WO2018159445A1 - Optical comb control method and optical comb control device - Google Patents

Optical comb control method and optical comb control device Download PDF

Info

Publication number
WO2018159445A1
WO2018159445A1 PCT/JP2018/006447 JP2018006447W WO2018159445A1 WO 2018159445 A1 WO2018159445 A1 WO 2018159445A1 JP 2018006447 W JP2018006447 W JP 2018006447W WO 2018159445 A1 WO2018159445 A1 WO 2018159445A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
optical
optical comb
offset
comb
Prior art date
Application number
PCT/JP2018/006447
Other languages
French (fr)
Japanese (ja)
Inventor
薫 美濃島
彰文 浅原
Original Assignee
国立大学法人電気通信大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人電気通信大学 filed Critical 国立大学法人電気通信大学
Priority to JP2019502930A priority Critical patent/JP6963322B2/en
Publication of WO2018159445A1 publication Critical patent/WO2018159445A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length

Definitions

  • the present invention relates to an optical comb control method and an optical comb control device.
  • Non-Patent Document 1 discloses a car lens mode-locked Ti: sapphire laser (Kerr-lens mode-locked Ti: sapphire laser). As disclosed in Non-Patent Document 1, an optical comb having a comb-like spectrum is widely used as a precise measure of time, space, and frequency.
  • the optical comb is a low-jitter coherent pulse train in the time domain, and is a comb-like spectrum that is accurately mode-resolved in the frequency domain.
  • the optical comb is used as a light source stabilized with high accuracy.
  • the offset frequency of the optical comb, the repetition frequency, the offset frequency difference when using two optical combs, and the repetition frequency difference are treated as fixed parameters.
  • the present inventor found that the difference in the relative carrier envelope phase (Carrier-Envelope offset Phase: CEP) between the two optical combs was made evenly little by little according to the offset frequency difference.
  • CEP Carrier-Envelope offset Phase
  • the present invention provides an optical comb control method and an optical comb control apparatus that actively utilize the degree of freedom of arbitrary control of relative CEP between two optical combs.
  • An optical comb control method includes a first frequency mode having a first frequency offset with respect to zero on a frequency axis and an integer of a first frequency interval with respect to the first frequency mode on the frequency axis.
  • the first frequency offset and the second frequency offset are set such that a difference between the first frequency offset and the second frequency offset satisfies the expression (1).
  • a difference from the second frequency offset may be set.
  • ⁇ f CEO represents the difference between the first frequency offset and the second frequency offset.
  • ⁇ f rep represents the difference between the first frequency interval and the second frequency interval.
  • K and N represent arbitrary natural numbers.
  • a difference between the first frequency offset and the second frequency offset may be set so as to satisfy Equation (2).
  • ⁇ f CEO represents the difference between the first frequency offset and the second frequency offset.
  • f rep represents the first frequency interval or the second frequency interval.
  • N is represented by an arbitrary natural number.
  • the difference between the first frequency offset and the second frequency offset may be set to satisfy the expression (3).
  • ⁇ f CEO is expressed by the first frequency offset and the second frequency offset.
  • f CEO represents the first frequency interval or the second frequency interval.
  • N represents an arbitrary natural number.
  • An optical comb control device includes a first frequency mode having a first frequency offset with respect to zero on a frequency axis and an integer of a first frequency interval with respect to the first frequency mode on the frequency axis. Controlling the first frequency offset and the first frequency interval in a first optical comb having a plurality of third frequency modes arranged at double intervals, and with respect to zero on the frequency axis A second frequency mode having a second frequency offset, and a plurality of fourth frequency modes arranged at intervals of an integer multiple of the second frequency interval with respect to the second frequency mode on the frequency axis.
  • a frequency control mechanism for controlling the second frequency offset and the second frequency interval in the second optical comb is provided.
  • the control mechanism includes the first frequency offset, the second frequency offset, the difference between the first frequency offset and the second frequency offset, the first frequency interval, the second frequency interval, and The first frequency offset, the second frequency offset, the first frequency interval, and the first frequency offset so that a difference between the first frequency interval and the second frequency interval is expressed by an integer ratio. Two frequency intervals can be controlled.
  • the relative CEP between the two optical combs can be arbitrarily controlled by controlling the offset frequency difference between the two optical combs.
  • FIG. 3 is a schematic diagram illustrating a relationship between waveforms of two optical combs Comb1 and Comb2 and interference signals in the first embodiment.
  • 6 is a graph showing a measurement result of an interference signal when an offset frequency difference ⁇ f CEO between two optical combs Comb1 and Comb2 is set to 0 in the first embodiment.
  • 6 is a graph showing a measurement result of an interference signal when an offset frequency difference ⁇ f CEO between two optical combs Comb1 and Comb2 is ⁇ f rep / 2 in Example 1.
  • 6 is a graph showing a measurement result of an interference signal when an offset frequency difference ⁇ f CEO between two optical combs Comb 1 and Comb 2 is ⁇ f rep / 3 in Example 1.
  • 6 is a graph showing an IGM obtained by averaging the differences of IGMs that are inverted with each other when the offset frequency difference ⁇ f CEO between two optical combs Comb 1 and Comb 2 is ⁇ f rep / 2 in Example 1.
  • FIG. In Example 2 it is the schematic which shows the structure of the apparatus for controlling offset frequency difference (DELTA) f CEO of the 0th-order diffracted light and 1st-order diffracted light of optical comb Comb1.
  • DELTA offset frequency difference
  • FIG. 11B is a graph showing the polarization state of the optical comb Comb1 and the measurement result of the intensity of interference light according to the relative change in CEP shown in FIG. 11A. It is a graph which shows the waveform of the interference light in the polarization state shown to FIG. 11B.
  • FIG. 11B is a graph showing the polarization state of the optical comb Comb1 and the measurement result of the intensity of interference light according to the relative change in CEP shown in FIG. 11A. It is a graph which shows the waveform of the interference light in the polarization state shown to FIG. 11B.
  • 11B is another graph showing the polarization state of the optical comb Comb1 and the measurement result of the intensity of the interference light according to the relative CEP change shown in FIG. 11A. It is a graph which shows the waveform of the interference light in the polarization state shown to FIG. 11D.
  • a mode-locked laser outputs a periodic pulse train in the time domain.
  • the pulse train output from the mode-locked laser can be illustrated by a function of an electric field (that is, carrier) oscillating at high speed and an envelope.
  • the propagation speed of the envelope and the group velocity v g, the propagation speed of the carrier and phase velocity v p, holds the relationship expressed by the equation (4) and (5).
  • n represents the refractive index of the medium through which the optical comb propagates.
  • represents the center wavelength of the optical comb.
  • the phase shift (that is, the phase difference) is called a carrier-envelope offset phase (CEP).
  • CEP carrier-envelope offset phase
  • the relative CEP difference ⁇ CEP between adjacent pulse trains on the time axis is periodically shifted between pulses, and has a constant period TCEO .
  • T CEO the carrier envelope offset frequency of the frequency domain
  • the offset frequency corresponding to f CEO.
  • the longitudinal mode of the mode-locked laser is very uniformly distributed at intervals of the repetition frequency (frequency interval) f rep that is the reciprocal of the pulse repetition period T rep. is doing.
  • the relationship between the offset frequency f CEO and the repetition frequency f rep is expressed as shown in equation (6) using a relative CEP difference ⁇ CEP .
  • FIG. 1 schematically shows a waveform in the time domain and a spectrum in the frequency domain of each of the two optical combs Comb1 and Comb2.
  • the optical comb (first optical comb) Comb1 has an optical frequency mode (first frequency mode) FM1 having an offset frequency (first frequency offset) fCEO1 with respect to zero on the frequency axis.
  • a plurality of optical frequency modes (third optical frequency modes) FM3 arranged at intervals of an integral multiple of the repetition frequency (first frequency interval) f rep1 with respect to the optical frequency mode FM1 on the frequency axis.
  • the optical comb (second optical comb) Comb2 includes an optical frequency mode (second frequency mode) FM2 having an offset frequency (second frequency offset) f CEO2 with respect to zero on the frequency axis, and an optical frequency on the frequency axis.
  • An optical frequency mode (fourth optical frequency mode) FM4 arranged at intervals of an integer multiple of the repetition frequency (second frequency interval) f rep2 with respect to the mode FM2.
  • Expression (7) is established as a correspondence relationship between the offset frequency f CEO1 and the repetition frequency f rep1 in the optical comb Comb1.
  • the relationship of the equation (8) is established as a correspondence relationship between the offset frequency f CEO2 and the repetition frequency f rep2 in the optical comb Comb2.
  • ⁇ CEP1 represents a relative CEP of the optical comb Comb1.
  • ⁇ CEP2 represents the relative CEP of the optical comb Comb2.
  • the offset frequency f CEO1, f CEO2 the change amount of the CEP between pulses, i.e. relative CEPderutafai CEP1, is associated with ⁇ CEP2.
  • the offset frequency f CEO1, f CEO2 you can control the coherence of each pulse train of optical frequency comb COMB1, COMB2.
  • each waveform when the positions of the waveforms of the two optical combs Comb1 and Comb2 are aligned on the time axis is referred to as a first waveform.
  • the difference on the time axis between the second waveforms that have advanced on the time axis from the position of the first waveform of each of the two optical combs Comb 1 and Comb 2 is defined as a time difference ⁇ T rep .
  • the difference on the time axis between the third waveforms of the two optical combs Comb 1 and Comb 2 is the time difference (2 ⁇ ⁇ T rep ).
  • the difference on the time axis between the (M + 1) th waveforms of the two optical combs Comb1 and Comb2 is the time difference (M ⁇ ⁇ T rep ).
  • M represents an arbitrary natural number. That is, in the time domain, the waveforms of the two optical combs Comb1 and Comb2 are shifted evenly little by little according to the repetition frequency difference ⁇ f rep .
  • the repetition frequency difference ⁇ f rep is a frequency difference
  • the CEPs of the two optical combs Comb1 and Comb2 have a relative relationship at a common position on the time axis.
  • the first waveform CEP and the second waveform of each of the two optical combs Comb 1 and Comb 2 are used.
  • the phase difference between the waveform and CEP is ⁇ CEP1 and ⁇ CEP2 .
  • the phase difference between the first waveform CEP and the third waveform CEP of each of the two optical combs Comb1 and Comb2 is 2 ⁇ ⁇ CEP1 and 2 ⁇ ⁇ CEP2 .
  • the difference on the time axis between the (M + 1) -th waveforms of the two optical combs Comb1 and Comb2 is the time difference (M ⁇ ⁇ CEP1 ) and (M ⁇ ⁇ CEP2 ).
  • the relative CEP of the two optical combs Comb1 and Comb2 is shifted little by little according to the offset frequency difference ⁇ f CEO .
  • the offset frequency difference ⁇ f CEO is the frequency difference
  • the positions on the time axis of the pulse trains having the same waveform as the relative CEP relationship between the first pulse trains of the two optical combs Comb 1 and Comb 2 are aligned. That is, the relative CEP relationship between the two optical combs Comb1 and Comb2 changes with a period of (1 / ⁇ f CEO ).
  • the repetition frequency f rep and the offset frequency f CEO of the optical comb are important frequency parameters indicating the characteristics of the pulse train.
  • the repetition frequency difference ⁇ f rep and the offset frequency difference ⁇ f CEO are important frequency parameters indicating the characteristics of the pulse train. It is.
  • the offset frequency difference ⁇ f CEO has been treated as a fixed parameter.
  • the CEP can be arbitrarily controlled by controlling the offset frequency difference ⁇ f CEO .
  • the degree of freedom in controlling the offset frequency difference ⁇ f CEO is positively utilized.
  • the optical comb control method uses an optical comb Comb1 having an optical frequency mode FM1 and a plurality of optical frequency modes FM3, and an optical comb Comb2 having an optical frequency mode FM2 and a plurality of optical frequency modes FM4. And a control step of controlling the difference between the offset frequencies f CEO1 and f CEO2 (offset frequency difference, difference between the first frequency offset and the second frequency offset) ⁇ f CEO .
  • the offset frequency difference ⁇ f CEO is the difference between the offset frequencies f CEO1 and f CEO2 of the two optical combs Comb1 and Comb2.
  • the repetition frequencies f rep1 and f rep2 of the two optical combs Comb1 and Comb2 have a relative relationship with the offset frequencies f CEO1 and f CEO2 , respectively.
  • two offset frequency difference Delta] f CEO optical comb COMB1, COMB2, offset frequency f CEO1 optical comb COMB1, offset frequency f CEO2 optical comb COMB2, two optical comb COMB1 , Comb2 repetition frequency difference ⁇ f rep , optical comb Comb1 offset frequency f rep1 , optical comb Comb2 offset frequency f rep2 is preferably controlled so that the six parameters are expressed by an arbitrary integer ratio.
  • the relative relationship (predetermined condition) in which the above six parameters are represented by an arbitrary integer ratio is the control of four parameters of the offset frequencies f CEO1 and f CEO2 and the offset frequencies f rep1 and f rep2. It is preferable that
  • setting the above parameters other than the offset frequency difference Delta] f CEO to meet the offset frequency difference Delta] f CEO is (1) (3) at least one or more expression of expression from the equation. Can set the parameters other than the offset frequency difference Delta] f CEO to meet the offset frequency difference Delta] f CEO from (1) reacting a (3) any two equations of the type at the same time. Offset frequency difference Delta] f CEO may set the parameters other than the offset frequency difference Delta] f CEO to satisfy all the above-mentioned equation (1) (3).
  • optical Com control device First, an optical comb output mechanism used in an optical comb control apparatus applicable to the optical comb control method of the present invention will be described.
  • the optical comb output mechanism detects an interference signal between modes of two optical combs satisfying a predetermined relationship (so-called 1f-2f relationship) in the control step of the optical comb control method of the present invention.
  • This interference signal is a beat signal and is based on the frequency difference between the modes of the two optical combs.
  • the optical comb output mechanism is configured to be able to control the offset frequency and the repetition frequency by detecting an interference signal between modes of two optical combs.
  • the optical comb output mechanism 10 includes an optical comb light source 12, an optical interference unit 14, a beat signal detection unit 16, an offset frequency control unit 18, an optical comb output unit 20, and a repetition frequency control unit 22. ing.
  • the optical comb light source 12 is configured as a loop type fiber laser.
  • the optical comb light source 12 includes an erbium-doped optical fiber (EDF) 24 and a semiconductor laser (hereinafter referred to as pumping LD) 26 that pumps the EDF 24 by supplying pumping light to the EDF 24 via an optical coupler 25. And comprising.
  • the wave controller 28 is connected by the EDF 24.
  • the configuration of the optical comb light source 12 is not limited to the above configuration as long as it can emit the optical comb.
  • the optical comb emitted from the optical coupler 32 is supplied to the optical interference unit 14 and the optical comb output unit 20.
  • a polarization controller 38 and an EDF amplifier 40 are provided in order from the side closer to the optical coupler 32.
  • the EDF amplifier 40 includes an EDF 39, a pumping LD 41, and an optical coupler 43.
  • Each configuration up to the optical coupler 32 and the optical interference unit 14 and each configuration up to the optical coupler 32 and the output unit 20 are connected by an optical fiber 36.
  • a high-nonlinear optical fiber (HNLF) 42 is disposed between the EDF amplifier 40A and the optical interference unit 14.
  • the optical comb whose polarization is controlled and amplified by the polarization controller 38 ⁇ / b> A and the EDF amplifier 40 ⁇ / b> A is emitted by the HNLF 42 as a wider-band optical comb than before entering the HNLF 42.
  • the optical interference unit 14 includes, in order from the side closer to the optical comb light source 12, a fiber collimator 44, a condenser lens 46, a ⁇ / 2 wavelength plate 48, a periodically-poled lithium niobate (PPLN) 50, light A band pass filter 52 is provided.
  • the broadband optical comb emitted from the HNLF 42 enters the optical interference unit 14 and is focused on the PPLN 50.
  • second harmonic W S broadband optical comb is emitted. That is, the broadband optical comb component (2f) and the second harmonic component (2 ⁇ 1f) newly generated by the PPLN 50 are emitted from the PPLN 50 in an overlapping manner.
  • Equation (11) the frequency f B of the zeroth to n-th mode on the frequency axis is expressed as shown in Equation (11).
  • the frequency f S of the spectrum of the second harmonic wave W S is expressed as in equation (12).
  • the frequency f W of the 2n-th mode adjacent to the mode of the frequency f S in the broadband optical comb represented by the equation (12) on the low frequency side is represented by the equation (13).
  • the broadband optical comb and the second harmonic interfere with each other at the beat signal detector 16.
  • the beat signal detector 16 detects beat signals of a broadband optical comb and second harmonics.
  • the offset frequency difference f CEO is detected by detecting the beat signal between the spectrums of the frequencies represented by the equations (12) and (13).
  • the beat signals of the frequencies having the frequencies represented by the equations (12) and (13) are emitted to the beat signal detector 16 as interference light.
  • the beat signal detection unit 16 includes a photo detector 54.
  • the light emitted from the PPLN 50 is detected by the photodetector 54.
  • the intensity of the light emitted from the PPLN 50 is converted into the magnitude of an electric signal.
  • the electric signal output from the photodetector 54 is transmitted to the offset frequency control unit 18 through the electric cable 56 and is repeatedly transmitted to the frequency control unit 22 through the electric cable 58.
  • the offset frequency control unit 18 includes a high-frequency bandpass filter 61, a high-frequency amplifier 62, a function generator (FG) 64, a frequency converter (Double Balanced Mixer: DBM) 66, and a loop filter 68.
  • the high-frequency bandpass filter 61 extracts an offset frequency component from the electrical signal output from the photodetector 54.
  • the high frequency amplifier 62 amplifies the electric signal emitted from the high frequency band pass filter 61.
  • the FG 64 can transmit a reference signal of the frequency by setting a desired frequency.
  • the DBM 66 mixes the amplified electrical signal and the reference signal transmitted from the FG 64.
  • the loop filter 68 applies feedback to the current applied to the pumping LD 26 of the optical comb light source 12 in accordance with the mixed electric signal.
  • the offset frequency control unit 18 when the frequency of the reference signal transmitted from the FG 64 is changed, feedback is applied to the current applied to the excitation LD 26 of the optical comb light source 12 by the loop filter 68.
  • the applied current of the pumping LD 26 is changed, and the offset frequency f CEO of the optical comb emitted from the optical comb light source 12 is aligned with the frequency of the reference signal transmitted from the FG 64.
  • the offset frequency f CEO of the optical comb emitted from the optical comb light source 12 can be controlled by controlling the frequency of the reference signal transmitted from the FG 64.
  • the repetitive frequency control unit 22 includes a high frequency band pass filter 71, a high frequency amplifier 72, an FG 74, a DBM 76, and a loop filter 78.
  • the high-frequency bandpass filter 71 repeatedly extracts frequency components from the electrical signal output from the photodetector 54.
  • the high frequency amplifier 72 amplifies the electric signal from the high frequency band pass filter 71.
  • the FG 74 can transmit a reference signal of the frequency by setting a desired frequency.
  • the DBM 76 mixes the amplified electrical signal and the reference signal transmitted from the FG 74.
  • the loop filter 78 applies feedback to the voltage applied to the PZT element 30 of the optical comb light source 12 in accordance with the mixed electric signal.
  • the loop filter 78 applies feedback to the PZT element 30 of the optical comb light source 12 as described above.
  • the resonator length of the fiber laser of the optical comb light source 12 is changed, and the repetition frequency f rep of the optical comb emitted from the optical comb light source 12 is aligned with the frequency of the reference signal transmitted from the FG 74.
  • the repetition frequency f rep of the optical comb emitted from the optical comb light source 12 can be controlled by controlling the frequency of the reference signal transmitted from the FG 74.
  • the control device (optical comb control device) 100 of the present invention includes optical comb output mechanisms 10A and 10B, a frequency control mechanism 90, a continuous wave laser (hereinafter referred to as CW laser) 92, and a frequency.
  • a stabilizing mechanism 94 The optical comb output mechanism 10A is provided for emitting the optical comb Comb1, and the optical comb output mechanism 10B is provided for emitting the optical comb Comb2.
  • the frequency control mechanism 90 inputs a reference signal for controlling the offset frequency difference ⁇ f CEO to each of the optical comb output mechanisms 10A and 10B.
  • the CW laser 92 synchronizes the phases of the two optical combs Comb1 and Comb2.
  • the frequency stabilization mechanism 94 controls the beat signal between the continuous wave light (hereinafter, CW light) emitted from the CW laser 92 and each of the two optical combs Comb1 and Comb2.
  • FIG. 5 main parts such as the optical comb output unit 20 of the optical comb output mechanisms 10A and 10B, the FG 64 of the offset frequency control unit 18, the FG 74 of the repetition frequency control unit 22, and the PZT 12 are illustrated. Is omitted.
  • the control device 100 includes two FG 64 and FG 74 by providing two optical comb output mechanisms 10A and 10B. That is, the control apparatus 100 has two FGs 64 and FG74, each of which has a configuration capable of controlling a total of four parameters of the offset frequencies f CEO1 and f CEO2 and the repetition frequencies f rep1 and f rep2 of the two optical combs Comb1 and Comb2. And a frequency control mechanism 90 that transmits a reference signal to the two FGs 64.
  • the frequency stabilization mechanism 94 includes a frequency control mechanism 90 formed of a program or the like built in the computer, FGs 130 and 132, DBMs 108 and 118, and PID controllers 110 and 120.
  • the optical comb Comb1 emitted from the optical comb output unit 20 of the optical comb output mechanism 10A enters the optical coupler 104 via the optical coupler 102.
  • CW light emitted from the CW laser 92 enters the optical coupler 104 via the optical coupler 112.
  • the optical comb Comb1 and the CW light combined by the optical coupler 104 are received by a light receiving unit 106 such as a photodetector and converted into an electric signal.
  • the electrical signal emitted from the light receiving unit 106 is input to the DBM 108 and is combined with the reference signal from the FG 130.
  • An output from the DBM 108 is input to the PID controller 110.
  • the output from the PID controller 110 is fed back to the input current value to the CW laser 92.
  • the CW light emitted from the CW laser 92 enters the optical coupler 114 via the optical coupler 112.
  • the optical comb Comb2 emitted from the optical comb output unit 20 of the optical comb output mechanism 10B enters the optical coupler 114 via the optical coupler 122.
  • the optical comb Comb2 and the CW light combined by the optical coupler 114 are received by a light receiving unit 116 such as a photodetector and converted into an electric signal.
  • the electrical signal emitted from the light receiving unit 116 is input to the DBM 118 and is combined with the reference signal from the FG 132.
  • An output from the DBM 118 is input to the PID controller 120.
  • the output from the PID controller 110 is fed back to the displacement amount of the PZT 30 in the optical comb light source 12 of the optical comb output mechanism 10B.
  • the repetition frequency f rep1 and offset frequency f CEO1 of the optical comb Comb1 are stabilized according to the frequency of the reference signal transmitted from the FGs 64 and 74 of the optical comb output mechanism 10A according to the control procedure described with reference to FIG. Make it.
  • a beat signal between the optical comb Comb1 and the CW light output from the optical comb output unit 20 of the optical comb output mechanism 10A is detected.
  • the detected beat signal is stabilized with respect to the reference signal from the FG 130.
  • the frequency of the CW light is made to follow the repetition frequency f rep1 and the offset frequency f CEO1 of the optical comb Comb1.
  • the FG 64 of the optical comb output mechanism 10A issues a reference signal of the offset frequency f CEO1 of the optical comb Comb1.
  • the FG 74 of the optical comb output mechanism 10A generates a reference signal having a repetition frequency f rep1 of the optical comb Comb1.
  • the FG 132 emits a reference signal having a repetition frequency f rep2 of the optical comb Comb2.
  • the frequency control mechanism 90 includes six offset frequency differences ⁇ f CEO , offset frequency f CEO1 , offset frequency f CEO2 , repetition frequency difference ⁇ f rep , offset frequency f rep1 , and offset frequency f rep2 .
  • the four parameters of the offset frequencies f CEO1 and f CEO2 and the offset frequencies f rep1 and f rep2 are controlled so that a relative relationship (predetermined condition) expressed by an arbitrary integer ratio between the two parameters is established. That is, the control device 100 arbitrarily controls the offset frequency difference ⁇ f CEO between the two optical combs Comb1 and Comb2.
  • optical combs Comb1 and Comb2 having a desired offset frequency difference ⁇ f CEO and phase-controlled with each other are output from the optical comb output mechanisms 10A and 10B.
  • the CEP of the two optical combs Comb1 and Comb2 is arbitrarily set by actively controlling the offset frequency difference ⁇ f CEO between the two optical combs Comb1 and Comb2. Can be controlled.
  • arbitrary coherent modulation can be performed. Examples of applications that perform coherent modulation include, but are not limited to, coherent spectroscopy, coherent physical property analysis, and coherent time-resolved measurement.
  • the control device 100 of the present invention inputs a reference signal of an arbitrary frequency from the frequency control mechanism 90 to each of the FGs 64 and 74 of the optical comb output mechanism 10A, the FGs 130 and 132, and the FG 64 of the optical comb output mechanism 10B.
  • the optical combs Comb1 and Comb2 that are phase-controlled with each other can be generated.
  • the reference signal output from the FG 132 is indirectly input to the PZT 30 of the optical comb output mechanism 10B.
  • the optical comb control method and control apparatus according to the present invention can be applied in a wide field of performing arbitrary coherent modulation.
  • the control method of the optical comb of the present invention by positively controlling the offset frequency difference Delta] f CEO, it can control the relative phase of the optical comb COMB1, COMB2. Therefore, the optical comb control method and control apparatus of the present invention can be applied to highly efficient signal detection and signal control in observation of a phenomenon depending on relative CEP.
  • Phenomena that depend on relative CEP are, for example, interference and nonlinear optical phenomena.
  • the optical comb output mechanism 10 may be configured by using an acousto-optic device (Acoustic Optical Modulator: AOM) 120 shown in FIG.
  • AOM Acoustic Optical Modulator
  • a fiber collimator may be disposed on the input side of the optical comb output unit 20, and the AOM 120 may be disposed on the output side of the fiber collimator.
  • the AOM 120 is used, the frequency of the first-order diffracted light diffracted from the AOM 120 is shifted by the modulation frequency f AOM of the sound wave A applied to the AOM 120. Based on this principle, the offset frequency difference ⁇ f CEO can be positively controlled by appropriately setting the modulation frequency f AOM .
  • Example 1 As shown in FIG. 5, the optical comb Comb1 emitted from the optical comb output unit 20 of the optical comb output mechanism 10A of the control device 100 and the light emitted from the optical comb output unit 20 of the optical comb output mechanism 10B of the control device 100 Comb 2 was combined and interfered, and an interference signal (Interferogram: IGM) was received by high-speed detector 96.
  • the IGM received by the high-speed detector 96 is post-processed by the data processing unit 98 to visualize the IGM on a display (not shown).
  • the repetition frequency difference ⁇ f rep between the two optical combs Comb1 and Comb2 affects the period in which the IGM is detected.
  • the period in which IGM is detected corresponds to the interval on the time axis between plots of IGM shown in FIG.
  • the time period T IGM (1 / ⁇ f rep ) elapses from the plot of the IGM caused by the first waveform of the two optical combs Comb 1 and Comb 2 when the positions on the time axis are aligned, and the timing of the first waveform
  • the offset frequency difference ⁇ f CEO between the two optical combs Comb 1 and Comb 2 affects the phase of the IGM.
  • the phase of the IGM is indicated by the shape of the IGM waveform shown in FIG.
  • a spectrum including information such as optical characteristics of the sample S can be acquired.
  • the sample S is a semiconductor such as silicon or gallium arsenide.
  • the laser medium is, for example, Er: YAG, Nd: YAG, or the like.
  • Various information of the sample S can be obtained from optical characteristics included in the acquired spectrum.
  • the repetition frequency ⁇ f rep 120.6 Hz
  • the offset frequency ⁇ f CEO was controlled to be an inverse multiple of the integer of the repetition frequency difference ⁇ f rep
  • IGM was measured.
  • 8A, 8B, and 8C the upper graph shows the IGM after a predetermined time on the time axis, and the lower graph shows the IGM after the predetermined time on the page. It is displayed by shifting in the vertical direction.
  • FIG. 8C when the offset frequency ⁇ f CEO is set to ⁇ f rep / 3, it can be seen that the IGM waveform is repeated in three patterns as a predetermined time elapses, resulting in a phase shift of 2 ⁇ / 3. .
  • three patterns of IGM are illustrated by a solid line, a broken line, and an alternate long and short dash line, respectively.
  • N is an arbitrary natural number.
  • Example 2 As shown in FIG. 10A, in Example 2, an optical comb light source 110 in which relative CEP between pulse trains was stabilized was prepared.
  • the optical comb Comb1 emitted from the optical comb light source 110 was made incident on the AOM 120, and the offset frequency difference ⁇ f CEO between the 0th-order diffracted light and the first-order diffracted light of the optical comb Comb1 was controlled.
  • an optical comb light source 112 different from the optical comb light source 110 was prepared.
  • the center wavelength ⁇ of the optical comb light sources 110 and 112 was set to 1560 nm.
  • the repetition frequency f rep1 of the optical comb Comb 1 emitted from the optical comb light source 110 was set to 56.5 MHz.
  • the repetition frequency difference ⁇ f rep between the optical comb Comb1 and the optical comb Comb2 emitted from the optical comb light source 112 was set to 120.6 Hz.
  • a (1/4) wavelength plate 116 and a (1/2) wavelength plate 118 for converting the optical comb Comb1 into linearly polarized light in a predetermined direction are disposed in front of the direction in which the optical comb Comb1 is emitted from the optical comb light source 110. did. (1/2)
  • the AOM 120 is arranged in front of the emission direction of the optical comb Comb1 from the wave plate 118. From the AOM 120, the 0th order diffracted light (0 th shown in FIG. 10A) and the 1st order diffracted light (1 st shown in FIG. 10A) of the optical comb Comb1 are emitted at different angles in plan view. As shown in FIG.
  • Equation (14) by applying modulation to the AOM 120 at the frequency f AOM , the offset frequency difference ⁇ f CEO between the 0th-order diffracted light and the 1st-order diffracted light of the optical comb Comb1 is expressed as shown in Equation (14).
  • the optical path length changing unit 122 is disposed in front of the emission direction of the 0th-order diffracted light of the optical comb Comb1.
  • a (1/2) wavelength plate 124 is arranged in front of the emission direction of the first-order diffracted light of the optical comb Comb1. With this arrangement, the direction of linearly polarized light of the first-order diffracted light of the optical comb Comb1 was made orthogonal to the direction of linearly polarized light of the 0th-order diffracted light of the optical comb Comb1.
  • the zero-order diffracted light and the first-order diffracted light were combined by a polarizing beam splitter (PBS) 126 to generate a coherently controlled and polarization-modulated light pulse.
  • PBS polarizing beam splitter
  • the vibration direction of the pulse train of the 0th-order diffracted light of the optical comb Comb1 and the vibration direction of the pulse train of the 1st-order diffracted light are orthogonal to each other.
  • T in equation (15) represents time.
  • the wave plate 132 and the polarizing plate 134 were disposed.
  • the optical comb Comb2 having a predetermined linear polarization was combined with the 0th-order diffracted light and the first-order diffracted light of the optical comb Comb1 coherently controlled and polarization-modulated as described above by a beam splitter (Beam (Splitter: BS) 138.
  • Beam Splitter
  • the photodetector 140 detects the interference light of the two optical combs Comb 1 and Comb 2.
  • the optical comb Comb2 functions as a local oscillator (LO) signal.
  • the interference light received by the photo detector 140 is processed by a digitizer (data processing unit) 142 to visualize the interference light on a display (not shown).
  • An optical comb Comb2 emitted from the optical comb light source 112 and not passing through the (1/4) wave plate 130, the (1/2) wave plate 132, and the polarizing plate 134 is supplied to the digitizer 142 as a reference clock signal. I input it.
  • the timing of the 0th-order diffracted light and the 1st-order diffracted light of the optical comb Comb1 was matched.
  • the optical comb Comb1 when the direction of the linearly polarized light of the optical comb Comb2 as the LO signal is slanted to the right on the paper, the direction of the linearly polarized light of the optical comb Comb1 is slanted to the right on the paper.
  • the directions of the linearly polarized light of the optical comb Comb2 became the same as each other, and a strong interference signal was generated.
  • the optical comb Comb1 becomes counterclockwise or clockwise circularly polarized light on the paper, the optical comb Comb1 partially includes the linearly polarized light of the optical comb Comb2.
  • the optical comb Comb1 when the direction of the linearly polarized light of the optical comb Comb2 as the LO signal is slanted to the left on the paper, the direction of the linearly polarized light of the optical comb Comb1 is slanted to the left on the paper.
  • the directions of the linearly polarized light of the optical comb Comb2 became the same as each other, and a strong interference signal was generated.
  • the optical comb Comb1 becomes counterclockwise or clockwise circularly polarized light on the paper surface, the optical comb Comb1 partially includes the linearly polarized light of the optical comb Comb2.
  • the 0th-order diffracted light and the 1st-order diffracted light of Comb 1 were orthogonal to each other and overlapped spatially and temporally.
  • a polarization interference waveform modulated into linearly polarized light, elliptically polarized light, circularly polarized light, or the like was generated according to the desired conditions described above.
  • control device control device for optical comb
  • Comb1 ... optical comb (first optical comb) Comb2 ... optical comb (second optical comb) f CEO1
  • Offset frequency first frequency offset
  • f rep1 ... repetition frequency (first frequency interval) f CEO2 ... offset frequency (second frequency offset) f rep2 ... repetition frequency (second frequency interval) FM1 ... optical frequency mode (first frequency mode) FM3 ... optical frequency mode (third optical frequency mode) FM2 ...
  • Optical frequency mode (second frequency mode) FM4 ... optical frequency mode (fourth optical frequency mode)

