WO2018159299A1 - Cooling tower system - Google Patents

Cooling tower system Download PDF

Info

Publication number
WO2018159299A1
WO2018159299A1 PCT/JP2018/005175 JP2018005175W WO2018159299A1 WO 2018159299 A1 WO2018159299 A1 WO 2018159299A1 JP 2018005175 W JP2018005175 W JP 2018005175W WO 2018159299 A1 WO2018159299 A1 WO 2018159299A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
cooling tower
blow
water tank
water level
Prior art date
Application number
PCT/JP2018/005175
Other languages
French (fr)
Japanese (ja)
Inventor
孝次 伊藤
三輪 昌之
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018017458A external-priority patent/JP2018146224A/en
Priority claimed from JP2018017460A external-priority patent/JP2018146226A/en
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2018159299A1 publication Critical patent/WO2018159299A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G13/00Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00

Definitions

  • the present invention relates to a cooling tower system, and more particularly to a cooling tower system for collecting cooling tower blow water in an open circulation type cooling tower.
  • the cooling tower blow water is passed through the MF membrane or UF membrane to remove turbidity in the blow water, and then RO membrane treatment is performed to remove ions, organic substances, etc., and return to the cooling tower (patent) References 1-4).
  • JP 2002-18437 A Japanese Patent Laid-Open No. 2003-1255 JP-A-2016-190224 JP2015-174030A
  • the object of the present invention is to provide a cooling tower system that can reduce blow water and make-up water and that can be easily controlled.
  • a cooling tower system is a cooling tower to which a circulation line of cooling water is connected, a means for measuring the electrical characteristic value (electric conductivity or specific resistance) of the cooling water, and the water in the cooling tower is pumped.
  • Recovery means for sending water to the reverse osmosis membrane device and returning the permeated water of the reverse osmosis membrane device to the cooling tower or circulation line, and makeup water according to at least one of the water level in the cooling tower and the electrical characteristic value
  • a cooling tower system having a makeup water supply means for supplying water, and a control means for operating the recovery means according to at least one of an electrical characteristic value of the cooling water and a water level of the blow water tank.
  • a blow water tank that receives the overflow water
  • the reverse osmosis membrane device that processes water pumped from the blow water tank
  • the permeated water of the reverse osmosis membrane device Means for supplying to the cooling tower or the circulation line.
  • the makeup water supply means is configured such that the electrical conductivity measured by the measurement means increases to a predetermined upper limit value C 2 or the specific resistance decreases to a predetermined lower limit value R 2. Then, makeup water is supplied until the electrical conductivity decreases to a predetermined lower limit value C 0 or the specific resistance increases to a predetermined upper limit value R 0 .
  • control means increases the electrical conductivity of the cooling water to a predetermined intermediate value C 1 (where C 0 ⁇ C 1 ⁇ C 2 ) or the specific resistance has a predetermined intermediate value R. 1 (provided that R 2 ⁇ R 1 ⁇ R 0 ), the pump is started and the electrical conductivity decreases to the lower limit C 0 or the specific resistance reaches the upper limit R 0 . The pump is stopped when it rises to.
  • the water in the blow water tank is made turbid by a turbidity means and then supplied to the reverse osmosis membrane device.
  • the cooling tower system of the second invention is a cooling tower system having a cooling tower and recovery means for treating the overflow water of the cooling tower and recovering it as make-up water, and accepting the overflow water as the recovery means
  • control means for operating the recovery means according to the water level of the blow water tank or the water levels of the blow water tank and the makeup water tank.
  • control means includes a water level sensor that detects a water level in the blow water tank, and when the detected water level of the water level sensor rises to a predetermined upper limit value, When the water supply pump is started and the water level detected by the water level sensor is lowered to a specified lower limit value, the water supply pump is stopped.
  • the water in the blow water tank is made turbid by a turbidity means and then supplied to the reverse osmosis membrane device.
  • the water recovery rate of the cooling tower can be increased by treating blow water and using it as cooling water.
  • control is simplified by managing the means for collecting blow water according to the water levels of the blow water tank and the makeup water tank.
  • the cooling tower 1 of this cooling tower system is cooled in contact with the air introduced from the louver 1c while the cooling water sprinkled from the sprinkling pipe 1a flows down the filler layer 1b.
  • the air that is stored in 1d (cooling tower lower water tank) and contains steam is configured to be exhausted into the atmosphere by a fan 1e.
  • the cold water in the pit 1d of the cooling tower 1 is supplied to the heat exchanger 4 via the pump 2 and the pipe 3, and the return water from the heat exchanger 4 is returned to the water spray pipe 1a of the cooling tower 1 via the pipe 5.
  • the pit 1 d is provided with an overflow pipe 7.
  • the cooling tower 1 is provided with an electric conductivity meter 24 for measuring the electric conductivity of the cooling water in the pit 1d.
  • the concentrated water of the RO device 13 is discharged out of the system, and the permeated water is supplied to the pit 1d via the pipe 14.
  • the downstream end of the pipe 14 may be connected to the pipe 3.
  • the equipment from the overflow pipe 7 and the blow water tank 8 to the pipe 14, the water level sensor 9, the electric conductivity meter 24, and the pump controller 10a constitute the recovery means.
  • a makeup water tank 15 is installed, and a water level sensor 16 and a water pump 17 are installed in the makeup water tank 15.
  • the end of the pipe 18 connected to the discharge port side of the water pump 17 is branched into pipes 19 and 20.
  • One end of the pipe 19 is connected to the ball tap 21 of the pit 1d.
  • the other end of the pipe 20 faces the pit 1d.
  • a forced supply water valve 22 is provided in the pipe 20.
  • the forced replenishment water valve 22 is controlled by a controller 23.
  • the detection value of the electric conductivity meter 24 provided in the pit 1d is input to the controller 23.
  • the water level in the pit 1d gradually decreases as the cooling water evaporates and the electrical conductivity gradually increases as shown in FIG. .
  • the pump 10 is started actuated by a signal from the controller 10a.
  • the water supplied from the pump 10 passes through the turbidizer 11, is subjected to RO treatment by the RO device 13, the concentrated water is discharged out of the system, and the permeated water is introduced into the pit 1 d through the pipe 14.
  • the inflow of the permeate, increase in electric conductivity of the water in the pit 1d is slowed, but still continue the electrical conductivity increases further eventually reaches a predetermined upper limit value C 2. If it does so, the forced replenishment water valve 22 will be opened by the signal from the controller 23, and the replenishment water in the replenishment water tank 15 will be supplied in the pit 1d via the piping 19 and 20.
  • FIG. The pump 17 is configured to operate when the forced replenishment water valve 22 and the ball tap 21 are open.) As a result, the water level in the pit 1d gradually rises and the electrical conductivity gradually increases. To drop. When the electrical conductivity of the cooling water in the pit 1d is lowered to a predetermined lower limit value C 0, forcing makeup water valve 22 while being closed, the water pump 17 is stopped.
  • the water level in the blow water tank 8 rises with the inflow of this overflow water. The rise in the water level in the blow water tank 8 continues until the forced refill water valve 22 is closed.
  • the pump 10 stops and the water supply to the RO device 13 in the blow water tank 8 stops, so that the water level in the blow water tank 8 is kept constant thereafter. Be drunk. During this time, the electrical conductivity of the water in the pit 1d gradually increases, so that the above series of operations is repeated.
  • the electric conductivity meter 24 is installed, but a specific resistance meter is installed instead of the electric conductivity meter, and the specific resistance (or specific resistance and the water level of the blow tank) is measured by the specific resistance meter. Control may be performed based on this.
  • the pump 10 starts operation by a signal from the controller 10a, the RO unit 13 Permeated water is introduced into the pit 1d.
  • the pump 10 stops and the water supply to the RO device 13 of the water in the blow water tank 8 also stops as the forced replenishment water valve 22 is closed. . Thereafter, the specific resistance of water in the pit 1d gradually decreases, so that the above series of operations is repeated.
  • the blow water discharged outside the system during the operation of this cooling tower system is only the concentrated water of the RO device 13, and the recovery rate of makeup water is high.
  • the pump 10 since the pump 10 is ON / OFF controlled according to the electric conductivity or specific resistance of the cooling water, the control is simple.
  • the pump 10 may be operated when the detected water level of the water level sensor 9 in the blow water tank 8 is equal to or higher than a predetermined upper limit value, and the pump 10 may be stopped when the detected water level is lower than a predetermined lower limit value.
  • the upper limit is preferably about 60 to 80% of the full water level of the blow water tank 8, and the lower limit is preferably about 5 to 40% of the full water level.
  • the ball tap 21 is opened and the replenishment in the replenishing water tank 15 is performed. Water is supplied to the pit 1d through the ball tap 21.
  • a water injection mechanism for injecting water such as industrial water, ground water or tap water into the replenishing water tank 15 is provided. Is provided.
  • the slime or the scale inhibitor injected into the pit 1d is supplied to the RO device 13 through the turbidizer 11, so that the slime in the RO device 13 Scale prevention effect is also obtained.
  • the configuration of the cooling tower 1 of this cooling tower system is the same as in FIG. 1, and the same reference numerals indicate the same parts.
  • the blow water tank 8 is provided with a water level sensor 9 and a first pump 10.
  • a signal from the water level sensor 9 is input to the pump controller 10a, and the pump 10 is controlled by a signal from the pump controller 10a.
  • the pump 10 is activated when the detected water level of the water level sensor 9 is equal to or higher than a specified upper limit value, and the pump 10 is stopped when the detected water level is equal to or lower than the specified lower limit value.
  • the upper limit is preferably about 60 to 80% of the full water level of the blow water tank 8, and the lower limit is preferably about 5 to 40% of the full water level.
  • Water supply from the pump 10 is supplied to the RO device 13 via the turbidifier 11 and the pipe 12.
  • the concentrated water of the RO device 13 is discharged out of the system, and the permeated water is introduced into the makeup water tank 15 through the pipe 14A.
  • the replenishing water tank 15 is provided with a water level sensor 16 and a second pump 17.
  • the equipment from the blow water tank 8 to the replenishing water tank 15, the water level sensors 9, 16 and the pump controller 10a constitute the recovery means.
  • the end of the pipe 18 connected to the discharge port side of the pump 17 is branched into pipes 19 and 20.
  • One end of the pipe 19 is connected to the ball tap 21 of the pit 1d.
  • the other end of the pipe 20 faces the pit 1d.
  • a forced supply water valve 22 is provided in the pipe 20.
  • the forced replenishment water valve 22 is controlled by a controller 23.
  • the detection value of the electric conductivity meter 24 provided in the pit 1d is input to the controller 23.
  • the water level in the pit 1d gradually decreases as the cooling water evaporates and the electrical conductivity gradually increases as shown in FIG. .
  • the electrical conductivity reaches the upper limit value D 1 of the provision, by a signal from the controller 23, the forced supply of water valve 22 is opened, the pit 1d to supply water in the supply water tank 15 via a pipe 19, 20 Supplied.
  • the pump 17 is configured to operate when the forced replenishment water valve 22 and the ball tap 21 are open. As a result, the water level in the pit 1d gradually rises and the electrical conductivity gradually falls.
  • the pump 10 starts to operate in response to a signal from the water level sensor 9.
  • the water supplied from the pump 10 passes through the turbidizer 11, is subjected to RO treatment by the RO device 13, the concentrated water is discharged out of the system, and the permeated water is introduced into the makeup water tank 15.
  • the pump 10 stops when the water level in the blow water tank 8 falls to a prescribed lower limit value.
  • blow water discharged outside the system during operation of the cooling tower system is only the concentrated water of the RO device 13, and the recovery rate of makeup water is high. Moreover, since the pump 10 is ON / OFF controlled according to the water level in the blow water tank 8, the control is simple.
  • the ball tap 21 is opened and the makeup water in the makeup water tank 15 is opened. Is supplied to the pit 1d through the ball tap 21.
  • water injection such as industrial water, ground water or tap water is poured into the makeup tank 15.
  • a mechanism is provided. This water injection mechanism also constitutes a collecting means.
  • the slime or the scale inhibitor injected into the pit 1d is supplied to the RO device 13 through the turbidizer 11, so that the slime in the RO device 13 Scale prevention effect is also obtained.
  • the above embodiment is an example of the present invention, and the present invention may have a configuration other than the above.
  • a specific resistance meter may be installed instead of the electrical conductivity meter 24, and the opening / closing control of the forced replenishment water valve 22 may be performed based on the specific resistance measured by the specific resistance meter.
  • the forced supply water valve 22 is opened by a signal from the controller 23, and the forced supply water valve 22 is opened until the specific resistance rises to the specified upper limit value.
  • makeup water continues to be supplied to the pit 1d.
  • the other control contents are the same as when the electric conductivity meter 24 is used.
  • the present invention may be configured other than the above.
  • the cooling water higher than the inlet 7 a in the pit 1 d is blown through the overflow pipe 7.
  • 8 is provided with a pipe line connecting the pipe 3 (especially the discharge side of the pump 2) and the blow water tank 8 and a valve installed in the pipe line to provide cooling water in the pit 1d.
  • the valve opens, and cooling water higher than the specified water level in the pit 1d flows into the blow water tank 8 through the pipe line. Good.

