WO2018159164A1 - Coffee bean cracking occurrence schedule prediction method, coffee bean cracking occurrence schedule prediction device, coffee bean cracking detection method, coffee bean cracking detection device, and roasted coffee bean production method - Google Patents

Coffee bean cracking occurrence schedule prediction method, coffee bean cracking occurrence schedule prediction device, coffee bean cracking detection method, coffee bean cracking detection device, and roasted coffee bean production method Download PDF

Info

Publication number
WO2018159164A1
WO2018159164A1 PCT/JP2018/002158 JP2018002158W WO2018159164A1 WO 2018159164 A1 WO2018159164 A1 WO 2018159164A1 JP 2018002158 W JP2018002158 W JP 2018002158W WO 2018159164 A1 WO2018159164 A1 WO 2018159164A1
Authority
WO
WIPO (PCT)
Prior art keywords
coffee beans
goby
roasting
sound
carbon monoxide
Prior art date
Application number
PCT/JP2018/002158
Other languages
French (fr)
Japanese (ja)
Inventor
山本 裕之
Original Assignee
山本 裕之
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山本 裕之 filed Critical 山本 裕之
Publication of WO2018159164A1 publication Critical patent/WO2018159164A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F5/00Coffee; Coffee substitutes; Preparations thereof
    • A23F5/04Methods of roasting coffee
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N12/00Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts
    • A23N12/08Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts for drying or roasting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • G01H3/10Amplitude; Power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/14Beverages