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

An optical comb control method to which the present invention is applied comprises a control step of controlling a difference between a first frequency offset and a second frequency offset using: a first optical comb which has a first frequency mode having the first frequency offset with respect to zero on a frequency axis, and a plurality of third frequency modes arranged at an interval of an integer multiple of a first frequency interval with respect to the first frequency mode on the frequency axis; and a second optical comb which has a second frequency mode having the second frequency offset with respect to zero on the frequency axis, and a plurality of fourth frequency modes arranged at an interval of an integer multiple of a second frequency interval with respect to the second frequency mode on the frequency axis.

Description

光コムの制御方法及び光コムの制御装置Optical comb control method and optical comb control device
 本発明は、光コムの制御方法及び光コムの制御装置に関する。本願は、2017年2月28日に、日本に出願された特願2017-037766号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to an optical comb control method and an optical comb control device. This application claims priority based on Japanese Patent Application No. 2017-037766 filed in Japan on February 28, 2017, the contents of which are incorporated herein by reference.
 周波数軸上において光周波数モードが精密に等間隔で分布するスペクトルを有する光は、光コムまたは光周波数コムと呼ばれる。本明細書では、光周波数モードを単に「周波数モード」と記載する場合がある。光コムは、モード同期レーザーなどの超短パルスレーザーから出射される。光コムを出射するモード同期レーザーの一例として、非特許文献1に、カーレンズモード同期Ti:サファイアレーザー(Kerr-lens mode-locked Ti:sapphire laser)が開示されている。非特許文献1に開示されているように、櫛状のスペクトルを有する光コムは、時間・空間・周波数の精密なものさしとして広く活用されている。 The light having a spectrum in which the optical frequency mode is precisely distributed at regular intervals on the frequency axis is called an optical comb or an optical frequency comb. In this specification, the optical frequency mode may be simply referred to as “frequency mode”. The optical comb is emitted from an ultrashort pulse laser such as a mode-locked laser. As an example of a mode-locked laser that emits an optical comb, Non-Patent Document 1 discloses a car lens mode-locked Ti: sapphire laser (Kerr-lens mode-locked Ti: sapphire laser). As disclosed in Non-Patent Document 1, an optical comb having a comb-like spectrum is widely used as a precise measure of time, space, and frequency.
 光コムは、時間領域においては低ジッターのコヒーレントパルス列であり、周波数領域において正確にモード分解されたコム状のスペクトルである。非特許文献1に開示されているように、光コムは高精度に安定化された光源として用いられる。しかしながら、従来、光コムのオフセット周波数、繰り返し周波数や二つの光コムを用いた際のオフセット周波数差、繰り返し周波数差は、固定のパラメータとして扱われていた。 The optical comb is a low-jitter coherent pulse train in the time domain, and is a comb-like spectrum that is accurately mode-resolved in the frequency domain. As disclosed in Non-Patent Document 1, the optical comb is used as a light source stabilized with high accuracy. However, conventionally, the offset frequency of the optical comb, the repetition frequency, the offset frequency difference when using two optical combs, and the repetition frequency difference are treated as fixed parameters.
 本発明者は、図2に示すように、二つの光コム同士の相対的なキャリアエンベロープ位相(Carrier-Envelope offset Phase:CEP)の差は時間が進むほどオフセット周波数差に応じて少しずつ均等にずれるという本質、及び、図3に示すように、相対的なCEPの差の周期はオフセット周波数差の逆数で表されるという本質に着目した。本発明者は、光コムの本質に基づき、オフセット周波数差を制御することによって相対的なCEPを任意に制御できるという新しい知見を得て、本発明を完成させた。 As shown in FIG. 2, the present inventor found that the difference in the relative carrier envelope phase (Carrier-Envelope offset Phase: CEP) between the two optical combs was made evenly little by little according to the offset frequency difference. We focused on the essence of deviation and the essence that the relative CEP difference period is represented by the reciprocal of the offset frequency difference, as shown in FIG. Based on the essence of the optical comb, the inventor has obtained new knowledge that the relative CEP can be arbitrarily controlled by controlling the offset frequency difference, and has completed the present invention.
 本発明は、二つの光コム同士の相対的なCEPの任意制御の自由度を積極的に活用した光コムの制御方法及び光コムの制御装置を提供する。 The present invention provides an optical comb control method and an optical comb control apparatus that actively utilize the degree of freedom of arbitrary control of relative CEP between two optical combs.
 本発明の光コムの制御方法は、周波数軸で零に対して第一の周波数オフセットを有する第一の周波数モードと前記周波数軸で前記第一の周波数モードに対して第一の周波数間隔の整数倍の間隔をあけて並ぶ複数の第三の周波数モードとを有する第一の光コムと、前記周波数軸で零に対して第二の周波数オフセットを有する第二の周波数モードと前記周波数軸で前記第二の周波数モードに対して第二の周波数間隔の整数倍の間隔をあけて並ぶ複数の第四の周波数モードとを有する第二の光コムと、を用いて、前記第一の周波数オフセットと前記第二の周波数オフセットとの差を制御する制御工程を備える。 An optical comb control method according to the present invention includes a first frequency mode having a first frequency offset with respect to zero on a frequency axis and an integer of a first frequency interval with respect to the first frequency mode on the frequency axis. A first optical comb having a plurality of third frequency modes arranged at double intervals, a second frequency mode having a second frequency offset with respect to zero on the frequency axis, and the frequency axis A second optical comb having a plurality of fourth frequency modes arranged at intervals of an integral multiple of the second frequency interval with respect to the second frequency mode, and using the first frequency offset and A control step of controlling a difference from the second frequency offset;
 本発明の光コムの制御方法では、前記制御工程において、前記第一の周波数オフセットと前記第二の周波数オフセットとの差をが(1)式を満たすように、前記第一の周波数オフセットと前記第二の周波数オフセットとの差を設定してもよい。 In the optical comb control method of the present invention, in the control step, the first frequency offset and the second frequency offset are set such that a difference between the first frequency offset and the second frequency offset satisfies the expression (1). A difference from the second frequency offset may be set.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 (1)式において、ΔfCEOは前記第一の周波数オフセットと前記第二の周波数オフセットとの差を表す。Δfrepは前記第一の周波数間隔と前記第二の周波数間隔との差を表す。K,Nは任意の自然数を表す。 In the equation (1), Δf CEO represents the difference between the first frequency offset and the second frequency offset. Δf rep represents the difference between the first frequency interval and the second frequency interval. K and N represent arbitrary natural numbers.
 本発明の光コムの制御方法では、前記制御工程において、前記第一の周波数オフセットと前記第二の周波数オフセットとの差を(2)式を満たすように設定してもよい。 In the optical comb control method of the present invention, in the control step, a difference between the first frequency offset and the second frequency offset may be set so as to satisfy Equation (2).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 (2)式において、ΔfCEOは前記第一の周波数オフセットと前記第二の周波数オフセットとの差を表す。frepは前記第一の周波数間隔または前記第二の周波数間隔を表す。Nは任意の自然数で表す。 In the equation (2), Δf CEO represents the difference between the first frequency offset and the second frequency offset. f rep represents the first frequency interval or the second frequency interval. N is represented by an arbitrary natural number.
 本発明の光コムの制御方法では、前記制御工程において、前記第一の周波数オフセットと前記第二の周波数オフセットとの差を(3)式を満たすように設定してもよい。 In the optical comb control method of the present invention, in the control step, the difference between the first frequency offset and the second frequency offset may be set to satisfy the expression (3).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 (3)式において、ΔfCEOは前記第一の周波数オフセットと前記第二の周波数オフセットで表す。fCEOは前記第一の周波数間隔または前記第二の周波数間隔を表す。Nは任意の自然数を表す。 In the equation (3), Δf CEO is expressed by the first frequency offset and the second frequency offset. f CEO represents the first frequency interval or the second frequency interval. N represents an arbitrary natural number.
 本発明の光コムの制御装置は、周波数軸で零に対して第一の周波数オフセットを有する第一の周波数モードと前記周波数軸で前記第一の周波数モードに対して第一の周波数間隔の整数倍の間隔をあけて並ぶ複数の第三の周波数モードとを有する第一の光コムにおける前記第一の周波数オフセット及び前記第一の周波数間隔とを制御すると共に、前記周波数軸で零に対して第二の周波数オフセットを有する第二の周波数モードと前記周波数軸で前記第二の周波数モードに対して第二の周波数間隔の整数倍の間隔をあけて並ぶ複数の第四の周波数モードとを有する第二の光コムにおける前記第二の周波数オフセット及び前記第二の周波数間隔とを制御する周波数制御機構を備える。前記制御機構は前記第一の周波数オフセット、前記第二の周波数オフセット、前記第一の周波数オフセットと前記第二の周波数オフセットとの差、前記第一の周波数間隔、前記第二の周波数間隔、及び前記第一の周波数間隔と前記第二の周波数間隔との差が互いに整数比で表されるように前記第一の周波数オフセット、前記第二の周波数オフセット、前記第一の周波数間隔、及び前記第二の周波数間隔を制御可能に構成される。 An optical comb control device according to the present invention includes a first frequency mode having a first frequency offset with respect to zero on a frequency axis and an integer of a first frequency interval with respect to the first frequency mode on the frequency axis. Controlling the first frequency offset and the first frequency interval in a first optical comb having a plurality of third frequency modes arranged at double intervals, and with respect to zero on the frequency axis A second frequency mode having a second frequency offset, and a plurality of fourth frequency modes arranged at intervals of an integer multiple of the second frequency interval with respect to the second frequency mode on the frequency axis. A frequency control mechanism for controlling the second frequency offset and the second frequency interval in the second optical comb is provided. The control mechanism includes the first frequency offset, the second frequency offset, the difference between the first frequency offset and the second frequency offset, the first frequency interval, the second frequency interval, and The first frequency offset, the second frequency offset, the first frequency interval, and the first frequency offset so that a difference between the first frequency interval and the second frequency interval is expressed by an integer ratio. Two frequency intervals can be controlled.
 本発明によれば、二つの光コム同士のオフセット周波数差を制御することによって、二つの光コム同士の相対的なCEPを任意に制御できる。 According to the present invention, the relative CEP between the two optical combs can be arbitrarily controlled by controlling the offset frequency difference between the two optical combs.
時間領域と周波数領域のそれぞれの領域における二つの光コムComb1,Comb2の模式図である。It is a schematic diagram of two optical combs Comb1 and Comb2 in each of a time domain and a frequency domain. 時間領域における二つの光コムComb1,Comb2のパルス列の繰り返し周期の相対関係を示す模式図である。It is a schematic diagram which shows the relative relationship of the repetition period of the pulse train of two optical combs Comb1 and Comb2 in a time domain. 時間領域における二つの光コムComb1,Comb2のパルス列の位相の相対関係を示す模式図である。It is a schematic diagram which shows the relative relationship of the phase of the pulse train of two optical combs Comb1 and Comb2 in a time domain. 光コムのオフセット周波数及び繰り返し周波数を制御可能に構成された光コム出力機構の一例を示す概略図である。It is the schematic which shows an example of the optical comb output mechanism comprised so that control of the offset frequency and repetition frequency of an optical comb was possible. 本発明に係る光コムの制御装置の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the control apparatus of the optical comb based on this invention. 光コムのオフセット周波数を制御するための音響光学素子の光学的なふるまいを示す模式図である。It is a schematic diagram which shows the optical behavior of the acoustooptic device for controlling the offset frequency of an optical comb. 実施例1の二つの光コムComb1,Comb2の波形と干渉信号との関係を示す模式図である。FIG. 3 is a schematic diagram illustrating a relationship between waveforms of two optical combs Comb1 and Comb2 and interference signals in the first embodiment. 実施例1において二つの光コムComb1,Comb2のオフセット周波数差ΔfCEOを0とした場合の干渉信号の測定結果を示すグラフである。6 is a graph showing a measurement result of an interference signal when an offset frequency difference Δf CEO between two optical combs Comb1 and Comb2 is set to 0 in the first embodiment. 実施例1において二つの光コムComb1,Comb2のオフセット周波数差ΔfCEOをΔfrep/2とした場合の干渉信号の測定結果を示すグラフである。6 is a graph showing a measurement result of an interference signal when an offset frequency difference Δf CEO between two optical combs Comb1 and Comb2 is Δf rep / 2 in Example 1. 実施例1において二つの光コムComb1,Comb2のオフセット周波数差ΔfCEOをΔfrep/3とした場合の干渉信号の測定結果を示すグラフである。6 is a graph showing a measurement result of an interference signal when an offset frequency difference Δf CEO between two optical combs Comb 1 and Comb 2 is Δf rep / 3 in Example 1. 実施例1において二つの光コムComb1,Comb2のオフセット周波数差ΔfCEOをΔfrep/2とした場合に、互いに反転するIGM同士を差分平均したIGMを示すグラフである。6 is a graph showing an IGM obtained by averaging the differences of IGMs that are inverted with each other when the offset frequency difference Δf CEO between two optical combs Comb 1 and Comb 2 is Δf rep / 2 in Example 1. FIG. 実施例2において光コムComb1の0次回折光と1次回折光とのオフセット周波数差ΔfCEOを制御するための装置の構成を示す概略図である。In Example 2, it is the schematic which shows the structure of the apparatus for controlling offset frequency difference (DELTA) f CEO of the 0th-order diffracted light and 1st-order diffracted light of optical comb Comb1. 図10Aに示す装置の音響光学素子における光コムComb1の0次回折光と1次回折光のスペクトルを示す模式図である。It is a schematic diagram which shows the spectrum of the 0th-order diffracted light and 1st-order diffracted light of optical comb Comb1 in the acoustooptic device of the apparatus shown to FIG. 光コムComb1の0次回折光と1次回折光との相対的なCEPを示す図である。It is a figure which shows the relative CEP of the 0th-order diffracted light and 1st-order diffracted light of optical comb Comb1. 実施例2において経過時間と相対的なCEPとの関係を示すグラフである。It is a graph which shows the relationship between elapsed time and relative CEP in Example 2. FIG. 図11Aに示す相対的なCEPの変化に応じた光コムComb1の偏光状態と干渉光の強度の測定結果とを示すグラフである。11B is a graph showing the polarization state of the optical comb Comb1 and the measurement result of the intensity of interference light according to the relative change in CEP shown in FIG. 11A. 図11Bに示す偏光状態での干渉光の波形を示すグラフである。It is a graph which shows the waveform of the interference light in the polarization state shown to FIG. 11B. 図11Aに示す相対的なCEPの変化に応じた光コムComb1の偏光状態と干渉光の強度の測定結果とを示す別のグラフである。FIG. 11B is another graph showing the polarization state of the optical comb Comb1 and the measurement result of the intensity of the interference light according to the relative CEP change shown in FIG. 11A. 図11Dに示す偏光状態での干渉光の波形を示すグラフである。It is a graph which shows the waveform of the interference light in the polarization state shown to FIG. 11D.
 以下に、本発明の光コムの制御方法及び光コムの制御装置の一実施形態について、図面を参照し、説明する。なお、以下の説明で参照する図面の各構成要素の長さ、幅、及び厚みの比率等は、模式的である。 Hereinafter, an embodiment of an optical comb control method and an optical comb control apparatus according to the present invention will be described with reference to the drawings. In addition, the ratio of the length of each component of the drawing referred in the following description, the width | variety, thickness, etc. are typical.
