WO2018158860A1 - Apparatus using heat pump - Google Patents

Apparatus using heat pump Download PDF

Info

Publication number
WO2018158860A1
WO2018158860A1 PCT/JP2017/008001 JP2017008001W WO2018158860A1 WO 2018158860 A1 WO2018158860 A1 WO 2018158860A1 JP 2017008001 W JP2017008001 W JP 2017008001W WO 2018158860 A1 WO2018158860 A1 WO 2018158860A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
circuit
heat exchanger
shut
water
Prior art date
Application number
PCT/JP2017/008001
Other languages
French (fr)
Japanese (ja)
Inventor
康巨 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP17899065.1A priority Critical patent/EP3591312B1/en
Priority to US16/469,229 priority patent/US20190390884A1/en
Priority to PCT/JP2017/008001 priority patent/WO2018158860A1/en
Priority to CN201780087175.2A priority patent/CN110337571A/en
Priority to JP2019502346A priority patent/JP6818865B2/en
Publication of WO2018158860A1 publication Critical patent/WO2018158860A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/16Arrangements for water drainage 
    • F24H9/17Means for retaining water leaked from heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves

Definitions

  • the present invention relates to a heat pump device having a refrigerant circuit and a heat medium circuit.
  • Patent Document 1 describes an outdoor unit of a heat pump cycle device using a combustible refrigerant.
  • This outdoor unit includes a refrigerant circuit in which a compressor, an air heat exchanger, a throttling device, and a water heat exchanger are connected by piping, and excess water pressure in the water circuit for supplying water heated by the water heat exchanger. And a pressure relief valve for preventing the ascent.
  • a pressure relief valve for preventing the ascent.
  • a pressure relief valve for a water circuit is provided in an indoor unit.
  • the outdoor unit and the indoor unit in the heat pump device are various combinations. Not only the outdoor unit and the indoor unit of the same manufacturer are combined, but also the outdoor unit and the indoor unit of different manufacturers may be combined. Therefore, the outdoor unit described in Patent Document 1 may be combined with an indoor unit provided with a pressure relief valve.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat pump device that can suppress the leakage of refrigerant into the room.
  • a heat pump utilization device includes a refrigerant circuit that circulates a refrigerant, a heat medium circuit that circulates a heat medium, and a heat exchanger that performs heat exchange between the refrigerant and the heat medium.
  • the circuit has a main circuit that passes through the heat exchanger, and the main circuit is provided at a downstream end of the main circuit, and a branch unit to which a plurality of branch circuits branching from the main circuit are connected.
  • a merging portion provided at an upstream end of the main circuit and connected to the plurality of branch circuits merging with the main circuit.
  • the main circuit includes a pressure protection device and refrigerant leakage detection.
  • the refrigerant circuit is provided with a first shut-off device and a second shut-off device across the heat exchanger.
  • the refrigerant flow in the refrigerant circuit can be blocked by the first blocking device and the second blocking device. Therefore, the refrigerant can be prevented from leaking into the room from the pressure protection device.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a heat pump utilizing device according to the present embodiment.
  • a heat pump hot water supply / room heating device 1000 is illustrated as an example of a heat pump using device.
  • the dimensional relationship and shape of each component may differ from the actual ones.
  • the heat pump hot water supply and heating device 1000 includes a refrigerant circuit 110 that circulates a refrigerant and a water circuit 210 that circulates water.
  • the heat pump hot water supply and heating device 1000 includes an outdoor unit 100 installed outdoors (for example, outdoors) and an indoor unit 200 installed indoors.
  • the indoor unit 200 is installed, for example, in a storage space such as a storage room in a building, in addition to a kitchen, a bathroom, and a laundry room.
  • the refrigerant circuit 110 has a configuration in which the compressor 3, the refrigerant flow switching device 4, the load-side heat exchanger 2, the decompression device 6, and the heat source-side heat exchanger 1 are sequentially connected in an annular manner through a refrigerant pipe. Yes.
  • the refrigerant circuit 110 of the heat pump hot water supply and heating device 1000 the refrigerant flows in the reverse direction with respect to the normal operation (for example, heating hot water supply operation) for heating the water flowing in the water circuit 210 and the normal operation, and the heat source side heat exchanger 1
  • the defrosting operation for performing the defrosting is possible.
  • the compressor 3 is a fluid machine that compresses sucked low-pressure refrigerant and discharges it as high-pressure refrigerant.
  • the compressor 3 of this example includes an inverter device or the like, and can change the capacity (the amount of refrigerant sent out per unit time) by arbitrarily changing the drive frequency.
  • the refrigerant flow switching device 4 switches the flow direction of the refrigerant in the refrigerant circuit 110 between the normal operation and the defrosting operation.
  • a four-way valve is used as the refrigerant flow switching device 4.
  • the load-side heat exchanger 2 is a water-refrigerant heat exchanger that performs heat exchange between the refrigerant flowing through the refrigerant circuit 110 and the water flowing through the water circuit 210.
  • a plate heat exchanger is used as the load-side heat exchanger 2 .
  • the load-side heat exchanger 2 is a thin plate that separates the refrigerant flow path through which the refrigerant flows as part of the refrigerant circuit 110, the water flow path through which water flows as part of the water circuit 210, and the refrigerant flow path from the water flow path. And a partition wall.
  • the load-side heat exchanger 2 functions as a condenser (heat radiator) that heats water during normal operation, and functions as an evaporator (heat absorber) during defrosting operation.
  • the decompression device 6 adjusts the flow rate of the refrigerant, and for example, adjusts the pressure of the refrigerant flowing through the load-side heat exchanger 2.
  • the decompression device 6 of this example is an electronic expansion valve that can change the opening degree based on an instruction from the control device 101 described later.
  • a temperature-sensitive expansion valve for example, a solenoid valve-integrated temperature-sensitive expansion valve
  • the heat source side heat exchanger 1 is an air-refrigerant heat exchanger that performs heat exchange between the refrigerant flowing through the refrigerant circuit 110 and outdoor air blown by an outdoor blower (not shown) or the like.
  • the heat source side heat exchanger 1 functions as an evaporator (heat absorber) during normal operation and functions as a condenser (heat radiator) during defrosting operation.
  • a shut-off device 77 is provided as a first shut-off device on the upstream side of the load-side heat exchanger 2 in the refrigerant flow during normal operation.
  • the shut-off device 77 is provided on the downstream side of the compressor 3 and the upstream side of the load-side heat exchanger 2 in the refrigerant circuit 110 in the refrigerant flow during normal operation.
  • the shut-off device 77 is downstream of the refrigerant flow switching device 4 in the refrigerant circuit 110 in the refrigerant flow during normal operation. And it is preferable to be provided upstream of the load side heat exchanger 2.
  • shut-off device 77 As the shut-off device 77, an on-off valve (for example, an electromagnetic valve, a flow rate adjusting valve, an electronic expansion valve, or the like) controlled by the control device 101 described later is used.
  • the shut-off device 77 is in an open state during operation of the refrigerant circuit 110 including normal operation and defrost operation. When the shut-off device 77 is closed by the control of the control device 101, the shut-off device 77 shuts off the refrigerant flow.
  • a shut-off device 78 is provided as a second shut-off device on the downstream side of the load-side heat exchanger 2 in the refrigerant flow during normal operation.
  • the shutoff device 78 is provided downstream of the load side heat exchanger 2 and upstream of the heat source side heat exchanger 1 in the refrigerant circuit 110 in the refrigerant flow during normal operation.
  • an on-off valve for example, an electromagnetic valve, a flow rate adjusting valve, an electronic expansion valve, or the like
  • the shut-off device 78 is in an open state during operation of the refrigerant circuit 110 including normal operation and defrost operation. When the shut-off device 78 is closed by the control of the control device 101, the shut-off device 78 shuts off the refrigerant flow.
  • the decompression device 6 when the decompression device 6 is an electronic expansion valve or an electromagnetic valve-integrated temperature-sensitive expansion valve, the decompression device 6 can also serve as the shut-off device 78. That is, when the decompression device 6 is an electronic expansion valve or a solenoid valve-integrated temperature-sensitive expansion valve, the installation of the shut-off device 78 can be omitted, and the decompression device 6 can also function as a second shut-off device. In other words, when the shut-off device 78 is an electronic expansion valve or an electromagnetic valve-integrated temperature-sensitive expansion valve, the installation of the decompression device 6 can be omitted, and the shut-off device 78 can also function as a decompression device.
  • a slightly flammable refrigerant such as R1234yf and R1234ze (E) or a strong flammable refrigerant such as R290 and R1270 is used as the refrigerant circulating in the refrigerant circuit 110.
  • These refrigerants may be used as a single refrigerant, or may be used as a mixed refrigerant in which two or more kinds are mixed.
  • a refrigerant having a flammability that is equal to or higher than the slight combustion level (for example, 2 L or more according to the ASHRAE 34 classification) may be referred to as “flammable refrigerant” or “flammable refrigerant”.
  • nonflammable refrigerants such as R407C and R410A having nonflammability (for example, 1 in the classification of ASHRAE 34) may be used. These refrigerants have a density higher than that of air at atmospheric pressure (for example, the temperature is room temperature (25 ° C.)).
  • a toxic refrigerant such as R717 (ammonia) can be used.
  • the refrigerant circuit 110 including the compressor 3, the refrigerant flow switching device 4, the shutoff device 77, the load side heat exchanger 2, the shutoff device 78, the decompression device 6, and the heat source side heat exchanger 1 is all accommodated in the outdoor unit 100. ing.
  • the outdoor unit 100 mainly controls the operation of the refrigerant circuit 110 (for example, the compressor 3, the refrigerant flow switching device 4, the shut-off devices 77 and 78, the decompression device 6, the outdoor blower not shown).
  • a device 101 is provided.
  • the control device 101 has a microcomputer equipped with a CPU, ROM, RAM, I / O port, and the like.
  • the control device 101 can communicate with a control device 201 and an operation unit 202 described later via a control line 102.
  • the flow direction of the refrigerant during normal operation in the refrigerant circuit 110 is indicated by solid line arrows.
  • the refrigerant flow path switching device 4 switches the refrigerant flow path as indicated by solid arrows, and the refrigerant circuit 110 is configured such that high-temperature and high-pressure refrigerant flows into the load-side heat exchanger 2.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 flows into the refrigerant flow path of the load-side heat exchanger 2 through the refrigerant flow switching device 4 and the open shut-off device 77.
  • the load side heat exchanger 2 functions as a condenser. That is, in the load side heat exchanger 2, heat exchange between the refrigerant flowing through the refrigerant flow path and the water flowing through the water flow path is performed, and the condensation heat of the refrigerant is radiated to the water.
  • coolant flow path of the load side heat exchanger 2 is condensed, and turns into a high voltage
  • the water which flows through the water flow path of the load side heat exchanger 2 is heated by the heat radiation from the refrigerant.
  • the high-pressure liquid refrigerant condensed in the load-side heat exchanger 2 flows into the decompression device 6 through the open shut-off device 78 and is decompressed to become a low-pressure two-phase refrigerant.
  • the low-pressure two-phase refrigerant flows into the heat source side heat exchanger 1.
  • the heat source side heat exchanger 1 functions as an evaporator. That is, in the heat source side heat exchanger 1, heat exchange is performed between the refrigerant circulating in the interior and the outdoor air blown by the outdoor blower, and the heat of evaporation of the refrigerant is absorbed from the outdoor air.
  • the refrigerant flowing into the heat source side heat exchanger 1 evaporates to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant is sucked into the compressor 3 via the refrigerant flow switching device 4.
  • the refrigerant sucked into the compressor 3 is compressed into a high-temperature and high-pressure gas refrigerant. In normal operation, the above cycle is continuously repeated.
  • the flow direction of the refrigerant during the defrosting operation in the refrigerant circuit 110 is indicated by a broken line arrow.
  • the refrigerant channel 110 is configured such that the refrigerant channel is switched by the refrigerant channel switching device 4 as indicated by the broken-line arrows, and the high-temperature and high-pressure refrigerant flows into the heat source side heat exchanger 1.
  • the heat source side heat exchanger 1 functions as a condenser. That is, in the heat source side heat exchanger 1, the heat of condensation of the refrigerant flowing inside is radiated to the frost attached to the surface of the heat source side heat exchanger 1.
  • circulates the inside of the heat source side heat exchanger 1 is condensed, and turns into a high voltage
  • the frost adhering to the surface of the heat source side heat exchanger 1 is melted by heat radiation from the refrigerant.
  • the high-pressure liquid refrigerant condensed in the heat source-side heat exchanger 1 becomes a low-pressure two-phase refrigerant via the decompression device 6 and flows into the refrigerant flow path of the load-side heat exchanger 2 through the open shut-off device 78. To do.
  • the load side heat exchanger 2 functions as an evaporator. That is, in the load side heat exchanger 2, heat exchange between the refrigerant flowing through the refrigerant flow path and the water flowing through the water flow path is performed, and the evaporation heat of the refrigerant is absorbed from the water.
  • coolant flow path of the load side heat exchanger 2 evaporates, and becomes a low voltage
  • This gas refrigerant is sucked into the compressor 3 via the open state blocking device 77 and the refrigerant flow switching device 4.
  • the refrigerant sucked into the compressor 3 is compressed into a high-temperature and high-pressure gas refrigerant. In the defrosting operation, the above cycle is continuously repeated.
  • the water circuit 210 of the present embodiment is a closed circuit that circulates water.
  • the flow direction of water is represented by a thick white arrow.
  • the water circuit 210 is configured by connecting a water circuit on the outdoor unit 100 side and a water circuit on the indoor unit 200 side.
  • the water circuit 210 includes a main circuit 220, a branch circuit 221 that constitutes a hot water supply circuit, and a branch circuit 222 that constitutes a part of the heating circuit.
  • the main circuit 220 constitutes a part of a closed circuit.
  • the branch circuits 221 and 222 are branched and connected to the main circuit 220, respectively.
  • the branch circuits 221 and 222 are provided in parallel with each other.
  • the branch circuit 221 forms a closed circuit together with the main circuit 220.
  • the branch circuit 222 forms a closed circuit together with the main circuit 220, the heating device 300 connected to the branch circuit 222, and the like.
  • the heating device 300 is provided indoors separately from the indoor unit 200.
  • a radiator or a floor heating device is used as the heating device 300.
  • water is used as an example of the heat medium flowing through the water circuit 210, but other liquid heat medium such as brine can be used as the heat medium.
  • the main circuit 220 has a configuration in which a strainer 56, a flow switch 57, a load-side heat exchanger 2, a booster heater 54, a pump 53, and the like are connected via a water pipe.
  • a drain outlet 62 for draining the water in the water circuit 210 is provided in the middle of the water pipe constituting the main circuit 220.
  • the downstream end of the main circuit 220 is connected to an inlet of a three-way valve 55 (an example of a branching portion) having one inlet and two outlets.
  • the branch circuits 221 and 222 are branched from the main circuit 220.
  • the upstream end of the main circuit 220 is connected to the junction unit 230.
  • the branch circuits 221 and 222 join the main circuit 220.
  • the water circuit 210 from the junction 230 to the three-way valve 55 via the load side heat exchanger 2 and the like becomes the main circuit 220.
  • the load side heat exchanger 2 of the main circuit 220 is provided in the outdoor unit 100.
  • Devices other than the load-side heat exchanger 2 in the main circuit 220 are provided in the indoor unit 200. That is, the main circuit 220 of the water circuit 210 is provided across the outdoor unit 100 and the indoor unit 200. A part of the main circuit 220 is provided in the outdoor unit 100, and another part of the main circuit 220 is provided in the indoor unit 200.
  • the outdoor unit 100 and the indoor unit 200 are connected via two connection pipes 211 and 212 that constitute a part of the main circuit 220.
  • the pump 53 is a device that pressurizes the water in the water circuit 210 and circulates the water circuit 210.
  • the booster heater 54 is a device that further heats the water in the water circuit 210 when the heating capacity of the outdoor unit 100 is insufficient.
  • the three-way valve 55 is a device for switching the flow of water in the water circuit 210. For example, the three-way valve 55 switches whether the water in the main circuit 220 is circulated on the branch circuit 221 side or the branch circuit 222 side.
  • the strainer 56 is a device that removes the scale in the water circuit 210.
  • the flow switch 57 is a device for detecting whether or not the flow rate of water circulating in the water circuit 210 is a certain amount or more. A flow sensor can be used in place of the flow switch 57.
  • a pressure relief valve 70 (an example of a pressure protection device) is connected to the booster heater 54. That is, the booster heater 54 becomes a connection part of the pressure relief valve 70 to the water circuit 210.
  • connection portion of the pressure relief valve 70 may be simply expressed as “connection portion”.
  • the pressure relief valve 70 is a protection device that prevents an excessive increase in pressure in the water circuit 210 due to a change in the temperature of water.
  • the pressure relief valve 70 discharges water to the outside of the water circuit 210 based on the pressure in the water circuit 210.
  • the pressure relief valve 70 is opened, and the water in the water circuit 210 is discharged from the pressure relief valve 70 to the outside. To be released.
  • the pressure relief valve 70 is provided in the indoor unit 200. The reason why the pressure relief valve 70 is provided in the indoor unit 200 is to perform pressure protection in the water circuit 210 in the indoor unit 200.
  • One end of a pipe 72 serving as a water flow path branched from the main circuit 220 is connected to the casing of the booster heater 54.
  • a pressure relief valve 70 is attached to the other end of the pipe 72. That is, the pressure relief valve 70 is connected to the booster heater 54 via the pipe 72. The highest water temperature in the main circuit 220 is in the booster heater 54. For this reason, the booster heater 54 is optimal as a connection part to which the pressure relief valve 70 is connected. Further, if the pressure relief valve 70 is connected to the branch circuits 221, 222, the pressure relief valve 70 needs to be provided for each branch circuit 221, 222. In the present embodiment, since the pressure relief valve 70 is connected to the main circuit 220, the number of the pressure relief valves 70 may be one.
  • a branch part 72a is provided in the middle of the pipe 72.
  • One end of a pipe 75 is connected to the branch part 72a.
  • An expansion tank 52 is connected to the other end of the pipe 75. That is, the expansion tank 52 is connected to the booster heater 54 via the pipes 75 and 72.
  • the expansion tank 52 is a device for controlling the pressure change in the water circuit 210 accompanying the water temperature change within a certain range.
  • the main circuit 220 is provided with a refrigerant leak detection device 98.
  • the refrigerant leak detection device 98 is connected between the load side heat exchanger 2 and the booster heater 54 (connection part) in the main circuit 220.
  • the refrigerant leakage detection device 98 is a device that detects refrigerant leakage from the refrigerant circuit 110 to the water circuit 210. When the refrigerant leaks from the refrigerant circuit 110 to the water circuit 210, the pressure in the water circuit 210 increases. Therefore, the refrigerant leakage detection device 98 can detect the leakage of the refrigerant to the water circuit 210 based on the pressure in the water circuit 210 (pressure value or temporal change in pressure).
  • the refrigerant leakage detection device 98 for example, a pressure sensor or a pressure switch (high pressure switch) for detecting the pressure in the water circuit 210 is used.
  • the pressure switch may be an electric type or a mechanical type using a diaphragm.