Abstract

When recirculation and supply of cooling water from a cooling tower 1 to a heat exchanger 4 is continued, the water level inside a pit 1d gradually decreases and electrical conductivity gradually increases. A pump 10 starts operation once the electrical conductivity reaches an intermediate value C1. The water supply from the pump 10 undergoes RO treatment by an RO device 13, concentrate is discharged outside the system, and permeate is introduced to the pit 1d. As a result of the inflow of permeate, there is a slow rise in electrical conductivity of the water inside the pit 1d. The electrical conductivity continues to increase and reaches an upper limit of C2. Once that happens, a forced replenishment water valve 22 opens and the replenishment water inside a replenishment water tank 15 is supplied to inside the pit 1d via pipes 19, 20.

Description

冷却塔システムCooling tower system
 本発明は、冷却塔システムに係り、特に開放循環式冷却塔において冷却塔ブロー水の回収を行う冷却塔システムに関する。 The present invention relates to a cooling tower system, and more particularly to a cooling tower system for collecting cooling tower blow water in an open circulation type cooling tower.
 冷却塔システムにあっては、冷却水の系外への排棄(ブロー)を少なくして高濃縮運転を行う場合、溶解している塩類が濃縮されて、伝熱面が腐食しやすくなるとともに、難溶性の塩となってスケール化する。装置の壁面などにスケールが付着すると、熱効率の低下、配管の閉塞など、ボイラや熱交換器の運転に重大な障害が生じる。近年、節水や省エネルギーを目的に、可能な限り水を有効利用するという動きが顕著になってきているが、更なる高濃縮運転の場合には、スケールの析出を抑制するには限界がある。 In the cooling tower system, when high concentration operation is performed with less discharge (blow) of cooling water outside the system, dissolved salts are concentrated and the heat transfer surface is easily corroded. Scales as a sparingly soluble salt. If the scale adheres to the wall surface of the apparatus, a serious obstacle occurs in the operation of the boiler and heat exchanger, such as a decrease in thermal efficiency and blockage of piping. In recent years, for the purpose of saving water and saving energy, the movement of effectively using water as much as possible has become remarkable. However, in the case of further highly concentrated operation, there is a limit in suppressing the precipitation of scale.
 そこで、冷却塔ブロー水をMF膜又はUF膜に通水してブロー水中の濁質を除去した後、RO膜処理してイオン類、有機物等を除去し、冷却塔に戻すことがある(特許文献1~4)。 Therefore, the cooling tower blow water is passed through the MF membrane or UF membrane to remove turbidity in the blow water, and then RO membrane treatment is performed to remove ions, organic substances, etc., and return to the cooling tower (patent) References 1-4).
特開2002-18437号公報JP 2002-18437 A 特開2003-1255号公報Japanese Patent Laid-Open No. 2003-1255 特開2016-190224号公報JP-A-2016-190224 特開2015-174030号公報JP2015-174030A
 本発明は、ブロー水及び補給水を削減することができ、また制御が簡易となる冷却塔システムを提供することを目的とする。 The object of the present invention is to provide a cooling tower system that can reduce blow water and make-up water and that can be easily controlled.
 第1発明の冷却塔システムは、冷却水の循環ラインが接続された冷却塔と、冷却水の電気特性値(電気伝導度又は比抵抗)の測定手段と、該冷却塔内の水をポンプで逆浸透膜装置に送水し、該逆浸透膜装置の透過水を前記冷却塔又は循環ラインに返送する回収手段と、前記冷却塔内の水位と前記電気特性値との少なくとも一方に応じて補給水を供給する補給水供給手段とを有する冷却塔システムであって、冷却水の電気特性値と前記ブロー水槽の水位との少なくとも一方に応じて該回収手段を作動させる制御手段を備える。 A cooling tower system according to a first aspect of the present invention is a cooling tower to which a circulation line of cooling water is connected, a means for measuring the electrical characteristic value (electric conductivity or specific resistance) of the cooling water, and the water in the cooling tower is pumped. Recovery means for sending water to the reverse osmosis membrane device and returning the permeated water of the reverse osmosis membrane device to the cooling tower or circulation line, and makeup water according to at least one of the water level in the cooling tower and the electrical characteristic value A cooling tower system having a makeup water supply means for supplying water, and a control means for operating the recovery means according to at least one of an electrical characteristic value of the cooling water and a water level of the blow water tank.
 本発明の一態様では、前記回収手段として、前記オーバーフロー水を受け入れるブロー水槽と、該ブロー水槽からポンプで送水される水を処理する前記逆浸透膜装置と、該逆浸透膜装置の透過水を前記冷却塔又は循環ラインに供給する手段とを備える。 In one aspect of the present invention, as the recovery means, a blow water tank that receives the overflow water, the reverse osmosis membrane device that processes water pumped from the blow water tank, and the permeated water of the reverse osmosis membrane device Means for supplying to the cooling tower or the circulation line.
 本発明の一態様では、前記補給水供給手段は、前記測定手段で測定された電気伝導度が所定の上限値Cに上昇した場合又は比抵抗が所定の下限値Rに低下した場合に、電気伝導度が所定の下限値Cに低下するか又は比抵抗が所定の上限値Rに上昇するまで補給水を供給する。 In one aspect of the present invention, the makeup water supply means is configured such that the electrical conductivity measured by the measurement means increases to a predetermined upper limit value C 2 or the specific resistance decreases to a predetermined lower limit value R 2. Then, makeup water is supplied until the electrical conductivity decreases to a predetermined lower limit value C 0 or the specific resistance increases to a predetermined upper limit value R 0 .
 本発明の一態様では、前記制御手段は、冷却水の電気伝導度が所定の中間値C(ただしC<C<C)にまで上昇するか又は比抵抗が所定の中間値R(ただしR<R<R)にまで低下した場合に、前記ポンプを始動させ、該電気伝導度が前記下限値Cにまで低下するか又は比抵抗が前記上限値Rにまで上昇すると前記ポンプを停止させる。 In one aspect of the present invention, the control means increases the electrical conductivity of the cooling water to a predetermined intermediate value C 1 (where C 0 <C 1 <C 2 ) or the specific resistance has a predetermined intermediate value R. 1 (provided that R 2 <R 1 <R 0 ), the pump is started and the electrical conductivity decreases to the lower limit C 0 or the specific resistance reaches the upper limit R 0 . The pump is stopped when it rises to.
 本発明の一態様では、前記ブロー水槽内の水を除濁手段で除濁してから前記逆浸透膜装置に給水するよう構成されている。 In one aspect of the present invention, the water in the blow water tank is made turbid by a turbidity means and then supplied to the reverse osmosis membrane device.
