を意図する。 Here, “active methine group” means a methine group substituted with two electron-attracting groups. The “electron withdrawing group” is, for example, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a carbamoyl group, an alkylsulfonyl group, an arylsulfonyl group, a sulfamoyl group, a trifluoromethyl group, a cyano group, a nitro group, or A carbonimidoyl group is intended. Two electron-withdrawing groups may be bonded to each other to form a cyclic structure. The term “salt” is intended to include cations such as alkali metals, alkaline earth metals, and heavy metals; organic cations such as ammonium ions and phosphonium ions.
 アゾール系化合物としては、被研磨面でのディッシングがより発生しにくい、及び/又は欠陥がより発生しにくい点で、トリアゾール骨格を有する化合物(トリアゾール系化合物)、ピラゾール系化合物、又はイミダゾール骨格を有する化合物(イミダゾール系化合物)が好ましく、トリアゾール骨格を有する化合物がより好ましい。 The azole compound has a triazole skeleton compound (triazole compound), a pyrazole compound, or an imidazole skeleton in that dishing on the polished surface is less likely to occur and / or defects are less likely to occur. A compound (imidazole compound) is preferable, and a compound having a triazole skeleton is more preferable.
 また、トリアゾール骨格を有する化合物のなかでも、被研磨面でのディッシングがより発生しにくい、及び/又は欠陥がより発生しにくい点で、ベンゾトリアゾール骨格を有する化合物(ベンゾトリアゾール系化合物)、又は1,2,4-トリアゾール骨格を有する化合物(1,2,4-トリアゾール系化合物)が好ましく、ベンゾトリアゾール骨格を有する化合物がより好ましい。
 ベンゾトリアゾール骨格を有する化合物としては、例えば、5-メチルベンゾトリアゾール、5-アミノベンゾトリアゾール、ベンゾトリアゾール、及び5,6-ジメチルベ・BR>塔]アトリアゾール等が挙げられる。
 また、1,2,4-トリアゾール骨格を有する化合物としては、例えば、3-アミノ-1,2,4-トリアゾール、又は1,2,4-トリアゾール等が挙げられる。
Further, among compounds having a triazole skeleton, a compound having a benzotriazole skeleton (benzotriazole-based compound) or 1 in that dishing on a polished surface is less likely to occur and / or defects are less likely to occur. , 2,4-triazole skeleton compounds (1,2,4-triazole compounds) are preferred, and benzotriazole skeleton compounds are more preferred.
Examples of the compound having a benzotriazole skeleton include 5-methylbenzotriazole, 5-aminobenzotriazole, benzotriazole, and 5,6-dimethylbenzene · BR> tower] triazole.
Examples of the compound having a 1,2,4-triazole skeleton include 3-amino-1,2,4-triazole or 1,2,4-triazole.
 アゾール系化合物は、1種を単独で用いても、2種以上を併用してもよいが、被研磨面でのディッシングがより発生しにくい、及び/又は欠陥がより発生しにくい点で、ベンゾトリアゾール骨格を有する化合物と、ベンゾトリアゾール系化合物とは異なる化合物(ベンゾトリアゾール骨格を含有しない化合物)とを組み合わせて使用することが好ましい。 ベンゾトリアゾール骨格を含有する化合物は酸化剤である過酸化水素により酸化されたコバルトに強く配位して反応層を形成しやすい。一方で、アゾール系化合物であっても、ベンゾトリアゾール骨格を含有しない化合物は、酸化されたコバルトに比較的弱く配位して反応層を形成しやすい。ベンゾトリアゾール系化合物と、ベンゾトリアゾールとは異なる化合物と、を含有する研磨液をCMPに適用した際に形成される反応層は、ベンゾトリアゾール系化合物により形成される層と、ベンゾトリアゾールとは異なる化合物により形成される層と、を含有すると推測される。
 酸化されたコバルトに強くより配位するベンゾトリアゾール系化合物により形成される層は緻密であり、ディッシングの発生をより抑制する作用を有するものと推測される。 一方、酸化されたコバルトにより弱く配位するベンゾトリアゾール系化合物とは異なる化合物により形成される層は、より除去されやすいため、結果として、優れた研磨速度が得られやすいものと推測される。
 結果、上記作用が相乗することにより、ベンゾトリアゾール骨格を有する化合物と、ベンゾトリアゾール系化合物とは異なる化合物(ベンゾトリアゾール骨格を含有しない化合物)と、を含有する研磨液をCMPに適用した場合、より優れた研磨速度を得ることができ、かつ研磨面にディッシングがより発生しにくい。
The azole compounds may be used alone or in combination of two or more. However, benzoic compounds are less likely to cause dishing on the surface to be polished and / or less likely to cause defects. It is preferable to use a compound having a triazole skeleton in combination with a compound different from the benzotriazole-based compound (a compound not containing a benzotriazole skeleton). A compound containing a benzotriazole skeleton strongly coordinates to cobalt oxidized by hydrogen peroxide that is an oxidizing agent, and easily forms a reaction layer. On the other hand, even if it is an azole-type compound, the compound which does not contain a benzotriazole skeleton is coordinated comparatively weakly to the oxidized cobalt and tends to form a reaction layer. A reaction layer formed when a polishing liquid containing a benzotriazole-based compound and a compound different from benzotriazole is applied to CMP is a layer different from a layer formed from a benzotriazole-based compound and benzotriazole. It is estimated that it contains the layer formed by.
It is presumed that the layer formed of the benzotriazole-based compound strongly coordinated to the oxidized cobalt is dense and has an action of further suppressing the occurrence of dishing. On the other hand, a layer formed of a compound different from the benzotriazole-based compound weakly coordinated with oxidized cobalt is more easily removed, and as a result, it is presumed that an excellent polishing rate is easily obtained.
As a result, when the above action synergizes, when a polishing liquid containing a compound having a benzotriazole skeleton and a compound different from the benzotriazole-based compound (a compound not containing a benzotriazole skeleton) is applied to CMP, An excellent polishing rate can be obtained, and dishing is less likely to occur on the polished surface.
 上記ベンゾトリアゾール骨格を含有しない化合物としては、特に制限されないが、被研磨面でのディッシングがより発生しにくい、及び/又は欠陥がより発生しにくい点で、1,2,4-トリアゾール骨格を有する化合物、ピラゾール系化合物、及びイミダゾール骨格を有する化合物からなる群から選択される少なくとも1種であることが好ましい。 The compound containing no benzotriazole skeleton is not particularly limited, but has a 1,2,4-triazole skeleton in that dishing on the polished surface is less likely to occur and / or defects are less likely to occur. It is preferably at least one selected from the group consisting of a compound, a pyrazole-based compound, and a compound having an imidazole skeleton.
 アゾール系化合物の含有量は特に制限されず、研磨液全質量に対して、0.001~10質量%が好ましい。なお、2種以上のアゾール系化合物を使用する場合には、合計含有量が上記範囲内であることが好ましい。
 研磨液を上記第1研磨に適用する場合、アゾール系化合物の含有量は、研磨液全質量に対して、0.001質量%以上が好ましく、0.01質量%以上がより好ましく、2質量%以下が好ましく、1.3質量%以下がより好ましく、0.4質量%以下が更に好ましい。
 アゾール系化合物の含有量が0.01質量%以上だと、被研磨面にディッシングがより発生しにくい。
 アゾール系化合物の含有量が1.3質量%以下だと、被研磨面にディッシングがより発生しにくく、また、経時安定性により優れる。
 研磨液を上記第1研磨に適用する場合、研磨液が2種以上のアゾール系化合物を含有する(好ましくは、ベンゾトリアゾール骨格を有する化合物と、ベンゾトリアゾール系化合物とは異なる化合物とを含有する)ときは、それぞれの含有量としては特に制限されず、研磨液中において最も含有量が少ないアゾール系化合物に対する、それ以外のアゾール系化合物の含有量の質量比が、5以上が好ましく、100以上がより好ましく、1800以下が好ましく、1300以下がより好ましく、400以下が更に好ましい。また、ベンゾトリアゾール骨格を有する化合物の含有量が、ベンゾトリアゾール系化合物とは異なる化合物の含有量よりも少ないことが好ましい。
The content of the azole compound is not particularly limited, and is preferably 0.001 to 10% by mass with respect to the total mass of the polishing liquid. In addition, when using 2 or more types of azole type compounds, it is preferable that total content is in the said range.
When the polishing liquid is applied to the first polishing, the content of the azole compound is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and more preferably 2% by mass with respect to the total mass of the polishing liquid. The following is preferable, 1.3 mass% or less is more preferable, and 0.4 mass% or less is still more preferable.
When the content of the azole compound is 0.01% by mass or more, dishing is less likely to occur on the polished surface.
When the content of the azole compound is 1.3% by mass or less, dishing is less likely to occur on the surface to be polished, and the stability over time is excellent.
When the polishing liquid is applied to the first polishing, the polishing liquid contains two or more azole compounds (preferably, a compound having a benzotriazole skeleton and a compound different from the benzotriazole compounds). When the content is not particularly limited, the mass ratio of the content of the other azole compound to the azole compound having the smallest content in the polishing liquid is preferably 5 or more, more preferably 100 or more. More preferably, 1800 or less is preferable, 1300 or less is more preferable, and 400 or less is still more preferable. The content of the compound having a benzotriazole skeleton is preferably smaller than the content of a compound different from the benzotriazole-based compound.
 研磨液を上記第2研磨に適用する場合、アゾール系化合物の含有量は、研磨液全質量に対して、0.1質量%以上が好ましく、0.12質量%以上がより好ましく、6質量%以下が好ましく、3.5質量%以下がより好ましく、0.8質量%以下が更に好ましく、0.5質量%以下が特に好ましい。
 アゾール系化合物の含有量が0.12質量%以上だと、被研磨面にディッシングがより発生しにくい。
 アゾール系化合物の含有量が5質量%以下だと、被研磨面にディッシングがより発生しにくく、また、経時安定性により優れる。
 一方、研磨液を上記第2研磨に適用する場合、研磨液が2種以上のアゾール系化合物を含有する(好ましくは、ベンゾトリアゾール骨格を有する化合物と、ベンゾトリアゾール系化合物とは異なる化合物とを含有する)ときは、それぞれの含有量としては特に制限されず、研磨液中において最も含有量が少ないアゾール系化合物に対する、それ以外のアゾール系化合物の含有量の質量比が、0.05以上であることが好ましく、0.5以上がより好ましく、50以下が好ましく、10以下がより好ましい。また、ベンゾトリアゾール骨格を有する化合物の含有量が、ベンゾトリアゾール系化合物とは異なる化合物の含有量よりも多いことが好ましい。
 上記範囲内であると、被研磨面でのディッシングがより発生しにくい、及び/又は欠陥がより発生しにくい。
 なお、研磨液中において最も含有量が少ないアゾール系化合物とは、2種以上のアゾール系化合物のうちで最も含有量が少ないものを意図し、2種以上のアゾール系化合物のうち複数のアゾール系化合物がこれに該当してもよい。
 なお、アゾール系化合物は、3種以上を併用してもよい。3種以上のアゾール系化合物を併用する場合には、各アゾール系化合物の含有量がそれぞれ上記範囲内であることが好ましい。
When the polishing liquid is applied to the second polishing, the content of the azole compound is preferably 0.1% by mass or more, more preferably 0.12% by mass or more, and 6% by mass with respect to the total mass of the polishing liquid. The following is preferable, 3.5% by mass or less is more preferable, 0.8% by mass or less is further preferable, and 0.5% by mass or less is particularly preferable.
When the content of the azole compound is 0.12% by mass or more, dishing is less likely to occur on the polished surface.
When the content of the azole compound is 5% by mass or less, dishing is less likely to occur on the surface to be polished, and the stability over time is excellent.
On the other hand, when the polishing liquid is applied to the second polishing, the polishing liquid contains two or more azole compounds (preferably a compound having a benzotriazole skeleton and a compound different from the benzotriazole compound). )), The content of each is not particularly limited, and the mass ratio of the content of the other azole compound to the azole compound having the smallest content in the polishing liquid is 0.05 or more. Is preferably 0.5 or more, more preferably 50 or less, and even more preferably 10 or less. Further, the content of the compound having a benzotriazole skeleton is preferably larger than the content of a compound different from the benzotriazole-based compound.
Within the above range, dishing on the surface to be polished is less likely to occur and / or defects are less likely to occur.
The azole compound having the smallest content in the polishing liquid is intended to mean the least content of two or more azole compounds, and a plurality of azole compounds of two or more azole compounds. This may be the case for compounds.
In addition, three or more azole compounds may be used in combination. When three or more azole compounds are used in combination, the content of each azole compound is preferably within the above range.
〔任意成分〕
 上記研磨液は、上記以外の成分を任意成分として含有してもよい。以下では任意成分について説明する。
[Optional ingredients]
The polishing liquid may contain components other than the above as optional components. Below, an arbitrary component is demonstrated.
<砥粒>
 上記研磨液は、コロイダルシリカ以外の砥粒を更に含有してもよい。
<Abrasive>
The polishing liquid may further contain abrasive grains other than colloidal silica.
 上記砥粒としては特に制限されず、公知のコロイダルシリカ以外の砥粒を用いることができる。
 砥粒としては例えば、シリカ(コロイダルシリカ以外の沈降シリカ、又はヒュームドシリカ)、アルミナ、ジルコニア、セリア、チタニア、ゲルマニア、及び炭化珪素等の無機物砥粒;ポリスチレン、ポリアクリル、及びポリ塩化ビニル等の有機物砥粒が挙げられる。
The abrasive grains are not particularly limited, and abrasive grains other than known colloidal silica can be used.
Examples of the abrasive grains include inorganic abrasive grains such as silica (precipitated silica other than colloidal silica or fumed silica), alumina, zirconia, ceria, titania, germania, and silicon carbide; polystyrene, polyacryl, polyvinyl chloride, etc. Organic abrasive grains.
<有機溶剤>
 上記研磨液は有機溶剤を含有することが好ましい。有機溶剤としては特に制限されず、公知の有機溶剤を用いることができる。なかでも、水溶性の有機溶剤が好ましい。
 有機溶剤としては、例えば、ケトン系溶剤、エーテル系溶剤、アルコール系溶剤、グリコール系溶剤、グリコールエーテル系溶剤及びアミド系溶剤等が挙げられる。
 より具体的には、例えば、アセトン、メチルエチルケトン、テトラヒドロフラン、ジオキサン、ジメチルアセトアミド、N-メチルピロリドン、ジメチルスルホキシド、アセトニトリル、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、エチレングリコール、プロピレングリコール、及びエトキシエタノール等が挙げられる。
 なかでも、メチルエチルケトン、テトラヒドロフラン、ジオキサン、N-メチルピロリドン、メタノール、エタノール、プロピレングリコール、又はエチレングリコールが好ましく、メタノール、エタノール、プロピレングリコール、又はエチレングリコールがより好まく、メタノール、プロピレングリコール、又はエチレングリコールが更に好ましい。
<Organic solvent>
The polishing liquid preferably contains an organic solvent. It does not restrict | limit especially as an organic solvent, A well-known organic solvent can be used. Of these, water-soluble organic solvents are preferable.
Examples of the organic solvent include ketone solvents, ether solvents, alcohol solvents, glycol solvents, glycol ether solvents, amide solvents, and the like.
More specifically, for example, acetone, methyl ethyl ketone, tetrahydrofuran, dioxane, dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide, acetonitrile, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, ethylene glycol, propylene glycol , And ethoxyethanol.
Among them, methyl ethyl ketone, tetrahydrofuran, dioxane, N-methylpyrrolidone, methanol, ethanol, propylene glycol, or ethylene glycol is preferable, methanol, ethanol, propylene glycol, or ethylene glycol is more preferable, and methanol, propylene glycol, or ethylene glycol. Is more preferable.
 有機溶剤の含有量としては特に制限されないが、本発明の効果がより優れる点で、研磨液全質量に対して、0.01~20質量%が好ましく、0.01~10質量%がより好ましく、0.01~8質量%が更に好ましい。
 有機溶剤の含有量が0.01~20質量%の範囲内であると、被研磨面での欠陥がより発生しにくくなる。
 なお有機溶剤は1種を単独で用いても、2種以上を併用してもよい。2種以上の有機溶剤を併用する場合には、合計含有量が上記範囲内であることが好ましい。
The content of the organic solvent is not particularly limited, but is preferably 0.01 to 20% by mass and more preferably 0.01 to 10% by mass with respect to the total mass of the polishing liquid in terms of more excellent effects of the present invention. 0.01 to 8% by mass is more preferable.
When the content of the organic solvent is in the range of 0.01 to 20% by mass, defects on the surface to be polished are less likely to occur.
In addition, the organic solvent may be used individually by 1 type, or may use 2 or more types together. When two or more organic solvents are used in combination, the total content is preferably within the above range.
<界面活性剤及び/又は親水性ポリマー>
 上記研磨液は界面活性剤及び/又は親水性ポリマーを含有してもよい。界面活性剤及び親水性ポリマー(以下、「親水性高分子」ともいう。)は、研磨液の被研磨面に対する接触角を低下させる作用を有し、研磨液が被研磨面に濡れ広がりやすくなる。
 界面活性剤としては特に制限されず、陰イオン界面活性剤、陽イオン界面活性剤、両性界面活性剤、及び非イオン界面活性剤等からなる群から選択される公知の界面活性剤を用いることができる。
 陰イオン界面活性剤としては、例えば、カルボン酸塩、アルキルベンゼンスルホン酸等のスルホン酸塩、硫酸エステル塩、及びリン酸エステル塩等が挙げられる。
 陽イオン界面活性剤としては、例えば、脂肪族アミン塩、脂肪族4級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、及びイミダゾリニウム塩が挙げられる。
 両性界面活性剤としては、例えば、カルボキシベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン、レシチン、及びアルキルアミンオキサイド等が挙げられる。
 非イオン界面活性剤としては、例えば、エーテル型、エーテルエステル型、エステル型、含窒素型、グリコール型、及びフッ素系界面活性剤等が挙げられる。
 親水性ポリマーとしては、例えば、ポリエチレングリコール等のポリグリコール類、ポリグリコール類のアルキルエーテル、ポリビニルアルコール、ポリビニルピロリドン、アルギン酸等の多糖類、ポリメタクリル酸、及びポリアクリル酸等のカルボン酸含有ポリマー、ポリアクリルアミド、ポリメタクリルアミド、並びに、ポリエチレンイミン等が挙げられる。そのような親水性ポリマーの具体例としては、特開2009-88243号公報0042~0044段落、特開2007-194261号公報0026段落に記載されている水溶性高分子が挙げられる。
<Surfactant and / or hydrophilic polymer>
The polishing liquid may contain a surfactant and / or a hydrophilic polymer. Surfactants and hydrophilic polymers (hereinafter also referred to as “hydrophilic polymers”) have a function of reducing the contact angle of the polishing liquid to the surface to be polished, and the polishing liquid tends to wet and spread on the surface to be polished. .
The surfactant is not particularly limited, and a known surfactant selected from the group consisting of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, a nonionic surfactant, and the like may be used. it can.
Examples of the anionic surfactant include carboxylic acid salts, sulfonic acid salts such as alkylbenzene sulfonic acids, sulfuric acid ester salts, and phosphoric acid ester salts.
Examples of the cationic surfactant include aliphatic amine salts, aliphatic quaternary ammonium salts, benzalkonium chloride salts, benzethonium chloride, pyridinium salts, and imidazolinium salts.
Examples of amphoteric surfactants include carboxybetaine type, aminocarboxylate, imidazolinium betaine, lecithin, and alkylamine oxide.
Examples of the nonionic surfactant include ether type, ether ester type, ester type, nitrogen-containing type, glycol type, and fluorine type surfactant.
Examples of hydrophilic polymers include polyglycols such as polyethylene glycol, alkyl ethers of polyglycols, polysaccharides such as polyvinyl alcohol, polyvinyl pyrrolidone, and alginic acid, carboxylic acid-containing polymers such as polymethacrylic acid, and polyacrylic acid, Examples include polyacrylamide, polymethacrylamide, and polyethyleneimine. Specific examples of such a hydrophilic polymer include water-soluble polymers described in JP2009-88243A, paragraphs 0042 to 0044, and JP2007-194261A, paragraph 0026.
 上記実施態様において、水溶性高分子は、ポリアクリルアミド、ポリメタクリルアミド、ポリエチレンイミン、及び、ポリビニルピロリドンから選ばれる水溶性高分子であることが好ましい。ポリアクリルアミド又はポリメタクリルアミドとしては、窒素原子上にヒドロキシアルキル基を有するもの(例えばN-(2-ヒドロキシエチル)アクリルアミドポリマーなど)又はポリアルキレンオキシ鎖を有する置換基を有するものが好ましく、重量平均分子量は2000~50000であることがより好ましい。ポリエチレンイミンとしては、窒素原子上にポリアルキレンオキシ鎖を有するものが好ましく、下記一般式で表わされる繰り返し単位を有するものがより好ましい。 In the above embodiment, the water-soluble polymer is preferably a water-soluble polymer selected from polyacrylamide, polymethacrylamide, polyethyleneimine, and polyvinylpyrrolidone. As polyacrylamide or polymethacrylamide, those having a hydroxyalkyl group on a nitrogen atom (for example, N- (2-hydroxyethyl) acrylamide polymer) or those having a substituent having a polyalkyleneoxy chain are preferred, and the weight average The molecular weight is more preferably 2000 to 50000. As the polyethyleneimine, those having a polyalkyleneoxy chain on the nitrogen atom are preferred, and those having a repeating unit represented by the following general formula are more preferred.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式において、nは2~200の数(混合物である場合は、その平均数)を表す。
また、ポリエチレンイミンはHLB(Hydrophile-Lipophile Balance)値が16~19であるものを用いることが好ましい。
In the above formula, n represents a number of 2 to 200 (in the case of a mixture, the average number thereof).
Polyethyleneimine preferably has an HLB (Hydrophile-Lipophile Balance) value of 16 to 19.
 界面活性剤又は親水性ポリマーの含有量としては特に制限されないが、研磨液全質量に対して0.00001~2質量%が好ましく、0.0001~1質量%がより好ましく、0.0001~0.5質量%が更に好ましい。界面活性剤又は親水性ポリマーの含有量が0.0001~0.5質量%であると、研磨液をCMPに適用した際に、会合度1~3のコロイダルシリカが化学的機械的研磨後でその平均粒子径が変動しにくく、本発明の効果により優れる。
 なお界面活性剤又は親水性ポリマーは1種を単独で用いても、2種以上を併用してもよい。更に界面活性剤と親水性ポリマーとを併用してもよい。2種以上の界面活性剤、又は2種以上の親水性ポリマー、若しくは界面活性剤及び親水性ポリマーを併用する場合には、合計含有量が上記範囲内であることが好ましい。
The content of the surfactant or the hydrophilic polymer is not particularly limited, but is preferably 0.00001 to 2% by mass, more preferably 0.0001 to 1% by mass, and more preferably 0.0001 to 0% with respect to the total mass of the polishing liquid. More preferably, 5% by mass. When the content of the surfactant or the hydrophilic polymer is 0.0001 to 0.5% by mass, the colloidal silica having an association degree of 1 to 3 is formed after chemical mechanical polishing when the polishing liquid is applied to CMP. The average particle diameter hardly fluctuates and is excellent due to the effect of the present invention.