  • the refrigerant leak detection device 98 outputs a detection signal to the control device 101.
  • the shut-off devices 77 and 78 and the refrigerant leak detection device 98 are all provided in the outdoor unit 100.
  • coolant leak detection apparatus 98 can be connected in the outdoor unit 100 via a control line, cost reduction is attained.
  • the control of the shut-off devices 77 and 78 (described later) based on the detection signal from the refrigerant leak detection device 98 is completed in the outdoor unit 100, the versatility of the outdoor unit 100 is enhanced, and the outdoor unit 100 and various indoor units are increased. The degree of freedom of combination with is improved.
  • the refrigerant leak detection device 98 outputs a contact signal when the refrigerant leaks, the refrigerant leak detection device 98 and the blocking devices 77 and 78 may be directly connected without passing through the control device 101.
  • the branch circuit 221 constituting the hot water supply circuit is provided in the indoor unit 200.
  • the upstream end of the branch circuit 221 is connected to one outlet of the three-way valve 55.
  • the downstream end of the branch circuit 221 is connected to the merge unit 230.
  • the branch circuit 221 is provided with a coil 61.
  • the coil 61 is built in a hot water storage tank 51 that stores water therein.
  • the coil 61 is a heating unit that heats the water stored in the hot water storage tank 51 by heat exchange with water (hot water) circulating through the branch circuit 221 of the water circuit 210.
  • the hot water storage tank 51 has a built-in submerged heater 60.
  • the submerged heater 60 is a heating means for further heating the water stored in the hot water storage tank 51.
  • a sanitary circuit side pipe 81 a (for example, a hot water supply pipe) connected to, for example, a shower or the like is connected to the upper part of the hot water storage tank 51.
  • a sanitary circuit side pipe 81 b (for example, a makeup water pipe) is connected to the lower part in the hot water storage tank 51.
  • a drainage port 63 for draining the water in the hot water storage tank 51 is provided in the lower part of the hot water storage tank 51.
  • the hot water storage tank 51 is covered with a heat insulating material (not shown) in order to prevent the temperature of internal water from decreasing due to heat radiation to the outside.
  • the heat insulating material for example, felt, cinsalate (registered trademark), VIP (Vacuum Insulation Panel), or the like is used.
  • the branch circuit 222 constituting a part of the heating circuit is provided in the indoor unit 200.
  • the branch circuit 222 has an outward pipe 222a and a return pipe 222b.
  • the upstream end of the forward pipe 222 a is connected to the other outlet of the three-way valve 55.
  • the downstream end of the forward pipe 222a and the upstream end of the return pipe 222b are connected to the heating circuit side pipes 82a and 82b, respectively.
  • the downstream end of the return pipe 222b is connected to the junction 230.
  • the forward pipe 222a and the return pipe 222b are connected to the heating device 300 via the heating circuit side pipes 82a and 82b, respectively.
  • the heating circuit side pipes 82a and 82b and the heating device 300 are provided outside the indoor unit 200 although they are indoors.
  • the branch circuit 222 constitutes a heating circuit together with the heating circuit side pipes 82a and 82b and the heating device 300.
  • a pressure relief valve 301 is connected to the heating circuit side pipe 82a.
  • the pressure relief valve 301 is a protection device that prevents an excessive increase in pressure in the water circuit 210, and has, for example, the same structure as the pressure relief valve 70. For example, when the pressure in the heating circuit side pipe 82a becomes higher than the set pressure, the pressure relief valve 301 is opened, and the water in the heating circuit side pipe 82a is discharged from the pressure relief valve 301 to the outside.
  • the pressure relief valve 301 is provided outside the indoor unit 200 although it is indoors.
  • the heating device 300, the heating circuit side pipes 82a and 82b, and the pressure relief valve 301 in the present embodiment are not part of the heat pump hot water supply and heating device 1000, but are facilities constructed by a local contractor according to the circumstances of each property. is there.
  • the heat source device may be updated to the heat pump hot water supply and heating device 1000.
  • the heating device 300, the heating circuit side pipes 82a and 82b, and the pressure relief valve 301 are used as they are. Therefore, it is desirable that the heat pump hot water supply and heating apparatus 1000 can be connected to various facilities regardless of the presence or absence of the pressure relief valve 301.
  • the indoor unit 200 is provided with a control device 201 that mainly controls the operation of the water circuit 210 (for example, the pump 53, the booster heater 54, the three-way valve 55, etc.).
  • the control device 201 has a microcomputer provided with a CPU, ROM, RAM, I / O port, and the like.
  • the control device 201 can communicate with the control device 101 and the operation unit 202.
  • the operation unit 202 is configured such that the user can perform operations and various settings of the heat pump hot water supply and heating device 1000.
  • the operation unit 202 of this example includes a display unit 203 as a notification unit that notifies information.
  • the display unit 203 can display various information such as the state of the heat pump hot water supply and heating device 1000.
  • the operation unit 202 is provided on the surface of the casing of the indoor unit 200, for example.
  • the load side heat exchanger 2 functions as an evaporator during the defrosting operation. For this reason, the partition wall of the load-side heat exchanger 2 may be damaged due to freezing of water or the like particularly during the defrosting operation.
  • the pressure of the refrigerant flowing through the refrigerant flow path of the load-side heat exchanger 2 is higher than the pressure of water flowing through the water flow path of the load-side heat exchanger 2 in both the normal operation and the defrosting operation.
  • the refrigerant in the refrigerant channel flows out into the water channel in both the normal operation and the defrosting operation, and the refrigerant is mixed into the water in the water channel.
  • the refrigerant mixed in the water is gasified by a decrease in pressure.
  • the pressure in the water circuit 210 rises when refrigerant having a pressure higher than that of water mixes in the water.
  • the refrigerant mixed in the water of the water circuit 210 in the load side heat exchanger 2 not only flows in the direction along the normal water flow (that is, the direction from the load side heat exchanger 2 toward the booster heater 54), but also in the pressure Due to the difference, the water flows in the direction opposite to the normal flow of water (that is, the direction from the load-side heat exchanger 2 toward the junction 230).
  • the pressure relief valve 70 is provided in the main circuit 220 of the water circuit 210 as in this example, the refrigerant mixed in the water can be discharged from the pressure relief valve 70 into the room together with water.
  • the refrigerant mixed in water can be discharged together with water from the pressure relief valve 301 into the room.
  • both of the pressure relief valves 70 and 301 function as valves that discharge the refrigerant mixed in the water in the water circuit 210 to the outside of the water circuit 210.
  • the refrigerant has flammability, if the refrigerant is released into the room, a combustible concentration range may be generated in the room.
  • the control device 101 stops the compressor 3 and closes the shut-off devices 77 and 78 when detecting leakage of the refrigerant to the water circuit 210 based on the detection signal from the refrigerant leak detection device 98. To. Thereby, the flow of the refrigerant in the refrigerant circuit 110 is blocked at two places before and after the load-side heat exchanger 2 by the blocking devices 77 and 78. That is, the load side heat exchanger 2 is disconnected from the refrigerant circuit 110 in the refrigerant flow. For this reason, the amount of refrigerant leaking to the water circuit 210 in the load side heat exchanger 2 can be suppressed to be equal to or less than the amount of refrigerant existing in the load side heat exchanger 2. Therefore, according to this Embodiment, it can suppress that a refrigerant
  • FIG. 2 is a circuit diagram showing a schematic configuration of a heat pump utilizing device according to a modification of the present embodiment.
  • the present modification is different from the configuration shown in FIG. 1 in that the load side heat exchanger 2 is accommodated in the indoor unit 200.
  • the refrigerant circuit 110 is provided across the outdoor unit 100 and the indoor unit 200. A part of the refrigerant circuit 110 is provided in the outdoor unit 100, and the other part of the refrigerant circuit 110 is provided in the indoor unit 200.
  • the outdoor unit 100 and the indoor unit 200 are connected via two connection pipes 111 and 112 that constitute a part of the refrigerant circuit 110. Also by this modification, the same effect as the structure shown in FIG. 1 can be acquired.
  • shut-off devices 77 and 78 and the refrigerant leak detection device 98 are all provided in the indoor unit 200.
  • the refrigerant leak detection device 98 outputs a detection signal to the control device 201, and the blocking devices 77 and 78 are controlled by the control device 201.
  • coolant leakage detection apparatus 98 can be connected in the indoor unit 200 via a control line, cost reduction is attained.
  • the control of the shut-off devices 77 and 78 based on the detection signal from the refrigerant leak detection device 98 is completed in the indoor unit 200, the versatility of the indoor unit 200 is enhanced, and the combination of the indoor unit 200 and various outdoor units is increased. The degree of freedom is improved.
  • FIG. 3 is an explanatory diagram illustrating an example of an arrangement position of the refrigerant leak detection device 98 in the heat pump utilization device according to the present embodiment.
  • five arrangement positions A to E are shown as examples of arrangement positions of the refrigerant leak detection device 98.
  • the refrigerant leak detection device 98 is connected to the pipe 72. That is, the refrigerant leak detection device 98 is connected to the main circuit 220 by the booster heater 54 (connection portion), similarly to the pressure relief valve 70.
  • the refrigerant leakage detection device 98 can reliably detect the refrigerant leakage.
  • the refrigerant flow in the refrigerant circuit 110 is immediately interrupted at two locations before and after the load-side heat exchanger 2 by the cutoff devices 77 and 78. . Therefore, the amount of refrigerant leakage from the pressure relief valve 70 into the room can be minimized.
  • the refrigerant leakage detection device 98 is connected to the load side heat exchanger 2 or between the load side heat exchanger 2 and the booster heater 54 in the main circuit 220. It is done.
  • the refrigerant leak detection device 98 is connected between the booster heater 54 (connection part) and the three-way valve 55 in the main circuit 220.
  • the refrigerant may be discharged from the pressure relief valve 70 before the refrigerant leakage detection device 98 detects the refrigerant leakage.
  • the refrigerant flow in the refrigerant circuit 110 is immediately interrupted at two places before and after the load-side heat exchanger 2. Therefore, the amount of refrigerant leakage from the pressure relief valve 70 into the room can be minimized.
  • the refrigerant leak detection device 98 is connected between the load-side heat exchanger 2 and the junction 230 in the main circuit 220. In this case, before the refrigerant leaked into the water circuit 210 is released from the pressure relief valve 301, the refrigerant leak detection device 98 can reliably detect the refrigerant leak.
  • the refrigerant leakage detection device 98 detects the leakage of the refrigerant to the water circuit 210 .
  • the refrigerant flow in the refrigerant circuit 110 is immediately interrupted at two locations before and after the load-side heat exchanger 2 by the cutoff devices 77 and 78. . Therefore, the amount of refrigerant leakage from the pressure relief valve 301 into the room can be minimized.
  • the refrigerant leakage detection device 98 is not a branch circuit (for example, the heating circuit side pipes 82 a and 82 b and the heating device 300) constructed by a local contractor, but the main circuit 220. It is connected to the. For this reason, the manufacturer of the indoor unit 200 can attach the refrigerant leakage detection device 98 and connect the refrigerant leakage detection device 98 and the control device 201. Accordingly, human errors such as forgetting to attach the refrigerant leakage detection device 98 and forgetting to connect the refrigerant leakage detection device 98 can be avoided.
  • the manufacturer of the indoor unit 200 can attach the refrigerant leakage detection device 98 and connect the refrigerant leakage detection device 98 and the control device 201. Accordingly, human errors such as forgetting to attach the refrigerant leakage detection device 98 and forgetting to connect the refrigerant leakage detection device 98 can be avoided.
  • the shut-off devices 77 and 78 are respectively disposed on both sides of the refrigerant circuit 110 with the load side heat exchanger 2 interposed therebetween.
  • the smaller the volume of the section from the shutoff device 77 through the load side heat exchanger 2 to the shutoff device 78 the smaller the amount of refrigerant leakage from the pressure relief valve 70 or the pressure relief valve 301. Can do. Therefore, it is desirable that devices having a large volume such as the compressor 3 and the heat source side heat exchanger 1 are not included in the section.
  • the shut-off device 77 is provided upstream of the load-side heat exchanger 2 and downstream of the compressor 3 in the refrigerant flow during normal operation.
  • the blocking device 77 is upstream of the load-side heat exchanger 2 in the refrigerant flow during normal operation. It is desirable to be provided on the downstream side of the refrigerant flow switching device 4. Further, it is desirable that the shutoff device 78 is provided downstream of the load side heat exchanger 2 and upstream of the heat source side heat exchanger 1 in the refrigerant flow during normal operation.
  • the heat pump hot water supply and heating apparatus 1000 (an example of a heat pump using device) according to the present embodiment includes the refrigerant circuit 110 that circulates the refrigerant and the water circuit 210 (heat) that circulates water (an example of a heat medium).
  • the water circuit 210 has a main circuit 220 that passes through the load-side heat exchanger 2.
  • the main circuit 220 is provided at the downstream end of the main circuit 220, and is connected to a three-way valve 55 (an example of a branch portion) to which a plurality of branch circuits 221 and 222 branching from the main circuit 220 are connected, and And a junction unit 230 to which a plurality of branch circuits 221 and 222 that join the main circuit 220 are connected.
  • the main circuit 220 includes a pressure relief valve 70 (an example of a pressure protection device) that discharges water to the outside of the water circuit 210 based on the pressure in the water circuit 210, and refrigerant leakage from the refrigerant circuit 110 to the water circuit 210.
  • a refrigerant leakage detection device 98 for detecting The refrigerant circuit 110 is provided with a shut-off device 77 (an example of a first shut-off device) and a shut-off device 78 (an example of a second shut-off device) across the load-side heat exchanger 2.
  • the refrigerant flow in the refrigerant circuit 110 can be blocked at two places before and after the load-side heat exchanger 2 by the blocking devices 77 and 78. . Therefore, the refrigerant can be prevented from leaking from the pressure relief valve 70 into the room.
  • a pressure relief is applied to the on-site construction circuit (for example, the heating circuit side pipes 82a and 82b) connected to the water circuit 210 of the indoor unit 200 before the three-way valve 55 or the merging portion 230 when viewed from the main circuit 220 side.
  • a valve 301 may be provided. According to the said structure, even if the pressure relief valve 301 is provided in the site construction circuit, it can suppress that a refrigerant
  • the shut-off devices 77 and 78 are on-off valves that are closed when refrigerant leakage to the water circuit 210 is detected. According to this configuration, when the refrigerant leaks into the water circuit 210, the refrigerant flow in the refrigerant circuit 110 can be immediately shut off.
  • the pressure relief valve 70 is one of the load side heat exchanger 2 and the three-way valve 55 or the merging portion 230 in the main circuit 220 (three-way valve 55 in this example). Are connected to a booster heater 54 (an example of a connecting portion) located between the two.
  • the refrigerant leak detection device 98 includes the three-way valve 55 or the other of the merging portion 230 (merging portion 230 in this example), the other (merging portion 230 in this example), and the booster heater 54 (connecting portion).
  • the leakage of the refrigerant can be reliably detected before the refrigerant that has leaked into the water circuit 210 is released into the room.
  • the refrigerant leakage detection device 98 detects refrigerant leakage to the water circuit 210 based on the pressure in the water circuit 210. According to this configuration, leakage of the refrigerant can be reliably detected.
  • shutoff device 77 is provided between compressor 3 and load-side heat exchanger 2 in refrigerant circuit 110, and shutoff device 78 is refrigerant circuit 110. Among these, it is provided between the load side heat exchanger 2 and the heat source side heat exchanger 1. That is, in the refrigerant flow in the refrigerant circuit 110 during the heating operation (normal operation in this example), the shut-off device 77 is provided on the downstream side of the compressor 3 and on the upstream side of the load-side heat exchanger 2. The shutoff device 78 is provided downstream of the load side heat exchanger 2 and upstream of the heat source side heat exchanger 1.
  • the section from the shut-off device 77 to the shut-off device 78 via the load-side heat exchanger 2 does not include a large volume device such as the compressor 3 and the heat source-side heat exchanger 1. Can be. Therefore, the amount of refrigerant leakage from the pressure relief valve 70 or the pressure relief valve 301 can be reduced.
  • the shutoff device 78 functions as a decompression device for the refrigerant circuit 110. According to this configuration, the number of parts of the heat pump hot water supply / room heating device 1000 can be reduced.
  • Heat pump hot water supply and heating apparatus 1000 includes an outdoor unit 100 that houses refrigerant circuit 110, a part of water circuit 210, and load-side heat exchanger 2, and a room that houses another part of water circuit 210. 200 is further provided.
  • the outdoor unit 100 houses blocking devices 77 and 78 and a refrigerant leakage detection device 98. According to this configuration, since the control device 101 and each of the shut-off devices 77 and 78 and the refrigerant leakage detection device 98 can be connected in the outdoor unit 100, the cost can be reduced. Moreover, according to this structure, the versatility of the outdoor unit 100 can be improved, and the freedom degree of combination with the outdoor unit 100 and various indoor units can be improved.
  • Heat pump hot water supply and heating apparatus 1000 includes an outdoor unit 100 that houses a part of refrigerant circuit 110, and a room that houses another part of refrigerant circuit 110, water circuit 210 and load-side heat exchanger 2. 200 is further provided.
  • the indoor unit 200 houses shut-off devices 77 and 78 and a refrigerant leak detection device 98. According to this configuration, since the control device 201, the shut-off devices 77 and 78, and the refrigerant leakage detection device 98 can be connected within the indoor unit 200, the cost can be reduced. Moreover, according to this structure, the versatility of the indoor unit 200 can be improved, and the freedom degree of combination with the indoor unit 200 and various outdoor units can be improved.
  • the refrigerant may be a combustible refrigerant or a toxic refrigerant.
  • FIG. 4 is a circuit diagram showing a schematic configuration of the heat pump utilizing device according to the present embodiment.
  • FIG. 4 mainly shows the configuration of the indoor unit 200.
  • symbol is attached
  • a boiling circuit 240 for heating the water stored in the hot water storage tank 51 is provided outside the hot water storage tank 51.
  • the boiling circuit 240 has a water flow path that connects the lower part and the upper part of the hot water storage tank 51.
  • the boiling circuit 240 is provided with a boiling pump 241 and a boiling heat exchanger 242 that performs heat exchange between water flowing in the boiling circuit 240 and water flowing in the branch circuit 221.
  • the boiling pump 241 operates, the water below the hot water storage tank 51 flows into the boiling circuit 240.
  • the water flowing into the boiling circuit 240 is heated by heat exchange in the boiling heat exchanger 242 and returns to the upper part of the hot water storage tank 51. Also in the present embodiment, the same effect as in the first embodiment can be obtained.
  • a plate-type heat exchanger has been exemplified as the load-side heat exchanger 2, but the load-side heat exchanger 2 can perform heat exchange between the refrigerant and the heat medium, Other than the plate-type heat exchanger such as a double-pipe heat exchanger may be used.
  • heat pump hot water supply and heating apparatus 1000 was mentioned as an example as a heat pump utilization apparatus, this invention is applicable also to other heat pump utilization apparatuses, such as a chiller.
  • the indoor unit 200 provided with the hot water storage tank 51 is taken as an example, but the hot water storage tank may be provided separately from the indoor unit 200.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