 第2発明の冷却塔システムは、冷却塔と、該冷却塔のオーバーフロー水を処理して補給水として回収する回収手段とを有する冷却塔システムであって、該回収手段として、前記オーバーフロー水を受け入れるブロー水槽と、該ブロー水槽からの水を処理する逆浸透膜装置と、該逆浸透膜装置の透過水を受け入れる補給水槽と、該補給水槽内の水を補給水として前記冷却塔に供給する手段と、前記ブロー水槽の水位又は該ブロー水槽と補給水槽の水位に応じて該回収手段を作動させる制御手段とを備える。 The cooling tower system of the second invention is a cooling tower system having a cooling tower and recovery means for treating the overflow water of the cooling tower and recovering it as make-up water, and accepting the overflow water as the recovery means A blow water tank, a reverse osmosis membrane device for treating water from the blow water tank, a replenishment water tank that receives the permeated water of the reverse osmosis membrane device, and means for supplying water in the replenishment water tank to the cooling tower as make-up water And control means for operating the recovery means according to the water level of the blow water tank or the water levels of the blow water tank and the makeup water tank.
 本発明の一態様では、前記制御手段は、前記ブロー水槽内の水位を検出する水位センサを備えており、該水位センサの検出水位が規定の上限値にまで上昇すると前記逆浸透膜装置への給水ポンプが始動し、該水位センサの検出水位が規定の下限値にまで低下すると該給水ポンプが停止する。 In one aspect of the present invention, the control means includes a water level sensor that detects a water level in the blow water tank, and when the detected water level of the water level sensor rises to a predetermined upper limit value, When the water supply pump is started and the water level detected by the water level sensor is lowered to a specified lower limit value, the water supply pump is stopped.
 本発明の一態様では、前記ブロー水槽内の水を除濁手段で除濁してから前記逆浸透膜装置に給水するよう構成されている。 In one aspect of the present invention, the water in the blow water tank is made turbid by a turbidity means and then supplied to the reverse osmosis membrane device.
 本発明の冷却塔システムでは、ブロー水を処理して冷却水として利用することにより、冷却塔の水回収率を高くすることができる。 In the cooling tower system of the present invention, the water recovery rate of the cooling tower can be increased by treating blow water and using it as cooling water.
 本発明の一態様(図1の態様)では、ブロー水の回収手段を冷却水の電気伝導度もしくは比抵抗又は該電気伝導度もしくは比抵抗とブロー水槽の水位により管理することにより、制御が簡易となる。 In one aspect of the present invention (the aspect shown in FIG. 1), the blow water recovery means is managed by the electric conductivity or specific resistance of the cooling water or the electric conductivity or specific resistance and the water level of the blow water tank, thereby simplifying the control. It becomes.
 本発明の一態様(図3の態様)では、ブロー水の回収手段をブロー水槽及び補給水槽の水位により管理することにより、制御が簡易となる。 In one aspect of the present invention (the aspect shown in FIG. 3), control is simplified by managing the means for collecting blow water according to the water levels of the blow water tank and the makeup water tank.
実施の形態に係る冷却塔システムを示すフロー図である。It is a flowchart which shows the cooling tower system which concerns on embodiment. 実施の形態に係る冷却塔システムの作動を示すチャートである。It is a chart which shows the action | operation of the cooling tower system which concerns on embodiment. 別の実施の形態に係る冷却塔システムを示すフロー図である。It is a flowchart which shows the cooling tower system which concerns on another embodiment. 図3の実施の形態に係る冷却塔システムの作動を示すチャートである。It is a chart which shows the action | operation of the cooling tower system which concerns on embodiment of FIG.
 図1,2を参照して第1の実施の形態について説明する。 The first embodiment will be described with reference to FIGS.
 図1の通り、この冷却塔システムの冷却塔1は、散水管1aから散水された冷却水が充填材層1bを流下する間にルーバ1cから導入される空気と接触して冷却されて、ピット1d(冷却塔下部水槽)に貯留され、蒸気を含む空気はファン1eにより大気中に排気されるように構成されている。冷却塔1のピット1dの冷水は、ポンプ2、配管3を介して熱交換器4に供給され、熱交換器4からの戻り水が配管5を介して冷却塔1の散水管1aに返送される。 As shown in FIG. 1, the cooling tower 1 of this cooling tower system is cooled in contact with the air introduced from the louver 1c while the cooling water sprinkled from the sprinkling pipe 1a flows down the filler layer 1b. The air that is stored in 1d (cooling tower lower water tank) and contains steam is configured to be exhausted into the atmosphere by a fan 1e. The cold water in the pit 1d of the cooling tower 1 is supplied to the heat exchanger 4 via the pump 2 and the pipe 3, and the return water from the heat exchanger 4 is returned to the water spray pipe 1a of the cooling tower 1 via the pipe 5. The
 ピット1dにはオーバーフロー管7が設けられており、ピット1d内の水位が該オーバーフロー管7の上端の流入口7aよりも高くなると、ピット1d内の冷却水がオーバーフロー管7を介してブロー水槽8に流入する。冷却塔1にはピット1d内の冷却水の電気伝導度を測定する電気伝導度計24が設けられている。 The pit 1 d is provided with an overflow pipe 7. When the water level in the pit 1 d becomes higher than the inlet 7 a at the upper end of the overflow pipe 7, the cooling water in the pit 1 d passes through the overflow pipe 7 and the blow water tank 8. Flow into. The cooling tower 1 is provided with an electric conductivity meter 24 for measuring the electric conductivity of the cooling water in the pit 1d.
 ブロー水槽8には水位センサ9及び循環送水用のポンプ10が設けられている。電気伝導度計24と水位センサ9の信号がポンプ制御器10aに入力され、このポンプ制御器10aからの信号によりポンプ10が制御される。ポンプ10からの送水は、除濁器11及び配管12を介してRO装置13に供給される。除濁器11としては、濾過器、MF膜装置、UF膜装置などを用いることができる。 The blow water tank 8 is provided with a water level sensor 9 and a pump 10 for circulating water. Signals from the electrical conductivity meter 24 and the water level sensor 9 are input to the pump controller 10a, and the pump 10 is controlled by signals from the pump controller 10a. The water supplied from the pump 10 is supplied to the RO device 13 via the turbidifier 11 and the pipe 12. As the turbidizer 11, a filter, an MF membrane device, a UF membrane device, or the like can be used.
 RO装置13の濃縮水は系外に排出され、透過水は配管14を介してピット1dに供給される。なお、配管14の下流端は配管3に接続されてもよい。この実施の形態では、オーバーフロー管7及びブロー水槽8から配管14までの機器と、水位センサ9、電気伝導度計24及びポンプ制御器10aとが回収手段を構成している。 The concentrated water of the RO device 13 is discharged out of the system, and the permeated water is supplied to the pit 1d via the pipe 14. Note that the downstream end of the pipe 14 may be connected to the pipe 3. In this embodiment, the equipment from the overflow pipe 7 and the blow water tank 8 to the pipe 14, the water level sensor 9, the electric conductivity meter 24, and the pump controller 10a constitute the recovery means.
 冷却塔1に供給される補給水を貯留しておくために補給水槽15が設置され、該補給水槽15に水位センサ16と送水ポンプ17が設置されている。送水ポンプ17の吐出口側に接続された配管18の末端は、配管19,20に分岐している。一方の配管19の末端は、ピット1dのボールタップ21に接続されている。他方の配管20の末端は、ピット1d内に臨んでいる。この配管20に強制補給水弁22が設けられている。該強制補給水弁22は制御器23によって制御される。制御器23には、ピット1dに設けられた電気伝導度計24の検出値が入力されている。 In order to store the makeup water supplied to the cooling tower 1, a makeup water tank 15 is installed, and a water level sensor 16 and a water pump 17 are installed in the makeup water tank 15. The end of the pipe 18 connected to the discharge port side of the water pump 17 is branched into pipes 19 and 20. One end of the pipe 19 is connected to the ball tap 21 of the pit 1d. The other end of the pipe 20 faces the pit 1d. A forced supply water valve 22 is provided in the pipe 20. The forced replenishment water valve 22 is controlled by a controller 23. The detection value of the electric conductivity meter 24 provided in the pit 1d is input to the controller 23.