In addition, surfactant or a hydrophilic polymer may be used individually by 1 type, or may use 2 or more types together. Further, a surfactant and a hydrophilic polymer may be used in combination. When two or more kinds of surfactants, or two or more kinds of hydrophilic polymers, or a surfactant and a hydrophilic polymer are used in combination, the total content is preferably within the above range.
<pH調整剤及び/又はpH緩衝剤>
 上記研磨液は、所定のpHとすべく、更にpH調整剤及び/又はpH緩衝剤を含有してもよい。pH調整剤及び/又はpH緩衝剤としては、酸剤及び/又はアルカリ剤が挙げられる。なお、pH調整剤及びpH緩衝剤は、上記有機酸とは異なる化合物である。
 酸剤としては、特に制限されないが、無機酸が好ましい。無機酸としては、例えば、硫酸、硝酸、ホウ酸、及び燐酸等が挙げられる。なかでも硝酸がより好ましい。
 アルカリ剤としては、特に制限されないが、水酸化アンモニウム及び有機水酸化アンモニウム;水酸化ナトリウム、水酸化カリウム、及び水酸化リチウム等のアルカリ金属水酸化物;炭酸ナトリウム等の炭酸塩;リン酸三ナトリウム等のリン酸塩;ホウ酸塩、及び四ホウ酸塩;等が挙げられる。
 pH調整剤及び/又はpH緩衝剤の含有量としては、pHが所望の範囲に維持されるのに必要な量であれば特に制限されず、通常、研磨液全質量中、0.0001~0.1質量%が好ましい。
<PH adjusting agent and / or pH buffering agent>
The polishing liquid may further contain a pH adjuster and / or a pH buffer so as to have a predetermined pH. Examples of the pH adjusting agent and / or pH buffering agent include acid agents and / or alkali agents. The pH adjusting agent and the pH buffering agent are compounds different from the organic acid.
Although it does not restrict | limit especially as an acid agent, An inorganic acid is preferable. Examples of inorganic acids include sulfuric acid, nitric acid, boric acid, and phosphoric acid. Of these, nitric acid is more preferable.
The alkali agent is not particularly limited, but ammonium hydroxide and organic ammonium hydroxide; alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; carbonates such as sodium carbonate; trisodium phosphate And the like; borate and tetraborate; and the like.
The content of the pH adjusting agent and / or pH buffering agent is not particularly limited as long as it is an amount necessary to maintain the pH in a desired range, and is usually 0.0001 to 0 in the total mass of the polishing liquid. .1% by mass is preferable.
<コバルト防食剤>
 上記研磨液は、コバルトの防食剤として、N-ココイルサルコシナート、N-ラウロイルサルコシナート、N-ステアロイルサルコシナート、N-オレオイルサルコシナート、N-ミリストイルサルコシナート、N-ラウロイルグリシン、N-ミリストイルグリシン、N-パルミトイルグリシン、N-ラウロイルグルタミン酸、N-ココイルグルタミン酸、N-ココイルグルタミン酸カリウム、N-ラウロイルサルコシナートカリウム、N-ラウロイルアラニナート、N-ミリストイルアラニナート、及びN-ココイルアラニナートカリウムからなる群より選ばれる少なくとも1種の化合物を含有することが好ましい。 コバルト防食剤は、被研磨体面内のコバルトに配位して錯体(複合化合物)を形成することにより、コバルトの過剰腐食を抑制する機能を有する。
 上記コバルト防食剤の含有量としては特に制限されないが、研磨液全質量に対して0.001~5質量%が好ましく、0.001~1質量%がより好ましく、0.001~0.5質量%が更に好ましい。上記コバルト防食剤の含有量が0.001~5質量%であると、被研磨面にディッシングがより発生しにくく、また、被研磨面に欠陥がより発生しにくい。
 なお上記コバルト防食剤は1種を単独で用いても、2種以上を併用してもよい。2種以上の上記コバルト防食剤を併用する場合には、合計含有量が上記範囲内であることが好ましい。
<Cobalt anticorrosive>
The above polishing liquid contains N-cocoyl sarcosinate, N-lauroyl sarcosinate, N-stearoyl sarcosinate, N-oleoyl sarcosinate, N-myristoyl sarcosinate, N-lauroyl as an anticorrosive for cobalt. Glycine, N-myristoyl glycine, N-palmitoyl glycine, N-lauroyl glutamic acid, N-cocoyl glutamic acid, N-cocoyl glutamic acid potassium, N-lauroyl sarcosinate potassium, N-lauroyl alaninate, N-myristoyl alaninate, and N -Preferably contains at least one compound selected from the group consisting of potassium cocoyl alaninate. The cobalt anticorrosive has a function of suppressing excessive corrosion of cobalt by forming a complex (composite compound) by coordinating with cobalt in the surface of the object to be polished.
The content of the cobalt anticorrosive is not particularly limited, but is preferably 0.001 to 5% by mass, more preferably 0.001 to 1% by mass, and 0.001 to 0.5% by mass with respect to the total mass of the polishing liquid. % Is more preferable. When the content of the cobalt anticorrosive is 0.001 to 5% by mass, dishing is less likely to occur on the surface to be polished, and defects are less likely to occur on the surface to be polished.
In addition, the said cobalt anticorrosive agent may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of the said cobalt anticorrosive agent together, it is preferable that total content is in the said range.
<水>
 上記研磨液は、水を含有することが好ましい。上記研磨液が含有する水としては、特に制限されないが、イオン交換水、又は純水等を用いることができる。
 水の含有量としては特に制限されないが、研磨液全質量中、通常90~99質量%が好ましい。
<Water>
The polishing liquid preferably contains water. The water contained in the polishing liquid is not particularly limited, but ion exchange water, pure water, or the like can be used.
The water content is not particularly limited, but is preferably 90 to 99% by mass based on the total mass of the polishing liquid.
<金属不純物>
 上記研磨液は、金属原子を含有する金属不純物を含有してもよい。
 なお、本明細書において、「金属原子を含有する金属不純物」とは、金属イオン、及び、固体(金属単体、及び、粒子状の金属含有化合物等。以下、これらを「金属粒子」と総称する。)として研磨液中に含有される金属不純物を意図する。例えば、金属原子がFe原子である場合、Feイオン、及びFe原子を含有する固体が該当する。
 また、本明細書において、研磨液中における、金属不純物が含有する金属原子の含有量は、ICP-MS(inductively coupled plasma mass spectrometry)で測定される金属原子の含有量を意図する。なお、ICP-MSを用いた金属原子の含有量の測定方法は、後述する実施例に記載するとおりである。
 また、研磨液中における、金属粒子が含有する金属原子の含有量は、SNP-ICP-MS(single nanoparticle inductively coupled plasma mass spectrometry)で測定される金属原子の含有量を意図する。なお、SNP-ICP-MSを用いた金属原子の含有量の測定方法は、後述する実施例に記載するとおりである。
<Metal impurities>
The polishing liquid may contain a metal impurity containing a metal atom.
In this specification, “metal impurities containing metal atoms” are metal ions and solids (metal simple substance, particulate metal-containing compounds, etc.). These are hereinafter collectively referred to as “metal particles”. .) Is intended as a metal impurity contained in the polishing liquid. For example, when the metal atom is an Fe atom, a solid containing Fe ion and Fe atom is applicable.
In the present specification, the content of metal atoms contained in the metal impurities in the polishing liquid is intended to be the content of metal atoms measured by ICP-MS (inductively coupled plasma mass spectrometry). The method for measuring the metal atom content using ICP-MS is as described in the examples described later.
Further, the content of metal atoms contained in the metal particles in the polishing liquid is intended to be the content of metal atoms measured by SNP-ICP-MS (single nanoparticle inductively coupled plasma mass spectrometry). The method for measuring the metal atom content using SNP-ICP-MS is as described in the examples described later.
 金属不純物に含まれる金属原子の種類は特に制限されず、例えば、Fe原子、Cu原子、Ag原子、及びZn原子等が挙げられる。
 また、上記金属原子のうち、Fe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる少なくとも1種の特定金属原子の含有量は、下記の通りである。
 上記研磨液が、Fe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる1種の特定金属原子を含有する場合には、その1種の特定金属原子の含有量は、研磨液全質量に対して0.001~200質量ppbとすることが好ましく、0.01~200質量ppbがより好ましく、0.01~100質量ppbが更に好ましく、0.01~50質量ppbが特に好ましく、0.01~20質量ppbが最も好ましい。
 上記特定金属原子の含有量が、研磨液全質量に対して上記範囲にあると、被研磨面でのディッシング及び欠陥がより発生しにくく、経時安定性により優れる。
 また、Fe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる特定金属原子を2種以上含有する場合には、それぞれの特定金属原子の含有量は、研磨液全質量に対して0.001~200質量ppbが好ましく、0.01~200質量ppbがより好ましく、0.01~100質量ppbが更に好ましく、0.01~50質量ppbが特に好ましく、0.01~20質量ppbが最も好ましい。
 つまり、例えば、Fe原子及びCu原子の2種の特定金属原子が研磨液に含まれる場合、Fe原子の含有量及びCu原子の含有量の両者が0.001~200質量ppbの範囲内であることが好ましい。
The kind in particular of metal atom contained in a metal impurity is not restrict | limited, For example, Fe atom, Cu atom, Ag atom, Zn atom, etc. are mentioned.
Moreover, content of the at least 1 sort (s) of specific metal atom chosen from the group which consists of a Fe atom, Cu atom, Ag atom, and Zn atom among the said metal atoms is as follows.
When the polishing liquid contains one type of specific metal atom selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom, the content of the one type of specific metal atom is determined by the polishing liquid. It is preferably 0.001 to 200 mass ppb, more preferably 0.01 to 200 mass ppb, still more preferably 0.01 to 100 mass ppb, and particularly preferably 0.01 to 50 mass ppb based on the total mass. 0.01 to 20 mass ppb is most preferable.
When the content of the specific metal atom is in the above range with respect to the total mass of the polishing liquid, dishing and defects on the surface to be polished are less likely to occur, and stability over time is excellent.
Further, when two or more specific metal atoms selected from the group consisting of Fe atoms, Cu atoms, Ag atoms, and Zn atoms are contained, the content of each specific metal atom is based on the total mass of the polishing liquid. 0.001 to 200 mass ppb is preferable, 0.01 to 200 mass ppb is more preferable, 0.01 to 100 mass ppb is still more preferable, 0.01 to 50 mass ppb is particularly preferable, and 0.01 to 20 mass ppb. Is most preferred.
That is, for example, when two kinds of specific metal atoms of Fe atom and Cu atom are contained in the polishing liquid, both the content of Fe atom and the content of Cu atom are in the range of 0.001 to 200 mass ppb. It is preferable.
 また、被研磨面の欠陥をより低減する観点から、研磨液中、Fe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる少なくとも1種の特定金属原子を含有する金属粒子の含有量を所定範囲に制御することが好ましい。言い換えると、研磨液は、固体状の金属不純物量が適切に調整されることが好ましい。
 上記研磨液が、上記金属粒子を含有する場合には、上記金属粒子が含有する特定金属原子が1種である場合、その1種の含有量は、研磨液全質量に対して0.01~50質量ppbが好ましく、0.01~8質量ppbがより好ましい。
 上記研磨液が、上記金属粒子を含有する場合には、上記金属粒子が含有する特定金属原子が2種以上である場合、それぞれの含有量は、研磨液全質量に対して0.01~50質量ppbが好ましく、0.01~8質量ppbがより好ましい。つまり、例えば、Fe原子を含有する金属粒子及びCu原子を含有する金属粒子が研磨液に含まれる場合、Fe原子の含有量及びCu原子の含有量の両者が0.01~50質量ppbの範囲内であることが好ましい。
In addition, from the viewpoint of further reducing defects on the surface to be polished, inclusion of metal particles containing at least one specific metal atom selected from the group consisting of Fe atoms, Cu atoms, Ag atoms, and Zn atoms in the polishing liquid It is preferable to control the amount within a predetermined range. In other words, it is preferable that the amount of solid metal impurities in the polishing liquid is appropriately adjusted.
When the polishing liquid contains the metal particles, when the metal particles contain one kind of specific metal atom, the content of one kind is 0.01 to 50 mass ppb is preferable, and 0.01 to 8 mass ppb is more preferable.
When the polishing liquid contains the metal particles, when the metal particles contain two or more kinds of specific metal atoms, each content is 0.01 to 50 with respect to the total mass of the polishing liquid. Mass ppb is preferable, and 0.01 to 8 mass ppb is more preferable. That is, for example, when the metal particles containing Fe atoms and the metal particles containing Cu atoms are contained in the polishing liquid, both the Fe atom content and the Cu atom content are in the range of 0.01 to 50 mass ppb. It is preferable to be within.
 上記金属原子を含有する金属不純物は、研磨液中に添加されてもよいし、研磨液の製造工程において不可避的に薬液中に混合されるものであってもよい。研磨液の製造工程において不可避的に混合される場合としては、例えば、上記金属原子を含有する金属不純物が、研磨液の製造に用いる原料(例えば、有機溶剤)に含有されている場合、及び、研磨液の製造工程で混合する(例えば、コンタミネーション)等が挙げられるが、上記に制限されない。 The metal impurities containing the metal atoms may be added to the polishing liquid, or may be inevitably mixed in the chemical liquid in the polishing liquid manufacturing process. As a case where it is inevitably mixed in the manufacturing process of the polishing liquid, for example, when the metal impurity containing the metal atom is contained in a raw material (for example, an organic solvent) used for manufacturing the polishing liquid, and Although mixing (for example, contamination) etc. are mentioned at the manufacturing process of polishing liquid, it is not restrict | limited to the above.
 また、研磨液は、下記式(1)から算出される、過酸化水素と、上記金属不純物が含有するFe原子、Cu原子、Ag原子、及びZn原子からなる群より選ばれる特定金属原子との含有量比T1が、30000~500000であることが好ましい。
 式(1):T1=過酸化水素の含有量/金属不純物が含有するFe原子、Cu原子、Ag原子、及びZn原子からなる群より選ばれる特定金属原子の合計含有量
The polishing liquid is calculated from the following formula (1): hydrogen peroxide and a specific metal atom selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom contained in the metal impurity. The content ratio T1 is preferably 30,000 to 500,000.
Formula (1): T1 = hydrogen peroxide content / total content of specific metal atoms selected from the group consisting of Fe atoms, Cu atoms, Ag atoms, and Zn atoms contained in metal impurities
 過酸化水素は、Fe等の金属原子を触媒として分解することにより、酸化力の強いハイドロパーオキソ種を生じる。一方、コバルト原子は、配線金属元素である銅原子等と比較すると酸化電位が低く、比較的酸化され易い傾向にある。したがって、被研磨体をコバルト含有層とした場合には、上記生成したハイドロパーオキソ種により被研磨面が削られ易く、また、過剰な腐食が生じ、この結果、ディッシングが発生しやすいと推測される。 研磨液中、上記T1が30000以上である場合、上記ハイドロパーオキソ種の生成をより抑制できるため、被研磨面にディッシングがより発生しにくく、また、被研磨面の欠陥もより発生しにくい。
 また、研磨液中、上記T1が500000以下である場合、過酸化水素の含有量と金属イオンの含有量の差が十分に大きい(つまり、金属自身の酸化力が及びにくい)ことにより被研磨面にディッシングがより発生しにくく、また、被研磨面の欠陥もより発生しにくい。
 研磨液を上記第1研磨に適用する場合、被研磨面でのディッシング及び欠陥がより発生しにくい点で、上記T1は110000以下がより好ましく、80000以下が更に好ましい。
 研磨液を上記第2研磨に適用する場合、被研磨面でのディッシング及び欠陥がより発生しにくい点で、上記T1は100000以上がより好ましく、250000以上が更に好ましい。
Hydrogen peroxide generates hydroperoxo species having strong oxidizing power by decomposing using metal atoms such as Fe as a catalyst. On the other hand, the cobalt atom has a lower oxidation potential than the copper atom, which is a wiring metal element, and tends to be relatively easily oxidized. Therefore, when the object to be polished is a cobalt-containing layer, the surface to be polished is easily scraped by the generated hydroperoxo species, and excessive corrosion occurs, resulting in dishing. The When T1 is 30000 or more in the polishing liquid, the generation of the hydroperoxo species can be further suppressed, so that dishing is less likely to occur on the surface to be polished, and defects on the surface to be polished are less likely to occur.
Further, in the polishing liquid, when the T1 is 500,000 or less, the surface to be polished is sufficiently large because the difference between the hydrogen peroxide content and the metal ion content is sufficiently large (that is, the metal itself is difficult to oxidize). In addition, dishing is less likely to occur, and defects on the polished surface are less likely to occur.
When the polishing liquid is applied to the first polishing, the T1 is more preferably 110000 or less and even more preferably 80000 or less in that dishing and defects on the surface to be polished are less likely to occur.
When the polishing liquid is applied to the second polishing, the T1 is more preferably 100,000 or more, and further preferably 250,000 or more in that dishing and defects on the surface to be polished are less likely to occur.
<一般式(1)で表される化合物>
 上記研磨液は、下記一般式(1)で表される化合物を含有してもよい。
 一般式(1):
 N(R)(R)(R
 一般式(1)中、R~Rは、それぞれ独立して、水素原子又はアルキル基を表す。
<Compound represented by the general formula (1)>
The polishing liquid may contain a compound represented by the following general formula (1).
General formula (1):
N (R 1 ) (R 2 ) (R 3 )
In general formula (1), R 1 to R 3 each independently represents a hydrogen atom or an alkyl group.
 上記一般式(1)で表される化合物としては、例えば、アンモニア;エタノールアミン、ジエタノールアミン、トリエタノールアミン、及びトリイソプロパノールアミン等のアルカノールアミン類;等のアルカリ剤が挙げられる。
 上記研磨液中における上記一般式(1)で表される化合物の含有量は、研磨液全質量に対して、1500質量ppb以下が好ましく、1000質量ppb以下がより好ましく、250質量ppb以下が更に好ましく、8質量ppb以下が特に好ましい。
 研磨液中、上記一般式(1)で表される化合物の含有量が1500質量ppb以下であると、上記化合物による被研磨面上のコバルトへの配位が抑制され、一方でアゾール系化合物による上記コバルトとの錯体層が形成され易くなる。この結果、被研磨面にディッシングがより発生しにくく、また、被研磨面の欠陥もより発生しにくい。
 研磨液中、上記一般式(1)で表される化合物の含有量の下限は、特に限定されないが、例えば、0.00001質量ppb以上である。
 なお、上記研磨液中における一般式(1)で表される化合物の含有量は、GCMS(ガスクロマトグラフ質量分析装置;gas chromatography mass spectrometry)を用いて測定することができる。なお、測定条件等は実施例に記載したとおりである。
Examples of the compound represented by the general formula (1) include alkaline agents such as ammonia; alkanolamines such as ethanolamine, diethanolamine, triethanolamine, and triisopropanolamine;
The content of the compound represented by the general formula (1) in the polishing liquid is preferably 1500 mass ppb or less, more preferably 1000 mass ppb or less, and further preferably 250 mass ppb or less with respect to the total mass of the polishing liquid. It is preferably 8 mass ppb or less.
In the polishing liquid, when the content of the compound represented by the general formula (1) is 1500 mass ppb or less, the coordination to cobalt on the surface to be polished by the compound is suppressed, and on the other hand, due to the azole compound. A complex layer with cobalt is easily formed. As a result, dishing is less likely to occur on the surface to be polished, and defects on the surface to be polished are less likely to occur.
Although the minimum of content of the compound represented by the said General formula (1) in polishing liquid is not specifically limited, For example, it is 0.00001 mass ppb or more.
In addition, content of the compound represented by General formula (1) in the said polishing liquid can be measured using GCMS (gas chromatography mass spectrometry). The measurement conditions and the like are as described in the examples.
 上記研磨液は、上述したように、半導体集積回路装置の製造に際して埋め込み配線(コバルト配線)の平坦化等のために実施されるCMPに好適に用いられる。研磨液を上記第1研磨に適用する場合、研磨液は下記実施形態1の研磨液であることが好ましく、研磨液を上記第2研磨に適用する場合、研磨液は下記実施形態2の研磨液であることが好ましい。 As described above, the polishing liquid is suitably used for CMP performed for planarization of a buried wiring (cobalt wiring) or the like when manufacturing a semiconductor integrated circuit device. When the polishing liquid is applied to the first polishing, the polishing liquid is preferably the polishing liquid of Embodiment 1 below, and when the polishing liquid is applied to the second polishing, the polishing liquid of the following Embodiment 2 is used. It is preferable that
《実施形態1の研磨液》
 実施形態1の研磨液は、
 会合度1~3のコロイダルシリカと、有機酸と、アゾール系化合物と、過酸化水素と、を含有する化学的機械的研磨用の研磨液であって、
 上記会合度1~3のコロイダルシリカの含有量が、研磨液全質量に対して0.01~1質量%であり、
 上記有機酸として、アミノ酸を含有し、
 上記アゾール系化合物として、少なくとも2種以上のトリアゾール系化合物を含有し、 pHが6.5~8.0であり、
 上記研磨液とコバルト基板とを24時間接触させた際に、上記コバルト基板上に、コバルト原子を含有する厚み0.5~20nmの反応層(反応層1)が形成され、さらに、 上記研磨液とTa、TaN、Ti、TiN、Ru、及びMnからなる群より選ばれるいずれか1種の金属からなるバリア基板とを24時間接触した際に、上記バリア基板上に、上記金属の原子を含有する厚み0.01~5nmの反応層(以下「反応層2」ともいう。)が形成される研磨液であることが好ましい。
<< Polishing liquid of Embodiment 1 >>
The polishing liquid of Embodiment 1 is
A polishing liquid for chemical mechanical polishing containing colloidal silica having an association degree of 1 to 3, an organic acid, an azole compound, and hydrogen peroxide,
The content of the colloidal silica having an association degree of 1 to 3 is 0.01 to 1% by mass with respect to the total mass of the polishing liquid.
As the organic acid, an amino acid is contained,
The azole compound contains at least two or more triazole compounds, and has a pH of 6.5 to 8.0.
When the polishing liquid and the cobalt substrate are contacted for 24 hours, a reaction layer (reaction layer 1) containing cobalt atoms is formed on the cobalt substrate, and the polishing liquid When the metal substrate is contacted with a barrier substrate made of any one metal selected from the group consisting of Ta, TaN, Ti, TiN, Ru, and Mn for 24 hours, the metal contains atoms of the metal on the barrier substrate. It is preferable that the polishing liquid forms a reaction layer (hereinafter also referred to as “reaction layer 2”) having a thickness of 0.01 to 5 nm.