This apparatus using a heat pump is provided with a refrigerant circuit (110), a heat medium circuit (210), and a heat exchanger (2) for exchanging heat between a refrigerant and a heat medium. A main circuit (220) of the heat medium circuit (210) has a branch section (55) and a confluent section (230). The main circuit (220) is connected to a pressure protection device (70) and a refrigerant leakage detection device (98). The pressure protection device (70) is connected, in the main circuit (220), to a connection section (54) located between the heat exchanger (2) and one of the branch section (55) and the confluent section (230). A first shutoff device (77) and a second shutoff device (78) are provided in the refrigerant circuit (110) with the heat exchanger (2) therebetween.

Description

ヒートポンプ利用機器Heat pump equipment
 本発明は、冷媒回路と熱媒体回路とを有するヒートポンプ利用機器に関するものである。 The present invention relates to a heat pump device having a refrigerant circuit and a heat medium circuit.
 特許文献1には、可燃性冷媒を用いたヒートポンプサイクル装置の室外機が記載されている。この室外機は、圧縮機、空気熱交換器、絞り装置及び水熱交換器が配管接続された冷媒回路と、水熱交換器で加熱された水を供給するための水回路内の水圧の過上昇を防止する圧力逃がし弁と、を備えている。これにより、水熱交換器において冷媒回路と水回路とを隔離する隔壁が破壊されて、可燃性冷媒が水回路に混入した場合でも、圧力逃がし弁を介して可燃性冷媒を屋外に排出することができる。 Patent Document 1 describes an outdoor unit of a heat pump cycle device using a combustible refrigerant. This outdoor unit includes a refrigerant circuit in which a compressor, an air heat exchanger, a throttling device, and a water heat exchanger are connected by piping, and excess water pressure in the water circuit for supplying water heated by the water heat exchanger. And a pressure relief valve for preventing the ascent. As a result, even when the partition separating the refrigerant circuit and the water circuit is destroyed in the water heat exchanger and the flammable refrigerant is mixed into the water circuit, the flammable refrigerant is discharged to the outside through the pressure relief valve. Can do.
特開2013-167398号公報JP 2013-167398 A
 ヒートポンプサイクル装置等のヒートポンプ利用機器では、一般に、水回路の圧力逃がし弁は室内機に設けられている。ヒートポンプ利用機器における室外機及び室内機の組合せは様々であり、同一メーカの室外機と室内機とが組み合わされる場合だけでなく、異なるメーカの室外機と室内機とが組み合わされる場合もある。したがって、特許文献1に記載の室外機は、圧力逃がし弁が設けられた室内機と組み合わされる場合もある。 In heat pump equipment such as a heat pump cycle device, generally, a pressure relief valve for a water circuit is provided in an indoor unit. There are various combinations of the outdoor unit and the indoor unit in the heat pump device. Not only the outdoor unit and the indoor unit of the same manufacturer are combined, but also the outdoor unit and the indoor unit of different manufacturers may be combined. Therefore, the outdoor unit described in Patent Document 1 may be combined with an indoor unit provided with a pressure relief valve.
 しかしながら、この場合、冷媒が水回路に漏洩すると、水回路の水に混入した冷媒は、室外機に設けられた圧力逃がし弁からだけでなく、室内機に設けられた圧力逃がし弁からも排出される場合がある。したがって、冷媒が水回路を介して室内に漏洩してしまうおそれがあるという課題があった。 However, in this case, when the refrigerant leaks into the water circuit, the refrigerant mixed in the water in the water circuit is discharged not only from the pressure relief valve provided in the outdoor unit but also from the pressure relief valve provided in the indoor unit. There is a case. Therefore, there existed a subject that a refrigerant | coolant might leak in a room | chamber interior via a water circuit.
 本発明は、上述のような課題を解決するためになされたものであり、冷媒が室内に漏洩してしまうのを抑制できるヒートポンプ利用機器を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat pump device that can suppress the leakage of refrigerant into the room.
 本発明に係るヒートポンプ利用機器は、冷媒を循環させる冷媒回路と、熱媒体を流通させる熱媒体回路と、前記冷媒と前記熱媒体との熱交換を行う熱交換器と、を備え、前記熱媒体回路は、前記熱交換器を経由する主回路を有しており、前記主回路は、前記主回路の下流端に設けられ、前記主回路から分岐する複数の枝回路が接続される分岐部と、前記主回路の上流端に設けられ、前記主回路に合流する前記複数の枝回路が接続される合流部と、を有しており、前記主回路には、圧力保護装置と、冷媒漏洩検知装置と、が接続されており、前記冷媒回路には、前記熱交換器を挟んで第1遮断装置及び第2遮断装置が設けられているものである。 A heat pump utilization device according to the present invention includes a refrigerant circuit that circulates a refrigerant, a heat medium circuit that circulates a heat medium, and a heat exchanger that performs heat exchange between the refrigerant and the heat medium. The circuit has a main circuit that passes through the heat exchanger, and the main circuit is provided at a downstream end of the main circuit, and a branch unit to which a plurality of branch circuits branching from the main circuit are connected. A merging portion provided at an upstream end of the main circuit and connected to the plurality of branch circuits merging with the main circuit. The main circuit includes a pressure protection device and refrigerant leakage detection. The refrigerant circuit is provided with a first shut-off device and a second shut-off device across the heat exchanger.
 本発明によれば、冷媒が熱媒体回路に漏洩した場合であっても、冷媒回路の冷媒の流れを第1遮断装置及び第2遮断装置によって遮断することができる。したがって、圧力保護装置から冷媒が室内に漏洩してしまうのを抑制することができる。 According to the present invention, even if the refrigerant leaks into the heat medium circuit, the refrigerant flow in the refrigerant circuit can be blocked by the first blocking device and the second blocking device. Therefore, the refrigerant can be prevented from leaking into the room from the pressure protection device.
本発明の実施の形態1に係るヒートポンプ利用機器の概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the heat pump utilization apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1の変形例に係るヒートポンプ利用機器の概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the heat pump utilization apparatus which concerns on the modification of Embodiment 1 of this invention. 本発明の実施の形態1に係るヒートポンプ利用機器における冷媒漏洩検知装置98の配置位置の例を示す説明図である。It is explanatory drawing which shows the example of the arrangement position of the refrigerant | coolant leak detection apparatus 98 in the heat pump utilization apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係るヒートポンプ利用機器の概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the heat pump utilization apparatus which concerns on Embodiment 2 of this invention.
実施の形態1.
 本発明の実施の形態1に係るヒートポンプ利用機器について説明する。図1は、本実施の形態に係るヒートポンプ利用機器の概略構成を示す回路図である。本実施の形態では、ヒートポンプ利用機器として、ヒートポンプ給湯暖房装置1000を例示している。なお、図1を含む以下の図面では、各構成部材の寸法の関係や形状等が実際のものとは異なる場合がある。
Embodiment 1 FIG.
The heat pump utilization apparatus which concerns on Embodiment 1 of this invention is demonstrated. FIG. 1 is a circuit diagram showing a schematic configuration of a heat pump utilizing device according to the present embodiment. In the present embodiment, a heat pump hot water supply / room heating device 1000 is illustrated as an example of a heat pump using device. In the following drawings including FIG. 1, the dimensional relationship and shape of each component may differ from the actual ones.
 図1に示すように、ヒートポンプ給湯暖房装置1000は、冷媒を循環させる冷媒回路110と、水を流通させる水回路210と、を有している。また、ヒートポンプ給湯暖房装置1000は、室外(例えば、屋外)に設置される室外機100と、室内に設置される室内機200と、を有している。室内機200は、例えば、キッチンやバスルーム、ランドリールームの他、建物の内部にある納戸などの収納スペースに設置される。 As shown in FIG. 1, the heat pump hot water supply and heating device 1000 includes a refrigerant circuit 110 that circulates a refrigerant and a water circuit 210 that circulates water. In addition, the heat pump hot water supply and heating device 1000 includes an outdoor unit 100 installed outdoors (for example, outdoors) and an indoor unit 200 installed indoors. The indoor unit 200 is installed, for example, in a storage space such as a storage room in a building, in addition to a kitchen, a bathroom, and a laundry room.
 冷媒回路110は、圧縮機3、冷媒流路切替装置4、負荷側熱交換器2、減圧装置6及び熱源側熱交換器1が冷媒配管を介して順次環状に接続された構成を有している。ヒートポンプ給湯暖房装置1000の冷媒回路110では、水回路210を流れる水を加熱する通常運転(例えば、暖房給湯運転)と、通常運転に対して冷媒を逆方向に流通させ、熱源側熱交換器1の除霜を行う除霜運転と、が可能となっている。 The refrigerant circuit 110 has a configuration in which the compressor 3, the refrigerant flow switching device 4, the load-side heat exchanger 2, the decompression device 6, and the heat source-side heat exchanger 1 are sequentially connected in an annular manner through a refrigerant pipe. Yes. In the refrigerant circuit 110 of the heat pump hot water supply and heating device 1000, the refrigerant flows in the reverse direction with respect to the normal operation (for example, heating hot water supply operation) for heating the water flowing in the water circuit 210 and the normal operation, and the heat source side heat exchanger 1 The defrosting operation for performing the defrosting is possible.
 圧縮機3は、吸入した低圧冷媒を圧縮し、高圧冷媒として吐出する流体機械である。本例の圧縮機3は、インバータ装置等を備え、駆動周波数を任意に変化させることにより、容量(単位時間あたりに冷媒を送り出す量)を変化させることができる。 The compressor 3 is a fluid machine that compresses sucked low-pressure refrigerant and discharges it as high-pressure refrigerant. The compressor 3 of this example includes an inverter device or the like, and can change the capacity (the amount of refrigerant sent out per unit time) by arbitrarily changing the drive frequency.
 冷媒流路切替装置4は、通常運転時と除霜運転時とで冷媒回路110内の冷媒の流れ方向を切り替えるものである。冷媒流路切替装置4としては、例えば四方弁が用いられる。 The refrigerant flow switching device 4 switches the flow direction of the refrigerant in the refrigerant circuit 110 between the normal operation and the defrosting operation. For example, a four-way valve is used as the refrigerant flow switching device 4.
 負荷側熱交換器2は、冷媒回路110を流れる冷媒と、水回路210を流れる水と、の熱交換を行う水-冷媒熱交換器である。負荷側熱交換器2としては、例えば、プレート式熱交換器が用いられる。負荷側熱交換器2は、冷媒回路110の一部として冷媒を流通させる冷媒流路と、水回路210の一部として水を流通させる水流路と、冷媒流路と水流路とを隔離する薄板状の隔壁と、を有している。負荷側熱交換器2は、通常運転時には水を加熱する凝縮器(放熱器)として機能し、除霜運転時には蒸発器(吸熱器)として機能する。 The load-side heat exchanger 2 is a water-refrigerant heat exchanger that performs heat exchange between the refrigerant flowing through the refrigerant circuit 110 and the water flowing through the water circuit 210. As the load-side heat exchanger 2, for example, a plate heat exchanger is used. The load-side heat exchanger 2 is a thin plate that separates the refrigerant flow path through which the refrigerant flows as part of the refrigerant circuit 110, the water flow path through which water flows as part of the water circuit 210, and the refrigerant flow path from the water flow path. And a partition wall. The load-side heat exchanger 2 functions as a condenser (heat radiator) that heats water during normal operation, and functions as an evaporator (heat absorber) during defrosting operation.
 減圧装置6は、冷媒の流量を調整し、例えば負荷側熱交換器2を流れる冷媒の圧力調整を行う。本例の減圧装置6は、後述する制御装置101からの指示に基づいて開度を変化させることができる電子膨張弁である。減圧装置6としては、感温式膨張弁(例えば、電磁弁一体型の感温式膨張弁)を用いることもできる。 The decompression device 6 adjusts the flow rate of the refrigerant, and for example, adjusts the pressure of the refrigerant flowing through the load-side heat exchanger 2. The decompression device 6 of this example is an electronic expansion valve that can change the opening degree based on an instruction from the control device 101 described later. As the decompression device 6, a temperature-sensitive expansion valve (for example, a solenoid valve-integrated temperature-sensitive expansion valve) can also be used.
 熱源側熱交換器1は、冷媒回路110を流れる冷媒と、室外送風機(図示せず)等により送風される室外空気と、の熱交換を行う空気-冷媒熱交換器である。熱源側熱交換器1は、通常運転時には蒸発器(吸熱器)として機能し、除霜運転時には凝縮器(放熱器)として機能する。 The heat source side heat exchanger 1 is an air-refrigerant heat exchanger that performs heat exchange between the refrigerant flowing through the refrigerant circuit 110 and outdoor air blown by an outdoor blower (not shown) or the like. The heat source side heat exchanger 1 functions as an evaporator (heat absorber) during normal operation and functions as a condenser (heat radiator) during defrosting operation.
 通常運転時の冷媒の流れにおける負荷側熱交換器2の上流側には、第1遮断装置として、遮断装置77が設けられている。遮断装置77は、通常運転時の冷媒の流れにおいて、冷媒回路110のうち圧縮機3の下流側であって負荷側熱交換器2の上流側に設けられている。本実施の形態のように冷媒流路切替装置4が設けられている場合には、遮断装置77は、通常運転時の冷媒の流れにおいて、冷媒回路110のうち冷媒流路切替装置4の下流側であって負荷側熱交換器2の上流側に設けられるのが好ましい。遮断装置77としては、後述する制御装置101によって制御される開閉弁(例えば、電磁弁、流量調整弁又は電子膨張弁など)が用いられる。遮断装置77は、通常運転時及び除霜運転時を含む冷媒回路110の運転時には開状態にある。遮断装置77は、制御装置101の制御によって閉状態になると、冷媒の流れを遮断する。 A shut-off device 77 is provided as a first shut-off device on the upstream side of the load-side heat exchanger 2 in the refrigerant flow during normal operation. The shut-off device 77 is provided on the downstream side of the compressor 3 and the upstream side of the load-side heat exchanger 2 in the refrigerant circuit 110 in the refrigerant flow during normal operation. When the refrigerant flow switching device 4 is provided as in the present embodiment, the shut-off device 77 is downstream of the refrigerant flow switching device 4 in the refrigerant circuit 110 in the refrigerant flow during normal operation. And it is preferable to be provided upstream of the load side heat exchanger 2. As the shut-off device 77, an on-off valve (for example, an electromagnetic valve, a flow rate adjusting valve, an electronic expansion valve, or the like) controlled by the control device 101 described later is used. The shut-off device 77 is in an open state during operation of the refrigerant circuit 110 including normal operation and defrost operation. When the shut-off device 77 is closed by the control of the control device 101, the shut-off device 77 shuts off the refrigerant flow.
 また、通常運転時の冷媒の流れにおける負荷側熱交換器2の下流側には、第2遮断装置として、遮断装置78が設けられている。遮断装置78は、通常運転時の冷媒の流れにおいて、冷媒回路110のうち負荷側熱交換器2の下流側であって熱源側熱交換器1の上流側に設けられている。遮断装置78としては、後述する制御装置101によって制御される開閉弁(例えば、電磁弁、流量調整弁又は電子膨張弁など)が用いられる。遮断装置78は、通常運転時及び除霜運転時を含む冷媒回路110の運転時には開状態にある。遮断装置78は、制御装置101の制御によって閉状態になると、冷媒の流れを遮断する。 Further, a shut-off device 78 is provided as a second shut-off device on the downstream side of the load-side heat exchanger 2 in the refrigerant flow during normal operation. The shutoff device 78 is provided downstream of the load side heat exchanger 2 and upstream of the heat source side heat exchanger 1 in the refrigerant circuit 110 in the refrigerant flow during normal operation. As the shut-off device 78, an on-off valve (for example, an electromagnetic valve, a flow rate adjusting valve, an electronic expansion valve, or the like) controlled by the control device 101 described later is used. The shut-off device 78 is in an open state during operation of the refrigerant circuit 110 including normal operation and defrost operation. When the shut-off device 78 is closed by the control of the control device 101, the shut-off device 78 shuts off the refrigerant flow.
 ここで、減圧装置6が電子膨張弁又は電磁弁一体型感温式膨張弁である場合には、減圧装置6が遮断装置78を兼ねることができる。すなわち、減圧装置6が電子膨張弁又は電磁弁一体型感温式膨張弁である場合には、遮断装置78の設置を省略し、減圧装置6を第2遮断装置としても機能させることができる。言い換えれば、遮断装置78が電子膨張弁又は電磁弁一体型感温式膨張弁である場合には、減圧装置6の設置を省略し、遮断装置78を減圧装置としても機能させることができる。 Here, when the decompression device 6 is an electronic expansion valve or an electromagnetic valve-integrated temperature-sensitive expansion valve, the decompression device 6 can also serve as the shut-off device 78. That is, when the decompression device 6 is an electronic expansion valve or a solenoid valve-integrated temperature-sensitive expansion valve, the installation of the shut-off device 78 can be omitted, and the decompression device 6 can also function as a second shut-off device. In other words, when the shut-off device 78 is an electronic expansion valve or an electromagnetic valve-integrated temperature-sensitive expansion valve, the installation of the decompression device 6 can be omitted, and the shut-off device 78 can also function as a decompression device.
 冷媒回路110を循環する冷媒としては、例えば、R1234yf、R1234ze(E)等の微燃性冷媒、又は、R290、R1270等の強燃性冷媒が用いられる。これらの冷媒は単一冷媒として用いられてもよいし、2種以上が混合された混合冷媒として用いられてもよい。以下、微燃レベル以上(例えば、ASHRAE34の分類で2L以上)の燃焼性を有する冷媒のことを「可燃性を有する冷媒」又は「可燃性冷媒」という場合がある。また、冷媒回路110を循環する冷媒としては、不燃性(例えば、ASHRAE34の分類で1)を有するR407C、R410A等の不燃性冷媒を用いることもできる。これらの冷媒は、大気圧下(例えば、温度は室温(25℃))において空気よりも大きい密度を有している。さらに、冷媒回路110を循環する冷媒としては、R717(アンモニア)等の毒性を有する冷媒を用いることもできる。 As the refrigerant circulating in the refrigerant circuit 110, for example, a slightly flammable refrigerant such as R1234yf and R1234ze (E) or a strong flammable refrigerant such as R290 and R1270 is used. These refrigerants may be used as a single refrigerant, or may be used as a mixed refrigerant in which two or more kinds are mixed. Hereinafter, a refrigerant having a flammability that is equal to or higher than the slight combustion level (for example, 2 L or more according to the ASHRAE 34 classification) may be referred to as “flammable refrigerant” or “flammable refrigerant”. Further, as the refrigerant circulating in the refrigerant circuit 110, nonflammable refrigerants such as R407C and R410A having nonflammability (for example, 1 in the classification of ASHRAE 34) may be used. These refrigerants have a density higher than that of air at atmospheric pressure (for example, the temperature is room temperature (25 ° C.)). Further, as the refrigerant circulating in the refrigerant circuit 110, a toxic refrigerant such as R717 (ammonia) can be used.
 圧縮機3、冷媒流路切替装置4、遮断装置77、負荷側熱交換器2、遮断装置78、減圧装置6及び熱源側熱交換器1を含む冷媒回路110は、全て室外機100に収容されている。 The refrigerant circuit 110 including the compressor 3, the refrigerant flow switching device 4, the shutoff device 77, the load side heat exchanger 2, the shutoff device 78, the decompression device 6, and the heat source side heat exchanger 1 is all accommodated in the outdoor unit 100. ing.
 また、室外機100には、主に冷媒回路110(例えば、圧縮機3、冷媒流路切替装置4、遮断装置77、78、減圧装置6、不図示の室外送風機等)の動作を制御する制御装置101が設けられている。制御装置101は、CPU、ROM、RAM、I/Oポート等を備えたマイクロコンピュータを有している。制御装置101は、制御線102を介して、後述する制御装置201及び操作部202と相互に通信できるようになっている。 In addition, the outdoor unit 100 mainly controls the operation of the refrigerant circuit 110 (for example, the compressor 3, the refrigerant flow switching device 4, the shut-off devices 77 and 78, the decompression device 6, the outdoor blower not shown). A device 101 is provided. The control device 101 has a microcomputer equipped with a CPU, ROM, RAM, I / O port, and the like. The control device 101 can communicate with a control device 201 and an operation unit 202 described later via a control line 102.