Definitions

  • the present invention relates to a method for predicting coffee bean occurrence, a device for predicting coffee bean occurrence, a coffee bean detection method, a coffee bean detection device, and a method for producing roasted coffee beans.
  • Coffee beans can bring out their flavor by roasting.
  • the flavor of coffee beans varies with roasting conditions. Therefore, it is necessary to control roasting conditions in order to bring out the desired coffee bean flavor.
  • the coffee beans generate a goby sound (also referred to as “crack sound”) twice with heating.
  • a goby sound also referred to as “crack sound”
  • an operation of changing the amount of heat given to the roasted beans is performed using the generation time of at least one of the two goby sounds as a guide.
  • an operation of changing the amount of heat given to roasted coffee beans one to two minutes before the occurrence of a goby sound may be performed by predicting the occurrence time of the goby sound based on the operator's experience and intuition. As described above, it is important to detect or predict the generation time of the goby sound in the roasting stage.
  • Non-Patent Document 1 discloses a method for detecting a goby sound generated from coffee beans by sound pressure level and frequency spectrum analysis.
  • the goby sound produced by one coffee bean lasts for several milliseconds to 10 and several milliseconds.
  • frequency spectrum analysis is frequently performed on sounds in the band of several hundred Hz to several tens of kilohertz.
  • DSP signal processing dedicated processor
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for easily and accurately detecting or predicting the occurrence of goby when roasting coffee beans.
  • the present inventors have found that there is a correlation between the amount of carbon monoxide generated from coffee beans being roasted and the generation of goby sound, and the present invention has been completed. More specifically, the present invention provides the following.
  • the first invention of the present invention is a sound measuring step for measuring sound generated from roasted coffee beans over time, and a frequency within a range of 5 kHz to 80 kHz of the sound.
  • a coffee beans goby detection method comprising: a goby detection step for detecting coffee beans goby based on sound pressure.
  • the second aspect of the present invention is the coffee bean gourd detection method of the first aspect, wherein the sound measurement step is started 2 minutes after the start of roasting.
  • the third invention of the present invention is an initial carbon monoxide for measuring the amount of carbon monoxide generated from coffee beans being roasted until at least 2 minutes after the start of roasting. It is a goat detection device of coffee beans which further has a quantity measurement process.
  • the sound generated from the coffee beans being roasted is sampled at a sampling period of 0.2 milliseconds or less. It is a goby detection device for coffee beans measured by.
  • a fifth invention of the present invention is the coffee machine according to any one of the first to fourth inventions, based on the sound pressure of a frequency having a half-value width of 0.1 kHz or more and 1 kHz or less in the goby detection step.
  • This is a coffee bean goby detection device for detecting bean goby.
  • coffee beans are detected based on the sound pressure of the frequency within the range of 5 kHz to 80 kHz among the sounds generated from the roasted coffee beans. This is a method for detecting coffee beans.
  • the seventh invention of the present invention is a sound measuring unit that measures sound generated from roasted coffee beans over time, and a frequency within a range of 5 kHz to 80 kHz of the sound.
  • a coffee bean detection device that includes a goby detection unit that detects goby of coffee beans based on sound pressure.
  • the eighth invention of the present invention is a sound measurement step for measuring the sound generated from roasted coffee beans over time, and a frequency within a range of 5 kHz to 80 kHz of the sound.
  • a roasted coffee bean manufacturing method comprising: a goby detection process for detecting a goby of coffee beans based on sound pressure; and a control process for changing roasting conditions based on the detection of goby.
  • the ninth invention of the present invention is a carbon monoxide amount measuring step for measuring the amount of carbon monoxide generated from roasted coffee beans, and the occurrence of goby of coffee beans based on the amount of carbon monoxide.
  • the tenth aspect of the present invention is the coffee bean occurrence predicted time prediction method according to the ninth aspect of the invention, wherein in the prediction step, the expected occurrence of goby after 20 seconds or more is predicted.
  • the coffee bean in the ninth or tenth aspect, is a blend of at least two or more different in at least one of brand, lot, production area, refining method and production year This is a method for predicting the occurrence of goby of coffee beans.
  • the twelfth aspect of the present invention is the method for predicting the occurrence of goby of a coffee bean, which is the first goby, according to any of the ninth to eleventh inventions.
  • the thirteenth invention of the present invention is the ninth to eleventh invention according to any one of the ninth to eleventh inventions, wherein the goby is a second goby, which is a goby occurrence scheduled prediction method for coffee beans.
  • a fourteenth aspect of the present invention is a coffee bean occurrence predicted time prediction method for predicting a coffee bean occurrence estimated time based on the amount of carbon monoxide generated from roasted coffee beans.
  • a carbon monoxide amount measuring unit for measuring the amount of carbon monoxide generated from roasted coffee beans, and the occurrence of coffee beans on the basis of the carbon monoxide amount.
  • a prediction unit for predicting a scheduled time, and a predicted occurrence time prediction device for coffee beans.
  • a sixteenth aspect of the present invention is a carbon monoxide amount measuring step for measuring the amount of carbon monoxide generated from roasted coffee beans, and the occurrence of goby of coffee beans based on the amount of carbon monoxide. It is a manufacturing method of roasted coffee beans having an estimation process for estimating a condition change time before a predetermined period from a scheduled time, and a control process for changing roasting conditions at the condition change time.
  • FIG. 1 is a schematic view of a coffee bean occurrence predicted time prediction device. It is the schematic of a roasted coffee bean manufacturing apparatus. It is the output waveform (a) of the apparatus sound of the roasting apparatus and the environmental noise (a), the waveform (b) after passing through the 10 kHz bandpass filter, and the waveform (c) of the peak detector output. The output waveform (a) of the goby sound microphone (a), the waveform (b) after passing through the 10 kHz bandpass filter, and the waveform (c) of the peak detector output.
  • FIG. 4 is a profile of the concentration of carbon monoxide in exhaust gas at each time from the start of roasting in Example 2-1, the number of goses generated every 10 seconds, the set temperature, and the exhaust temperature.
  • FIG. 5 is a profile of the concentration of carbon monoxide in exhaust gas at each time from the start of roasting in Example 2-2, the number of goose generations every 10 seconds, the set temperature, and the exhaust temperature.
  • FIG. 4 is a profile of the concentration of carbon monoxide in exhaust gas at each time from the start of roasting in Example 2-3, the number of goses generated every 10 seconds, the set temperature, and the exhaust temperature.
  • FIG. 5 is a profile of the concentration of carbon monoxide in exhaust gas at each time from the start of roasting in Example 2-4, the number of goose generations every 10 seconds, the set temperature, and the exhaust temperature.
  • FIG. 5 is a profile of the concentration of carbon monoxide in exhaust gas at each time from the start of roasting in Example 2-5, the number of goses generated every 10 seconds, the set temperature, and the exhaust temperature.
  • FIG. 10 is a profile of the concentration of carbon monoxide in the exhaust gas at each time from the start of roasting in Example 2-6, the number of goses generated every 10 seconds, the set temperature, and the exhaust temperature.
  • FIG. 10 is a profile of the concentration of carbon monoxide in the exhaust gas at each time from the start of roasting in Example 2-7, the number of goses generated every 10 seconds, the set temperature, and the exhaust temperature.
  • FIG. 8 is a profile of the concentration of carbon monoxide in exhaust gas at each time from the start of roasting in Example 2-8, the number of goses generated every 10 seconds, the set temperature, and the exhaust temperature.
  • the coffee bean goby detection method includes a sound measurement process for measuring sound generated from roasted coffee beans over time, and a frequency within a range of 5 kHz to 80 kHz of the sound. And a goby detecting step of detecting goby of the coffee beans based on the sound pressure.
  • the coffee bean goby detection method can accurately detect the occurrence of goby. And based on the result, roasting conditions of coffee beans can be controlled.
  • a roasting process is a process of supplying heat with respect to coffee beans and roasting coffee beans, for example.
  • the heat supply means is not particularly limited, and any known means used in conventional roasting of coffee beans can be used. Specifically, for example, a compressor (blower) or a blower that generates heat from a heat source such as an electric heater for coffee beans stored in a roasting container (for example, a rotating drum for roasting coffee beans) Heat can be supplied by blowing air or the like and applying hot air to the coffee beans.
  • a heating temperature used for normal roasting of coffee beans can be used, and for example, a temperature in the range of 100 to 300 ° C. can be used.
  • the amount of hot air blown the amount of air in the range of 0.1 to 1 L per minute per 1 g of coffee beans can be used.
  • the coffee beans to which heat is supplied in the roasting process refer to coffee beans that are raw materials for the roasted coffee beans.
  • the coffee beans are not particularly limited, and are conventionally known brands of coffee beans (for example, Guatemala, Brazil (Santos, Datella, etc.), Ethiopia (Mochail Gachev, etc.), Costa Rica, Kilimanjaro, Vietnam, Colombia, Kenya, Mocha, Blue Mountain, Crystal Mountain, Kenya, Mandelin, Mexico, etc.) can be used alone or in a blend of two or more.
  • any coffee beans can be used for the lot, the production area, the purification method, and the production year.
  • the coffee bean goby according to the present embodiment can be used to predict the occurrence of goby even if it is a blend of two or more different brands, lots, production areas, refining methods, and production years. The forecasting method of occurrence time is useful.
  • the roasting container rotary drum
  • the coffee beans can be roasted while mixing the coffee beans.
  • a conventionally known condition can be used.
  • a condition of 5 to 60 rpm can be used.
  • the temperature in the roasting container may or may not be measured using temperature measuring means such as a temperature sensor.
  • temperature measuring means such as a temperature sensor.
  • the chaff generated by roasting can be collected in order to remove the coffee beans chaff (so-called silver skin) while roasting.
  • the roasting time is naturally determined according to the set value of carbon monoxide as an index, but can be performed within a range of 300 to 1500 seconds, for example.
  • the sound measurement step is a step of measuring the sound generated from the coffee beans being roasted over time.
  • sound is measured using a device such as a microphone that converts the signal into an electric signal or the like.
  • the measurement location is not particularly limited as long as it is a location where the sound pressure in the predetermined frequency range can be measured.
  • a generally known rotary drum type roasting apparatus may be provided with a cylindrical heat-resistant glass. When the roasting device includes such a cylindrical heat-resistant glass, the goby sound is not transmitted and the goat may not be detected. Therefore, for example, the rotating drum type roasting apparatus is preferably made of metal (specifically, brass or the like).
  • Measured frequency is not particularly limited, and for example, continuous measurement is preferable. By continuously measuring, the sound pressure pulse can be detected accurately, and as a result, the occurrence of goby can be detected more accurately.
  • the start timing of sound measurement is not particularly limited, and for example, it is preferable to start 2 minutes after the start of roasting. That is, at the initial stage of roasting (for example, 2 minutes after the start of roasting, preferably after 3 minutes, and more preferably after 4 minutes), the sound pressure measurement process may not be performed. At the initial stage of roasting (for example, after 2 minutes from the start of roasting, preferably after 3 minutes, more preferably after 4 minutes), the coffee beans to be roasted are cold and the surface is hard. In such a case, a sound pressure pulse may be generated in the range of 5 kHz to 80 kHz due to a collision between coffee beans or a collision between a coffee bean and a roasting device. On the other hand, when the coffee beans are hard like this, it cannot be said that the coffee beans are sufficiently heated, and no goby sound can be generated. Therefore, measurement of sound pressure is not an essential aspect in the initial stage of roasting.
  • an initial carbon monoxide amount measuring step for measuring the amount of carbon monoxide generated from the coffee beans being roasted can be provided at least for a period of 2 minutes after the start of roasting.
  • sound pressure pulses are generated in the range of 5 kHz to 80 kHz due to the collision between coffee beans or between the coffee beans and the roasting device, and the accurate roasting state is achieved. Difficult to grasp. Therefore, it is also possible to confirm the roasting state more reliably by measuring the amount of carbon monoxide.
  • a specific method of the initial carbon monoxide amount measuring step and an apparatus used therefor for example, a carbon monoxide amount measuring step and a carbon monoxide amount measuring unit described later can be used.
  • the goby detection step is a step of detecting goby of coffee beans based on the sound pressure of the frequency within the range of 5 kHz or more and 80 kHz or less of the sound measured in the sound measurement step.
  • the frequency range for measuring sound pressure is included in the range of 5 kHz to 80 kHz. In such a range, the goby sound generated from the coffee beans tends to rise sharply, and is not easily affected by, for example, the sound generated from the apparatus or the sound of coffee flowing. Therefore, by measuring the sound pressure in such a frequency range and measuring the sound pressure pulse that rises at a predetermined speed, it is possible to detect coffee beans without being influenced by other noises. .
  • the number of pulse generations is the number of times a sound pressure pulse exceeding a predetermined sound pressure (threshold) is generated within a predetermined period (for example, 1 second, 10 seconds, etc.).
  • a predetermined sound pressure for example, 1 second, 10 seconds, etc.
  • the threshold value for example, the sound pressure when no goby sound is generated can be used. Even when no goby sound is generated, roaster sound and other background noises are included.
  • a sound measurement method for example, an average value of a sound pressure or a corresponding electric signal (for example, voltage) in a predetermined period (for example, 60 seconds) prior to the determination is used as a threshold value. Can do.
  • a predetermined period for example, 60 seconds
  • a predetermined period for example, 60 seconds
  • the threshold value may be set by measuring the sound pressure for an arbitrary period of less than 540 seconds from the start of roasting. If it is less than 540 seconds from the start of roasting, no normal goby sound is generated.
  • the frequency range for measuring the sound pressure is not particularly limited as long as it is within the above-mentioned range. For example, it is preferably 7 kHz or more, more preferably 8 kHz or more, and further preferably 9 kHz or more. 9.5 kHz or more is particularly preferable. Further, the frequency range is preferably 70 kHz or less, more preferably 50 kHz or less, further preferably 40 kHz or less, and further preferably 30 kHz or less. When the frequency range is within the required range, it is possible to increase the accuracy of the distinction between the goby sound and the device sound.
  • the “frequency range in which sound pressure is measured” refers to a frequency range including a sound having a predetermined frequency range to be measured.
  • it may be a range in which all sounds in a range of a half width described later are included.
  • measurement may be performed so as to include the entire range described above, and it is not excluded to measure other frequency ranges together.
  • a required frequency range can be extracted by, for example, a band pass filter.
  • the half width at the frequency at which the sound pressure is measured is not particularly limited, and is preferably 50 kHz or less, more preferably 30 kHz or less, and still more preferably 20 kHz or less, for example.
  • the full width at half maximum is less than or equal to the required value, it is possible to increase the accuracy of discrimination between the goby sound and the device sound.
  • a half value width it is preferable that it is 0.1 kHz or more, for example, it is more preferable that it is 0.2 kHz or more, and it is further more preferable that it is 0.25 kHz or more.
  • the full width at half maximum is greater than or equal to the required value, the accuracy of distinguishing the goby sound from the device sound can be increased.
  • the sampling period for measuring the peak value of the sound pressure is not particularly limited, but is preferably 0.2 milliseconds or less, for example, 0.15 milliseconds or less. More preferably, it is more preferably 0.1 milliseconds or less, and particularly preferably 0.05 milliseconds or less.
  • the sampling period is 0.2 milliseconds or less, it is possible to improve the accuracy of the distinction between the goby sound and the device sound.
  • the goby sound has a feature that the peak rises steeply, whereas the device sound has a feature that the peak does not rise steeply.
  • a bandpass filter having a predetermined frequency range and a half-value width can be used as a method for detecting a sound having a predetermined frequency range and a half-value width as described above.
  • the air flow rate can be adjusted by opening and closing an exhaust damper provided in the roasting apparatus. Thereby, the coffee bean which has a desired flavor can be manufactured with sufficient accuracy.
  • the coffee bean goby detection apparatus is an apparatus that can realize, for example, the above-described coffee bean goby detection method.
  • a coffee bean goby detection device 1 according to an embodiment of the present invention will be described below with reference to FIG.
  • FIG. 1 is a schematic view of a coffee bean goby detection device.
  • the coffee bean goby detection device 1 includes a sound pressure measurement unit 10, a goby detection unit 11, and a control unit 12.
  • the sound measuring unit 10 is disposed in the vicinity of the roasting container 30 of the roasting apparatus 3.
  • the control unit 12 is connected to an adjustment unit 36 that adjusts roasting conditions (temperature, time, etc.) of the roasting device 3.
  • the roasting device 3 has a heat source capable of supplying heat to the coffee beans, and is a means capable of roasting the coffee beans.
  • the coffee bean roasting device is not particularly limited, and any conventional coffee bean roasting means can be used.
  • the roasting device 3 is a roasting device.
  • a container 30, a heat source unit 31, a blower unit 32, a temperature measurement unit 33, an exhaust unit 34, a chaff collector 35, and an adjustment unit 36 are provided.
  • the roasting container 31 is a container for storing coffee beans.
  • the roasting container 31 is not particularly limited, and is preferably configured to be rotatable in order to mix coffee beans.
  • a container that can be set to the same rotation condition as the above-described method for predicting the occurrence of goby of coffee beans can be used.
  • the heat source unit 31 is a means capable of generating heat, and for example, an electric heater can be used. Moreover, as the heat source part 31, what can be used as the heating temperature similar to the goat generation
  • the air blower 32 is a means capable of blowing heat generated from the heat source 31 to the coffee beans accommodated in the roasting container 30.
  • the blower 32 can use what can be made into the ventilation conditions similar to the goat generation
  • a compressor blower or the like can be used as the air blower 32.
  • the temperature measuring unit 33 is a means for measuring the atmospheric temperature in the roasting container 30.
  • the exhaust part 34 is a part for exhausting the gas discharged from the coffee beans being roasted.
  • the chaff collector 35 is a means for removing coffee beans chaff (so-called silver skin).
  • the adjustment unit 36 is a means that can directly change the roasting conditions of coffee beans.
  • the roasting conditions can be changed and adjusted in accordance with an instruction from the control unit 12.
  • roasting conditions such as roasting temperature and roasting time are changed, or roasting is terminated (that is, supply of heat from the heat source is stopped), and roasting is performed.
  • Control can be performed so as to start cooling in the container 30 or to stop cooling by using, as an index, that the temperature of the discharge port has become constant after starting cooling.
  • the goby detection device 2 includes a sound pressure measurement unit 20, a goby detection unit 21, and a control unit 22.
  • the goby detection device 2 measures, over time, the sound pressure of the frequency within the range of 5 kHz to 80 kHz among the sounds generated from the coffee beans stored in the roasting container 30 of the roasting device 3. Therefore, the occurrence of goby is detected.
  • the control unit 22 is not an essential aspect.
  • the sound measurement unit 20 is configured to be able to measure a goby sound generated from coffee beans stored in the roasting container 31 of the roasting apparatus 3. For this reason, the sound measuring unit 20 is arranged and used in the vicinity of the roasting container 30.
  • the sound measuring unit 20 is a means capable of detecting a goby sound generated from roasted coffee beans and converting it into a signal such as an electric signal.
  • a general microphone or the like can be used as the sound measurement unit 20. More specifically, Knowles SPU0410LR5H-QB 100 Hz-80 kHz or the like can be used.
  • the sound measuring unit 20 is disposed in the vicinity of the roasting container 30, but is not limited to this example, and the sound pressure of a frequency within a range of at least 5 kHz to 80 kHz is measured over time. If it can measure automatically, it will not specifically limit.
  • the goby detection unit 21 extracts and counts goby sounds from the sound signal measured by the sound measurement unit 20.
  • FIG. 2 is a schematic diagram of an example of the goby detection unit.
  • the goby detection unit 21 includes, for example, a bandpass filter 211, a peak detector 212, a waveform analyzer 213, and a counter 214.
  • the band pass filter 211 extracts only a signal having a predetermined frequency range from the electrical signal of the sound detected by the sound pressure measuring unit 20 (for example, a microphone).
  • the sound pressure measuring unit 20 for example, a microphone.
  • the bandpass filter 211 only the sound having a frequency in the range of 5 kHz to 80 kHz is extracted, and the frequency range thereof is extracted. Only the sound pressure can be measured.
  • the peak detector 212 detects the positive-side peak value of the AC component of the electrical signal having a predetermined frequency that has passed through the band-pass filter 211 and holds it for a predetermined period.
  • the waveform analyzer 213 performs comparative analysis before and after the rising of the waveform of the output waveform from the peak detector 212, and determines that the sharply rising waveform is a goby sound.
  • the waveform analyzer 213 transmits a signal to the counter 214 every time a goby sound is determined.
  • the counter 214 counts the signal received from the waveform analyzer 213 every predetermined period, and transmits the number of goby sounds generated every predetermined period (for example, 1 second, 10 seconds, etc.) to the control unit 22. .
  • control unit 22 is a means capable of adjusting the roasting conditions in the roasting apparatus 3 based on the goby detection by the gourd detection unit 21.
  • the control unit 22 receives the output of the goby generation from the goby detection unit 21 and instructs the control unit of the roasting apparatus 3 to change the roasting conditions based on the data. Thereby, the roasting conditions in the roasting device 3 can be adjusted. And roasted coffee beans in which roasting conditions are appropriately controlled can be manufactured by adjusting roasting conditions in this way.
  • the specific method for adjusting the roasting conditions in the control unit 22 is appropriately selected according to the purpose and is not particularly limited.
  • the coffee beans are linked with the roasting degree of the coffee beans.
  • the heat supply conditions (for example, roasting temperature, roasting time, air blowing conditions, rotating drum rotating conditions, etc.) can be changed to adjust the roasting speed and the like.
  • the supply of heat to the coffee beans can be stopped. More specifically, the adjustment unit 36 can be instructed to stop the supply of heat to the coffee beans.
  • control unit 22 can instruct on / off of the switch of the gas pump in the amount of carbon monoxide.
  • control unit 22 records data (for example, data on another computer (personal computer)) in order to record data (for example, the number of occurrences of the goby sound, the elapsed time since the start of roasting, the temperature within the roasting temperature, the air temperature, etc.).
  • data for example, data on another computer (personal computer)
  • data for example, the number of occurrences of the goby sound, the elapsed time since the start of roasting, the temperature within the roasting temperature, the air temperature, etc.
  • the goby detection part 11 and the control part 12 should just be connected to the sound pressure measurement part 10 and the adjustment part 36 in the state which can communicate, respectively.
  • the goby detection unit 11 and the control unit 12 can be installed in a server on the network.
  • the coffee bean occurrence time prediction method includes a carbon monoxide amount measuring step for measuring the amount of carbon monoxide generated from roasted coffee beans, and the coffee beans based on the carbon monoxide amount.
  • the coffee bean occurrence time prediction method can appropriately predict the expected occurrence of goby by having such a configuration. And based on the result, roasting conditions of coffee beans can be controlled.
  • both the first goby and the second goby are predicted from the two goby sounds generated from the coffee beans during the roasting process. can do.
  • a roasting process is a process of supplying heat with respect to coffee beans and roasting coffee beans, for example.
  • the heat supply means is not particularly limited, and any known means used in conventional roasting of coffee beans can be used.
  • a roasting container for example, a rotating drum for roasting coffee beans
  • heat generated from a heat source such as an electric heater is blown by a compressor (blower), a blower, etc.
  • Heat can be supplied by applying hot air to the coffee beans.
  • a heating temperature used for normal roasting of coffee beans can be used, and for example, a temperature in the range of 100 to 300 ° C. can be used.
  • the amount of hot air blown the amount of air in the range of 0.1 to 1 L per minute per 1 g of coffee beans can be used.
  • the coffee beans to which heat is supplied in the roasting process refer to coffee beans that are raw materials for the roasted coffee beans.
  • the coffee beans are not particularly limited, and are conventionally known brands of coffee beans (for example, Guatemala, Brazil (Santos, Datella, etc.), Ethiopia (Mochail Gachev, etc.), Costa Rica, Kilimanjaro, Vietnam, Colombia, Kenya, Mocha, Blue Mountain, Crystal Mountain, Kenya, Mandelin, Mexico, etc.) can be used alone or in a blend of two or more.
  • any coffee beans can be used for the lot, the production area, the purification method, and the production year.
  • the coffee bean goby according to the present embodiment can be used to predict the occurrence of goby even if it is a blend of two or more different brands, lots, production areas, refining methods, and production years. The forecasting method of occurrence time is useful.
  • the roasting container rotary drum
  • the coffee beans can be roasted while mixing the coffee beans.
  • a conventionally known condition can be used.
  • a condition of 5 to 60 rpm can be used.
  • the temperature in the roasting container may or may not be measured using temperature measuring means such as a temperature sensor.
  • temperature measuring means such as a temperature sensor.
  • the chaff generated by roasting can be collected in order to remove the coffee beans chaff (so-called silver skin) while roasting.
  • the roasting time is naturally determined according to the set value of carbon monoxide as an index, but can be performed within a range of 300 to 1500 seconds, for example.
  • the carbon monoxide amount measuring step is a step of measuring the amount of carbon monoxide generated from the coffee beans being roasted.
  • the amount of carbon monoxide to be measured is not particularly limited, and either the absolute amount or the relative amount (concentration) of generated carbon monoxide can be used.
  • the carbon monoxide measurement means (sensor) is not particularly limited, and for example, NAP-505 manufactured by Nemoto Special Chemical Co., Ltd. can be used.
  • the measurement location is not particularly limited, and for example, a location where the roasting is performed (space) or a location exhausted from the location where the roasting is performed can be measured.
  • a filter for example, a chaff filter
  • the air supply is performed at a constant speed in order to accurately measure the amount of carbon monoxide.
  • Carbon monoxide can be supplied with a gas pump or without a gas pump in order to adjust the speed of the supply.
  • Measured frequency is not particularly limited, and can be performed continuously or intermittently. Whether continuous or intermittent, it is preferable to measure over time. By measuring over time, the amount of carbon monoxide generated in the future can be predicted more accurately, and as a result, the time of occurrence of goby can be predicted more accurately.
  • the predicting step is a step of predicting the occurrence of goby of coffee beans based on the amount of carbon monoxide.
  • the prediction step it is predicted that goby will occur after a predetermined period when the amount of carbon monoxide measured in the carbon monoxide amount measurement step exceeds a threshold value.
  • a threshold value for example, the correlation between the amount of carbon monoxide and the time of occurrence of goby is recorded in advance for a plurality of types (brand, year of production, etc.) of the beans, and a predetermined period before the occurrence of goby (for example, 1-2 minutes before) The amount of carbon monoxide is taken as a threshold value.
  • the time point is determined to be a predetermined period before the occurrence of goby (for example, 1 to 2 minutes before), and after the predetermined period from the time point (for example, A goby is expected to occur after 1 to 2 minutes).
  • coffee beans having a desired flavor can be obtained by estimating the condition change timing and changing the roasting conditions.
  • the air flow rate can be adjusted by opening and closing an exhaust damper provided in the roasting apparatus.
  • the coffee bean occurrence predicted time prediction apparatus is an apparatus that can realize, for example, the above-described coffee bean occurrence occurrence prediction method.
  • a coffee bean gossip scheduled production time prediction apparatus according to an embodiment of the present invention will be described below with reference to FIG.
  • FIG. 3 is a schematic view of a coffee bean occurrence predicted time prediction device.
  • the coffee bean gossip scheduled production time prediction device 2 includes a carbon monoxide amount measurement unit 20, a prediction unit 21, and a control unit 22.
  • the carbon monoxide amount measuring unit 20 is connected to the exhaust unit 34 of the roasting apparatus 3.
  • the control unit 22 is connected to an adjustment unit 36 that adjusts roasting conditions (temperature, time, etc.) of the roasting device 3.
  • the exhaust unit 34 is configured to be able to supply carbon monoxide to the carbon monoxide amount measuring unit 20. And the thing similar to the roasting apparatus 3 mentioned above can be used except the adjustment part 36 being connected so that communication with the estimation part 11 is possible.
  • the goby occurrence prediction time measuring device 2 includes a carbon monoxide amount measuring unit 20, a predicting unit 21, and a control unit 22.
  • the goby generation prediction time measuring device 2 predicts the goji generation time based on the amount of carbon monoxide generated from the coffee beans roasted in the roasting device 3 described above. Each part will be described below.
  • the control unit 12 is not an essential aspect.
  • the carbon monoxide amount measuring unit 20 is configured to be able to measure the amount of carbon monoxide sent from the roasting apparatus 3.
  • the coffee bean gossip scheduled generation time measuring apparatus 2 according to the present embodiment further includes a filter between the carbon monoxide amount measuring unit 20 and the exhaust unit 34.
  • the carbon monoxide amount measuring unit 20 is a means capable of measuring the amount of carbon monoxide generated from the coffee beans being roasted.
  • the carbon monoxide amount measuring unit 20 for example, NAP-505 manufactured by Nemoto Special Chemical Co., Ltd. can be used.
  • the carbon monoxide amount measuring unit 20 is configured separately from the roasting device 3 (outside the roasting device 3) so as to measure the carbon monoxide exhausted from the roasting device 4.
  • the carbon monoxide amount measuring unit 20 may be provided inside the roasting apparatus 3.
  • the filter is disposed in the carbon monoxide passage until the carbon monoxide sent from the roasting apparatus 3 reaches the carbon monoxide amount measuring unit 20.
  • a filter when carbon monoxide is supplied to the carbon monoxide amount measuring unit 20, foreign matters (for example, chaff) can be removed, so that the carbon monoxide amount can be measured more accurately. Can do.
  • a chaff filter etc. can be used.
  • the coffee bean gossip scheduled occurrence time prediction device 1 can appropriately include other components as long as the effects of the present invention are not impaired.
  • a gas pump for supplying carbon monoxide to the measurement unit 1 can be further provided.
  • the prediction unit 21 is a means for predicting the coffee beans gossip generation scheduled time based on the measurement result of the carbon monoxide amount by the carbon monoxide amount measurement unit 20.
  • control unit 22 is a means that can adjust the roasting conditions in the roasting apparatus 3 based on the prediction of the goby occurrence scheduled time by the prediction unit 21.
  • the control unit 22 receives the output of the expected occurrence time of the goby from the prediction unit 21, and instructs the control unit of the roasting apparatus 3 to change the roasting conditions based on the data. Thereby, the roasting conditions in the roasting device 3 can be adjusted. And roasted coffee beans in which roasting conditions are appropriately controlled can be manufactured by adjusting roasting conditions in this way.
  • the specific method for adjusting the roasting conditions in the control unit 22 is appropriately selected according to the purpose and is not particularly limited.
  • the coffee beans are linked with the roasting degree of the coffee beans.
  • the heat supply conditions (for example, roasting temperature, roasting time, air blowing conditions, rotating drum rotating conditions, etc.) can be changed to adjust the roasting speed and the like.
  • the supply of heat to the coffee beans can be stopped.
  • control unit 22 can instruct on / off of the switch of the gas pump in the amount of carbon monoxide.
  • control unit 22 records data (for example, data on another computer (personal computer)) in order to record data (for example, carbon monoxide concentration, elapsed time from the start of roasting, temperature within roasting temperature, air temperature, etc.). Can also be configured to send.
  • the prediction part 21 and the control part 22 should just be connected to the carbon monoxide amount measurement part 20 and the adjustment part 36 in the state which can communicate, respectively.
  • the prediction unit 21 and the control unit 22 can be installed in a server on the network.
  • roasted coffee bean manufacturing device 4 a device comprising all of the goby detection device 1 shown in FIG. 1, the goose occurrence scheduled time prediction device 2 shown in FIG. 3, and the roasting device 3 shown in FIGS. was prepared (FIG. 4). Each will be described in detail below.
  • the roasting means 3 includes a roasting container 30, an electric heater as a heat source unit 31, a blower as a blower unit 32, a temperature sensor as a temperature measurement unit 33, an exhaust unit 34, a chaff collector 35, and an adjustment And a unit 36.
  • GeneCafe CBR-101 usually has a cylindrical heat-resistant glass as the roasting container 30.
  • a 0.1-t brass tube was manufactured and used in order to transmit goby sound.
  • the adjusting unit 36 can directly change the roasting conditions of the coffee beans according to the temperature and roasting time timer.
  • the exhaust unit 34 was designed so as to supply exhaust gas to the carbon monoxide amount measuring unit 10 of the goby occurrence scheduled time prediction device 2.
  • specific roasting conditions were a drum rotation speed of 10 to 11 rpm, an air volume of about 150 L / min, and a temperature adjustment range of 60 to 250 ° C.
  • Sound pressure measurement unit 10 As the sound pressure measurement unit 10, a microphone (Knowles SPU0410LR5H-QB) was used.
  • the goby detecting unit 11 includes a band pass filter 111, a peak detector 112, a waveform analyzer 113, and a counter 114.
  • the bandpass filter 111 a two-stage amplification type bandpass filter using an analog operational amplifier was used.
  • the peak detector 112 is composed of an analog operational amplifier and an analog comparator.
  • the waveform analyzer 113 is composed of an analog comparator and a microcomputer.
  • a microcomputer was used as the counter 114. (Control units 12, 22)
  • the control units 12 and 22 are set so as to transmit the number of occurrences of the goby sound per 10 seconds, the CO gas concentration, the elapsed seconds, the set temperature, and the exhaust temperature to the computer (personal computer). .
  • the sensor unit as the goby occurrence scheduled time prediction device 2 was further designed to include a filter and a gas pump.
  • the details of each part in the goby occurrence scheduled time prediction device 2 are as follows.
  • Carbon monoxide measurement unit 10 As the carbon monoxide amount measuring unit 10, CO (carbon monoxide) was measured using a sensor device of NAP-505 (CO measurement range: 0 to 1000 ppm) manufactured by Nemoto Special Chemical.
  • the chaff filter is for removing foreign substances such as chaff mixed with the exhaust gas supplied from the exhaust unit 34 of the roasting device 3.
  • the chaff collector an accessory of the above-described GeneCafe CBR-101 (manufactured by GeneSys) was used.
  • the gas pump sends exhaust gas from the exhaust section 34 in the roasting device 3 to the goby occurrence scheduled time prediction device 1.
  • As the gas pump NF-11 manufactured by KNF was used.
  • the gas pump capacity was 100 ml / min.
  • Example 1 Using the roasted coffee bean production apparatus 4 described above, 250 g of coffee beans (Mocashidamo G4) were roasted. The heating temperature was constant at 230 ° C. At this time, the main sound is the sound of the roasting device when the goby has not occurred (about 440 seconds from the start of roasting) and the environmental noise, and the goby sound when the goby has occurred (about 620 seconds from the start of roasting). And measured and recorded three channels of bandpass filter input / output and peak detector output simultaneously with a digital oscilloscope.
  • FIGS. 5 (a) to 5 (c) show the output waveform of the roaster device sound and environmental noise (FIG. 5 (a)), the waveform after passing through the 10 kHz bandpass filter (FIG. 5 (b)), and the peak. It is a waveform (FIG.5 (c)) of a detector output.
  • FIG. 6A to 6C show the output waveform of the goby microphone (FIG. 6A), the waveform after passing through the 10 kHz bandpass filter (FIG. 6B), and the waveform of the peak detector output (FIG. 6). (C)).
  • Example 2 (Examples 2-1 to 2-4) Using the roasted coffee bean production apparatus 4 described above, 250 g of coffee beans were roasted. The heating temperature was constant at 230 ° C. Further, when the concentration of carbon monoxide in the exhaust gas measured in the carbon monoxide amount measurement unit reached 600 ppm, heating was stopped in the adjustment unit 36.
  • the apparatus sound and environmental noise during that period were measured.
  • the peak value of each second for 60 seconds was recorded, the average value for 60 seconds was recorded, and the threshold value was 541 seconds after the start of roasting.
  • the measured sound pressure exceeds this threshold after 541 seconds from the start of roasting, and the voltage is 1 ⁇ 4 or more of the threshold in the period of 3 milliseconds before 0.5 milliseconds from when the threshold was exceeded. Is not recorded, it is determined as a goby sound and a signal is transmitted to the counter. On the other hand, if a voltage of 1/4 or more of the threshold is recorded during this period, it is determined as noise and no signal is transmitted to the counter.
  • FIGS. 7 to 10 are profiles of the concentration of carbon monoxide in the exhaust gas in the time from the start of roasting, the number of goses generated every 10 seconds, the set temperature and the exhaust temperature.
  • Table 1 shows the concentration of carbon monoxide in the exhaust gas when the first goby sound is generated and the concentration of carbon monoxide in the exhaust gas when the second goby sound is generated in Examples 2-1 to 2-4.
  • the time from the start of roasting to 4 ppm, 5 ppm, 30 ppm, 40 ppm and 50 ppm is shown.
  • the first goby sound detected when the concentration of carbon monoxide in the exhaust gas is 3 ppm or more and less than 30 ppm is “start of the first goby sound”, and the first goby detected at 50 ppm or more.
  • the sound is "start of second goby sound”.
  • Examples 2-5 to 2-8 In a temperature profile of 300 seconds at 180 ° C., 120 seconds at 200 ° C., 120 seconds at 224 ° C., and then maintained at 230 ° C., when the concentration of carbon monoxide in the exhaust gas becomes 9 ppm, the set temperature at that time for 20 seconds Example 2-1 to 2-4, except that the temperature was set to be lowered by 30 ° C. for 20 seconds when the concentration of carbon monoxide in the exhaust gas reached 80 ppm. Similarly, coffee beans were roasted.
  • FIGS. 11 to 14 are profiles of the concentration of carbon monoxide in the exhaust gas during the time from the start of roasting, the number of goses generated every 10 seconds, the set temperature and the exhaust temperature.
  • Table 2 shows the concentration of carbon monoxide in the exhaust gas when the first goby sound is generated and the concentration of carbon monoxide in the exhaust gas when the second goby sound is generated in Examples 2-5 to 2-8.
  • the time from the start of roasting to 4 ppm, 5 ppm, 30 ppm, 40 ppm and 50 ppm is shown.
  • the first goby sound detected when the concentration of carbon monoxide in the exhaust gas is 3 ppm or more and less than 30 ppm is “the start of the first goby sound”, and the first goby sound detected when the concentration is 50 ppm or more.
  • the sound is "start of second goby sound”.