 上記反応層2の厚さは0.01nm以上であり、0.1nm以上が好ましい。また、上記反応層2の厚さは5nm以下であり、3.0nm以下が好ましい。
 上記反応層2の厚さが0.01nm以上および5nm以下であれば、本発明の効果がより優れる。
The thickness of the reaction layer 2 is 0.01 nm or more, preferably 0.1 nm or more. The thickness of the reaction layer 2 is 5 nm or less, and preferably 3.0 nm or less.
If the thickness of the reaction layer 2 is 0.01 nm or more and 5 nm or less, the effect of the present invention is more excellent.
 本明細書における反応層2とは、10mm×10mmの被研磨面を備えるTa、TaN、Ti、TiN、Ru、及びMnからなる群より選ばれるいずれか1種の金属(バリア金属)からなるバリア基板(バリア金属からなる金属基板)を、10mLの研磨液に浸漬し、上記バリア基板と研磨液とを25℃で24時間接触させた際、上記バリア基板の被研磨面上に形成される反応層を意図する。
 なお、研磨液に上記バリア基板を浸漬する際には、上記バリア基板と他の基板(例えば、シリコン基板)とを積層した積層体を研磨液に浸漬する形態であってもよい。
In this specification, the reaction layer 2 is a barrier made of any one metal (barrier metal) selected from the group consisting of Ta, TaN, Ti, TiN, Ru, and Mn having a surface to be polished of 10 mm × 10 mm. Reaction formed on the surface to be polished of the barrier substrate when a substrate (metal substrate made of a barrier metal) is immersed in 10 mL of polishing liquid and the barrier substrate and the polishing liquid are contacted at 25 ° C. for 24 hours. Intended layer.
When the barrier substrate is immersed in the polishing liquid, a laminate in which the barrier substrate and another substrate (for example, a silicon substrate) are stacked may be immersed in the polishing liquid.
 上記反応層2は、Ta、TaN、Ti、TiN、Ru、及びMnからなる群より選ばれるいずれか1種の金属の原子(バリア金属原子)を含有する。上記反応層2は、更に酸素原子等を含有してもよく、反応層の表面には研磨液中の成分の錯体を含有することが好ましい。
 ここで、上記反応層2の厚さは、研磨液と上記バリア基板とを24時間接触させた後、接触後の上記バリア基板の断面を走査型電子顕微鏡(SEM)を用いて実施例に記載の方法により観察して得られる厚さを意図する。
The reaction layer 2 contains any one metal atom (barrier metal atom) selected from the group consisting of Ta, TaN, Ti, TiN, Ru, and Mn. The reaction layer 2 may further contain oxygen atoms and the like, and the reaction layer surface preferably contains a complex of components in the polishing liquid.
Here, the thickness of the reaction layer 2 is described in Examples using a scanning electron microscope (SEM) for the cross section of the barrier substrate after contacting the polishing liquid and the barrier substrate for 24 hours. The thickness obtained by observing by this method is intended.
 上記研磨液は、上記所定の条件により、Ta、TaN、Ti、TiN、Ru、及びMnからなる群より選ばれるいずれか1種の金属からなるバリア基板上に反応層2を形成できればよいが、Taからなる基板、TaNからなる基板、Tiからなる基板、TiNからなる基板、Ruからなる基板、及びMnからなる基板の全ての基板それぞれの上に反応層2を形成できることが好ましい。 The polishing liquid only needs to be able to form the reaction layer 2 on the barrier substrate made of any one metal selected from the group consisting of Ta, TaN, Ti, TiN, Ru, and Mn according to the predetermined conditions. It is preferable that the reaction layer 2 can be formed on each of a substrate made of Ta, a substrate made of TaN, a substrate made of Ti, a substrate made of TiN, a substrate made of Ru, and a substrate made of Mn.
 上記研磨液は、被研磨面でのディッシングの発生をより抑える観点から、下記式(3)から算出される研磨速度比R1が、250~2500となるように調整されることが好ましい。
式(3):
 R1=上記研磨液によるコバルト基板の研磨速度/上記研磨液によるバリア基板の研磨速度
 バリア層の研磨においては、一般的に、化学的研磨よりも機械的研磨の寄与分が大きい。言い換えると、反応層2が形成されても研磨速度は大きく上がることはない。このため、研磨速度比R1を上記所定の数値範囲とする場合には、研磨液によるコバルト含有層の研磨速度が上がるように調整することが好ましい。なお、後述する研磨速度比R2についても同様である。
The polishing liquid is preferably adjusted so that the polishing rate ratio R1 calculated from the following formula (3) is 250 to 2500 from the viewpoint of further suppressing the occurrence of dishing on the surface to be polished.
Formula (3):
R1 = Cobalt substrate polishing rate with the polishing solution / Barrier substrate polishing rate with the polishing solution Generally, the polishing of the barrier layer has a larger contribution of mechanical polishing than chemical polishing. In other words, even if the reaction layer 2 is formed, the polishing rate does not increase greatly. For this reason, when making polishing rate ratio R1 into the said predetermined | prescribed numerical range, it is preferable to adjust so that the polishing rate of the cobalt containing layer by polishing liquid may go up. The same applies to the polishing rate ratio R2 described later.
 実施形態1の研磨液が含有する会合度1~3のコロイダルシリカ、有機酸、及びアゾール系化合物、並びに任意成分については、それぞれ上述したとおりであり、好ましい態様も同様である。また、上記反応層1についても上述のとおりであり、好ましい態様も同様である。 The colloidal silica having an association degree of 1 to 3, the organic acid, the azole compound, and the optional component contained in the polishing liquid of Embodiment 1 are as described above, and the preferred embodiments are also the same. Moreover, it is as above-mentioned also about the said reaction layer 1, A preferable aspect is also the same.
《実施形態2の研磨液》
 実施形態2の研磨液は、
 会合度1~3のコロイダルシリカと、有機酸と、アゾール系化合物と、過酸化水素と、を含有する化学的機械的研磨用の研磨液であって、
 上記会合度1~3のコロイダルシリカの含有量が、研磨液全質量に対して0.5~5質量%であり、
 上記アゾール系化合物として、トリアゾール系化合物を含有し、
 pHが8.0~10.5であり、
 上記研磨液とコバルト基板とを24時間接触させた際に、上記コバルト基板上に、コバルト原子を含有する厚み0.5~20nmの反応層(上記「反応層1」に相当する。)が形成され、さらに、
 上記研磨液とTa、TaN、Ti、TiN、Ru、及びMnからなる群より選ばれるいずれか1種の金属からなるバリア基板とを24時間接触した際に、上記バリア基板上に上記金属の原子を含有する厚み0.01~5nmの反応層(上記「反応層2」に相当する。)が形成され、
 上記研磨液とSiOx及びSiOCからなる群より選ばれるいずれか1種の無機成分からなる絶縁膜基板とを24時間接触した際に、上記絶縁膜基板上に上記無機成分を含む厚み0.01~10nmの反応層(以下「反応層3」ともいう。)が形成される研磨液であることが好ましい。
<< Polishing liquid of Embodiment 2 >>
The polishing liquid of Embodiment 2 is
A polishing liquid for chemical mechanical polishing containing colloidal silica having an association degree of 1 to 3, an organic acid, an azole compound, and hydrogen peroxide,
The content of the colloidal silica having the association degree of 1 to 3 is 0.5 to 5% by mass with respect to the total mass of the polishing liquid.
As the azole compound, a triazole compound is contained,
pH is 8.0-10.5,
When the polishing liquid and the cobalt substrate are brought into contact for 24 hours, a reaction layer (corresponding to the “reaction layer 1”) having a thickness of 0.5 to 20 nm containing cobalt atoms is formed on the cobalt substrate. In addition,
When the polishing liquid is brought into contact with a barrier substrate made of any one metal selected from the group consisting of Ta, TaN, Ti, TiN, Ru, and Mn for 24 hours, atoms of the metal on the barrier substrate A reaction layer containing 0.01 to 5 nm in thickness (corresponding to the above “reaction layer 2”) is formed,
When the polishing liquid is brought into contact with an insulating film substrate made of any one of the inorganic components selected from the group consisting of SiOx and SiOC for 24 hours, the thickness of the inorganic film containing the inorganic component on the insulating film substrate is 0.01 to A polishing liquid in which a 10 nm reaction layer (hereinafter also referred to as “reaction layer 3”) is formed is preferable.
 上記反応層3の厚さは0.01nm以上であり、0.1nm以上が好ましい。また、上記反応層3の厚さは10nm以下であり、5nm以下が好ましい。
 上記反応層3の厚さが0.01nm以上および10nm以下であれば、本発明の効果がより優れる。
The thickness of the reaction layer 3 is 0.01 nm or more, preferably 0.1 nm or more. The thickness of the reaction layer 3 is 10 nm or less, preferably 5 nm or less.
If the thickness of the reaction layer 3 is 0.01 nm or more and 10 nm or less, the effect of the present invention is more excellent.
 本明細書における反応層3とは、10mm×10mmの被研磨面を備えるSiOx及びSiOCからなる群より選ばれるいずれか1種の無機成分からなる絶縁膜基板を、10mLの研磨液に浸漬し、上記絶縁膜基板と研磨液とを25℃で24時間接触させた際、上記絶縁膜基板の被研磨面上に形成される反応層を意図する。
 なお、研磨液に上記絶縁膜基板を浸漬する際には、上記絶縁膜基板と他の基板(例えば、シリコン基板)とを積層した積層体を研磨液に浸漬する形態であってもよい。
In the present specification, the reaction layer 3 is obtained by immersing an insulating film substrate made of any one inorganic component selected from the group consisting of SiOx and SiOC having a surface to be polished of 10 mm × 10 mm in 10 mL of polishing liquid, The reaction layer formed on the surface to be polished of the insulating film substrate when the insulating film substrate and the polishing liquid are brought into contact at 25 ° C. for 24 hours is intended.
Note that when the insulating film substrate is immersed in the polishing liquid, a laminate in which the insulating film substrate and another substrate (for example, a silicon substrate) are stacked may be immersed in the polishing liquid.
 上記反応層3は、上記無機成分を含有する。上記反応層3は、更に酸素原子等を含有してもよく、反応層の表面には研磨液中の成分の錯体を含有することが好ましい。
 ここで、上記反応層3の厚さは、研磨液と上記絶縁膜基板とを24時間接触させた後、接触後の上記絶縁膜基板の断面を走査型電子顕微鏡(SEM)を用いて実施例に記載の方法により観察して得られる厚さを意図する。
The reaction layer 3 contains the inorganic component. The reaction layer 3 may further contain oxygen atoms and the like, and the reaction layer surface preferably contains a complex of components in the polishing liquid.
Here, the thickness of the reaction layer 3 is determined by measuring the cross section of the insulating film substrate after contacting the polishing liquid and the insulating film substrate for 24 hours using a scanning electron microscope (SEM). The thickness obtained by observation by the method described in 1 is intended.
 上記研磨液は、上記所定の条件により、SiOx及びSiOCからなる群より選ばれるいずれか1種の無機成分からなる絶縁膜基板上に反応層3を形成できればよいが、SiOxからなる基板及びSiOCからなる基板の全ての基板それぞれの上に反応層3を形成できることが好ましい。 The polishing liquid only needs to be able to form the reaction layer 3 on the insulating film substrate made of any one of the inorganic components selected from the group consisting of SiOx and SiOC under the predetermined conditions. It is preferable that the reaction layer 3 can be formed on each of all the substrates.
 上記研磨液は、被研磨面でのディッシングの発生をより抑える観点から、下記式(4)から算出される研磨速度比R2が0.01~2.0となるように調整されることが好ましい。また、下記式(5)から算出される研磨速度比R3が0.05~2.0となるように調整されることが好ましい。
 式(4):
 R2=上記研磨液によるコバルト基板の研磨速度/上記研磨液によるバリア基板の研磨速度
 式(5):
 R3=上記研磨液によるコバルト基板の研磨速度/上記研磨液による絶縁膜基板の研磨速度
The polishing liquid is preferably adjusted so that the polishing rate ratio R2 calculated from the following formula (4) is 0.01 to 2.0 from the viewpoint of further suppressing the occurrence of dishing on the surface to be polished. . Further, it is preferable that the polishing rate ratio R3 calculated from the following formula (5) is adjusted to be 0.05 to 2.0.
Formula (4):
R2 = Polishing speed of cobalt substrate with the above polishing liquid / Polishing speed of barrier substrate with the above polishing liquid Formula (5):
R3 = Polishing rate of cobalt substrate with the polishing solution / Polishing rate of insulating film substrate with the polishing solution
 実施形態2の研磨液が含有する会合度1~3のコロイダルシリカ、有機酸、及びアゾール系化合物、並びに任意成分については、それぞれ上述したとおりである。また、上記反応層1及び上記反応層2についても上述のとおりである。 The colloidal silica having an association degree of 1 to 3, the organic acid, the azole compound, and the optional component contained in the polishing liquid of Embodiment 2 are as described above. The reaction layer 1 and the reaction layer 2 are also as described above.
〔研磨液の調製方法〕
 上記研磨液は、公知の方法により製造することができる。例えば、上記の各成分を混合することにより製造することができる。上記各成分を混合する順序及び/又はタイミングは特に制限されず、pHを調整した水に予め会合度1~3のコロイダルシリカを分散し、所定の成分を順次混合してもよい。また、過酸化水素、水、又は、過酸化水素及び水を研磨剤の使用直前まで別途保管しておき、使用直前に混合してもよい。また、上記研磨液は、使用直前に水で希釈する希釈工程を有する、下記の方法により製造することが好ましい。
[Method for preparing polishing liquid]
The polishing liquid can be produced by a known method. For example, it can manufacture by mixing each said component. The order and / or timing of mixing the above components is not particularly limited, and colloidal silica having an association degree of 1 to 3 may be previously dispersed in water adjusted in pH, and predetermined components may be mixed sequentially. Further, hydrogen peroxide, water, or hydrogen peroxide and water may be separately stored until immediately before the use of the abrasive and mixed immediately before use. Moreover, it is preferable to manufacture the said polishing liquid by the following method which has a dilution process which dilutes with water just before use.
[研磨液の製造方法]
 本発明の一の実施態様に係る研磨液の製造方法は、会合度1~3のコロイダルシリカと、有機酸と、アゾール系化合物と、過酸化水素と、を含有する研磨液原液に対して、水を混合して、上記研磨液を得る工程(以下「希釈工程」ともいう。)を含有する、研磨液の製造方法である。
[Production method of polishing liquid]
A method for producing a polishing liquid according to one embodiment of the present invention provides a polishing liquid stock solution containing colloidal silica having an association degree of 1 to 3, an organic acid, an azole compound, and hydrogen peroxide. It is a method for producing a polishing liquid, which comprises a step of mixing water to obtain the above polishing liquid (hereinafter also referred to as “dilution step”).
〔希釈工程〕
 希釈工程は、所定の成分を含有する研磨液原液に対して、水を混合して、研磨液を得る工程である。
 研磨液の態様としては既に説明したとおりである。また、水を混合する方法としては特に制限されず、公知の方法を用いることができる。
[Dilution process]
The dilution step is a step of obtaining a polishing liquid by mixing water with a polishing liquid stock solution containing predetermined components.
The aspect of the polishing liquid is as described above. Moreover, it does not restrict | limit especially as a method of mixing water, A well-known method can be used.
<研磨液原液>
 上記希釈工程において用いられる研磨液原液は、会合度1~3のコロイダルシリカと、有機酸と、アゾール系化合物と、過酸化水素と、を含有する研磨液原液であって、更に、水と混合して、研磨液を製造するために用いられる、研磨液原液である。
 研磨液原液としては、水などの溶媒を混合することにより上記研磨液が得られればよく、上記の成分以外にも、所望により有機溶剤、界面活性剤、親水性ポリマー、pH調整剤、pH緩衝剤、及びコバルト防食剤等を含有してもよい。
 研磨液原液は、実際にCMPに使用される際の研磨液を2~50倍に濃縮された液であることが好ましい。つまり、研磨液原液は、2~50倍に希釈して用いられる。希釈の際には、水を用いることが好ましい。
 研磨液原液の製造方法としては、特に制限されず、公知の方法により製造することができる。例えば、上記の各成分を混合することにより製造することができる。上記各成分を混合する順序等は特に制限されず、pHを調整した水及び/又は有機溶剤に予めコロイダルシリカを分散し、所定の成分を順次混合してもよい。
 また、研磨液原液は、水で2~50倍に希釈した際、希釈前後でのpH変化が0.01~1未満であることが好ましい。
 本発明者は、上記研磨原液の希釈前後での性能状態を検査したところ、希釈前後でのpH変化が0.01~1未満である場合、希釈による性能変化が抑制されていることを確認している。具体的には、研磨液原液の希釈前後でのpH変化が0.01以上であると、希釈に伴う性能変化が実質的に生じないことが確認された。一方、研磨液原液の希釈前後でのpH変化が1未満であると、希釈に伴う性能変化が少なく、性能が大きく損なわれないことを確認している。
<Polishing liquid stock solution>
The polishing liquid stock solution used in the dilution step is a polishing liquid stock solution containing colloidal silica having an association degree of 1 to 3, an organic acid, an azole compound, and hydrogen peroxide, and further mixed with water. Thus, the polishing liquid stock solution is used for producing the polishing liquid.
As the polishing liquid stock solution, it is sufficient that the polishing liquid is obtained by mixing a solvent such as water. In addition to the above components, an organic solvent, a surfactant, a hydrophilic polymer, a pH adjuster, a pH buffer, if desired. You may contain an agent, a cobalt anticorrosive, etc.
The stock solution of polishing liquid is preferably a liquid obtained by concentrating the polishing liquid used in CMP for 2 to 50 times. That is, the polishing liquid stock solution is used after being diluted 2 to 50 times. Water is preferably used for dilution.
The method for producing the polishing liquid stock solution is not particularly limited, and can be produced by a known method. For example, it can manufacture by mixing each said component. The order of mixing the above components is not particularly limited, and colloidal silica may be dispersed in advance in water and / or an organic solvent whose pH has been adjusted, and predetermined components may be sequentially mixed.
Further, when the polishing liquid stock solution is diluted 2 to 50 times with water, the pH change before and after dilution is preferably 0.01 to less than 1.
The inventor examined the performance state of the polishing stock solution before and after dilution. When the pH change before and after dilution was 0.01 to less than 1, it was confirmed that the performance change due to dilution was suppressed. ing. Specifically, it was confirmed that when the pH change before and after the dilution of the polishing liquid stock solution is 0.01 or more, the performance change accompanying the dilution does not substantially occur. On the other hand, when the pH change before and after dilution of the polishing liquid stock solution is less than 1, it has been confirmed that the performance change accompanying dilution is small and the performance is not significantly impaired.
 また、研磨液の製造方法の他の態様として、所定の成分を含有する研磨液の濃縮液を準備し、これに、過酸化水素、又は、過酸化水素及び水を加えて、所定の特性を有する研磨液を製造する方法が挙げられる。 Further, as another aspect of the method for producing the polishing liquid, a concentrated liquid of the polishing liquid containing a predetermined component is prepared, and hydrogen peroxide or hydrogen peroxide and water are added thereto to obtain predetermined characteristics. The method of manufacturing the polishing liquid which has is mentioned.
〔研磨液原液収容体〕
 本発明の研磨液原液収容体は、上記研磨液原液と、上記研磨液原液を収容する、鉄を含有しない金属材料で形成された容器と、を有して構成される。
 ここで、「鉄を含有しない金属材料」とは、鉄を実質的に含有しない金属材料を意図し、例えば、鉄原子の含有量が、全原子量に対して30%以下、好ましくは20%以下の金属材料を意図する。
 上記研磨液原液は、研磨液原液を所定期間保管した場合にも不純物含有量が増加しにくい点、また、過酸化水素の分解を抑制する点から、鉄を含有しない金属材料(以下「非鉄金属材料」ともいう。)から形成された容器に収容されることが望ましい。上記容器は、研磨液原液と接触する内壁が非鉄金属材料で形成されていればよく、その他の構成については特に限定されない。
 内壁が非鉄金属材料で形成された容器としては、内壁が、非金属材料及び電解研磨された非金属材料からなる群から選択される少なくとも1種の材料で被覆された、又は、内壁が材料から形成された容器が好ましい。
 なお、本明細書において「被覆」とは、上記内壁が上記材料で覆われていることを意図する。上記内壁が上記材料で覆われている態様としては、内壁の全表面積の70%以上が上記材料で覆われることが好ましい。
[Polishing liquid stock container]
The polishing liquid stock solution container of the present invention comprises the above polishing liquid stock solution and a container made of a metal material containing no iron and containing the above polishing liquid stock solution.
Here, the “metal material not containing iron” intends a metal material substantially free of iron. For example, the content of iron atoms is 30% or less, preferably 20% or less, based on the total atomic weight. Intended for metal materials.
The above-mentioned polishing liquid stock solution is a metal material that does not contain iron (hereinafter referred to as “non-ferrous metal” from the viewpoint that the impurity content hardly increases even when the polishing liquid stock solution is stored for a predetermined period of time, and that the decomposition of hydrogen peroxide is suppressed. It is desirable to be accommodated in a container formed from “material”. The said container should just be formed with the non-ferrous metal material in the inner wall which contacts polishing liquid stock solution, and it does not specifically limit about another structure.
As a container having an inner wall formed of a nonferrous metal material, the inner wall is coated with at least one material selected from the group consisting of a nonmetallic material and an electropolished nonmetallic material, or the inner wall is made of a material. A formed container is preferred.
In the present specification, the term “coating” means that the inner wall is covered with the material. As an aspect in which the inner wall is covered with the material, 70% or more of the total surface area of the inner wall is preferably covered with the material.
 非金属材料としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレン-ポリプロピレン樹脂、四フッ化エチレン樹脂、四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合体、四フッ化エチレン-六フッ化プロピレン共重合樹脂、四フッ化エチレン-エチレン共重合体樹脂、三フッ化塩化エチレン-エチレン共重合樹脂、フッ化ビニリデン樹脂、三フッ化塩化エチレン共重合樹脂、及びフッ化ビニル樹脂等の樹脂材料;クロム、及びニッケル等の金属材料;が挙げられる。 Non-metallic materials include, for example, polyethylene resin, polypropylene resin, polyethylene-polypropylene resin, ethylene tetrafluoride resin, ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer, ethylene tetrafluoride-hexafluoropropylene copolymer resin Resin materials such as tetrafluoroethylene-ethylene copolymer resin, ethylene trifluoride-ethylene copolymer resin, vinylidene fluoride resin, ethylene trifluoride-chloroethylene copolymer resin, and vinyl fluoride resin; chromium, and And metal materials such as nickel.