 モード同期レーザーは、時間領域において周期的なパルス列を出力する。モード同期レーザーから出力されるパルス列は、高速に振動している電場(すなわち、キャリア)と包絡線の関数によって図示することができる。包絡線の伝搬速度を群速度vとし、キャリアの伝搬速度を位相速度vとすると、(4)式及び(5)式で表される関係が成り立つ。 A mode-locked laser outputs a periodic pulse train in the time domain. The pulse train output from the mode-locked laser can be illustrated by a function of an electric field (that is, carrier) oscillating at high speed and an envelope. The propagation speed of the envelope and the group velocity v g, the propagation speed of the carrier and phase velocity v p, holds the relationship expressed by the equation (4) and (5).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 (4)式において、nは光コムが伝搬する媒質の屈折率を表す。λは光コムの中心波長を表す。 In equation (4), n represents the refractive index of the medium through which the optical comb propagates. λ represents the center wavelength of the optical comb.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 群速度vと位相速度vとは異なるため、時間が進むにしたがって、パルスの包絡線とキャリアのピーク部とは徐々にずれていく。位相のずれ(すなわち、位相差)は、キャリア・エンベロープ・オフセット・フェーズ(Carrier-Envelope offset Phase:CEP)と呼ばれる。時間軸上で隣り合うパルス列同士の相対的なCEPの差ΔφCEPは、パルス間で周期的にずれており、一定の周期TCEOを有する。周期TCEOの逆数は、周波数領域のキャリア・エンベロープ・オフセット周波数(単に、オフセット周波数ともいう)fCEOに相当する。モード同期レーザーから出力される光コムを周波数領域で観察すると、モード同期レーザーの縦モードが、パルスの繰り返し周期Trepの逆数である繰り返し周波数(周波数間隔)frepの間隔で極めて一様に分布している。オフセット周波数fCEOと繰り返し周波数frepとの関係は、相対的なCEPの差ΔφCEPを用いて、(6)式に示すように表される。 Since the group velocity v g and the phase velocity v p are different, the pulse envelope and the carrier peak gradually shift as time advances. The phase shift (that is, the phase difference) is called a carrier-envelope offset phase (CEP). The relative CEP difference Δφ CEP between adjacent pulse trains on the time axis is periodically shifted between pulses, and has a constant period TCEO . The inverse of the period T CEO, the carrier envelope offset frequency of the frequency domain (also simply referred to as the offset frequency) corresponding to f CEO. When the optical comb output from the mode-locked laser is observed in the frequency domain, the longitudinal mode of the mode-locked laser is very uniformly distributed at intervals of the repetition frequency (frequency interval) f rep that is the reciprocal of the pulse repetition period T rep. is doing. The relationship between the offset frequency f CEO and the repetition frequency f rep is expressed as shown in equation (6) using a relative CEP difference Δφ CEP .
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 図1には、二つの光コムComb1,Comb2のそれぞれの時間領域における波形と周波数領域におけるスペクトルが模式的に示されている。図1に示すように、光コム(第一の光コム)Comb1は、周波数軸で零に対してオフセット周波数(第一の周波数オフセット)fCEO1を有する光周波数モード(第一の周波数モード)FM1と、周波数軸で光周波数モードFM1に対して繰り返し周波数(第一の周波数間隔)frep1の整数倍の間隔をあけて並ぶ複数の光周波数モード(第三の光周波数モード)FM3と、を有する。光コム(第二の光コム)Comb2は、周波数軸で零に対してオフセット周波数(第二の周波数オフセット)fCEO2を有する光周波数モード(第二の周波数モード)FM2と、周波数軸で光周波数モードFM2に対して繰り返し周波数(第二の周波数間隔)frep2の整数倍の間隔をあけて並ぶ複数の光周波数モード(第四の光周波数モード)FM4と、を有する。 FIG. 1 schematically shows a waveform in the time domain and a spectrum in the frequency domain of each of the two optical combs Comb1 and Comb2. As shown in FIG. 1, the optical comb (first optical comb) Comb1 has an optical frequency mode (first frequency mode) FM1 having an offset frequency (first frequency offset) fCEO1 with respect to zero on the frequency axis. And a plurality of optical frequency modes (third optical frequency modes) FM3 arranged at intervals of an integral multiple of the repetition frequency (first frequency interval) f rep1 with respect to the optical frequency mode FM1 on the frequency axis. . The optical comb (second optical comb) Comb2 includes an optical frequency mode (second frequency mode) FM2 having an offset frequency (second frequency offset) f CEO2 with respect to zero on the frequency axis, and an optical frequency on the frequency axis. A plurality of optical frequency modes (fourth optical frequency mode) FM4 arranged at intervals of an integer multiple of the repetition frequency (second frequency interval) f rep2 with respect to the mode FM2.
 (6)式から、光コムComb1におけるオフセット周波数fCEO1と繰り返し周波数frep1との対応関係として、(7)式が成り立つ。 From Expression (6), Expression (7) is established as a correspondence relationship between the offset frequency f CEO1 and the repetition frequency f rep1 in the optical comb Comb1.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 同様に、(6)式から、光コムComb2におけるオフセット周波数fCEO2と繰り返し周波数frep2の対応関係として、(8)式の関係が成り立つ。 Similarly, from the equation (6), the relationship of the equation (8) is established as a correspondence relationship between the offset frequency f CEO2 and the repetition frequency f rep2 in the optical comb Comb2.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 (7)式において、ΔφCEP1は光コムComb1の相対的なCEPを表す。(8)式において、ΔφCEP2は光コムComb2の相対的なCEPを示す。 In the equation (7), Δφ CEP1 represents a relative CEP of the optical comb Comb1. In the equation (8), Δφ CEP2 represents the relative CEP of the optical comb Comb2.
 (7)式及び(8)式に示すように、オフセット周波数fCEO1,fCEO2は、パルス間のCEPの変化量、すなわち相対的なCEPΔφCEP1,ΔφCEP2と対応づけられる。言い換えると、オフセット周波数fCEO1,fCEO2を制御することで、光コムComb1,Comb2のそれぞれのパルス列のコヒーレンスを制御できる。 (7) and (8) As shown in equation, the offset frequency f CEO1, f CEO2 the change amount of the CEP between pulses, i.e. relative CEPderutafai CEP1, is associated with Δφ CEP2. In other words, by controlling the offset frequency f CEO1, f CEO2, you can control the coherence of each pulse train of optical frequency comb COMB1, COMB2.
 図2及び図3には、二つの光コムComb1,Comb2を共通の時間軸で見たときの波形が模式的に示されている。図2に示すように、二つの光コムComb1,Comb2の波形の時間軸上の位置が揃ったときの各波形を一番目の波形と称する。二つの光コムComb1,Comb2のそれぞれの一番目の波形の位置から時間軸上を進んだ二番目の波形同士の時間軸上の差を時間差ΔTrepとする。二つの光コムComb1,Comb2のそれぞれの三番目の波形同士の時間軸上の差は時間差(2×ΔTrep)となる。すなわち、二つの光コムComb1,Comb2のそれぞれの(M+1)番目の波形同士の時間軸上の差は時間差(M×ΔTrep)となる。Mは、任意の自然数を表す。つまり、時間領域において、二つの光コムComb1,Comb2の波形は、繰り返し周波数差Δfrepに応じて少しずつ均等にずれていく。繰り返し周波数差Δfrepは、周波数差|frep1-frep2|である。 2 and 3 schematically show waveforms when the two optical combs Comb1 and Comb2 are viewed on a common time axis. As shown in FIG. 2, each waveform when the positions of the waveforms of the two optical combs Comb1 and Comb2 are aligned on the time axis is referred to as a first waveform. The difference on the time axis between the second waveforms that have advanced on the time axis from the position of the first waveform of each of the two optical combs Comb 1 and Comb 2 is defined as a time difference ΔT rep . The difference on the time axis between the third waveforms of the two optical combs Comb 1 and Comb 2 is the time difference (2 × ΔT rep ). That is, the difference on the time axis between the (M + 1) th waveforms of the two optical combs Comb1 and Comb2 is the time difference (M × ΔT rep ). M represents an arbitrary natural number. That is, in the time domain, the waveforms of the two optical combs Comb1 and Comb2 are shifted evenly little by little according to the repetition frequency difference Δf rep . The repetition frequency difference Δf rep is a frequency difference | f rep1 −f rep2 |.
 二つの光コムComb1,Comb2の一番目の波形の時間軸上の位置から時間(1/Δfrep)が経過すると、二つの光コムComb1,Comb2同士の波形の時間軸上の位置が再び揃う。言い換えれば、二つの光コムComb1,Comb2の各々のパルスのタイミングは、(1/Δfrep)の周期で変化する。一番目の波形の時間軸上の位置から時間(1/Δfrep)が経過した後の波形をそれぞれ、光コムComb1の(M+2)番目の波形と、光コムComb2の(M+1)番目の波形とすると、(9)式及び(10)式の関係が成り立つ。 When time (1 / Δf rep ) elapses from the position on the time axis of the first waveform of the two optical combs Comb1 and Comb2, the positions on the time axis of the waveforms of the two optical combs Comb1 and Comb2 are aligned again. In other words, the timing of each pulse of the two optical combs Comb1 and Comb2 changes with a period of (1 / Δf rep ). The waveforms after the time (1 / Δf rep ) has elapsed from the position on the time axis of the first waveform are respectively the (M + 2) th waveform of the optical comb Comb1 and the (M + 1) th waveform of the optical comb Comb2. Then, the relationship of (9) Formula and (10) Formula is formed.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 一方、二つの光コムComb1,Comb2のそれぞれのCEPは、共通の時間軸上の位置において、相対的な関係を有している。図3に示すように、相対的な関係(すなわち、CEPの差)を有する各波形を一番目の波形とすると、二つの光コムComb1,Comb2のそれぞれの一番目の波形のCEPと二番目の波形のCEPとの位相差は、ΔφCEP1,ΔφCEP2である。また、二つの光コムComb1,Comb2のそれぞれの一番目の波形のCEPと三番目の波形のCEPとの位相差は、2×ΔφCEP1,2×ΔφCEP2である。すなわち、二つの光コムComb1,Comb2のそれぞれの(M+1)番目の波形同士の時間軸上の差は時間差(M×ΔφCEP1),(M×ΔφCEP2)となる。つまり、時間領域において、二つの光コムComb1,Comb2の相対的なCEPは、オフセット周波数差ΔfCEOに応じて少しずつ均等にずれていく。オフセット周波数差ΔfCEOは、周波数差|fCEO1-fCEO2|)である。 On the other hand, the CEPs of the two optical combs Comb1 and Comb2 have a relative relationship at a common position on the time axis. As shown in FIG. 3, when each waveform having a relative relationship (ie, CEP difference) is the first waveform, the first waveform CEP and the second waveform of each of the two optical combs Comb 1 and Comb 2 are used. The phase difference between the waveform and CEP is Δφ CEP1 and Δφ CEP2 . The phase difference between the first waveform CEP and the third waveform CEP of each of the two optical combs Comb1 and Comb2 is 2 × Δφ CEP1 and 2 × Δφ CEP2 . That is, the difference on the time axis between the (M + 1) -th waveforms of the two optical combs Comb1 and Comb2 is the time difference (M × Δφ CEP1 ) and (M × Δφ CEP2 ). In other words, in the time domain, the relative CEP of the two optical combs Comb1 and Comb2 is shifted little by little according to the offset frequency difference Δf CEO . The offset frequency difference Δf CEO is the frequency difference | f CEO1 −f CEO2 |).
 したがって、二つの光コムComb1,Comb2のそれぞれの一番目の波形の時間軸上の位置から時間が(1/ΔfCEO)経過した後に、位相差ΔφCEP1と位相差ΔφCEP2とのずれが2πになる。このとき、二つの光コムComb1,Comb2のそれぞれの一番目のパルス列の波形同士の相対的なCEPの関係と同じ関係の波形を有するパルス列が現れる。図3ではわかりやすく説明するために、二つの光コムComb1,Comb2の繰り返し周波数差Δfrepが0であると仮定した。そのため、二つの光コムComb1,Comb2の一番目のパルス列同士の相対的なCEPの関係と同じ関係の波形を有するパルス列の時間軸上の位置が揃っている。すなわち、二つの光コムComb1,Comb2の相対的なCEPの関係は、(1/ΔfCEO)の周期で変化する。 Accordingly, after the time (1 / Δf CEO ) has elapsed from the position on the time axis of the first waveform of each of the two optical combs Comb 1 and Comb 2, the difference between the phase difference Δφ CEP1 and the phase difference Δφ CEP2 becomes 2π. Become. At this time, a pulse train having a waveform having the same relationship as the relative CEP relationship between the waveforms of the first pulse trains of the two optical combs Comb 1 and Comb 2 appears. In FIG. 3, it is assumed that the repetition frequency difference Δf rep between the two optical combs Comb 1 and Comb 2 is 0 for easy understanding. Therefore, the positions on the time axis of the pulse trains having the same waveform as the relative CEP relationship between the first pulse trains of the two optical combs Comb 1 and Comb 2 are aligned. That is, the relative CEP relationship between the two optical combs Comb1 and Comb2 changes with a period of (1 / Δf CEO ).
(光コムの制御方法)
 上述したように、光コムの繰り返し周波数frep及びオフセット周波数fCEOは、パルス列の特性を示す重要な周波数パラメータである。二つの光コムの相対関係を考えると、それぞれの光コムの繰り返し周波数frep及びオフセット周波数fCEOに加えて、繰り返し周波数差Δfrep及びオフセット周波数差ΔfCEOがパルス列の特性を示す重要な周波数パラメータである。従来、オフセット周波数差ΔfCEOは固定のパラメータとして扱われてきた。しかしながら、オフセット周波数差ΔfCEOを制御することによって、CEPを任意に制御できる。本発明では、オフセット周波数差ΔfCEOの制御の自由度を積極的に活用する。
(Control method of optical comb)
As described above, the repetition frequency f rep and the offset frequency f CEO of the optical comb are important frequency parameters indicating the characteristics of the pulse train. Considering the relative relationship between the two optical combs, in addition to the repetition frequency f rep and the offset frequency f CEO of each optical comb, the repetition frequency difference Δf rep and the offset frequency difference Δf CEO are important frequency parameters indicating the characteristics of the pulse train. It is. Conventionally, the offset frequency difference Δf CEO has been treated as a fixed parameter. However, the CEP can be arbitrarily controlled by controlling the offset frequency difference Δf CEO . In the present invention, the degree of freedom in controlling the offset frequency difference Δf CEO is positively utilized.
 本発明に係る光コムの制御方法は、光周波数モードFM1と複数の光周波数モードFM3とを有する光コムComb1と、光周波数モードFM2と複数の光周波数モードFM4とを有する光コムComb2とを用いて、オフセット周波数fCEO1,fCEO2の差(オフセット周波数差、第一の周波数オフセットと第二の周波数オフセットとの差)ΔfCEOを制御する制御工程を備える。 The optical comb control method according to the present invention uses an optical comb Comb1 having an optical frequency mode FM1 and a plurality of optical frequency modes FM3, and an optical comb Comb2 having an optical frequency mode FM2 and a plurality of optical frequency modes FM4. And a control step of controlling the difference between the offset frequencies f CEO1 and f CEO2 (offset frequency difference, difference between the first frequency offset and the second frequency offset) Δf CEO .
 オフセット周波数差ΔfCEOは、二つの光コムComb1,Comb2のオフセット周波数fCEO1,fCEO2同士の差である。(7)式及び(8)式で示すように、二つの光コムComb1,Comb2の繰り返し周波数frep1,frep2はそれぞれ、オフセット周波数fCEO1,fCEO2のそれぞれと相対関係を有する。したがって、オフセット周波数差ΔfCEOを制御するために、二つの光コムComb1,Comb2のオフセット周波数差ΔfCEO、光コムComb1のオフセット周波数fCEO1、光コムComb2のオフセット周波数fCEO2、二つの光コムComb1,Comb2の繰り返し周波数差Δfrep、光コムComb1のオフセット周波数frep1、光コムComb2のオフセット周波数frep2の六つのパラメータ同士が任意の整数比で表されるように各パラメータを制御することが好ましい。具体的には、上述の六つのパラメータ同士が任意の整数比で表される相対関係(所定の条件)が、オフセット周波数fCEO1,fCEO2及びオフセット周波数frep1,frep2の四つのパラメータの制御によって成り立つことが好ましい。 The offset frequency difference Δf CEO is the difference between the offset frequencies f CEO1 and f CEO2 of the two optical combs Comb1 and Comb2. As shown by the equations (7) and (8), the repetition frequencies f rep1 and f rep2 of the two optical combs Comb1 and Comb2 have a relative relationship with the offset frequencies f CEO1 and f CEO2 , respectively. Therefore, in order to control the offset frequency difference Delta] f CEO, two offset frequency difference Delta] f CEO optical comb COMB1, COMB2, offset frequency f CEO1 optical comb COMB1, offset frequency f CEO2 optical comb COMB2, two optical comb COMB1 , Comb2 repetition frequency difference Δf rep , optical comb Comb1 offset frequency f rep1 , optical comb Comb2 offset frequency f rep2 is preferably controlled so that the six parameters are expressed by an arbitrary integer ratio. . Specifically, the relative relationship (predetermined condition) in which the above six parameters are represented by an arbitrary integer ratio is the control of four parameters of the offset frequencies f CEO1 and f CEO2 and the offset frequencies f rep1 and f rep2. It is preferable that