Abstract

Provided is a method for easily and accurately detecting or predicting cracking occurrence when roasting coffee beans. A coffee bean cracking detection method according to the present invention comprises: a sound measurement step for temporally measuring sound generated from coffee beans that are being roasted; and a cracking detection step for detecting cracking of the coffee beans on the basis of sound pressure having a frequency in a range included within the range of 5-80 kHz in the sound. The sound measurement step is preferably started two minutes after the start of roasting. Preferably, the method further comprises an initial carbon monoxide level measurement step for measuring the level of carbon monoxide generated from coffee beans that are being roasted, at least until two minutes elapses from the start of the roasting.

Description

コーヒー豆のハゼ発生予定時期予測方法、コーヒー豆のハゼ発生予定時期予測装置、コーヒー豆のハゼ検知方法、コーヒー豆のハゼ検知装置、及び焙煎コーヒー豆の製造方法Method for predicting coffee bean occurrence time, apparatus for predicting coffee bean occurrence, coffee bean detection method, coffee bean detection device, and method for producing roasted coffee beans
 本発明は、コーヒー豆のハゼ発生予定時期予測方法、コーヒー豆のハゼ発生予定時期予測装置、コーヒー豆のハゼ検知方法、コーヒー豆のハゼ検知装置、及び焙煎コーヒー豆の製造方法に関する。 [Technical Field] The present invention relates to a method for predicting coffee bean occurrence, a device for predicting coffee bean occurrence, a coffee bean detection method, a coffee bean detection device, and a method for producing roasted coffee beans.
 コーヒー豆は、焙煎することにより、その香味を引き出すことができる。しかしながら、コーヒー豆の香味は、焙煎条件によって変化する。したがって、所望のコーヒー豆の香味を引き出すためには、焙煎条件を制御する必要がある。 Coffee beans can bring out their flavor by roasting. However, the flavor of coffee beans varies with roasting conditions. Therefore, it is necessary to control roasting conditions in order to bring out the desired coffee bean flavor.
 ところで、コーヒー豆は、焙煎段階において、加熱に伴い2度、ハゼ音(「クラック音」とも言う。)を発生させる。所望の香味を得るため、この2度のハゼ音の少なくとも一方の発生時期を目安として、焙煎中の豆に与える熱量を変更する操作が行われている。また、オペレーターの経験や勘によりハゼ音の発生時期を予測して、ハゼ音の発生の1~2分前に焙煎中のコーヒー豆に与える熱量を変更する操作が行われることもある。このように、焙煎段階におけるハゼ音の発生時期の検知又は予測が重要である。 By the way, in the roasting stage, the coffee beans generate a goby sound (also referred to as “crack sound”) twice with heating. In order to obtain a desired flavor, an operation of changing the amount of heat given to the roasted beans is performed using the generation time of at least one of the two goby sounds as a guide. In addition, an operation of changing the amount of heat given to roasted coffee beans one to two minutes before the occurrence of a goby sound may be performed by predicting the occurrence time of the goby sound based on the operator's experience and intuition. As described above, it is important to detect or predict the generation time of the goby sound in the roasting stage.
 ここで、例えば、非特許文献1には、音圧レベル及び周波数スペクトラム解析によってコーヒー豆から発生するハゼ音を検知する方法が知られている。一つのコーヒー豆が発するハゼ音は、数ミリ秒から10数ミリ秒継続するが、このハゼ音のうち数百Hzから数十キロHzの帯域の音について頻繁に周波数スペクトラム解析し、焙煎装置から生ずる雑音やその他背景雑音を除去し、コーヒー豆から発生されたハゼ音のみを高感度で検知するためには、信号処理専用プロセッサ(DSP)が必要となり、コストを要する。また、この方法によれば、1度目のハゼ音と2度目のハゼ音と対比して両者を区別する必要があるため、両者を焙煎中リアルタイムに区別することは困難である。 Here, for example, Non-Patent Document 1 discloses a method for detecting a goby sound generated from coffee beans by sound pressure level and frequency spectrum analysis. The goby sound produced by one coffee bean lasts for several milliseconds to 10 and several milliseconds. Of these gospel sounds, frequency spectrum analysis is frequently performed on sounds in the band of several hundred Hz to several tens of kilohertz. In order to remove noise generated from the image and other background noise and detect only the goby sound generated from the coffee beans with high sensitivity, a signal processing dedicated processor (DSP) is required, which is costly. Further, according to this method, since it is necessary to distinguish between the first and second goby sounds, it is difficult to distinguish them in real time during roasting.
 本発明は、以上の実情に鑑みてなされたものであり、コーヒー豆の焙煎に際し、ハゼの発生時期を簡易且つ正確に検知し、又は予測する方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for easily and accurately detecting or predicting the occurrence of goby when roasting coffee beans.
 本発明者らは、焙煎中のコーヒー豆から発生する一酸化炭素の量と、ハゼ音の発生に相関関係があることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のようなものを提供する。 The present inventors have found that there is a correlation between the amount of carbon monoxide generated from coffee beans being roasted and the generation of goby sound, and the present invention has been completed. More specifically, the present invention provides the following.
 (1)本発明の第1の発明は、焙煎中のコーヒー豆から発生する音を経時的に測定する音測定工程と、前記音のうち5kHz以上80kHz以下の範囲に含まれる範囲の周波数の音圧に基づいて、コーヒー豆のハゼを検知するハゼ検知工程と、を有するコーヒー豆のハゼ検知方法である。 (1) The first invention of the present invention is a sound measuring step for measuring sound generated from roasted coffee beans over time, and a frequency within a range of 5 kHz to 80 kHz of the sound. A coffee beans goby detection method comprising: a goby detection step for detecting coffee beans goby based on sound pressure.
 (2)本発明の第2の発明は、第1の発明において、焙煎開始2分後から、音測定工程を開始するコーヒー豆のハゼ検知方法である。 (2) The second aspect of the present invention is the coffee bean gourd detection method of the first aspect, wherein the sound measurement step is started 2 minutes after the start of roasting.
 (3)本発明の第3の発明は、第1又は第2の発明において、少なくとも焙煎開始2分後まで、焙煎中のコーヒー豆から発生する一酸化炭素量を測定する初期一酸化炭素量測定工程をさらに有するコーヒー豆のハゼ検知装置である。 (3) In the first or second invention, the third invention of the present invention is an initial carbon monoxide for measuring the amount of carbon monoxide generated from coffee beans being roasted until at least 2 minutes after the start of roasting. It is a goat detection device of coffee beans which further has a quantity measurement process.
 (4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、前記音測定工程において、焙煎中の前記コーヒー豆から発生する音をサンプリング周期0.2ミリ秒以下で測定するコーヒー豆のハゼ検知装置である。 (4) According to a fourth aspect of the present invention, in any one of the first to third aspects, in the sound measurement step, the sound generated from the coffee beans being roasted is sampled at a sampling period of 0.2 milliseconds or less. It is a goby detection device for coffee beans measured by.
 (5)本発明の第5の発明は、第1乃至第4のいずれかの発明において、前記ハゼ検知工程において、0.1kHz以上1kHz以下の半値幅を有する周波数の音圧に基づいて、コーヒー豆のハゼを検知するコーヒー豆のハゼ検知装置である。 (5) A fifth invention of the present invention is the coffee machine according to any one of the first to fourth inventions, based on the sound pressure of a frequency having a half-value width of 0.1 kHz or more and 1 kHz or less in the goby detection step. This is a coffee bean goby detection device for detecting bean goby.
 (6)本発明の第6の発明は、焙煎中のコーヒー豆から発生する音のうち5kHz以上80kHz以下の範囲に含まれる範囲の周波数の音圧に基づいて、コーヒー豆のハゼを検知するコーヒー豆のハゼ検知方法である。 (6) According to a sixth aspect of the present invention, coffee beans are detected based on the sound pressure of the frequency within the range of 5 kHz to 80 kHz among the sounds generated from the roasted coffee beans. This is a method for detecting coffee beans.
 (7)本発明の第7の発明は、焙煎中のコーヒー豆から発生する音を経時的に測定する音測定部と、前記音のうち5kHz以上80kHz以下の範囲に含まれる範囲の周波数の音圧に基づいて、コーヒー豆のハゼを検知するハゼ検知部と、を有するコーヒー豆のハゼ検知装置である。 (7) The seventh invention of the present invention is a sound measuring unit that measures sound generated from roasted coffee beans over time, and a frequency within a range of 5 kHz to 80 kHz of the sound. A coffee bean detection device that includes a goby detection unit that detects goby of coffee beans based on sound pressure.
 (8)本発明の第8の発明は、焙煎中のコーヒー豆から発生する音を経時的に測定する音測定工程と、前記音のうち5kHz以上80kHz以下の範囲に含まれる範囲の周波数の音圧に基づいて、コーヒー豆のハゼを検知するハゼ検知工程と、前記ハゼの検知に基づいて、焙煎条件を変更する制御工程と、を有する焙煎コーヒー豆の製造方法である。 (8) The eighth invention of the present invention is a sound measurement step for measuring the sound generated from roasted coffee beans over time, and a frequency within a range of 5 kHz to 80 kHz of the sound. A roasted coffee bean manufacturing method comprising: a goby detection process for detecting a goby of coffee beans based on sound pressure; and a control process for changing roasting conditions based on the detection of goby.
 (9)本発明の第9の発明は、焙煎中のコーヒー豆から発生する一酸化炭素量を測定する一酸化炭素量測定工程と、前記一酸化炭素量に基づいて、コーヒー豆のハゼ発生予定時期を予測する予測工程と、を有するコーヒー豆のハゼ発生予定時期予測方法である。 (9) The ninth invention of the present invention is a carbon monoxide amount measuring step for measuring the amount of carbon monoxide generated from roasted coffee beans, and the occurrence of goby of coffee beans based on the amount of carbon monoxide. A prediction process for predicting the scheduled time, and a method for predicting the expected occurrence of goby of coffee beans.
 (10)本発明の第10の発明は、第9の発明において、前記予測工程では、20秒以上後のハゼ発生予定時期を予測するコーヒー豆のハゼ発生予定時期予測方法である。 (10) The tenth aspect of the present invention is the coffee bean occurrence predicted time prediction method according to the ninth aspect of the invention, wherein in the prediction step, the expected occurrence of goby after 20 seconds or more is predicted.
 (11)本発明の第11の発明は、第9又は第10の発明において、前記コーヒー豆は、少なくとも銘柄、ロット、産地、精製方法及び生産年のいずれかが異なる、少なくとも2種以上のブレンドであるコーヒー豆のハゼ発生予定時期予測方法である。 (11) In an eleventh aspect of the present invention, in the ninth or tenth aspect, the coffee bean is a blend of at least two or more different in at least one of brand, lot, production area, refining method and production year This is a method for predicting the occurrence of goby of coffee beans.
 (12)本発明の第12の発明は、第9乃至第11のいずれかの発明において、前記ハゼは、第1のハゼであるコーヒー豆のハゼ発生予定時期予測方法である。 (12) The twelfth aspect of the present invention is the method for predicting the occurrence of goby of a coffee bean, which is the first goby, according to any of the ninth to eleventh inventions.
 (13)本発明の第13の発明は、第9乃至第11のいずれかの発明において、前記ハゼは、第2のハゼであるコーヒー豆のハゼ発生予定時期予測方法である。 (13) The thirteenth invention of the present invention is the ninth to eleventh invention according to any one of the ninth to eleventh inventions, wherein the goby is a second goby, which is a goby occurrence scheduled prediction method for coffee beans.
 (14)本発明の第14の発明は、焙煎中のコーヒー豆から発生する一酸化炭素量に基づいて、コーヒー豆のハゼ発生予定時期を予測するコーヒー豆のハゼ発生予定時期予測方法。 (14) A fourteenth aspect of the present invention is a coffee bean occurrence predicted time prediction method for predicting a coffee bean occurrence estimated time based on the amount of carbon monoxide generated from roasted coffee beans.
 (15)本発明の第15の発明は、焙煎中のコーヒー豆から発生する一酸化炭素量を測定する一酸化炭素量測定部と、前記一酸化炭素量に基づいて、コーヒー豆のハゼ発生予定時期を予測する予測部と、を備えるコーヒー豆のハゼ発生予定時期予測装置である。 (15) According to a fifteenth aspect of the present invention, there is provided a carbon monoxide amount measuring unit for measuring the amount of carbon monoxide generated from roasted coffee beans, and the occurrence of coffee beans on the basis of the carbon monoxide amount. A prediction unit for predicting a scheduled time, and a predicted occurrence time prediction device for coffee beans.
 (16)本発明の第16の発明は、焙煎中のコーヒー豆から発生する一酸化炭素量を測定する一酸化炭素量測定工程と、前記一酸化炭素量に基づいて、コーヒー豆のハゼ発生予定時期より所定期間前の条件変更時期を見積もる見積工程と、前記条件変更時期に、焙煎条件を変更する制御工程と、を有する焙煎コーヒー豆の製造方法である。 (16) A sixteenth aspect of the present invention is a carbon monoxide amount measuring step for measuring the amount of carbon monoxide generated from roasted coffee beans, and the occurrence of goby of coffee beans based on the amount of carbon monoxide. It is a manufacturing method of roasted coffee beans having an estimation process for estimating a condition change time before a predetermined period from a scheduled time, and a control process for changing roasting conditions at the condition change time.
 本発明によれば、コーヒー豆の焙煎に際し、ハゼの発生時期を簡易且つ正確に検知又は予測する、その結果に基づきコーヒー豆を焙煎する方法を提供することができる。 According to the present invention, it is possible to provide a method for roasting coffee beans based on the result of detecting or predicting the occurrence of goby simply and accurately when roasting coffee beans.
コーヒー豆のハゼ検知装置の概略図である。It is the schematic of the goby detection apparatus of coffee beans. ハゼ検知部の一例の概略図である。It is the schematic of an example of a goby detection part. コーヒー豆のハゼ発生予定時期予測装置の概略図である。1 is a schematic view of a coffee bean occurrence predicted time prediction device. 焙煎コーヒー豆製造装置の概略図である。It is the schematic of a roasted coffee bean manufacturing apparatus. 焙煎装置の装置音及び環境雑音のマイクロフォンの出力波形(a)、10kHzバンドパスフィルタ通過後の波形(b)、ピークディテクタ出力の波形(c)である。It is the output waveform (a) of the apparatus sound of the roasting apparatus and the environmental noise (a), the waveform (b) after passing through the 10 kHz bandpass filter, and the waveform (c) of the peak detector output. ハゼ音のマイクロフォンの出力波形(a)、10kHzバンドパスフィルタ通過後の波形(b)、ピークディテクタ出力の波形(c)である。The output waveform (a) of the goby sound microphone (a), the waveform (b) after passing through the 10 kHz bandpass filter, and the waveform (c) of the peak detector output. 実施例2-1における焙煎開始からの各時間における排出ガス中の一酸化炭素の濃度、10秒ごとのハゼ発生回数、設定温度及び排気温度のプロファイルである。FIG. 4 is a profile of the concentration of carbon monoxide in exhaust gas at each time from the start of roasting in Example 2-1, the number of goses generated every 10 seconds, the set temperature, and the exhaust temperature. 実施例2-2における焙煎開始からの各時間における排出ガス中の一酸化炭素の濃度、10秒ごとのハゼ発生回数、設定温度及び排気温度のプロファイルである。FIG. 5 is a profile of the concentration of carbon monoxide in exhaust gas at each time from the start of roasting in Example 2-2, the number of goose generations every 10 seconds, the set temperature, and the exhaust temperature. 実施例2-3における焙煎開始からの各時間における排出ガス中の一酸化炭素の濃度、10秒ごとのハゼ発生回数、設定温度及び排気温度のプロファイルである。FIG. 4 is a profile of the concentration of carbon monoxide in exhaust gas at each time from the start of roasting in Example 2-3, the number of goses generated every 10 seconds, the set temperature, and the exhaust temperature. 実施例2-4における焙煎開始からの各時間における排出ガス中の一酸化炭素の濃度、10秒ごとのハゼ発生回数、設定温度及び排気温度のプロファイルである。FIG. 5 is a profile of the concentration of carbon monoxide in exhaust gas at each time from the start of roasting in Example 2-4, the number of goose generations every 10 seconds, the set temperature, and the exhaust temperature. 実施例2-5における焙煎開始からの各時間における排出ガス中の一酸化炭素の濃度、10秒ごとのハゼ発生回数、設定温度及び排気温度のプロファイルである。FIG. 5 is a profile of the concentration of carbon monoxide in exhaust gas at each time from the start of roasting in Example 2-5, the number of goses generated every 10 seconds, the set temperature, and the exhaust temperature. 実施例2-6における焙煎開始からの各時間における排出ガス中の一酸化炭素の濃度、10秒ごとのハゼ発生回数、設定温度及び排気温度のプロファイルである。FIG. 10 is a profile of the concentration of carbon monoxide in the exhaust gas at each time from the start of roasting in Example 2-6, the number of goses generated every 10 seconds, the set temperature, and the exhaust temperature. 実施例2-7における焙煎開始からの各時間における排出ガス中の一酸化炭素の濃度、10秒ごとのハゼ発生回数、設定温度及び排気温度のプロファイルである。FIG. 10 is a profile of the concentration of carbon monoxide in the exhaust gas at each time from the start of roasting in Example 2-7, the number of goses generated every 10 seconds, the set temperature, and the exhaust temperature. 実施例2-8における焙煎開始からの各時間における排出ガス中の一酸化炭素の濃度、10秒ごとのハゼ発生回数、設定温度及び排気温度のプロファイルである。FIG. 8 is a profile of the concentration of carbon monoxide in exhaust gas at each time from the start of roasting in Example 2-8, the number of goses generated every 10 seconds, the set temperature, and the exhaust temperature.
 以下、本発明の具体的な実施形態について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で適宜変更することができる。 Hereinafter, specific embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment, In the range which does not change the summary of this invention, it can change suitably.
 <コーヒー豆のハゼ検知方法>
 本実施形態に係るコーヒー豆のハゼ検知方法は、焙煎中のコーヒー豆から発生する音を経時的に測定する音測定工程と、その音のうち5kHz以上80kHz以下の範囲に含まれる範囲の周波数の音圧に基づいて、コーヒー豆のハゼを検知するハゼ検知工程と、を有する。本実施形態に係るコーヒー豆のハゼ検知方法は、このような構成を有することにより、ハゼの発生を正確に検知することができる。そして、その結果に基づき、コーヒー豆の焙煎条件を制御することができる。
<Coffee beans goby detection method>
The coffee bean goby detection method according to the present embodiment includes a sound measurement process for measuring sound generated from roasted coffee beans over time, and a frequency within a range of 5 kHz to 80 kHz of the sound. And a goby detecting step of detecting goby of the coffee beans based on the sound pressure. By having such a configuration, the coffee bean goby detection method according to the present embodiment can accurately detect the occurrence of goby. And based on the result, roasting conditions of coffee beans can be controlled.
 (焙煎工程)
 焙煎工程は、例えば、コーヒー豆に対して熱を供給し、コーヒー豆を焙煎する工程である。
(Roasting process)
A roasting process is a process of supplying heat with respect to coffee beans and roasting coffee beans, for example.
 熱の供給手段としては、特に限定されず、従来のコーヒー豆の焙煎において使用される公知のいずれの手段を用いることもできる。具体的には、例えば、焙煎容器(例えば、コーヒー豆の焙煎用の回転ドラム)内に収容されたコーヒー豆に対して、電熱ヒーター等の熱源から発する熱を圧縮機(ブロワ)、送風機等により送風し、コーヒー豆に熱風をあてることにより、熱の供給を行うことができる。供給する熱の温度は、通常のコーヒー豆の焙煎に用いられる加熱の温度を用いることができ、例えば、100~300℃の範囲の温度を用いることができる。また、熱風の送風量は、コーヒー豆1gあたり毎分0.1~1Lの範囲内の風量を用いることができる。なお、焙煎工程における熱を供給する対象のコーヒー豆は、焙煎されたコーヒー豆の原料となるコーヒー豆のことを指す。 The heat supply means is not particularly limited, and any known means used in conventional roasting of coffee beans can be used. Specifically, for example, a compressor (blower) or a blower that generates heat from a heat source such as an electric heater for coffee beans stored in a roasting container (for example, a rotating drum for roasting coffee beans) Heat can be supplied by blowing air or the like and applying hot air to the coffee beans. As the temperature of the supplied heat, a heating temperature used for normal roasting of coffee beans can be used, and for example, a temperature in the range of 100 to 300 ° C. can be used. Further, as the amount of hot air blown, the amount of air in the range of 0.1 to 1 L per minute per 1 g of coffee beans can be used. Note that the coffee beans to which heat is supplied in the roasting process refer to coffee beans that are raw materials for the roasted coffee beans.
 コーヒー豆としては、特に限定されず、従来の公知のコーヒー豆の銘柄(例えば、ガテマラ、ブラジル(サントス、ダテーラ等)、エチオピア(モカイルガチェフ等)、コスタリカ、キリマンジャロ、ベトナム、コロンビア、タンザニア、モカ、ブルーマウンテン、クリスタルマウンテン、ケニア、マンデリン、メキシコ等)等を、1種単独で使用することも、2種以上をブレンドして用いることもできる。また、銘柄以外にも、ロット、産地、精製方法及び生産年について、いずれのコーヒー豆を用いることもできる。さらに、銘柄、ロット、産地、精製方法及び生産年のいずれかが異なる、2種以上のブレンドであっても、ハゼ発生時期を予測することができる点で、本実施形態に係るコーヒー豆のハゼ発生予定時期予測方法は有用である。 The coffee beans are not particularly limited, and are conventionally known brands of coffee beans (for example, Guatemala, Brazil (Santos, Datella, etc.), Ethiopia (Mochail Gachev, etc.), Costa Rica, Kilimanjaro, Vietnam, Colombia, Tanzania, Mocha, Blue Mountain, Crystal Mountain, Kenya, Mandelin, Mexico, etc.) can be used alone or in a blend of two or more. In addition to the brand, any coffee beans can be used for the lot, the production area, the purification method, and the production year. Further, the coffee bean goby according to the present embodiment can be used to predict the occurrence of goby even if it is a blend of two or more different brands, lots, production areas, refining methods, and production years. The forecasting method of occurrence time is useful.
 焙煎方法としては、例えば、焙煎容器(回転ドラム)を回転させて、コーヒー豆を混ぜながら、コーヒー豆を焙煎することができる。回転の条件としては、従来の公知の条件を用いることができ、例えば、5~60rpmの条件を用いることができる。 As the roasting method, for example, the roasting container (rotary drum) is rotated, and the coffee beans can be roasted while mixing the coffee beans. As the rotation condition, a conventionally known condition can be used. For example, a condition of 5 to 60 rpm can be used.
 焙煎工程において、温度センサー等の温度測定手段を用いて、焙煎容器内の温度を測定してもよく、測定しなくてもよい。焙煎容器内の温度を測定することで、焙煎時の焙煎容器内の雰囲気温度を確認することができる。 In the roasting process, the temperature in the roasting container may or may not be measured using temperature measuring means such as a temperature sensor. By measuring the temperature in the roasting container, the atmospheric temperature in the roasting container at the time of roasting can be confirmed.