 上記金属材料としては、なかでも、ニッケル-クロム合金が好ましい。
 ニッケル-クロム合金としては、特に制限されず、公知のニッケル-クロム合金を用いることができる。なかでも、ニッケル含有量が40~75質量%、クロム含有量が1~30質量%のニッケル-クロム合金が好ましい。
 ニッケル-クロム合金としては、例えば、ハステロイ(商品名、以下同じ。)、モネル(商品名、以下同じ)、及びインコネル(商品名、以下同じ)等が挙げられる。より具体的には、ハステロイC-276
(Ni含有量63質量%、Cr含有量16質量%)、ハステロイ-C(Ni含有量60質量%、Cr含有量17質量%)、ハステロイC-22(Ni含有量61質量%、Cr含有量22質量%)等が挙げられる。
 また、ニッケル-クロム合金は、必要に応じて、上記した合金の他に、更に、ホウ素、ケイ素、タングステン、モリブデン、銅、及びコバルト等を含有していてもよい。
Of these, a nickel-chromium alloy is preferred as the metal material.
The nickel-chromium alloy is not particularly limited, and a known nickel-chromium alloy can be used. Among these, a nickel-chromium alloy having a nickel content of 40 to 75% by mass and a chromium content of 1 to 30% by mass is preferable.
Examples of the nickel-chromium alloy include Hastelloy (trade name, the same applies hereinafter), Monel (trade name, the same applies hereinafter), Inconel (product name, the same applies hereinafter), and the like. More specifically, Hastelloy C-276
(Ni content 63% by mass, Cr content 16% by mass), Hastelloy-C (Ni content 60% by mass, Cr content 17% by mass), Hastelloy C-22 (Ni content 61% by mass, Cr content 22% by mass).
Further, the nickel-chromium alloy may further contain boron, silicon, tungsten, molybdenum, copper, cobalt, and the like in addition to the above-described alloy as necessary.
 上記金属材料を電解研磨する方法としては特に制限されず、公知の方法を用いることができる。例えば、特開2015-227501号公報の段落[0011]-[0014]、及び特開2008-264929号公報の段落[0036]-[0042]等に記載された方法を用いることができる。 The method for electropolishing the metal material is not particularly limited, and a known method can be used. For example, the methods described in paragraphs [0011]-[0014] of JP-A-2015-227501 and paragraphs [0036]-[0042] of JP-A-2008-264929 can be used.
 なお、上記金属材料はバフ研磨されていてもよい。バフ研磨の方法は特に制限されず、公知の方法を用いることができる。バフ研磨の仕上げに用いられる研磨砥粒のサイズは特に制限されないが、上記金属材料の表面の凹凸がより小さくなりやすい点で、#400以下が好ましい。
 なお、バフ研磨は、電解研磨の前に行われることが好ましい。
Note that the metal material may be buffed. The buffing method is not particularly limited, and a known method can be used. The size of the abrasive grains used for the buffing finish is not particularly limited, but is preferably # 400 or less in that the irregularities on the surface of the metal material are likely to be smaller.
The buffing is preferably performed before the electrolytic polishing.
[化学的機械的研磨方法]
 本発明の一の実施態様に係る化学的機械的研磨方法は、研磨定盤に取り付けられた研磨パッドに、上記研磨液を供給しながら、被研磨体の被研磨面を研磨パッドに接触させ、研磨体、及び研磨パッドを相対的に動かして被研磨面を研磨して研磨済み被研磨体を得る工程(以下、「研磨工程」ともいう。)を含有する、化学的機械的研磨方法(以下「CMP方法」ともいう。)である。
[Chemical mechanical polishing method]
In the chemical mechanical polishing method according to one embodiment of the present invention, while supplying the polishing liquid to the polishing pad attached to the polishing surface plate, the polishing surface of the object to be polished is brought into contact with the polishing pad, A chemical mechanical polishing method (hereinafter, also referred to as “polishing step”) including a step of moving the polishing body and the polishing pad relatively to polish the surface to be polished to obtain a polished target body (hereinafter also referred to as “polishing step”). Also referred to as “CMP method”.
〔被研磨体〕
 上記実施態様に係るCMP方法を適用することができる被研磨体としては、特に制限されないが、コバルト及びコバルト合金からなる群から選択される少なくとも1種のコバルト含有層を含有する被研磨体(金属層付き基板)が好ましい。
 上記コバルト合金としては、特に制限されないが、ニッケルを含有するコバルト合金が好ましい。
 コバルト合金がニッケルを含有する場合、ニッケルの含量としては、コバルト合金全質量中、10質量%以下が好ましく、1質量%以下がより好ましく、0.1質量%以下が更に好ましく、0.00001質量%以上が好ましい。電極の形態はシリコン貫通電極であってもよい。
[Polished object]
The object to be polished to which the CMP method according to the above embodiment can be applied is not particularly limited, but the object to be polished (metal) containing at least one cobalt-containing layer selected from the group consisting of cobalt and a cobalt alloy. A substrate with a layer) is preferred.
Although it does not restrict | limit especially as said cobalt alloy, The cobalt alloy containing nickel is preferable.
When the cobalt alloy contains nickel, the nickel content is preferably 10% by mass or less, more preferably 1% by mass or less, still more preferably 0.1% by mass or less, and 0.00001% by mass in the total mass of the cobalt alloy. % Or more is preferable. The electrode may be a through silicon via.
 上記実施態様にかかるCMP方法において使用される被研磨体としては、以下の方法により製造することができる。
 まず、シリコンの基板上に二酸化シリコン等の層間絶縁膜を積層する。次いで、レジスト層形成、エッチング等の公知の手段によって、層間絶縁膜表面に所定パターンの凹部(基板露出部)を形成して凸部と凹部とからなる層間絶縁膜とする。この層間絶縁膜上に、表面の凸凹に沿って層間絶縁膜を被覆するバリア層として、金属又は金属窒化物(例えば、Ta、TaN、Ti、TiN、Ru、及びMnからなる群より選ばれるいずれか1種の金属又は金属窒化物が好ましい。)等を蒸着又はCVD(chemical vapor deposition)等により成膜する。更に、凹部を充填するようにバリア層を被覆するコバルト及びコバルト合金からなる群から選択される少なくとも1種からなるコバルト含有層(以下、金属層ともいう。)を、蒸着、めっき、又はCVD等により形成して積層構造を有する被研磨体を得る。層間絶縁膜、バリア層及び金属層の厚さは、それぞれ0.01~2.0μm、1~100nm、0.01~2.5μm程度が好ましい。
 上記バリア層を構成する材料としては、特に制限されず、公知の低抵抗のメタル材料を用いることができる。低抵抗のメタル材料としては、Ta、TaN、Ti、TiN、Ru、及びMnがより好ましい。
The object to be polished used in the CMP method according to the above embodiment can be manufactured by the following method.
First, an interlayer insulating film such as silicon dioxide is laminated on a silicon substrate. Next, a concave portion (substrate exposed portion) having a predetermined pattern is formed on the surface of the interlayer insulating film by a known means such as resist layer formation or etching to form an interlayer insulating film composed of convex portions and concave portions. On this interlayer insulating film, as a barrier layer covering the interlayer insulating film along the unevenness of the surface, any one selected from the group consisting of metal or metal nitride (for example, Ta, TaN, Ti, TiN, Ru, and Mn) Or a single metal or metal nitride is preferable.) Or the like is formed by vapor deposition or CVD (chemical vapor deposition). Further, a cobalt-containing layer (hereinafter also referred to as a metal layer) made of at least one selected from the group consisting of cobalt and a cobalt alloy that covers the barrier layer so as to fill the recesses is deposited, plated, CVD, or the like. Thus, an object to be polished having a laminated structure is obtained. The thicknesses of the interlayer insulating film, barrier layer, and metal layer are preferably about 0.01 to 2.0 μm, 1 to 100 nm, and 0.01 to 2.5 μm, respectively.
The material constituting the barrier layer is not particularly limited, and a known low-resistance metal material can be used. As the low-resistance metal material, Ta, TaN, Ti, TiN, Ru, and Mn are more preferable.
(被研磨面)
 上記実施態様にかかるCMP方法において使用される被研磨体において、被研磨面は特に限定されない。
 上記被研磨体を用いた金属配線の製造工程は、被研磨体中のバリア層が含有する金属原子と、コバルト含有層が含有する金属原子とが互いに化学的及び物理的性質が異なるため、通常、2段階に分けてCMPが実施される。つまり、上述したように、1段目の工程でコバルト含有層に対するCMPが実施され、2段目の工程でバリア層に対するCMPが実施される。なお、この1段目のCMP過程において金属配線が過剰に研磨されるディッシングが生じやすく、2段目のCMP過程において、上記ディッシングと、上記ディッシングに伴って、微細な金属配線が緻密に配列した箇所の絶縁膜(絶縁膜は、各金属配線の間に配置されている。)が過剰研磨されるエロージョンとが発生しやすい。
(Polished surface)
In the object to be polished used in the CMP method according to the above embodiment, the surface to be polished is not particularly limited.
The metal wiring manufacturing process using the object to be polished is usually because the metal atom contained in the barrier layer in the object to be polished and the metal atom contained in the cobalt-containing layer are different from each other in chemical and physical properties. CMP is performed in two stages. That is, as described above, CMP is performed on the cobalt-containing layer in the first step, and CMP on the barrier layer is performed in the second step. Note that dishing in which the metal wiring is excessively polished is likely to occur in the first-stage CMP process, and in the second-stage CMP process, the fine metal wiring is densely arranged along with the dishing. Erosion is likely to occur due to excessive polishing of the insulating film at the location (the insulating film is disposed between the metal wirings).
〔研磨装置〕
 上記CMP方法を実施できる研磨装置としては、特に制限されず、公知の化学的機械的研磨装置(以下「CMP装置」ともいう。)を用いることができる。
 CMP装置としては、例えば、被研磨面を有する被研磨体(例えば、半導体基板等)を保持するホルダーと、研磨パッドを貼り付けた(回転数が変更可能なモータ等を取り付けてある)研磨定盤と、を備える一般的なCMP装置を用いることができる。市販品としては、例えば、Reflexion(アプライド・マテリアルズ社製)を用いることができる。
[Polishing equipment]
The polishing apparatus capable of performing the CMP method is not particularly limited, and a known chemical mechanical polishing apparatus (hereinafter also referred to as “CMP apparatus”) can be used.
As a CMP apparatus, for example, a holder that holds an object to be polished (for example, a semiconductor substrate) having a surface to be polished and a polishing pad to which a polishing pad is attached (a motor that can change the number of revolutions is attached). A general CMP apparatus provided with a board can be used. As a commercial product, for example, Reflexion (manufactured by Applied Materials) can be used.
<研磨圧力>
 上記実施態様に係るCMP方法では、研磨圧力、即ち、被研磨面と研磨パッドとの接触面に生ずる圧力が3000~25000Paで研磨を行うことが好ましく、6500~14000Paで研磨を行うことがより好ましい。
<Polishing pressure>
In the CMP method according to the above embodiment, polishing is preferably performed at a polishing pressure, that is, a pressure generated on the contact surface between the surface to be polished and the polishing pad of 3000 to 25000 Pa, and more preferably 6500 to 14000 Pa. .
<研磨定盤の回転数>
 上記実施態様に係るCMP方法では、研磨定盤の回転数が50~200rpmで研磨を行うことが好ましく、60~150rpmで研磨を行うことがより好ましい。
 なお、研磨体及び研磨パッドを相対的に動かすために、更にホルダーを回転及び/又は揺動させてもよいし、研磨定盤を遊星回転させてもよいし、ベルト状の研磨パッドを長尺方向の一方向に直線状に動かしてもよい。なお、ホルダーは固定、回転、又は揺動のいずれの状態でもよい。これらの研磨方法は、研磨体及び研磨パッドを相対的に動かすのであれば、被研磨面及び/又は研磨装置により適宜選択できる。
<Rotation speed of polishing surface plate>
In the CMP method according to the above embodiment, the polishing is preferably performed at a rotation speed of the polishing platen of 50 to 200 rpm, more preferably 60 to 150 rpm.
In order to relatively move the polishing body and the polishing pad, the holder may be further rotated and / or swayed, the polishing platen may be rotated on a planetary surface, or the belt-like polishing pad may be elongated. It may be moved linearly in one direction. The holder may be in a fixed, rotating, or swinging state. These polishing methods can be appropriately selected depending on the surface to be polished and / or the polishing apparatus as long as the polishing body and the polishing pad are moved relatively.
<研磨液の供給方法>
 上記実施態様に係るCMP方法では、被研磨面を研磨する間、研磨定盤上の研磨パッドに研磨液をポンプ等で連続的に供給する。この供給量に制限はないが、研磨パッドの表面が常に研磨液で覆われていることが好ましい。なお、研磨液の態様については上記のとおりである
<Polishing liquid supply method>
In the CMP method according to the above embodiment, the polishing liquid is continuously supplied to the polishing pad on the polishing surface plate by a pump or the like while the surface to be polished is polished. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of a polishing pad is always covered with polishing liquid. The aspect of the polishing liquid is as described above.
 上記実施態様に係るCMP方法としては、上記研磨工程の前に、更に以下の工程を含有してもよい。
 上記工程としては、例えば、会合度1~3のコロイダルシリカと、有機酸と、アゾール系化合物と、過酸化水素と、を含有する研磨液原液に対して、水を混合する工程が挙げられる。なお、研磨液、研磨液原液、及び濃縮液の態様は既に説明したとおりである。
The CMP method according to the above embodiment may further include the following steps before the polishing step.
Examples of the step include a step of mixing water with a polishing solution stock solution containing colloidal silica having an association degree of 1 to 3, an organic acid, an azole compound, and hydrogen peroxide. The aspects of the polishing liquid, the polishing liquid stock solution, and the concentrated liquid are as described above.
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。なお、特に断らない限り「%」は「質量%」、「ppb」は「質量ppb」を意図する。 Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, ratios, processing contents, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the examples shown below. Unless otherwise specified, “%” means “mass%” and “ppb” means “mass ppb”.
〔原料等の精製〕
 以下に示す各実施例で使用される各原料、各触媒は、純度99質量%以上の高純度グレードを用い、更に事前に蒸留、イオン交換、ろ過等によって精製したものである。
[Purification of raw materials]
Each raw material and each catalyst used in each Example shown below are those purified in advance by distillation, ion exchange, filtration or the like using a high purity grade having a purity of 99% by mass or more.
 各研磨液の調製に使用した超純水は、特開2007―254168号公報に記載されている方法により精製を行った。その後、Na、Ca及びFeの各々の元素の含有量が、各薬液の全質量に対し、10質量ppt未満であることを後述するSNP-ICP-MS法による測定で確認した後、使用した。 The ultrapure water used for the preparation of each polishing liquid was purified by the method described in JP-A-2007-254168. Thereafter, it was used after confirming that the content of each element of Na, Ca and Fe was less than 10 mass ppt with respect to the total mass of each chemical solution, by measurement by the SNP-ICP-MS method described later.
 各実施例及び比較例の研磨液の調製、充填、保管、及び分析は全てISOクラス2以下を満たすレベルのクリーンルームで行った。また、各実施例及び比較例において使用した容器は、それぞれの実施例又は比較例の研磨液で洗浄した後に用いた。測定精度向上のため、金属成分の含有量の測定及び水の含有量の測定は、通常の測定で検出限界以下のものの測定は、体積換算で100分の1に濃縮して測定を行い、濃縮前の研磨液の濃度に換算して含有量の算出を行なった。 The preparation, filling, storage, and analysis of the polishing liquids of the examples and comparative examples were all performed in a clean room that satisfies ISO class 2 or lower. Moreover, the container used in each Example and the comparative example was used after wash | cleaning with the polishing liquid of each Example or a comparative example. In order to improve the measurement accuracy, the measurement of the content of metal components and the measurement of the content of water are performed by concentrating to 1/100 in terms of volume, and measuring those below the detection limit in normal measurement. The content was calculated in terms of the concentration of the previous polishing liquid.
[実施例1A]
 下記に示す各成分を混合し、化学的機械的研磨液を調製した。
・コロイダルシリカ(会合度:2、平均一次粒子径:35nm、製品名「PL3」、扶桑化学工業社製) 0.1質量%
・グリシン(アミノ酸に該当する。) 1.5質量%
・5-メチルベンゾトリアゾール(ベンゾトリアゾール骨格を含有するアゾール系化合物に該当する。) 0.001質量%
・3-アミノ-1,2,4-トリアゾール(ベンゾトリアゾール骨格を含有しない化合物、かつ1,2,4-トリアゾール骨格を含有する化合物に該当する。) 0.2質量%・過酸化水素(酸化剤に該当する。) 1.0質量%
・エチレングリコール(有機溶剤に該当し、一部は5-メチルベンゾトリアゾールを溶解する溶剤として使用した。) 0.05質量%
・過酸化水素(酸化剤に該当する。) 1.0質量%
・水(純水) 残部
[Example 1A]
Each component shown below was mixed to prepare a chemical mechanical polishing liquid.
Colloidal silica (degree of association: 2, average primary particle size: 35 nm, product name “PL3”, manufactured by Fuso Chemical Industries) 0.1 mass%
・ Glycine (corresponds to amino acid) 1.5% by mass
・ 5-methylbenzotriazole (corresponds to azole compound containing benzotriazole skeleton) 0.001% by mass
・ 3-Amino-1,2,4-triazole (corresponds to a compound not containing benzotriazole skeleton and a compound containing 1,2,4-triazole skeleton) 0.2% by mass 1.0% by mass
・ Ethylene glycol (corresponds to organic solvent, partly used as a solvent to dissolve 5-methylbenzotriazole) 0.05% by mass
・ Hydrogen peroxide (corresponds to oxidizing agent) 1.0% by mass
・ Water (pure water) remaining
 なお、表1中の研磨液のpHは、必要に応じて、硫酸及び/又は水酸化カリウムを用いて、所定の値となるように調整した。 The pH of the polishing liquid in Table 1 was adjusted to a predetermined value using sulfuric acid and / or potassium hydroxide as necessary.
 なお、本実施例において「表1」とは、表1A1、表1A2、表1B1、表1B2、表1C1、表1C2、表1D1、表1D2を指す。 In this example, “Table 1” refers to Table 1A1, Table 1A2, Table 1B1, Table 1B2, Table 1C1, Table 1C2, Table 1D1, and Table 1D2.
[実施例2A~83A、比較例1A~5A]
 表1にした各成分を、実施例1Aと同様の方法により、混合し、各研磨液を得た。なお、表1中の各略号は、以下の化合物等を示す。
・PL3(コロイダルシリカ、製品名「PL3」、扶桑化学工業社製、会合度:2、平均一次粒子径:35nm。)
・PL2(コロイダルシリカ、製品名「PL2」、扶桑化学工業社製、会合度:2、平均一次粒子径:25nm。)
・PL3L(コロイダルシリカ、製品名「PL3L」、扶桑化学工業社製、会合度:1、平均一次粒子径:35nm。)
・PL3H(コロイダルシリカ、製品名「PL3H」、扶桑化学工業社製、会合度:3、平均一次粒子径:35nm。)
・ST-PS-MO(コロイダルシリカ、製品名「ST-PS-MO」、日産化学工業社製、会合度:3超、平均一次粒子径:20nm。)
・Gly(グリシン、アミノ酸に該当する。)
・Ala(アラニン、アミノ酸に該当する。)
・Asp(アスパラギン酸、アミノ酸に該当する。)
・NMG(N-メチルグリシン、アミノ酸に該当する。)
・5-MBTA(5-メチルベンゾトリアゾール、ベンゾトリアゾール骨格を含有するアゾール系化合物に該当する。)
・BTA(ベンゾトリアゾール、ベンゾトリアゾール骨格を含有するアゾール系化合物に該当する。)
・5,6-DMBTA(5,6-ジメチルベンゾトリアゾール、ベンゾトリアゾール骨格を含有するアゾール系化合物に該当する。)
・5-ABTA(5-アミノベンゾトリアゾール、ベンゾトリアゾール骨格を含有するアゾール系化合物に該当する。)
・3-AT(3-アミノ-1,2,4-トリアゾール、ベンゾトリアゾール骨格を含有しないアゾール系化合物、かつ1,2,4-トリアゾール骨格を含有するアゾール系化合物に該当する。)
・1,2,4-Tri(1,2,4-トリアゾール、ベンゾトリアゾール骨格を含有しないアゾール系化合物、かつ1,2,4-トリアゾール骨格を含有するアゾール系化合物に該当する。)
・3,5-DP(3,5-ジメチルピラゾール、ベンゾトリアゾール骨格を含有しないアゾール系化合物、かつピラゾール骨格を含有するアゾール系化合物(ピラゾール系化合物)に該当する。)
・Pyraz(ピラゾール、ベンゾトリアゾール骨格を含有しないアゾール系化合物、かつピラゾール骨格を含有するアゾール系化合物に該当する。)
・Imidaz(イミダゾール、ベンゾトリアゾール骨格を含有しないアゾール系化合物、かつイミダゾール骨格を含有するアゾール系化合物(イミダゾール系化合物)に該当する。)
・5-ATZ(5-アミノテトラゾール、ベンゾトリアゾール骨格を含有しないアゾール系化合物に該当する。)
・ETG(エチレングリコール、有機溶剤に該当する。)
・EtOH(エタノール、有機溶剤に該当する。)
・PG(プロピレングリコール、有機溶剤に該当する。)
・4-HA(4-ヒドロキシ安息香酸、有機酸に該当する。)
・2-HA(2-ヒドロキシ安息香酸、有機酸に該当する。)
・PA(フタル酸、有機酸に該当する。)
・SA(サリチル酸、有機酸に該当する。)
・Ant(アントラニル酸、有機酸に該当する。)
・TMT(トリメリト酸、有機酸に該当する。)
・N-cocoyl sarcosinate(N-ココイルサルコシナート、コバルト防食剤に該当する。)
・N-lauroyl sarcosinate(N-ラウロイルサルコシナート、コバルト防食剤に該当する。)
・N-oleoyl sarcosinate(N-オレオイルサルコシナート、コバルト防食剤に該当する。)
・N-myristoyl sarcosinate(ミリストイルサルコシナート、コバルト防食剤に該当する。)
・N-myristoyl glycine(N-ミリストイルグリシン、コバルト防食剤に該当する。)
・N-stearoyl sarcosinate(N-ステアロイルサルコシナート、コバルト防食剤に該当する。)
・N-lauroyl glycine(N-ラウロイルグリシン、コバルト防食剤に該当する。)
・N-palmitoyl glycine(N-パルミトイルグリシン、コバルト防食剤に該当する。)
・N-lauroyl glutamate(N-ラウロイルグルタミン酸、コバルト防食剤に該当する。)
・N-cocoyl glutamate(N-ココイルグルタミン酸、コバルト防食剤に該当する。)
・potassium N-cocoyl glutamate(N-ココイルグルタミン酸カリウム、コバルト防食剤に該当する。)
・potassium N-lauroyl sarcosinate(N-ラウロイルサルコシナートカリウム、コバルト防食剤に該当する。)
・N-lauroyl alaninate(N-ラウロイルアラニナート、コバルト防食剤に該当する。)
・N-myristoyl alaninate(N-ミリストイルアラニナート、コバルト防食剤に該当する。)
・potassium N-cocoyl alaninate(N-ココイルアラニナートカリウム、コバルト防食剤に該当する。)
・RE-610(製品名「Rhodafac RE-610」、Rhodia社製、界面活性剤に該当する。)
・MD-20(製品名「Surfynol MD-20」、エア・プロダクト社製、界面活性剤に該当する。)
・DBSH(ドデシルベンゼンスルホン酸、界面活性剤に該当する。)
・PHEAA(N-(2-ヒドロキシエチル)アクリルアミドポリマー、重量平均分子量 20000、親水性ポリマーに該当する。)
・PAA(ポリアクリル酸、親水性ポリマーに該当する。)
・PEIEO(下記式で表わされる繰り返し単位を有するエチレンオキシ鎖を有するポリエチレンイミン、HLB値18)
[Examples 2A to 83A, Comparative Examples 1A to 5A]
Each component shown in Table 1 was mixed by the same method as in Example 1A to obtain each polishing liquid. In addition, each abbreviation in Table 1 shows the following compounds.