 例えば、オフセット周波数差ΔfCEOが(1)式から(3)式の少なくとも一式以上を満たすようにオフセット周波数差ΔfCEO以外の各パラメータを設定できる。オフセット周波数差ΔfCEOが(1)式から(3)式のいずれか二式を同時に満たすようにオフセット周波数差ΔfCEO以外の各パラメータを設定できる。オフセット周波数差ΔfCEOが前述の(1)式から(3)式の全て満たすようにオフセット周波数差ΔfCEO以外の各パラメータを設定してもよい。 For example, setting the above parameters other than the offset frequency difference Delta] f CEO to meet the offset frequency difference Delta] f CEO is (1) (3) at least one or more expression of expression from the equation. Can set the parameters other than the offset frequency difference Delta] f CEO to meet the offset frequency difference Delta] f CEO from (1) reacting a (3) any two equations of the type at the same time. Offset frequency difference Delta] f CEO may set the parameters other than the offset frequency difference Delta] f CEO to satisfy all the above-mentioned equation (1) (3).
 (光コムの制御装置)
 先ず、本発明の光コムの制御方法に適用可能な光コムの制御装置に用いられる光コム出力機構について説明する。光コム出力機構は、本発明の光コムの制御方法の制御工程において、所定の関係(いわゆる、1f-2fの関係)を満たす二つの光コムのモード同士の干渉信号を検出する。この干渉信号は、ビート信号であって、二つの光コムのモード同士の周波数差に基づく。光コム出力機構は、二つの光コムのモード同士の干渉信号を検出することによって、オフセット周波数及び繰り返し周波数を制御可能に構成されている。
(Optical Com control device)
First, an optical comb output mechanism used in an optical comb control apparatus applicable to the optical comb control method of the present invention will be described. The optical comb output mechanism detects an interference signal between modes of two optical combs satisfying a predetermined relationship (so-called 1f-2f relationship) in the control step of the optical comb control method of the present invention. This interference signal is a beat signal and is based on the frequency difference between the modes of the two optical combs. The optical comb output mechanism is configured to be able to control the offset frequency and the repetition frequency by detecting an interference signal between modes of two optical combs.
 図4に示すように、光コム出力機構10は、光コム光源12、光干渉部14、ビート信号検出部16、オフセット周波数制御部18、光コム出力部20、及び繰り返し周波数制御部22を備えている。 As shown in FIG. 4, the optical comb output mechanism 10 includes an optical comb light source 12, an optical interference unit 14, a beat signal detection unit 16, an offset frequency control unit 18, an optical comb output unit 20, and a repetition frequency control unit 22. ing.
 光コム光源12は、ループ型のファイバレーザとして構成される。光コム光源12は、エルビウム添加ファイバ(Erbium doped optical fiber:EDF)24と、光カプラ25を介してEDF24に励起光を供給することによってEDF24を励起する半導体レーザー(以下、励起LDとする)26と、を備える。EDF24からの光の出射方向(図4の紙面における時計回りの方向)に沿って光アイソレータ34、光カプラ32、前述のファイバレーザの共振器長を変更可能なピエゾ(PZT)素子30、及び偏波コントローラ28がEDF24によって連結される。光コム光源12の構成は、光コムを出射可能であれば、上述の構成に限定されない。 The optical comb light source 12 is configured as a loop type fiber laser. The optical comb light source 12 includes an erbium-doped optical fiber (EDF) 24 and a semiconductor laser (hereinafter referred to as pumping LD) 26 that pumps the EDF 24 by supplying pumping light to the EDF 24 via an optical coupler 25. And comprising. An optical isolator 34, an optical coupler 32, a piezo (PZT) element 30 capable of changing the resonator length of the above-described fiber laser, and a polarization along the emission direction of light from the EDF 24 (the clockwise direction in FIG. 4). The wave controller 28 is connected by the EDF 24. The configuration of the optical comb light source 12 is not limited to the above configuration as long as it can emit the optical comb.
 光カプラ32から出射された光コムは、光干渉部14と光コム出力部20に供給される。光カプラ32と光干渉部14及び光コム出力部20との間には、光カプラ32に近い側から順に偏波コントローラ38、EDF増幅器40が設けられる。EDF増幅器40は、EDF39と、励起LD41と、光カプラ43で構成される。光カプラ32と光干渉部14までの各構成と、光カプラ32と出力部20までの各構成は、光ファイバ36によって連結される。 The optical comb emitted from the optical coupler 32 is supplied to the optical interference unit 14 and the optical comb output unit 20. Between the optical coupler 32, the optical interference unit 14, and the optical comb output unit 20, a polarization controller 38 and an EDF amplifier 40 are provided in order from the side closer to the optical coupler 32. The EDF amplifier 40 includes an EDF 39, a pumping LD 41, and an optical coupler 43. Each configuration up to the optical coupler 32 and the optical interference unit 14 and each configuration up to the optical coupler 32 and the output unit 20 are connected by an optical fiber 36.
 EDF増幅器40Aと光干渉部14との間には、高非線形光ファイバ(High-nonlinear fiber:HNLF)42が配置される。偏波コントローラ38A及びEDF増幅器40Aによって偏波制御及び増幅された光コムは、HNLF42によって、HNLF42に入射する前よりも広帯域な光コムとして出射される。 A high-nonlinear optical fiber (HNLF) 42 is disposed between the EDF amplifier 40A and the optical interference unit 14. The optical comb whose polarization is controlled and amplified by the polarization controller 38 </ b> A and the EDF amplifier 40 </ b> A is emitted by the HNLF 42 as a wider-band optical comb than before entering the HNLF 42.
 光干渉部14は、光コム光源12に近い側から順に、ファイバコリメータ44、集光レンズ46、λ/2波長板48、周期分極反転ニオブ酸リチウム (periodically-poled lithium niobate:PPLN)50、光バンドパスフィルタ52を備える。HNLF42から出射された広帯域の光コムは、光干渉部14に入射し、PPLN50に集光される。PPLN50から、広帯域の光コムの第二高調波Wが出射される。すなわち、PPLN50から、広帯域の光コムの成分(2f)と、PPLN50で新たに生成された第二高調波の成分(2×1f)とが重なって出射される。 The optical interference unit 14 includes, in order from the side closer to the optical comb light source 12, a fiber collimator 44, a condenser lens 46, a λ / 2 wavelength plate 48, a periodically-poled lithium niobate (PPLN) 50, light A band pass filter 52 is provided. The broadband optical comb emitted from the HNLF 42 enters the optical interference unit 14 and is focused on the PPLN 50. From PPLN50, second harmonic W S broadband optical comb is emitted. That is, the broadband optical comb component (2f) and the second harmonic component (2 × 1f) newly generated by the PPLN 50 are emitted from the PPLN 50 in an overlapping manner.
 広帯域光コムにおいて周波数軸で零からn番目のモードの周波数fは、(11)式のように表される。 In the broadband optical comb, the frequency f B of the zeroth to n-th mode on the frequency axis is expressed as shown in Equation (11).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 (11)式のnは、任意の自然数である。 (N) in equation (11) is an arbitrary natural number.
 広帯域の光コムのn番目のモードの周波数に対して、第二高調波Wのスペクトルの周波数fは、(12)式のように表される。 For the frequency of the nth mode of the broadband optical comb, the frequency f S of the spectrum of the second harmonic wave W S is expressed as in equation (12).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 (12)式で表される広帯域の光コムにおける周波数fのモードに低周波数側で隣り合う2n番目のモードの周波数fは、(13)式のように表される。 The frequency f W of the 2n-th mode adjacent to the mode of the frequency f S in the broadband optical comb represented by the equation (12) on the low frequency side is represented by the equation (13).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 広帯域の光コムと第二高調波は、ビート信号検出部16で干渉する。ビート信号検出部16では、広帯域の光コムと第二高調波とのビート信号が検出される。(12)式及び(13)式で表される周波数のスペクトル同士のビート信号を検出することによって、オフセット周波数差fCEOが検出される。言い換えれば、(12)式及び(13)式で表される周波数のスペクトル同士のビート信号が干渉光としてビート信号検出部16に出射される。ビート信号検出部16は、フォトディテクタ54で構成されている。PPLN50から出射した光は、フォトディテクタ54によって検出される。PPLN50を出射した光の強弱は、電気信号の大小に変換される。 The broadband optical comb and the second harmonic interfere with each other at the beat signal detector 16. The beat signal detector 16 detects beat signals of a broadband optical comb and second harmonics. The offset frequency difference f CEO is detected by detecting the beat signal between the spectrums of the frequencies represented by the equations (12) and (13). In other words, the beat signals of the frequencies having the frequencies represented by the equations (12) and (13) are emitted to the beat signal detector 16 as interference light. The beat signal detection unit 16 includes a photo detector 54. The light emitted from the PPLN 50 is detected by the photodetector 54. The intensity of the light emitted from the PPLN 50 is converted into the magnitude of an electric signal.
 フォトディテクタ54から出力された電気信号は、電気ケーブル56を介してオフセット周波数制御部18に伝送され、電気ケーブル58を介して繰り返し周波数制御部22に伝送される。 The electric signal output from the photodetector 54 is transmitted to the offset frequency control unit 18 through the electric cable 56 and is repeatedly transmitted to the frequency control unit 22 through the electric cable 58.
 オフセット周波数制御部18は、高周波バンドパスフィルタ61、高周波アンプ62、ファンクションジェネレータ(Function generator:FG)64、周波数変換器(Double Balanced Mixer:DBM)66、ループフィルタ68を備える。高周波バンドパスフィルタ61は、フォトディテクタ54から出力された電気信号からオフセット周波数成分を抽出する。高周波アンプ62は、高周波バンドパスフィルタ61から出射された電気信号を増幅する。FG64は、所望の周波数を設定することによって該周波数の参照信号を発信できる。DBM66は、増幅された電気信号とFG64から発信された参照信号とを混合する。ループフィルタ68は、混合された電気信号に応じて光コム光源12の励起LD26の印加電流にフィードバックをかける。 The offset frequency control unit 18 includes a high-frequency bandpass filter 61, a high-frequency amplifier 62, a function generator (FG) 64, a frequency converter (Double Balanced Mixer: DBM) 66, and a loop filter 68. The high-frequency bandpass filter 61 extracts an offset frequency component from the electrical signal output from the photodetector 54. The high frequency amplifier 62 amplifies the electric signal emitted from the high frequency band pass filter 61. The FG 64 can transmit a reference signal of the frequency by setting a desired frequency. The DBM 66 mixes the amplified electrical signal and the reference signal transmitted from the FG 64. The loop filter 68 applies feedback to the current applied to the pumping LD 26 of the optical comb light source 12 in accordance with the mixed electric signal.
 オフセット周波数制御部18では、FG64から発信される参照信号の周波数が変更されると、ループフィルタ68によって光コム光源12の励起LD26の印加電流にフィードバックがかかる。励起LD26の印加電流が変更され、光コム光源12から出射される光コムのオフセット周波数fCEOがFG64から発信される参照信号の周波数に揃う。言い換えれば、FG64から発信される参照信号の周波数を制御することによって、光コム光源12から出射される光コムのオフセット周波数fCEOを制御できる。 In the offset frequency control unit 18, when the frequency of the reference signal transmitted from the FG 64 is changed, feedback is applied to the current applied to the excitation LD 26 of the optical comb light source 12 by the loop filter 68. The applied current of the pumping LD 26 is changed, and the offset frequency f CEO of the optical comb emitted from the optical comb light source 12 is aligned with the frequency of the reference signal transmitted from the FG 64. In other words, the offset frequency f CEO of the optical comb emitted from the optical comb light source 12 can be controlled by controlling the frequency of the reference signal transmitted from the FG 64.
 繰り返し周波数制御部22は、高周波バンドパスフィルタ71、高周波アンプ72、FG74、DBM76、ループフィルタ78を備える。高周波バンドパスフィルタ71は、フォトディテクタ54から出力された電気信号から繰り返し周波数成分を抽出する。高周波アンプ72は、高周波バンドパスフィルタ71からの電気信号を増幅する。FG74は、所望の周波数を設定することによって該周波数の参照信号を発信できる。DBM76は、増幅された電気信号とFG74から発信された参照信号とを混合する。ループフィルタ78は、混合された電気信号に応じて、光コム光源12のPZT素子30に印加される電圧にフィードバックをかける。 The repetitive frequency control unit 22 includes a high frequency band pass filter 71, a high frequency amplifier 72, an FG 74, a DBM 76, and a loop filter 78. The high-frequency bandpass filter 71 repeatedly extracts frequency components from the electrical signal output from the photodetector 54. The high frequency amplifier 72 amplifies the electric signal from the high frequency band pass filter 71. The FG 74 can transmit a reference signal of the frequency by setting a desired frequency. The DBM 76 mixes the amplified electrical signal and the reference signal transmitted from the FG 74. The loop filter 78 applies feedback to the voltage applied to the PZT element 30 of the optical comb light source 12 in accordance with the mixed electric signal.
 繰り返し周波数制御部22では、FG74から発信される参照信号の周波数が変更されると、ループフィルタ78によって前述のように光コム光源12のPZT素子30にフィードバックがかかる。これにより、光コム光源12のファイバレーザの共振器長が変更され、光コム光源12から出射される光コムの繰り返し周波数frepがFG74から発信される参照信号の周波数に揃うようになる。言い換えれば、FG74から発信される参照信号の周波数を制御することによって光コム光源12から出射される光コムの繰り返し周波数frepを制御できる。 In the repetition frequency control unit 22, when the frequency of the reference signal transmitted from the FG 74 is changed, the loop filter 78 applies feedback to the PZT element 30 of the optical comb light source 12 as described above. Thereby, the resonator length of the fiber laser of the optical comb light source 12 is changed, and the repetition frequency f rep of the optical comb emitted from the optical comb light source 12 is aligned with the frequency of the reference signal transmitted from the FG 74. In other words, the repetition frequency f rep of the optical comb emitted from the optical comb light source 12 can be controlled by controlling the frequency of the reference signal transmitted from the FG 74.
 次いで、本発明の光コムの制御装置の構成及び制御手順を説明する。 Next, the configuration and control procedure of the control device for the optical comb of the present invention will be described.
 図5に示すように、本発明の制御装置(光コムの制御装置)100は、光コム出力機構10A,10Bと、周波数制御機構90と、連続発振レーザー(以下、CWレーザー)92と、周波数安定化機構94と、を備える。光コム出力機構10Aは光コムComb1を出射させるために設けられ、光コム出力機構10Bは光コムComb2を出射させるために設けられる。周波数制御機構90は、光コム出力機構10A,10Bのそれぞれに対してオフセット周波数差ΔfCEOを制御するための基準信号を入力する。CWレーザー92は、二つの光コムComb1,Comb2同士の位相を同期させる。周波数安定化機構94は、CWレーザー92から出射された連続発振光(以下、CW光)と二つの光コムComb1,Comb2のそれぞれとのビート信号を制御する。 As shown in FIG. 5, the control device (optical comb control device) 100 of the present invention includes optical comb output mechanisms 10A and 10B, a frequency control mechanism 90, a continuous wave laser (hereinafter referred to as CW laser) 92, and a frequency. A stabilizing mechanism 94. The optical comb output mechanism 10A is provided for emitting the optical comb Comb1, and the optical comb output mechanism 10B is provided for emitting the optical comb Comb2. The frequency control mechanism 90 inputs a reference signal for controlling the offset frequency difference Δf CEO to each of the optical comb output mechanisms 10A and 10B. The CW laser 92 synchronizes the phases of the two optical combs Comb1 and Comb2. The frequency stabilization mechanism 94 controls the beat signal between the continuous wave light (hereinafter, CW light) emitted from the CW laser 92 and each of the two optical combs Comb1 and Comb2.
 図5では、光コム出力機構10A,10Bのそれぞれの光コム出力部20、オフセット周波数制御部18のFG64、繰り返し周波数制御部22のFG74、PZT12等の主要部分を図示し、主要部分以外の図示は省略する。 In FIG. 5, main parts such as the optical comb output unit 20 of the optical comb output mechanisms 10A and 10B, the FG 64 of the offset frequency control unit 18, the FG 74 of the repetition frequency control unit 22, and the PZT 12 are illustrated. Is omitted.