 本発明における焙煎工程において、焙煎しながら、コーヒー豆のチャフ(いわゆる、シルバースキン)を除去するために、焙煎により発生したチャフを回収することができる。 In the roasting process of the present invention, the chaff generated by roasting can be collected in order to remove the coffee beans chaff (so-called silver skin) while roasting.
 本発明における焙煎工程において、焙煎時間は、指標とする一酸化炭素の設定値に応じて、自ずと定まるものであるが、例えば、300~1500秒の範囲内で行うことができる。 In the roasting process in the present invention, the roasting time is naturally determined according to the set value of carbon monoxide as an index, but can be performed within a range of 300 to 1500 seconds, for example.
 (音測定工程)
 音測定工程は、焙煎中のコーヒー豆から発生する音を経時的に測定する工程である。
(Sound measurement process)
The sound measurement step is a step of measuring the sound generated from the coffee beans being roasted over time.
 具体的に、音測定工程では、マイクロフォン等、例えば電気信号等の信号に変換する装置を用いて、音を測定する。 Specifically, in the sound measurement process, sound is measured using a device such as a microphone that converts the signal into an electric signal or the like.
 測定箇所(測定対象)としては、上述した所定の範囲の周波数の範囲の音圧を測定可能な箇所であれば、特に限定されない。ただし、一般的に知られた回転ドラム式の焙煎装置は、その内部に円筒形耐熱ガラスを備えることがある。焙煎装置が、このような円筒形耐熱ガラスを備える場合、ハゼ音が透過せず、ハゼが検出されないおそれもある。したがって、例えば、回転ドラム式の焙煎装置は、金属製(具体的には、真鍮製等)により構成されることが好ましい。 The measurement location (measurement target) is not particularly limited as long as it is a location where the sound pressure in the predetermined frequency range can be measured. However, a generally known rotary drum type roasting apparatus may be provided with a cylindrical heat-resistant glass. When the roasting device includes such a cylindrical heat-resistant glass, the goby sound is not transmitted and the goat may not be detected. Therefore, for example, the rotating drum type roasting apparatus is preferably made of metal (specifically, brass or the like).
 測定頻度としては、特に限定されず、例えば連続的に行うことが好ましい。連続的に測定を行うことにより、音圧パルスを正確に検出することができ、その結果として、ハゼ発生をより正確に検出することができる。 Measured frequency is not particularly limited, and for example, continuous measurement is preferable. By continuously measuring, the sound pressure pulse can be detected accurately, and as a result, the occurrence of goby can be detected more accurately.
 音測定の開始時期としては、特に限定されず、例えば焙煎開始2分後から開始することが好ましい。すなわち焙煎の初期(例えば、焙煎開始2分後、好ましくは3分後、より好ましくは4分後まで)の段階では、音圧測定工程を行わなくてもよい。焙煎の初期(例えば、焙煎開始2分後、好ましくは3分後、より好ましくは4分後まで)の段階では、焙煎の対象であるコーヒー豆が冷たく、その表面が硬い状態となっている場合、コーヒー豆同士の衝突や、コーヒー豆と焙煎装置との衝突により、5kHz以上80kHz以下の範囲に音圧パルスが生じることがある。一方で、このようにコーヒー豆が硬い状態では、まだ十分に加熱された状態とはいえず、ハゼ音は発生し得ない。したがって、焙煎の初期の段階では、音圧の測定は必須の態様ではない。 The start timing of sound measurement is not particularly limited, and for example, it is preferable to start 2 minutes after the start of roasting. That is, at the initial stage of roasting (for example, 2 minutes after the start of roasting, preferably after 3 minutes, and more preferably after 4 minutes), the sound pressure measurement process may not be performed. At the initial stage of roasting (for example, after 2 minutes from the start of roasting, preferably after 3 minutes, more preferably after 4 minutes), the coffee beans to be roasted are cold and the surface is hard. In such a case, a sound pressure pulse may be generated in the range of 5 kHz to 80 kHz due to a collision between coffee beans or a collision between a coffee bean and a roasting device. On the other hand, when the coffee beans are hard like this, it cannot be said that the coffee beans are sufficiently heated, and no goby sound can be generated. Therefore, measurement of sound pressure is not an essential aspect in the initial stage of roasting.
 なお、必須の態様ではないが、少なくとも焙煎開始2分後までの期間は、焙煎中のコーヒー豆から発生する一酸化炭素量を測定する初期一酸化炭素量測定工程を設けることができる。上述のとおり、焙煎の初期の段階では、コーヒー豆同士の衝突や、コーヒー豆と焙煎装置との衝突により、5kHz以上80kHz以下の範囲に音圧パルスが生じ、正確な焙煎の状態を把握することが難しい。そのため、一酸化炭素量を測定することにより、より確実に焙煎の状態を確認することも可能である。なお、初期一酸化炭素量測定工程の具体的な方法及びそれに用いる装置としては、例えば、後述する一酸化炭素量測定工程及び一酸化炭素量測定部を用いることができる。 Although not an essential aspect, an initial carbon monoxide amount measuring step for measuring the amount of carbon monoxide generated from the coffee beans being roasted can be provided at least for a period of 2 minutes after the start of roasting. As described above, at the initial stage of roasting, sound pressure pulses are generated in the range of 5 kHz to 80 kHz due to the collision between coffee beans or between the coffee beans and the roasting device, and the accurate roasting state is achieved. Difficult to grasp. Therefore, it is also possible to confirm the roasting state more reliably by measuring the amount of carbon monoxide. In addition, as a specific method of the initial carbon monoxide amount measuring step and an apparatus used therefor, for example, a carbon monoxide amount measuring step and a carbon monoxide amount measuring unit described later can be used.
 (ハゼ検知工程)
 ハゼ検知工程は、音測定工程において測定した音のうち5kHz以上80kHz以下の範囲に含まれる範囲の周波数の音圧に基づいて、コーヒー豆のハゼを検知する工程である。
(Haze detection process)
The goby detection step is a step of detecting goby of coffee beans based on the sound pressure of the frequency within the range of 5 kHz or more and 80 kHz or less of the sound measured in the sound measurement step.
 音圧を測定する周波数の範囲は、5kHz以上80kHz以下に含まれるものである。このような範囲においては、コーヒー豆から発生するハゼ音が急峻に立ち上がる傾向があり、また、例えば装置から発生する音やコーヒーが流動する音等によって影響を受けにくい。したがって、このような周波数の範囲で音圧を測定し、所定の速度で立ち上がる音圧のパルスを測定することにより、他の雑音に左右されることなく、コーヒー豆のハゼを検知することができる。 The frequency range for measuring sound pressure is included in the range of 5 kHz to 80 kHz. In such a range, the goby sound generated from the coffee beans tends to rise sharply, and is not easily affected by, for example, the sound generated from the apparatus or the sound of coffee flowing. Therefore, by measuring the sound pressure in such a frequency range and measuring the sound pressure pulse that rises at a predetermined speed, it is possible to detect coffee beans without being influenced by other noises. .
 具体的に、パルス発生回数は、所定の期間(例えば、1秒、10秒等)内に、所定の音圧(閾値)を超える音圧パルスが発生した回数を計数する。所定の期間内に計数された値が、所定の閾値の値を超えた場合に、ハゼが発生したと判断する。 Specifically, the number of pulse generations is the number of times a sound pressure pulse exceeding a predetermined sound pressure (threshold) is generated within a predetermined period (for example, 1 second, 10 seconds, etc.). When the value counted within a predetermined period exceeds a predetermined threshold value, it is determined that goby has occurred.
 閾値としては、例えば、ハゼ音未発生時の音圧を用いることができる。ハゼ音未発生時にも、焙煎装置音やその他背景雑音が含まれる。このような音の測定方法としては、例えば、判断時よりも前の所定の期間(例えば、60秒)における音圧又はこれに対応する電気信号(例えば、電圧)の平均値を閾値とすることができる。また、所定の期間(例えば、60秒)をさらに等分し(例えば、60秒を60等分して、1秒ごととし)、その等分した期間(例えば、1秒)ごとの音圧又はこれに対応する電気信号(例えば、電圧)のピーク値の平均値を閾値とすることもできる。上述したとおり、リアルタイムでのハゼ音の発生・未発生は、従来技術によって判断することが困難である。そこで、例えば、焙煎開始から540秒未満の任意の期間の音圧を測定して、閾値を設定すればよい。焙煎開始から540秒未満であれば、通常ハゼ音は発生しない。 As the threshold value, for example, the sound pressure when no goby sound is generated can be used. Even when no goby sound is generated, roaster sound and other background noises are included. As such a sound measurement method, for example, an average value of a sound pressure or a corresponding electric signal (for example, voltage) in a predetermined period (for example, 60 seconds) prior to the determination is used as a threshold value. Can do. In addition, a predetermined period (for example, 60 seconds) is further divided equally (for example, 60 seconds is divided into 60 equal parts to be every second), and sound pressure or The average value of the peak value of the electrical signal (for example, voltage) corresponding to this can also be used as the threshold value. As described above, the occurrence / non-occurrence of the goby sound in real time is difficult to determine by the prior art. Therefore, for example, the threshold value may be set by measuring the sound pressure for an arbitrary period of less than 540 seconds from the start of roasting. If it is less than 540 seconds from the start of roasting, no normal goby sound is generated.
 音圧を測定する周波数の範囲としては、上述の範囲内であれば特に限定されないが、例えば、7kHz以上であることが好ましく、8kHz以上であることがより好ましく、9kHz以上であることがさらに好ましく、9.5kHz以上であることが特に好ましい。また、周波数の範囲としては、70kHz以下であることが好ましく、50kHz以下であることがより好ましく、40kHz以下であることがさらに好ましく、30kHz以下であることがさらに好ましい。周波数の範囲が所要の範囲内にあることにより、ハゼ音と装置音との区別の精度を高めることができる。なお、「音圧を測定する周波数の範囲」とは、測定対象である所定の周波数の幅を有する音を包含する周波数の範囲をいう。具体的には、例えば後述する半値幅の範囲の音が全て含まれる範囲であってよい。測定時においては、上述の範囲を全て含むように測定すれば良く、他の周波数の範囲も併せて測定することを排除するものではない。なお、他の周波数の範囲も併せて測定した場合には、例えばバンドパスフィルタ等により、所要の周波数の範囲のみを抽出することもできる。 The frequency range for measuring the sound pressure is not particularly limited as long as it is within the above-mentioned range. For example, it is preferably 7 kHz or more, more preferably 8 kHz or more, and further preferably 9 kHz or more. 9.5 kHz or more is particularly preferable. Further, the frequency range is preferably 70 kHz or less, more preferably 50 kHz or less, further preferably 40 kHz or less, and further preferably 30 kHz or less. When the frequency range is within the required range, it is possible to increase the accuracy of the distinction between the goby sound and the device sound. The “frequency range in which sound pressure is measured” refers to a frequency range including a sound having a predetermined frequency range to be measured. Specifically, for example, it may be a range in which all sounds in a range of a half width described later are included. At the time of measurement, measurement may be performed so as to include the entire range described above, and it is not excluded to measure other frequency ranges together. When other frequency ranges are also measured, only a required frequency range can be extracted by, for example, a band pass filter.
 音圧を測定する周波数における半値幅としては、特に限定されず、例えば、50kHz以下であることが好ましく、30kHz以下であることがより好ましく、20kHz以下であることがさらに好ましい。半値幅が所要値以下であることにより、ハゼ音と装置音との区別の精度を高めることができる。一方で、半値幅としては、例えば、0.1kHz以上であることが好ましく、0.2kHz以上であることがより好ましく、0.25kHz以上であることがさらに好ましい。半値幅が所要値以上であることにより、ハゼ音と装置音との区別の精度を高めることができる。 The half width at the frequency at which the sound pressure is measured is not particularly limited, and is preferably 50 kHz or less, more preferably 30 kHz or less, and still more preferably 20 kHz or less, for example. When the full width at half maximum is less than or equal to the required value, it is possible to increase the accuracy of discrimination between the goby sound and the device sound. On the other hand, as a half value width, it is preferable that it is 0.1 kHz or more, for example, it is more preferable that it is 0.2 kHz or more, and it is further more preferable that it is 0.25 kHz or more. When the full width at half maximum is greater than or equal to the required value, the accuracy of distinguishing the goby sound from the device sound can be increased.
 音圧のピーク値(例えば、ピークディテクターの出力)を測定するサンプリング周期としては、特に限定されないが、例えば、0.2ミリ秒以下であることが好ましく、0.15ミリ秒以下であることがより好ましく、0.1ミリ秒以下であることがさらに好ましく、0.05ミリ秒以下であることが特に好ましい。サンプリング周期が0.2ミリ秒以下であることにより、ハゼ音と装置音との区別の精度を高めることができる。ハゼ音は急峻にピークが立ち上がるのに対し、装置音は急峻にピークが立ち上がらないという特徴を有する。 The sampling period for measuring the peak value of the sound pressure (for example, the output of the peak detector) is not particularly limited, but is preferably 0.2 milliseconds or less, for example, 0.15 milliseconds or less. More preferably, it is more preferably 0.1 milliseconds or less, and particularly preferably 0.05 milliseconds or less. When the sampling period is 0.2 milliseconds or less, it is possible to improve the accuracy of the distinction between the goby sound and the device sound. The goby sound has a feature that the peak rises steeply, whereas the device sound has a feature that the peak does not rise steeply.
 具体的に、上述したような所定の周波数域及び半値幅を有する音を検出する手法としては、例えば、所定の周波数域及び半値幅を有するバンドパスフィルタを用いることができる。 Specifically, as a method for detecting a sound having a predetermined frequency range and a half-value width as described above, for example, a bandpass filter having a predetermined frequency range and a half-value width can be used.
 なお、このようにしてハゼを検出した場合、例えば、所定の期間、焙煎温度(例えば、火力)を増加・減少させるか、又は焙煎装置内の空気の送風量を変更させる等の操作を行う。送風量の調整は、例えば、焙煎装置に設けた排気ダンパーの開閉により調整することができる。これにより、所望の香味を有するコーヒー豆を精度良く製造することができる。 When goby is detected in this manner, for example, an operation such as increasing / decreasing the roasting temperature (for example, thermal power) or changing the amount of air blown in the roasting device is performed for a predetermined period. Do. For example, the air flow rate can be adjusted by opening and closing an exhaust damper provided in the roasting apparatus. Thereby, the coffee bean which has a desired flavor can be manufactured with sufficient accuracy.
 <コーヒー豆のハゼ検知装置>
 本実施形態に係るコーヒー豆のハゼ検知装置は、例えば、上述のコーヒー豆のハゼ検知方法を実現することができる装置である。以下に本発明の一実施形態であるコーヒー豆のハゼ検知装置1について、図1を用いて説明する。
<Coffee bean goby detection device>
The coffee bean goby detection apparatus according to the present embodiment is an apparatus that can realize, for example, the above-described coffee bean goby detection method. A coffee bean goby detection device 1 according to an embodiment of the present invention will be described below with reference to FIG.
 図1は、コーヒー豆のハゼ検知装置の概略図である。図1に示すように、コーヒー豆のハゼ検知装置1は、音圧測定部10と、ハゼ検知部11と、制御部12と、を備える。音測定部10は、焙煎装置3の焙煎容器30の近傍に配置される。また、制御部12は、焙煎装置3の焙煎条件(温度、時間等)を調整する調整部36に接続される。 FIG. 1 is a schematic view of a coffee bean goby detection device. As shown in FIG. 1, the coffee bean goby detection device 1 includes a sound pressure measurement unit 10, a goby detection unit 11, and a control unit 12. The sound measuring unit 10 is disposed in the vicinity of the roasting container 30 of the roasting apparatus 3. The control unit 12 is connected to an adjustment unit 36 that adjusts roasting conditions (temperature, time, etc.) of the roasting device 3.
 〔焙煎装置3〕
 必須の態様ではないが、まず、測定対象であるコーヒー豆の焙煎に用いる焙煎装置3について説明する。焙煎装置3は、コーヒー豆に対して熱を供給可能な熱源を有し、このコーヒー豆を焙煎可能な手段である。コーヒー豆の焙煎装置としては、特に限定されず、従来の公知のコーヒー豆の焙煎手段のいずれのものを使用することもできるが、本実施形態においては、焙煎装置3は、焙煎容器30と、熱源部31と、送風部32と、温度測定部33と、排気部34と、チャフコレクター35と、調整部36と、を備える。
[Roasting device 3]
Although not an indispensable aspect, first, the roasting apparatus 3 used for roasting the coffee beans to be measured will be described. The roasting device 3 has a heat source capable of supplying heat to the coffee beans, and is a means capable of roasting the coffee beans. The coffee bean roasting device is not particularly limited, and any conventional coffee bean roasting means can be used. In this embodiment, the roasting device 3 is a roasting device. A container 30, a heat source unit 31, a blower unit 32, a temperature measurement unit 33, an exhaust unit 34, a chaff collector 35, and an adjustment unit 36 are provided.
 焙煎容器31は、コーヒー豆を収容するための容器である。焙煎容器31としては、特に限定されず、コーヒー豆を混合するために、回転可能に構成することが好ましい。また、焙煎容器31としては、上述したコーヒー豆のハゼ発生時期予測方法と同様の回転条件とすることができるものを用いることができる。 The roasting container 31 is a container for storing coffee beans. The roasting container 31 is not particularly limited, and is preferably configured to be rotatable in order to mix coffee beans. In addition, as the roasting container 31, a container that can be set to the same rotation condition as the above-described method for predicting the occurrence of goby of coffee beans can be used.
 熱源部31は、熱を発生可能な手段であり、例えば、電熱ヒーター等を用いることができる。また、熱源部31としては、例えば、上述したコーヒー豆のハゼ発生時期予測方法と同様の加熱温度とすることができるものを用いることができる。 The heat source unit 31 is a means capable of generating heat, and for example, an electric heater can be used. Moreover, as the heat source part 31, what can be used as the heating temperature similar to the goat generation | occurrence | production time prediction method of the coffee beans mentioned above can be used, for example.
 送風部32は、熱源部31から発する熱を焙煎容器30に収容されたコーヒー豆に対して送風可能な手段である。送風部32は、上述したコーヒー豆のハゼ発生時期予測方法と同様の送風条件とすることができるものを用いることができる。送風部32としては、例えば、圧縮機(ブロワ)等を用いることができる。 The air blower 32 is a means capable of blowing heat generated from the heat source 31 to the coffee beans accommodated in the roasting container 30. The blower 32 can use what can be made into the ventilation conditions similar to the goat generation | occurrence | production time prediction method of the coffee bean mentioned above. As the air blower 32, for example, a compressor (blower) or the like can be used.
 温度測定部33は、焙煎容器30内の雰囲気温度を測定する手段である。 The temperature measuring unit 33 is a means for measuring the atmospheric temperature in the roasting container 30.
 排気部34は、焙煎中のコーヒー豆から排出された気体を排気する部位である。 The exhaust part 34 is a part for exhausting the gas discharged from the coffee beans being roasted.
 チャフコレクター35は、コーヒー豆のチャフ(いわゆる、シルバースキン)を除去する手段である。 The chaff collector 35 is a means for removing coffee beans chaff (so-called silver skin).
 調整部36は、コーヒー豆の焙煎条件を直接的に変更可能な手段である。例えば、制御部12からの指示に応じて、焙煎条件を変更し、調整することができる。例えば、制御部12からの指示に応じて、焙煎温度や焙煎時間等の焙煎条件を変更したり、焙煎を終了させ(つまり、熱源からの熱の供給を停止させ)、焙煎容器30内において冷却を開始したり、あるいは、冷却を開始してから、排出口の温度が一定温度になったことを指標として冷却を停止したりするように制御できる。 The adjustment unit 36 is a means that can directly change the roasting conditions of coffee beans. For example, the roasting conditions can be changed and adjusted in accordance with an instruction from the control unit 12. For example, in accordance with an instruction from the control unit 12, roasting conditions such as roasting temperature and roasting time are changed, or roasting is terminated (that is, supply of heat from the heat source is stopped), and roasting is performed. Control can be performed so as to start cooling in the container 30 or to stop cooling by using, as an index, that the temperature of the discharge port has become constant after starting cooling.
 〔ハゼ検出装置2〕
 ハゼ検知装置2は、音圧測定部20と、ハゼ検知部21と、制御部22と、を備える。ハゼ検出装置2は、焙煎装置3の焙煎容器30内に格納されるコーヒー豆から発生する音のうち、5kHz以上80kHz以下の範囲に含まれる範囲の周波数の音圧を経時的に測定することにより、ハゼの発生を検知する。以下、各部についてそれぞれ説明する。なお、制御部22は必須の態様ではない。
[Haze detection device 2]
The goby detection device 2 includes a sound pressure measurement unit 20, a goby detection unit 21, and a control unit 22. The goby detection device 2 measures, over time, the sound pressure of the frequency within the range of 5 kHz to 80 kHz among the sounds generated from the coffee beans stored in the roasting container 30 of the roasting device 3. Therefore, the occurrence of goby is detected. Each part will be described below. The control unit 22 is not an essential aspect.
 (音測定部20)
 本実施形態に係る音測定部20について説明する。音測定部20は、焙煎装置3の焙煎容器31に格納されたコーヒー豆から発生するハゼ音を測定可能に構成されるものである。そしてこのため、音測定部20は、焙煎容器30の近傍に配置されて用いられる。
(Sound measurement unit 20)
The sound measurement unit 20 according to this embodiment will be described. The sound measuring unit 20 is configured to be able to measure a goby sound generated from coffee beans stored in the roasting container 31 of the roasting apparatus 3. For this reason, the sound measuring unit 20 is arranged and used in the vicinity of the roasting container 30.
 音測定部20は、焙煎中のコーヒー豆から発生するハゼ音を検出及び例えば電気信号等の信号に変換可能な手段である。具体的に、音測定部20としては、一般的なマイクロフォン等を用いることができる。より具体的には、Knowles社 SPU0410LR5H-QB 100Hz-80kHz等を用いることができる。音測定部20は、本実施形態においては、焙煎容器30の近傍に配置されているが、この例に限定されず、少なくとも5kHz以上80kHz以下の範囲に含まれる範囲の周波数の音圧を経時的に測定することができるものであれば特に限定されない。 The sound measuring unit 20 is a means capable of detecting a goby sound generated from roasted coffee beans and converting it into a signal such as an electric signal. Specifically, a general microphone or the like can be used as the sound measurement unit 20. More specifically, Knowles SPU0410LR5H-QB 100 Hz-80 kHz or the like can be used. In the present embodiment, the sound measuring unit 20 is disposed in the vicinity of the roasting container 30, but is not limited to this example, and the sound pressure of a frequency within a range of at least 5 kHz to 80 kHz is measured over time. If it can measure automatically, it will not specifically limit.