PL3 (Colloidal silica, product name “PL3”, manufactured by Fuso Chemical Industries, association degree: 2, average primary particle size: 35 nm)
PL2 (Colloidal silica, product name “PL2”, manufactured by Fuso Chemical Industry Co., Ltd., degree of association: 2, average primary particle size: 25 nm)
PL3L (Colloidal silica, product name “PL3L”, manufactured by Fuso Chemical Industry Co., Ltd., degree of association: 1, average primary particle size: 35 nm)
PL3H (Colloidal silica, product name “PL3H”, manufactured by Fuso Chemical Industries, association degree: 3, average primary particle size: 35 nm)
ST-PS-MO (Colloidal silica, product name “ST-PS-MO”, manufactured by Nissan Chemical Industries, association degree: over 3, average primary particle size: 20 nm)
Gly (corresponds to glycine and amino acid)
Ala (corresponds to alanine and amino acid)
Asp (corresponds to aspartic acid and amino acid)
NMG (N-methylglycine, corresponding to amino acids)
・ 5-MBTA (corresponds to 5-methylbenzotriazole, azole compounds containing benzotriazole skeleton)
BTA (corresponds to azole compounds containing benzotriazole or benzotriazole skeleton)
・ 5,6-DMBTA (corresponds to 5,6-dimethylbenzotriazole and azole compounds containing benzotriazole skeleton)
-5-ABTA (corresponds to azole compounds containing 5-aminobenzotriazole or benzotriazole skeleton)
3-AT (corresponds to azole compounds not containing 3-amino-1,2,4-triazole, benzotriazole skeleton and azole compounds containing 1,2,4-triazole skeleton)
-1,2,4-Tri (corresponds to azole compounds not containing a 1,2,4-triazole, benzotriazole skeleton and azole compounds containing a 1,2,4-triazole skeleton)
-3,5-DP (corresponds to 3,5-dimethylpyrazole, azole compounds not containing benzotriazole skeleton, and azole compounds containing pyrazole skeleton (pyrazole compounds))
Pyraz (corresponds to pyrazole, an azole compound not containing a benzotriazole skeleton, and an azole compound containing a pyrazole skeleton)
・ Imidaz (corresponds to imidazole, azole compound not containing benzotriazole skeleton, and azole compound containing imidazole skeleton (imidazole compound))
・ 5-ATZ (corresponds to 5-aminotetrazole and azole compounds not containing benzotriazole skeleton)
・ ETG (Ethylene glycol, applicable to organic solvents)
EtOH (corresponds to ethanol and organic solvents)
・ PG (corresponds to propylene glycol and organic solvents)
・ 4-HA (corresponds to 4-hydroxybenzoic acid and organic acid)
・ 2-HA (corresponds to 2-hydroxybenzoic acid and organic acid)
・ PA (corresponds to phthalic acid and organic acid)
SA (corresponds to salicylic acid and organic acid)
Ant (corresponds to anthranilic acid and organic acid)
TMT (corresponds to trimellitic acid and organic acid)
・ N-cocoyl sarcosinate (corresponds to N-cocoyl sarcosinate and cobalt anticorrosive)
・ N-lauroyl sarcosinate (corresponds to N-lauroyl sarcosinate and cobalt anticorrosive)
・ N-oleoyl sarcosinate (corresponds to N-oleoyl sarcosinate, cobalt anticorrosive)
・ N-myristoy sarcosinate (corresponds to myristoyl sarcosinate, cobalt anticorrosive)
・ N-myristoy glycine (corresponds to N-myristoylglycine, a cobalt anticorrosive)
・ N-stearoyl sarcosinate (corresponds to N-stearoyl sarcosinate, cobalt anticorrosive)
・ N-lauroyl glycine (corresponds to N-lauroylglycine, a cobalt anticorrosive)
・ N-palmitoyl glycine (corresponds to N-palmitoylglycine, a cobalt anticorrosive)
・ N-lauroyl glutamate (corresponds to N-lauroyl glutamic acid and cobalt anticorrosive)
N-cocoyl glutamate (corresponds to N-cocoyl glutamic acid and cobalt anticorrosive)
Potassium N-coyl glutamate (corresponds to potassium N-cocoyl glutamate and cobalt anticorrosive)
Potassium N-lauroyl sarcosinate (corresponds to potassium N-lauroyl sarcosinate, a cobalt anticorrosive)
・ N-lauroyl alaninate (corresponds to N-lauroyl alaninate, cobalt anticorrosive)
・ N-myristoylaninate (corresponds to N-myristoyl alaninate, cobalt anticorrosive)
Potassium N-cocoyl alaninate (corresponds to N-cocoyl alaninate potassium and cobalt anticorrosive)
RE-610 (Product name “Rhodafac RE-610”, manufactured by Rhodia, applicable to surfactant)
MD-20 (product name “Surfynol MD-20”, manufactured by Air Products, applicable to surfactant)
DBSH (corresponds to dodecylbenzenesulfonic acid, surfactant)
-PHEAA (corresponds to N- (2-hydroxyethyl) acrylamide polymer, weight average molecular weight 20000, hydrophilic polymer)
PAA (corresponds to polyacrylic acid and hydrophilic polymer)
PEIEO (polyethyleneimine having an ethyleneoxy chain having a repeating unit represented by the following formula, HLB value 18)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[実施例1B]
 下記に示す各成分を混合し、化学的機械的研磨液を調製した。
・コロイダルシリカ(会合度:2、平均一次粒子径:35nm、製品名「PL3」、扶桑化学工業社製) 3.0質量%
・CA(クエン酸、有機酸に該当する。) 0.003質量%
・Male(マレイン酸、有機酸に該当する。) 0.05質量%
・ベンゾトリアゾール(ベンゾトリアゾール骨格を含有するアゾール系化合物に該当する。) 0.1質量%
3-アミノ-1,2,4-トリアゾール(ベンゾトリアゾール骨格を含有しない化合物、かつ1,2,4-トリアゾール骨格を含有する化合物に該当する。) 0.05質量%
・過酸化水素(酸化剤に該当する。) 1.0質量%
・エチレングリコール(有機溶剤に該当し、一部は5-メチルベンゾトリアゾールを溶解する溶剤として使用した。) 0.05質量%
・水(純水) 残部
[Example 1B]
Each component shown below was mixed to prepare a chemical mechanical polishing liquid.
Colloidal silica (degree of association: 2, average primary particle size: 35 nm, product name “PL3”, manufactured by Fuso Chemical Industries) 3.0% by mass
・ CA (corresponds to citric acid and organic acid) 0.003% by mass
・ Male (corresponds to maleic acid and organic acid) 0.05% by mass
・ Benzotriazole (corresponds to azole compound containing benzotriazole skeleton) 0.1% by mass
3-amino-1,2,4-triazole (corresponds to a compound not containing a benzotriazole skeleton and a compound containing a 1,2,4-triazole skeleton) 0.05% by mass
・ Hydrogen peroxide (corresponds to oxidizing agent) 1.0% by mass
・ Ethylene glycol (corresponds to organic solvent, partly used as a solvent to dissolve 5-methylbenzotriazole) 0.05% by mass
・ Water (pure water) remaining
 なお、表2中の研磨液のpHは、必要に応じて、硫酸及び/又は水酸化カリウムを用いて、所定の値となるように調整した。 The pH of the polishing liquid in Table 2 was adjusted to a predetermined value using sulfuric acid and / or potassium hydroxide as necessary.
 なお、本実施例において「表2」とは、表2A1、表2A2、表2A3、表2B1、表2B2、表2B3、表2C1、表2C2、表2C3、表2D1、表2D2、表2D3を指す。 In this example, “Table 2” refers to Table 2A1, Table 2A2, Table 2A3, Table 2B1, Table 2B2, Table 2B3, Table 2C1, Table 2C2, Table 2C3, Table 2D1, Table 2D2, and Table 2D3. .
[実施例2B~82B、比較例1B~3B]
 表2にした各成分を、実施例1Bと同様の方法により、混合し、各研磨液を得た。表2中の各略号は、以下の化合物等を示す。なお、表2中の各略号において表1中の略号と同じものについては上述のとおりである。
・CA(クエン酸、有機酸に該当する。)
・コハク酸(有機酸に該当する。)
・リンゴ酸(有機酸に該当する。)
・マロン酸(有機酸に該当する。)
・Male(マレイン酸、有機酸に該当する。)
[Examples 2B to 82B, Comparative Examples 1B to 3B]
Each component shown in Table 2 was mixed by the same method as in Example 1B to obtain each polishing liquid. Each abbreviation in Table 2 indicates the following compounds and the like. In addition, about each abbreviation in Table 2, the same abbreviation in Table 1 is as above-mentioned.
CA (corresponds to citric acid and organic acid)
・ Succinic acid (corresponds to organic acid)
・ Malic acid (corresponds to organic acid)
・ Malonic acid (corresponds to organic acid)
・ Male (corresponds to maleic acid and organic acid)
〔CMP前後のコロイダルシリカの平均粒子径比(T2)の測定〕
 下記方法により、CMP前後のコロイダルシリカの平均粒子径を測定し、下記式(2)によりCMP前後のコロイダルシリカの平均粒子径比(T2)を求めた。結果を表1及び表2に示す。
≪測定条件≫
 粒度分布計SALD-2300(島津製作所製)を用いて、CMP前の研磨液中の研磨粒子の粒度分布を測定して平均粒子径を求めた。また、CMP後の研磨液を回収し、上記回収後の研磨液中の研磨粒子についても同様の方法によりその平均粒子径を求めた。得られた数値を用い、下記式から得られるT2を算出した。
 式(2):
 T2=化学的機械的研磨後の平均粒子径/化学的機械的研磨前の平均粒子径
[Measurement of average particle diameter ratio (T2) of colloidal silica before and after CMP]
The average particle diameter of the colloidal silica before and after CMP was measured by the following method, and the average particle diameter ratio (T2) of the colloidal silica before and after CMP was determined by the following formula (2). The results are shown in Tables 1 and 2.
≪Measurement conditions≫
Using a particle size distribution analyzer SALD-2300 (manufactured by Shimadzu Corporation), the particle size distribution of the abrasive particles in the polishing liquid before CMP was measured to determine the average particle size. Further, the polishing liquid after CMP was recovered, and the average particle diameter of the abrasive particles in the recovered polishing liquid was determined by the same method. Using the obtained numerical value, T2 obtained from the following formula was calculated.
Formula (2):
T2 = average particle diameter after chemical mechanical polishing / average particle diameter before chemical mechanical polishing
〔反応層の厚さの測定〕
<コバルトのモデル膜を被研磨面とした場合の反応層の厚さの測定>
 厚さ1500nmのコバルトを堆積したシリコン基板を約10mm角にカットしたものを、上記の研磨液を10mL入れた内容積約100mLのポリエチレンカップに、室温(約25℃)で24時間静置して浸漬した。浸漬後、研磨液より取り出した試料を水洗して、さらに窒素を用いて風乾燥して、コバルト表面に反応層が形成された試料を得た。
 この試料について、下記に示す測定条件で集束イオンビーム加工装置(FIB:Focused Ion Beam)による断面形成加工及び走査型電子顕微鏡(SEM)による断面観察を行い、反応層の厚さを測定した。結果は表1及び表2に示した。
(FIB加工条件)
装置:株式会社日立製作所製FB-2000A型
加速電圧:30kV
前処理:白金スパッタコーティング→カーボン蒸着→タングステンデポ
(SEM測定条件)
装置:株式会社日立製作所製S-900型
加速電圧:3kV
前処理:白金スパッタコーティング
[Measurement of reaction layer thickness]
<Measurement of reaction layer thickness when cobalt model film is used as polished surface>
A silicon substrate on which cobalt having a thickness of 1500 nm is deposited and cut into about 10 mm square is left in a polyethylene cup having an internal volume of about 100 mL containing 10 mL of the above polishing liquid at room temperature (about 25 ° C.) for 24 hours. Soaked. After immersion, the sample taken out from the polishing liquid was washed with water and further air-dried using nitrogen to obtain a sample having a reaction layer formed on the cobalt surface.
About this sample, the cross-section formation processing by the focused ion beam processing apparatus (FIB: Focused Ion Beam) and the cross-sectional observation by a scanning electron microscope (SEM) were performed on the measurement conditions shown below, and the thickness of the reaction layer was measured. The results are shown in Tables 1 and 2.
(FIB processing conditions)
Apparatus: FB-2000A acceleration voltage manufactured by Hitachi, Ltd .: 30 kV
Pretreatment: platinum sputter coating → carbon deposition → tungsten deposition (SEM measurement conditions)
Equipment: Hitachi, Ltd. S-900 acceleration voltage: 3kV
Pretreatment: Platinum sputter coating
<Ta、TaN、Ti、TiN、Ru、及びMnからなる群より選ばれるいずれか1種のモデル膜を被研磨面とした場合の反応層の厚さの測定>
 厚さ1500nmのTaを堆積したシリコン基板を約10mm角にカットしたものを、上記の研磨液を10mL入れた内容積約100mLのポリエチレンカップに、室温(約25℃)で24時間静置して浸漬した。浸漬後、研磨液より取り出した試料を水洗して、さらに窒素を用いて風乾燥して、Ta表面に反応層が形成された試料を得た。
 この試料について、下記に示す測定条件で集束イオンビーム加工装置(FIB:Focused Ion Beam)による断面形成加工及び走査型電子顕微鏡(SEM)による断面観察を行い、反応層の厚さを測定した。結果は表1及び表2に示した。
 また、TaN、Ti、TiN、Ru、及びMnの各金属についても上記と同様の方法によりモデル膜を作製し、各反応層の厚みを測定した(結果は表1及び表2に示す。)。
<Measurement of the thickness of the reaction layer when any one model film selected from the group consisting of Ta, TaN, Ti, TiN, Ru, and Mn is used as the polished surface>
A silicon substrate on which Ta with a thickness of 1500 nm is deposited is cut into a square of about 10 mm and left in a polyethylene cup with an internal volume of about 100 mL containing 10 mL of the above polishing liquid at room temperature (about 25 ° C.) for 24 hours. Soaked. After immersion, the sample taken out from the polishing liquid was washed with water and further air-dried using nitrogen to obtain a sample having a reaction layer formed on the Ta surface.
About this sample, the cross-section formation processing by the focused ion beam processing apparatus (FIB: Focused Ion Beam) and the cross-sectional observation by a scanning electron microscope (SEM) were performed on the measurement conditions shown below, and the thickness of the reaction layer was measured. The results are shown in Tables 1 and 2.
Further, for each of TaN, Ti, TiN, Ru, and Mn metals, a model film was prepared by the same method as described above, and the thickness of each reaction layer was measured (results are shown in Tables 1 and 2).
<SiOx及びSiOCからなる群より選ばれるいずれか1種のモデル膜を被研磨面とした場合の反応層の厚さの測定>
 厚さ1500nmのSiOxを堆積したシリコン基板を約10mm角にカットしたものを、上記の研磨液を10mL入れた内容積約100mLのポリエチレンカップに、室温(約25℃)で24時間静置して浸漬した。浸漬後、研磨液より取り出した試料を水洗して、さらに窒素を用いて風乾燥して、SiOx表面に反応層が形成された試料を得た。
 この試料について、下記に示す測定条件で集束イオンビーム加工装置(FIB:Focused Ion Beam)による断面形成加工及び走査型電子顕微鏡(SEM)による断面観察を行い、反応層の厚さを測定した。結果は表2に示した。
 また、SiOCについても上記と同様の方法によりモデル膜を作製し、反応層の厚みを測定した(結果は表2に示す。)。
<Measurement of the thickness of the reaction layer when any one model film selected from the group consisting of SiOx and SiOC is used as the surface to be polished>
A silicon substrate on which SiOx having a thickness of 1500 nm is deposited is cut into a square of about 10 mm, and left in a polyethylene cup having an internal volume of about 100 mL containing 10 mL of the above polishing liquid at room temperature (about 25 ° C.) for 24 hours. Soaked. After immersion, the sample taken out from the polishing liquid was washed with water and further air-dried using nitrogen to obtain a sample having a reaction layer formed on the SiOx surface.
About this sample, the cross-section formation processing by the focused ion beam processing apparatus (FIB: Focused Ion Beam) and the cross-sectional observation by a scanning electron microscope (SEM) were performed on the measurement conditions shown below, and the thickness of the reaction layer was measured. The results are shown in Table 2.
Also for SiOC, a model film was prepared by the same method as described above, and the thickness of the reaction layer was measured (results are shown in Table 2).
〔各種定量〕
<一般式(1)で表される化合物の含有量>
 各実施例、及び、比較例で作製した研磨液中に含有される一般式(1)で表される化合物の含有量は、ガスクロマトグラフ質量分析装置(製品名「GCMS-2020」、島津製作所社製)を用いて測定した。以下に、測定条件を示す。
 なお、ガスクロマトグラフ質量分析装置による定量は、研磨液にフッ化水素を添加して研磨粒子を完全に溶解し、その後pHを10以上に調整した試料を用いて実施した。
[Various types of determination]
<Content of the compound represented by the general formula (1)>
The content of the compound represented by the general formula (1) contained in the polishing liquid prepared in each Example and Comparative Example was determined by gas chromatograph mass spectrometer (product name “GCMS-2020”, Shimadzu Corporation). ). The measurement conditions are shown below.
The quantification using a gas chromatograph mass spectrometer was performed using a sample in which hydrogen fluoride was added to the polishing liquid to completely dissolve the abrasive particles, and then the pH was adjusted to 10 or higher.
≪測定条件≫
キャピラリーカラム:InertCap 5MS/NP 0.25mmI.D. ×30m df=0.25μm
試料導入法:スプリット 75kPa 圧力一定
気化室温度 :230℃
カラムオーブン温度:80℃(2min)-500℃(13min)昇温速度15℃/min
キャリヤーガス:ヘリウム
セプタムパージ流量:5mL/min
スプリット比:25:1
インターフェイス温度:250℃
イオン源温度:200℃
測定モード:Scan m/z=85~500
試料導入量:1μL
≪Measurement conditions≫
Capillary column: InertCap 5MS / NP 0.25 mm I.D. D. × 30m df = 0.25μm
Sample introduction method: Split 75 kPa Pressure constant vaporization chamber temperature: 230 ° C
Column oven temperature: 80 ° C. (2 min) -500 ° C. (13 min) Temperature rising rate 15 ° C./min
Carrier gas: Helium septum purge flow rate: 5 mL / min
Split ratio: 25: 1
Interface temperature: 250 ° C
Ion source temperature: 200 ° C
Measurement mode: Scan m / z = 85 to 500
Sample introduction volume: 1 μL
<特定金属原子の含有量>
(金属不純物に含まれる特定金属原子の含有量)
 各実施例及び比較例で作製した研磨液中の金属不純物に含まれる特定金属原子の含有量は、Agilent 8800 トリプル四重極ICP-MS(半導体分析用、オプション#200)を用いて測定した。
<Content of specific metal atom>
(Content of specific metal atoms contained in metal impurities)
The content of the specific metal atom contained in the metal impurities in the polishing liquid prepared in each Example and Comparative Example was measured using Agilent 8800 Triple Quadrupole ICP-MS (for semiconductor analysis, option # 200).
≪測定条件≫
 サンプル導入系は石英のトーチと同軸型PFA(パーフルオロアルコキシアルカン)ネブライザ(自吸用)、及び、白金インターフェースコーンを使用した。クールプラズマ条件の測定パラメータは以下のとおりである。
・RF(Radio Frequency)出力(W):600
・キャリアガス流量(L/min):0.7
・メークアップガス流量(L/min):1
・サンプリング深さ(mm):18
≪Measurement conditions≫
The sample introduction system used was a quartz torch, a coaxial PFA (perfluoroalkoxyalkane) nebulizer (for self-priming), and a platinum interface cone. The measurement parameters for the cool plasma conditions are as follows.
-RF (Radio Frequency) output (W): 600
Carrier gas flow rate (L / min): 0.7
-Makeup gas flow rate (L / min): 1
-Sampling depth (mm): 18
(金属粒子に含まれる特定金属原子の含有量)
・SNP-ICP-MS(Single NanoParticle-Inductively Coupled Plasma-Mass Spectrometry)による測定
 金属粒子に含まれる特定金属原子の含有率については、Perkinelmer社製「Nexion350S」を用いて測定を行った。
 なお、SNP-ICP-MSによる定量は、研磨液にフッ化水素を添加して研磨粒子を完全に溶解し、その後pHを10以上に調整した試料を用いて実施した。
 1)標準物質の準備
 標準物質は清浄なガラス容器内へ超純水を計量投入し、メディアン径50nmの測定対象金属粒子を10000個/mlの濃度となるように添加した後、超音波洗浄機で30分間処理した分散液を輸送効率測定用の標準物質として用いた。
 2)測定条件
 PFA製同軸型ネブライザ、石英製サイクロン型スプレーチャンバ、石英製内径1mmトーチインジェクタを用い、測定対象液を約0.2mL/minで吸引した。酸素添加量は0.1L/min、プラズマ出力1600W、アンモニアガスによるセルパージを行った。時間分解能は50usにて解析を行った。
 3) 金属粒子に含まれる特定金属原子の含有量は、メーカー付属の下記解析ソフトを用いて計測した。
 ・金属粒子に含まれる特定金属原子の含有量:ナノ粒子分析“SNP-ICP-MS”専用Syngistix ナノアプリケーションモジュール
(Content of specific metal atoms contained in metal particles)
Measurement by SNP-ICP-MS (Single Nano Particle-Inductively Coupled Plasma-Mass Spectrometry) The content of the specific metal atom contained in the metal particles was measured using “Nexion 350S” manufactured by Perkinelmer.