 次に、この冷却塔システムの動作について、図1,2を参照して説明する。 Next, the operation of this cooling tower system will be described with reference to FIGS.
 冷却塔1から熱交換器4へ冷水を循環供給する運転を継続すると、図2の通り、冷却水の蒸発等に伴ってピット1d内の水位が次第に低下し、また電気伝導度が次第に上昇する。電気伝導度が所定の中間値Cまで上昇すると、制御器10aからの信号によりポンプ10が作動開始する。ポンプ10からの送水は、除濁器11を通った後、RO装置13にてRO処理され、濃縮水は系外に排出され、透過水は配管14を通ってピット1dに導入される。 If the operation of circulating and supplying cold water from the cooling tower 1 to the heat exchanger 4 is continued, the water level in the pit 1d gradually decreases as the cooling water evaporates and the electrical conductivity gradually increases as shown in FIG. . When the electrical conductivity is increased to a predetermined intermediate value C 1, the pump 10 is started actuated by a signal from the controller 10a. The water supplied from the pump 10 passes through the turbidizer 11, is subjected to RO treatment by the RO device 13, the concentrated water is discharged out of the system, and the permeated water is introduced into the pit 1 d through the pipe 14.
 この透過水の流入により、ピット1d内の水の電気伝導度の上昇は緩慢になるが、それでも該電気伝導度はさらに上昇を続け、やがて所定の上限値Cに到達する。そうすると、制御器23からの信号により、強制補給水弁22が開となり、補給水槽15内の補給水が配管19,20を介してピット1d内に供給される。(なお、強制補給水弁22やボールタップ21が開となっているときにはポンプ17が作動するよう構成されている。)これにより、ピット1d内の水位が徐々に上昇すると共に、電気伝導度が徐々に低下する。ピット1d内の冷却水の電気伝導度が所定の下限値Cに低下すると、強制補給水弁22が閉とされると共に、送水ポンプ17が停止する。 The inflow of the permeate, increase in electric conductivity of the water in the pit 1d is slowed, but still continue the electrical conductivity increases further eventually reaches a predetermined upper limit value C 2. If it does so, the forced replenishment water valve 22 will be opened by the signal from the controller 23, and the replenishment water in the replenishment water tank 15 will be supplied in the pit 1d via the piping 19 and 20. FIG. (The pump 17 is configured to operate when the forced replenishment water valve 22 and the ball tap 21 are open.) As a result, the water level in the pit 1d gradually rises and the electrical conductivity gradually increases. To drop. When the electrical conductivity of the cooling water in the pit 1d is lowered to a predetermined lower limit value C 0, forcing makeup water valve 22 while being closed, the water pump 17 is stopped.
 ピット1d内の水の電気伝導度が下限値Cに低下するまで強制補給水弁22が開とされ、この間ピット1dに補給水が供給され続ける。これにより、該電気伝導度が徐々に低下する。補給水の供給に伴って、前述の通りピット1d内の水位が上昇するが、ピット1dの水位上昇は、オーバーフロー水位(流入口7aのレベル)で止まる。ピット1dの水位がオーバーフロー水位に到達した後、強制補給水弁22が閉となるまでの間は、配管18,20を介して流入する補給水量と同量のピット水(冷却水)がオーバーフロー管7を介してブロー水槽8に流入する。 Electrical conductivity of the water in the pit 1d is forced makeup water valve 22 is opened until drops to the lower limit value C 0, makeup water is continuously supplied during this time pits 1d. Thereby, the electrical conductivity gradually decreases. As the makeup water is supplied, the water level in the pit 1d rises as described above, but the water level rise in the pit 1d stops at the overflow water level (the level of the inlet 7a). After the water level in the pit 1d reaches the overflow water level, the same amount of pit water (cooling water) as the amount of makeup water flowing in via the pipes 18 and 20 is overflowed until the forced makeup water valve 22 is closed. 7 flows into the blow water tank 8.
 このオーバーフロー水の流入に伴って、ブロー水槽8内の水位が上昇する。このブロー水槽8内の水位上昇は、強制補給水弁22が閉となるまで継続する。 The water level in the blow water tank 8 rises with the inflow of this overflow water. The rise in the water level in the blow water tank 8 continues until the forced refill water valve 22 is closed.
 強制補給水弁22が閉となるのに合わせて、ポンプ10が停止し、ブロー水槽8内の水のRO装置13への送水も停止するので、その後はブロー水槽8内の水位は一定に保たれる。この間、ピット1d内の水の電気伝導度は徐々に上昇するので、以下、上記の一連の動作が繰り返される。 As the forced replenishing water valve 22 is closed, the pump 10 stops and the water supply to the RO device 13 in the blow water tank 8 stops, so that the water level in the blow water tank 8 is kept constant thereafter. Be drunk. During this time, the electrical conductivity of the water in the pit 1d gradually increases, so that the above series of operations is repeated.
 図1では、電気伝導度計24が設置されているが、電気伝導度計の代わりに比抵抗計を設置し、比抵抗計で測定される比抵抗(又は比抵抗とブロー水槽の水位)に基づいて制御を行ってもよい。この場合、冷却塔の運転の経過に伴ってピット1d内の水の比抵抗が所定の中間値Rにまで低下すると、制御器10aからの信号によりポンプ10が作動開始し、RO装置13の透過水がピット1dに導入される。 In FIG. 1, the electric conductivity meter 24 is installed, but a specific resistance meter is installed instead of the electric conductivity meter, and the specific resistance (or specific resistance and the water level of the blow tank) is measured by the specific resistance meter. Control may be performed based on this. In this case, when the specific resistance of the water in the pit 1d with the passage of operation of the cooling tower is reduced to a predetermined intermediate value R 1, the pump 10 starts operation by a signal from the controller 10a, the RO unit 13 Permeated water is introduced into the pit 1d.
 この透過水の流入により、ピット1d内の水の比抵抗の低下は緩慢になるが、それでも比抵抗はさらに低下を続け、やがて所定の下限値Rに到達する。そうすると、制御器23からの信号により、強制補給水弁22が開となり、補給水槽15内の補給水が配管19,20を介してピット1d内に供給される。これにより、ピット1d内の水位が徐々に上昇すると共に、比抵抗が徐々に上昇する。ピット1d内の冷却水の比抵抗が所定の上限値Rにまで上昇すると、強制補給水弁22が閉とされると共に、送水ポンプ17が停止する。 The inflow of the permeate, the decrease of specific resistance of water in the pit 1d becomes slow, but still the resistivity further continued to fall, to eventually reach a predetermined lower limit value R 2. If it does so, the forced replenishment water valve 22 will be opened by the signal from the controller 23, and the replenishment water in the replenishment water tank 15 will be supplied in the pit 1d via the piping 19 and 20. FIG. Thereby, the water level in the pit 1d gradually rises and the specific resistance gradually rises. When the specific resistance of the cooling water in the pit 1d rises to a predetermined upper limit value R0 , the forced refill water valve 22 is closed and the water pump 17 is stopped.
 比抵抗が上限値Rにまで上昇することにより、強制補給水弁22が閉となるのに合わせて、ポンプ10が停止し、ブロー水槽8内の水のRO装置13への送水も停止する。その後、ピット1d内の水の比抵抗は徐々に低下するので、以下、上記の一連の動作が繰り返される。 As the specific resistance increases to the upper limit value R 0 , the pump 10 stops and the water supply to the RO device 13 of the water in the blow water tank 8 also stops as the forced replenishment water valve 22 is closed. . Thereafter, the specific resistance of water in the pit 1d gradually decreases, so that the above series of operations is repeated.