 (ハゼ検知部21)
 ハゼ検知部21は、音測定部20により測定した音の信号から、ハゼ音を抽出し、計数するものである。
(Goby detection unit 21)
The goby detection unit 21 extracts and counts goby sounds from the sound signal measured by the sound measurement unit 20.
 以下、ハゼ検知部21のより具体的な実施形態について、図を参照して説明するが、本発明は以下の具体例に限定されるものではない。 Hereinafter, more specific embodiments of the goby detection unit 21 will be described with reference to the drawings, but the present invention is not limited to the following specific examples.
 図2は、ハゼ検知部の一例の概略図である。ハゼ検知部21は、例えば、バンドパスフィルタ211、ピークディテクタ212、波形解析器213及び計数器214を備える。 FIG. 2 is a schematic diagram of an example of the goby detection unit. The goby detection unit 21 includes, for example, a bandpass filter 211, a peak detector 212, a waveform analyzer 213, and a counter 214.
 バンドパスフィルタ211は、音圧測定部20(例えば、マイクロフォン)により検出した音の電気信号のうち、所定の周波数の範囲を有する信号のみを抽出するものである。本実施形態に係るコーヒー豆のハゼ検知方法においては、例えばこのようなバンドパスフィルタ211を用いることにより、5kHz以上80kHz以下の範囲に含まれる範囲の周波数の音のみを抽出し、その周波数の範囲のみにおける音圧を測定することができる。 The band pass filter 211 extracts only a signal having a predetermined frequency range from the electrical signal of the sound detected by the sound pressure measuring unit 20 (for example, a microphone). In the coffee bean goby detection method according to the present embodiment, for example, by using such a bandpass filter 211, only the sound having a frequency in the range of 5 kHz to 80 kHz is extracted, and the frequency range thereof is extracted. Only the sound pressure can be measured.
 ピークディテクタ212は、バンドパスフィルタ211を通過した所定の周波数の音の電気信号の交流成分のプラス側のピーク値を検出し、所定の期間保持する。 The peak detector 212 detects the positive-side peak value of the AC component of the electrical signal having a predetermined frequency that has passed through the band-pass filter 211 and holds it for a predetermined period.
 波形解析器213は、ピークディテクタ212からの出力波形のうち、波形の立ち上がり前後を比較解析し、急峻に立ち上がった波形をハゼ音であると判定するものである。波形解析器213は、ハゼ音を判定した都度、計数器214に信号を送信する。 The waveform analyzer 213 performs comparative analysis before and after the rising of the waveform of the output waveform from the peak detector 212, and determines that the sharply rising waveform is a goby sound. The waveform analyzer 213 transmits a signal to the counter 214 every time a goby sound is determined.
 計数器214は、波形解析器213から受信した信号を所定の期間ごとに計数し、所定の期間(例えば、1秒、10秒等)ごとに発生したハゼ音の数を制御部22に送信する。 The counter 214 counts the signal received from the waveform analyzer 213 every predetermined period, and transmits the number of goby sounds generated every predetermined period (for example, 1 second, 10 seconds, etc.) to the control unit 22. .
 (制御部22)
 必須の態様ではないが、制御部22は、ハゼ検出部21によるハゼ検出に基づいて、焙煎装置3における焙煎の条件を調整可能な手段である。
(Control unit 22)
Although not an indispensable aspect, the control unit 22 is a means capable of adjusting the roasting conditions in the roasting apparatus 3 based on the goby detection by the gourd detection unit 21.
 制御部22は、ハゼ検出部21からハゼ発生の出力を受け取り、そのデータに基づいて、焙煎装置3の制御部に焙煎条件を変更するように指示をする。これにより、焙煎装置3における焙煎の条件を調整可能とする。そして、このようにして、焙煎条件を調整することにより、適切に焙煎条件が制御された焙煎コーヒー豆を製造することができる。 The control unit 22 receives the output of the goby generation from the goby detection unit 21 and instructs the control unit of the roasting apparatus 3 to change the roasting conditions based on the data. Thereby, the roasting conditions in the roasting device 3 can be adjusted. And roasted coffee beans in which roasting conditions are appropriately controlled can be manufactured by adjusting roasting conditions in this way.
 制御部22において、焙煎条件の調整する具体的な方法としては、目的に応じて適宜選択されるものであり、特に限定されないが、例えば、コーヒー豆の焙煎度に連動して、コーヒー豆に対する熱の供給の条件(例えば、焙煎温度、焙煎時間、送風の条件、回転ドラムの回転の条件等)を変更し、焙煎の進行速度等を調整することができる。また、コーヒー豆に対する熱の供給を停止することもできる。より具体的には、コーヒー豆に対する熱の供給を停止するように調整部36に指示することができる。 The specific method for adjusting the roasting conditions in the control unit 22 is appropriately selected according to the purpose and is not particularly limited. For example, the coffee beans are linked with the roasting degree of the coffee beans. The heat supply conditions (for example, roasting temperature, roasting time, air blowing conditions, rotating drum rotating conditions, etc.) can be changed to adjust the roasting speed and the like. In addition, the supply of heat to the coffee beans can be stopped. More specifically, the adjustment unit 36 can be instructed to stop the supply of heat to the coffee beans.
 また、本実施形態においては備えていないが、制御部22は、一酸化炭素量における気体ポンプのスイッチのオン・オフを指示することができる。また、制御部22は、データ(例えば、ハゼ音発生回数、焙煎開始からの経過時間、焙煎温度内の温度、気温等)を記録するために、例えば、別のコンピュータ(パソコン)にデータを送るように構成することもできる。 Although not provided in the present embodiment, the control unit 22 can instruct on / off of the switch of the gas pump in the amount of carbon monoxide. In addition, the control unit 22 records data (for example, data on another computer (personal computer)) in order to record data (for example, the number of occurrences of the goby sound, the elapsed time since the start of roasting, the temperature within the roasting temperature, the air temperature, etc.). Can also be configured to send.
 なお、ハゼ検知部11及び制御部12は、それぞれが通信可能な状態で音圧測定部10及び調整部36に接続されていればよい。例えば、ハゼ検知部11及び制御部12をネットワーク上のサーバに設置することができる。 In addition, the goby detection part 11 and the control part 12 should just be connected to the sound pressure measurement part 10 and the adjustment part 36 in the state which can communicate, respectively. For example, the goby detection unit 11 and the control unit 12 can be installed in a server on the network.
 <コーヒー豆のハゼ発生時期予測方法>
 本実施形態に係るコーヒー豆のハゼ発生時期予測方法は、焙煎中のコーヒー豆から発生する一酸化炭素量を測定する一酸化炭素量測定工程と、その一酸化炭素量に基づいて、コーヒー豆のハゼ発生予定時期を予測する予測工程と、を有する。本実施形態に係るコーヒー豆のハゼ発生時期予測方法は、このような構成を有することにより、ハゼの発生予定時期を適切に予測することができる。そして、その結果に基づき、コーヒー豆の焙煎条件を制御することができる。なお、本実施形態に係るコーヒー豆のハゼ発生時期予測方法によれば、その焙煎の過程においてコーヒー豆から発生する2度のハゼ音のうち、第1のハゼ及び第2のハゼいずれも予測することができる。
<Prediction method for coffee beans goby>
The coffee bean occurrence time prediction method according to the present embodiment includes a carbon monoxide amount measuring step for measuring the amount of carbon monoxide generated from roasted coffee beans, and the coffee beans based on the carbon monoxide amount. A predicting step for predicting the expected time of occurrence of goby. The coffee bean occurrence time prediction method according to the present embodiment can appropriately predict the expected occurrence of goby by having such a configuration. And based on the result, roasting conditions of coffee beans can be controlled. In addition, according to the coffee bean occurrence time prediction method according to the present embodiment, both the first goby and the second goby are predicted from the two goby sounds generated from the coffee beans during the roasting process. can do.
 〔焙煎工程〕
 焙煎工程は、例えば、コーヒー豆に対して熱を供給し、コーヒー豆を焙煎する工程である。
[Roasting process]
A roasting process is a process of supplying heat with respect to coffee beans and roasting coffee beans, for example.
 熱の供給手段としては、特に限定されず、従来のコーヒー豆の焙煎において使用される公知のいずれの手段を用いることもできる。例えば、焙煎容器(例えば、コーヒー豆の焙煎用の回転ドラム)内に収容されたコーヒー豆に対して、電熱ヒーター等の熱源から発する熱を圧縮機(ブロワ)、送風機等により送風し、コーヒー豆に熱風をあてることにより、熱の供給を行うことができる。供給する熱の温度は、通常のコーヒー豆の焙煎に用いられる加熱の温度を用いることができ、例えば、100~300℃の範囲の温度を用いることができる。また、熱風の送風量は、コーヒー豆1gあたり毎分0.1~1Lの範囲内の風量を用いることができる。なお、焙煎工程における熱を供給する対象のコーヒー豆は、焙煎されたコーヒー豆の原料となるコーヒー豆のことを指す。 The heat supply means is not particularly limited, and any known means used in conventional roasting of coffee beans can be used. For example, for coffee beans stored in a roasting container (for example, a rotating drum for roasting coffee beans), heat generated from a heat source such as an electric heater is blown by a compressor (blower), a blower, etc. Heat can be supplied by applying hot air to the coffee beans. As the temperature of the supplied heat, a heating temperature used for normal roasting of coffee beans can be used, and for example, a temperature in the range of 100 to 300 ° C. can be used. Further, as the amount of hot air blown, the amount of air in the range of 0.1 to 1 L per minute per 1 g of coffee beans can be used. Note that the coffee beans to which heat is supplied in the roasting process refer to coffee beans that are raw materials for the roasted coffee beans.
 コーヒー豆としては、特に限定されず、従来の公知のコーヒー豆の銘柄(例えば、ガテマラ、ブラジル(サントス、ダテーラ等)、エチオピア(モカイルガチェフ等)、コスタリカ、キリマンジャロ、ベトナム、コロンビア、タンザニア、モカ、ブルーマウンテン、クリスタルマウンテン、ケニア、マンデリン、メキシコ等)等を、1種単独で使用することも、2種以上をブレンドして用いることもできる。また、銘柄以外にも、ロット、産地、精製方法及び生産年について、いずれのコーヒー豆を用いることもできる。さらに、銘柄、ロット、産地、精製方法及び生産年のいずれかが異なる、2種以上のブレンドであっても、ハゼ発生時期を予測することができる点で、本実施形態に係るコーヒー豆のハゼ発生予定時期予測方法は有用である。 The coffee beans are not particularly limited, and are conventionally known brands of coffee beans (for example, Guatemala, Brazil (Santos, Datella, etc.), Ethiopia (Mochail Gachev, etc.), Costa Rica, Kilimanjaro, Vietnam, Colombia, Tanzania, Mocha, Blue Mountain, Crystal Mountain, Kenya, Mandelin, Mexico, etc.) can be used alone or in a blend of two or more. In addition to the brand, any coffee beans can be used for the lot, the production area, the purification method, and the production year. Further, the coffee bean goby according to the present embodiment can be used to predict the occurrence of goby even if it is a blend of two or more different brands, lots, production areas, refining methods, and production years. The forecasting method of occurrence time is useful.
 焙煎方法としては、例えば、焙煎容器(回転ドラム)を回転させて、コーヒー豆を混ぜながら、コーヒー豆を焙煎することができる。回転の条件としては、従来の公知の条件を用いることができ、例えば、5~60rpmの条件を用いることができる。 As the roasting method, for example, the roasting container (rotary drum) is rotated, and the coffee beans can be roasted while mixing the coffee beans. As the rotation condition, a conventionally known condition can be used. For example, a condition of 5 to 60 rpm can be used.
 焙煎工程において、温度センサー等の温度測定手段を用いて、焙煎容器内の温度を測定してもよく、測定しなくてもよい。焙煎容器内の温度を測定することで、焙煎時の焙煎容器内の雰囲気温度を確認することができる。 In the roasting process, the temperature in the roasting container may or may not be measured using temperature measuring means such as a temperature sensor. By measuring the temperature in the roasting container, the atmospheric temperature in the roasting container at the time of roasting can be confirmed.
 本発明における焙煎工程において、焙煎しながら、コーヒー豆のチャフ(いわゆる、シルバースキン)を除去するために、焙煎により発生したチャフを回収することができる。 In the roasting process of the present invention, the chaff generated by roasting can be collected in order to remove the coffee beans chaff (so-called silver skin) while roasting.
 本発明における焙煎工程において、焙煎時間は、指標とする一酸化炭素の設定値に応じて、自ずと定まるものであるが、例えば、300~1500秒の範囲内で行うことができる。 In the roasting process in the present invention, the roasting time is naturally determined according to the set value of carbon monoxide as an index, but can be performed within a range of 300 to 1500 seconds, for example.
 〔一酸化炭素量測定工程〕
 一酸化炭素量測定工程は、焙煎中のコーヒー豆から発生する一酸化炭素量を測定する工程である。
[Carbon monoxide measurement process]
The carbon monoxide amount measuring step is a step of measuring the amount of carbon monoxide generated from the coffee beans being roasted.
 測定対象の一酸化炭素の量としては、特に限定されず、発生した一酸化炭素の絶対量及び相対量(濃度)いずれを用いることもできる。 The amount of carbon monoxide to be measured is not particularly limited, and either the absolute amount or the relative amount (concentration) of generated carbon monoxide can be used.
 一酸化炭素の測定手段(センサー)としては、特に限定されず、例えば、根本特殊化学社製のNAP-505等を用いることができる。 The carbon monoxide measurement means (sensor) is not particularly limited, and for example, NAP-505 manufactured by Nemoto Special Chemical Co., Ltd. can be used.
 測定箇所(測定対象)としては、特に限定されず、例えば、焙煎が行われる箇所(空間)、又は焙煎が行われる箇所から排気したものを測定することができる。排気したものを測定する場合、一酸化炭素を測定するための測定手段に一酸化炭素を送気する際に、より正確に測定を行うために、フィルター(例えば、チャフフィルター等)による異物の除去を行うことが好ましい。また、送気は、一酸化炭素の量を正確に測定するために、一定の速度で行うように行うことが好ましい。一酸化炭素の送気は、送気の速度を調整するために、気体ポンプにより行うことも、気体ポンプを用いずに行うこともできる。送気により、測定箇所の圧力が変化する場合、測定箇所の圧力を一定に保つために、圧力を測定箇所の外部に逃がすこともできる。 The measurement location (measurement target) is not particularly limited, and for example, a location where the roasting is performed (space) or a location exhausted from the location where the roasting is performed can be measured. When measuring the exhaust, remove the foreign matter with a filter (for example, a chaff filter) in order to measure the carbon monoxide more accurately when feeding it to the measuring means for measuring carbon monoxide. It is preferable to carry out. In addition, it is preferable that the air supply is performed at a constant speed in order to accurately measure the amount of carbon monoxide. Carbon monoxide can be supplied with a gas pump or without a gas pump in order to adjust the speed of the supply. When the pressure at the measurement location changes due to air supply, the pressure can be released to the outside of the measurement location in order to keep the pressure at the measurement location constant.
 測定頻度としては、特に限定されず、連続的に行うことも、断続的に行うこともできる。連続的又は断続的いずれであっても、経時的に測定を行うことが好ましい。経時的に測定を行うことにより、将来の一酸化炭素発生量をより正確に予測することができ、その結果として、ハゼ発生時期をより正確に予測することができる。 Measured frequency is not particularly limited, and can be performed continuously or intermittently. Whether continuous or intermittent, it is preferable to measure over time. By measuring over time, the amount of carbon monoxide generated in the future can be predicted more accurately, and as a result, the time of occurrence of goby can be predicted more accurately.
 〔予測工程〕
 予測工程は、一酸化炭素量に基づいて、コーヒー豆のハゼ発生予定時期を予測する工程である。
[Prediction process]
The predicting step is a step of predicting the occurrence of goby of coffee beans based on the amount of carbon monoxide.
 具体的に、予測工程では、一酸化炭素量測定工程で測定した一酸化炭素の量が閾値を超えた場合に、所定の期間後にハゼが発生することを予測する。閾値の決定方法としては、例えば予め複数種類(銘柄、生産年等)の豆で一酸化炭素量とハゼ発生時期の相関を記録し、ハゼ発生の所定期間前(例えば、1~2分前)の一酸化炭素量を閾値とする。そして、予測工程では、測定した一酸化炭素量が閾値を超えた場合に、その時点をハゼ発生の所定期間前(例えば、1~2分前)と判断し、その時点から所定期間後(例えば、1~2分後)にハゼが発生すると予想する。 Specifically, in the prediction step, it is predicted that goby will occur after a predetermined period when the amount of carbon monoxide measured in the carbon monoxide amount measurement step exceeds a threshold value. As a method for determining the threshold, for example, the correlation between the amount of carbon monoxide and the time of occurrence of goby is recorded in advance for a plurality of types (brand, year of production, etc.) of the beans, and a predetermined period before the occurrence of goby (for example, 1-2 minutes before) The amount of carbon monoxide is taken as a threshold value. In the prediction step, when the measured amount of carbon monoxide exceeds the threshold value, the time point is determined to be a predetermined period before the occurrence of goby (for example, 1 to 2 minutes before), and after the predetermined period from the time point (for example, A goby is expected to occur after 1 to 2 minutes).
 また、ハゼ発生時又は発生中の一酸化炭素量を閾値としてハゼ発生時期を予想することもできる。さらに、実際の運用で制御装置等に学習させることもできる。 In addition, it is possible to predict the occurrence of goby using the amount of carbon monoxide during or after the occurrence of goby as a threshold. Further, the control device or the like can be learned in actual operation.
 なお、コーヒー豆のハゼ発生予定時期を測定した後、コーヒー豆の焙煎条件を変更して焙煎コーヒー豆を製造する場合、実際には、コーヒー豆のハゼ発生予定時期より所定期間前(例えば、1~2分前)の条件変更時期を見積もる。このようにして条件変更時期を見積もって焙煎条件を変更することにより、所望の香味を有するコーヒー豆を得ることができる。 In addition, after measuring the expected time of occurrence of coffee beans, when changing the roasting conditions of coffee beans to produce roasted coffee beans, actually, a predetermined period before the expected time of occurrence of coffee beans (for example, Estimate the time for changing conditions 1 to 2 minutes ago. Thus, coffee beans having a desired flavor can be obtained by estimating the condition change timing and changing the roasting conditions.
 そして、このようにしてハゼ発生を予測した場合、例えば、所定の期間、焙煎温度(例えば、火力)を増加・減少させるか、又は焙煎装置内の空気の送風量を変更させる等の操作を行う。送風量の調整は、例えば、焙煎装置に設けた排気ダンパーの開閉により調整することができる。これにより、所望の香味を有するコーヒー豆を精度良く製造することができる。 And when the occurrence of goby is predicted in this way, for example, an operation such as increasing or decreasing the roasting temperature (for example, thermal power) for a predetermined period, or changing the air blowing amount in the roasting device I do. For example, the air flow rate can be adjusted by opening and closing an exhaust damper provided in the roasting apparatus. Thereby, the coffee bean which has a desired flavor can be manufactured with sufficient accuracy.
 <コーヒー豆のハゼ発生予定時期予測装置>
 本実施形態に係るコーヒー豆のハゼ発生予定時期予測装置は、例えば、上述のコーヒー豆のハゼ発生時期予測方法を実現することができる装置である。以下に本発明の一実施形態であるコーヒー豆のハゼ発生予定時期予測装置について、図3を用いて説明する。
<Coffee bean occurrence scheduled time prediction device>
The coffee bean occurrence predicted time prediction apparatus according to the present embodiment is an apparatus that can realize, for example, the above-described coffee bean occurrence occurrence prediction method. A coffee bean gossip scheduled production time prediction apparatus according to an embodiment of the present invention will be described below with reference to FIG.
 図3は、コーヒー豆のハゼ発生予定時期予測装置の概略図である。図3に示すように、コーヒー豆のハゼ発生予定時期予測装置2は、一酸化炭素量測定部20と、予測部21と、制御部22と、を備える。一酸化炭素量測定部20は、焙煎装置3の排気部34に接続される。また、制御部22は、焙煎装置3の焙煎条件(温度、時間等)を調整する調整部36に接続される。 FIG. 3 is a schematic view of a coffee bean occurrence predicted time prediction device. As illustrated in FIG. 3, the coffee bean gossip scheduled production time prediction device 2 includes a carbon monoxide amount measurement unit 20, a prediction unit 21, and a control unit 22. The carbon monoxide amount measuring unit 20 is connected to the exhaust unit 34 of the roasting apparatus 3. The control unit 22 is connected to an adjustment unit 36 that adjusts roasting conditions (temperature, time, etc.) of the roasting device 3.
 〔焙煎装置3〕
 必須の態様ではないが、測定対象であるコーヒー豆を焙煎するための焙煎装置としては、排気部34が、一酸化炭素量測定部20に一酸化炭素を送気可能に構成されること及び調整部36が予測部11と通信可能に接続されること以外、上述した焙煎装置3と同様のものを用いることができる。
[Roasting device 3]
Although not an indispensable aspect, as a roasting apparatus for roasting coffee beans to be measured, the exhaust unit 34 is configured to be able to supply carbon monoxide to the carbon monoxide amount measuring unit 20. And the thing similar to the roasting apparatus 3 mentioned above can be used except the adjustment part 36 being connected so that communication with the estimation part 11 is possible.
 〔ハゼ発生予定時期予測装置2〕
 ハゼ発生予測時期測定装置2は、一酸化炭素量計測部20と、予測部21と、制御部22を有する。ハゼ発生予測時期測定装置2は、上述した焙煎装置3内において焙煎されるコーヒー豆から発生する一酸化炭素量に基づき、ハゼの発生時期を予測する。以下、各部についてそれぞれ説明する。なお、制御部12は必須の態様ではない。
[Haze occurrence scheduled time prediction device 2]
The goby occurrence prediction time measuring device 2 includes a carbon monoxide amount measuring unit 20, a predicting unit 21, and a control unit 22. The goby generation prediction time measuring device 2 predicts the goji generation time based on the amount of carbon monoxide generated from the coffee beans roasted in the roasting device 3 described above. Each part will be described below. The control unit 12 is not an essential aspect.
 (一酸化炭素量測定部20)
 次に、本実施形態に係る一酸化炭素量測定部20について説明する。一酸化炭素量測定部20は、焙煎装置3から送られた一酸化炭素の量を測定可能に構成されるものである。なお、図示しないが、本実施形態に係るコーヒー豆のハゼ発生予定時期測定装置2は、一酸化炭素量測定部20と排気部34の間にフィルターをさらに備えるものである。
(Carbon monoxide measurement unit 20)
Next, the carbon monoxide amount measuring unit 20 according to the present embodiment will be described. The carbon monoxide amount measuring unit 20 is configured to be able to measure the amount of carbon monoxide sent from the roasting apparatus 3. Although not shown, the coffee bean gossip scheduled generation time measuring apparatus 2 according to the present embodiment further includes a filter between the carbon monoxide amount measuring unit 20 and the exhaust unit 34.