The quantification by SNP-ICP-MS was performed using a sample in which hydrogen fluoride was added to the polishing liquid to completely dissolve the abrasive particles, and then the pH was adjusted to 10 or more.
1) Preparation of standard substance Ultra pure water is weighed into a standard glass container, and metal particles to be measured with a median diameter of 50 nm are added to a concentration of 10,000 particles / ml, followed by an ultrasonic cleaner. The dispersion treated for 30 minutes was used as a standard substance for transport efficiency measurement.
2) Measurement conditions Using a PFA coaxial nebulizer, a quartz cyclone spray chamber, and a quartz 1 mm inner diameter torch injector, the liquid to be measured was sucked at about 0.2 mL / min. The oxygen addition amount was 0.1 L / min, the plasma output was 1600 W, and cell purge with ammonia gas was performed. The time resolution was 50 us.
3) The content of specific metal atoms contained in the metal particles was measured using the following analysis software attached to the manufacturer.
-Content of specific metal atoms contained in metal particles: Synistix nano application module dedicated to nanoparticle analysis “SNP-ICP-MS”
〔研磨速度、ディッシング評価、及びエロージョン評価〕
 以下の条件で研磨液を研磨パッドに供給しながら研磨を行い、実施例1A~83A、比較例1A~5Aについては研磨速度及びディッシングの評価を行い、実施例1B~82Bについては研磨速度、ディッシング及びエロージョンの評価を行った。
・研磨装置:Reflexion(アプライド・マテリアルズ社製)
・被研磨体(ウェハ):
(1)研磨速度算出用;シリコン基板上に厚み1.5μmの上記各モデル膜(Co膜、Ta膜、SiOx膜、TaN膜、Ti膜、TiN膜、Mn膜、Ru膜、又はSiOC膜)を形成した直径300mmのブランケットウェハ。
(2)ディッシング評価用;
 ・実施例1A~83A、比較例1A~5A:
 コバルト配線のパターン付き基板(International SEMATECH製、シリコン基板上にSiOxからなる絶縁層を厚さ5000Å積層させた後、「SEMATECH 854」マスク(L/S=10μm/10μm)にてパターン加工し、その上に厚さ100Åのバリア金属層(バリア金属:Ta)、及び7500Åのコバルト層を順次積層させたテスト用の基板。
 ・実施例1B~82B:
 コバルト配線のパターン付き基板(International SEMATECH製、シリコン基板上にSiOxからなる絶縁層を厚さ5000Å積層させた後、「SEMATECH 854」マスク(L/S=10μm/10μm)にてパターン加工し、その上に厚さ100Åのバリア金属層(バリア金属:Ta)、及び7500Åのコバルト層を順次積層させたテスト用の基板。
(3)エロージョン評価用;
 コバルト配線のパターン付き基板(International SEMATECH製、シリコン基板上にSiOxからなる絶縁層を厚さ5000Å積層させた後、「SEMATECH 854」マスク(L/S=9μm/1μm)にてパターン加工し、その上に厚さ100Åのバリア金属層(バリア金属:Ta)、及び7500Åのコバルト層を順次積層させたテスト用の基板。
[Polishing speed, dishing evaluation, and erosion evaluation]
Polishing is performed while supplying the polishing liquid to the polishing pad under the following conditions. For Examples 1A to 83A and Comparative Examples 1A to 5A, the polishing rate and dishing are evaluated. For Examples 1B to 82B, the polishing rate and dishing are evaluated. And erosion was evaluated.
Polishing device: Reflexion (manufactured by Applied Materials)
・ Substance to be polished (wafer):
(1) For polishing rate calculation; each of the above model films (Co film, Ta film, SiOx film, TaN film, Ti film, TiN film, Mn film, Ru film, or SiOC film) having a thickness of 1.5 μm on a silicon substrate A blanket wafer having a diameter of 300 mm.
(2) For dishing evaluation;
Examples 1A to 83A, Comparative Examples 1A to 5A:
A substrate with a pattern of cobalt wiring (made by International SEMATECH, an insulating layer made of SiOx on a silicon substrate having a thickness of 5000 mm, and then patterned with a “SEMATECH 854” mask (L / S = 10 μm / 10 μm) A test substrate in which a barrier metal layer (barrier metal: Ta) having a thickness of 100 mm and a cobalt layer having a thickness of 7500 mm are sequentially stacked.
Examples 1B-82B:
A substrate with a pattern of cobalt wiring (made by International SEMATECH, an insulating layer made of SiOx on a silicon substrate having a thickness of 5000 mm, and then patterned with a “SEMATECH 854” mask (L / S = 10 μm / 10 μm) A test substrate in which a barrier metal layer (barrier metal: Ta) having a thickness of 100 mm and a cobalt layer having a thickness of 7500 mm are sequentially stacked.
(3) For erosion evaluation;
A substrate with a pattern of cobalt wiring (made by International SEMATECH, an insulating layer made of SiOx on a silicon substrate having a thickness of 5000 mm, and then patterned with a “SEMATECH 854” mask (L / S = 9 μm / 1 μm) A test substrate in which a barrier metal layer (barrier metal: Ta) having a thickness of 100 mm and a cobalt layer having a thickness of 7500 mm are sequentially stacked.
・研磨パッド:IC1010(ロデール社製)
・研磨条件;
  研磨圧力(被研磨面と研磨パッドとの接触圧力):1.5psi(なお、本明細書においてpsiとは、pound-force per square inch;重量ポンド毎平方インチを意図し、1psi=6894.76Paを意図する。)
  研磨液供給速度:200ml/min
  研磨定盤回転数:110rpm
  研磨ヘッド回転数:100rpm
Polishing pad: IC1010 (Rodel)
・ Polishing conditions;
Polishing pressure (contact pressure between the surface to be polished and the polishing pad): 1.5 psi (in this specification, psi means pound-force per square inch; 1 psi = 6894.76 Pa) Intended)
Polishing liquid supply rate: 200 ml / min
Polishing platen rotation speed: 110rpm
Polishing head rotation speed: 100 rpm
(評価方法)
・実施例1A~83A、比較例1A~5A:
 研磨速度の算出:(1)のブランケットウェハを60秒間研磨し、ウェハ面上の均等間隔の49箇所に対し、研磨前後での金属膜厚を電気抵抗値から換算して求め、それらを研磨時間で割って求めた値の平均値を研磨速度(単位:nm/min)とした。
(Evaluation methods)
Examples 1A to 83A, Comparative Examples 1A to 5A:
Polishing rate calculation: The blanket wafer of (1) was polished for 60 seconds, and the metal film thickness before and after polishing was calculated from the electrical resistance value at 49 equally spaced locations on the wafer surface. The average value of the values obtained by dividing by was used as the polishing rate (unit: nm / min).
 ディッシングの評価:(2)のパターンウェハに対し、非配線部のコバルトが完全に研磨されるまでの時間に加え、更にその時間の20%分だけ余分に研磨を行い、ラインアンドスペース部(ライン10μm、スペース10μm)の段差を、接触式段差計DektakV320Si(Veeco社製)で測定し、以下の基準により評価した。なお、評価「G」以上が実用範囲である。
A:ディッシングが5nm以下である。
B:ディッシングが5nm超、8nm以下である。
C:ディッシングが8nm超、12nm以下である。
D:ディッシングが12nm超、15nm以下である。
E:ディッシングが15nm超、18nm以下である。
F:ディッシングが18nm超、21nm以下である。
G:ディッシングが21nm超、25nm以下である。
H:ディッシングが25nm超である。
Evaluation of dishing: In addition to the time until the cobalt in the non-wiring portion is completely polished on the pattern wafer of (2), the polishing is further performed for 20% of the time, and the line and space portion (line A step of 10 μm and a space of 10 μm was measured with a contact-type step gauge Dektak V320Si (manufactured by Veeco) and evaluated according to the following criteria. In addition, evaluation "G" or more is a practical use range.
A: Dishing is 5 nm or less.
B: Dishing is more than 5 nm and 8 nm or less.
C: Dishing is more than 8 nm and 12 nm or less.
D: Dishing is more than 12 nm and 15 nm or less.
E: Dishing is more than 15 nm and 18 nm or less.
F: Dishing is more than 18 nm and 21 nm or less.
G: Dishing is more than 21 nm and 25 nm or less.
H: Dishing is over 25 nm.
・実施例1B~82B、比較例1B~3B:
 研磨速度の算出:(1)のブランケットウェハを60秒間研磨し、ウェハ面上の均等間隔の49箇所に対し、研磨前後での金属膜厚を電気抵抗値から換算して求め、それらを研磨時間で割って求めた値の平均値を研磨速度(単位:nm/min)とした。
Examples 1B to 82B, Comparative Examples 1B to 3B:
Polishing rate calculation: The blanket wafer of (1) was polished for 60 seconds, and the metal film thickness before and after polishing was calculated from the electrical resistance value at 49 equally spaced locations on the wafer surface. The average value of the values obtained by dividing by was used as the polishing rate (unit: nm / min).
 ディッシングの評価:(2)のパターンウェハに対し、非配線部のコバルトが完全に研磨されるまでの時間に加え、更にその時間の20%分だけ余分に研磨を行い、ラインアンドスペース部(ライン10μm、スペース10μm)の段差を、接触式段差計DektakV320Si(Veeco社製)で測定し、以下の基準により評価した。なお、評価「G」以上が実用範囲である。
A:ディッシングが5nm以下である。
B:ディッシングが5nm超、8nm以下である。
C:ディッシングが8nm超、12nm以下である。
D:ディッシングが12nm超、15nm以下である。
E:ディッシングが15nm超、18nm以下である。
F:ディッシングが18nm超、21nm以下である。
G:ディッシングが21nm超、25nm以下である。
H:ディッシングが25nm超である。
Evaluation of dishing: In addition to the time until the cobalt in the non-wiring portion is completely polished on the pattern wafer of (2), the polishing is further performed for 20% of the time, and the line and space portion (line A step of 10 μm and a space of 10 μm was measured with a contact-type step gauge Dektak V320Si (manufactured by Veeco) and evaluated according to the following criteria. In addition, evaluation "G" or more is a practical use range.
A: Dishing is 5 nm or less.
B: Dishing is more than 5 nm and 8 nm or less.
C: Dishing is more than 8 nm and 12 nm or less.
D: Dishing is more than 12 nm and 15 nm or less.
E: Dishing is more than 15 nm and 18 nm or less.
F: Dishing is more than 18 nm and 21 nm or less.
G: Dishing is more than 21 nm and 25 nm or less.
H: Dishing is over 25 nm.
 エロージョンの評価:(3)のパターンウェハに対し、非配線部のコバルトが完全に研磨されるまでの時間に加え、更に1分だけ余分に研磨を行い、ラインアンドスペース部(ライン9μm、スペース1μm)の段差を、接触式段差計DektakV320Si(Veeco社製)で測定し、以下の基準により評価した。なお、評価「G」以上が実用範囲である。
A:エロージョンが3nm以下である。
B:エロージョンが3nm超、5nm以下である。
C:エロージョンが5nm超、10nm以下である。
D:エロージョンが10nm超、15nm以下である。
E:エロージョンが15nm超、20nm以下である。
F:エロージョンが20nm超、25nm以下である。
G:エロージョンが25nm超、30nm以下である。
H:エロージョンが30nm超である。
Evaluation of erosion: In addition to the time until the cobalt in the non-wiring portion is completely polished on the pattern wafer of (3), it is further polished for one minute, and the line and space portion (line 9 μm, space 1 μm) ) Was measured with a contact step meter Dektak V320Si (manufactured by Veeco) and evaluated according to the following criteria. In addition, evaluation "G" or more is a practical use range.
A: Erosion is 3 nm or less.
B: Erosion is more than 3 nm and less than 5 nm.
C: Erosion is more than 5 nm and 10 nm or less.
D: Erosion is more than 10 nm and 15 nm or less.
E: Erosion is more than 15 nm and 20 nm or less.
F: Erosion is more than 20 nm and 25 nm or less.
G: Erosion is more than 25 nm and 30 nm or less.
H: Erosion is over 30 nm.
〔欠陥評価〕
 仕上げ研磨まで行ったパターンウェハをComPlus(AMAT社製 欠陥検査装置)により、研磨液の欠陥評価の評価(60nm以上)を行った。
A:研磨後の欠陥数が、20個/Wf以下
B:研磨後の欠陥数が、20個/Wf超、30個/Wf以下
C:研磨後の欠陥数が、30個/Wf超、50個/Wf以下
D:研磨後の欠陥数が、50個/Wf超、60個/Wf以下
E:研磨後の欠陥数が、60個/Wf超、80個/Wf以下
F:研磨後の欠陥数が、80個/Wf超、100個/Wf以下
G:研磨後の欠陥数が、100個/Wf超、120個/Wf以下
H:研磨後の欠陥数が、120個/Wfを超える
(Defect evaluation)
The pattern wafer that had been subjected to the final polishing was evaluated for defect evaluation of the polishing liquid (60 nm or more) using ComPlus (defect inspection apparatus manufactured by AMAT).
A: The number of defects after polishing is 20 / Wf or less B: The number of defects after polishing is more than 20 / Wf, 30 / Wf or less C: The number of defects after polishing is more than 30 / Wf, 50 Pieces / Wf or less D: Number of defects after polishing exceeds 50 / Wf, 60 pieces / Wf or less E: Number of defects after polishing exceeds 60 pieces / Wf, 80 pieces / Wf or less F: Defects after polishing Number: More than 80 / Wf, 100 / Wf or less G: Number of defects after polishing exceeds 100 / Wf, 120 / Wf or less H: Number of defects after polishing exceeds 120 / Wf
〔経時安定性評価〕
 各研磨液を40℃で1カ月間保管した。粒度分布計SALD-2300(島津製作所製)を用いて、調製直後(初期)の研磨粒子、及び保管後の研磨粒子の各粒度分布(平均粒子径)を測定して各平均粒子径を求め、下記式から算出した比により、研磨液の経時安定性の評価を行った。
 式(6):T3=保管後の研磨粒子の平均粒子径/初期の研磨粒子の平均粒子径
A:T3が1.1以下
B:T3が1.1超、1.3以下
C:T3が1.3超、1.5以下
D:T3が1.5を超える
[Stability evaluation over time]
Each polishing liquid was stored at 40 ° C. for 1 month. Using a particle size distribution analyzer SALD-2300 (manufactured by Shimadzu Corporation), each particle size distribution (average particle size) of the abrasive particles immediately after preparation (initial) and the abrasive particles after storage is measured to determine each average particle size, The temporal stability of the polishing liquid was evaluated based on the ratio calculated from the following formula.
Formula (6): T3 = average particle diameter of abrasive particles after storage / average particle diameter of initial abrasive particles A: T3 is 1.1 or less B: T3 is more than 1.1, 1.3 or less C: T3 is More than 1.3, 1.5 or less D: T3 exceeds 1.5
 結果を表1及び表2に示す。
 なお、表中、「%」及び「ppb」は、いずれも質量基準である。
 また、「研磨速度比R1」、「研磨速度比R2」、及び「研磨速度比R3」は、それぞれ下記式(3)~(5)から算出される値である。
 式(3):
 R1=研磨液によるコバルト基板の研磨速度/研磨液によるバリア基板の研磨速度
 式(4):
 R2=研磨液によるコバルト基板の研磨速度/研磨液によるバリア基板の研磨速度
 式(5):
 R3=研磨液によるコバルト基板の研磨速度/研磨液による絶縁膜基板の研磨速度
 また、「金属不純物量」とは、Fe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる特定金属原子の研磨液全質量に対する含有量を意図する。
 また、「金属粒子量」とは、上記金属不純物のうち固体状の金属不純物が含有する、Fe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる特定金属原子の、研磨液全質量に対する含有量を意図する。
 また、「H/金属不純物量(T1)」とは、下記式(1)から算出される値である。
 式(1):T1=過酸化水素の含有量/金属不純物が含有するFe原子、Cu原子、Ag原子、及びZn原子からなる群より選ばれる特定金属原子の合計含有量
 また、「アミン量(ppb)」とは、上述した一般式(1)で表される化合物の研磨液全質量に対する含有量を意図する。
 なお、研磨液は、全質量が100質量%となるように水(残部)で調整した。
The results are shown in Tables 1 and 2.
In the table, “%” and “ppb” are both based on mass.
Further, “polishing rate ratio R1”, “polishing rate ratio R2”, and “polishing rate ratio R3” are values calculated from the following equations (3) to (5), respectively.
Formula (3):
R1 = Polishing speed of cobalt substrate with polishing liquid / Polishing speed of barrier substrate with polishing liquid (4)
R2 = Cobalt substrate polishing rate with polishing solution / Barrier substrate polishing rate with polishing solution Formula (5):
R3 = Polishing speed of cobalt substrate with polishing liquid / Polishing speed of insulating film substrate with polishing liquid Also, the “metal impurity amount” is a specific metal selected from the group consisting of Fe atoms, Cu atoms, Ag atoms, and Zn atoms The content of the atom with respect to the total mass of the polishing liquid is intended.
Further, “amount of metal particles” means the total amount of polishing liquid of a specific metal atom selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom contained in solid metal impurities among the above metal impurities. Intended for content relative to mass.
Further, “H 2 O 2 / metal impurity amount (T1)” is a value calculated from the following formula (1).
Formula (1): T1 = Content of hydrogen peroxide / Total content of specific metal atoms selected from the group consisting of Fe atoms, Cu atoms, Ag atoms, and Zn atoms contained in metal impurities. "ppb)" intends the content of the compound represented by the general formula (1) described above with respect to the total mass of the polishing liquid.
The polishing liquid was adjusted with water (remainder) so that the total mass was 100% by mass.
 なお、下記表1において、下記表1A2、表1B2、表1C2、表1D2は、それぞれ、下記表1A1、表1B1、表1C1、表1D1に示す実施例1A~83A及び比較例1A~5Aの各研磨液についての各種評価結果を示したものである。
 つまり、例えば、実施例1Aの場合、表1A2に、表1A1の研磨液を用いた各種評価が示される。実施例1Aの研磨液におけるCo反応層の厚みは4nmであり、ディッシング評価は4nm(Aに相当)、欠陥評価はA、経時安定性はAである。また、例えば、バリア金属をTaNとした場合には、TaN反応層の厚みは0.08nmである。
 また、下記表2において、下記表2A2及び表2A3、表2B2及び表2B3、表2C2及び表2C3、表2D2及び表2D3は、それぞれ、下記表2A1、表2B1、表2C1に示す実施例1B~82B、比較例1B~3Bの各研磨液についての各種評価結果を示したものである。
 つまり、例えば、実施例1Bの場合、表2A2及び表2A3に、表2A1の研磨液を用いた各種評価が示される。実施例1Bの研磨液におけるCo反応層の厚みは1nmであり、ディッシング評価は3.5nm(Aに相当)、エロージョン評価は8.75nm(Cに相当)欠陥評価はA、経時安定性はAである。また、例えば、バリア金属をTaNとした場合には、TaN反応層の厚みは0.212nmである。
In Table 1 below, Table 1A2, Table 1B2, Table 1C2, and Table 1D2 are respectively the Examples 1A to 83A and Comparative Examples 1A to 5A shown in Table 1A1, Table 1B1, Table 1C1, and Table 1D1, respectively. The various evaluation result about polishing liquid is shown.
That is, for example, in the case of Example 1A, Table 1A2 shows various evaluations using the polishing liquid of Table 1A1. The thickness of the Co reaction layer in the polishing liquid of Example 1A is 4 nm, the dishing evaluation is 4 nm (corresponding to A), the defect evaluation is A, and the temporal stability is A. For example, when the barrier metal is TaN, the thickness of the TaN reaction layer is 0.08 nm.
In Table 2 below, Table 2A2 and Table 2A3, Table 2B2 and Table 2B3, Table 2C2 and Table 2C3, Table 2D2 and Table 2D3 are shown in Table 2A1, Table 2B1 and Table 2C1, respectively. 82B shows various evaluation results for the polishing liquids of Comparative example 1B to 3B.
That is, for example, for Example 1B, Table 2A2 and Table 2A3 show various evaluations using the polishing liquid of Table 2A1. The thickness of the Co reaction layer in the polishing liquid of Example 1B is 1 nm, dishing evaluation is 3.5 nm (corresponding to A), erosion evaluation is 8.75 nm (corresponding to C), defect evaluation is A, and stability over time is A. It is. For example, when the barrier metal is TaN, the thickness of the TaN reaction layer is 0.212 nm.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表1及び表2の結果から、実施例の研磨液は、いずれも被研磨面でのディッシング、エロージョン、及び欠陥の発生が抑制されていることが確認された。また、経時安定性にも優れていることが確認された。
 一方、比較例1~5の研磨液は、被研磨面でのディッシング及び欠陥の発生が確認された。
From the results of Tables 1 and 2, it was confirmed that the polishing liquids of the examples all suppressed the occurrence of dishing, erosion, and defects on the surface to be polished. It was also confirmed that the stability over time was excellent.
On the other hand, in the polishing liquids of Comparative Examples 1 to 5, dishing and defects were confirmed on the surface to be polished.