 この冷却塔システムの運転中に系外に排出されるブロー水はRO装置13の濃縮水だけであり、補給水の回収率が高い。また、ポンプ10は冷却水の電気伝導度又は比抵抗に応じてON,OFF制御されるので、制御が簡単である。なお、ブロー水槽8の水位センサ9の検出水位が所定の上限値以上になるとポンプ10が作動し、検出水位が所定の下限値以下になるとポンプ10が停止するよう構成されてもよい。この上限値は、ブロー水槽8の満水位の60~80%程度が好ましく、下限値は該満水位の5~40%程度が好ましい。 The blow water discharged outside the system during the operation of this cooling tower system is only the concentrated water of the RO device 13, and the recovery rate of makeup water is high. In addition, since the pump 10 is ON / OFF controlled according to the electric conductivity or specific resistance of the cooling water, the control is simple. The pump 10 may be operated when the detected water level of the water level sensor 9 in the blow water tank 8 is equal to or higher than a predetermined upper limit value, and the pump 10 may be stopped when the detected water level is lower than a predetermined lower limit value. The upper limit is preferably about 60 to 80% of the full water level of the blow water tank 8, and the lower limit is preferably about 5 to 40% of the full water level.
 なお、上記のように冷却塔システムの運転途中において、ピット1d内の水位が所定の管理値(ボールタップ21の開栓水位)を下回ったときには、ボールタップ21が開栓し、補給水槽15内の補給水がボールタップ21を介してピット1dに供給される。図示は省略するが、水位センサ16で検出される補給水槽15内の水位が規定値以下に低下した場合には、補給水槽15に工業用水、地下水又は水道水などの水を注水する注水機構が設けられている。 As described above, when the water level in the pit 1d falls below a predetermined control value (the opening level of the ball tap 21) during the operation of the cooling tower system, the ball tap 21 is opened and the replenishment in the replenishing water tank 15 is performed. Water is supplied to the pit 1d through the ball tap 21. Although illustration is omitted, when the water level in the replenishing water tank 15 detected by the water level sensor 16 falls below a specified value, a water injection mechanism for injecting water such as industrial water, ground water or tap water into the replenishing water tank 15 is provided. Is provided.
 この実施の形態では、ピット1dに薬注されたスライムやスケールの防止剤等の薬剤成分が、除濁器11を通過してRO装置13に供給されることにより、RO装置13でのスライムやスケールの防止効果も得られる。 In this embodiment, the slime or the scale inhibitor injected into the pit 1d is supplied to the RO device 13 through the turbidizer 11, so that the slime in the RO device 13 Scale prevention effect is also obtained.
 図3,4を参照して第2の実施の形態について説明する。 The second embodiment will be described with reference to FIGS.
 この冷却塔システムの冷却塔1の構成は、図1と同一であり、同一符号は同一部分を示している。 The configuration of the cooling tower 1 of this cooling tower system is the same as in FIG. 1, and the same reference numerals indicate the same parts.
 ブロー水槽8には水位センサ9及び第1のポンプ10が設けられている。水位センサ9の信号がポンプ制御器10aに入力され、このポンプ制御器10aからの信号によりポンプ10が制御される。具体的には、水位センサ9の検出水位が規定の上限値以上になるとポンプ10が作動し、検出水位が規定の下限値以下になるとポンプ10が停止する。この上限値は、ブロー水槽8の満水位の60~80%程度が好ましく、下限値は該満水位の5~40%程度が好ましい。 The blow water tank 8 is provided with a water level sensor 9 and a first pump 10. A signal from the water level sensor 9 is input to the pump controller 10a, and the pump 10 is controlled by a signal from the pump controller 10a. Specifically, the pump 10 is activated when the detected water level of the water level sensor 9 is equal to or higher than a specified upper limit value, and the pump 10 is stopped when the detected water level is equal to or lower than the specified lower limit value. The upper limit is preferably about 60 to 80% of the full water level of the blow water tank 8, and the lower limit is preferably about 5 to 40% of the full water level.
 ポンプ10からの送水は、除濁器11及び配管12を介してRO装置13に供給される。 Water supply from the pump 10 is supplied to the RO device 13 via the turbidifier 11 and the pipe 12.
 RO装置13の濃縮水は系外に排出され、透過水は配管14Aを介して補給水槽15に導入される。補給水槽15には水位センサ16及び第2のポンプ17が設けられている。この実施の形態では、ブロー水槽8から補給水槽15までの機器と、水位センサ9,16及びポンプ制御器10aとが回収手段を構成している。 The concentrated water of the RO device 13 is discharged out of the system, and the permeated water is introduced into the makeup water tank 15 through the pipe 14A. The replenishing water tank 15 is provided with a water level sensor 16 and a second pump 17. In this embodiment, the equipment from the blow water tank 8 to the replenishing water tank 15, the water level sensors 9, 16 and the pump controller 10a constitute the recovery means.
 ポンプ17の吐出口側に接続された配管18の末端は、配管19,20に分岐している。一方の配管19の末端は、ピット1dのボールタップ21に接続されている。他方の配管20の末端は、ピット1d内に臨んでいる。この配管20に強制補給水弁22が設けられている。該強制補給水弁22は制御器23によって制御される。制御器23には、ピット1dに設けられた電気伝導度計24の検出値が入力されている。 The end of the pipe 18 connected to the discharge port side of the pump 17 is branched into pipes 19 and 20. One end of the pipe 19 is connected to the ball tap 21 of the pit 1d. The other end of the pipe 20 faces the pit 1d. A forced supply water valve 22 is provided in the pipe 20. The forced replenishment water valve 22 is controlled by a controller 23. The detection value of the electric conductivity meter 24 provided in the pit 1d is input to the controller 23.
 次に、この冷却塔システムの動作について、図3,4を参照して説明する。 Next, the operation of this cooling tower system will be described with reference to FIGS.
 冷却塔1から熱交換器4へ冷水を循環供給する運転を継続すると、図4の通り、冷却水の蒸発等に伴ってピット1d内の水位が次第に低下し、また電気伝導度が次第に上昇する。電気伝導度が規定の上限値Dに到達すると、制御器23からの信号により、強制補給水弁22が開となり、補給水槽15内の補給水が配管19,20を介してピット1d内に供給される。なお、強制補給水弁22やボールタップ21が開となっているときにはポンプ17が作動するよう構成されている。これにより、ピット1d内の水位が徐々に上昇すると共に、電気伝導度が徐々に低下する。 If the operation of circulating and supplying cold water from the cooling tower 1 to the heat exchanger 4 is continued, the water level in the pit 1d gradually decreases as the cooling water evaporates and the electrical conductivity gradually increases as shown in FIG. . When the electrical conductivity reaches the upper limit value D 1 of the provision, by a signal from the controller 23, the forced supply of water valve 22 is opened, the pit 1d to supply water in the supply water tank 15 via a pipe 19, 20 Supplied. The pump 17 is configured to operate when the forced replenishment water valve 22 and the ball tap 21 are open. As a result, the water level in the pit 1d gradually rises and the electrical conductivity gradually falls.