 次に、冷媒回路110の動作の例について説明する。図1では、冷媒回路110における通常運転時の冷媒の流れ方向を実線矢印で示している。通常運転時には、冷媒流路切替装置4によって冷媒流路が実線矢印で示すように切り替えられ、高温高圧の冷媒が負荷側熱交換器2に流入するように冷媒回路110が構成される。 Next, an example of the operation of the refrigerant circuit 110 will be described. In FIG. 1, the flow direction of the refrigerant during normal operation in the refrigerant circuit 110 is indicated by solid line arrows. During normal operation, the refrigerant flow path switching device 4 switches the refrigerant flow path as indicated by solid arrows, and the refrigerant circuit 110 is configured such that high-temperature and high-pressure refrigerant flows into the load-side heat exchanger 2.
 圧縮機3から吐出された高温高圧のガス冷媒は、冷媒流路切替装置4及び開状態の遮断装置77を経て、負荷側熱交換器2の冷媒流路に流入する。通常運転時には、負荷側熱交換器2は凝縮器として機能する。すなわち、負荷側熱交換器2では、冷媒流路を流れる冷媒と水流路を流れる水との熱交換が行われ、冷媒の凝縮熱が水に放熱される。これにより、負荷側熱交換器2の冷媒流路を流れる冷媒は、凝縮して高圧の液冷媒となる。また、負荷側熱交換器2の水流路を流れる水は、冷媒からの放熱によって加熱される。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 3 flows into the refrigerant flow path of the load-side heat exchanger 2 through the refrigerant flow switching device 4 and the open shut-off device 77. During normal operation, the load side heat exchanger 2 functions as a condenser. That is, in the load side heat exchanger 2, heat exchange between the refrigerant flowing through the refrigerant flow path and the water flowing through the water flow path is performed, and the condensation heat of the refrigerant is radiated to the water. Thereby, the refrigerant | coolant which flows through the refrigerant | coolant flow path of the load side heat exchanger 2 is condensed, and turns into a high voltage | pressure liquid refrigerant. Moreover, the water which flows through the water flow path of the load side heat exchanger 2 is heated by the heat radiation from the refrigerant.
 負荷側熱交換器2で凝縮した高圧の液冷媒は、開状態の遮断装置78を経て減圧装置6に流入し、減圧されて低圧の二相冷媒となる。低圧の二相冷媒は、熱源側熱交換器1に流入する。通常運転時には、熱源側熱交換器1は蒸発器として機能する。すなわち、熱源側熱交換器1では、内部を流通する冷媒と、室外送風機により送風される室外空気との熱交換が行われ、冷媒の蒸発熱が室外空気から吸熱される。これにより、熱源側熱交換器1に流入した冷媒は、蒸発して低圧のガス冷媒となる。低圧のガス冷媒は、冷媒流路切替装置4を経由して、圧縮機3に吸入される。圧縮機3に吸入された冷媒は、圧縮されて高温高圧のガス冷媒となる。通常運転では、以上のサイクルが連続的に繰り返される。 The high-pressure liquid refrigerant condensed in the load-side heat exchanger 2 flows into the decompression device 6 through the open shut-off device 78 and is decompressed to become a low-pressure two-phase refrigerant. The low-pressure two-phase refrigerant flows into the heat source side heat exchanger 1. During normal operation, the heat source side heat exchanger 1 functions as an evaporator. That is, in the heat source side heat exchanger 1, heat exchange is performed between the refrigerant circulating in the interior and the outdoor air blown by the outdoor blower, and the heat of evaporation of the refrigerant is absorbed from the outdoor air. Thereby, the refrigerant flowing into the heat source side heat exchanger 1 evaporates to become a low-pressure gas refrigerant. The low-pressure gas refrigerant is sucked into the compressor 3 via the refrigerant flow switching device 4. The refrigerant sucked into the compressor 3 is compressed into a high-temperature and high-pressure gas refrigerant. In normal operation, the above cycle is continuously repeated.
 次に、除霜運転時の動作の例について説明する。図1では、冷媒回路110における除霜運転時の冷媒の流れ方向を破線矢印で示している。除霜運転時には、冷媒流路切替装置4によって冷媒流路が破線矢印で示すように切り替えられ、高温高圧の冷媒が熱源側熱交換器1に流入するように冷媒回路110が構成される。 Next, an example of the operation during the defrosting operation will be described. In FIG. 1, the flow direction of the refrigerant during the defrosting operation in the refrigerant circuit 110 is indicated by a broken line arrow. During the defrosting operation, the refrigerant channel 110 is configured such that the refrigerant channel is switched by the refrigerant channel switching device 4 as indicated by the broken-line arrows, and the high-temperature and high-pressure refrigerant flows into the heat source side heat exchanger 1.
 圧縮機3から吐出された高温高圧のガス冷媒は、冷媒流路切替装置4を経て、熱源側熱交換器1に流入する。除霜運転時には、熱源側熱交換器1は凝縮器として機能する。すなわち、熱源側熱交換器1では、内部を流通する冷媒の凝縮熱が、熱源側熱交換器1の表面に付着した霜に放熱される。これにより、熱源側熱交換器1の内部を流通する冷媒は、凝縮して高圧の液冷媒となる。また、熱源側熱交換器1の表面に付着した霜は、冷媒からの放熱によって溶融する。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 3 flows into the heat source side heat exchanger 1 through the refrigerant flow switching device 4. During the defrosting operation, the heat source side heat exchanger 1 functions as a condenser. That is, in the heat source side heat exchanger 1, the heat of condensation of the refrigerant flowing inside is radiated to the frost attached to the surface of the heat source side heat exchanger 1. Thereby, the refrigerant | coolant which distribute | circulates the inside of the heat source side heat exchanger 1 is condensed, and turns into a high voltage | pressure liquid refrigerant. Moreover, the frost adhering to the surface of the heat source side heat exchanger 1 is melted by heat radiation from the refrigerant.
 熱源側熱交換器1で凝縮した高圧の液冷媒は、減圧装置6を経由して低圧の二相冷媒となり、開状態の遮断装置78を通って負荷側熱交換器2の冷媒流路に流入する。除霜運転時には、負荷側熱交換器2は蒸発器として機能する。すなわち、負荷側熱交換器2では、冷媒流路を流れる冷媒と水流路を流れる水との熱交換が行われ、冷媒の蒸発熱が水から吸熱される。これにより、負荷側熱交換器2の冷媒流路を流れる冷媒は、蒸発して低圧のガス冷媒となる。このガス冷媒は、開状態の遮断装置77、及び冷媒流路切替装置4を経由して、圧縮機3に吸入される。圧縮機3に吸入された冷媒は、圧縮されて高温高圧のガス冷媒となる。除霜運転では、以上のサイクルが連続的に繰り返される。 The high-pressure liquid refrigerant condensed in the heat source-side heat exchanger 1 becomes a low-pressure two-phase refrigerant via the decompression device 6 and flows into the refrigerant flow path of the load-side heat exchanger 2 through the open shut-off device 78. To do. During the defrosting operation, the load side heat exchanger 2 functions as an evaporator. That is, in the load side heat exchanger 2, heat exchange between the refrigerant flowing through the refrigerant flow path and the water flowing through the water flow path is performed, and the evaporation heat of the refrigerant is absorbed from the water. Thereby, the refrigerant | coolant which flows through the refrigerant | coolant flow path of the load side heat exchanger 2 evaporates, and becomes a low voltage | pressure gas refrigerant. This gas refrigerant is sucked into the compressor 3 via the open state blocking device 77 and the refrigerant flow switching device 4. The refrigerant sucked into the compressor 3 is compressed into a high-temperature and high-pressure gas refrigerant. In the defrosting operation, the above cycle is continuously repeated.
 次に、水回路210について説明する。本実施の形態の水回路210は、水を循環させる閉回路である。図1では、水の流れ方向を白抜き太矢印で表している。水回路210は、室外機100側の水回路と室内機200側の水回路とが接続されることによって構成されている。水回路210は、主回路220と、給湯回路を構成する枝回路221と、暖房回路の一部を構成する枝回路222とを有している。主回路220は、閉回路の一部を構成している。枝回路221、222は、それぞれ主回路220に対して分岐して接続されている。枝回路221、222は、互いに並列に設けられている。枝回路221は、主回路220と共に閉回路を構成している。枝回路222は、主回路220、及び当該枝回路222に接続される暖房機器300等と共に、閉回路を構成している。暖房機器300は、室内機200とは別に室内に設けられている。暖房機器300としては、ラジエータ又は床暖房装置などが用いられる。 Next, the water circuit 210 will be described. The water circuit 210 of the present embodiment is a closed circuit that circulates water. In FIG. 1, the flow direction of water is represented by a thick white arrow. The water circuit 210 is configured by connecting a water circuit on the outdoor unit 100 side and a water circuit on the indoor unit 200 side. The water circuit 210 includes a main circuit 220, a branch circuit 221 that constitutes a hot water supply circuit, and a branch circuit 222 that constitutes a part of the heating circuit. The main circuit 220 constitutes a part of a closed circuit. The branch circuits 221 and 222 are branched and connected to the main circuit 220, respectively. The branch circuits 221 and 222 are provided in parallel with each other. The branch circuit 221 forms a closed circuit together with the main circuit 220. The branch circuit 222 forms a closed circuit together with the main circuit 220, the heating device 300 connected to the branch circuit 222, and the like. The heating device 300 is provided indoors separately from the indoor unit 200. As the heating device 300, a radiator or a floor heating device is used.
 本実施の形態では、水回路210を流通する熱媒体として水を例に挙げているが、熱媒体としては、ブライン等の他の液状熱媒体を用いることができる。 In this embodiment, water is used as an example of the heat medium flowing through the water circuit 210, but other liquid heat medium such as brine can be used as the heat medium.
 主回路220は、ストレーナ56、フロースイッチ57、負荷側熱交換器2、ブースタヒータ54及びポンプ53等が水配管を介して接続された構成を有している。主回路220を構成する水配管の途中には、水回路210内の水を排水するための排水口62が設けられている。主回路220の下流端は、1つの流入口と2つの流出口とを備えた三方弁55(分岐部の一例)の流入口に接続されている。三方弁55では、枝回路221、222が主回路220から分岐している。主回路220の上流端は、合流部230に接続されている。合流部230では、枝回路221、222が主回路220に合流している。合流部230から負荷側熱交換器2等を経由して三方弁55に至るまでの水回路210が、主回路220となる。 The main circuit 220 has a configuration in which a strainer 56, a flow switch 57, a load-side heat exchanger 2, a booster heater 54, a pump 53, and the like are connected via a water pipe. A drain outlet 62 for draining the water in the water circuit 210 is provided in the middle of the water pipe constituting the main circuit 220. The downstream end of the main circuit 220 is connected to an inlet of a three-way valve 55 (an example of a branching portion) having one inlet and two outlets. In the three-way valve 55, the branch circuits 221 and 222 are branched from the main circuit 220. The upstream end of the main circuit 220 is connected to the junction unit 230. In the junction unit 230, the branch circuits 221 and 222 join the main circuit 220. The water circuit 210 from the junction 230 to the three-way valve 55 via the load side heat exchanger 2 and the like becomes the main circuit 220.
 主回路220の負荷側熱交換器2は、室外機100に設けられている。主回路220のうち負荷側熱交換器2以外の機器は、室内機200に設けられている。すなわち、水回路210の主回路220は、室外機100と室内機200とに跨がって設けられている。主回路220の一部は室外機100に設けられ、主回路220の他の一部は室内機200に設けられている。室外機100と室内機200との間は、主回路220の一部を構成する2本の接続配管211、212を介して接続されている。 The load side heat exchanger 2 of the main circuit 220 is provided in the outdoor unit 100. Devices other than the load-side heat exchanger 2 in the main circuit 220 are provided in the indoor unit 200. That is, the main circuit 220 of the water circuit 210 is provided across the outdoor unit 100 and the indoor unit 200. A part of the main circuit 220 is provided in the outdoor unit 100, and another part of the main circuit 220 is provided in the indoor unit 200. The outdoor unit 100 and the indoor unit 200 are connected via two connection pipes 211 and 212 that constitute a part of the main circuit 220.
 ポンプ53は、水回路210内の水を加圧して水回路210内を循環させる装置である。ブースタヒータ54は、室外機100の加熱能力が足りない場合等に、水回路210内の水をさらに加熱する装置である。三方弁55は、水回路210内の水の流れを切り替えるための装置である。例えば、三方弁55は、主回路220内の水を枝回路221側で循環させるか枝回路222側で循環させるかを切り替える。ストレーナ56は、水回路210内のスケールを取り除く装置である。フロースイッチ57は、水回路210内を循環する水の流量が一定量以上であるか否かを検出するための装置である。フロースイッチ57に代えて流量センサを用いることもできる。 The pump 53 is a device that pressurizes the water in the water circuit 210 and circulates the water circuit 210. The booster heater 54 is a device that further heats the water in the water circuit 210 when the heating capacity of the outdoor unit 100 is insufficient. The three-way valve 55 is a device for switching the flow of water in the water circuit 210. For example, the three-way valve 55 switches whether the water in the main circuit 220 is circulated on the branch circuit 221 side or the branch circuit 222 side. The strainer 56 is a device that removes the scale in the water circuit 210. The flow switch 57 is a device for detecting whether or not the flow rate of water circulating in the water circuit 210 is a certain amount or more. A flow sensor can be used in place of the flow switch 57.
 ブースタヒータ54には、圧力逃がし弁70(圧力保護装置の一例)が接続されている。すなわち、ブースタヒータ54は、水回路210に対する圧力逃がし弁70の接続部となる。以後、圧力逃がし弁70の接続部のことを、単に「接続部」と表現する場合がある。圧力逃がし弁70は、水の温度変化に伴う水回路210内の圧力の過上昇を防ぐ保護装置である。圧力逃がし弁70は、水回路210内の圧力に基づいて水回路210の外部に水を放出する。例えば、水回路210内の圧力が膨張タンク52(後述)の圧力制御範囲を超えて高くなった場合には、圧力逃がし弁70が開放され、水回路210内の水が圧力逃がし弁70から外部に放出される。圧力逃がし弁70は、室内機200に設けられている。圧力逃がし弁70が室内機200に設けられているのは、室内機200内の水回路210での圧力保護を行うためである。 A pressure relief valve 70 (an example of a pressure protection device) is connected to the booster heater 54. That is, the booster heater 54 becomes a connection part of the pressure relief valve 70 to the water circuit 210. Hereinafter, the connection portion of the pressure relief valve 70 may be simply expressed as “connection portion”. The pressure relief valve 70 is a protection device that prevents an excessive increase in pressure in the water circuit 210 due to a change in the temperature of water. The pressure relief valve 70 discharges water to the outside of the water circuit 210 based on the pressure in the water circuit 210. For example, when the pressure in the water circuit 210 becomes higher than the pressure control range of the expansion tank 52 (described later), the pressure relief valve 70 is opened, and the water in the water circuit 210 is discharged from the pressure relief valve 70 to the outside. To be released. The pressure relief valve 70 is provided in the indoor unit 200. The reason why the pressure relief valve 70 is provided in the indoor unit 200 is to perform pressure protection in the water circuit 210 in the indoor unit 200.
 ブースタヒータ54の筐体には、主回路220から分岐した水流路となる配管72の一端が接続されている。配管72の他端には、圧力逃がし弁70が取り付けられている。すなわち、圧力逃がし弁70は、配管72を介してブースタヒータ54に接続されている。主回路220内で水温が最も高くなるのは、ブースタヒータ54内である。このため、ブースタヒータ54は、圧力逃がし弁70が接続される接続部として最適である。また、仮に、圧力逃がし弁70が枝回路221、222に接続される場合、圧力逃がし弁70は個々の枝回路221、222毎に設けられる必要がある。本実施の形態では、圧力逃がし弁70が主回路220に接続されているため、圧力逃がし弁70の数は1つでよい。 One end of a pipe 72 serving as a water flow path branched from the main circuit 220 is connected to the casing of the booster heater 54. A pressure relief valve 70 is attached to the other end of the pipe 72. That is, the pressure relief valve 70 is connected to the booster heater 54 via the pipe 72. The highest water temperature in the main circuit 220 is in the booster heater 54. For this reason, the booster heater 54 is optimal as a connection part to which the pressure relief valve 70 is connected. Further, if the pressure relief valve 70 is connected to the branch circuits 221, 222, the pressure relief valve 70 needs to be provided for each branch circuit 221, 222. In the present embodiment, since the pressure relief valve 70 is connected to the main circuit 220, the number of the pressure relief valves 70 may be one.
 配管72の途中には、分岐部72aが設けられている。分岐部72aには、配管75の一端が接続されている。配管75の他端には、膨張タンク52が接続されている。すなわち、膨張タンク52は、配管75、72を介してブースタヒータ54に接続されている。膨張タンク52は、水の温度変化に伴う水回路210内の圧力変化を一定範囲内に制御するための装置である。 In the middle of the pipe 72, a branch part 72a is provided. One end of a pipe 75 is connected to the branch part 72a. An expansion tank 52 is connected to the other end of the pipe 75. That is, the expansion tank 52 is connected to the booster heater 54 via the pipes 75 and 72. The expansion tank 52 is a device for controlling the pressure change in the water circuit 210 accompanying the water temperature change within a certain range.
 主回路220には、冷媒漏洩検知装置98が設けられている。冷媒漏洩検知装置98は、主回路220のうち、負荷側熱交換器2とブースタヒータ54(接続部)との間に接続されている。冷媒漏洩検知装置98は、冷媒回路110から水回路210への冷媒の漏洩を検知する装置である。冷媒回路110から水回路210に冷媒が漏洩すると、水回路210内の圧力が上昇する。したがって、冷媒漏洩検知装置98は、水回路210内の圧力(圧力の値又は圧力の時間変化)に基づいて、水回路210への冷媒の漏洩を検知することができる。冷媒漏洩検知装置98としては、例えば、水回路210内の圧力を検知する圧力センサ又は圧力スイッチ(高圧スイッチ)が用いられる。例えば圧力スイッチは、電気式であってもよいし、ダイヤフラムを用いた機械式であってもよい。冷媒漏洩検知装置98は、検知信号を制御装置101に出力する。 The main circuit 220 is provided with a refrigerant leak detection device 98. The refrigerant leak detection device 98 is connected between the load side heat exchanger 2 and the booster heater 54 (connection part) in the main circuit 220. The refrigerant leakage detection device 98 is a device that detects refrigerant leakage from the refrigerant circuit 110 to the water circuit 210. When the refrigerant leaks from the refrigerant circuit 110 to the water circuit 210, the pressure in the water circuit 210 increases. Therefore, the refrigerant leakage detection device 98 can detect the leakage of the refrigerant to the water circuit 210 based on the pressure in the water circuit 210 (pressure value or temporal change in pressure). As the refrigerant leakage detection device 98, for example, a pressure sensor or a pressure switch (high pressure switch) for detecting the pressure in the water circuit 210 is used. For example, the pressure switch may be an electric type or a mechanical type using a diaphragm. The refrigerant leak detection device 98 outputs a detection signal to the control device 101.
 本例では、遮断装置77、78及び冷媒漏洩検知装置98がいずれも室外機100に設けられている。これにより、制御線を介して制御装置101と遮断装置77、78及び冷媒漏洩検知装置98とを室外機100内で接続できるため、コスト低減が可能となる。また、冷媒漏洩検知装置98からの検知信号に基づく遮断装置77、78の制御(後述)が室外機100内で完結するため、室外機100の汎用性が高まり、室外機100と種々の室内機との組合せ自由度が向上する。なお、冷媒漏洩検知装置98が冷媒漏洩時に接点信号を出力する場合、冷媒漏洩検知装置98と遮断装置77、78とは、制御装置101を介さずに直接接続されていてもよい。 In this example, the shut-off devices 77 and 78 and the refrigerant leak detection device 98 are all provided in the outdoor unit 100. Thereby, since the control apparatus 101, the interruption | blocking apparatus 77, 78, and the refrigerant | coolant leak detection apparatus 98 can be connected in the outdoor unit 100 via a control line, cost reduction is attained. Further, since the control of the shut-off devices 77 and 78 (described later) based on the detection signal from the refrigerant leak detection device 98 is completed in the outdoor unit 100, the versatility of the outdoor unit 100 is enhanced, and the outdoor unit 100 and various indoor units are increased. The degree of freedom of combination with is improved. When the refrigerant leak detection device 98 outputs a contact signal when the refrigerant leaks, the refrigerant leak detection device 98 and the blocking devices 77 and 78 may be directly connected without passing through the control device 101.