 一酸化炭素量測定部20は、焙煎中のコーヒー豆から発生する一酸化炭素の量を測定可能な手段である。一酸化炭素量測定部20としては、例えば、根本特殊化学社製のNAP-505等を用いることができる。一酸化炭素量測定部20は、本実施形態においては、焙煎装置4から排気された一酸化炭素を測定するように、焙煎装置3とは別に(焙煎装置3の外部に)構成したが、焙煎装置3の内部に一酸化炭素量測定部20を設けることもできる。 The carbon monoxide amount measuring unit 20 is a means capable of measuring the amount of carbon monoxide generated from the coffee beans being roasted. As the carbon monoxide amount measuring unit 20, for example, NAP-505 manufactured by Nemoto Special Chemical Co., Ltd. can be used. In the present embodiment, the carbon monoxide amount measuring unit 20 is configured separately from the roasting device 3 (outside the roasting device 3) so as to measure the carbon monoxide exhausted from the roasting device 4. However, the carbon monoxide amount measuring unit 20 may be provided inside the roasting apparatus 3.
 また、フィルターは、焙煎装置3から送気された一酸化炭素が一酸化炭素量測定部20に達するまでの間の一酸化炭素の通路に配置されるものである。このようなフィルターによって、一酸化炭素量測定部20に一酸化炭素を送気する際に、異物(例えば、チャフ)を除去することができるため、より正確な一酸化炭素量の測定を行うことができる。フィルターとしては、特に限定されないが、例えば、チャフフィルター等を用いることができる。 The filter is disposed in the carbon monoxide passage until the carbon monoxide sent from the roasting apparatus 3 reaches the carbon monoxide amount measuring unit 20. With such a filter, when carbon monoxide is supplied to the carbon monoxide amount measuring unit 20, foreign matters (for example, chaff) can be removed, so that the carbon monoxide amount can be measured more accurately. Can do. Although it does not specifically limit as a filter, For example, a chaff filter etc. can be used.
 また、コーヒー豆のハゼ発生予定時期予測装置1は、本発明の効果を損なわない範囲において、適宜他の構成要素を備えることができる。例えば、一酸化炭素を測定部1に送気するための気体ポンプをさらに備えることができる。 Further, the coffee bean gossip scheduled occurrence time prediction device 1 can appropriately include other components as long as the effects of the present invention are not impaired. For example, a gas pump for supplying carbon monoxide to the measurement unit 1 can be further provided.
 (予測部21)
 予測部21は、一酸化炭素量測定部20による一酸化炭素量の測定結果に基づいて、コーヒー豆のハゼ発生予定時期を予測する手段である。
(Prediction unit 21)
The prediction unit 21 is a means for predicting the coffee beans gossip generation scheduled time based on the measurement result of the carbon monoxide amount by the carbon monoxide amount measurement unit 20.
 (制御部22)
 必須の態様ではないが、制御部22は、予測部21によるハゼ発生予定時期の予測に基づいて、焙煎装置3における焙煎の条件を調整可能な手段である。
(Control unit 22)
Although not an indispensable aspect, the control unit 22 is a means that can adjust the roasting conditions in the roasting apparatus 3 based on the prediction of the goby occurrence scheduled time by the prediction unit 21.
 制御部22は、予測部21からハゼ発生予定時期の出力を受け取り、そのデータに基づいて、焙煎装置3の制御部に焙煎条件を変更するように指示をする。これにより、焙煎装置3における焙煎の条件を調整可能とする。そして、このようにして、焙煎条件を調整することにより、適切に焙煎条件が制御された焙煎コーヒー豆を製造することができる。 The control unit 22 receives the output of the expected occurrence time of the goby from the prediction unit 21, and instructs the control unit of the roasting apparatus 3 to change the roasting conditions based on the data. Thereby, the roasting conditions in the roasting device 3 can be adjusted. And roasted coffee beans in which roasting conditions are appropriately controlled can be manufactured by adjusting roasting conditions in this way.
 制御部22において、焙煎条件の調整する具体的な方法としては、目的に応じて適宜選択されるものであり、特に限定されないが、例えば、コーヒー豆の焙煎度に連動して、コーヒー豆に対する熱の供給の条件(例えば、焙煎温度、焙煎時間、送風の条件、回転ドラムの回転の条件等)を変更し、焙煎の進行速度等を調整することができる。また、コーヒー豆に対する熱の供給を停止することもできる。 The specific method for adjusting the roasting conditions in the control unit 22 is appropriately selected according to the purpose and is not particularly limited. For example, the coffee beans are linked with the roasting degree of the coffee beans. The heat supply conditions (for example, roasting temperature, roasting time, air blowing conditions, rotating drum rotating conditions, etc.) can be changed to adjust the roasting speed and the like. In addition, the supply of heat to the coffee beans can be stopped.
 また、本実施形態においては備えていないが、制御部22は、一酸化炭素量における気体ポンプのスイッチのオン・オフを指示することができる。また、制御部22は、データ(例えば、一酸化炭素濃度、焙煎開始からの経過時間、焙煎温度内の温度、気温等)を記録するために、例えば、別のコンピュータ(パソコン)にデータを送るように構成することもできる。 Although not provided in the present embodiment, the control unit 22 can instruct on / off of the switch of the gas pump in the amount of carbon monoxide. In addition, the control unit 22 records data (for example, data on another computer (personal computer)) in order to record data (for example, carbon monoxide concentration, elapsed time from the start of roasting, temperature within roasting temperature, air temperature, etc.). Can also be configured to send.
 なお、予測部21及び制御部22は、それぞれが通信可能な状態で一酸化炭素量測定部20及び調整部36に接続されていればよい。例えば、予測部21及び制御部22をネットワーク上のサーバに設置することができる。 In addition, the prediction part 21 and the control part 22 should just be connected to the carbon monoxide amount measurement part 20 and the adjustment part 36 in the state which can communicate, respectively. For example, the prediction unit 21 and the control unit 22 can be installed in a server on the network.
 <ハゼ検知方法とハゼ発生時期予測方法を組み合わせ>
 なお、上述したハゼ検知方法とハゼ発生時期予測方法を組み合わせて用いることができる。これにより、ハゼ発生をより高精度に検知することができる。
<Combination of the goby detection method and the goby occurrence time prediction method>
Note that the above-described goby detection method and goby occurrence time prediction method can be used in combination. Thereby, the occurrence of goby can be detected with higher accuracy.
 <焙煎コーヒー豆製造装置の準備>
 焙煎コーヒー豆製造装置4として、図1に示したハゼ検知装置1、図3に示したハゼ発生予定時期予測装置2、及び図1及び図3に示した焙煎装置3をいずれも備える装置を作製した(図4)。それぞれについて、以下に詳細に説明する。
<Preparation of roasted coffee bean production equipment>
As the roasted coffee bean manufacturing device 4, a device comprising all of the goby detection device 1 shown in FIG. 1, the goose occurrence scheduled time prediction device 2 shown in FIG. 3, and the roasting device 3 shown in FIGS. Was prepared (FIG. 4). Each will be described in detail below.
 [焙煎装置3]
 焙煎手段3は、GeneCafe CBR-101(GeneSys社製)を用いた。焙煎手段3は、焙煎容器30と、熱源部31としての電熱ヒーターと、送風部32としてのブラワと、温度測定部33としての温度センサーと、排気部34と、チャフコレクター35と、調整部36とを備えるものである。
[Roasting device 3]
As the roasting means 3, GeneCafe CBR-101 (manufactured by GeneSys) was used. The roasting means 3 includes a roasting container 30, an electric heater as a heat source unit 31, a blower as a blower unit 32, a temperature sensor as a temperature measurement unit 33, an exhaust unit 34, a chaff collector 35, and an adjustment And a unit 36.
 なお、GeneCafe CBR-101は、通常、焙煎容器30としての円筒形の耐熱ガラスを有する。本実施例においては、ハゼ音を透過させるため、0.1tの真鍮製の筒を製造し、変更して用いた。 In addition, GeneCafe CBR-101 usually has a cylindrical heat-resistant glass as the roasting container 30. In the present example, a 0.1-t brass tube was manufactured and used in order to transmit goby sound.
 調整部36は、温度や焙煎時間のタイマーに応じてコーヒー豆の焙煎条件を直接変更可能なものである。 The adjusting unit 36 can directly change the roasting conditions of the coffee beans according to the temperature and roasting time timer.
 排気部34は、ハゼ発生予定時期予測装置2の一酸化炭素量測定部10に排気ガスを供給するように設計した。 The exhaust unit 34 was designed so as to supply exhaust gas to the carbon monoxide amount measuring unit 10 of the goby occurrence scheduled time prediction device 2.
 本実施例において、具体的な焙煎条件としては、ドラム回転数10~11rpmであり、風量約150L/分、温度調整範囲60~250℃とした。 In this example, specific roasting conditions were a drum rotation speed of 10 to 11 rpm, an air volume of about 150 L / min, and a temperature adjustment range of 60 to 250 ° C.
 [ハゼ検知装置1]
 ハゼ検知装置1における各部の詳細は、以下のとおりである。
[Haze detection device 1]
Details of each part in the goby detection device 1 are as follows.
 (音圧測定部10)
 音圧測定部10としては、マイクロフォン(Knowles社 SPU0410LR5H-QB)を用いた。
(Sound pressure measurement unit 10)
As the sound pressure measurement unit 10, a microphone (Knowles SPU0410LR5H-QB) was used.
 (ハゼ検知部11)
 ハゼ検知部11は、図3に示したように、バンドパスフィルタ111と、ピークディテクタ112と、波形解析器113と、計数器114と、を備えるものを構成した。
(Goby detection unit 11)
As shown in FIG. 3, the goby detecting unit 11 includes a band pass filter 111, a peak detector 112, a waveform analyzer 113, and a counter 114.
 バンドパスフィルタ111としては、アナログオペアンプによる2段増幅型バンドパスフィルタを用いた。ピークディテクタ112としては、アナログオペアンプとアナログコンパレータで構成した。波形解析器113としては、アナログコンパレータとマイクロコンピュータで構成した。計数器114としてはマイクロコンピュータを用いた。
 (制御部12、22)
 また、制御部12、22では、データを記録するために、10秒あたりのハゼ音の発生回数、COガス濃度、経過秒、設定温度、排気温度をコンピュータ(パソコン)へ送信するように設定した。
As the bandpass filter 111, a two-stage amplification type bandpass filter using an analog operational amplifier was used. The peak detector 112 is composed of an analog operational amplifier and an analog comparator. The waveform analyzer 113 is composed of an analog comparator and a microcomputer. A microcomputer was used as the counter 114.
(Control units 12, 22)
In addition, in order to record data, the control units 12 and 22 are set so as to transmit the number of occurrences of the goby sound per 10 seconds, the CO gas concentration, the elapsed seconds, the set temperature, and the exhaust temperature to the computer (personal computer). .
 [ハゼ発生予定時期予測装置2]
 ハゼ発生予定時期予測装置2としてのセンサーユニットは、更に、フィルター、気体ポンプを備えるものとして設計した。ハゼ発生予定時期予測装置2における各部の詳細は、以下のとおりである。
[Early goby expected time prediction device 2]
The sensor unit as the goby occurrence scheduled time prediction device 2 was further designed to include a filter and a gas pump. The details of each part in the goby occurrence scheduled time prediction device 2 are as follows.
 (一酸化炭素量測定部10)
 一酸化炭素量測定部10としては、根本特殊化学社製のNAP-505(CO測定範囲:0-1000ppm)のセンサーデバイスを用いて、CO(一酸化炭素)を測定した。
(Carbon monoxide measurement unit 10)
As the carbon monoxide amount measuring unit 10, CO (carbon monoxide) was measured using a sensor device of NAP-505 (CO measurement range: 0 to 1000 ppm) manufactured by Nemoto Special Chemical.
 (チャフフィルター)
 チャフフィルターは、焙煎装置3の排気部34から供給された排気ガスに混じったチャフ等の異物を除去するためのものである。チャフコレクターとしては、上述のGeneCafe CBR-101(GeneSys社製)の付属品を用いた。
(Chaff filter)
The chaff filter is for removing foreign substances such as chaff mixed with the exhaust gas supplied from the exhaust unit 34 of the roasting device 3. As the chaff collector, an accessory of the above-described GeneCafe CBR-101 (manufactured by GeneSys) was used.
 (気体ポンプ)
 気体ポンプは、焙煎装置3における排気部34からの排気ガスをハゼ発生予定時期予測装置1へ送るものである。気体ポンプとしては、KNF社製のNF-11を用いた。この気体ポンプ能力は、100ml/分であった。
(Gas pump)
The gas pump sends exhaust gas from the exhaust section 34 in the roasting device 3 to the goby occurrence scheduled time prediction device 1. As the gas pump, NF-11 manufactured by KNF was used. The gas pump capacity was 100 ml / min.
<実施例1>
 上述した焙煎コーヒー豆製造装置4を用いて、250gのコーヒー豆(モカシダモG4)を焙煎した。加熱温度を230℃で一定とした。このとき、ハゼ未発生時(焙煎開始から約440秒)の焙煎装置の装置音及び環境雑音を主とする音と、ハゼ発生時(焙煎開始から約620秒)のハゼ音を主とする音を測定し、バンドパスフィルタの入出力及びピークディテクタの出力の3チャネルを同時にデジタルオシロスコープで測定・記録した。
<Example 1>
Using the roasted coffee bean production apparatus 4 described above, 250 g of coffee beans (Mocashidamo G4) were roasted. The heating temperature was constant at 230 ° C. At this time, the main sound is the sound of the roasting device when the goby has not occurred (about 440 seconds from the start of roasting) and the environmental noise, and the goby sound when the goby has occurred (about 620 seconds from the start of roasting). And measured and recorded three channels of bandpass filter input / output and peak detector output simultaneously with a digital oscilloscope.
 図5(a)~(c)は、焙煎装置の装置音及び環境雑音のマイクロフォンの出力波形(図5(a))、10kHzバンドパスフィルタ通過後の波形(図5(b))、ピークディテクタ出力の波形(図5(c))である。 FIGS. 5 (a) to 5 (c) show the output waveform of the roaster device sound and environmental noise (FIG. 5 (a)), the waveform after passing through the 10 kHz bandpass filter (FIG. 5 (b)), and the peak. It is a waveform (FIG.5 (c)) of a detector output.
 図6(a)~(c)は、ハゼ音のマイクロフォンの出力波形(図6(a))、10kHzバンドパスフィルタ通過後の波形(図6(b))、ピークディテクタ出力の波形(図6(c))である。 6A to 6C show the output waveform of the goby microphone (FIG. 6A), the waveform after passing through the 10 kHz bandpass filter (FIG. 6B), and the waveform of the peak detector output (FIG. 6). (C)).
<実施例2>
 (実施例2-1~2-4)
 上述した焙煎コーヒー豆製造装置4を用いて、250gのコーヒー豆を焙煎した。加熱温度を230℃で一定とした。また、一酸化炭素量測定部において測定された排出ガス中の一酸化炭素の濃度が600ppmとなったとき、調整部36にて加熱を停止した。
<Example 2>
(Examples 2-1 to 2-4)
Using the roasted coffee bean production apparatus 4 described above, 250 g of coffee beans were roasted. The heating temperature was constant at 230 ° C. Further, when the concentration of carbon monoxide in the exhaust gas measured in the carbon monoxide amount measurement unit reached 600 ppm, heating was stopped in the adjustment unit 36.
 ハゼ音未発生時の期間として、焙煎開始から480~540秒の60秒間を選択し、その期間の装置音及び環境雑音を測定した。この60秒間の各秒のピーク値を記録し、60秒間の平均値を記録し、焙煎開始から541秒以降の閾値とした。焙煎開始から541秒以降では、測定した音圧がこの閾値を超えており、閾値を超えた時より0.5ミリ秒前からの3ミリ秒前の期間に閾値の1/4以上の電圧が記録されていない場合、ハゼ音と判断し、計数器に信号を送信する。一方で、この期間に閾値の1/4以上の電圧が記録されている場合、雑音と判断し、計数器に信号を送信しない。 As the period when no goby sound was generated, 60 seconds from 480 to 540 seconds from the start of roasting were selected, and the apparatus sound and environmental noise during that period were measured. The peak value of each second for 60 seconds was recorded, the average value for 60 seconds was recorded, and the threshold value was 541 seconds after the start of roasting. The measured sound pressure exceeds this threshold after 541 seconds from the start of roasting, and the voltage is ¼ or more of the threshold in the period of 3 milliseconds before 0.5 milliseconds from when the threshold was exceeded. Is not recorded, it is determined as a goby sound and a signal is transmitted to the counter. On the other hand, if a voltage of 1/4 or more of the threshold is recorded during this period, it is determined as noise and no signal is transmitted to the counter.
 コーヒー豆の銘柄としては、サントスNo.2(実施例2-1)、モカシダモG4(実施例2-2)、ガテマラSHB(実施例2-3)、ブラジルダテーラリザーブ(実施例2-4)を用いた。図7~10は、焙煎開始からの時間における排出ガス中の一酸化炭素の濃度、10秒ごとのハゼ発生回数、設定温度及び排気温度のプロファイルである。 As a brand of coffee beans, Santos No. 2 (Example 2-1), Mocashidamo G4 (Example 2-2), Guatemala SHB (Example 2-3), Brazilian tailor reserve (Example 2-4) were used. FIGS. 7 to 10 are profiles of the concentration of carbon monoxide in the exhaust gas in the time from the start of roasting, the number of goses generated every 10 seconds, the set temperature and the exhaust temperature.
 表1に、実施例2-1~2-4において、第1のハゼ音発生時の排出ガス中の一酸化炭素の濃度、第2のハゼ音発生時の排出ガス中の一酸化炭素の濃度、焙煎開始から4ppm、5ppm、30ppm、40ppm、50ppmまでの時間を示す。なお、表1においては、排出ガス中の一酸化炭素の濃度が3ppm以上30ppm未満の範囲で検知した最初のハゼ音を「第1のハゼ音の開始」、同50ppm以上で検知した最初のハゼ音を「第2のハゼ音の開始」としている。 Table 1 shows the concentration of carbon monoxide in the exhaust gas when the first goby sound is generated and the concentration of carbon monoxide in the exhaust gas when the second goby sound is generated in Examples 2-1 to 2-4. The time from the start of roasting to 4 ppm, 5 ppm, 30 ppm, 40 ppm and 50 ppm is shown. In Table 1, the first goby sound detected when the concentration of carbon monoxide in the exhaust gas is 3 ppm or more and less than 30 ppm is “start of the first goby sound”, and the first goby detected at 50 ppm or more. The sound is "start of second goby sound".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例2-5~2-8)
 180℃で300秒、200℃で120秒、224℃で120秒、その後230℃で保持する温度プロファイルにおいて、排出ガス中の一酸化炭素の濃度が9ppmとなったとき20秒間そのときの設定温度を10℃低下させ、また、排出ガス中の一酸化炭素の濃度が80ppmとなったとき20秒間そのときの設定温度を30℃低下させるよう設定した以外、実施例2-1~2-4と同様にして、コーヒー豆を焙煎した。図11~14は、焙煎開始からの時間における排出ガス中の一酸化炭素の濃度、10秒ごとのハゼ発生回数、設定温度及び排気温度のプロファイルである。
(Examples 2-5 to 2-8)
In a temperature profile of 300 seconds at 180 ° C., 120 seconds at 200 ° C., 120 seconds at 224 ° C., and then maintained at 230 ° C., when the concentration of carbon monoxide in the exhaust gas becomes 9 ppm, the set temperature at that time for 20 seconds Example 2-1 to 2-4, except that the temperature was set to be lowered by 30 ° C. for 20 seconds when the concentration of carbon monoxide in the exhaust gas reached 80 ppm. Similarly, coffee beans were roasted. FIGS. 11 to 14 are profiles of the concentration of carbon monoxide in the exhaust gas during the time from the start of roasting, the number of goses generated every 10 seconds, the set temperature and the exhaust temperature.
 表2に、実施例2-5~2-8において、第1のハゼ音発生時の排出ガス中の一酸化炭素の濃度、第2のハゼ音発生時の排出ガス中の一酸化炭素の濃度、焙煎開始から4ppm、5ppm、30ppm、40ppm、50ppmまでの時間を示す。なお、表2においては、排出ガス中の一酸化炭素の濃度が3ppm以上30ppm未満の範囲で検知した最初のハゼ音を「第1のハゼ音の開始」、同50ppm以上で検知した最初のハゼ音を「第2のハゼ音の開始」としている。 Table 2 shows the concentration of carbon monoxide in the exhaust gas when the first goby sound is generated and the concentration of carbon monoxide in the exhaust gas when the second goby sound is generated in Examples 2-5 to 2-8. The time from the start of roasting to 4 ppm, 5 ppm, 30 ppm, 40 ppm and 50 ppm is shown. In Table 2, the first goby sound detected when the concentration of carbon monoxide in the exhaust gas is 3 ppm or more and less than 30 ppm is “the start of the first goby sound”, and the first goby sound detected when the concentration is 50 ppm or more. The sound is "start of second goby sound".
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2を対比すると、焙煎温度のプロファイルに相違があるにも関わらず、実施例2-1~2-8においてはいずれも、第1のハゼ音を検知したときの排出ガス中の一酸化炭素の濃度と、第2のハゼ音を検知したときの排出ガス中の一酸化炭素の濃度は、それぞれ5ppm~9ppm、55ppm~81ppmの範囲にある。したがって、ハゼ音の発生と、排出ガス中の一酸化炭素の濃度はコーヒー豆の個体差や焙煎温度にもかかわらず、対応関係があるものと示唆される。 When Table 1 and Table 2 are compared, in Examples 2-1 to 2-8, in the exhaust gas when the first goby sound is detected, although the roasting temperature profile is different, The concentration of carbon monoxide and the concentration of carbon monoxide in the exhaust gas when the second goby sound is detected are in the range of 5 ppm to 9 ppm and 55 ppm to 81 ppm, respectively. Therefore, it is suggested that there is a corresponding relationship between the occurrence of goby noise and the concentration of carbon monoxide in the exhaust gas, regardless of individual differences in coffee beans and roasting temperature.
 上述した焙煎コーヒー豆製造装置4を用いて、250gのコーヒー豆(モカシダモG4)を焙煎した。加熱温度を230℃で一定とした。解析の対象とする音の中心周波数(kHz)と半値幅(kHz)を表3のとおり変更して、第1のハゼ発生時(焙煎開始後549~789秒)及び第2のハゼ発生時(焙煎開始後799秒~999秒)それぞれにおける、ハゼ発生回数(各期間の総発生回数)、10秒あたりの平均のハゼ発生回数を測定するとともに、第1のハゼ発生時及び第2のハゼ発生時のハゼ発生回数の分布について、歪度及び尖度を計算した。その結果について、表3に併せて示す。 Using the roasted coffee bean production apparatus 4 described above, 250 g of coffee beans (Mocadamo G4) were roasted. The heating temperature was constant at 230 ° C. Change the center frequency (kHz) and half-value width (kHz) of the sound to be analyzed as shown in Table 3. When the first goby (549-789 seconds after the start of roasting) and when the second goby occurs In each (799 seconds to 999 seconds after the start of roasting), the number of goby occurrences (total number of occurrences in each period), the average number of gouge occurrences per 10 seconds is measured, and when The skewness and kurtosis were calculated for the distribution of the number of goby occurrences at the time of goby occurrence. The results are also shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 1    ハゼ検知装置
 10   音圧測定部
 11   ハゼ検知部
 111  バンドパスフィルタ
 112  ピークディテクタ
 113  波形解析器
 114  計数器
 12   制御部
 2    ハゼ発生予定時期予測装置
 20   一酸化炭素量測定部
 21   予測部
 22   制御部
 3    焙煎装置
 30   焙煎容器
 31   熱源部
 32   送風部
 33   温度測定部
 34   排気部
 35   チャフコレクター
 36   調整部
 4    焙煎コーヒー豆製造装置
DESCRIPTION OF SYMBOLS 1 Goby detection apparatus 10 Sound pressure measurement part 11 Goby detection part 111 Band pass filter 112 Peak detector 113 Waveform analyzer 114 Counter 12 Control part 2 Gossop scheduled generation time prediction apparatus 20 Carbon monoxide amount measurement part 21 Prediction part 22 Control part DESCRIPTION OF SYMBOLS 3 Roasting apparatus 30 Roasting container 31 Heat source part 32 Blower part 33 Temperature measuring part 34 Exhaust part 35 Chaff collector 36 Adjustment part 4 Roasted coffee bean manufacturing apparatus