 強制補給水弁22は、ピット1d内の水の電気伝導度が規定の下限値Dに低下するまで開とされ、この間ピット1dに補給水が供給され続ける。補給水の供給に伴って、前述の通りピット1d内の水位が上昇するが、ピット1dの水位上昇は、オーバーフロー水位(流入口7aのレベル)で止まる。ピット1dの水位がオーバーフロー水位に到達した後、強制補給水弁22が閉となるまでの間は、配管18,20を介して流入する補給水量と同量のピット水(冷却水)がオーバーフロー管7を介してブロー水槽8に流入する。 Force makeup water valve 22 is opened until the electrical conductivity of the water in the pit 1d is lowered to the lower limit value D 0 of the provisions, makeup water is continuously supplied during this time pits 1d. As the makeup water is supplied, the water level in the pit 1d rises as described above, but the water level rise in the pit 1d stops at the overflow water level (the level of the inlet 7a). After the water level in the pit 1d reaches the overflow water level, the same amount of pit water (cooling water) as the amount of makeup water flowing in via the pipes 18 and 20 is overflowed until the forced makeup water valve 22 is closed. 7 flows into the blow water tank 8.
このオーバーフロー水の流入に伴って、ブロー水槽8内の水位が上昇する。そして、ブロー水槽8内の水位が規定の上限値に達すると、水位センサ9からの信号によりポンプ10が作動開始する。ポンプ10からの送水は、除濁器11を通った後、RO装置13にてRO処理され、濃縮水は系外に排出され、透過水は補給水槽15に導入される。ポンプ10は、ブロー水槽8内の水位が規定の下限値まで低下すると停止する。 With the inflow of overflow water, the water level in the blow water tank 8 rises. Then, when the water level in the blow water tank 8 reaches a prescribed upper limit value, the pump 10 starts to operate in response to a signal from the water level sensor 9. The water supplied from the pump 10 passes through the turbidizer 11, is subjected to RO treatment by the RO device 13, the concentrated water is discharged out of the system, and the permeated water is introduced into the makeup water tank 15. The pump 10 stops when the water level in the blow water tank 8 falls to a prescribed lower limit value.
 以下、この動作が繰り返される。この冷却塔システムの運転中に系外に排出されるブロー水はRO装置13の濃縮水だけであり、補給水の回収率が高い。また、ポンプ10はブロー水槽8内の水位に応じてON,OFF制御されるので、制御が簡単である。 Hereafter, this operation is repeated. The blow water discharged outside the system during operation of the cooling tower system is only the concentrated water of the RO device 13, and the recovery rate of makeup water is high. Moreover, since the pump 10 is ON / OFF controlled according to the water level in the blow water tank 8, the control is simple.
 なお、上記のように冷却塔システムの運転途中において、ピット1d内の水位が規定管理値(ボールタップ21の開栓水位)を下回ったときには、ボールタップ21が開栓し、補給水槽15内の補給水がボールタップ21を介してピット1dに供給される。 In the middle of the operation of the cooling tower system as described above, when the water level in the pit 1d falls below the specified control value (the opening level of the ball tap 21), the ball tap 21 is opened and the makeup water in the makeup water tank 15 is opened. Is supplied to the pit 1d through the ball tap 21.
 また、図示は省略するが、水位センサ16で検出される補給水槽15内の水位が規定値以下に低下した場合には、補給水槽15に工業用水、地下水又は水道水などの水を注水する注水機構が設けられている。この注水機構も回収手段を構成している。 Although not shown in the drawings, when the water level in the makeup tank 15 detected by the water level sensor 16 falls below a specified value, water injection such as industrial water, ground water or tap water is poured into the makeup tank 15. A mechanism is provided. This water injection mechanism also constitutes a collecting means.
 この実施の形態では、ピット1dに薬注されたスライムやスケールの防止剤等の薬剤成分が、除濁器11を通過してRO装置13に供給されることにより、RO装置13でのスライムやスケールの防止効果も得られる。 In this embodiment, the slime or the scale inhibitor injected into the pit 1d is supplied to the RO device 13 through the turbidizer 11, so that the slime in the RO device 13 Scale prevention effect is also obtained.
 上記実施の形態は本発明の一例であり、本発明は上記以外の構成とされてもよい。例えば、電気伝導度計24の代わりに比抵抗計を設置し、この比抵抗計で測定された比抵抗に基づいて強制補給水弁22の開閉制御を行ってもよい。この場合、比抵抗が規定の下限値に到達すると制御器23からの信号により強制補給水弁22が開となり、比抵抗が規定の上限値に上昇するまで強制補給水弁22が開とされ、この間ピット1dに補給水が供給され続ける。その他の制御内容は、電気伝導度計24を用いた場合と同じである。 The above embodiment is an example of the present invention, and the present invention may have a configuration other than the above. For example, a specific resistance meter may be installed instead of the electrical conductivity meter 24, and the opening / closing control of the forced replenishment water valve 22 may be performed based on the specific resistance measured by the specific resistance meter. In this case, when the specific resistance reaches the specified lower limit value, the forced supply water valve 22 is opened by a signal from the controller 23, and the forced supply water valve 22 is opened until the specific resistance rises to the specified upper limit value. During this time, makeup water continues to be supplied to the pit 1d. The other control contents are the same as when the electric conductivity meter 24 is used.
 上記図1及び図3の実施の形態は本発明の一例であり、本発明は上記以外の構成とされてもよい。例えば、上記実施の形態では、ピット1d内の水位がオーバーフロー管7の上端の流入口7aよりも高くなると、ピット1d内の流入口7aよりも高位の冷却水がオーバーフロー管7を介してブロー水槽8に流入する構成となっているが、配管3(特にポンプ2の吐出側)とブロー水槽8とを接続する管路及び該管路に設置されたバルブとを設け、ピット1d内の冷却水の水位が規定水位(流入口7aの水位)よりも高くなると該バルブが開き、ピット1d内の該規定水位よりも高位の冷却水が該管路を介してブロー水槽8に流入する構成としてもよい。 1 and 3 are examples of the present invention, and the present invention may be configured other than the above. For example, in the above embodiment, when the water level in the pit 1 d becomes higher than the inlet 7 a at the upper end of the overflow pipe 7, the cooling water higher than the inlet 7 a in the pit 1 d is blown through the overflow pipe 7. 8 is provided with a pipe line connecting the pipe 3 (especially the discharge side of the pump 2) and the blow water tank 8 and a valve installed in the pipe line to provide cooling water in the pit 1d. When the water level becomes higher than the specified water level (the water level at the inlet 7a), the valve opens, and cooling water higher than the specified water level in the pit 1d flows into the blow water tank 8 through the pipe line. Good.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2017年3月1日付で出願された日本特許出願2017-038457、2017年3月1日付で出願された日本特許出願2017-038458、2018年2月2日付で出願された日本特許出願2018-017458及び2018年2月2日付で出願された日本特許出願2018-017460に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application includes Japanese patent application 2017-038457 filed on March 1, 2017, Japanese patent application 2017-038458 filed on March 1, 2017, and Japanese patent application filed on February 2, 2018. Based on application 2018-017458 and Japanese patent application 2018-017460 filed on Feb. 2, 2018, which is incorporated by reference in its entirety.
 1 冷却塔
 4 熱交換器
 8 ブロー水槽
 13 RO装置
 15 補給水槽
 24 電気伝導度計
DESCRIPTION OF SYMBOLS 1 Cooling tower 4 Heat exchanger 8 Blow water tank 13 RO apparatus 15 Replenishment water tank 24 Electric conductivity meter