・実施例1A~83Aの結果(表1)
 実施例1A、8A~11Aの対比から、過酸化水素の含有量が、研磨液全質量に対して0.001~2.5質量%(好ましくは0.06~2質量%)の場合、被研磨面でのディッシングがより発生しにくいことが確認された。
 また、実施例1A、12A~15Aの対比から、アゾール系化合物の含有量が、研磨液全質量に対して、0.01~1.3質量%(好ましくは、0.01~0.4質量%)の場合、被研磨面でのディッシングがより発生しにくく、経時安定性により優れていた。
 実施例1A、19A~21Aの対比から、会合度1~3のコロイダルシリカの化学的機械的研磨前後での平均粒子径の比T2が、2.5以下(好ましくは、2以下)の場合、被研磨面での欠陥がより発生しにくいことが確認された。
 また、実施例1A、22A~25Aの対比から、研磨液のpHが6.5~8.0(好ましくは6.8~7.8、より好ましくは6.8~7.2)の場合に、被研磨面でのディッシング及び欠陥がより発生しにくく、経時安定性により優れていることが確認された。 また、実施例1A、26A~29Aの対比から、上記一般式(1)で表される化合物の含有量が、研磨液全質量に対して1000質量ppb以下(好ましくは、250質量ppb以下、より好ましくは8質量ppb以下)の場合、被研磨面でのディッシング及び欠陥がより発生しにくく、経時安定性により優れていることが確認された。
 また、実施例1A、30A~32Aの対比から、金属不純物が含有するFe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる1種の特定金属原子の含有量が、研磨液全質量に対して0.01~100質量ppb(好ましくは、0.01~50質量ppb、より好ましくは、0.01~20質量ppb)の場合、被研磨面でのディッシング及び欠陥がより発生しにくく、経時安定性により優れていることが確認された。また、金属粒子が含有する特定金属原子であって、その含有量が、研磨液全質量に対して0.01~50質量ppb(好ましくは、0.01~8質量ppb)の場合、被研磨面でのディッシング及び欠陥がより発生しにくく、経時安定性により優れていることが確認された。
  また、実施例1A、33A~35A、54A、55Aの対比から、アミノ酸の含有量が、研磨液全質量に対して、0.8~4質量%の場合、被研磨面でのディッシング及び欠陥がより発生しにくく、経時安定性により優れていることが確認された。
 また、実施例1A、36A~38Aの対比から、アミノ酸として、グリシン、又はN-メチルグリシン(好ましくはグリシン)を含有する場合、被研磨面でのディッシングがより発生しにくいことが確認された。
 また、実施例1A、57A、58Aの対比から、会合度1~3のコロイダルシリカの含有量が、研磨液全質量に対して0.01~0.15質量%の場合、被研磨面でのディッシングがより発生しにくいことが確認された。
 また、実施例1A、39A~53Aの対比から、ベンゾトリアゾール骨格を有する化合物と、ベンゾトリアゾール系化合物とは異なる化合物とを含有する研磨液をCMPに適用した場合、被研磨面にディッシングがより発生しにくいことが確認された。
 また、実施例1A、8A~11A、30A~32Aの対比から、研磨液は、過酸化水素と金属不純物が含有するFe原子、Cu原子、Ag原子、及びZn原子からなる群より選ばれる特定金属原子との含有量比T1が、30000~500000(好ましくは30000~110000、より好ましくは30000~80000)の場合、被研磨面でのディッシングがより発生しにくいことが確認された。
 実施例1A、39A~41Aの対比から、ベンゾトリアゾール骨格を有する化合物として5-メチルベンゾトリアゾールを含有した場合、被研磨面でのディッシングがより発生しにくいことが確認された。
Results of Examples 1A to 83A (Table 1)
From the comparison of Examples 1A and 8A to 11A, when the content of hydrogen peroxide is 0.001 to 2.5% by mass (preferably 0.06 to 2% by mass) with respect to the total mass of the polishing liquid, It was confirmed that dishing on the polished surface was less likely to occur.
Further, from the comparison of Examples 1A and 12A to 15A, the content of the azole compound is 0.01 to 1.3% by mass (preferably 0.01 to 0.4% by mass) with respect to the total mass of the polishing liquid. %), Dishing on the surface to be polished was less likely to occur and the stability over time was excellent.
From the comparison of Examples 1A and 19A to 21A, when the ratio T2 of the average particle diameter before and after chemical mechanical polishing of colloidal silica having an association degree of 1 to 3 is 2.5 or less (preferably 2 or less), It was confirmed that defects on the polished surface were less likely to occur.
Further, in comparison with Examples 1A and 22A to 25A, when the pH of the polishing liquid is 6.5 to 8.0 (preferably 6.8 to 7.8, more preferably 6.8 to 7.2). It was confirmed that dishing and defects on the surface to be polished were less likely to occur, and the stability over time was excellent. Further, from the comparison of Examples 1A and 26A to 29A, the content of the compound represented by the general formula (1) is 1000 mass ppb or less (preferably 250 mass ppb or less, based on the total mass of the polishing liquid In the case of preferably 8 mass ppb or less), it was confirmed that dishing and defects on the surface to be polished were less likely to occur, and the stability over time was excellent.
Further, from the comparison of Examples 1A and 30A to 32A, the content of one specific metal atom selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom contained in the metal impurity is the total amount of the polishing liquid. In the case of 0.01 to 100 mass ppb (preferably 0.01 to 50 mass ppb, more preferably 0.01 to 20 mass ppb) with respect to the mass, dishing and defects on the surface to be polished more occur. It was difficult to confirm and excellent in stability over time. Further, when the specific metal atom contained in the metal particle is 0.01 to 50 mass ppb (preferably 0.01 to 8 mass ppb) with respect to the total mass of the polishing liquid, the object to be polished It was confirmed that dishing and defects on the surface were less likely to occur, and the stability over time was excellent.
Further, from the comparison of Examples 1A, 33A to 35A, 54A, and 55A, when the amino acid content is 0.8 to 4% by mass with respect to the total mass of the polishing liquid, dishing and defects on the surface to be polished are observed. It was confirmed that it was less likely to occur and was more stable over time.
Further, from the comparison between Examples 1A and 36A to 38A, it was confirmed that dishing on the surface to be polished was less likely to occur when glycine or N-methylglycine (preferably glycine) was contained as the amino acid.
Further, in comparison with Examples 1A, 57A, and 58A, when the content of colloidal silica having an association degree of 1 to 3 is 0.01 to 0.15% by mass with respect to the total mass of the polishing liquid, It was confirmed that dishing was less likely to occur.
Further, in comparison with Examples 1A and 39A to 53A, when a polishing liquid containing a compound having a benzotriazole skeleton and a compound different from a benzotriazole-based compound is applied to CMP, dishing occurs more on the surface to be polished. It was confirmed that it was difficult to do.
Further, in comparison with Examples 1A, 8A to 11A, and 30A to 32A, the polishing liquid is a specific metal selected from the group consisting of Fe atoms, Cu atoms, Ag atoms, and Zn atoms contained in hydrogen peroxide and metal impurities. It was confirmed that when the content ratio T1 with the atom is 30,000 to 500,000 (preferably 30,000 to 110,000, more preferably 30,000 to 80,000), dishing on the surface to be polished is less likely to occur.
From the comparison between Example 1A and 39A to 41A, it was confirmed that dishing on the polished surface was less likely to occur when 5-methylbenzotriazole was included as the compound having a benzotriazole skeleton.
・実施例1B~82Bの結果(表2)
 実施例1B、8B~10Bの対比から、過酸化水素の含有量が、研磨液全質量に対して、0.1~1.2質量%(好ましくは、0.6~1質量%)の場合、被研磨面にディッシング及びエロージョンがより発生しにくい。
 また、実施例1B、11B~14Bの対比から、アゾール系化合物の含有量が、研磨液全質量に対して、0.12~3.5質量%(好ましくは0.12~0.8質量%、より好ましくは0.12~0.5質量%)の場合、被研磨面でのディッシング及びエロージョンがより発生しにくく、経時安定性により優れていた。
 実施例1B、18B~20Bの対比から、会合度1~3のコロイダルシリカの化学的機械的研磨前後での平均粒子径の比T2が、2.5以下(好ましくは、2以下が)の場合、被研磨面での欠陥がより発生しにくいことが確認された。
 また、実施例1B、21B~23Bの対比から、研磨液のpHが8.2~9.5(好ましくは、8.7~9.5)の場合に、被研磨面でのディッシング及びエロージョン並びに欠陥がより発生しにくいことが確認された。
 また、実施例1B、24B~27Bの対比から、上記一般式(1)で表される化合物の含有量が、研磨液全質量に対して1000質量ppb以下(好ましくは、250質量ppb以下、より好ましくは8質量ppb以下)の場合、被研磨面でのディッシング及びエロージョン並びに欠陥がより発生しにくく、経時安定性により優れていることが確認された。
 また、実施例1B、28B~30Bの対比から、金属不純物が含有するFe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる1種の特定金属原子の含有量が、研磨液全質量に対して0.01~100質量ppb(好ましくは、0.01~20質量ppb)の場合、被研磨面でのディッシング及びエロージョン並びに欠陥がより発生しにくく、経時安定性により優れていることが確認された。また、金属粒子が含有する特定金属原子であって、その含有量が、研磨液全質量に対して0.01~50質量ppb(好ましくは、0.01~8質量ppb)の場合、被研磨面でのディッシング及びエロージョン並びに欠陥がより発生しにくく、経時安定性により優れていることが確認された。
Results of Examples 1B-82B (Table 2)
From the comparison between Examples 1B and 8B to 10B, when the hydrogen peroxide content is 0.1 to 1.2% by mass (preferably 0.6 to 1% by mass) with respect to the total mass of the polishing liquid In addition, dishing and erosion are less likely to occur on the surface to be polished.
Further, from the comparison between Examples 1B and 11B to 14B, the content of the azole compound is 0.12 to 3.5% by mass (preferably 0.12 to 0.8% by mass) with respect to the total mass of the polishing liquid. In the case of 0.12 to 0.5% by mass), dishing and erosion on the surface to be polished are less likely to occur, and the stability over time is excellent.
When the average particle diameter ratio T2 before and after chemical mechanical polishing of colloidal silica having an association degree of 1 to 3 is 2.5 or less (preferably 2 or less) from the comparison of Examples 1B and 18B to 20B It was confirmed that defects on the polished surface are less likely to occur.
Further, in comparison with Examples 1B and 21B to 23B, when the polishing solution has a pH of 8.2 to 9.5 (preferably 8.7 to 9.5), dishing and erosion on the surface to be polished and It was confirmed that defects are less likely to occur.
Further, from the comparison of Examples 1B and 24B to 27B, the content of the compound represented by the general formula (1) is 1000 mass ppb or less (preferably 250 mass ppb or less, based on the total mass of the polishing liquid). In the case of preferably 8 mass ppb or less), it was confirmed that dishing, erosion, and defects on the polished surface are less likely to occur, and that the stability over time is excellent.
Further, from the comparison of Examples 1B and 28B to 30B, the content of one specific metal atom selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom contained in the metal impurity is the total amount of the polishing liquid. In the case of 0.01 to 100 mass ppb with respect to mass (preferably 0.01 to 20 mass ppb), dishing, erosion and defects on the surface to be polished are less likely to occur, and the stability over time is excellent. Was confirmed. Further, when the specific metal atom contained in the metal particle is 0.01 to 50 mass ppb (preferably 0.01 to 8 mass ppb) with respect to the total mass of the polishing liquid, the object to be polished It was confirmed that dishing and erosion on the surface and defects were less likely to occur, and the stability over time was excellent.
 また、実施例1B、31B~36Bの対比から、有機酸の含有量は、研磨液全質量に対して、0.01~0.3質量%の場合、被研磨面でのディッシング及びエロージョン並びに欠陥がより発生しにくく、経時安定性により優れていることが確認された。
 また、実施例1B、37B~39Bの対比から、有機酸として、マレイン酸とクエン酸又はマロン酸とを組み合わせて使用(好ましくは、マレイン酸とクエン酸を組み合わせて使用)した場合、被研磨面でのディッシング及びエロージョンがより発生しにくく、経時安定性により優れていることが確認された。
 実施例1B、40B~42Bの対比から、ベンゾトリアゾール骨格を有する化合物としてベンゾトリアゾール、5-アミノベンゾトリアゾール、又は5,6-ジメチルベンゾアトリアゾールを含有した場合、被研磨面でのディッシング及びエロージョンがより発生しにくいことが確認された。
 また、実施例1B、40B~48B、52B、53Bの対比から、アゾール系化合物として、ベンゾトリアゾール骨格を有する化合物と、ベンゾトリアゾール系化合物とは異なる化合物とを含有する研磨液をCMPに適用した場合、被研磨面にディッシング及びエロージョンがより発生しにくいことが確認された。
 また、実施例1B、55B、56Bの対比から、会合度1~3のコロイダルシリカの含有量が、研磨液全質量に対して0.5~3質量%の場合、被研磨面にディッシング及びエロージョンがより発生しにくいことが確認された。
 また、実施例1B、8B~10B、28B~30Bの対比から、研磨液は、過酸化水素と金属不純物が含有するFe原子、Cu原子、Ag原子、及びZn原子からなる群より選ばれる特定金属原子との含有量比T1が、30000~500000(好ましくは100000~500000、より好ましくは250000~500000)の場合、被研磨面にディッシング及びエロージョンがより発生しにくいことが確認された。
Further, in comparison with Examples 1B and 31B to 36B, when the content of the organic acid is 0.01 to 0.3% by mass with respect to the total mass of the polishing liquid, dishing, erosion and defects on the surface to be polished It has been confirmed that is less likely to occur and is more stable over time.
Further, in comparison with Examples 1B and 37B to 39B, when the organic acid is used in combination with maleic acid and citric acid or malonic acid (preferably, maleic acid and citric acid are used in combination), the surface to be polished It was confirmed that dishing and erosion were less likely to occur and the stability over time was superior.
From the comparison of Example 1B and 40B to 42B, when benzotriazole, 5-aminobenzotriazole, or 5,6-dimethylbenzoatriazole was contained as the compound having a benzotriazole skeleton, dishing and erosion on the polished surface were observed. It was confirmed that it is less likely to occur.
Further, in comparison with Examples 1B, 40B to 48B, 52B, and 53B, a polishing liquid containing a compound having a benzotriazole skeleton and a compound different from the benzotriazole compound as an azole compound is applied to CMP. It was confirmed that dishing and erosion were less likely to occur on the polished surface.
Further, in comparison with Examples 1B, 55B, and 56B, when the content of colloidal silica having an association degree of 1 to 3 is 0.5 to 3% by mass with respect to the total mass of the polishing liquid, dishing and erosion are performed on the surface to be polished. It was confirmed that is less likely to occur.
Further, from the comparison of Examples 1B, 8B to 10B, and 28B to 30B, the polishing liquid is a specific metal selected from the group consisting of Fe atoms, Cu atoms, Ag atoms, and Zn atoms contained in hydrogen peroxide and metal impurities. It was confirmed that dishing and erosion were less likely to occur on the surface to be polished when the content ratio T1 with the atom was 30,000 to 500,000 (preferably 100,000 to 500,000, more preferably 250,000 to 500,000).
[実施例84A]
 各成分を表3に示す通りにした以外は実施例1Aと同様の方法により、実施例84Aを調製した。なお、実施例84Aは、研磨液原液に相当する。
 さらに、希釈液として水を用い、上記実施例84Aの研磨液を10倍に希釈した。
 希釈前後でのpH変化は0.01であり、希釈前後で研磨液の性能に差がないことが確認できた。
[Example 84A]
Example 84A was prepared in the same manner as in Example 1A, except that each component was changed as shown in Table 3. Note that Example 84A corresponds to a polishing liquid stock solution.
Further, water was used as a diluent, and the polishing liquid of Example 84A was diluted 10 times.
The pH change before and after dilution was 0.01, and it was confirmed that there was no difference in performance of the polishing liquid before and after dilution.
[実施例85A]
 各成分を表3に示す通りにした以外は実施例1Aと同様の方法により、実施例85Aを調製した。なお、実施例85Aは、研磨液原液に相当する。
 さらに、希釈液として水を用い、上記実施例85Aの研磨液を50倍に希釈した。
 希釈前後でのpH変化は0.1であり、希釈前後で研磨液の性能に差がないことが確認できた。
[Example 85A]
Example 85A was prepared in the same manner as in Example 1A, except that each component was as shown in Table 3. In addition, Example 85A corresponds to a polishing liquid stock solution.
Furthermore, the polishing liquid of Example 85A was diluted 50 times using water as a diluent.
The pH change before and after dilution was 0.1, and it was confirmed that there was no difference in performance of the polishing liquid before and after dilution.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
[実施例1B(A)~実施例1B(E)]
 実施例1Bの研磨液を用い、ディッシング評価用基板及びエロージョン評価用のテスト基板を下記のものにかえた以外は実施例1Bと同様の評価を行った。この結果を実施例1B(A)~実施例1B(E)として表4~8にそれぞれ示す。
(1)ディッシング評価用;
 コバルト配線のパターン付き基板(International SEMATECH製、シリコン基板上にSiOxからなる絶縁層を厚さ5000Å積層させた後、「SEMATECH 854」マスク(L/S=10μm/10μm)にてパターン加工し、その上に厚さ100Åのバリア金属層(バリア金属:TaN、Ti、TiN、Ru、又はMn)、及び7500Åのコバルト層を順次積層させたテスト用の基板。
(2)エロージョン評価用;
 コバルト配線のパターン付き基板(International SEMATECH製、シリコン基板上にSiOxからなる絶縁層を厚さ5000Å積層させた後、「SEMATECH 854」マスク(L/S=9μm/1μm)にてパターン加工し、その上に厚さ100Åのバリア金属層(バリア金属:TaN、Ti、TiN、Ru、又はMn)、及び7500Åのコバルト層を順次積層させたテスト用の基板。
[Example 1B (A) to Example 1B (E)]
Evaluation similar to Example 1B was performed, except that the polishing liquid of Example 1B was used and the dishing evaluation substrate and the erosion evaluation test substrate were changed to the following. The results are shown in Tables 4 to 8 as Examples 1B (A) to 1B (E), respectively.
(1) For dishing evaluation;
A substrate with a pattern of cobalt wiring (made by International SEMATECH, an insulating layer made of SiOx on a silicon substrate having a thickness of 5000 mm, and then patterned with a “SEMATECH 854” mask (L / S = 10 μm / 10 μm) A test substrate in which a barrier metal layer (barrier metal: TaN, Ti, TiN, Ru, or Mn) having a thickness of 100 mm and a cobalt layer having a thickness of 7500 are sequentially stacked.
(2) For erosion evaluation;
A substrate with a pattern of cobalt wiring (made by International SEMATECH, an insulating layer made of SiOx on a silicon substrate having a thickness of 5000 mm, and then patterned with a “SEMATECH 854” mask (L / S = 9 μm / 1 μm) A test substrate in which a barrier metal layer (barrier metal: TaN, Ti, TiN, Ru, or Mn) having a thickness of 100 mm and a cobalt layer having a thickness of 7500 are sequentially stacked.
 表4~8に示されるように、実施例1Bの研磨液は、Ta、TaN、Ti、TiN、Ru、及びMnのいずれのバリア金属層を有する基板に対しても、ディッシング及びエロージョンの発生が抑制されることが確認された。 As shown in Tables 4 to 8, the polishing liquid of Example 1B caused dishing and erosion on the substrate having any barrier metal layer of Ta, TaN, Ti, TiN, Ru, and Mn. It was confirmed that it was suppressed.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
[実施例83B]
 各成分を表9に示す通りにした以外は実施例1Bと同様の方法により、実施例83Bを調製した。なお、実施例83Bは、研磨液原液に相当する。
 さらに、希釈液として水を用い、上記実施例83Bの研磨液を2倍に希釈した。
 希釈前後でのpH変化は0.1であり、希釈前後で研磨液の性能に差がないことが確認できた。
[Example 83B]
Example 83B was prepared in the same manner as in Example 1B except that each component was changed as shown in Table 9. Note that Example 83B corresponds to a polishing liquid stock solution.
Further, water was used as a diluent, and the polishing solution of Example 83B was diluted twice.
The pH change before and after dilution was 0.1, and it was confirmed that there was no difference in performance of the polishing liquid before and after dilution.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029

Claims (21)

  1.  会合度1~3のコロイダルシリカと、
     有機酸と、
     アゾール系化合物と、
     過酸化水素と、を含有し、コバルト含有層を化学的機械的研磨するために用いられる研磨液であって、
     前記研磨液とコバルト基板とを24時間接触させた際に、前記コバルト基板上に、コバルト原子を含有する厚み0.5~20nmの反応層が形成される、研磨液。
    Colloidal silica with a degree of association of 1 to 3,
    An organic acid,
    An azole compound,
    Hydrogen peroxide, and a polishing liquid used for chemical mechanical polishing of the cobalt-containing layer,
    A polishing liquid in which a reaction layer having a thickness of 0.5 to 20 nm containing cobalt atoms is formed on the cobalt substrate when the polishing liquid and the cobalt substrate are brought into contact with each other for 24 hours.
  2.  前記会合度1~3のコロイダルシリカの含有量が、研磨液全質量に対して0.01~1質量%であり、
     前記有機酸として、アミノ酸を含有し、
     前記アゾール系化合物として、ベンゾトリアゾール系化合物と、ベンゾトリアゾール系化合物とは異なるアゾール系化合物とを含有し、
     pHが6.5~8.0であり、
     前記研磨液とTa、TaN、Ti、TiN、Ru、及びMnからなる群より選ばれるいずれか1種の金属からなるバリア基板とを24時間接触した際に、前記バリア基板上に、前記金属の原子を含有する厚み0.01~5nmの反応層が形成される、請求項1に記載の研磨液。
    The content of the colloidal silica having an association degree of 1 to 3 is 0.01 to 1% by mass with respect to the total mass of the polishing liquid.
    As the organic acid, containing an amino acid,
    The azole compound contains a benzotriazole compound and an azole compound different from the benzotriazole compound,
    pH is 6.5 to 8.0,
    When the polishing liquid is brought into contact with a barrier substrate made of any one metal selected from the group consisting of Ta, TaN, Ti, TiN, Ru, and Mn for 24 hours, the metal The polishing liquid according to claim 1, wherein a reaction layer containing atoms and having a thickness of 0.01 to 5 nm is formed.
  3.  下記式(3)から算出される研磨速度比R1が250~2500である、請求項2に記載の研磨液。
     式(3):
     R1=前記研磨液によるコバルト基板の研磨速度/前記研磨液によるバリア基板の研磨速度
    The polishing liquid according to claim 2, wherein the polishing rate ratio R1 calculated from the following formula (3) is 250 to 2500.
    Formula (3):
    R1 = Cobalt substrate polishing rate with the polishing liquid / Barrier substrate polishing rate with the polishing liquid
  4.  前記会合度1~3のコロイダルシリカの含有量が、研磨液全質量に対して0.5~5質量%であり、
     前記アゾール系化合物として、ベンゾトリアゾール系化合物と、ベンゾトリアゾール系化合物とは異なるアゾール系化合物とを含有し、
     pHが8.0~10.5であり、
     前記研磨液とTa、TaN、Ti、TiN、Ru、及びMnからなる群より選ばれるいずれか1種の金属からなるバリア基板とを24時間接触した際に、前記バリア基板上に前記金属の原子を含有する厚み0.01~5nmの反応層が形成され、
     前記研磨液とSiOx及びSiOCからなる群より選ばれるいずれか1種の無機成分からなる絶縁膜基板とを24時間接触した際に、前記絶縁膜基板上にケイ素原子を含む厚み0.01~10nmの反応層が形成される、請求項1に記載の研磨液。
    The content of the colloidal silica having an association degree of 1 to 3 is 0.5 to 5% by mass with respect to the total mass of the polishing liquid,
    The azole compound contains a benzotriazole compound and an azole compound different from the benzotriazole compound,
    pH is 8.0-10.5,
    When the polishing liquid is brought into contact with a barrier substrate made of any one metal selected from the group consisting of Ta, TaN, Ti, TiN, Ru, and Mn for 24 hours, atoms of the metal on the barrier substrate A reaction layer containing 0.01 to 5 nm in thickness is formed,
    When the polishing liquid and the insulating film substrate made of any one of inorganic components selected from the group consisting of SiOx and SiOC are contacted for 24 hours, the insulating film substrate has a thickness of 0.01 to 10 nm containing silicon atoms. The polishing liquid according to claim 1, wherein the reaction layer is formed.