 制御装置100は、二つの光コム出力機構10A,10Bを備えることで、FG64とFG74とをそれぞれ二つ備える。つまり、制御装置100は、二つの光コムComb1,Comb2のオフセット周波数fCEO1,fCEO2及び繰り返し周波数frep1,frep2の合計四つのパラメータを制御可能な構成として、FG64とFG74とをそれぞれ二つを備え、二つのFG64に対して基準信号を送信する周波数制御機構90をさらに備える。 The control device 100 includes two FG 64 and FG 74 by providing two optical comb output mechanisms 10A and 10B. That is, the control apparatus 100 has two FGs 64 and FG74, each of which has a configuration capable of controlling a total of four parameters of the offset frequencies f CEO1 and f CEO2 and the repetition frequencies f rep1 and f rep2 of the two optical combs Comb1 and Comb2. And a frequency control mechanism 90 that transmits a reference signal to the two FGs 64.
 周波数安定化機構94は、コンピュータに内蔵されたプログラム等からなる周波数制御機構90と、FG130,132と、DBM108,118と、PID制御器110,120と、を備える。光コム出力機構10Aの光コム出力部20から出射された光コムComb1は、光カプラ102を介して光カプラ104に入射する。CWレーザー92から出射されたCW光は、光カプラ112を介して光カプラ104に入射する。光カプラ104で合わさった光コムComb1とCW光はフォトディテクタ等の受光部106で受光され、電気信号に変換される。受光部106から発せられた電気信号は、DBM108に入力され、FG130からの参照信号と合わさる。DBM108からの出力は、PID制御器110に入力される。PID制御器110からの出力は、CWレーザー92への入力電流値にフィードバックされる。 The frequency stabilization mechanism 94 includes a frequency control mechanism 90 formed of a program or the like built in the computer, FGs 130 and 132, DBMs 108 and 118, and PID controllers 110 and 120. The optical comb Comb1 emitted from the optical comb output unit 20 of the optical comb output mechanism 10A enters the optical coupler 104 via the optical coupler 102. CW light emitted from the CW laser 92 enters the optical coupler 104 via the optical coupler 112. The optical comb Comb1 and the CW light combined by the optical coupler 104 are received by a light receiving unit 106 such as a photodetector and converted into an electric signal. The electrical signal emitted from the light receiving unit 106 is input to the DBM 108 and is combined with the reference signal from the FG 130. An output from the DBM 108 is input to the PID controller 110. The output from the PID controller 110 is fed back to the input current value to the CW laser 92.
 CWレーザー92から出射されたCW光は、光カプラ112を介して光カプラ114にも入射する。光コム出力機構10Bの光コム出力部20から出射された光コムComb2は、光カプラ122を介して光カプラ114に入射する。光カプラ114で合わさった光コムComb2とCW光はフォトディテクタ等の受光部116で受光され、電気信号に変換される。受光部116から発せられた電気信号は、DBM118に入力され、FG132からの参照信号と合わさる。DBM118からの出力は、PID制御器120に入力される。PID制御器110からの出力は、光コム出力機構10Bの光コム光源12におけるPZT30の変位量にフィードバックされる。 The CW light emitted from the CW laser 92 enters the optical coupler 114 via the optical coupler 112. The optical comb Comb2 emitted from the optical comb output unit 20 of the optical comb output mechanism 10B enters the optical coupler 114 via the optical coupler 122. The optical comb Comb2 and the CW light combined by the optical coupler 114 are received by a light receiving unit 116 such as a photodetector and converted into an electric signal. The electrical signal emitted from the light receiving unit 116 is input to the DBM 118 and is combined with the reference signal from the FG 132. An output from the DBM 118 is input to the PID controller 120. The output from the PID controller 110 is fed back to the displacement amount of the PZT 30 in the optical comb light source 12 of the optical comb output mechanism 10B.
 次いで、制御装置100を用いたオフセット周波数差ΔfCEOの制御手順の一例を説明する。 Next, an example of a control procedure of the offset frequency difference Δf CEO using the control device 100 will be described.
 先ず、光コムComb1の繰り返し周波数frep1及びオフセット周波数fCEO1を、図4を参照して説明した制御手順に従い、光コム出力機構10AのFG64,74から発信される参照信号の周波数に合わせて安定化させる。 First, the repetition frequency f rep1 and offset frequency f CEO1 of the optical comb Comb1 are stabilized according to the frequency of the reference signal transmitted from the FGs 64 and 74 of the optical comb output mechanism 10A according to the control procedure described with reference to FIG. Make it.
 次に、光コム出力機構10Aの光コム出力部20より出力される光コムComb1とCW光とのビート信号を検出する。検出したビート信号をFG130からの参照信号に対して安定化させる。このような手順により、光コムComb1の繰り返し周波数frep1及びオフセット周波数fCEO1にCW光の周波数を追随させる。 Next, a beat signal between the optical comb Comb1 and the CW light output from the optical comb output unit 20 of the optical comb output mechanism 10A is detected. The detected beat signal is stabilized with respect to the reference signal from the FG 130. By such a procedure, the frequency of the CW light is made to follow the repetition frequency f rep1 and the offset frequency f CEO1 of the optical comb Comb1.
 次に、図4を参照して説明した制御手順で、光コム出力機構10Bの光コム出力部20より出力される光コムComb2のオフセット周波数fCEO2を安定化させたうえで、CW光と光コムComb2とのビート信号を検出し、検出したビート信号をFG118からの参照信号に対して安定化させる。このような手順により、光コムComb2の繰り返し周波数frep2をCW光の周波数に対して追随させる。その結果、光コムComb1に対してComb2が追随し、位相同期のとれたデュアルコム光源が得られる。 Next, after stabilizing the offset frequency f CEO2 of the optical comb Comb2 output from the optical comb output unit 20 of the optical comb output mechanism 10B by the control procedure described with reference to FIG. A beat signal with the comb Comb 2 is detected, and the detected beat signal is stabilized with respect to the reference signal from the FG 118. By such a procedure, the repetition frequency f rep2 of the optical comb Comb2 is made to follow the frequency of the CW light. As a result, the comb 2 follows the optical comb Comb1, and a dual-comb light source with phase synchronization is obtained.
 光コム出力機構10AのFG64は、光コムComb1のオフセット周波数fCEO1の参照信号を発する。光コム出力機構10AのFG74は、光コムComb1の繰り返し周波数frep1の参照信号を発する。FG132は、光コムComb2の繰り返し周波数frep2の参照信号を発する。周波数制御機構90によってFG64、FG64、FG132のそれぞれの設定を制御することで、任意の繰り返し周波数差やオフセット周波数差が得られる。周波数制御機構90は、オフセット周波数差ΔfCEOを制御するために、オフセット周波数差ΔfCEO、オフセット周波数fCEO1、オフセット周波数fCEO2、繰り返し周波数差Δfrep、オフセット周波数frep1、オフセット周波数frep2の六つのパラメータ同士が任意の整数比で表される相対関係(所定の条件)が成り立つように、オフセット周波数fCEO1,fCEO2及びオフセット周波数frep1,frep2の四つのパラメータを制御する。つまり、制御装置100によって、二つの光コムComb1,Comb2のオフセット周波数差ΔfCEOが任意に制御される。 The FG 64 of the optical comb output mechanism 10A issues a reference signal of the offset frequency f CEO1 of the optical comb Comb1. The FG 74 of the optical comb output mechanism 10A generates a reference signal having a repetition frequency f rep1 of the optical comb Comb1. The FG 132 emits a reference signal having a repetition frequency f rep2 of the optical comb Comb2. By controlling the respective settings of FG64, FG64, and FG132 by the frequency control mechanism 90, an arbitrary repetition frequency difference or offset frequency difference can be obtained. In order to control the offset frequency difference Δf CEO , the frequency control mechanism 90 includes six offset frequency differences Δf CEO , offset frequency f CEO1 , offset frequency f CEO2 , repetition frequency difference Δf rep , offset frequency f rep1 , and offset frequency f rep2 . The four parameters of the offset frequencies f CEO1 and f CEO2 and the offset frequencies f rep1 and f rep2 are controlled so that a relative relationship (predetermined condition) expressed by an arbitrary integer ratio between the two parameters is established. That is, the control device 100 arbitrarily controls the offset frequency difference Δf CEO between the two optical combs Comb1 and Comb2.
 上述の制御手順によれば、所望のオフセット周波数差ΔfCEOを有し、かつ互いに位相制御された光コムComb1,Comb2が光コム出力機構10A,10Bから出力される。 According to the above control procedure, optical combs Comb1 and Comb2 having a desired offset frequency difference Δf CEO and phase-controlled with each other are output from the optical comb output mechanisms 10A and 10B.
 以上説明したように、本発明の光コムの制御方法では、二つの光コムComb1,Comb2のオフセット周波数差ΔfCEOを積極的に制御することによって、二つの光コムComb1,Comb2のCEPを任意に制御できる。本発明の光コムの制御方法では、光コムのパルス列の特性を決める重要なパラメータ同士の対応関係を適切に制御できるので、任意のコヒーレント変調を行うことができる。コヒーレント変調を行う応用としては、例えばコヒーレント分光やコヒーレント物性解析、コヒーレント時間分解計測等が挙げられるが、これらに限定されない。 As described above, in the optical comb control method of the present invention, the CEP of the two optical combs Comb1 and Comb2 is arbitrarily set by actively controlling the offset frequency difference Δf CEO between the two optical combs Comb1 and Comb2. Can be controlled. In the method for controlling an optical comb according to the present invention, since the correspondence between important parameters that determine the characteristics of the pulse train of the optical comb can be appropriately controlled, arbitrary coherent modulation can be performed. Examples of applications that perform coherent modulation include, but are not limited to, coherent spectroscopy, coherent physical property analysis, and coherent time-resolved measurement.
 本発明の制御装置100は、周波数制御機構90から任意の周波数の参照信号を光コム出力機構10AのFG64,74と、FG130,132と、光コム出力機構10BのFG64のそれぞれに入力することにより、互いに位相制御された光コムComb1,Comb2を生成できる。なお、前述のように、FG132から出力された参照信号は間接的に光コム出力機構10BのPZT30に入力される。 The control device 100 of the present invention inputs a reference signal of an arbitrary frequency from the frequency control mechanism 90 to each of the FGs 64 and 74 of the optical comb output mechanism 10A, the FGs 130 and 132, and the FG 64 of the optical comb output mechanism 10B. The optical combs Comb1 and Comb2 that are phase-controlled with each other can be generated. As described above, the reference signal output from the FG 132 is indirectly input to the PZT 30 of the optical comb output mechanism 10B.
 本発明の光コムの制御方法及び制御装置は、任意のコヒーレント変調を行う広い分野で応用できる。本発明の光コムの制御方法では、オフセット周波数差ΔfCEOを積極的に制御することによって、光コムComb1,Comb2の相対的な位相を制御できる。ゆえに、本発明の光コムの制御方法及び制御装置は、相対的なCEPに依存する現象の観測における高効率な信号検出・信号制御に応用できる。相対的なCEPに依存する現象は、例えば、干渉、非線形光学現象等である。 The optical comb control method and control apparatus according to the present invention can be applied in a wide field of performing arbitrary coherent modulation. In the control method of the optical comb of the present invention, by positively controlling the offset frequency difference Delta] f CEO, it can control the relative phase of the optical comb COMB1, COMB2. Therefore, the optical comb control method and control apparatus of the present invention can be applied to highly efficient signal detection and signal control in observation of a phenomenon depending on relative CEP. Phenomena that depend on relative CEP are, for example, interference and nonlinear optical phenomena.
 以上、本発明の好ましい実施形態について詳しく説明した。本発明は、上述の実施形態に限定されず、特許請求の範囲内に記載された本発明の要旨の範囲内において適宜変形及び変更されてもよい。 The preferred embodiments of the present invention have been described in detail above. The present invention is not limited to the above-described embodiment, and may be appropriately modified and changed within the scope of the gist of the present invention described in the claims.
 一例として、図6に示す音響光学素子(Acoustic Optical Modulator:AOM)120を用いて光コム出力機構10を構成してもよい。図4に示す光コム出力機構10において、光コム出力部20の入力側にファイバコリメータを配置し、そのファイバコリメータの出力側にAOM120を配置してもよい。AOM120を用いる場合は、AOM120から回折される1次回折光の周波数がAOM120に付与した音波Aの変調周波数fAOMだけシフトする。この原理に基づき、変調周波数fAOMを適切に設定することで、オフセット周波数差ΔfCEOを積極的に制御できる。 As an example, the optical comb output mechanism 10 may be configured by using an acousto-optic device (Acoustic Optical Modulator: AOM) 120 shown in FIG. In the optical comb output mechanism 10 shown in FIG. 4, a fiber collimator may be disposed on the input side of the optical comb output unit 20, and the AOM 120 may be disposed on the output side of the fiber collimator. When the AOM 120 is used, the frequency of the first-order diffracted light diffracted from the AOM 120 is shifted by the modulation frequency f AOM of the sound wave A applied to the AOM 120. Based on this principle, the offset frequency difference Δf CEO can be positively controlled by appropriately setting the modulation frequency f AOM .
 以下、実施例及び比較例によって本発明を具体的に説明するが、本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be specifically described by way of examples and comparative examples, but the present invention is not limited to the following examples.
(実施例1)
 図5に示すように、制御装置100の光コム出力機構10Aの光コム出力部20から出射される光コムComb1と制御装置100の光コム出力機構10Bの光コム出力部20から出射される光コムComb2とを合わせて干渉させ、干渉信号(Interferogram:IGM)を高速ディテクタ96によって受光した。高速ディテクタ96によって受光したIGMをデータ処理部98によって後処理することによって、IGMを不図示のディスプレイに可視化した。
Example 1
As shown in FIG. 5, the optical comb Comb1 emitted from the optical comb output unit 20 of the optical comb output mechanism 10A of the control device 100 and the light emitted from the optical comb output unit 20 of the optical comb output mechanism 10B of the control device 100 Comb 2 was combined and interfered, and an interference signal (Interferogram: IGM) was received by high-speed detector 96. The IGM received by the high-speed detector 96 is post-processed by the data processing unit 98 to visualize the IGM on a display (not shown).
 図7に示すように、二つの光コムComb1,Comb2同士の繰り返し周波数差Δfrepは、IGMが検出される周期に影響する。IGMが検出される周期は、図7に示すIGMのプロット同士の時間軸上の間隔に相当する。時間軸上の位置が揃ったときの二つの光コムComb1,Comb2の一番目の波形に起因するIGMのプロットと、一番目の波形のタイミングから時間周期TIGM=(1/Δfrep)が経過した後の光コムComb1の(M+2)番目の波形及び光コムComb2の(M+1)番目の波形に起因するIGMのプロットは重なる。二つの光コムComb1,Comb2同士のオフセット周波数差ΔfCEOは、IGMの位相に影響する。IGMの位相は、図7に示すIGMの波形の形状で示される。 As shown in FIG. 7, the repetition frequency difference Δf rep between the two optical combs Comb1 and Comb2 affects the period in which the IGM is detected. The period in which IGM is detected corresponds to the interval on the time axis between plots of IGM shown in FIG. The time period T IGM = (1 / Δf rep ) elapses from the plot of the IGM caused by the first waveform of the two optical combs Comb 1 and Comb 2 when the positions on the time axis are aligned, and the timing of the first waveform The IGM plots resulting from the (M + 2) th waveform of the optical comb Comb1 and the (M + 1) th waveform of the optical comb Comb2 overlap. The offset frequency difference Δf CEO between the two optical combs Comb 1 and Comb 2 affects the phase of the IGM. The phase of the IGM is indicated by the shape of the IGM waveform shown in FIG.
 IGMをフーリエ解析することにより、例えば光コムComb1の出射方向の前方に試料Sやレーザー媒質を配置すれば、試料Sの光学的特性等の情報を含むスペクトルを取得できる。試料Sは、例えばシリコン,ヒ化ガリウム等の半導体である。レーザー媒質は、例えばEr:YAG、Nd:YAG等である。取得したスペクトルに含まれる光学的特性から、試料Sの様々な情報を得ることができる。 By performing Fourier analysis on the IGM, for example, if a sample S or a laser medium is arranged in front of the emission direction of the optical comb Comb1, a spectrum including information such as optical characteristics of the sample S can be acquired. The sample S is a semiconductor such as silicon or gallium arsenide. The laser medium is, for example, Er: YAG, Nd: YAG, or the like. Various information of the sample S can be obtained from optical characteristics included in the acquired spectrum.