 給湯回路を構成する枝回路221は、室内機200に設けられている。枝回路221の上流端は、三方弁55の一方の流出口に接続されている。枝回路221の下流端は、合流部230に接続されている。枝回路221には、コイル61が設けられている。コイル61は、内部に水を溜める貯湯タンク51に内蔵されている。コイル61は、水回路210の枝回路221を循環する水(温水)との熱交換によって、貯湯タンク51内部に溜められた水を加熱する加熱手段である。また、貯湯タンク51は、浸水ヒータ60を内蔵している。浸水ヒータ60は、貯湯タンク51内部に溜められた水をさらに加熱するための加熱手段である。 The branch circuit 221 constituting the hot water supply circuit is provided in the indoor unit 200. The upstream end of the branch circuit 221 is connected to one outlet of the three-way valve 55. The downstream end of the branch circuit 221 is connected to the merge unit 230. The branch circuit 221 is provided with a coil 61. The coil 61 is built in a hot water storage tank 51 that stores water therein. The coil 61 is a heating unit that heats the water stored in the hot water storage tank 51 by heat exchange with water (hot water) circulating through the branch circuit 221 of the water circuit 210. In addition, the hot water storage tank 51 has a built-in submerged heater 60. The submerged heater 60 is a heating means for further heating the water stored in the hot water storage tank 51.
 貯湯タンク51内の上部には、例えばシャワー等に接続されるサニタリー回路側配管81a(例えば、給湯配管)が接続されている。貯湯タンク51内の下部には、サニタリー回路側配管81b(例えば、補給水配管)が接続されている。貯湯タンク51の下部には、貯湯タンク51内の水を排水するための排水口63が設けられている。貯湯タンク51は、外部への放熱によって内部の水の温度が低下するのを防ぐため、断熱材(図示せず)で覆われている。断熱材には、例えばフェルト、シンサレート(登録商標)、VIP(Vacuum Insulation Panel)等が用いられる。 A sanitary circuit side pipe 81 a (for example, a hot water supply pipe) connected to, for example, a shower or the like is connected to the upper part of the hot water storage tank 51. A sanitary circuit side pipe 81 b (for example, a makeup water pipe) is connected to the lower part in the hot water storage tank 51. A drainage port 63 for draining the water in the hot water storage tank 51 is provided in the lower part of the hot water storage tank 51. The hot water storage tank 51 is covered with a heat insulating material (not shown) in order to prevent the temperature of internal water from decreasing due to heat radiation to the outside. For the heat insulating material, for example, felt, cinsalate (registered trademark), VIP (Vacuum Insulation Panel), or the like is used.
 暖房回路の一部を構成する枝回路222は、室内機200に設けられている。枝回路222は、往き管222a及び戻り管222bを有している。往き管222aの上流端は、三方弁55の他方の流出口に接続されている。往き管222aの下流端及び戻り管222bの上流端は、それぞれ暖房回路側配管82a、82bに接続されている。戻り管222bの下流端は、合流部230に接続されている。これにより、往き管222a及び戻り管222bは、それぞれ暖房回路側配管82a、82bを介して暖房機器300に接続される。暖房回路側配管82a、82b及び暖房機器300は、室内ではあるが室内機200の外部に設けられている。枝回路222は、暖房回路側配管82a、82b及び暖房機器300と共に、暖房回路を構成する。 The branch circuit 222 constituting a part of the heating circuit is provided in the indoor unit 200. The branch circuit 222 has an outward pipe 222a and a return pipe 222b. The upstream end of the forward pipe 222 a is connected to the other outlet of the three-way valve 55. The downstream end of the forward pipe 222a and the upstream end of the return pipe 222b are connected to the heating circuit side pipes 82a and 82b, respectively. The downstream end of the return pipe 222b is connected to the junction 230. Thus, the forward pipe 222a and the return pipe 222b are connected to the heating device 300 via the heating circuit side pipes 82a and 82b, respectively. The heating circuit side pipes 82a and 82b and the heating device 300 are provided outside the indoor unit 200 although they are indoors. The branch circuit 222 constitutes a heating circuit together with the heating circuit side pipes 82a and 82b and the heating device 300.
 暖房回路側配管82aには、圧力逃がし弁301が接続されている。圧力逃がし弁301は、水回路210内の圧力の過上昇を防ぐ保護装置であり、例えば、圧力逃がし弁70と同様の構造を有している。例えば、暖房回路側配管82a内の圧力が設定圧力よりも高くなった場合には、圧力逃がし弁301が開放され、暖房回路側配管82a内の水が圧力逃がし弁301から外部に放出される。圧力逃がし弁301は、室内ではあるが室内機200の外部に設けられている。 A pressure relief valve 301 is connected to the heating circuit side pipe 82a. The pressure relief valve 301 is a protection device that prevents an excessive increase in pressure in the water circuit 210, and has, for example, the same structure as the pressure relief valve 70. For example, when the pressure in the heating circuit side pipe 82a becomes higher than the set pressure, the pressure relief valve 301 is opened, and the water in the heating circuit side pipe 82a is discharged from the pressure relief valve 301 to the outside. The pressure relief valve 301 is provided outside the indoor unit 200 although it is indoors.
 本実施の形態における暖房機器300、暖房回路側配管82a、82b及び圧力逃がし弁301は、ヒートポンプ給湯暖房装置1000の一部ではなく、物件毎の事情に応じて現地施工業者により施工される設備である。例えば、暖房機器300の熱源機としてボイラが用いられている既存の設備において、熱源機がヒートポンプ給湯暖房装置1000に更新される場合がある。このような場合、特に不都合がなければ、暖房機器300、暖房回路側配管82a、82b及び圧力逃がし弁301はそのまま利用される。したがって、ヒートポンプ給湯暖房装置1000は、圧力逃がし弁301の有無に関わらず、種々の設備に接続できることが望ましい。 The heating device 300, the heating circuit side pipes 82a and 82b, and the pressure relief valve 301 in the present embodiment are not part of the heat pump hot water supply and heating device 1000, but are facilities constructed by a local contractor according to the circumstances of each property. is there. For example, in an existing facility in which a boiler is used as a heat source device of the heating device 300, the heat source device may be updated to the heat pump hot water supply and heating device 1000. In such a case, if there is no particular inconvenience, the heating device 300, the heating circuit side pipes 82a and 82b, and the pressure relief valve 301 are used as they are. Therefore, it is desirable that the heat pump hot water supply and heating apparatus 1000 can be connected to various facilities regardless of the presence or absence of the pressure relief valve 301.
 室内機200には、主に水回路210(例えば、ポンプ53、ブースタヒータ54、三方弁55等)の動作を制御する制御装置201が設けられている。制御装置201は、CPU、ROM、RAM、I/Oポート等を備えたマイクロコンピュータを有している。制御装置201は、制御装置101及び操作部202と相互に通信できるようになっている。 The indoor unit 200 is provided with a control device 201 that mainly controls the operation of the water circuit 210 (for example, the pump 53, the booster heater 54, the three-way valve 55, etc.). The control device 201 has a microcomputer provided with a CPU, ROM, RAM, I / O port, and the like. The control device 201 can communicate with the control device 101 and the operation unit 202.
 操作部202は、ヒートポンプ給湯暖房装置1000の操作や各種設定をユーザが行うことができるように構成されている。本例の操作部202は、情報を報知する報知部として、表示部203を備えている。表示部203では、ヒートポンプ給湯暖房装置1000の状態等の各種情報を表示することができる。操作部202は、例えば室内機200の筐体表面に設けられている。 The operation unit 202 is configured such that the user can perform operations and various settings of the heat pump hot water supply and heating device 1000. The operation unit 202 of this example includes a display unit 203 as a notification unit that notifies information. The display unit 203 can display various information such as the state of the heat pump hot water supply and heating device 1000. The operation unit 202 is provided on the surface of the casing of the indoor unit 200, for example.
 次に、負荷側熱交換器2において、冷媒流路と水流路とを隔離する隔壁が破損した場合の動作について説明する。負荷側熱交換器2は、除霜運転時に蒸発器として機能する。このため、負荷側熱交換器2の隔壁は、特に除霜運転時には、水の凍結等により破損してしまう場合がある。一般に、負荷側熱交換器2の冷媒流路を流れる冷媒の圧力は、通常運転時及び除霜運転時のいずれにおいても、負荷側熱交換器2の水流路を流れる水の圧力よりも高い。このため、負荷側熱交換器2の隔壁が破損した場合、通常運転時及び除霜運転時のいずれにおいても冷媒流路の冷媒が水流路に流出し、水流路の水に冷媒が混入する。このとき、水に混入した冷媒は、圧力の低下によりガス化する。また、水よりも圧力の高い冷媒が水に混入することによって、水回路210内の圧力は上昇する。 Next, in the load side heat exchanger 2, an operation when the partition wall that separates the refrigerant flow path and the water flow path is damaged will be described. The load side heat exchanger 2 functions as an evaporator during the defrosting operation. For this reason, the partition wall of the load-side heat exchanger 2 may be damaged due to freezing of water or the like particularly during the defrosting operation. Generally, the pressure of the refrigerant flowing through the refrigerant flow path of the load-side heat exchanger 2 is higher than the pressure of water flowing through the water flow path of the load-side heat exchanger 2 in both the normal operation and the defrosting operation. For this reason, when the partition wall of the load-side heat exchanger 2 is damaged, the refrigerant in the refrigerant channel flows out into the water channel in both the normal operation and the defrosting operation, and the refrigerant is mixed into the water in the water channel. At this time, the refrigerant mixed in the water is gasified by a decrease in pressure. Moreover, the pressure in the water circuit 210 rises when refrigerant having a pressure higher than that of water mixes in the water.
 負荷側熱交換器2で水回路210の水に混入した冷媒は、通常の水の流れに沿う方向(すなわち、負荷側熱交換器2からブースタヒータ54に向かう方向)に流れるだけでなく、圧力差によって通常の水の流れとは逆方向(すなわち、負荷側熱交換器2から合流部230に向かう方向)にも流れる。本例のように、水回路210の主回路220に圧力逃がし弁70が設けられている場合、水に混入した冷媒は、圧力逃がし弁70から室内に水と共に放出され得る。また、本例のように、暖房回路側配管82a又は暖房回路側配管82bに圧力逃がし弁301が設けられている場合、水に混入した冷媒は、圧力逃がし弁301から室内に水と共に放出され得る。すなわち、圧力逃がし弁70、301はいずれも、水回路210内の水に混入した冷媒を水回路210の外部に放出する弁として機能する。冷媒が可燃性を有している場合には、室内に冷媒が放出されると、室内に可燃濃度域が生成されるおそれがある。 The refrigerant mixed in the water of the water circuit 210 in the load side heat exchanger 2 not only flows in the direction along the normal water flow (that is, the direction from the load side heat exchanger 2 toward the booster heater 54), but also in the pressure Due to the difference, the water flows in the direction opposite to the normal flow of water (that is, the direction from the load-side heat exchanger 2 toward the junction 230). When the pressure relief valve 70 is provided in the main circuit 220 of the water circuit 210 as in this example, the refrigerant mixed in the water can be discharged from the pressure relief valve 70 into the room together with water. Moreover, when the pressure relief valve 301 is provided in the heating circuit side piping 82a or the heating circuit side piping 82b as in this example, the refrigerant mixed in water can be discharged together with water from the pressure relief valve 301 into the room. . That is, both of the pressure relief valves 70 and 301 function as valves that discharge the refrigerant mixed in the water in the water circuit 210 to the outside of the water circuit 210. When the refrigerant has flammability, if the refrigerant is released into the room, a combustible concentration range may be generated in the room.
 本実施の形態では、制御装置101は、冷媒漏洩検知装置98からの検知信号に基づき水回路210への冷媒の漏洩を検知した場合、圧縮機3を停止させるとともに遮断装置77、78を閉状態にする。これにより、冷媒回路110の冷媒の流れは、遮断装置77、78によって負荷側熱交換器2の前後2箇所で遮断される。すなわち、負荷側熱交換器2は、冷媒の流れにおいて冷媒回路110から切り離された状態になる。このため、負荷側熱交換器2で水回路210に漏洩する冷媒量を、負荷側熱交換器2内に存在する冷媒量以下に抑えることができる。したがって、本実施の形態によれば、圧力逃がし弁70、301から室内に冷媒が漏洩してしまうのを抑制することができる。 In the present embodiment, the control device 101 stops the compressor 3 and closes the shut-off devices 77 and 78 when detecting leakage of the refrigerant to the water circuit 210 based on the detection signal from the refrigerant leak detection device 98. To. Thereby, the flow of the refrigerant in the refrigerant circuit 110 is blocked at two places before and after the load-side heat exchanger 2 by the blocking devices 77 and 78. That is, the load side heat exchanger 2 is disconnected from the refrigerant circuit 110 in the refrigerant flow. For this reason, the amount of refrigerant leaking to the water circuit 210 in the load side heat exchanger 2 can be suppressed to be equal to or less than the amount of refrigerant existing in the load side heat exchanger 2. Therefore, according to this Embodiment, it can suppress that a refrigerant | coolant leaks into the room | chamber interior from the pressure relief valves 70 and 301. FIG.
 図2は、本実施の形態の変形例に係るヒートポンプ利用機器の概略構成を示す回路図である。図2に示すように、本変形例は、負荷側熱交換器2が室内機200に収容されている点で、図1に示した構成と異なっている。冷媒回路110は、室外機100と室内機200とに跨がって設けられている。冷媒回路110の一部は室外機100に設けられ、冷媒回路110の他の一部は室内機200に設けられている。室外機100と室内機200との間は、冷媒回路110の一部を構成する2本の接続配管111、112を介して接続されている。本変形例によっても、図1に示した構成と同様の効果を得ることができる。また、本変形例では、遮断装置77、78及び冷媒漏洩検知装置98がいずれも室内機200に設けられている。冷媒漏洩検知装置98は制御装置201に検知信号を出力し、遮断装置77、78は制御装置201によって制御される。これにより、制御線を介して制御装置201と遮断装置77、78及び冷媒漏洩検知装置98とを室内機200内で接続できるため、コスト低減が可能となる。また、冷媒漏洩検知装置98からの検知信号に基づく遮断装置77、78の制御が室内機200内で完結するため、室内機200の汎用性が高まり、室内機200と種々の室外機との組合せ自由度が向上する。 FIG. 2 is a circuit diagram showing a schematic configuration of a heat pump utilizing device according to a modification of the present embodiment. As shown in FIG. 2, the present modification is different from the configuration shown in FIG. 1 in that the load side heat exchanger 2 is accommodated in the indoor unit 200. The refrigerant circuit 110 is provided across the outdoor unit 100 and the indoor unit 200. A part of the refrigerant circuit 110 is provided in the outdoor unit 100, and the other part of the refrigerant circuit 110 is provided in the indoor unit 200. The outdoor unit 100 and the indoor unit 200 are connected via two connection pipes 111 and 112 that constitute a part of the refrigerant circuit 110. Also by this modification, the same effect as the structure shown in FIG. 1 can be acquired. Further, in this modification, the shut-off devices 77 and 78 and the refrigerant leak detection device 98 are all provided in the indoor unit 200. The refrigerant leak detection device 98 outputs a detection signal to the control device 201, and the blocking devices 77 and 78 are controlled by the control device 201. Thereby, since the control apparatus 201, interruption | blocking apparatus 77, 78, and the refrigerant | coolant leakage detection apparatus 98 can be connected in the indoor unit 200 via a control line, cost reduction is attained. Further, since the control of the shut-off devices 77 and 78 based on the detection signal from the refrigerant leak detection device 98 is completed in the indoor unit 200, the versatility of the indoor unit 200 is enhanced, and the combination of the indoor unit 200 and various outdoor units is increased. The degree of freedom is improved.
 次に、冷媒漏洩検知装置98の配置位置について説明する。図3は、本実施の形態に係るヒートポンプ利用機器における冷媒漏洩検知装置98の配置位置の例を示す説明図である。図3では、冷媒漏洩検知装置98の配置位置の例として、5つの配置位置A~Eを示している。配置位置A及びBの場合、冷媒漏洩検知装置98は、配管72に接続されている。すなわち、冷媒漏洩検知装置98は、圧力逃がし弁70と同様に、ブースタヒータ54(接続部)で主回路220に接続されている。このような場合、負荷側熱交換器2で水回路210に漏洩した冷媒が圧力逃がし弁70から放出される前に、冷媒漏洩検知装置98によって冷媒の漏洩を確実に検知することができる。水回路210への冷媒の漏洩が冷媒漏洩検知装置98によって検知されると、冷媒回路110の冷媒の流れは、遮断装置77、78によって負荷側熱交換器2の前後2箇所で直ちに遮断される。したがって、圧力逃がし弁70から室内への冷媒の漏洩量を最小限に抑えることができる。同様の効果は、冷媒漏洩検知装置98が、主回路220のうち、負荷側熱交換器2、又は、負荷側熱交換器2とブースタヒータ54との間、に接続されている場合にも得られる。 Next, the arrangement position of the refrigerant leak detection device 98 will be described. FIG. 3 is an explanatory diagram illustrating an example of an arrangement position of the refrigerant leak detection device 98 in the heat pump utilization device according to the present embodiment. In FIG. 3, five arrangement positions A to E are shown as examples of arrangement positions of the refrigerant leak detection device 98. In the case of the arrangement positions A and B, the refrigerant leak detection device 98 is connected to the pipe 72. That is, the refrigerant leak detection device 98 is connected to the main circuit 220 by the booster heater 54 (connection portion), similarly to the pressure relief valve 70. In such a case, before the refrigerant leaked into the water circuit 210 in the load side heat exchanger 2 is discharged from the pressure relief valve 70, the refrigerant leakage detection device 98 can reliably detect the refrigerant leakage. When the leakage of the refrigerant to the water circuit 210 is detected by the refrigerant leakage detection device 98, the refrigerant flow in the refrigerant circuit 110 is immediately interrupted at two locations before and after the load-side heat exchanger 2 by the cutoff devices 77 and 78. . Therefore, the amount of refrigerant leakage from the pressure relief valve 70 into the room can be minimized. The same effect can be obtained when the refrigerant leakage detection device 98 is connected to the load side heat exchanger 2 or between the load side heat exchanger 2 and the booster heater 54 in the main circuit 220. It is done.
 一方、配置位置C及びDの場合、冷媒漏洩検知装置98は、主回路220のうちブースタヒータ54(接続部)と三方弁55との間に接続されている。この場合、冷媒漏洩検知装置98によって冷媒の漏洩が検知される前に、冷媒が圧力逃がし弁70から放出されてしまうことがある。ただし、上記のように、水回路210への冷媒の漏洩が検知されると、冷媒回路110の冷媒の流れは負荷側熱交換器2の前後2箇所で直ちに遮断される。したがって、圧力逃がし弁70から室内への冷媒の漏洩量を最小限に抑えることができる。 On the other hand, in the arrangement positions C and D, the refrigerant leak detection device 98 is connected between the booster heater 54 (connection part) and the three-way valve 55 in the main circuit 220. In this case, the refrigerant may be discharged from the pressure relief valve 70 before the refrigerant leakage detection device 98 detects the refrigerant leakage. However, as described above, when the leakage of the refrigerant to the water circuit 210 is detected, the refrigerant flow in the refrigerant circuit 110 is immediately interrupted at two places before and after the load-side heat exchanger 2. Therefore, the amount of refrigerant leakage from the pressure relief valve 70 into the room can be minimized.
 配置位置Eの場合、冷媒漏洩検知装置98は、主回路220のうち、負荷側熱交換器2と合流部230との間に接続されている。この場合、水回路210に漏洩した冷媒が圧力逃がし弁301から放出される前に、冷媒漏洩検知装置98によって冷媒の漏洩を確実に検知することができる。水回路210への冷媒の漏洩が冷媒漏洩検知装置98によって検知されると、冷媒回路110の冷媒の流れは、遮断装置77、78によって負荷側熱交換器2の前後2箇所で直ちに遮断される。したがって、圧力逃がし弁301から室内への冷媒の漏洩量を最小限に抑えることができる。 In the arrangement position E, the refrigerant leak detection device 98 is connected between the load-side heat exchanger 2 and the junction 230 in the main circuit 220. In this case, before the refrigerant leaked into the water circuit 210 is released from the pressure relief valve 301, the refrigerant leak detection device 98 can reliably detect the refrigerant leak. When the leakage of the refrigerant to the water circuit 210 is detected by the refrigerant leakage detection device 98, the refrigerant flow in the refrigerant circuit 110 is immediately interrupted at two locations before and after the load-side heat exchanger 2 by the cutoff devices 77 and 78. . Therefore, the amount of refrigerant leakage from the pressure relief valve 301 into the room can be minimized.