  5.  前記有機酸が、マレイン酸、フマル酸、2-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、4-ヒドロキシ安息香酸、フタル酸、イソフタル酸、テレフタル酸、ヘミメリト酸、トリメリト酸、トリメシン酸、メロファン酸、プレーニト酸、ピロメリト酸、メリト酸、ジフェン酸、クエン酸、コハク酸、リンゴ酸、マロン酸、及びアントラニル酸からなる群より選ばれる少なくとも1種であり、
     前記有機酸の含有量が、研磨液全質量に対して、0.01~0.3質量%である、請求項4に記載の研磨液。
    The organic acid is maleic acid, fumaric acid, 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, phthalic acid, isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, merophanic acid, Is at least one selected from the group consisting of planitic acid, pyromellitic acid, mellitic acid, diphenic acid, citric acid, succinic acid, malic acid, malonic acid, and anthranilic acid,
    The polishing liquid according to claim 4, wherein the content of the organic acid is 0.01 to 0.3 mass% with respect to the total mass of the polishing liquid.
  6.  下記式(4)から算出される研磨速度比R2が0.01~2.0であり、下記式(5)から算出される研磨速度比R3が0.05~2.0である、請求項4又は請求項5に記載の研磨液。
     式(4):
     R2=前記研磨液によるコバルト基板の研磨速度/前記研磨液によるバリア基板の研磨速度
     式(5):
     R3=前記研磨液によるコバルト基板の研磨速度/前記研磨液による絶縁膜基板の研磨速度
    The polishing rate ratio R2 calculated from the following formula (4) is 0.01 to 2.0, and the polishing rate ratio R3 calculated from the following formula (5) is 0.05 to 2.0. The polishing liquid according to claim 4 or 5.
    Formula (4):
    R2 = Cobalt substrate polishing rate with the polishing liquid / Barrier substrate polishing rate with the polishing liquid Formula (5):
    R3 = Cobalt substrate polishing rate with the polishing liquid / Insulating film substrate polishing rate with the polishing liquid
  7.  前記過酸化水素の含有量が、0.001~5質量%である、請求項1~6のいずれか1項に記載の研磨液。 The polishing liquid according to any one of Claims 1 to 6, wherein the hydrogen peroxide content is 0.001 to 5 mass%.
  8.  更に、金属原子を含有する金属不純物を含有し、
     前記金属不純物は、Fe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる少なくとも1種の特定金属原子を含有し、
     前記特定金属原子が、Fe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる1種である場合、前記特定金属原子の含有量が、研磨液全質量に対して0.01~100質量ppbであり、
     前記特定金属原子が、Fe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる2種以上である場合、それぞれの前記特定金属原子の含有量が、研磨液全質量に対して0.01~100質量ppbである、請求項1~7のいずれか1項に記載の研磨液。
    Furthermore, containing metal impurities containing metal atoms,
    The metal impurity contains at least one specific metal atom selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom,
    When the specific metal atom is one selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom, the content of the specific metal atom is 0.01 to 100 mass ppb,
    When the specific metal atom is two or more selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom, the content of each specific metal atom is 0 with respect to the total mass of the polishing liquid. The polishing liquid according to any one of claims 1 to 7, wherein the polishing liquid has a mass of 0.01 to 100 mass ppb.
  9.  前記金属不純物は、Fe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる少なくとも1種の特定金属原子を含有する金属粒子を含有し、
     前記金属粒子が含有する前記特定金属原子が、Fe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる1種である場合、前記金属粒子が含有する前記特定金属原子の含有量が、研磨液全質量に対して0.01~50質量ppbであり、
     前記金属粒子が含有する前記特定金属原子が、Fe原子、Cu原子、Ag原子、及びZn原子からなる群から選ばれる2種以上である場合、前記金属粒子が含有するそれぞれの前記特定金属原子の含有量が、研磨液全質量に対して0.01~50質量ppbである、請求項8に記載の研磨液。
    The metal impurity contains metal particles containing at least one specific metal atom selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom,
    When the specific metal atom contained in the metal particle is one selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom, the content of the specific metal atom contained in the metal particle is , And 0.01 to 50 mass ppb with respect to the total mass of the polishing liquid,
    When the specific metal atom contained in the metal particle is two or more selected from the group consisting of Fe atom, Cu atom, Ag atom, and Zn atom, each of the specific metal atom contained in the metal particle The polishing liquid according to claim 8, wherein the content is 0.01 to 50 mass ppb with respect to the total mass of the polishing liquid.
  10.  下記式(1)から算出される含有量比T1が、30000~500000である、請求項8又は請求項9に記載の研磨液。
     式(1):T1=前記過酸化水素の含有量/前記金属不純物が含有するFe原子、Cu原子、Ag原子、及びZn原子からなる群より選ばれる特定金属原子の合計含有量
    The polishing liquid according to claim 8 or 9, wherein the content ratio T1 calculated from the following formula (1) is 30,000 to 500,000.
    Formula (1): T1 = content of hydrogen peroxide / total content of specific metal atoms selected from the group consisting of Fe atoms, Cu atoms, Ag atoms, and Zn atoms contained in the metal impurities
  11.  更に、下記一般式(1)で表される化合物を含有し、前記一般式(1)で表される化合物が、研磨液全質量に対して、0.00001~1000質量ppbである、請求項1~10のいずれか1項に記載の研磨液。
     一般式(1):
     N(R)(R)(R
     一般式(1)中、R~Rは、それぞれ独立して、水素原子又はアルキル基を表す。
    Furthermore, it contains a compound represented by the following general formula (1), and the compound represented by the general formula (1) is 0.00001 to 1000 mass ppb with respect to the total mass of the polishing liquid. The polishing liquid according to any one of 1 to 10.
    General formula (1):
    N (R 1 ) (R 2 ) (R 3 )
    In general formula (1), R 1 to R 3 each independently represents a hydrogen atom or an alkyl group.
  12.  更に、有機溶剤を含有し、前記有機溶剤の含有量が、研磨液全質量に対して0.01~20質量%である、請求項1~11のいずれか1項に記載の研磨液。 The polishing liquid according to any one of claims 1 to 11, further comprising an organic solvent, wherein the content of the organic solvent is 0.01 to 20% by mass relative to the total mass of the polishing liquid.
  13.  更に、N-ココイルサルコシナート、N-ラウロイルサルコシナート、N-ステアロイルサルコシナート、N-オレオイルサルコシナート、N-ミリストイルサルコシナート、N-ラウロイルグリシン、N-ミリストイルグリシン、N-パルミトイルグリシン、N-ラウロイルグルタミン酸、N-ココイルグルタミン酸、N-ココイルグルタミン酸カリウム、N-ラウロイルサルコシナートカリウム、N-ラウロイルアラニナート、N-ミリストイルアラニナート、及びN-ココイルアラニナートカリウムからなる群より選ばれる少なくとも1種の化合物を含有し、前記化合物の総含有量が、研磨液全質量に対して0.001~5質量%である、請求項1~12のいずれか1項に記載の研磨液。 Further, N-cocoyl sarcosinate, N-lauroyl sarcosinate, N-stearoyl sarcosinate, N-oleoyl sarcosinate, N-myristoyl sarcosinate, N-lauroyl glycine, N-myristoyl glycine, N- From the group consisting of palmitoyl glycine, N-lauroyl glutamic acid, N-cocoyl glutamic acid, potassium N-cocoyl glutamate, potassium N-lauroyl sarcosinate, N-lauroyl alaninate, N-myristoyl alaninate, and potassium N-cocoyl alaninate The polishing according to any one of claims 1 to 12, comprising at least one selected compound, wherein the total content of the compound is 0.001 to 5 mass% with respect to the total mass of the polishing liquid. liquid.
  14.  前記アゾール系化合物として、ベンゾトリアゾール系化合物と、1,2,4-トリアゾール系化合物、ピラゾール系化合物、及びイミダゾール系化合物とからなる群より選ばれるいずれか1種以上と、を含有する、請求項2~13のいずれか1項に記載の研磨液。 The azole compound contains a benzotriazole compound and one or more selected from the group consisting of 1,2,4-triazole compounds, pyrazole compounds, and imidazole compounds. 14. The polishing liquid according to any one of 2 to 13.
  15.  前記会合度1~3のコロイダルシリカの下記式(2)から算出される化学的機械的研磨前後での平均粒子径の比T2が、1~5である、請求項1~14のいずれか1項に記載の研磨液。
     式(2):
     T2=化学的機械的研磨後の平均粒子径/化学的機械的研磨前の平均粒子径
    The average particle diameter ratio T2 before and after chemical mechanical polishing of the colloidal silica having the association degree of 1 to 3 calculated from the following formula (2) is 1 to 5. The polishing liquid according to item.
    Formula (2):
    T2 = average particle diameter after chemical mechanical polishing / average particle diameter before chemical mechanical polishing
  16.  会合度1~3のコロイダルシリカと、有機酸と、アゾール系化合物と、過酸化水素と、を含有する研磨液原液に対して、水を混合して請求項1~15のいずれか1項に記載の研磨液を得る希釈工程を含有する、研磨液の製造方法。 16. The polishing liquid stock solution containing colloidal silica having an association degree of 1 to 3, an organic acid, an azole compound, and hydrogen peroxide is mixed with water, according to any one of claims 1 to 15. The manufacturing method of polishing liquid containing the dilution process which obtains the polishing liquid of description.
  17.  会合度1~3のコロイダルシリカと、有機酸と、アゾール系化合物と、過酸化水素と、を含有し、
     請求項1~15のいずれか1項に記載の研磨液を調製するために、2~50倍に希釈して使用される研磨液原液。
    A colloidal silica having an association degree of 1 to 3, an organic acid, an azole compound, and hydrogen peroxide;
    A polishing liquid stock solution used by diluting 2 to 50 times to prepare the polishing liquid according to any one of claims 1 to 15.
  18.  水で2~50倍に希釈した際、希釈前後でのpH変化が0.01~1未満である、請求項17に記載の研磨液原液。 The polishing liquid stock solution according to claim 17, wherein the pH change before and after dilution is 0.01 to less than 1 when diluted 2 to 50 times with water.
  19.  請求項17又は請求項18に記載の研磨液原液と、前記研磨液原液を収容する、鉄を含有しない金属材料で形成された容器とを有する、研磨液原液収容体。 A polishing liquid stock solution container comprising: the polishing liquid stock solution according to claim 17 or 18; and a container formed of a metal material containing no iron and containing the polishing liquid stock solution.
  20.  研磨定盤に取り付けられた研磨パッドに、請求項1~15のいずれか1項に記載の研磨液を供給しながら、被研磨体の被研磨面を前記研磨パッドに接触させ、前記被研磨体、及び前記研磨パッドを相対的に動かして前記被研磨面を研磨して研磨済み被研磨体を得る工程を含有する、化学的機械的研磨方法。 The surface to be polished is brought into contact with the polishing pad while supplying the polishing liquid according to any one of claims 1 to 15 to a polishing pad attached to a polishing surface plate, and the object to be polished And a chemical mechanical polishing method comprising a step of relatively moving the polishing pad to polish the surface to be polished to obtain a polished object to be polished.
  21.  前記被研磨体がコバルト及びコバルト合金からなる群から選択される少なくとも1種からなるコバルト含有層を含有する、請求項20に記載の化学的機械的研磨方法。 21. The chemical mechanical polishing method according to claim 20, wherein the object to be polished contains a cobalt-containing layer made of at least one selected from the group consisting of cobalt and a cobalt alloy.
PCT/JP2018/006964 2017-02-28 2018-02-26 Polishing solution, method for producing polishing solution, polishing solution stock solution, polishing solution stock solution containing body, and chemical mechanical polishing method WO2018159530A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880012596.3A CN110325614B (en) 2017-02-28 2018-02-26 Polishing liquid, method for producing polishing liquid, polishing liquid stock solution container, and chemical mechanical polishing method
KR1020197023863A KR20190109450A (en) 2017-02-28 2018-02-26 Polishing liquid, manufacturing method of polishing liquid, polishing liquid stock solution, polishing liquid stock solution, chemical mechanical polishing method
KR1020217025423A KR102405560B1 (en) 2017-02-28 2018-02-26 Polishing solution, method for producing polishing solution, polishing solution stock solution, polishing solution stock solution containing body, and chemical mechanical polishing method
JP2019502975A JP6890656B2 (en) 2017-02-28 2018-02-26 Polishing liquid, polishing liquid manufacturing method, polishing liquid stock solution, polishing liquid stock solution container, chemical mechanical polishing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-037790 2017-02-28
JP2017037790 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159530A1 true WO2018159530A1 (en) 2018-09-07

Family

ID=63370666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006964 WO2018159530A1 (en) 2017-02-28 2018-02-26 Polishing solution, method for producing polishing solution, polishing solution stock solution, polishing solution stock solution containing body, and chemical mechanical polishing method

Country Status (5)

Country Link
JP (1) JP6890656B2 (en)
KR (2) KR102405560B1 (en)
CN (1) CN110325614B (en)
TW (1) TWI769219B (en)
WO (1) WO2018159530A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018158988A (en) * 2017-03-22 2018-10-11 株式会社フジミインコーポレーテッド Polishing composition
JPWO2020255616A1 (en) * 2019-06-20 2020-12-24
JPWO2020255582A1 (en) * 2019-06-20 2020-12-24
WO2020255602A1 (en) * 2019-06-20 2020-12-24 富士フイルム株式会社 Polishing solution and chemical-mechanical polishing method
JPWO2020255581A1 (en) * 2019-06-20 2020-12-24
JPWO2020255603A1 (en) * 2019-06-20 2020-12-24
WO2021065644A1 (en) * 2019-09-30 2021-04-08 株式会社フジミインコーポレーテッド Polishing composition
JP2022520742A (en) * 2019-03-04 2022-04-01 ヨンチャン ケミカル カンパニー リミテッド Slurry composition for polishing silicon oxide film and polishing method using it
WO2022075413A1 (en) * 2020-10-09 2022-04-14 花王株式会社 Polishing liquid composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200172759A1 (en) * 2018-12-04 2020-06-04 Cabot Microelectronics Corporation Composition and method for cobalt cmp

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108153A1 (en) * 2006-03-15 2007-09-27 Dupont Airproducts Nanomaterials Limited Liability Company Polishing composition for silicon wafer, composition kit for silicon wafer polishing, and methods of polishing silicon wafer
WO2008123373A1 (en) * 2007-03-27 2008-10-16 Fuso Chemical Co., Ltd. Colloidal silica, and method for production thereof
WO2010035613A1 (en) * 2008-09-26 2010-04-01 扶桑化学工業株式会社 Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same
WO2014045937A1 (en) * 2012-09-18 2014-03-27 株式会社フジミインコーポレーテッド Polishing composition
JP2014060205A (en) * 2012-09-14 2014-04-03 Fujimi Inc Polishing composition
JP2014060250A (en) * 2012-09-18 2014-04-03 Fujimi Inc Polishing composition
JP2014072336A (en) * 2012-09-28 2014-04-21 Fujimi Inc Polishing composition
WO2014069457A1 (en) * 2012-11-02 2014-05-08 株式会社フジミインコーポレーテッド Polishing composition
WO2014132641A1 (en) * 2013-02-28 2014-09-04 株式会社フジミインコーポレーテッド Polishing slurry for removal of cobalt
JP2015043371A (en) * 2013-08-26 2015-03-05 日立化成株式会社 Metal polishing liquid and polishing method
WO2015129342A1 (en) * 2014-02-26 2015-09-03 株式会社フジミインコーポレーテッド Polishing composition
WO2016038995A1 (en) * 2014-09-08 2016-03-17 株式会社フジミインコーポレーテッド Polishing composition
WO2016065057A1 (en) * 2014-10-21 2016-04-28 Cabot Microelectronics Corporation Corrosion inhibitors and related compositions and methods
WO2016117560A1 (en) * 2015-01-19 2016-07-28 株式会社フジミインコーポレーテッド Modified colloidal silica, method of producing same, and polishing agent using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123931A (en) 2002-10-03 2004-04-22 Hitachi Chem Co Ltd Polishing solution and polishing method
WO2006116770A2 (en) * 2005-04-28 2006-11-02 Advanced Technology Materials, Inc. Method of passivating chemical mechanical polishing compositions for copper film planarization processes
TW200714696A (en) * 2005-08-05 2007-04-16 Advanced Tech Materials High throughput chemical mechanical polishing composition for metal film planarization

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108153A1 (en) * 2006-03-15 2007-09-27 Dupont Airproducts Nanomaterials Limited Liability Company Polishing composition for silicon wafer, composition kit for silicon wafer polishing, and methods of polishing silicon wafer
WO2008123373A1 (en) * 2007-03-27 2008-10-16 Fuso Chemical Co., Ltd. Colloidal silica, and method for production thereof
WO2010035613A1 (en) * 2008-09-26 2010-04-01 扶桑化学工業株式会社 Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same
JP2014060205A (en) * 2012-09-14 2014-04-03 Fujimi Inc Polishing composition
WO2014045937A1 (en) * 2012-09-18 2014-03-27 株式会社フジミインコーポレーテッド Polishing composition
JP2014060250A (en) * 2012-09-18 2014-04-03 Fujimi Inc Polishing composition
JP2014072336A (en) * 2012-09-28 2014-04-21 Fujimi Inc Polishing composition
WO2014069457A1 (en) * 2012-11-02 2014-05-08 株式会社フジミインコーポレーテッド Polishing composition
WO2014132641A1 (en) * 2013-02-28 2014-09-04 株式会社フジミインコーポレーテッド Polishing slurry for removal of cobalt
JP2015043371A (en) * 2013-08-26 2015-03-05 日立化成株式会社 Metal polishing liquid and polishing method
WO2015129342A1 (en) * 2014-02-26 2015-09-03 株式会社フジミインコーポレーテッド Polishing composition
WO2016038995A1 (en) * 2014-09-08 2016-03-17 株式会社フジミインコーポレーテッド Polishing composition
WO2016065057A1 (en) * 2014-10-21 2016-04-28 Cabot Microelectronics Corporation Corrosion inhibitors and related compositions and methods
WO2016117560A1 (en) * 2015-01-19 2016-07-28 株式会社フジミインコーポレーテッド Modified colloidal silica, method of producing same, and polishing agent using same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018158988A (en) * 2017-03-22 2018-10-11 株式会社フジミインコーポレーテッド Polishing composition
JP7285938B2 (en) 2019-03-04 2023-06-02 ヨンチャン ケミカル カンパニー リミテッド Slurry composition for polishing silicon oxide film and polishing method using the same
JP2022520742A (en) * 2019-03-04 2022-04-01 ヨンチャン ケミカル カンパニー リミテッド Slurry composition for polishing silicon oxide film and polishing method using it
WO2020255582A1 (en) * 2019-06-20 2020-12-24 富士フイルム株式会社 Polishing liquid and chemical mechanical polishing method
JPWO2020255582A1 (en) * 2019-06-20 2020-12-24
WO2020255616A1 (en) * 2019-06-20 2020-12-24 富士フイルム株式会社 Polishing liquid and chemical-mechanical polishing method
WO2020255581A1 (en) * 2019-06-20 2020-12-24 富士フイルム株式会社 Polishing fluid and chemical mechanical polishing method
JPWO2020255602A1 (en) * 2019-06-20 2020-12-24
JPWO2020255603A1 (en) * 2019-06-20 2020-12-24
WO2020255603A1 (en) * 2019-06-20 2020-12-24 富士フイルム株式会社 Polishing liquid and chemical-mechanical polishing method
WO2020255602A1 (en) * 2019-06-20 2020-12-24 富士フイルム株式会社 Polishing solution and chemical-mechanical polishing method
US12006446B2 (en) 2019-06-20 2024-06-11 Fujifilm Corporation Polishing liquid and chemical mechanical polishing method
JPWO2020255581A1 (en) * 2019-06-20 2020-12-24
JP7333396B2 (en) 2019-06-20 2023-08-24 富士フイルム株式会社 Polishing liquid and chemical mechanical polishing method
JP7244642B2 (en) 2019-06-20 2023-03-22 富士フイルム株式会社 Polishing liquid and chemical mechanical polishing method
JP7263516B2 (en) 2019-06-20 2023-04-24 富士フイルム株式会社 Polishing liquid and chemical mechanical polishing method
JPWO2020255616A1 (en) * 2019-06-20 2020-12-24
JP7295236B2 (en) 2019-06-20 2023-06-20 富士フイルム株式会社 Polishing liquid and chemical mechanical polishing method
JP7331103B2 (en) 2019-06-20 2023-08-22 富士フイルム株式会社 Polishing liquid and chemical mechanical polishing method
WO2021065644A1 (en) * 2019-09-30 2021-04-08 株式会社フジミインコーポレーテッド Polishing composition
WO2022075413A1 (en) * 2020-10-09 2022-04-14 花王株式会社 Polishing liquid composition

Also Published As

Publication number Publication date
KR20210104162A (en) 2021-08-24
TW201835287A (en) 2018-10-01
CN110325614A (en) 2019-10-11
TWI769219B (en) 2022-07-01
JPWO2018159530A1 (en) 2020-01-16
JP6890656B2 (en) 2021-06-18
KR20190109450A (en) 2019-09-25
CN110325614B (en) 2022-06-28
KR102405560B1 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2018159530A1 (en) Polishing solution, method for producing polishing solution, polishing solution stock solution, polishing solution stock solution containing body, and chemical mechanical polishing method
JP5202258B2 (en) Metal polishing composition and chemical mechanical polishing method
JP5140469B2 (en) Metal polishing liquid and chemical mechanical polishing method
JP2016030831A (en) Chemical mechanical polishing (cmp) of cobalt-containing substrate
JP6808731B2 (en) Polishing liquid, chemical mechanical polishing method
JP2009094504A (en) Polishing solution for metals, and chemical mechanical polishing method
KR102609113B1 (en) Polishing solution, method for producing polishing solution, polishing solution stock solution, and chemomechanical polishing method
JP2010192556A (en) Polishing solution for metal, and chemical mechanical polishing method
JP2007194261A (en) Polishing method
JP2008244316A (en) Polishing solution for metals, and polishing method
JP2009289887A (en) Metal polishing solution, chemical mechanical polishing method and new compound
JP2007088284A (en) Aqueous polishing slurry and chemical mechanical polishing method
JP2010010575A (en) Metal polishing liquid and chemical, mechanical polishing method using the liquid
JP2007194593A (en) Polishing liquid for metal and polishing method using the same
JP2009238954A (en) Metal polishing composition and chemical mechanical polishing method
US20220106499A1 (en) Polishing liquid and chemical mechanical polishing method
JP6652638B2 (en) Polishing liquid and chemical mechanical polishing method
JP2009087967A (en) Metal polishing liquid and polishing method
JP2009088010A (en) Metal polishing composition and chemical mechanical polishing method
JP2007243120A (en) Polishing liquid
JP2008091574A (en) Polishing solution and chemical mechanical polishing method employing the polishing solution
JP2010036273A (en) Composition for metal polishing and chemical-mechanical polishing method
JP2009245966A (en) Polishing solution for metal used for chemical mechanical polishing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502975

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197023863

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761783

Country of ref document: EP

Kind code of ref document: A1