 本実施例では、繰り返し周波数Δfrep=120.6Hzとし、オフセット周波数ΔfCEOが繰り返し周波数差Δfrepの整数の逆数倍になるように制御し、IGMを測定した。図8A、図8B、図8Cの各図において、上段のグラフは所定の時間経過後のIGMを時間軸上で重ねて表示したものであり、下段のグラフは所定の時間経過後のIGMを紙面の上下方向にシフトさせて表示したものである。 In this example, the repetition frequency Δf rep = 120.6 Hz, the offset frequency Δf CEO was controlled to be an inverse multiple of the integer of the repetition frequency difference Δf rep , and IGM was measured. 8A, 8B, and 8C, the upper graph shows the IGM after a predetermined time on the time axis, and the lower graph shows the IGM after the predetermined time on the page. It is displayed by shifting in the vertical direction.
 図8Aに示すように、オフセット周波数ΔfCEOを0に設定すると、時間が経過してもIGMの波形が変化せず、二つの光コムComb1,Comb2同士のオフセット周波数差ΔfCEOがIGMの波形に影響することが明らかにわかる。 As shown in FIG. 8A, when the offset frequency Δf CEO is set to 0, the IGM waveform does not change over time, and the offset frequency difference Δf CEO between the two optical combs Comb 1 and Comb 2 becomes the IGM waveform. It clearly shows that it affects.
 図8Bに示すように、オフセット周波数ΔfCEOを(Δfrep/2)に設定すると、所定の時間が経過したときにIGMの波形が反転し、2π/2=πの位相シフトが生じたことがわかる。IGMにπの位相シフトが生じるように制御すると共に、連続的に取得されかつ互いに反転した分布を有するIGM同士の差分平均をとることにより、図9に示すように、IGM同士に共通するノイズやバイアス等をキャンセルできる。図8B及び図9に示す測定結果により、オフセット周波数ΔfCEOが(Δfrep/2)となるように制御することで、環境変動にロバストなIGMを検出できることを確認した。 As shown in FIG. 8B, when the offset frequency Δf CEO is set to (Δf rep / 2), the IGM waveform is inverted when a predetermined time has elapsed, and a phase shift of 2π / 2 = π has occurred. Recognize. By controlling the IGM so that a phase shift of π occurs, and taking the average of the differences between the IGMs obtained continuously and having the distributions inverted from each other, as shown in FIG. Bias can be canceled. From the measurement results shown in FIGS. 8B and 9, it was confirmed that IGM robust to environmental fluctuations can be detected by controlling the offset frequency Δf CEO to be (Δf rep / 2).
 図8Cに示すように、オフセット周波数ΔfCEOをΔfrep/3に設定すると、所定の時間が経過するに従ってIGMの波形が三つのパターンで繰り返され、2π/3の位相シフトが生じたことがわかる。図8Cでは、IGMの三つのパターンがそれぞれ、実線、破線、一点鎖線で図示される。 As shown in FIG. 8C, when the offset frequency Δf CEO is set to Δf rep / 3, it can be seen that the IGM waveform is repeated in three patterns as a predetermined time elapses, resulting in a phase shift of 2π / 3. . In FIG. 8C, three patterns of IGM are illustrated by a solid line, a broken line, and an alternate long and short dash line, respectively.
 図8Aから図8Cに示すように、オフセット周波数ΔfCEOが繰り返し周波数差Δrepの(1/N)になるように制御することによって、IGMごとに(2π/N)の位相シフトを発生させ、コヒーレントな波形制御ができることを確認した。Nは、任意の自然数である。 As shown in FIGS. 8A to 8C, by controlling the offset frequency Δf CEO to be (1 / N) of the repetition frequency difference Δrep , a phase shift of (2π / N) is generated for each IGM, It was confirmed that coherent waveform control was possible. N is an arbitrary natural number.
(実施例2)
 図10Aに示すように、実施例2では、パルス列間の相対的なCEPを安定化させた光コム光源110を用意した。光コム光源110から出射された光コムComb1をAOM120に入射させ、光コムComb1の0次回折光と1次回折光とのオフセット周波数差ΔfCEOを制御した。また、いわゆるデュアルコム分光を行うために、光コム光源110とは別の光コム光源112を用意した。光コム光源110,112の中心波長λを1560nmとした。光コム光源110から発せられる光コムComb1の繰り返し周波数frep1を56.5MHzとした。光コムComb1と光コム光源112から発せられる光コムComb2との繰り返し周波数差Δfrepを120.6Hzとした。
(Example 2)
As shown in FIG. 10A, in Example 2, an optical comb light source 110 in which relative CEP between pulse trains was stabilized was prepared. The optical comb Comb1 emitted from the optical comb light source 110 was made incident on the AOM 120, and the offset frequency difference Δf CEO between the 0th-order diffracted light and the first-order diffracted light of the optical comb Comb1 was controlled. In addition, in order to perform so-called dual comb spectroscopy, an optical comb light source 112 different from the optical comb light source 110 was prepared. The center wavelength λ of the optical comb light sources 110 and 112 was set to 1560 nm. The repetition frequency f rep1 of the optical comb Comb 1 emitted from the optical comb light source 110 was set to 56.5 MHz. The repetition frequency difference Δf rep between the optical comb Comb1 and the optical comb Comb2 emitted from the optical comb light source 112 was set to 120.6 Hz.
 光コム光源110からの光コムComb1の出射方向の前方に、光コムComb1を所定の方向の直線偏光に変換するための(1/4)波長板116及び(1/2)波長板118を配置した。(1/2)波長板118からの光コムComb1の出射方向の前方に、AOM120を配置した。AOM120から、光コムComb1の0次回折光(図10A)に示す0th)と1次回折光(図10Aに示す1st)が平面視において互いに異なる角度で出射される。図10Bに示すように、AOM120に周波数fAOMで変調を加えることにより、光コムComb1の0次回折光と1次回折光とのオフセット周波数差ΔfCEOは、(14)式のように表される。 A (1/4) wavelength plate 116 and a (1/2) wavelength plate 118 for converting the optical comb Comb1 into linearly polarized light in a predetermined direction are disposed in front of the direction in which the optical comb Comb1 is emitted from the optical comb light source 110. did. (1/2) The AOM 120 is arranged in front of the emission direction of the optical comb Comb1 from the wave plate 118. From the AOM 120, the 0th order diffracted light (0 th shown in FIG. 10A) and the 1st order diffracted light (1 st shown in FIG. 10A) of the optical comb Comb1 are emitted at different angles in plan view. As shown in FIG. 10B, by applying modulation to the AOM 120 at the frequency f AOM , the offset frequency difference Δf CEO between the 0th-order diffracted light and the 1st-order diffracted light of the optical comb Comb1 is expressed as shown in Equation (14).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 図10Aに示すように、光コムComb1の0次回折光の出射方向の前方に、光路長変更部122を配置した。光コムComb1の1次回折光の出射方向の前方に、(1/2)波長板124を配置した。この配置により、光コムComb1の1次回折光の直線偏光の方向を光コムComb1の0次回折光の直線偏光の方向に対して直交させた。0次回折光と1次回折光とを偏光ビームスプリッタ(Polarizing Beam Splitter:PBS)126で合わせ、コヒーレント制御及び偏光変調された光パルスを生成した。図10Cに示すように、コヒーレント制御及び偏光変調された光パルスでは、光コムComb1の0次回折光のパルス列の振動方向と1次回折光のパルス列の振動方向が互いに直交する。光コムComb1の0次回折光と1次回折光との相対的なCEP:ΔφCEP´が生じ、(15)式が成り立つ。 As shown in FIG. 10A, the optical path length changing unit 122 is disposed in front of the emission direction of the 0th-order diffracted light of the optical comb Comb1. A (1/2) wavelength plate 124 is arranged in front of the emission direction of the first-order diffracted light of the optical comb Comb1. With this arrangement, the direction of linearly polarized light of the first-order diffracted light of the optical comb Comb1 was made orthogonal to the direction of linearly polarized light of the 0th-order diffracted light of the optical comb Comb1. The zero-order diffracted light and the first-order diffracted light were combined by a polarizing beam splitter (PBS) 126 to generate a coherently controlled and polarization-modulated light pulse. As shown in FIG. 10C, in the optical pulse subjected to coherent control and polarization modulation, the vibration direction of the pulse train of the 0th-order diffracted light of the optical comb Comb1 and the vibration direction of the pulse train of the 1st-order diffracted light are orthogonal to each other. Relative CEP between 0-order diffracted light and 1-order diffracted light of the optical comb Comb1: Δφ CEP' occurs, (15) it holds.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 (15)式のtは、時間を表す。 T in equation (15) represents time.
 図10Aに示すように、光コム光源112からの光コムComb2の出射方向の前方に、光コムComb2を所定の方向の直線偏光に変換するための(1/4)波長板130、(1/2)波長板132、及び偏光板134を配置した。所定の直線偏光とした光コムComb2を、上述のようにコヒーレント制御及び偏光変調された光コムComb1の0次回折光及び1次回折光とビームスプリッタ(Beam Splitter:BS)138で合わせた。二つの光コムComb1,Comb2の干渉光をフォトディテクタ140で検出した。この構成では、光コムComb2は、ローカルオシレーター(local oscillator:LO)信号として機能する。フォトディテクタ140によって受光した干渉光をディジタイザ(データ処理部)142によって処理することで、干渉光を不図示のディスプレイに可視化した。ディジタイザ142に、参照用のクロック信号として、光コム光源112から出射されかつ(1/4)波長板130、(1/2)波長板132、及び偏光板134を通過していない光コムComb2を入力した。 As shown in FIG. 10A, a (1/4) wavelength plate 130 for converting the optical comb Comb2 into linearly polarized light in a predetermined direction ahead of the emission direction of the optical comb Comb2 from the optical comb light source 112, (1 / 2) The wave plate 132 and the polarizing plate 134 were disposed. The optical comb Comb2 having a predetermined linear polarization was combined with the 0th-order diffracted light and the first-order diffracted light of the optical comb Comb1 coherently controlled and polarization-modulated as described above by a beam splitter (Beam (Splitter: BS) 138. The photodetector 140 detects the interference light of the two optical combs Comb 1 and Comb 2. In this configuration, the optical comb Comb2 functions as a local oscillator (LO) signal. The interference light received by the photo detector 140 is processed by a digitizer (data processing unit) 142 to visualize the interference light on a display (not shown). An optical comb Comb2 emitted from the optical comb light source 112 and not passing through the (1/4) wave plate 130, the (1/2) wave plate 132, and the polarizing plate 134 is supplied to the digitizer 142 as a reference clock signal. I input it.
 光路長変更部122を用いて、光コムComb1の0次回折光と1次回折光とのタイミングを合わせた。図11Aに示すように、光コムComb1の0次回折光と1次回折光との相対的なCEP:ΔφCEP´を、ΔfCEO=(Δfrep/4)の条件下で変化させた。 Using the optical path length changing unit 122, the timing of the 0th-order diffracted light and the 1st-order diffracted light of the optical comb Comb1 was matched. As shown in FIG. 11A, the relative CEP between 0-order diffracted light and 1-order diffracted light of the optical comb COMB1: the Δφ CEP', it was varied under the conditions of Δf CEO = (Δf rep / 4 ).
 図11B及び図11Cに示すように、LO信号としての光コムComb2の直線偏光の向きを紙面にて斜め右下がりにした場合、光コムComb1の直線偏光の向きが紙面にて斜め右下がりになったときに、光コムComb2の直線偏光の向きと互いに同一になり、強い干渉信号が生じた。光コムComb1が紙面にて左回りまたは右回りの円偏光になったときは、光コムComb1が光コムComb2の直線偏光を部分的に含む。このとき、光コムComb1の直線偏光の向きが紙面にて斜め右下がりである場合に比べて、弱い干渉信号が生じた。光コムComb1の直線偏光の向きが斜め左下がりであり、且つ光コムComb2の直線偏光の向きと互いに直交した場合、光コムComb1,Comb2が互いに干渉せず、他の場合に比べて干渉信号が非常に弱くなった。 As shown in FIGS. 11B and 11C, when the direction of the linearly polarized light of the optical comb Comb2 as the LO signal is slanted to the right on the paper, the direction of the linearly polarized light of the optical comb Comb1 is slanted to the right on the paper. The directions of the linearly polarized light of the optical comb Comb2 became the same as each other, and a strong interference signal was generated. When the optical comb Comb1 becomes counterclockwise or clockwise circularly polarized light on the paper, the optical comb Comb1 partially includes the linearly polarized light of the optical comb Comb2. At this time, a weak interference signal was generated as compared with the case where the direction of the linearly polarized light of the optical comb Comb1 is slantingly downward on the paper surface. When the direction of the linearly polarized light of the optical comb Comb1 is slanting downward to the left and is orthogonal to the direction of the linearly polarized light of the optical comb Comb2, the optical combs Comb1 and Comb2 do not interfere with each other, and the interference signal is smaller than in other cases. It became very weak.
 図11D及び図11Eに示すように、LO信号としての光コムComb2の直線偏光の向きを紙面にて斜め左下がりにした場合、光コムComb1の直線偏光の向きが紙面にて斜め左下がりになったときに、光コムComb2の直線偏光の向きと互いに同一になり、強い干渉信号が生じた。光コムComb1が紙面にて左回りまたは右回りの円偏光となったときには、光コムComb1が光コムComb2の直線偏光を部分的に含む。このとき、光コムComb1の直線偏光の向きが紙面にて斜め左下がりである場合に比べて、弱い干渉信号が生じた。光コムComb1が斜め右下がりになり、且つ光コムComb2の直線偏光の向きと互いに直交した場合、光コムComb1,Comb2が互いに干渉せず、他の場合に比べて非常に弱い干渉信号が生じた。 As shown in FIGS. 11D and 11E, when the direction of the linearly polarized light of the optical comb Comb2 as the LO signal is slanted to the left on the paper, the direction of the linearly polarized light of the optical comb Comb1 is slanted to the left on the paper. The directions of the linearly polarized light of the optical comb Comb2 became the same as each other, and a strong interference signal was generated. When the optical comb Comb1 becomes counterclockwise or clockwise circularly polarized light on the paper surface, the optical comb Comb1 partially includes the linearly polarized light of the optical comb Comb2. At this time, a weak interference signal was generated as compared with the case where the direction of the linearly polarized light of the optical comb Comb1 is slantingly downward on the paper. When the optical comb Comb1 is slanted to the right and is orthogonal to the direction of linear polarization of the optical comb Comb2, the optical combs Comb1 and Comb2 do not interfere with each other, and a very weak interference signal is generated compared to the other cases. .
 図11Aから図11Eに示す結果からわかるように、AOMを用いた周波数シフトによって、Comb1の0次回折光と1次回折光とのオフセット周波数差ΔfCEOが所望の条件(本実施例では、ΔfCEO=Δfrep/4)を満たすように制御できる。また、本実施例では、Comb1の0次回折光と1次回折光とを互いに直交させ、空間的及び時間的に重ね合わせた。このとき、前述の所望の条件に応じて、直線偏光や楕円偏光、円偏光等に変調された偏光干渉波形を生成した。本発明を適用することによって、偏光干渉による相対的なCEPの高速変調及びコヒーレント検出が可能になることを確認した。 As can be seen from the results shown in FIG. 11A to FIG. 11E, the offset frequency difference Δf CEO between the 0th-order diffracted light and the 1st-order diffracted light of Comb1 is set to a desired condition (in this example, Δf CEO = It can be controlled to satisfy Δf rep / 4). Further, in this example, the 0th-order diffracted light and the 1st-order diffracted light of Comb 1 were orthogonal to each other and overlapped spatially and temporally. At this time, a polarization interference waveform modulated into linearly polarized light, elliptically polarized light, circularly polarized light, or the like was generated according to the desired conditions described above. By applying the present invention, it was confirmed that relative CEP high-speed modulation and coherent detection by polarization interference becomes possible.
90・・・周波数制御機構
100・・・制御装置(光コムの制御装置)
Comb1・・・光コム(第一の光コム)
Comb2・・・光コム(第二の光コム)
CEO1・・・オフセット周波数(第一の周波数オフセット)
rep1・・・繰り返し周波数(第一の周波数間隔)
CEO2・・・オフセット周波数(第二の周波数オフセット)
rep2・・・繰り返し周波数(第二の周波数間隔)
FM1・・・光周波数モード(第一の周波数モード)
FM3・・・光周波数モード(第三の光周波数モード)
FM2・・・光周波数モード(第二の周波数モード)
FM4・・・光周波数モード(第四の光周波数モード)
90 ... frequency control mechanism 100 ... control device (control device for optical comb)
Comb1 ... optical comb (first optical comb)
Comb2 ... optical comb (second optical comb)
f CEO1 Offset frequency (first frequency offset)
f rep1 ... repetition frequency (first frequency interval)
f CEO2 ... offset frequency (second frequency offset)
f rep2 ... repetition frequency (second frequency interval)
FM1 ... optical frequency mode (first frequency mode)
FM3 ... optical frequency mode (third optical frequency mode)
FM2 ... Optical frequency mode (second frequency mode)
FM4 ... optical frequency mode (fourth optical frequency mode)