 図1~図3に示した全ての構成では、冷媒漏洩検知装置98が、現地施工業者により施工される枝回路(例えば、暖房回路側配管82a、82b及び暖房機器300)ではなく、主回路220に接続されている。このため、冷媒漏洩検知装置98の取付け、及び、冷媒漏洩検知装置98と制御装置201との接続は、室内機200の製造メーカが行うことができる。したがって、冷媒漏洩検知装置98の取付け忘れ及び冷媒漏洩検知装置98の接続忘れといったヒューマンエラーも回避できる。 In all the configurations shown in FIGS. 1 to 3, the refrigerant leakage detection device 98 is not a branch circuit (for example, the heating circuit side pipes 82 a and 82 b and the heating device 300) constructed by a local contractor, but the main circuit 220. It is connected to the. For this reason, the manufacturer of the indoor unit 200 can attach the refrigerant leakage detection device 98 and connect the refrigerant leakage detection device 98 and the control device 201. Accordingly, human errors such as forgetting to attach the refrigerant leakage detection device 98 and forgetting to connect the refrigerant leakage detection device 98 can be avoided.
 次に、遮断装置77、78の配置位置について説明する。遮断装置77、78はそれぞれ、冷媒回路110のうち負荷側熱交換器2を挟んだ両側に配置されている。冷媒回路110において遮断装置77から負荷側熱交換器2を経由して遮断装置78に至るまでの区間の容積が小さいほど、圧力逃がし弁70又は圧力逃がし弁301からの冷媒漏洩量を減少させることができる。したがって、圧縮機3及び熱源側熱交換器1等の容積の大きい機器は、上記の区間に含まれないようにするのが望ましい。すなわち、遮断装置77は、通常運転時の冷媒の流れにおいて、負荷側熱交換器2の上流側であって圧縮機3の下流側に設けられるのが望ましい。本実施の形態のように冷媒回路110に冷媒流路切替装置4が設けられる場合には、遮断装置77は、通常運転時の冷媒の流れにおいて、負荷側熱交換器2の上流側であって冷媒流路切替装置4の下流側に設けられるのが望ましい。また、遮断装置78は、通常運転時の冷媒の流れにおいて、負荷側熱交換器2の下流側であって熱源側熱交換器1の上流側に設けられるのが望ましい。 Next, the arrangement position of the blocking devices 77 and 78 will be described. The shut-off devices 77 and 78 are respectively disposed on both sides of the refrigerant circuit 110 with the load side heat exchanger 2 interposed therebetween. In the refrigerant circuit 110, the smaller the volume of the section from the shutoff device 77 through the load side heat exchanger 2 to the shutoff device 78, the smaller the amount of refrigerant leakage from the pressure relief valve 70 or the pressure relief valve 301. Can do. Therefore, it is desirable that devices having a large volume such as the compressor 3 and the heat source side heat exchanger 1 are not included in the section. That is, it is desirable that the shut-off device 77 is provided upstream of the load-side heat exchanger 2 and downstream of the compressor 3 in the refrigerant flow during normal operation. When the refrigerant flow switching device 4 is provided in the refrigerant circuit 110 as in the present embodiment, the blocking device 77 is upstream of the load-side heat exchanger 2 in the refrigerant flow during normal operation. It is desirable to be provided on the downstream side of the refrigerant flow switching device 4. Further, it is desirable that the shutoff device 78 is provided downstream of the load side heat exchanger 2 and upstream of the heat source side heat exchanger 1 in the refrigerant flow during normal operation.
 以上説明したように、本実施の形態に係るヒートポンプ給湯暖房装置1000(ヒートポンプ利用機器の一例)は、冷媒を循環させる冷媒回路110と、水(熱媒体の一例)を流通させる水回路210(熱媒体回路の一例)と、冷媒と水との熱交換を行う負荷側熱交換器2(熱交換器の一例)と、を備えている。水回路210は、負荷側熱交換器2を経由する主回路220を有している。主回路220は、主回路220の下流端に設けられ、主回路220から分岐する複数の枝回路221、222が接続される三方弁55(分岐部の一例)と、主回路220の上流端に設けられ、主回路220に合流する複数の枝回路221、222が接続される合流部230と、を有している。主回路220には、水回路210内の圧力に基づいて水回路210の外部に水を放出する圧力逃がし弁70(圧力保護装置の一例)と、冷媒回路110から水回路210への冷媒の漏洩を検知する冷媒漏洩検知装置98と、が接続されている。冷媒回路110には、負荷側熱交換器2を挟んで遮断装置77(第1遮断装置の一例)及び遮断装置78(第2遮断装置の一例)が設けられている。 As described above, the heat pump hot water supply and heating apparatus 1000 (an example of a heat pump using device) according to the present embodiment includes the refrigerant circuit 110 that circulates the refrigerant and the water circuit 210 (heat) that circulates water (an example of a heat medium). An example of a medium circuit) and a load-side heat exchanger 2 (an example of a heat exchanger) that performs heat exchange between the refrigerant and water. The water circuit 210 has a main circuit 220 that passes through the load-side heat exchanger 2. The main circuit 220 is provided at the downstream end of the main circuit 220, and is connected to a three-way valve 55 (an example of a branch portion) to which a plurality of branch circuits 221 and 222 branching from the main circuit 220 are connected, and And a junction unit 230 to which a plurality of branch circuits 221 and 222 that join the main circuit 220 are connected. The main circuit 220 includes a pressure relief valve 70 (an example of a pressure protection device) that discharges water to the outside of the water circuit 210 based on the pressure in the water circuit 210, and refrigerant leakage from the refrigerant circuit 110 to the water circuit 210. And a refrigerant leakage detection device 98 for detecting The refrigerant circuit 110 is provided with a shut-off device 77 (an example of a first shut-off device) and a shut-off device 78 (an example of a second shut-off device) across the load-side heat exchanger 2.
 この構成によれば、冷媒が水回路210に漏洩した場合であっても、冷媒回路110の冷媒の流れを遮断装置77、78によって負荷側熱交換器2の前後2箇所で遮断することができる。したがって、圧力逃がし弁70から冷媒が室内に漏洩してしまうのを抑制することができる。また、主回路220側から見て三方弁55又は合流部230よりも先で室内機200の水回路210に接続される現地施工回路(例えば、暖房回路側配管82a、82b)には、圧力逃がし弁301が設けられている可能性がある。上記構成によれば、現地施工回路に圧力逃がし弁301が設けられていたとしても、圧力逃がし弁301から冷媒が室内に漏洩してしまうことを抑制することができる。 According to this configuration, even if the refrigerant leaks into the water circuit 210, the refrigerant flow in the refrigerant circuit 110 can be blocked at two places before and after the load-side heat exchanger 2 by the blocking devices 77 and 78. . Therefore, the refrigerant can be prevented from leaking from the pressure relief valve 70 into the room. In addition, a pressure relief is applied to the on-site construction circuit (for example, the heating circuit side pipes 82a and 82b) connected to the water circuit 210 of the indoor unit 200 before the three-way valve 55 or the merging portion 230 when viewed from the main circuit 220 side. A valve 301 may be provided. According to the said structure, even if the pressure relief valve 301 is provided in the site construction circuit, it can suppress that a refrigerant | coolant leaks from the pressure relief valve 301 in a room | chamber interior.
 本実施の形態に係るヒートポンプ給湯暖房装置1000において、遮断装置77、78は、水回路210への冷媒の漏洩が検知されたときに閉となる開閉弁である。この構成によれば、水回路210に冷媒が漏洩した場合に、冷媒回路110の冷媒の流れを直ちに遮断することができる。 In the heat pump hot water supply and heating device 1000 according to the present embodiment, the shut-off devices 77 and 78 are on-off valves that are closed when refrigerant leakage to the water circuit 210 is detected. According to this configuration, when the refrigerant leaks into the water circuit 210, the refrigerant flow in the refrigerant circuit 110 can be immediately shut off.
 本実施の形態に係るヒートポンプ給湯暖房装置1000において、圧力逃がし弁70は、主回路220のうち、負荷側熱交換器2と三方弁55又は合流部230の一方(本例では、三方弁55)との間に位置するブースタヒータ54(接続部の一例)に接続されている。冷媒漏洩検知装置98は、主回路220のうち、三方弁55若しくは合流部230の他方(本例では、合流部230)、当該他方(本例では、合流部230)とブースタヒータ54(接続部の一例)との間、又はブースタヒータ54(接続部の一例)に接続されている。この構成によれば、水回路210に漏洩した冷媒が室内に放出される前に、冷媒の漏洩を確実に検知することができる。 In the heat pump hot water supply and heating apparatus 1000 according to the present embodiment, the pressure relief valve 70 is one of the load side heat exchanger 2 and the three-way valve 55 or the merging portion 230 in the main circuit 220 (three-way valve 55 in this example). Are connected to a booster heater 54 (an example of a connecting portion) located between the two. In the main circuit 220, the refrigerant leak detection device 98 includes the three-way valve 55 or the other of the merging portion 230 (merging portion 230 in this example), the other (merging portion 230 in this example), and the booster heater 54 (connecting portion). For example) or a booster heater 54 (an example of a connecting portion). According to this configuration, the leakage of the refrigerant can be reliably detected before the refrigerant that has leaked into the water circuit 210 is released into the room.
 本実施の形態に係るヒートポンプ給湯暖房装置1000において、冷媒漏洩検知装置98は、水回路210内の圧力に基づいて水回路210への冷媒の漏洩を検知する。この構成によれば、冷媒の漏洩を確実に検知することができる。 In the heat pump hot water supply and heating apparatus 1000 according to the present embodiment, the refrigerant leakage detection device 98 detects refrigerant leakage to the water circuit 210 based on the pressure in the water circuit 210. According to this configuration, leakage of the refrigerant can be reliably detected.
 本実施の形態に係るヒートポンプ給湯暖房装置1000において、遮断装置77は、冷媒回路110のうち圧縮機3と負荷側熱交換器2との間に設けられており、遮断装置78は、冷媒回路110のうち負荷側熱交換器2と熱源側熱交換器1との間に設けられている。すなわち、暖房運転(本例では、通常運転)時の冷媒回路110における冷媒の流れにおいて、遮断装置77は、圧縮機3の下流側であって負荷側熱交換器2の上流側に設けられており、遮断装置78は、負荷側熱交換器2の下流側であって熱源側熱交換器1の上流側に設けられている。この構成によれば、遮断装置77から負荷側熱交換器2を経由して遮断装置78に至るまでの区間に、圧縮機3及び熱源側熱交換器1等の容積の大きい機器が含まれないようにすることができる。したがって、圧力逃がし弁70又は圧力逃がし弁301からの冷媒漏洩量を減少させることができる。 In heat pump hot water supply and heating apparatus 1000 according to the present embodiment, shutoff device 77 is provided between compressor 3 and load-side heat exchanger 2 in refrigerant circuit 110, and shutoff device 78 is refrigerant circuit 110. Among these, it is provided between the load side heat exchanger 2 and the heat source side heat exchanger 1. That is, in the refrigerant flow in the refrigerant circuit 110 during the heating operation (normal operation in this example), the shut-off device 77 is provided on the downstream side of the compressor 3 and on the upstream side of the load-side heat exchanger 2. The shutoff device 78 is provided downstream of the load side heat exchanger 2 and upstream of the heat source side heat exchanger 1. According to this configuration, the section from the shut-off device 77 to the shut-off device 78 via the load-side heat exchanger 2 does not include a large volume device such as the compressor 3 and the heat source-side heat exchanger 1. Can be. Therefore, the amount of refrigerant leakage from the pressure relief valve 70 or the pressure relief valve 301 can be reduced.
 本実施の形態に係るヒートポンプ給湯暖房装置1000において、遮断装置78は、冷媒回路110の減圧装置として機能する。この構成によれば、ヒートポンプ給湯暖房装置1000の部品点数を削減することができる。 In the heat pump hot water supply and heating apparatus 1000 according to the present embodiment, the shutoff device 78 functions as a decompression device for the refrigerant circuit 110. According to this configuration, the number of parts of the heat pump hot water supply / room heating device 1000 can be reduced.
 本実施の形態に係るヒートポンプ給湯暖房装置1000は、冷媒回路110、水回路210の一部及び負荷側熱交換器2を収容する室外機100と、水回路210の他の一部を収容する室内機200と、をさらに備えている。室外機100は、遮断装置77、78及び冷媒漏洩検知装置98を収容している。この構成によれば、制御装置101と、遮断装置77、78及び冷媒漏洩検知装置98のそれぞれと、を室外機100内で接続できるため、コスト低減が可能となる。また、この構成によれば、室外機100の汎用性を高めることができ、室外機100と種々の室内機との組合せ自由度を向上させることができる。 Heat pump hot water supply and heating apparatus 1000 according to the present embodiment includes an outdoor unit 100 that houses refrigerant circuit 110, a part of water circuit 210, and load-side heat exchanger 2, and a room that houses another part of water circuit 210. 200 is further provided. The outdoor unit 100 houses blocking devices 77 and 78 and a refrigerant leakage detection device 98. According to this configuration, since the control device 101 and each of the shut-off devices 77 and 78 and the refrigerant leakage detection device 98 can be connected in the outdoor unit 100, the cost can be reduced. Moreover, according to this structure, the versatility of the outdoor unit 100 can be improved, and the freedom degree of combination with the outdoor unit 100 and various indoor units can be improved.
 本実施の形態に係るヒートポンプ給湯暖房装置1000は、冷媒回路110の一部を収容する室外機100と、冷媒回路110の他の一部、水回路210及び負荷側熱交換器2を収容する室内機200と、をさらに備えている。室内機200は、遮断装置77、78及び冷媒漏洩検知装置98を収容している。この構成によれば、制御装置201と遮断装置77、78及び冷媒漏洩検知装置98とを室内機200内で接続できるため、コスト低減が可能となる。また、この構成によれば、室内機200の汎用性を高めることができ、室内機200と種々の室外機との組合せ自由度を向上させることができる。 Heat pump hot water supply and heating apparatus 1000 according to the present embodiment includes an outdoor unit 100 that houses a part of refrigerant circuit 110, and a room that houses another part of refrigerant circuit 110, water circuit 210 and load-side heat exchanger 2. 200 is further provided. The indoor unit 200 houses shut-off devices 77 and 78 and a refrigerant leak detection device 98. According to this configuration, since the control device 201, the shut-off devices 77 and 78, and the refrigerant leakage detection device 98 can be connected within the indoor unit 200, the cost can be reduced. Moreover, according to this structure, the versatility of the indoor unit 200 can be improved, and the freedom degree of combination with the indoor unit 200 and various outdoor units can be improved.
 本実施の形態に係るヒートポンプ給湯暖房装置1000において、冷媒は、可燃性冷媒又は有毒性冷媒であってもよい。 In the heat pump hot water supply and heating apparatus 1000 according to the present embodiment, the refrigerant may be a combustible refrigerant or a toxic refrigerant.
実施の形態2.
 本発明の実施の形態2に係るヒートポンプ利用機器について説明する。図4は、本実施の形態に係るヒートポンプ利用機器の概略構成を示す回路図である。図4では、主に室内機200の構成を示している。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。図4に示すように、本実施の形態では、貯湯タンク51内部に溜められた水を加熱する沸上げ回路240が貯湯タンク51の外部に設けられている。沸上げ回路240は、貯湯タンク51の下部と上部とを接続する水流路を有している。沸上げ回路240には、沸上げポンプ241と、沸上げ回路240を流れる水と枝回路221を流れる水との熱交換を行う沸上げ熱交換器242と、が設けられている。沸上げポンプ241が動作すると、貯湯タンク51の下部の水が沸上げ回路240に流入する。沸上げ回路240に流入した水は、沸上げ熱交換器242での熱交換によって加熱され、貯湯タンク51の上部に戻る。本実施の形態によっても、実施の形態1と同様の効果を得ることができる。
Embodiment 2. FIG.
A heat pump utilizing device according to Embodiment 2 of the present invention will be described. FIG. 4 is a circuit diagram showing a schematic configuration of the heat pump utilizing device according to the present embodiment. FIG. 4 mainly shows the configuration of the indoor unit 200. In addition, about the component which has the function and effect | action same as Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted. As shown in FIG. 4, in the present embodiment, a boiling circuit 240 for heating the water stored in the hot water storage tank 51 is provided outside the hot water storage tank 51. The boiling circuit 240 has a water flow path that connects the lower part and the upper part of the hot water storage tank 51. The boiling circuit 240 is provided with a boiling pump 241 and a boiling heat exchanger 242 that performs heat exchange between water flowing in the boiling circuit 240 and water flowing in the branch circuit 221. When the boiling pump 241 operates, the water below the hot water storage tank 51 flows into the boiling circuit 240. The water flowing into the boiling circuit 240 is heated by heat exchange in the boiling heat exchanger 242 and returns to the upper part of the hot water storage tank 51. Also in the present embodiment, the same effect as in the first embodiment can be obtained.
 本発明は、上記実施の形態に限らず種々の変形が可能である。
 例えば、上記実施の形態では、負荷側熱交換器2としてプレート式熱交換器を例に挙げたが、負荷側熱交換器2は、冷媒と熱媒体との熱交換を行うものであれば、二重管式熱交換器など、プレート式熱交換器以外のものであってもよい。
The present invention is not limited to the above embodiment, and various modifications can be made.
For example, in the above embodiment, a plate-type heat exchanger has been exemplified as the load-side heat exchanger 2, but the load-side heat exchanger 2 can perform heat exchange between the refrigerant and the heat medium, Other than the plate-type heat exchanger such as a double-pipe heat exchanger may be used.
 また、上記実施の形態では、ヒートポンプ利用機器としてヒートポンプ給湯暖房装置1000を例に挙げたが、本発明は、チラー等の他のヒートポンプ利用機器にも適用可能である。 Moreover, in the said embodiment, although the heat pump hot water supply and heating apparatus 1000 was mentioned as an example as a heat pump utilization apparatus, this invention is applicable also to other heat pump utilization apparatuses, such as a chiller.
 また、上記実施の形態では、貯湯タンク51を備えた室内機200を例に挙げたが、貯湯タンクは室内機200とは別に設けられていてもよい。 In the above embodiment, the indoor unit 200 provided with the hot water storage tank 51 is taken as an example, but the hot water storage tank may be provided separately from the indoor unit 200.
 上記の各実施の形態や変形例は、互いに組み合わせて実施することが可能である。 The above embodiments and modifications can be implemented in combination with each other.
 1 熱源側熱交換器、2 負荷側熱交換器、3 圧縮機、4 冷媒流路切替装置、6 減圧装置、51 貯湯タンク、52 膨張タンク、53 ポンプ、54 ブースタヒータ、55 三方弁、56 ストレーナ、57 フロースイッチ、60 浸水ヒータ、61 コイル、62、63 排水口、70 圧力逃がし弁、72 配管、72a 分岐部、75 配管、77、78 遮断装置、81a、81b サニタリー回路側配管、82a、82b 暖房回路側配管、98 冷媒漏洩検知装置、100 室外機、101 制御装置、102 制御線、110 冷媒回路、111、112 接続配管、200 室内機、201 制御装置、202 操作部、203 表示部、210 水回路、211、212 接続配管、220 主回路、221、222 枝回路、222a 往き管、222b 戻り管、230 合流部、240 沸上げ回路、241 沸上げポンプ、242 沸上げ熱交換器、300 暖房機器、301 圧力逃がし弁、1000 ヒートポンプ給湯暖房装置。 1 heat source side heat exchanger, 2 load side heat exchanger, 3 compressor, 4 refrigerant flow path switching device, 6 decompression device, 51 hot water storage tank, 52 expansion tank, 53 pump, 54 booster heater, 55 three-way valve, 56 strainer , 57 flow switch, 60 submerged heater, 61 coil, 62, 63 drain, 70 pressure relief valve, 72 piping, 72a branch, 75 piping, 77, 78 shutoff device, 81a, 81b sanitary circuit side piping, 82a, 82b Heating circuit side piping, 98 refrigerant leakage detection device, 100 outdoor unit, 101 control device, 102 control line, 110 refrigerant circuit, 111, 112 connection piping, 200 indoor unit, 201 control device, 202 operation unit, 203 display unit, 210 Water circuit, 211, 212 connection piping, 220 main circuit, 22 , 222 branch circuits, 222a forward pipe, 222b return pipe, 230 merging portion, 240 boiling up circuit, 241 Nieage pump, 242 bp up heat exchanger, 300 heating equipment, 301 pressure relief valve, 1000 heat pump water heater heating system.