Claims (8)

  1.  冷却水の循環ラインが接続された冷却塔と、
     冷却水の電気特性値(電気伝導度又は比抵抗)の測定手段と、
     該冷却塔内の水をポンプで逆浸透膜装置に送水し、該逆浸透膜装置の透過水を前記冷却塔又は循環ラインに返送する回収手段と、
     前記冷却塔内の水位と前記電気特性値との少なくとも一方に応じて補給水を供給する補給水供給手段と
    を有する冷却塔システムであって、
     冷却水の電気特性値と前記ブロー水槽の水位との少なくとも一方に応じて該回収手段を作動させる制御手段を備えたことを特徴とする冷却塔システム。
    A cooling tower connected to a cooling water circulation line;
    Means for measuring the electrical characteristic value (electric conductivity or specific resistance) of the cooling water;
    Recovery means for pumping water in the cooling tower to a reverse osmosis membrane device by a pump, and returning permeated water of the reverse osmosis membrane device to the cooling tower or a circulation line;
    A cooling tower system comprising makeup water supply means for supplying makeup water according to at least one of the water level in the cooling tower and the electrical characteristic value,
    A cooling tower system comprising control means for operating the recovery means in accordance with at least one of an electrical characteristic value of cooling water and a water level of the blow water tank.
  2.  請求項1において、前記回収手段として、
     前記オーバーフロー水を受け入れるブロー水槽と、
     該ブロー水槽からポンプで送水される水を処理する前記逆浸透膜装置と、
     該逆浸透膜装置の透過水を前記冷却塔又は循環ラインに供給する手段と
    を備えたことを特徴とする冷却塔システム。
    In claim 1, as the recovery means,
    A blow tank for receiving the overflow water;
    The reverse osmosis membrane device for treating water pumped from the blow water tank;
    A cooling tower system comprising: means for supplying permeated water of the reverse osmosis membrane device to the cooling tower or the circulation line.
  3.  請求項1において、前記補給水供給手段は、前記測定手段で測定された電気伝導度が所定の上限値Cに上昇した場合又は比抵抗が所定の下限値Rに低下した場合に、電気伝導度が所定の下限値Cに低下するか又は比抵抗が所定の上限値Rに上昇するまで補給水を供給することを特徴とする冷却塔システム。 According to claim 1, wherein the makeup water supply means, when the electric conductivity measured by the measuring means a predetermined elevated or when the resistivity to the upper limit value C 2 is lowered to a predetermined lower limit value R 2, electrical A cooling tower system, wherein makeup water is supplied until the conductivity decreases to a predetermined lower limit value C 0 or the specific resistance increases to a predetermined upper limit value R 0 .
  4.  請求項3において、前記制御手段は、冷却水の電気伝導度が所定の中間値C(ただしC<C<C)にまで上昇するか又は比抵抗が所定の中間値R(ただしR<R<R)にまで低下した場合に、前記ポンプを始動させ、該電気伝導度が前記下限値Cにまで低下するか又は比抵抗が前記上限値Rにまで上昇すると前記ポンプを停止させることを特徴とする冷却塔システム。 In Claim 3, the control means increases the electrical conductivity of the cooling water to a predetermined intermediate value C 1 (where C 0 <C 1 <C 2 ), or the specific resistance is a predetermined intermediate value R 1 ( However, when it falls to R 2 <R 1 <R 0 ), the pump is started, and the electrical conductivity falls to the lower limit value C 0 or the specific resistance rises to the upper limit value R 0. Then, the cooling tower system characterized by stopping the pump.
  5.  請求項1~4のいずれかにおいて、前記ブロー水槽内の水を除濁手段で除濁してから前記逆浸透膜装置に給水するよう構成されていることを特徴とする冷却塔システム。 5. The cooling tower system according to claim 1, wherein the water in the blow water tank is turbidized by a turbidity means and then supplied to the reverse osmosis membrane device.
  6.  冷却塔と、該冷却塔のオーバーフロー水を処理して補給水として回収する回収手段とを有する冷却塔システムであって、
     該回収手段として、
     前記オーバーフロー水を受け入れるブロー水槽と、
     該ブロー水槽からの水を処理する逆浸透膜装置と、
     該逆浸透膜装置の透過水を受け入れる補給水槽と、
     該補給水槽内の水を補給水として前記冷却塔に供給する手段と、
     前記ブロー水槽の水位又は該ブロー水槽と補給水槽の水位に応じて該回収手段を作動させる制御手段と
    を備えたことを特徴とする冷却塔システム。
    A cooling tower system having a cooling tower and recovery means for treating overflow water of the cooling tower and recovering it as makeup water,
    As the recovery means,
    A blow tank for receiving the overflow water;
    A reverse osmosis membrane device for treating water from the blow water tank;
    A replenishing water tank for receiving the permeated water of the reverse osmosis membrane device;
    Means for supplying water in the make-up water tank to the cooling tower as make-up water;
    A cooling tower system comprising control means for operating the recovery means in accordance with the water level of the blow water tank or the water level of the blow water tank and the makeup water tank.
  7.  請求項6において、前記制御手段は、前記ブロー水槽内の水位を検出する水位センサを備えており、
     該水位センサの検出水位が規定の上限値にまで上昇すると前記逆浸透膜装置への給水ポンプが始動し、該水位センサの検出水位が規定の下限値にまで低下すると該給水ポンプが停止することを特徴とする冷却塔システム。
    In Claim 6, the said control means is equipped with the water level sensor which detects the water level in the said blow water tank,
    When the detected water level of the water level sensor rises to a prescribed upper limit value, the feed water pump to the reverse osmosis membrane device starts, and when the detected water level of the water level sensor falls to a prescribed lower limit value, the feed water pump stops. Cooling tower system characterized by
  8.  請求項6又は7において、前記ブロー水槽内の水を除濁手段で除濁してから前記逆浸透膜装置に給水するよう構成されていることを特徴とする冷却塔システム。
     