Claims (16)

  1.  焙煎中のコーヒー豆から発生する音を経時的に測定する音測定工程と、
     前記音のうち5kHz以上80kHz以下の範囲に含まれる範囲の周波数の音圧に基づいて、コーヒー豆のハゼを検知するハゼ検知工程と、を有する
     コーヒー豆のハゼ検知方法。
    A sound measurement process for measuring the sound generated from roasted coffee beans over time;
    A goby detection process for detecting a goat of coffee beans based on a sound pressure having a frequency within a range of 5 kHz to 80 kHz of the sound.
  2.  焙煎開始2分後から、音測定工程を開始する
     請求項1に記載のコーヒー豆のハゼ検知方法。
    The coffee bean gourd detection method according to claim 1, wherein the sound measurement process is started 2 minutes after the start of roasting.
  3.  少なくとも焙煎開始2分後まで、焙煎中のコーヒー豆から発生する一酸化炭素量を測定する初期一酸化炭素量測定工程をさらに有する
     請求項1又は2に記載のコーヒー豆のハゼ検知方法。
    The goat detection method for coffee beans according to claim 1 or 2, further comprising an initial carbon monoxide amount measuring step of measuring an amount of carbon monoxide generated from the coffee beans being roasted at least 2 minutes after the start of roasting.
  4.  前記音測定工程において、焙煎中の前記コーヒー豆から発生する音をサンプリング周期0.2ミリ秒以下で測定する
     請求項1乃至3のいずれか1項に記載のコーヒー豆のハゼ検知方法。
    The coffee bean detection method according to any one of claims 1 to 3, wherein in the sound measurement step, a sound generated from the coffee beans being roasted is measured at a sampling period of 0.2 milliseconds or less.
  5.  前記ハゼ検知工程において、0.1kHz以上1kHz以下の半値幅を有する周波数の音圧に基づいて、コーヒー豆のハゼを検知する
     請求項1乃至4のいずれか1項にコーヒー豆のハゼ検知方法。
    The coffee bean detection method according to any one of claims 1 to 4, wherein in the gobe detection step, the goat of the coffee bean is detected based on a sound pressure having a frequency having a half-value width of 0.1 kHz to 1 kHz.
  6.  焙煎中のコーヒー豆から発生する音のうち5kHz以上80kHz以下の範囲に含まれる範囲の周波数の音圧に基づいて、コーヒー豆のハゼを検知する
     コーヒー豆のハゼ検知方法。
    A coffee bean detection method for detecting coffee bean on the basis of a sound pressure having a frequency within a range of 5 kHz to 80 kHz among sounds generated from roasted coffee beans.
  7.  焙煎中のコーヒー豆から発生する音を経時的に測定する音測定部と、
     前記音のうち5kHz以上80kHz以下の範囲に含まれる範囲の周波数の音圧に基づいて、コーヒー豆のハゼを検知するハゼ検知部と、を有する
     コーヒー豆のハゼ検知装置。
    A sound measurement unit that measures sound generated from roasted coffee beans over time;
    A coffee bean detection device, comprising: a goby detection unit that detects goby of coffee beans based on a sound pressure having a frequency within a range of 5 kHz to 80 kHz among the sounds.
  8.  焙煎中のコーヒー豆から発生する音を経時的に測定する音測定工程と、
     前記音のうち5kHz以上80kHz以下の範囲に含まれる範囲の周波数の音圧に基づいて、コーヒー豆のハゼを検知するハゼ検知工程と、
     前記ハゼの検知に基づいて、焙煎条件を変更する制御工程と、を有する
     焙煎コーヒー豆の製造方法。
    A sound measurement process for measuring the sound generated from roasted coffee beans over time;
    Based on the sound pressure of the frequency of the range included in the range of 5 kHz or more and 80 kHz or less of the sound, goby detection step of detecting coffee beans goby,
    A control step of changing roasting conditions based on detection of the goby, and a method for producing roasted coffee beans.
  9.  焙煎中のコーヒー豆から発生する一酸化炭素量を測定する一酸化炭素量測定工程と、
     前記一酸化炭素量に基づいて、コーヒー豆のハゼ発生予定時期を予測する予測工程と、を有する
     コーヒー豆のハゼ発生予定時期予測方法。
    A carbon monoxide amount measuring step for measuring the amount of carbon monoxide generated from roasted coffee beans;
    A predicting step of predicting the occurrence of goby of coffee beans based on the amount of carbon monoxide;
  10.  前記予測工程では、20秒以上後のハゼ発生予定時期を予測する
     請求項9に記載のコーヒー豆のハゼ発生予定時期予測方法。
    The method for predicting the expected occurrence of goby of coffee beans according to claim 9, wherein the expected occurrence of goby after 20 seconds or more is predicted in the prediction step.
  11.  前記コーヒー豆は、少なくとも銘柄、ロット、産地、精製方法及び生産年のいずれかが異なる、少なくとも2種以上のブレンドである
     請求項9又は10に記載のコーヒー豆のハゼ発生予定時期予測方法。
    The method for predicting the expected occurrence of goby of coffee beans according to claim 9 or 10, wherein the coffee beans are a blend of at least two or more of at least one of brand, lot, production area, refining method and production year.
  12.  前記ハゼは、第1のハゼである
     請求項9乃至11のいずれか1項に記載のコーヒー豆のハゼ発生予定時期予測方法。
    The method for predicting the expected occurrence of coffee beans according to any one of claims 9 to 11, wherein the goby is a first goby.
  13.  前記ハゼは、第2のハゼである
     請求項9乃至11のいずれか1項に記載のコーヒー豆のハゼ発生予定時期予測方法。
    The method for predicting the estimated occurrence time of coffee beans according to any one of claims 9 to 11, wherein the goby is a second goby.
  14.  焙煎中のコーヒー豆から発生する一酸化炭素量に基づいて、コーヒー豆のハゼ発生予定時期を予測する
     コーヒー豆のハゼ発生予定時期予測方法。
    A method for predicting the expected occurrence of coffee beans on the basis of the amount of carbon monoxide generated from roasted coffee beans.
  15.  焙煎中のコーヒー豆から発生する一酸化炭素量を測定する一酸化炭素量測定部と、
     前記一酸化炭素量に基づいて、コーヒー豆のハゼ発生予定時期を予測する予測部と、を備える
     コーヒー豆のハゼ発生予定時期予測装置。
    A carbon monoxide amount measuring unit for measuring the amount of carbon monoxide generated from roasted coffee beans;
    A prediction unit for predicting the occurrence of goby of coffee beans, based on the amount of carbon monoxide, and a prediction unit for predicting the expected occurrence of goby of coffee beans.
  16.  焙煎中のコーヒー豆から発生する一酸化炭素量を測定する一酸化炭素量測定工程と、
     前記一酸化炭素量に基づいて、コーヒー豆のハゼ発生予定時期より所定期間前の条件変更時期を見積もる見積工程と、
     前記条件変更時期に、焙煎条件を変更する制御工程と、を有する
     焙煎コーヒー豆の製造方法。
    A carbon monoxide amount measuring step for measuring the amount of carbon monoxide generated from roasted coffee beans;
    Based on the amount of carbon monoxide, an estimation step of estimating a condition change time before a predetermined period from the expected occurrence of goby of coffee beans;
    And a control step of changing roasting conditions at the time of changing the conditions.
PCT/JP2018/002158 2017-02-28 2018-01-24 Coffee bean cracking occurrence schedule prediction method, coffee bean cracking occurrence schedule prediction device, coffee bean cracking detection method, coffee bean cracking detection device, and roasted coffee bean production method WO2018159164A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-037461 2017-02-28
JP2017037461A JP6261788B1 (en) 2017-02-28 2017-02-28 Method for predicting coffee bean occurrence time, apparatus for predicting coffee bean occurrence, coffee bean detection method, coffee bean detection device, and method for producing roasted coffee beans