Claims (5)

  1.  周波数軸で零に対して第一の周波数オフセットを有する第一の周波数モードと前記周波数軸で前記第一の周波数モードに対して第一の周波数間隔の整数倍の間隔をあけて並ぶ複数の第三の周波数モードとを有する第一の光コムと、
     前記周波数軸で零に対して第二の周波数オフセットを有する第二の周波数モードと前記周波数軸で前記第二の周波数モードに対して第二の周波数間隔の整数倍の間隔をあけて並ぶ複数の第四の周波数モードとを有する第二の光コムと、を用いて、
     前記第一の周波数オフセットと前記第二の周波数オフセットとの差を制御する制御工程を備えることを特徴とする光コムの制御方法。
    A first frequency mode having a first frequency offset with respect to zero on the frequency axis and a plurality of second frequency lines arranged at an integer multiple of the first frequency interval with respect to the first frequency mode on the frequency axis. A first optical comb having three frequency modes;
    A second frequency mode having a second frequency offset with respect to zero on the frequency axis and a plurality of lines arranged with an interval that is an integral multiple of a second frequency interval with respect to the second frequency mode on the frequency axis. Using a second optical comb having a fourth frequency mode,
    An optical comb control method comprising a control step of controlling a difference between the first frequency offset and the second frequency offset.
  2.  前記制御工程において、
     前記第一の周波数オフセットと前記第二の周波数オフセットとの差を(1)式を満たすように設定することを特徴とする請求項1に記載の光コムの制御方法。
    Figure JPOXMLDOC01-appb-M000001
     (1)式において、ΔfCEOは前記第一の周波数オフセットと前記第二の周波数オフセットとの差を表す。Δfrepは前記第一の周波数間隔と前記第二の周波数間隔との差を表す。K,Nは任意の自然数を表す。
    In the control step,
    2. The optical comb control method according to claim 1, wherein a difference between the first frequency offset and the second frequency offset is set to satisfy the expression (1). 3.
    Figure JPOXMLDOC01-appb-M000001
    In the equation (1), Δf CEO represents the difference between the first frequency offset and the second frequency offset. Δf rep represents the difference between the first frequency interval and the second frequency interval. K and N represent arbitrary natural numbers.
  3.  前記制御工程において、
     前記第一の周波数オフセットと前記第二の周波数オフセットとの差を(2)式を満たすように設定することを特徴とする請求項1または請求項2に記載の光コムの制御方法。
    Figure JPOXMLDOC01-appb-M000002
     (2)式において、ΔfCEOは前記第一の周波数オフセットと前記第二の周波数オフセットとの差を表す。frepは前記第一の周波数間隔または前記第二の周波数間隔を表す。Nは任意の自然数を表す。
    In the control step,
    3. The optical comb control method according to claim 1, wherein a difference between the first frequency offset and the second frequency offset is set so as to satisfy the expression (2).
    Figure JPOXMLDOC01-appb-M000002
    In the equation (2), Δf CEO represents the difference between the first frequency offset and the second frequency offset. f rep represents the first frequency interval or the second frequency interval. N represents an arbitrary natural number.
  4.  前記制御工程において、
     前記第一の周波数オフセットと前記第二の周波数オフセットとの差を(3)式を満たすように設定することを特徴とする請求項1から請求項3の何れか一項に記載の光コムの制御方法。
    Figure JPOXMLDOC01-appb-M000003
     (3)式において、ΔfCEOは前記第一の周波数オフセットと前記第二の周波数オフセットとの差を表す。fCEOは前記第一の周波数間隔または前記第二の周波数間隔を表す。Nは任意の自然数を表す。
    In the control step,
    4. The optical comb according to claim 1, wherein a difference between the first frequency offset and the second frequency offset is set to satisfy the expression (3). 5. Control method.
    Figure JPOXMLDOC01-appb-M000003
    In the formula (3), Δf CEO represents the difference between the first frequency offset and the second frequency offset. f CEO represents the first frequency interval or the second frequency interval. N represents an arbitrary natural number.
  5.  周波数軸で零に対して第一の周波数オフセットを有する第一の周波数モードと前記周波数軸で前記第一の周波数モードに対して第一の周波数間隔の整数倍の間隔をあけて並ぶ複数の第三の周波数モードとを有する第一の光コムにおける前記第一の周波数オフセット及び前記第一の周波数間隔とを制御すると共に、
     前記周波数軸で零に対して第二の周波数オフセットを有する第二の周波数モードと前記周波数軸で前記第二の周波数モードに対して第二の周波数間隔の整数倍の間隔をあけて並ぶ複数の第四の周波数モードとを有する第二の光コムにおける前記第二の周波数オフセット及び前記第二の周波数間隔とを制御する周波数制御機構を備え、
     前記制御機構は、前記第一の周波数オフセット、前記第二の周波数オフセット、前記第一の周波数オフセットと前記第二の周波数オフセットとの差、前記第一の周波数間隔、前記第二の周波数間隔、及び前記第一の周波数間隔と前記第二の周波数間隔との差が互いに整数比で表されるように前記第一の周波数オフセット、前記第二の周波数オフセット、前記第一の周波数間隔、及び前記第二の周波数間隔を制御可能に構成されていることを特徴とする光コムの制御装置。
    A first frequency mode having a first frequency offset with respect to zero on the frequency axis and a plurality of second frequency lines arranged at an integer multiple of the first frequency interval with respect to the first frequency mode on the frequency axis. Controlling the first frequency offset and the first frequency interval in a first optical comb having three frequency modes;
    A second frequency mode having a second frequency offset with respect to zero on the frequency axis and a plurality of lines arranged with an interval that is an integral multiple of a second frequency interval with respect to the second frequency mode on the frequency axis. A frequency control mechanism for controlling the second frequency offset and the second frequency interval in a second optical comb having a fourth frequency mode;
    The control mechanism includes the first frequency offset, the second frequency offset, the difference between the first frequency offset and the second frequency offset, the first frequency interval, the second frequency interval, And the first frequency offset, the second frequency offset, the first frequency interval, and the difference between the first frequency interval and the second frequency interval are expressed as an integer ratio to each other. An optical comb control device configured to be able to control the second frequency interval.
PCT/JP2018/006447 2017-02-28 2018-02-22 Optical comb control method and optical comb control device WO2018159445A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019502930A JP6963322B2 (en) 2017-02-28 2018-02-22 Optical frequency comb control method and optical frequency comb control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-037766 2017-02-28
JP2017037766 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159445A1 true WO2018159445A1 (en) 2018-09-07