    8. The cooling tower system according to claim 6, wherein water in the blow water tank is turbidized by a turbidity means and then supplied to the reverse osmosis membrane device.
PCT/JP2018/005175 2017-03-01 2018-02-15 Cooling tower system WO2018159299A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017-038457 2017-03-01
JP2017-038458 2017-03-01
JP2017038457 2017-03-01
JP2017038458 2017-03-01
JP2018017458A JP2018146224A (en) 2017-03-01 2018-02-02 Cooling tower system
JP2018-017458 2018-02-02
JP2018-017460 2018-02-02
JP2018017460A JP2018146226A (en) 2017-03-01 2018-02-02 Cooling tower system

Publications (1)

Publication Number Publication Date
WO2018159299A1 true WO2018159299A1 (en) 2018-09-07

Family

ID=63370014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005175 WO2018159299A1 (en) 2017-03-01 2018-02-15 Cooling tower system

Country Status (1)

Country Link
WO (1) WO2018159299A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126945U (en) * 1973-02-28 1974-10-30
JP2001317883A (en) * 2000-05-08 2001-11-16 Aquas Corp Method for treating open circulating cooling water system
JP2016040031A (en) * 2014-08-12 2016-03-24 株式会社クラレ Circulation water treatment system of cooling tower
JP2016190224A (en) * 2015-03-31 2016-11-10 栗田工業株式会社 Water treatment method and equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126945U (en) * 1973-02-28 1974-10-30
JP2001317883A (en) * 2000-05-08 2001-11-16 Aquas Corp Method for treating open circulating cooling water system
JP2016040031A (en) * 2014-08-12 2016-03-24 株式会社クラレ Circulation water treatment system of cooling tower
JP2016190224A (en) * 2015-03-31 2016-11-10 栗田工業株式会社 Water treatment method and equipment

Similar Documents

Publication Publication Date Title
TWI699235B (en) Water treatment method and device
US20080272057A1 (en) Recycling of waste water
US20160039683A1 (en) Multiple Effect Concentration Swap De-Scaling System
US20110192179A1 (en) Evaporative heat transfer system and method
ES2928141T3 (en) Method to monitor and control cooling water
KR20230009395A (en) cooling tower control system
JP2018159516A (en) Cooling tower facility, and water quality control method thereof
JP5133773B2 (en) Water heater
WO2018159300A1 (en) Cooling tower system
WO2018159299A1 (en) Cooling tower system
JP5190674B2 (en) Operation method of boiler system
JP2018146226A (en) Cooling tower system
JP2018146224A (en) Cooling tower system
JP2018146225A (en) Cooling tower system
JP2008055336A (en) Operation method of permeation flux in membrane filtration device
JP2010155182A (en) Water treatment apparatus
TW201842292A (en) Cooling tower system
TW201840355A (en) Cooling tower system
TW201834737A (en) Reverse osmosis treatment method and device
JP2009068997A (en) Flow sensor abnormality detection method and deaeration apparatus
CN207933176U (en) Sewage recovering system applied to cooling water system
JPH1163746A (en) Device for preventing condensation of cooling water in cooling tower
CN203803392U (en) Integrated device for off-line cleaning and detecting of 8-inch reverse osmosis membrane elements
JP3707145B2 (en) Control method of deaerator
US20180215640A1 (en) System for Treating the Water for a Cooling Tower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760656

Country of ref document: EP

Kind code of ref document: A1