Claims (9)

  1.  冷媒を循環させる冷媒回路と、
     熱媒体を流通させる熱媒体回路と、
     前記冷媒と前記熱媒体との熱交換を行う熱交換器と、を備え、
     前記熱媒体回路は、前記熱交換器を経由する主回路を有しており、
     前記主回路は、
     前記主回路の下流端に設けられ、前記主回路から分岐する複数の枝回路が接続される分岐部と、
     前記主回路の上流端に設けられ、前記主回路に合流する前記複数の枝回路が接続される合流部と、を有しており、
     前記主回路には、圧力保護装置と、冷媒漏洩検知装置と、が接続されており、
     前記冷媒回路には、前記熱交換器を挟んで第1遮断装置及び第2遮断装置が設けられているヒートポンプ利用機器。
    A refrigerant circuit for circulating the refrigerant;
    A heat medium circuit for circulating the heat medium;
    A heat exchanger that performs heat exchange between the refrigerant and the heat medium,
    The heat medium circuit has a main circuit via the heat exchanger,
    The main circuit is:
    A branch portion provided at a downstream end of the main circuit and connected to a plurality of branch circuits branching from the main circuit;
    A merging portion provided at an upstream end of the main circuit and connected to the plurality of branch circuits merging with the main circuit;
    A pressure protection device and a refrigerant leakage detection device are connected to the main circuit,
    A heat pump utilizing device in which the refrigerant circuit is provided with a first shut-off device and a second shut-off device across the heat exchanger.
  2.  前記第1遮断装置及び前記第2遮断装置は、前記熱媒体回路への前記冷媒の漏洩が検知されたときに閉となる開閉弁である請求項1に記載のヒートポンプ利用機器。 The heat pump utilizing device according to claim 1, wherein the first shut-off device and the second shut-off device are on-off valves that are closed when leakage of the refrigerant to the heat medium circuit is detected.
  3.  前記圧力保護装置は、前記主回路のうち、前記熱交換器と前記分岐部又は前記合流部の一方との間に位置する接続部に接続されており、
     前記冷媒漏洩検知装置は、前記主回路のうち、前記分岐部若しくは前記合流部の他方、前記他方と前記接続部との間、又は前記接続部に接続されている請求項1又は請求項2に記載のヒートポンプ利用機器。
    The pressure protection device is connected to a connection part located between the heat exchanger and one of the branch part or the junction part in the main circuit,
    The said refrigerant | coolant leakage detection apparatus is connected between the other of the said branch part or the said junction part among the said main circuits, the said other, and the said connection part, or the said connection part. The heat pump equipment described.
  4.  前記冷媒漏洩検知装置は、前記熱媒体回路内の圧力に基づいて前記熱媒体回路への前記冷媒の漏洩を検知する請求項1~請求項3のいずれか一項に記載のヒートポンプ利用機器。 The heat pump utilization device according to any one of claims 1 to 3, wherein the refrigerant leakage detection device detects leakage of the refrigerant to the heat medium circuit based on a pressure in the heat medium circuit.
  5.  前記第1遮断装置は、前記冷媒回路の圧縮機と前記熱交換器との間に設けられており、
     前記第2遮断装置は、前記熱交換器と前記冷媒回路の熱源側熱交換器との間に設けられている請求項1~請求項4のいずれか一項に記載のヒートポンプ利用機器。
    The first shut-off device is provided between the compressor of the refrigerant circuit and the heat exchanger,
    The heat pump utilizing device according to any one of claims 1 to 4, wherein the second shut-off device is provided between the heat exchanger and a heat source side heat exchanger of the refrigerant circuit.
  6.  前記第2遮断装置は、前記冷媒回路の減圧装置として機能する請求項5に記載のヒートポンプ利用機器。 6. The heat pump utilizing device according to claim 5, wherein the second shut-off device functions as a decompression device for the refrigerant circuit.
  7.  前記冷媒回路、前記熱媒体回路の一部及び前記熱交換器を収容する室外機と、
     前記熱媒体回路の他の一部を収容する室内機と、をさらに備え、
     前記室外機は、前記第1遮断装置、前記第2遮断装置及び前記冷媒漏洩検知装置を収容している請求項1~請求項6のいずれか一項に記載のヒートポンプ利用機器。
    An outdoor unit that houses the refrigerant circuit, a part of the heat medium circuit, and the heat exchanger;
    An indoor unit that houses the other part of the heat medium circuit,
    The heat pump utilizing device according to any one of claims 1 to 6, wherein the outdoor unit accommodates the first shut-off device, the second shut-off device, and the refrigerant leak detection device.
  8.  前記冷媒回路の一部を収容する室外機と、
     前記冷媒回路の他の一部、前記熱媒体回路及び前記熱交換器を収容する室内機と、をさらに備え、
     前記室内機は、前記第1遮断装置、前記第2遮断装置及び前記冷媒漏洩検知装置を収容している請求項1~請求項6のいずれか一項に記載のヒートポンプ利用機器。
    An outdoor unit that houses a part of the refrigerant circuit;
    Another part of the refrigerant circuit, an indoor unit that houses the heat medium circuit and the heat exchanger, and
    The heat pump using device according to any one of claims 1 to 6, wherein the indoor unit houses the first shut-off device, the second shut-off device, and the refrigerant leak detection device.
  9.  前記冷媒は、可燃性冷媒又は有毒性冷媒である請求項1~請求項8のいずれか一項に記載のヒートポンプ利用機器。 The heat pump using device according to any one of claims 1 to 8, wherein the refrigerant is a combustible refrigerant or a toxic refrigerant.
PCT/JP2017/008001 2017-02-28 2017-02-28 Apparatus using heat pump WO2018158860A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17899065.1A EP3591312B1 (en) 2017-02-28 2017-02-28 Apparatus using heat pump
US16/469,229 US20190390884A1 (en) 2017-02-28 2017-02-28 Heat-pump using apparatus
PCT/JP2017/008001 WO2018158860A1 (en) 2017-02-28 2017-02-28 Apparatus using heat pump
CN201780087175.2A CN110337571A (en) 2017-02-28 2017-02-28 Heat pump utilizes equipment
JP2019502346A JP6818865B2 (en) 2017-02-28 2017-02-28 Equipment using heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/008001 WO2018158860A1 (en) 2017-02-28 2017-02-28 Apparatus using heat pump