Family

ID=63370374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006447 WO2018159445A1 (en) 2017-02-28 2018-02-22 Optical comb control method and optical comb control device

Country Status (2)

Country Link
JP (1) JP6963322B2 (en)
WO (1) WO2018159445A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507005A (en) * 2009-10-02 2013-02-28 イムラ アメリカ インコーポレイテッド Optical signal processing by mode-locked laser
US20140185635A1 (en) * 2011-09-14 2014-07-03 Jonathan A. COX Methods and apparatus for broadband frequency comb stabilization
JP2015155984A (en) * 2014-02-21 2015-08-27 日本電信電話株式会社 Self-reference interference device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507005A (en) * 2009-10-02 2013-02-28 イムラ アメリカ インコーポレイテッド Optical signal processing by mode-locked laser
US20140185635A1 (en) * 2011-09-14 2014-07-03 Jonathan A. COX Methods and apparatus for broadband frequency comb stabilization
JP2015155984A (en) * 2014-02-21 2015-08-27 日本電信電話株式会社 Self-reference interference device

Also Published As

Publication number Publication date
JPWO2018159445A1 (en) 2019-12-26
JP6963322B2 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
CN102265214B (en) Method and device for generating self-referenced optical frequency comb
US8982450B2 (en) Methods and apparatus for broadband frequency comb stabilization
US8923349B2 (en) Fourier domain mode locking: method and apparatus for control and improved performance
US7414779B2 (en) Mode locking methods and apparatus
US10161805B2 (en) Laser frequency measurement method using optical frequency comb
EP3608713B1 (en) Optical frequency comb generation device
JP6074764B2 (en) Optical frequency comb stabilized light source and method
US20230014323A1 (en) Laser Device for Generating an Optical Frequency Comb
CN112582858B (en) High-precision tunable terahertz frequency comb generation device and method
WO2018159445A1 (en) Optical comb control method and optical comb control device
JP7370544B2 (en) Optical frequency measurement device
JP2017211502A (en) Optical frequency comb generator and range finder
JP6254356B2 (en) Optical frequency comb generator and optical frequency comb frequency stabilization method
JP2012132711A (en) Interpulse phase shift measurement device, offset frequency controller, interpulse phase shift measurement method, and offset frequency control method
EP4002610A1 (en) Laser device and method for generating laser light
Steinmeyer et al. Carrier-envelope phase stabilization
Sala et al. Comb-assisted coherence transfer between laser fields
WO2023112186A1 (en) Device for measuring carrier-envelope phase, stabilized light source, and method for measuring carrier-envelope phase
KR20200032634A (en) Optical frequency stabilizer using optical fiber delay line, and method for generating stable optical frequency signal
JP2006023662A (en) Photoelectric field waveform controlling method and controlling device
JP6243322B2 (en) Mechanical vibrator measuring device and mechanical vibrator control device
JP2019128399A (en) Optical frequency comb stabilization device
Voloshin et al. Experimental Investigation of Tunable Acousto-Optic Frequency Combs
Zhang et al. Carrier-envelope offset frequency stabilization in time-domain using heterodyne interferometry
Suzuki et al. A tunable external cavity laser diode with no mechanical movement

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502930

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760781

Country of ref document: EP

Kind code of ref document: A1