Publications (1)

Publication Number Publication Date
WO2018159164A1 true WO2018159164A1 (en) 2018-09-07

Family

ID=60040465

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/002158 WO2018159164A1 (en) 2017-02-28 2018-01-24 Coffee bean cracking occurrence schedule prediction method, coffee bean cracking occurrence schedule prediction device, coffee bean cracking detection method, coffee bean cracking detection device, and roasted coffee bean production method
PCT/JP2018/002159 WO2018159165A1 (en) 2017-02-28 2018-01-24 Coffee bean cracking occurrence schedule prediction method, coffee bean cracking occurrence schedule prediction device, coffee bean cracking detection method, coffee bean cracking detection device, and roasted coffee bean production method

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002159 WO2018159165A1 (en) 2017-02-28 2018-01-24 Coffee bean cracking occurrence schedule prediction method, coffee bean cracking occurrence schedule prediction device, coffee bean cracking detection method, coffee bean cracking detection device, and roasted coffee bean production method

Country Status (2)

Country Link
JP (2) JP6261788B1 (en)
WO (2) WO2018159164A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI672102B (en) * 2017-11-16 2019-09-21 志勇無限創意有限公司 Assisting appatatus for bean roasting and bean roasting appatatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2267608A1 (en) * 1999-03-31 2000-09-30 Raymond Lemaire Method and apparatus for roasting coffee
AU2004100812A4 (en) * 2004-09-27 2004-11-18 Creme De La Creme Coffee Pty Limited Enhanced thermal process for activation of coffee flavour and aroma
KR20150131599A (en) * 2014-05-15 2015-11-25 조영준 System and method for controlling coffee roasting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2267608A1 (en) * 1999-03-31 2000-09-30 Raymond Lemaire Method and apparatus for roasting coffee
AU2004100812A4 (en) * 2004-09-27 2004-11-18 Creme De La Creme Coffee Pty Limited Enhanced thermal process for activation of coffee flavour and aroma
KR20150131599A (en) * 2014-05-15 2015-11-25 조영준 System and method for controlling coffee roasting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WILSON, PRESTON S. ET AL.: "Coffee roasting acoustics", THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, vol. 135, no. 6, 13 May 2014 (2014-05-13), pages EL266, XP055537940 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods

Also Published As

Publication number Publication date
WO2018159165A1 (en) 2018-09-07
JP6261788B1 (en) 2018-01-17
JP2018139577A (en) 2018-09-13
JP6211223B1 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
JP6261788B1 (en) Method for predicting coffee bean occurrence time, apparatus for predicting coffee bean occurrence, coffee bean detection method, coffee bean detection device, and method for producing roasted coffee beans
US10278406B2 (en) Method for producing roasted coffee beans in relation to carbon monoxide generated
KR20150131599A (en) System and method for controlling coffee roasting
CN103477220A (en) Operating method for a gas sensor and gas sensor
JP6192840B2 (en) Control of the roasting process of coffee beans
CN106604646B (en) Method for controlling a process of roasting coffee beans and device for use in a process of roasting coffee beans
GB2588113A (en) Apparatus for testing a tobacco heating product
KR102354020B1 (en) Apparatus for roasting coffee
CN105636461B (en) Controlling a roasting process of coffee beans
US11375730B2 (en) Roasting method and apparatus
JP2009064610A (en) Plasma processing equipment
Magrini et al. Control noise for coffee roasting
CN113812845B (en) Cooking equipment and control method thereof
JP2021153503A (en) Black tea production method and fermentation optimal period determination device in the method
KR20230145179A (en) hair styling device
CN111551005A (en) Normal atmospheric temperature drying equipment with adjustable
BR112018006765B1 (en) ROASTING METHOD AND APPARATUS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760313

Country of ref document: EP

Kind code of ref document: A1