Publications (1)

Publication Number Publication Date
WO2018158860A1 true WO2018158860A1 (en) 2018-09-07

Family

ID=63371378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008001 WO2018158860A1 (en) 2017-02-28 2017-02-28 Apparatus using heat pump

Country Status (5)

Country Link
US (1) US20190390884A1 (en)
EP (1) EP3591312B1 (en)
JP (1) JP6818865B2 (en)
CN (1) CN110337571A (en)
WO (1) WO2018158860A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114963528B (en) * 2021-06-29 2023-08-18 青岛海尔新能源电器有限公司 Refrigerant detection method, device, equipment and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208392A (en) * 2000-01-31 2001-08-03 Matsushita Electric Ind Co Ltd Heat pump device
WO2012101673A1 (en) * 2011-01-26 2012-08-02 三菱電機株式会社 Air conditioner device
WO2013038577A1 (en) * 2011-09-13 2013-03-21 三菱電機株式会社 Heat pump device and method for controlling heat pump device
JP2013137141A (en) * 2011-12-28 2013-07-11 Miura Co Ltd Method for detecting leakage of refrigerating machine oil
JP2013167398A (en) 2012-02-15 2013-08-29 Mitsubishi Electric Corp Outdoor unit and heat pump cycle device
JP2013167395A (en) * 2012-02-15 2013-08-29 Mitsubishi Electric Corp Heat pump cycle device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203704480U (en) * 2013-11-08 2014-07-09 广东美的暖通设备有限公司 Air-cooled cold and hot water unit
JP2016003783A (en) * 2014-06-13 2016-01-12 三菱電機株式会社 Heat pump device
CN104132492A (en) * 2014-08-13 2014-11-05 广东志高暖通设备股份有限公司 Single-cold-water-source multi-split air conditioner machine
CN104457076A (en) * 2014-12-23 2015-03-25 天津职业技术师范大学 Refrigeration method based on PID control electromagnetic valve
JP6565273B2 (en) * 2015-03-31 2019-08-28 ダイキン工業株式会社 Refrigeration equipment
CN104807251B (en) * 2015-05-20 2017-03-22 广东志高暖通设备股份有限公司 Air cooling heat pump module water machine
JP2016095130A (en) * 2016-02-16 2016-05-26 三菱電機株式会社 Heat pump cycle device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208392A (en) * 2000-01-31 2001-08-03 Matsushita Electric Ind Co Ltd Heat pump device
WO2012101673A1 (en) * 2011-01-26 2012-08-02 三菱電機株式会社 Air conditioner device
WO2013038577A1 (en) * 2011-09-13 2013-03-21 三菱電機株式会社 Heat pump device and method for controlling heat pump device
JP2013137141A (en) * 2011-12-28 2013-07-11 Miura Co Ltd Method for detecting leakage of refrigerating machine oil
JP2013167398A (en) 2012-02-15 2013-08-29 Mitsubishi Electric Corp Outdoor unit and heat pump cycle device
JP2013167395A (en) * 2012-02-15 2013-08-29 Mitsubishi Electric Corp Heat pump cycle device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3591312A4

Also Published As

Publication number Publication date
EP3591312B1 (en) 2022-06-29
CN110337571A (en) 2019-10-15
US20190390884A1 (en) 2019-12-26
EP3591312A1 (en) 2020-01-08
JPWO2018158860A1 (en) 2019-11-07
EP3591312A4 (en) 2020-03-04
JP6818865B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
CN110770518B (en) Heat pump utilization equipment
WO2018167861A1 (en) Heat pump device and installation method therefor
US10962267B2 (en) Heat pump apparatus
JP6611958B2 (en) Indoor unit of heat pump using device and heat pump using device equipped with the same
WO2018116404A1 (en) Heat pump utilization equipment
US11248829B2 (en) Apparatus using a heat pump including a refrigerant leakage detector
JP2016095130A (en) Heat pump cycle device
WO2018235125A1 (en) Heat-pump utilization device
WO2018158860A1 (en) Apparatus using heat pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502346

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017899065

Country of ref document: EP

Effective date: 20190930